
James D. English
MAK Technologies
185 Alewife Brook Parkway

Cambridge, MA 02138
jde@mak.com

Anthony A. Maciejewski
Purdue University

1285 Electrical Engineering Building

West Lafayette, IN 47907-1285

maciejew@ecn.purdue.edu

Abstract

For a manipulator operating in a hazardous or remote environment,

an important concern is its capability after a component failure,

since retrieval or repair is not always possible. Methods have been

presented in the literature for optimizing capabilities after specific

types offailures. However, techniquesfor achieving failure tolerance

when conversion between failure types is possible has not beenfully

explored. This paper presents an approach to improving postfailure

performance by converting between locked-joint failures and free­
swinging failures through active braking. When a manipulator is

moved slowly, gravitational forces can be used to control the failed

joint in free-swinging mode, allowing the problem to be cast as a

kinematic one. The validity of the kinematic formulation and its

implementation and global consequences are explored.

KEY WORDS-failure tolerance, free-swinging failure, pas­
sive joint, active braking, underactuated manipulator

1. Introduction

Failure tolerance for robotic manipulators has been widely ad­
dressed, often with a focus on using kinematic redundancy. A
type of failure often addressed is one resulting in ajoint lock­
ing. Methods for designing a manipulator with a desired post­
failure workspace or a desired level ofdexterity after a locking
failure have been presented (Maciejewski 1991 ~ Paredis, Au,
and Khosla 1994; Paredis and Khosla 1994), as have general
methods for preparing kinematically redundant manipulators
for the possibility of a failure (Lewis and Maciejewski 1994,
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1997; Roberts 1996). Similar issues have been addressed for
free-swinging failures (those for which actuator torque is lost).
Methods of preparing for a free-swinging failure were pre­
sented in English and Maciejewski (1998, 2000a), and a study
of postfailure capabilities related to design was presented in
English and Maciejewski (1997). These techniques will be
combined to maximize the postfailure capability of a manip­
ulator by choosing between locked and free-swinging modes
of operation and using gravity to control the free-swinging
joint when the brakes are released. The two failure modes are
illustrated in Figure 1.

Considerable work has been done to address the related
issue of controlling a manipulator with free-swinging joints
using dynamic coupling, both with brakes and without. In
Oriolo and Nakamura (1991), conditions of integrability (i.e.,
reduction to a holonomic constraint) for free-swinging joints
were investigated and methods of stabilizing manipulators
without brakes on equilibrium manifolds were presented. In
Arai and Tachi (1991a) and Arai, Tanie, and Tachi (1993),
active-braking methods were presented based on dynamic
coupling. Operational space methods were developed in Arai,
Tanie, and Tachi (1993). Optimal choices of braking se­
quences for multiple free-swinging joints were given in Berg­
erman and Xu (1998), and robust methods were presented in
Bergerman and Xu (1996). These works focus on dynami­
cally controlling passive joints about equilibrium points, not
on finding the equilibrium points, and not on exploiting grav­
itational forces.

This paper addresses a complementary issue: that of con­
trolling passive joints using gravity alone. Methods are pre­
sented for converting, through repeatedly activating and re­
leasing individual joint brakes, between locked-joint failures
and free-swinging failures for manipulators under gravita­
tional forces. Manipulators used in hazardous and remote
environments-those where failure tolerance is likely to be
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(3)

(2)

(4)

(6)

where iRi+l is the 3 x 3 rotation matrix representing D-H
frame i + 1 in frame i , Sf- is the first-moment-of-inertia vector
for link l referred to and expressed in its own D-H frame, and
Pi-.+£ is the vector from the origin ofD-H frame i to the origin
of frame l and expressed in frame E.

Let

and

gear, chain, or belt failure in a transmission mechanism or
catastrophic failure in a pneumatic or hydraulic system. For
dry-friction-dominated failures, such as those involving low­
viscous-friction electric motors, the joint can be freed using
an active clutch. For a viscous- friction model, the swing an­
gle equals the smallest-magnitude angular difference between
the actual value of joint i and, with the other joints fixed, a
value that gives the lowest potential energy (with the value set
to Jr when the smallest magnitude angular difference is ±Jr).
The viscous-friction model swing angle will be used here.

Ui,2 == (si~l x Zi-I) . (Zi-I x g), (5)

where gis the upward-pointing gravity vector and Us the z
axis of frame e. Then, provided neither si~l nor g is parallel
to Zi-I, Ui,l and Ui,2 allow the swing angle to be calculated as

Here, m; is the mass of link i, Using these values, the com­
posite first-moment-of-inertia vector si* as expressed in the
ith D-H frame (based on the labeling scheme of Paul 1981)
can be calculated using

To establish the swing angle, let M, be the composite mass
of links i through n calculated independently of joint type as
follows:

2.1. Value and Gradient Calculations

Locked
Free

Swinging

t

an issue-are usually slow moving, and this slow-moving as­
sumption allows the gravitational force-based control prob­
lem to be cast as a kinematic one.

The organization of this paper is as follows. Section 2
presents the swing angle, a key kinematic parameter, and pro­
vides justifying hardware experiments. Section 3 provides
velocity control methods for both free-swinging and locked­
joint failure modes. Section 4 examines ways to best switch
between failure modes by activating and releasing the joint
brakes. Section 5 addresses global aspects of postfailure op­
eration, such as the resulting workspace. Section 6 illustrates
the methods through several examples.

Fig. 1. A three-link planar positioning manipulator is shown
tracing a line with joint one free-swinging (left) and locked
(right). In the free-swinging case, the arm traces the line while
maintaining the composite center of mass of the arm directly
below joint one, while in the locked case, the arm traces the
line without moving joint one.

2. Swing Angle

An n-DoF manipulator's joint variables are given by

where the range of Atan2 is (-Jr, zr]. If either si~l or g is
parallel to Zi -1, all values of qi give the same potential energy,
and thus

(8)

(1)

A fundamental kinematic parameter for the developments in
this paper is the swing angle. The swing angle ei is defined as
the angle through which rotational joint i would move to settle
into a stationary configuration if its actuator torque were re­
moved (English and Maciejewski 1998). This paper will focus
on free-swinging failures dominated by viscous friction. Of
the common types ofrobotic drives and mechanisms (Morecki
and Knapczyk 1999), this could be the case for catastrophic

(7)

If si~ 1 or g is parallel to Zi -lor 8i == it , the gradient of ei

is either 0 or undefined. Otherwise, from (6), the entries of
vei are calculated as follows:

ae· 1 (au. 1 e«, 2 )l i, i,
- == 2 2 --Ui,2 - --Ui,l .
aqj Ui,l + Ui,2 aqj aqj

Methods for calculating aau~/ and a;~/ are given in English

and Maciejewski (1998).
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T == M(q) ij + C(q, q) q+ V(q)q + g(q). (9)

Then, assuming the healthy joints are stationary, (9) gives,
through entry i of the vector equation,

o== MiiEi + Vii (Ei)Ei + IIs/~_l x zi-lllllzi-l x gil sin(Ei),
(11)

(15)
u;

Tc == 2-* .
V..

II

Provided the manipulator's motion is slow enough that the
~isturbance to (12) is minimal, qi can be viewed as tracking
8i Iqi=o in much the same way as the healthy joints can be
viewed as tracking their desired values. If fast motion of the
arm (relative to rc) is desired, for large ~,joint i will tend to
lose tracking and lag behind, and for small t , the joint will
tend to oscillate. However, even if this occurs, the arm can be
stopped at key points and allowed to settle. Very fast motion
may invalidate (11) and marginalize the usefulness of it (and,
therefore, (12)) in predicting behavior.

2.3. Experimental Validation

To provide experimental confirmation for the above deriva­
tions, the simple three-axis mechanism shown in Figure 2
was constructed. It serves to validate that one can manufac­
ture a manipulator that operates in both a locked-joint mode
and a viscous-friction free-swinging mode. The mechanism
contains two free-swinging joints that are actuated only with
simple brakes. These joints are also equipped with encoders;
however, the encoders are used only for data collection, not
for the control of the free-swinging motion.

To evaluate the accuracy of the simple linearized dynamic
model given by (12), an experiment was performed in which
one of the free-swinging joints was manually moved to ap­
proximately 25 degrees from its lowest potential value (i.e.,
E == 25 degrees) and then released. This experiment was
performed repeatedly with the position of the joint recorded
every 100 ms. The resulting joint motions are presented in
Figure 3, which shows the average over all trials and the maxi­
mum and minimum joint values for every time sample. These
results show that the dynamic behavior of the free-swinging
joint is quite consistent and thus could be approximated with
an appropriate dynamic model. The best linear second-order
model (i.e., the viscous-friction-based model given in (12)) is
also shown in Figure 3. While the 25-degree initial configura­
tion strains the small-angle linear approximation, (12) clearly
represents a reasonable approximation to the behavior of the
free-swinging joint. It is particularly accurate with respect to
modeling the frequency of the resulting oscillations but less
so with respect to the magnitude. This faster damping of the
oscillations in the free-swinging joint is probably due to the
unmodeled Coulomb friction and results in the arm settling
after 4 seconds as opposed to the 6 seconds predicted by the
model.

The most important aspect of the free-swinging joint mo­
tion is the accuracy to which it settles toits minimum potential
value (i.e., the value of E(l == 00)). Over the 100 trials that
were performed, the average value of E once the joint had
settled (i.e., after 4 seconds) was on the order of 0.003 de­
grees with a standard deviation of 0.104 degrees (see Table 1).
This demonstrates the feasibility of .ignoring the high-speed

(10)

(14)1 II-t * A I A -t
M

.. Si-l x Zi-l IIlzi-l x gil
II

where Vi7 is the nominal value. Note that Mu f=. 0 because
M is positive definite. This system acts as one under a pro­
portional plus derivative control law driving Ei to zero (and
therefore qi to ei Iqi=o). It has a damping ratio t; , undamped
natural frequency W n , and time constant rc given by the
following:

where the following were used: Ti == 0 (because joint i is free
swinging), Mii is not a function of Ei, and entry i, i of C, is
zero. If joint i is free swinging with the motor engaged, Mi,
and Vii should reflect the motor inertia and friction. Equation
(11) is an approximation for a slow-moving arm-provided
Ei and its first and second derivatives are bounded, the distur­
bance to (11) can be made arbitrarily small by time scaling
the trajectory of the healthy joints. If IEi I is assumed small
and Vii changes little with Ei, then (11) can be approximated
by the following normalized linear differential equation:

.. Vi7 . 1 ~*o~ Ei + -Ei + -lI si - 1 x Zi-lllllzi-l x illEi, (12)
Mii Mu

Here, T is the vector of applied joint torques; M(q) is the
manipulator inertia matrix; C(q, q) is the matrix specifying
centrifugal and Coriolis effects, each row i of which has the
form qTCi(q); V(q) is the viscous-friction matrix; and g(q)
is the vector of joint torques due to gravity. It is assumed that
the manipulator's control law (feedback through r ) allows
accurate tracking of a prescribed trajectory for the healthy
joints.

Let joint i be free swinging, and let Ei be defined such that

2.2. Dynamics at Low Velocities

Inherent in the definition of the swing angle ei is the require­
ment that the joints excluding joint i be stationary. In much of
the remainder of this paper, the swing angle will be applied to
a moving manipulator as an approximation. We now discuss
the quality of this approximation. .

For a viscous-friction model, the differential equation gov­
erning the motion of the arm is expressed as
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Fig. 2. A simple three-axis mechanism used to validate the
simplified viscous- friction-based dynamic model.

experimental Dynamic Response of a Free-Swinging Joint

30 ,. -; _ -t

._~...experimental maximum

~.- experimental minimum

-experimental average

-+-best second-,order approximation

-10t--------Ji'\;:--llF-r--'------------------1

-15t------=>.:"""'=--------------------1

Time (sec)

Fig. 3. Experimental dynamic response of a free-swinging
joint.

Table 1. Repeatability of Swing Angle Convergence (100
trials)

arcsin Ilzi-1 x gil Ave. s (oo) Std. Dev. E(oo)
(16)

dynamics of the free-swinging joint and simply stopping the
motion of all joints for 4 seconds prior to applying the brakes
on the free-swinging joint.

The accuracy of predicting both the transient behavior and
the steady-state value of a free-swinging joint are clearly in­
fluenced by the amount of friction, the associated mass, and
the angle between the free-swinging joint axis and the gravity
vector. The most problematic of these three factors is the fric­
tion, since the unmodeled Coulumb friction can result in large
steady-state values for E. Somewhat surprisingly, the angle
between the free-swinging joint axis and the gravity vector
does not appreciably affect the steady-state value of E. Even
for free-swinging joint axes that are only 15 degrees from ver­
tical, the standard deviation of E((0) is only 0.123 degrees (see
Table 1). Thus, robot designs that are typically mounted with
joint axes parallel to gravity (e.g., SCARA robots) would only
need to be moderately tilted in order to utilize free-swinging
behavior.

Different modes of failure in this system will be addressed
below, and their impact on these equations will be discussed.

where f(·) is the mapping from configuration to hand pose.
Because (16) is typically difficult to solve, a linearization is
often made based on the manipulator Jacobian equation. If xis
a representation of the hand's linear and/or rotational velocity
and the corresponding manipulator Jacobian is given by

(17)

(18)

(19)

x=J4.

1J(ci) = JqTWq.

then the manipulator Jacobian equation is

For solving (18) given a desired x, one can apply any number
of techniques using a suitable joint-rate weighting matrix (En­
glish and Maciejewski 2000b). This weighting matrix will be
labeled W (q)-it is symmetric and ifpositive definite defines
a metric on the 4 space through

0.123 deg
0.104 deg

0.016 deg
0.003 deg

15 deg
30 deg

3.1. Locked Joint

where fi is the locked value. The velocity equation becomes

Assume a failure at joint i, When the failed joint is locked, a
manipulator configuration that reaches hand pose Thand must
satisfy (16) and

3. Single-Mode Kinematics

Prior to focusing on the process of switching 'modes, in this
section, kinematic methods will be presented for postfailure
control in the presence of a single mode of failure.

For a healthy arm, the positional-kinematic equation by
which a manipulator configuration reaches a hand pose Thand

is given by

(20)

(21)



English and Maciejewski / Failure Tolerance through Active Braking 291

where iJ is formed by removing column i from J, that is, 4. Switching between Modes

3.2. Free-Swinging Joint

When joint i is in free-swinging mode, the manipulator con­
figuration to reach a hand pose Thand while stationary must
satisfy (16) and

where 8i is the swing angle. .

For a slow-moving manipulator, 8i (q) ~ O. Provided
neither si~ 1 nor gis parallel to Zi -1 , this gives, since element _

i of V 8i is -1,

and iq is formed by removing element i from q. For trajectory
generation, (21) can be solved for iq, which can be integrated
to find iq while qi remains constant.

The induced weighing matrix for iq is iW, formed by re-

moving row i and column i from W. Clearly, iqTiWiq ==

qTWq when qi is constant. IfW is positive definite, then 'w
is also.

A locked-joint failure cannot be arbitrarily converted to a free­
swinging failure without undesirable dynamic effects. Equa­
tion (25) does not apply when the swing angle is large because
acceleration- and Coriolis-based forces are manifest and the
joint swings, possibly violently. Thus, the primary issue when
making this type ofconversion is ensuring that the swing angle
is at (or at least near) zero.

Conversely, when the manipulator is operating in free­
swinging mode and is slow moving, a brake can be applied
at any time with minimal dynamic effects. Thus, (25) can
be converted to (21) whenever i} presents undesirable proper­
ties. The important parameter when this type of conversion is
made is the actual value of qi-it will be frozen until another
conversion. Thus, the primary issue for a free-swinging-to­
locked conversion is setting the value of the failed joint.

These two issues of setting the swing angle to zero in a
locked-joint manipulator and setting the joint angle to a de­
sired value in a free-swinging manipulator are in fact the same
positional kinematic problem-finding a configuration giving
both 8i == 0 and qi == ii for some ii. It will be shown here
that for a slow-moving manipulator, they are amenable to the
same form of velocity-kinematic equation.

(23)

(22)

where

(28)

Because this type of conversion should be made when the
value of the swing angle is zero, the focus here is on finding a
configuration ofthe failed, locked-joint manipulator that gives
a vanishing swing angle. If the arm's dynamic and kinematic
parameters are well-known, this is essentially a root-finding
problem for which any number of techniques can be applied.

Here, the problem will be cast as a familiar velocity­
kinematic equation. This has the advantage of general ap­
plicability and quality, if not completeness, of its solution. It
can be used with feedback from sensors to refine solutions
when the arm's parameters are in doubt.

When joint i is locked, the governing velocity-kinematic
equation is given by

4.1. Locked to Free Swinging

Values of iq for control can be found in a number ofways, with
possible inclusion of additional constraints. General methods
for finding joint rates to solve the Jacobian equation given in
(18) (Liegeois 1977; English and Maciejewski 200Gb) can be
directly applied to (28).

For example, one approach is to use a weighted pseudoin­
verse based on i W. This allows 8i to be differentially changed
with the minimum joint-rate measure as given by (19). If 'w
is positive definit~ and provided i V8i 1= 0, this solution for a

desired value of 8i can be found as follows:

(25)

(24)

(26)

.",. "A' AT· "AT· A" T
lW == lW + Wu l V 8i lV8i + lWi lV 8i + lV8ilWi '

(27)

Thus, when the manipulator is slow moving, the velocity
equation's structure for a free-swinging failure in (25) is the
same as that for a locking failure in (21). The difference be­
tween the locked-joint and the free-swinging Jacobians is the

rank-one matrix j/V8i T. For trajectory generation, (25) can
be solved for iq, which can be integrated to find iq . An up­
dated value of iq can then be used with the previous value of
qi to solve for the associated swing angle to be added to the
previous value of qi to obtain the new value.

The weighing matrix induced by a free-swinging failure is

where i V 8i equals V8i with entry i removed.
The velocity equation for a slow-moving manipulator then

becomes

where Wii is diagonal entry i ofW and iWi is column i ofW

with entry i removed. With this definition, iq
T

iWiq ~ cjTWq
when qi is free swinging. As was the case for 'w, if W is
positive definite, then i Wis also.
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(29)
Ni

Xi == UX{,
j=l

(33)

Equation (29) can be used with torque feedback to set the
swing angle accurately to zero. The swing angle can be found
for small values (-1- :s; ei :s; 1-) using

e" . -1 ( -gi )
i == SIn -+ * " " -+,

IIsi-1 x zi-lllllzi-l x g"
(30)

where {Xf} has the smallest cardinality. Then, for all config­

urations with ei == 0 where qi is an endpoint of the segment

X{ , either (a) qi is directly constrained through

(34)

where g i is the measured torque at joint i . or

4.2. Free Swinging to Locked

The primary goal for this type of conversion is to lock the
joint at the appropriate value. Therefore, the focus is on seek­
ing a configuration of the failed, free-swinging manipulator
that gives the desired value of the failed joint. The velocity­
kinematic equation for this focus is

(31)

which can be directly used with measured joint position feed­
back. It has the same form of solution as did the locked-to­
free-swinging conversion. Therefore, again as an example, if
i Wis positive definite and provided i 'lei is defined and not
equal to zero, a healthy joint-rate solution giving a desired
value of qi can be found using

(35)

where qi and q( are the lower and upper joint position lim­
its, respectively, of joint i , or (b) qi as given through (31) is
indirectly constrained in that one of the following must be
true for every k =1= i:

ve'k is undefined (36)i,

Vei,k == 0 (37)

+ (38)qk == qk

qk == qi:, (39)

where Vei,k is entry k of 'lei. Additionally, for r« defined as

if neither (34) nor (35) applies, one of the following must be
true:

(42)

(41)

(40)

+qk == qk

qk == qk
otherwise,

v«.i,

-v»:i,
o

Otherwise, it would be possible to move the healthy joints to
either increase or decrease the value of the failed joint.

Thus, Xi can be established by first finding the typically
finite number of values satisfying the above conditions. These
can then be used to find the actual endpoints using second­
order (or higher if necessary) conditions with the joint-limit
constraints. For example, as a second-order condition, when
no joints are at their limits, iH(ei) must be nonindefinite,
where iH(8i) is the Hessian of 8i with column i and row i
removed.

(32)

5.1. Postfailure Workspace

For a stationary manipulator, let the set of all values obtainable
by qi while in free-swinging mode be defined as Xi, and let
{X~} be the set of segments such that

An important global issue is finding the postfailure workspace
when failure mode switching is possible. Defining the
workspace can be difficult even for healthy joints, however,
and the focus of this section will be on finding the range of
possible values of the failed joint.

In addition to establishing what values of the failed joint
are achievable, this section will present a global approach to
placing the failed joint at a particular value. The kinematic
equations and methods in Section 4 were ideal for using feed­
back for fine control and represented a general approach to
finding desired configurations. However, they are local meth­
ods and cannot always find a solution. This shortcoming will
be addressed here.

5. Global Issues
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el == Atan2[ - (5 cos(q]) + 3 cos(q] + q2)

+ cos(q] + q2 + q3)) , - ~5 sin(q]) (47)

+ 3 sin(q] + q2) + sin(q] + az + q3))]

6.1.1. Postfailure Workspaces

This manipulator has full range of motion in all three joints,
so from the conditions of Section 5.1, the endpoints of the
sets of achievable postfailure values must satisfy (a) 8i == 0,
(b) i Vei == 0 or undefined, and (c) nonindefinite i H (ei)'

For the various swing angles not equal to n , the reduced
gradients are given by

(45)

(46)

(44)

3 A [-1]V83 == . ~1 .

35+30 cos(Q2)+6 COS(Q3)+10 COS(Q2+Q3)

-10-15 cos(q2)-6 cos(q3)-5 COS(q2+q3) ]
35+30 cos(q2)+6 COS(q3)+ 10 COS(q2+q3)

-1-3 cos(q3)-5 COS(Q2+q3)

Because (45) and (46) are always defined and nonzero, there
can be no endpoints to the joint two and joint three achievable
sets X2 and X3. And because the sets are clearly not empty,
the implication is that all angle values are achievable after
a failure. Thus, the postfailure range of controllable motion
for joints two and three is identical to the range of a healthy
manipulator.

For the joint one case, however, the reduced gradient in (44)
can become zero. Setting 1Vel == 0 yields four real solution

sets for {q2, q3}: {tan-1 (~ ) - tt , zr], {rr - tan-1 (~ ), n },

{tan- l (i) -Jr, O}, and {zr - tan-1(i), OJ. The first two angle
sets give an indefinite Hessian and therefore cannot corre­
spond to endpoints. The third angle set yields a negative def­
inite 1H(el), and the fourth yields a positive definite 1H(el)'
Thus, the third angle set will give the upper bound and the
fourth the lower bound for Xl. Using these in

6. Examples

For these examples, the same planar arm as was shown in
Figure 1 will be used to explore the postfailure workspace,
switching strategies, and operation in the free-swinging mode.

The example planar manipulator's link lengths are 1 m, the
link masses are 10 kg, and the center of mass of each link is
at the center of the link. The link inertias are modeled as thin
rods; that is, the second moment of inertia of each link about
its center is given by

6.1. Planar Examples

If a desired value of qi is known to be an element of Xi
and cannot be obtained using the local methods given in Sec­
tion 4, a global approach must be used, at least to define a
starting point for fine control with the local methods. Often,
simple algorithms based on sets of differential equations or
even closed-form equations can be used to guarantee a so­
lution. Alternatively, manipulator configurations giving Xi
to some level of discretization can be tabulated, which can
be done quite efficiently. For example, for a seven-joint ma­
nipulator, if each Xi comprises all joint values (the worst
case) and all Xi are discretized by I-degree increments, only
360 x 6 x 7 == 15, 120 joint values will need to be stored to
ensure all values of all joints can be reached to within one­
half of 1 degree after any joint failure. (This assumes that a
collision-free path can be found between the current configu­
ration and the tabulated configuration.)

A starting point for finding the tabulated values is to begin
with the segment endpoints established using the conditions
in Section 5.1 and drive away from them using a gradient
method (a second-order method can be used for the first step).
The holes left after exhausting this approach can be filled
using a numerical nonlinear equation-solving algorithm or a
polynomial root-finding method. Because this tabulation is
performed off-line, computational speed is much less of a
concern.

5.2. Setting the Failed Joint

The joint angles qi will be measured counterclockwise, with
a right-horizontal reference position for joint one and in-line
reference positions for joints two and three. All joints can
assume any value. The task will be end-effector positioning
only (i.e., orientation is not considered), and thus the ma­
nipulator has 1 degree of kinematic redundancy when fully
operational.

o
5
6
o

(43)

to solve for q1 == ei IQ1=0 gives the set of postfailure achiev­
able values as q1 E Xl == [tan- l (i) -Jr, - tan- l (- i)]. The
union of all radius-two circles centered at {COS(Q1), sin(ql)}
over this range gives the postfailure workspace when switch­
ing is possible. The switching postfailure workspaces are
shown along with the worst-case postfailure workspaces for
locking and free-swinging failures in Figure 4.

6.1.2. Switching Strategy

In this section, a strategy for postfailure operation through
switching will be illustrated. The failure will lie in joint one.
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The beginning configuration is the top one from the right-hand
side of Figure 1. The goal is to reach the point {-2.5, OJ. To
achieve this, it is necessary to use a mode-switching scheme.
To reach {-2.5, OJ, qs must be greater than cos-l(-~6) and

less than Jr - cos- l ( - ~6)' The intersection of this range

of values with Xl as found above gives tan-1 (~) :::; qt :::;

n - cos"! (- ~6)'
The joint-rate weighting matrix is given by

w==[~~~].
001

(48)

~2.SpatialExampks

In this section, the example manipulator is a Robotics Re­
search Corporation K-1207i as shown in Figure 8. Its D-H
parameters (based on the labeling scheme of Paul 1981) are
given in Table 2, the software joint limits are given in Ta­
ble 3, and the link masses and centers of mass are given in
Table 4. The upward-pointing gravity vector is (9.8,0,0).
The K-1207i has 1 degree of redundancy for the task of hand
positioning and orienting.

6.2.1. Joint Four

This is an appropriate choice for reducing the relative burden
on the inboard joints. A switching sequence based on using
(48) in (29) and (32) for moving ql and relocking it in this
range to achieve the task is shown in Figure 5.

6.1.3. Joint Trajectory Generation

In this section, postfailure operation through joint trajectory
generation will be explored. The failure for this example lies
in joint one. The joint one swing angle is given by (47), and,
provided 81 f= n , the gradient is given by

(49)

The motor is assumed to be disconnected from the failed
joint for this simulation experiment, so Mii does not include
the motor inertia and Vii does not include the motor friction.
This would be appropriate for a failure occurring, for exam­
ple, between the gears and the joint. Here, Mi, is the diagonal
entry of the mass matrix induced by the inertia of the manip­
ulator's links, and it is assumed that Vii == 15.0.

A trajectory was generated using the method given in Sec­
tion 3.2 for an end-effector path given by the line segment
from (-0.75, -2.0,0.0) to (-0.75,0.0,0.0). This is the path
shown in Figure 1, and it lies well within the joint one free­
swinging postfailure workspace as shown in Figure 4. Toform
an endpoint trajectory from this path, a trapezoidal velocity
profile was used with a 20% speedup time and 20% slowdown
time. Three configurations along the idealized joint path for
this trajectory are shown on the left-hand side of Figure 1. For
this joint path, ~ E [0.046, 0.145] and Wn E [2.40,3.08] both
start at the low end and finish at the high end of their ranges.
Thus, the system would be expected to be underdamped and
oscillate with 2.0 to 2.6 seconds per cycle (with the lower
value at the end of the trajectory). And this is in fact what is
seen in dynamic simulations. The error in joint one for four
trajectory times is illustrated in Figures 6 and 7.

As a straightforward case, this section investigates the post­
failure capabilities of joint four.

In general, if the axis of a failed outboard joint i can be
made parallel to the axis of a healthy inboard joint j , regard­
less of the values of qi and qi- provided neither s/~_l nor g is

parallel to the axes, V8i,j == ±1. Then, the conditions of (36)
and (37) are not satisfied for any values of qi and qj. Under
these conditions, if the values satisfying (38) and (39) lie out­
side the limits established by (34) and (35), Xi comprises all
values of qi within its normal joint limits and the postfailure
workspace equals the healthy workspace.

This is in fact the case when we focus on joint four, Let
the configuration of the arm be constrained to

ql
1T

-2
1T

-2
q== q4 (50)

n

0
0

then, for example, when ql == 3;, q4 == -2.58 to give zero

e4-this is the configuration shown in Figure 8. Under these
conditions, the axis of joint four is parallel to the axis of joint

a "one and -a-84 == -1.
ql

Therefore, (36) and (37) are never satisfied for k == 1, leav-
ing only (34), (35), (38), and (39). For the point {ql, q4} ==
{3: ' -2.58}, the angular difference between q4 and its up­
per limit (2.58) is less than the difference between ql and its
lower limit (5.50), and the angular difference between q4 and
its lower limit (0.47) is less than the difference between q1
and its upper limit (0.78). Therefore, the endpoints of X4 are
the normal joint limits of qs.

6.2.2. Joint Three

As a somewhat more involved case, this section investigates
the postfailure capabilities of joint three. Let the configuration
of the arm be constrained to
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Free Swinging Locking Switching

Joint One Joint One Joint One

-1

-2

-1 -1 -1

-2 -2 -2

-3 -3 -3
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Joint Two Joint Two

Joint Three

-1

-2

Joint Three

Any Joint Area: 7.7 Any Joint Area: 0.0 Any Joint Area: 19.8

-1

-2

-1

-2

/lZ1J~r(j

Fig. 4. Guaranteed postfailure workspaces of the example planar arm (as shown i Fig. 1) for free-swinging failures, for
locking failures, and when switching is possible. The cases for each individual joint" e shown as well as the case for any
joint failure, which is the intersection of the three corresponding single-joint cases. The free-swinging workspaces were found
using the method given in English and Maciejewski (1997). Significant improvement is made in all cases through switching.
The areas of the free swinging, locking, and switching guaranteed postfailure workspaces for any joint are 7.7m 2 , O.Om2 , and
19.8m2, respectively.
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Table 2. D-H Parameters for the Robotics Research Corporation K-1207i

Link a (m) d (m)

1 -0.1016 0.0000
2 0.1016 0.0000
3 -0.0857 0.5461
4 0.0857 0.0000
5 -0.0591 0.5461
6 0.0591 0.0000
7 0.0000 0.1778

a (rad)

-1.5708
1.5708

-1.5708
1.5708

-1.5708
1.5708
0.0000

8 (rad)

Table 3. Joint Limits in Radians for the Robotics Research Corporation K-1207i

Joint Upper Limit

1 3.1410
2 -0.0543
3 0.0000
4 0.0000
5 6.2800
6 0.6100
7 6.2800

Table 4. Masses and Centers of Mass for the Robotics Research Corporation K-1207i

Link Mass (kg) Cx (m) cy (m)

1 19.051 0.0000 0.0000
2 9.299 0.0000 0.0000
3 11.113 0.0000 0.0000
4 5.897 0.0000 0.0000
5 4.536 0.0000 0.0000
6 2.381 0.0000 0.0000
7 0.325 0.0000 0.0000

Lower Limit

-3.1410
-3.0510
-6.2800
-3.0510
-6.2800
-2.9670
-6.2800

Cz (m)

-0.0030
0.3239
0.0064
0.3200
0.0127
0.1219

-0.0200

a "
ax 83 ==

4 cos(x) sin(eos(x))+2 eos(eos(x» sin(x) sin(2 sin(x» ,(52)
-3+eos(2 eos(x))+eos(2 sin(x»+eos(2 costx) eos(2 sinix)

which is strictly negative (both terms in the numerator are
always nonnegative and not zero simultaneously, and the de­
nominator is strictly negative), and therefore either -.!-e3 f= a

uQl

or aa2 e3 i= 0 for all x. Thus, neither (36) nor (37) can apply.
By design, neither (38) nor (39) applies for any value of x.
Therefore, only (34) or (35) can determine the endpoints of
X3, and thus the postfailure achievable values of q3 are the
same as the prefailure achievable values.

Then,

q==

sin(x)
cos(x) - ~

q3
n

-"2
a
o
o

(51)

6.2.3. Remaining Joints

For joints one, five, and six, methods similar to those used
above can be used to establish that the postfailure achievable
values for these joints also equal their prefailure values. For
joint seven, because the first-moment-of-inertia vector s6* is
always parallel to Z6, the swing angle is always zero and X7
is empty. This could be easily remedied by shifting the center
of mass of the last link away from the joint axis, enabling all
values to be achieved after a failure-this is a straightforward
manipulator design issue.

The most complicated case is that of joint two. Based on
a numerical search of the conditions of Section 5.1, X2 is
composed of a single segment with endpoints 1Ki == -1.25
and 2Ki == -2.28. The upper value can be reached with

qupper == [0, -1.25, -6.27, -2.15,3.29, -0.70, O]T, (5.3)

and the lower value can be reached with

qlower == [0, -2.28, -3.13, -2.54,3.29, -0.70, O]T. (54)

Configurations giving each of these are shown in Figure 9.
Note a healthy joint path given by 2qlower + a(2qupper -
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+
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1

Fig. 6. Dynamically simulated joint one error as the arm
traced the 2 ill vertical trajectory shown in Figure 1 with joint
one free swinging.

@

@

Finish

Step Three

+

Maximum End-Point Error (m)
Fig. 7. Endpoint path for the trajectories generating Figure
6. The maximum endpoint error for each of the trajectory
speeds is shown (this value includes both the horizontal and
vertical error components). For reference, the arm at the start
is shown for the 8-second trajectory.

Fig. 5. Three configurations for each ofthree steps of a switch­
ing strategy are shown. The goal is to reach {-2.5, OJ, shown
by crosshairs. In step one, the manipulator is moved with the
brake engaged using (29) from its initial configuration to a
configuration giving a zero swing angle, where the brake is
released. In step two, the arm is moved using (32) to place
joint one at the desired value, where the brake is reapplied. In
the final step, the ~~lator is moved to the desired hand
position by solvineor joint rates that give straight-line
endpoint motion.

(2-£)

.068 .096 .043 .018
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Fig. 9. As viewed from the side, the K-1207i in a configura­
tion giving the minimum value of q2 (left) and the maximum
value of q: (right) after a failure. Most of the healthy joint
displacement between the two configurations lies with joint
three.

~

q7

Fig. 8. Example spatial manipulator-the Robotics Research
Corporation K-1207i. The arm has seven joints, as shown.
The D-H parameters are given in Table 2, the joint limits are
given in Table 3, and the masses and centers of mass are given
in Table 4. Joint four is free swinging in this configuration.

Minimum Value
q2= -2.28 rad

Maximum Value
q2= -1.25 rad
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