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ABSTRACT OF DISSERTATION

LARGE UNGULATE EFFECTS ON NITROGEN CYCLING
IN RIPARIAN ECOSYSTEMS OF COLORADO

Feedbacks between plant species and soil nitrogen (N) pools affect primary
production, vegetation nutrient content, nutrient use efficiency, and soil carbon (C)
storage potentials. Large herbivores can affect feedbacks between aboveground and
belowground N pools, nutrient mineralization rates, soil food webs, and turnover rates of
N pools at different temporal and spatial scales. Studies of terrestrial ecosystems have
shown either accelerating or decelerating effects of ungulates on N cycling. Acceleration
of nutrient cycling by ungulates has been proposed in fertile, productive ecosystems
where herbivores promote compensatory plant growth, enhance nutrient concentration in
living plant tissue, stimulate microbial activity and mineralization which resuits in a
positive feedback of high nutrient supply rates to plants. In contrast, the decelerating
nutrient scenario is more prevalent in ecosystems with low fertility and low production.
Ungulates feed selectively on palatable plants leaving unpalatable species with poor litter
quality. This results in a negative feedback of slow decomposition and low nutrient
supply rates to plants.

Most studies have focused mainly on wild ungulates (elk, bison) or livestock
(cattle, sheep) in grasslands, shrublands, or pasturelands and only few studies have

investigated the effects of ungulates on nutrient dynamics in riparian zones. Although

iii



riparian zones and wetlands cover only 1-2% of forest and rangeland landscapes in the
western United States (US), they are important ecosystems from both a biological and
economic perspective. Riparian zones are highly productive, provide habitat for fish and
wildlife, and act as buffers between terrestrial and aquatic ecosystems by reducing
sediment and N inputs from upland ecosystems to surface waters. Livestock grazing is a
predominant land use on public and private lands in the western US. Grazing by bison is
more prevalent in National Parks and Monuments. Alteration of N cycling by either
ungulate may have significant feedbacks to plant communities and could alter the
buffering potential of riparian zones.

The main goal of my studies was to investigate if large ungulates, bison and
cattle, alter N dynamics in riparian ecosystems of Colorado. In the first study, I tested
whether bison and cattle accelerate or decelerate soil N mineralization in riparian
corridors and wet meadows of the Great Sand Dunes region in south-central Colorado
where elk populations are high. In the second study, I evaluated the effects of long-term
cattle grazing on N dynamics in soils, groundwater, and stream water of the Sheep Creek
montane riparian ecosystem in north-central Colorado. Bison grazing in Great Sand
Dunes riparian corridors and wet meadows did not accelerate net N mineralization.
Cattle grazing also did not have a significant effect on mineralization parameters because
variation was high within mean estimates of net N mineralization. However, I observed
highest net N mineralization in soils from cattle grazed wet meadows which might result
from a long contemporary history of cattle grazing in the Great Sand Dunes region
compared with only 15 years of bison grazing (and 3 years of bison exclosure treatments)

at the time of the study.
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Cattle grazing in the Sheep Creek montane riparian zone did not significantly
increase aboveground production, aboveground or belowground plant N pools, soil N
pools, soil microbial biomass, litter decomposition, potential net N mineralization or
denitrification in the riparian zone as a whole. Signs of accelerated N cycling were
detected only at streambank sites where potential net N mineralization in incubated soils
was 35% higher in cattle grazed compared with excluded streambank sites. Cattle
grazing did not affect stream or groundwater NO;” and NH," concentrations. However,
NO;™ and NH;" sink-source relationships changed temporally: the riparian zone may
serve as a potential sink for NOs;"and NH;" during spring gaining streamflow conditions
and a potential source of NO; and NH," to the stream during summer losing streamflow
conditions. In conclusion, current season-long, light-to-moderate cattle grazing does not
appear to alter N cycling in the Sheep Creek montane riparian zone at the landscape
scale.

Although I did not find strong evidence for accelerated N cycling (increased plant
and soil N pools and increased microbial activity and N mineralization) in riparian zones
grazed by large ungulates, results of my studies suggest that acceleration of N cycling in
riparian ecosystems is more likely in sites that have a long history of grazing or are
grazed frequently at low to moderate intensity. Future studies should better account for
variability in ungulate use of riparian sites, especially in the context of different temporal
and spatial scales.

Agnieszka Przeszlowska

Forest, Rangeland, and Watershed
Stewardship Department
Colorado State University

Fort Collins, CO 80523
Summer 2008
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CHAPTER I

INTRODUCTION

Background

Riparian zones are focal points for maintenance and restoration of biological
diversity, wildlife habitat, and water quality throughout forest and rangeland landscapes
of the western United States (US). Although riparian zones and wetlands only cover 1-
2% of these landscapes, they are critical ecosystems from both a biological and economic
perspective (Kauffman and Krueger 1984). They are complex systems characterized by
high productivity, high plant and wildlife diversity, zones of soil erosion and deposition,
and temporally and spatially variable biogeochemical cycles (Kauffman and Krueger
1984; Gregory et al. 1991; Clary and Leininger 2000; Blank et al. 2006). Riparian zones
are also important aquatic-terrestrial interfaces because they have the potential to reduce
sediment and nitrogen (N) inputs from upland ecosystems to surface waters and act as a
N sink (Tilton and Kadlec 1979; Seitzinger 1994; Griffiths et al. 1997).

Numerous studies have considered the ability of riparian zones to retain or lose N,
especially nitrate (NOj3), to the aquatic system (Simmons et al. 1992; Irons et al. 1994;
Seitzinger 1994; Groffman et al. 1996; Griffiths et al. 1997; Verchot et al. 1997; Spruill

2000; Dhondt et al. 2006). The main mechanisms for NO3™ removal in riparian zones



include denitrification, plant uptake, microbial immobilization, and dissimilatory NO3”
reduction to ammonium NH," (Groffman et al. 1992; Simmons et al. 1992; Verchot et al.
1997; Dhondt et al. 2006). Denitrification is the prominent agent of NO;" attenuation
during the dormant season (winter) when groundwater table is high and soils are
anaerobic (Lowrance 1992; Haycock and Pinay 1993; Jacks et al. 1994). Plant uptake is
usually the dominant groundwater NO;” sink during the growing season (summer) when
the water table is generally low and the soils are aerobic (Groffman et al. 1992; Verchot
et al. 1997; Van der Putten et al. 2001). Since the end product of denitrification are
nitrogenous gases (N,O, N,), denitrification removes NOj;™ from an ecosystem and should
not cause this sink to become saturated with chronic inputs of N (Groffman et al. 1991;
Dhondst et al. 2006). Nitrogen species taken up by plants, however, can eventually be
recycled back to an ecosystem through decomposition and mineralization of plant litter
(Groffman et al. 1991; Groffman et al. 1992; Hanson et al. 1994; Dhondt et al. 2006).
The economic value of riparian zones to human society stems from their nutrient
rich soils that are very productive for agriculture, forage for livestock and wildlife, and
growth of forest products (Kauffman et al. 2001; Kauffman et al. 2004). Livestock
grazing is a predominant land use in the interior Pacific Northwest and Intermountain
West (Kauffman and Krueger 1984; Dwire et al. 2004). Historically, riparian and stream
ecosystems were viewed as “sacrifice” areas dedicated primarily to providing forage,
shade, and water for domestic livestock (Kauffman and Krueger 1984). Even though
most grazing plans were designed for extensive uplands, management of riparian zones
was limited and cattle concentrated along stream banks. Consequently, historical heavy

grazing often resulted in severe degradation of many riparian zones in the US West



(Chaney 1990). Cattle grazing in riparian zones can affect plant diversity and community
structure (Kauffman et al. 1983; Schulz and Leininger 1990; Clary 1995), forage quality
(Phillips et al. 1999), soil physical properties (Wheeler et al. 2002; Kauffman et al. 2004),
stream bank stability, soil organisms, and nutrient cycling. High inputs of N to riparian
zones from ungulate movements and fecal material could lead to higher N production and
export from the riparian zone to surface waters if plant and microbial pools become
enriched and lose their capacity to retain N.

Alteration of biogeochemical processes by ungulate grazing may have significant
feedbacks to plant productivity, community structure, buffering potential of riparian
zones and overall ecosystem health (Bardgett et al. 1998). Large ungulates can alter N
inputs and outputs in aboveground and belowground N pools, and thus affect nutrient
mineralization rates, soil food webs, and turnover rates of these pools at different
temporal and spatial scales (Hobbs 1996; Bardgett and Wardle 2003; Singer and
Schoenecker 2003). Most studies have focused mainly on wild ungulates (elk, bison) or
livestock (cattle, sheep) in grasslands, shrublands, or pasturelands and only few studies
have been conducted to investigate the effects of ungulates on nutrient dynamics in
riparian zones (but see: Trlica et al. 2003; Kauffman et al. 2004; Blank et al. 2006).
Studies in upland ecosystems have shown either positive, negative, or neutral effects of
ungulates on ecosystem N dynamics (McNaughton 1985; De Mazancourt et al. 1998;
Frank and Groffman 1998; Ritchie et al. 1998; Tracy and Frank 1998; Phillips et al.

1999; Augustine et al. 2003; Singer and Schoenecker 2003).
Ungulate herbivory can increase, decrease, or have no significant effect on plant

fitness and production by affecting any of the three main components of the N cycle: 1)



plant and soil N pools, 2) annual N fluxes (e.g., NO;™ leaching, NH4" volatilization,
denitrification, ecosystem N transport by ungulates), and 3) daily N fluxes (e.g., plant
uptake of N, N mineralization, fecal and urine N deposition, ungulate N transport
between habitats). Although ungulates can have neutral effects on these components,
alternative ungulate feedback scenarios (positive vs. negative) have been generalized in
an accelerating — decelerating nutrient scenario framework (Fig. 1.1). The accelerating
nutrient scenario often occurs in fertile, productive ecosystems where selective
consumption of plants by herbivores is low, plants exhibit compensatory growth, and
input of labile fecal material by herbivores is high. This stimulates nutrient concentration
in living plant tissue and results in high quality litter which stimulates microbial activity,
litter decomposition, nutrient mineralization and leads to high nutrient supply rates to
plants; a positive feedback. The decelerating nutrient scenario is more prevalent in
ecosystems with low fertility and composed of plant species less resilient to grazing.
Selective feeding of ungulates on palatable plants results in dominance of unpalatable
species and poor litter quality which slows decomposition and results in low nutrient
supply rates to plants; a negative feedback (Ritchie et al. 1998; Wardle et al. 2004).

In a study of Yellowstone National Park (YNP) grasslands, Frank and Groffman
(1998) compared the effects of native ungulates (elk and bison) and landscape variables
on soil C and N processes. They found that herbivores doubled net N mineralization in
grazed plots compared with ungrazed plots, and that they improved soil organic matter
quality by increasing labile fractions and decreasing recalcitrant organic matter fractions.

They attributed ungulate acceleration of net N mineralization to stimulated gross
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Figure 1.1. Influence of herbivores on plant and soil nutrient pools and soil processes summarized in the
accelerating — decelerating nutrient scenario framework. Acceleration of N cycling generally occurs in A)
fertile, productive ecosystems, while deceleration of N cycling is more common in B) infertile,
unproductive ecosystems (After: Ritchie et al. 1998; Wardle et al. 2004).



mineralization and concluded that variation in N availability among diverse landscape
sites was primarily a function of differences in microbial immobilization rates. These
results were supported by Tracy and Frank (1998) who concluded that N mineralization
and microbial activity were strongly influenced by grazers in YNP grasslands while
landscape topography affected soil microbial biomass. The findings of Frank and
Groffman (1998) and Tracy and Frank (1998) indicate that ungulates and landscape
variables influence microbial activity which in turn regulates soil mineral fluxes.

Singer and Schoenecker (2003) also found an accelerating nutrient scenario in the
grasslands of YNP where elk were abundant (i.e., doubled soil N mineralization,
increased aboveground N yield, increased N in most plant species and enhanced
aboveground production). But, they found decelerated nutrient cycling (i.e., declines in
soil N mineralization rates, N pools, aboveground N yield and aboveground production)
in willow and aspen vegetation communities utilized by elk in Rocky Mountain National
Park (RMNP). They attributed nutrient deceleration in RMNP to higher ungulate
densities and consumption rates in RMNP relative to YNP, coupled with a tendency of
the ungulates to daily transport N from willow and aspen communities to other vegetation
types in RMNP but not in YNP grasslands (Singer and Schoenecker 2003).

Ritchie et al. (1998) found that white tail deer decelerated N cycling in a
Minnesota oak savanna by selectively decreasing the abundance of plant species with N-
rich tissues. Herbivores also decreased soil NO5™ and total available N but did not alter
total soil or plant N. They also concluded that although herbivores alter available soil N
pools, they might have little effect on short-term soil N accumulation because frequent

fires prescribed for the savanna (two every three years) might mediate herbivore effects



on long-term changes in N pools. Evidence of decelerated N cycling was also found by
Kauffman et al. (2004) in riparian wet meadows of eastern Oregon. In this study, net
potential nitrification rates and net potential mineralization rates were 149-fold and 32-
fold lower, respectively, in cattle-grazed compared with cattle-excluded wet meadows.
These parameters were not significantly different among cattle grazing treatments in dry
meadow communities. Furthermore, the researchers expected lower N availability in
exclosures but found no differences in N availability between grazed and ungrazed
treatments. Thus, they hypothesized that alteration of soil physical properties (i.e., soil
bulk density, pore space, infiltration) by cattle had stronger regulatory influence on N
dynamics than cattle N inputs. In a study of soil-solution chemistry in a Sierra Nevada
montane riparian meadow, Blank et al. (2006) observed that cattle grazing increased
lysimeter-extractable NOs™ but decreased NH," at the forest-edge. No differences in N
species were found at stream edge and mid-floodplain locations. Grazing impacted soil
N primarily at the forest-edge because cattle had access to trace-mineral salts placed
along the forest edge which encouraged them to use these areas for loafing.
Consequently, it is likely cattle transferred nutrients to these locations via urine and feces.
The discussed studies demonstrate that ungulates can have positive, negative, or
neutral effects on ecosystem N cycling. Nitrogen responses to ungulate herbivory appear
to be a function of landscape position and soil properties, ungulate preferences for certain
sites, selective grazing of forage, grazing intensity, timing, and transfer of nutrients by
ungulates between habitats and across a landscape. Since cattle and bison are common
ungulate grazers in riparian corridors of the western US, the effects of these ungulates on

N cycling in riparian ecosystems should be investigated further. Ungulate grazing in



riparian zones could affect riparian functioning and potentials for nutrient retention by
altering N inputs and outputs in aboveground and belowground N pools. Significant
increase of N mineralization and nitrification by ungulates could enrich available soil N
and microbial communities and accelerate N uptake by plants. If plant and microbial
pools become enriched with N and lose their capacity to retain it, NO;  and NH4" export
from the riparian zone to stream water could increase (Aber et al. 1989; Hill and
Shackleton 1989; Groffman et al. 1992). Because feedbacks between producers and
decomposers occur in terrestrial ecosystems (Van der Putten et al. 2001; Bardgett and
‘Wardle 2003), a combined aboveground and belowground approach is needed to

understand how riparian zones respond to ungulate grazing (Kauffman et al. 2004).

Objectives

The main goal of my dissertation research was to investigate if large ungulates
alter N dynamics in riparian ecosystems. I evaluated the effects of bison and cattle in two
riparian systems of Colorado. In the first study, I tested whether bison and cattle
accelerate or decelerate soil N mineralization in riparian corridors and wet meadows of
the Great Sand Dunes region in south-central Colorado where elk populations are high.
In the second study, I evaluated the effects of long-term cattle grazing on N dynamics in
plants, soils, groundwater, and stream water of the Sheep Creek montane riparian

ecosystem in north-central Colorado.



The specific objectives of my Great Sand Dunes study were to:

1.

Determine the effect of bison grazing on potential N mineralization in riparian
corridors and wet meadows.

Determine the effect of bison versus cattle grazing on potential N mineralization
in wet meadows.

Assess soil properties (organic matter, total C and N, and soil texture) in riparian
corridors and wet meadows.

The specific objectives of my Sheep Creek studies were to:

1.

Determine if long-term moderate cattle grazing in montane riparian sites has
accelerated or decelerated N cycling in comparison with sites that have been
excluded from cattle grazing for 50 years.

Assess the effect of cattle grazing treatments by comparing N pools (plant, soil,
and soil microbial N pools) and N fluxes (decomposition, mineralization,
immobilization, and denitrification).

Compare N dynamics in aboveground and belowground ecosystem components at
three locations in the riparian zone: streambank, middle of the riparian zone, and
edge of the riparian zone adjacent to a forested upland to assess potential variation
in N dynamics across the width of the riparian zone.

Measure stream stage and groundwater piezometric potentials to determine
gaining and losing streamflow conditions.

Measure NO; and NH,4" in stream water and groundwater in streambank, middle
riparian, and riparian edge locations in both cattle grazed and excluded areas.

Relate NO;™ and NH," concentrations to streamflow stage to determine sink-
source relationships in sites with and without cattle grazing.

Measure N mineralization, nitrification, and denitrification in surface soils to
better explain groundwater NO;  and NH;" dynamics.



Hypotheses

I hypothesized that ungulate grazing has accelerated N cycling in the Great Sand
Dunes riparian corridors and wet meadows and the Sheep Creek montane riparian zone.
More specifically, I hypothesized that grazing by bison and cattle in addition to elk
herbivory in the Great Sand Dunes riparian corridors and wet meadows would increase
potentially mineralizable N pools and mineralization rates in comparison with
communities utilized by elk only. I expected higher N mineralization rates and higher
potentially mineralizable N pools in riparian corridors and wet meadows utilized by bison
and cattle because these sites are more productive and provide more palatable forage than
the surrounding xeric uplands. Areas on the landscape that have higher quantity and
quality of forage are more likely to be re-grazed compared to the surrounding community
and thus, receive more inputs of labile N through fecal material (McNaughton 1984;
Singer and Schoenecker 2003). High quality litter and ungulate excretions in grazed
areas are likely to increase litter decomposition and N mineralization. Furthermore, I
hypothesized that cattle, rather than bison, would have a stronger effect on soil N
mineralization in wet meadows because of their longer contemporary presence in the
region.

I hypothesized that long-term cattle grazing in the Sheep Creek montane riparian
zone of north-central Colorado also has accelerated N cycling because the riparian sites
are highly productive and appear resilient to disturbances. The riparian zone adjacent to
the stream provides more palatable forage than the surrounding sagebrush and lodge-pole
pine uplands. Cattle tend to concentrate in the Sheep Creek riparian zone and do not

appear to transport N to the surrounding upland communities. I hypothesized that the
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accelerating effect would be exhibited by greater aboveground and belowground N pools
(plant, labile soil N, and soil microbial N pools), no significant alteration of plant species
composition, and increased N processes (microbial respiration, decomposition,
mineralization, nitrification, and denitrification) in the long-term grazed than excluded
riparian sites. I expected a net increase in N of the system if N pools and processes were
consistently higher in grazed than excluded sites.

I did not expect to find significantly higher N concentrations in stream water near
sites grazed by cattle compared with excluded sites because, based on preliminary
observations, there were no visible signs of ecosystem degradation or streambank
instability within the Sheep Creek study allotment. Also, previous studies at Sheep Creek
did not find elevated NO3™ or NH;" concentrations in stream water near cattle grazed
riparian pastures (Stednick and Fernald 1999). I hypothesized that cattle grazing would
not have an effect on groundwater NO3™ and NH4" during gaining (spring snowmelt)
streamflow conditions when the groundwater level is elevated across all landscape
locations. Under gaining conditions, NO3 could be denitrified and NH;" immobilized by
plants or soil microorganisms (unless plant growth was low during gaining streamflows).
However, I hypothesized that cattle would increase groundwater NOs™ and NH;" at the
middle and edge of the riparian zone during losing (late summer) streamflow conditions
when the groundwater level declined. I did not expect cattle grazing to alter groundwater
NO;™ or NH4" concentrations at streambank sites during losing streamflow conditions if

the groundwater level remained elevated at the streambank late in the growing season.
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CHAPTER 11

EFFECTS OF LARGE UNGULATES ON SOIL NITROGEN MINERALIZATION
IN RIPARIAN CORRIDORS AND WET MEADOWS OF THE
GREAT SAND DUNES, COLORADO.

Abstract

Large ungulates can affect N cycling and eéosystem processes by regulating N
inputs and outputs in above- and belowground N pools. I conducted a study in the Great
Sand Dunes region of Colorado to determine if grazing pressure by ungulates, bison or
cattle, accelerates or decelerates soil N mineralization rates in riparian corridors and wet
meadows where elk populations are high. I hypothesized that N cycling would be
accelerated in riparian and wet meadow soils grazed by bison or cattle compared with
sites utilized by elk only, because the riparian and wet meadow communities are more
mesic and productive than the surrounding uplands.

1 did not find statistically significant changes in soil N mineralization as a result
of bison or cattle. Significant differences might have been masked by high variation in
mean estimates of N mineralization obtained during soil incubations. I attributed the high
variance to difficulty in maintaining constant soil moisture in incubated samples,
differences in fine root or litter among subsamples, and variable leaching efficiencies of

the vacuum manifold. Inferences about bison vs. cattle effects were further limited by
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unequal grazing treatments. At the time of this study cattle had a longer contemporary
history of grazing in the region than bison and cattle exclosures had been in place 5 times
longer than bison exclosures. This study should be repeated after longer bison exclosure
and include analyses of plant communities, litter quality, and ungulate utilization at
different times of the growing season to better account for variation in soil N
mineralization. Nevertheless, the results of this study could be considered in conjunction
with currently on-going estimates of elk populations, bison movements, forage offtake,
plant production and species composition to understand ungulate effects on riparian and

wet meadow ecosystem dynamics.
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Introduction

Feedbacks between plant species and soil nitrogen (N) dynamics affect primary
production, vegetation nutrient content, nutrient use efficiency, and soil carbon (C)
storage potentials (Pastor and Post 1986; Wedin and Tilman 1990; Phillips et al. 1999;
Wardle et al. 2004). Large herbivores can alter N inputs and outputs in aboveground and
belowground N pools, and thus affect nutrient mineralization rates, soil food webs, and
turnover rates of these pools at different temporal and spatial scales (Hobbs 1996;
Bardgett and Wardle 2003; Singer and Schoenecker 2003). Studies have shown either
positive or negative effects of ungulates on ecosystem N dynamics (McNaughton 1984;
McNaughton 1985; Frank and Groffman 1998; De Mazancourt et al. 1998; Phillips et al.
1999; Augustine et al. 2003; Bardgett and Wardle 2003).

Ungulate herbivory can increase or alternatively decrease plant fitness and
production. The accelerating nutrient scenario often occurs in ecosystems where plants
exhibit compensatory growth as a result of high nutrient use efficiency, enhanced nutrient
uptake, and compensatory photosynthesis. The decelerating nutrient scenario is more
prevalent in ecosystems where plant species are less resilient to grazing, selective feeding
of sensitive plants occurs, and decomposition is slow (Ritchie et al. 1998; Bardgett and
Wardle 2003). For example, Singer and Schoenecker (2003) found an accelerating
nutrient scenario in the grasslands of Yellowstone National Park (YNP) where elk are
abundant (i.e., doubled soil N mineralization, increased aboveground N yield, increased
N in most plant species and enhanced aboveground production). However, they found
nutrient cycling to be decelerated by elk in willow and aspen vegetation communities of

Rocky Mountain National Park (RMNP): declines in soil N mineralization rates, N pools,
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aboveground N yield and aboveground production. Nutrient deceleration in RMNP was
attributed to higher ungulate densities and consumption rates in RMNP relative to YNP,
coupled with a tendency of the ungulates to daily transport N from willow and aspen
communities to other vegetation types within RMNP (Singer and Schoenecker 2003).

The accelerating — decelerating framework of N cycling could be used by
resource managers to assess impacts of herbivores on aboveground and belowground
ecosystem feedbacks. In the Great Sand Dunes region of south-central Colorado, natural
resource managers are faced with a challenge to increase the current bison population
while not negatively affecting rangeland conditions, especially since elk populations in
the area exceed Colorado Division of Wildlife management goals. Currently, the elk
population is estimated at 3,955 = 304 animals (Schoenecker et al. 2006). The Nature
Conservancy (TNC) manages a herd of 1,500 bison on the Medano-Zapata Ranch that is
adjacent to the Great Sand Dunes National Park. In the future, TNC would like to
increase the bison herd to a population of 1,800—3,000 bison, or more. Currently, the
impacts of ungulate grazing on plant communities and especially nutrient cycling are not
well known in the Great Sand Dunes region.

My goal was to determine whether additional ungulates, bison and cattle,
accelerate or decelerate soil N mineralization rates in riparian and wet meadow
communities where elk populations are high. These results could be used to better
understand potential aboveground plant community responses to belowground N
dynamics and provide a more integrated and process oriented approach to resource
management. My specific objectives were to 1) determine the effect of bison grazing on

potential N mineralization in riparian corridors and wet meadows, 2) determine the effect
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of bison versus cattle grazing on potential N mineralization in wet meadows, and 3)
assess soil properties (organic matter, total C and N, and soil texture) in the two
communities. Cattle were included in my study because they might be included in future
management plans for this region. I hypothesized that grazing by bison and cattle in
addition to elk herbivory in the Great Sand Dunes riparian corridors and wet meadows
would increase potentially mineralizable N pools and mineralization rates in comparison
with riparian corridors and wet meadow communities utilized by elk only. I expected
that cattle, rather than bison, would have a greater effect on soil N mineralization in wet
meadows because of their longer contemporary presence in the region. Bison were
present in the San Luis Valley until extirpation in the 1840s. They were reintroduced on
the Medano Ranch in the Great Sand Dunes region in the late 1980s. Cattle grazing in
the valley had been practiced at high levels since European settlement until the 1970s
(Schoenecker 2004). Current management of cattle on the Zapata Ranch is an intensive
approach based on high densities of animals for short duration with adequate rest of
grazed areas between May and September (J. Gossage, personal communication,
February 2006). Thus, I hypothesized that the largest grazing effect on soil properties
would occur in wet meadows with the longest history of cattle grazing.

To test my hypotheses, I conducted 6-month laboratory acrobic incubations of
riparian and wet meadow soils. Soil incubations have been used to compare N
mineralization and nitrification potentials as well as soil microbial activity (i.e., C
mineralization) of soils from different regions and ecosystems (Stanford and Smith 1972;

Nadelhoffer 1990; Wedin and Pastor 1993; Franzluebbers 1998). Laboratory incubations
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compared to in sifu soil incubations, allow for control of microclimate and severed root

effects (Binkley and Hart 1989; Wedin and Pastor 1993).

Methods

Study Site

The Great Sand Dunes National Park is located at the eastern edge of the San Luis
Valley in south-central Colorado (Fig. 2.1). The park ranges in elevation from 2,300 m at
its western boundary to over 4,000 m in the eastern Sangre de Cristo Mountains. My
study sites were located at a 2,300 to 2,400 m elevation. Annual precipitation in the area
averages approximately 200 mm, with 60% occurring as convective thunderstorms
associated with the southwest monsoons between July and September. Mean daily
temperatures range from 10°C in January to 32°C in July and total annual potential
evapotranspiration is about 950 mm (Huntley 1976). The national park and my study
sites were located in the closed basin portion of the San Luis Valley and have no surface
water outlets. During spring, snowmelt from the mountains flows down streams into the
closed basin and seeps into alluvial fans which in turn recharge deep and shallow
aquifers. In the summer, fall, and winter the streams on the alluvial fans carry little or no
water (Chimner and Cooper 2004). The surface and groundwater hydrology greatly
influences vegetation communities in the Great Sand Dunes complex which are
comprised of three major types: 1) active dunes and swale areas, 2) ephemeral wetlands,
and 3) the sand sheet.

My study sites were located in wet meadows and riparian corridors west and

south of the active dune field. The wet meadows are ephemeral and are fed by spring
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snowmelt or an elevated ground water table in the swale areas. They are dominated by
Juncus balticus Willd., Potentilla anserina L., and Distichlis spicata (L.) Greene. Carex
spp. are less prominent in wet meadows in comparison with the riparian corridors that I
sampled. The vegetation in my riparian sites is dominated by Carex nebrascensis Dewey
and Carex aquatilis Wahlenb., with some Potentilla anserina L. and patches of Juncus
balticus Willd. near edges of the riparian corridors. Soils in all my study sites are sandy,

ranging from sandy loams to loamy sands.

Experimental Design and Soil Sampling

I used a randomized complete block design with two treatment levels (grazing and
control) replicated in two types of communities (riparian and wet meadow). The grazing
treatments were elk only (the control), bison + elk, and cattle + elk. Bison exclosure
treatments were established three years prior to this study while cattle exclosures had
been in place for 15 years.

To determine the effect of bison grazing on potential soil N mineralization in
riparian corridors and wet meadows, I chose two sites (i.e., blocks) in riparian corridors,
Little Spring Creek and Big Spring Creek, and two sites in wet meadows, Elk Springs
and Twin Lakes. To evaluate the effect of bison versus cattle grazing on N
mineralization rates in wet meadows, we sampled two wet meadow sites frequented by
bison, Elk Springs and Twin Lakes, and two wet meadows utilized by cattle near the
Medano-Zapata (MZ) Ranch headquarters, South MZ and West MZ (Fig. 2.1).

I collected soils from four locations within each of the respective sites and grazing

treatments in October 2004 (n = 48). The four sampling locations were chosen at random
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from six randomly selected locations on cither side of the fence in both control and
grazed treatments. Sampling locations in the riparian sites were along the stream bank
within a 100-m reach that started 50 m away from the fence, while sampling locations in
wet meadows were within a 50-m radius, also 50 m away from the fence. The 50-m
setback from the fence eliminated an area along the fence where ungulate traffic is
typically high. Since no soil or vegetation data were collected when exclosure fences
were built, sampling in control and adjacent grazed treatments separated by a fence line
allowed us to make the best possible assumption that both areas were similar in terms of
vegetation, slope, aspect, drainage and soil type when the exclosure fence was
constructed. At the time of my sampling I did not observe any visual differences in plant
species composition, topography, drainage, or soil type between the two paired
treatments at each site. Soils in the paired control and grazed treatments were the same at
each riparian and wet meadow site: Medano fine sandy loams at Little Spring and Big
Spring Creeks, Cotopaxi sands at Elk Springs and West MZ wet meadows, Hooper clay
loams at Twin Lakes wet meadows, and Zinzer loams at South MZ wet meadows
(USDA-NRCS 2007).

I collected 10 soil cores at each sampling location below the soil organic (O)
horizon, to approximately a 10-cm depth. The soil samples were stored in plastic bags
and transported on ice to the Natural Resources Ecology Laboratory (NREL) at Colorado
State University (CSU), Fort Collins, CO. In the lab, I prepared the soil samples by
immediately air drying the soil, passing it through a 2-mm sieve, and removing visible
roots and litter. The dried soil samples were stored at room temperature before

incubation and other soil analyses.
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Incubations

I used the microlysimeter method developed by Nadelhoffer (1990) to measure 1)
soil microbial respiration by sampling respired carBon dioxide (CO,) in the
microlysimeter headspace and 2) N mineralization by repeated leaching of soil. I mixed
20 g of soil samples with 20 g of washed sand to facilitate periodic leaching of N. The
sarnples were then placed in the upper chambers of microlysimeters (two-chambered
plastic filter units) and incubated in the dark at 25°C. I pre-leached all the soil samples
on day 0 of the incubation with a micronutrient solution described below to remove initial
mineral N. During the initial and all subsequent N extractions, I allowed a 100-ml
aliquot of micronutrient solution to equilibrate with the soil samples for 0.5 h before
extraction with a 0.02-MPa vacuum. The samples were vacuumed for 1 h and weighed.
These weights were used to calculate the initial soil moisture content that was maintained
for each sample during the 6-month incubation. It was difficult to establish consistent
moisture content across all incubated samples because the suction in my vacuum
manifold was unequal in all the valves (29% + 9 SD gravimetric water content). Soil
moisture might have been too high especially in very sandy soils. I monitored the soil
moisture content of each sample by reweighing the assembled microlysimeters after each
leaching (Appendix A). Sample moisture contents of individual samples were adjusted
over time by addition of de-ionized water or additional evacuation with the vacuum to
maintain constant moisture for each respective sample. There was little change in water
contents of respective samples over the course of the entire incubation period, water

contents changed from 0 to 5 SD of each sample mean.
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To determine soil microbial respiration, I measured CO; accumulation in
microlysiemeter headspaces after a short, 2-h incubation during which the
microlysimeters were capped. I sampled the headspaces with a syringe at 0 and 2 h and
immediately analyzed CO, concentrations with a LI-COR LI-2400 CO, gas analyzer (LI-
COR Biosciences, Lincoln, NE) at day 3, 6, 10, 13, 20, 34, 48, 69, 89, 116, 140, and 164
of the incubation. I then used the Ideal Gas Law to convert CO, concentrations to C
mineralization rates, normalized the rates by soil C, and expressed them as mg CO,-C g!
of soil C d™' (Appendix B). I extracted N from the soil samples by leaching them with a
micronutrient solution comprised of 4.0 mM CaCly, 2.0 mM KH,POy4, 1.0 mM K,SOy4,
1.0 mM MgSQOy, 25 pM H3BOs3, 2.0 uM MnSOy, 2.0 pM ZnSOy4, 0.5 uM CuSOy, and 0.5
uM Na;MoO,. I analyzed the extracts colorimetrically for NO3” and NH," on an Alpkem
segmented flow autoanalyzer (OI Analytical, College Station, TX) and calculated relative
N mineralization in incubated samples for each incubation period as mass of total
inorganic N (NO3™ plus NH4") leached from a sample divided by total soil N (mg N g!
soil N) (Appendix C). I utilized relative N mineralization rates (i.e., per g soil N) because
I observed a wide range of indigenous soil N content across my sites, 0.07%—0.61% N.
Net N mineralization at the end of the incubation period was the sum of N mineralized

during all sampling periods.

Modeling Potential N Mineralization
I considered two models to estimate potentially mineralizable N from our aerobic

laboratory incubations. The model proposed by Stanford and Smith (1972) estimates soil
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N mineralization potential as the quantity of soil organic N that could be mineralized
according to first-order kinetics:

N, =N, (1-e™) 1)
where N; is the cumulative amount of N mineralized at time t, Ny is potentially
mineralizable N, and k is the mineralization rate constant (Appendix D). This model has
been used to describe N mineralization dynamics of soils under different land use and
climatic conditions (Campbell et al. 1981; Hadas et al. 1986; Cabrera and Kissel 1988).

Bonde and Rosswall (1987) modified the first-order model to a mixed first- and
zero-order kinetic model which defines two pools of soil organic N, a labile and a
recalcitrant pool:

N,=N,(1-e")+ct )
N and h represent the pool size and rate constant for the labile N pool, and c is the
mineralization rate constant for the recalcitrant N pool (Appendix E). I considered this
model in addition to the first-order model because N mineralization rates in my aerobic
soil incubations did not converge to zero (Bonde and Rosswall 1987).

[ fitted the experimental results to the two models with the NLMIXED procedure
in SAS for non-linear curve fitting (SAS 2003) and evaluated model adequacy on the
basis of model convergence and Akaike’s information criterion (AICc) for small data sets
(Burnham and Anderson 1998). The model with the lowest values of AICc is considered

to be the best model.
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Soil Properties

I conducted several soil analyses to determine soil organic matter, C and N
content, C:N ratio, clay, silt, and sand fractions (Appendix F). Soil organic matter
(SOM) was determined by ashing 1.0 g of soil material in a 500°C muffle furnace for five
hours. Percent SOM was calculated from differences in pre- and post-ashing weights
(Nelson and Sommers 1996). Total C and N soil contents were determined with a dry
combustion method (Nelson and Sommers 1996). Soil samples were combusted in a
LECO CHN-1000 Carbon Hydrogen Nitrogen Analyzer (Laboratory Equipment Corp, St.
Joseph, Michigan) and converted into gases that passed through an infrared cell to
determine C content (% C) and a thermal conductivity cell to determine percent N.
Lastly, I used the standard hydrometer method to determine clay, silt, and sand soil

fractions (Elliott et al. 1999).

Statistical Analyses

I used SAS for all statistical analyses (SAS 2003). I conducted an analysis of
variance (ANOVA) with multiple comparison tests to determine the effects of additional
ungulates on soil N mineralization and soil properties. My response variables for these
analyses were first-order model parameters (N, N, k), net N mineralization, soil quality
(% C, % N, C:N, SOM), and clay content. I used log-transformed data in cases where
variance increased as a function of the mean and accepted significant differences at P <
0.05. Lastly, I conducted simple linear regressions to evaluate the relationships between
first-order model parameters (N,, k), net N mineralization, and different soil properties

and to determine how much variability in N mineralization parameters could be explained
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by linear regression on the different soil properties. Summary statistics of all analyses

are presented in Appendix G.

Results

N Mineralization Kinetics

The mixed model (Eq. 2), which defined a labile and a recalcitrant pool of soil
organic N, produced lower AIC, values than the first-order model (Eq. 1; Table 2.1)
which estimated N mineralization according to first-order kinetics. The mixed model
(Eq. 2) had 27 lower AIC; values while the first-order model (Eq. 1) produced 18 lower
AIC; values. However, for 15 samples the values differed by <5. Although the fit
statistics were better for the mixed model (Eq. 2), this model failed to meet convergence
criteria for 9 out of 48 samples. The first-order model (Eq. 1), on the other hand, failed to
converge for only 3 samples. Consequently, I selected the first-order model (Eq. 1) to
estimate potentially mineralizable N. Estimates of potentially mineralizable N (N,) in 48
soil samples ranged from 30.2 to 609.0 mg N g soil N. Mineralization rate constants (k)
ranged from 0.0014 to 0.0237 wk™'. Model estimations of cumulative N mineralized at
the end of the incubation (N;) ranged from 27.7 to 157.8 mg N g soil N, and
underestimated measured net N mineralization by an average of 2.5 mg N g™ soil N
(Appendix E, Table E-1a).

Nitrogen mineralization (N; at time ¢ of incubation period) was significantly
greater (P < 0.04, on average 39% higher) in bison grazed riparian sites than riparian
control sites during the first 70 days of incubation (Fig. 2.2A; Appendix G, Table G-1a

and G-1b). However, bison grazing did not have a significant effect on N mineralization
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in wet meadows (P > 0.41, Fig. 2.2B; Appendix G, Table G-1a and G-1b). Nitrogen
mineralization was significantly greater at the end of soil incubations in wet meadows
grazed by cattle (P < 0.05, on average 139% higher, Fig. 2.2C; Appendix G, Table G-1a .
and G-1b), but there were no significant differences in N mineralization attributed to
bison vs. cattle grazing treatments in wet meadows (P > 0.54, Fig. 2.2D; Appendix G,
Table G-1a and G-1b). The incrementally smaller increases in net N mineralized (i.e.
declines in N mineralization rates, data not shown) in all treatments during the first 3
weeks of incubation corresponded to a sharp decline in microbial respiration at the
beginning of soil incubations (Fig. 2.3). Elevated microbial respiration rates in wet
meadow soils after day 70 of the incubation period (Figs. 2.3B—3D) corresponded to

higher N mineralization in wet meadows (Fig. 2.2B—2D), especially in cattle grazed sites.

Grazer Effects on Potential N Mineralization

There were no overall significant grazing treatment effects by additional
ungulates on potentially mineralizable N (N,, P = 0.32; Appendix G, Table G-2a),
mineralization rates (k, P = 0.78; Appendix G, Table G-3a), nor net N mineralized during
aerobic soil incubations (P = 0.23; Appendix G, Table G-4a). Net N mineralized (total N
leached from soil samples) ranged from 30.0 to 160.5 mg N g soil N across 48
incubated soil samples.

More specifically, I did not find significant bison grazing effects (Fig. 2.4A-4C)
on potentially mineralizable N (P = 0.99; Appendix G, Table G-2b), mineralization rates
(P =0.17; Appendix G, Table G-3b), nor net N mineralization in riparian soils (P = 0.68;

Appendix G, Table G-3b) or wet meadows: potentially mineralizable N, P = 0.86
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(Appendix G, Table G-2b), mineralization rates, P = 0.28 (Appendix G, Table G-3b), net
N mineralization, P = 0.75 (Appendix G, Table G-4b). Similarly, there were no
significant differences in these response variables between bison and cattle grazed wet
meadow soils (potentially mineralizable N, P = 0.23; mineralization rates, P = 0.89; net
N mineralization, P = 0.48; Fig. 2.4A-4C; Appendix G, Table G-2b, G-3b, G-4b).
Although N mineralization parameters in cattle grazed wet meadows were not
significantly different from other treatments, these sites had the largest potentially
mineralizable N pool (336.4 mg N g™ N, Fig. 2.4A) which resulted in highest net N
mineralization (96.5 mg N g™ soil N, Fig. 2.4C) at the lowest N mineralization rates
(0.0045 wk'', Fig. 2.4B). These parameters did not differ significantly from cattle control
treatments or bison grazed treatments in wet meadows because of high variation in their
mean values (high standard error of the mean = SE): potentially mineralizable N SE =

95, net N mineralized SE = 19, and mineralization rate SE = 0.001.

Soil Properties

Soil C:N ratios were significantly lower in wet meadows than in riparian sites (P
<0.02; Appendix G, Table G-5b). Soil C:N ratios in wet meadows averaged 10.8 and
13.1 in riparian sites. Lower C:N ratios in wet meadow soils may help to explain
relatively higher N mineralization in wet meadow soils compared with riparian soils (Fig.
2.2). Other soil properties did not differ significantly between riparian and wet meadow
soils when averaged over grazing treatments: total C, P = 0.99; total N, P =0.92; SOM, P
= 0.98; clay content, P = 0.43; sand content, P = 0.37; silt content, P = (.34 (Appendix G,

Table G-5a).
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There were no significant differences in any soil property between control and
bison grazed riparian sites, control and bison grazed wet meadow sites, or control and
cattle grazed wet meadow sites (P > 0.11, Table 2.2). This suggests that additional
grazing by bison or cattle has not altered soil texture, soil organic matter, or C and N
pools.

Soil C:N ratios did not help to explain variation in mineralization parameters (N,
or k) or net N mineralized at the end of the incubation period (R = 0.03, 0.04, 0.09,
respectively, P > 0.05, Table 2.3; Appendix G, Table G-6). Soil C also was not a
significant predictor of these N mineralization variables (P > 0.05). Soil organic matter
was only significant for potentially mineralizable N (P < 0.04), explaining 9% of
variation. Soil N was a better predictor of potentially mineralizable N (P < 0.02), and
mineralization rates (P < 0.03), respectively explaining 12% and 11% of variation in
these variables, but not net N mineralization. Soil sand and silt fractions were the most
significant predictors of the 3 mineralization parameters (P < 0.04), and explained the
most variation: 14% and 17% in potentially mineralizable N, 22% and 24% in
mineralization rates, and 10% and 12% in net N mineralization (Table 2.3). Greater silt
fractions were positively correlated with potentially N mineralizable pools and net N

mineralization (inverse was true of sand content).

Discussion
Despite differences in N mineralization at certain periods of the soil incubations, I
did not find overall significant effects of grazing by bison or cattle on soil N dynamics.

This suggests that in addition to elk herbivory, bison and cattle do not accelerate or
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decelerate N cycling in riparian or wet meadow sites in the Great Sand Dunes region.
However, significant grazing effects might have been masked in my data by high
variance in mineralized N among replicates within respective community type and
grazing treatment levels. The high variance could be attributed to my difficulty in
maintaining constant soil moisture in samples during the long-term incubation,
differences in fine root or litter among replicates, and variable leaching efficiencies with
the vacuum manifold. Furthermore, I conducted my incubations on soils collected only
at the end of the growing season. Patterns in N mineralization could be different at other
times of the growing season, especially if grazers utilize my study sites differentially over
time.

I expected increased N mineralization in riparian and wet meadow sites utilized
by bison and cattle because Great Sand Dunes riparian corridors and wet meadows are
more productive and provide more palatable forage for herbivores than the surrounding
uplands and sand sheet characterized by Ericameria nauseosa Pallas ex Pursh (rubber
rabbitbrush) and Sarcobatus vermiculatus Hook (greasewood). Areas on the landscape
that have higher quantity and quality of forage are more likely to be regrazed compared
to the surrounding community (Singer and Schoenecker 2003). This could have a
positive feedback of increased nutrient cycling and primary productivity because N
cycling is generally accelerated in urine and fecal patches which contain labile N that is
more available to plants and soil microorganisms (Coppock et al. 1983; Hobbs 1996;
Ritchie et al. 1998; Bardgett and Wardle 2003; Singer and Schoenecker 2003).
Furthermore, according to De Mazancourt et al. (1998), nutrient acceleration is likely to

occur only when herbivores transport nutrients into an ecosystem from other areas on the
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landscape. I did not measure N imports or exports by ungulates in my study. Analysis of
daily bison movements and utilization being conducted in another study should help to
determine whether bison are transporting N to riparian or wet meadow communities from
other vegetation types or if they are moving N out of these communities.

Although my data did not support the accelerating effect scenario, I observed
highest values of potentially mineralizable N and net N mineralization in soils from cattle
grazed wet meadows. Potentially mineralizable N and net N mineralization were also
considerably higher (130% and 28%, respectively) in cattle grazed wet meadows than
bison grazed meadows. This might be a result of a long history of cattle grazing in the
Great Sand Dunes region compared with only 15 years of bison grazing (and 3 years of
bison exclosure treatments) at the time of this study. However, the cattle grazing effect
was not statistically significant because of high variation in the mean value of
mineralization parameters (high SE).

The high variance in N mineralization estimates might potentially be attributed to
errors in laboratory incubation procedures, such as difficulty in maintaining constant
moisture in the microlysimeters, or differences in site characteristics that I did not
measure in this study. For example, the magnitude of grazer effects on mineralization
rates and N availability could have varied at my sampling locations as a result of plant
community structure, aboveground plant production, litter quality, water availability, and
presence of mineral licks (McNaughton 1990; Tracy and McNaughton 1995; Frank and
Groffman 1998; Augustine et al. 2003; Singer and Schoenecker 2003). Nitrogen
mineralization is also mediated by the structure and functional attributes of the soil

microbial community (Brussaard et al. 1997; Frank et al. 2000). Soil microbial
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community patterns are related to the history and intensity of grazing. For example,
Bardgett et al. (2001) found that phenotypic evenness of soil microbial communities
declines with increased intensity of grazing. They found that soil microbial communities
of sub-montane ecosystems were dominated by bacteria in heavily grazed sites while
fungi were more predominant in less intensively grazed sites. Such shifts in microbial
communities can regulate ecosystem soil processes and energy flows (Brussard et al.
1997; Bardgett et al. 1998, 2001).

Although I found significantly lower C:N ratios in wet meadow soils than in
riparian soils, soil C:N was not significantly correlated with any N mineralization
parameter. Other factors such as litter quality and recalcitrant plant residues (i.e., plant
lignin content or lignin:N ratios) could be more important controls of mineralization and
turnover rates of soil organic matter (Melillo et al. 1982; Schimel et al. 1996) than soil
C:N ratios. Although I did not measure species composition in this study, I observed
higher abundance of Carex spp. such as C. aquatilis in riparian corridors compared with
wet meadows that were characterized by relatively more J. balticus and D. spicata.
Review of the literature suggests that C. aquatilis litter might have lower tissue N than J.
balticus and D. spicata in my sites, thus, potentially contributing to slower N
mineralization in riparian corridors compared with wet meadows. Chapin and Shaver
(1989) reported 2.16% N + 0.02 SE in mid-summer leaf blades of C. aquatilis collected
from a wet meadow tundra in Alaska. Phillips et al. (1999) estimated tissue N of C.
aquatilis in a montane riparian zone of Colorado at 2.5% N in early summer. In a study
of stable C and N isotope composition of plants in San Francisco Bay, Cloern et al.

(2002) reported seasonal averages of 5.6% N for J. balticus and 8.8% N for D. spicata.
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However, they observed large variability in individual species over different seasons and
geographic regions. In future studies of Great Sand Dunes riparian and wet meadow
systems, litter quality of dominant species and soil N mineralization should be measured
through the growing season to help explain variation in N dynamics.

Although my results do not suggest changes in soil N dynamics from current
grazing management, ecosystem level N processes might be significantly altered if the
carrying capacity for all ungulates (bison, cattle, and elk) is exceeded in the Great Sand
Dunes region. For that reason, questions regarding the carrying capacity for ungulates
and plant community dynamics in the region are currently being investigated in a
collaborative effort by the US Geological Survey, The Nature Conservancy, and the
National Park Service (Schoenecker et al. 2006). Therefore, the results of my study will
be further considered in conjunction with currently on-going estimates of elk populations,
bison movements, cattle grazing intensity and seasonality, forage offtake, plant

production and species composition.

Implications
My results suggest that presence of additional herbivores, bison or cattle, in Great
Sand Dunes riparian corridors and wet meadows frequented by elk, does not significantly
alter potential soil N mineralization. But, potentially mineralizable N and net N
mineralized at the end of my soil incubations appeared higher in cattle grazed meadows.
These patterns could be a result of longer history of cattle grazing in the region compared
with bison grazing. Although these effects were not statistically significant, they might

become more apparent after longer exclosure time from grazing. At the time of this study
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cattle had been exclosed from control sites for 15 years while bison had been excluded
from control sites for only three years. Thus, the regulatory influence of additional
herbivores on soil N dynamics may be underestimated in my study. This study should be
repeated after longer bison exclosure to better inform management decisions. It should
also include analyses of soil microbial communities, plant community composition, plant
litter quality, and ungulate utilization estimates at different times of the growing season to

better account for variation in soil N mineralization.
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Table 2.1. Model performance based on convergence and Akaike’s information criterion for small data sets
(AIC,) for model fitting of 48 soil incubations. Lower value of AIC, is considered to be the better model.
Replicates are 4 replicate soil samples collected at each site by treatment type.

Convergence AIC,
Site Wetland Type Treatment Replicate First-order Mixed First-order Mixed
Big Spring Creek riparian control 1 Yes No 53 —
Big Spring Creek riparian control 2 Yes Yes 51 14
Big Spring Creek riparian control 3 Yes Yes 50 58
Big Spring Creek riparian control 4 Yes Yes 44 39
Big Spring Creek riparian bison 1 Yes Yes 68 50
Big Spring Creek riparian bison 2 Yes Yes 70 64
Big Spring Creek riparian bison 3 Yes No 50 —
Big Spring Creek riparian bison 4 Yes Yes 46 52
Little Spring Creek riparian control 1 Yes Yes 59 52
Little Spring Creek riparian control 2 Yes Yes 53 50
Little Spring Creek riparian control 3 Yes Yes 56 42
Little Spring Creek riparian control 4 Yes Yes 72 54
Little Spring Creek riparian bison 1 Yes Yes 50 54
Little Spring Creek riparian bison 2 Yes Yes 42 31
Little Spring Creek riparian bison 3 Yes Yes 53 31
Littte Spring Creek riparian bison 4 Yes Yes 53 42
Elk Springs wet meadow control 1 Yes Yes 54 51
Elk Springs wet meadow control 2 Yes No 53 —
Eik Springs wet meadow control 3 Yes Yes 72 55
Elk Springs wet meadow control 4 Yes Yes 49 40
Elk Springs wet meadow bison 1 Yes Yes 54 55
Elk Springs wet meadow bison 2 Yes Yes 58 58
Elk Springs wet meadow bison 3 Yes Yes 58 64
Elk Springs wet meadow bison 4 Yes Yes 70 69
Twin Lakes wet meadow control 1 Yes Yes 38 40
Twin Lakes wet meadow control 2 Yes Yes 52 52
Twin Lakes wet meadow control 3 Yes Yes 57 51
Twin Lakes wet meadow control 4 Yes Yes 50 43
Twin Lakes wet meadow bison 1 Yes Yes 59 53
Twin Lakes wet meadow bison 2 Yes Yes 56 46
Twin Lakes wet meadow bison 3 Yes Yes 50 55
Twin Lakes wet meadow bison 4 No Yes — 44
South MZ Ranch wet meadow control 1 Yes Yes 51 57
South MZ Ranch wet meadow control 2 Yes No 57 —
South MZ Ranch wet meadow control 3 Yes Yes 51 56
South MZ Ranch wet meadow | control 4 Yes Yes 52 52
South MZ Ranch wet meadow cattle 1 No No — e
South MZ Ranch wet meadow cattle 2 No Yes — 67
South MZ Ranch wet meadow cattle 3 Yes No 55 —
South MZ Ranch wet meadow cattle 4 Yes Yes 48 63
West MZ Ranch wet meadow control 1 Yes Yes 51 39
West MZ Ranch wet meadow control 2 Yes Yes 48 40
West MZ Ranch wet meadow control 3 Yes Yes 54 51
West MZ Ranch wet meadow control 4 Yes No 50 —
West MZ Ranch wet meadow cattle 1 Yes No 51 —
West MZ Ranch wet meadow cattle 2 Yes Yes 41 42
West MZ Ranch wet meadow cattle 3 Yes No 39 —
West MZ Ranch wet meadow cattle 4 Yes Yes 47 46
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Table 2.3. Regression of mineralization parameters estimated with the first-order model (potentially
mineralizable N =N, mineralization rate = k) and net N mineralized during incubation period with soil
properties: soil C:N, total C (% C), total N (% N), soil organic matter (% SOM), and particle size (% sand,
clay, and silt). R’ are coefficients of determination and P are P-values for dependent variables in regression
models based on n = 48.

N, k net N mineralized
R’ P R’ P R’ P
CN 0.03 0.23 0.04 0.20 0.09 0.05
%C 0.09 0.05 0.08 0.06 0 0.99
%N 0.12 0.02 0.11 0.03 0 0.73
SOM 0.09 0.04 0.09 0.05 0 0.94
Sand 0.14 0.01 0.22 0.001 0.10 0.04
Clay 0.07 0.08 0.16 0.01 0.05 0.15
Silt 0.17 0.01 0.24 0.001 0.12 0.02
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CHAPTER III

LONG-TERM EFFECTS OF CATTLE GRAZING ON NITROGEN CYCLING IN
A MONTANE RIPARIAN ZONE OF NORTH-CENTRAL COLORADO

Abstract

Although relatively small in area, riparian zones in the western US are
characterized by high productivity, high plant and wildlife diversity, zones of soil erosion
and deposition, and temporally and spatially variable biogeochemical cycles. Historically,
heavy cattle grazing resulted in severe degradation of many riparian zones, but a change
in livestock management since the late 1950s (i.e., livestock exclusion and reduced
stocking rates) has resulted in rapid recovery of many western riparian zones. Numerous
studies have illustrated the effects of ungulate herbivory on aboveground ecosystem
dynamics and soil properties, but less consideration has been given to nutrient cycling
and belowground nitrogen (N) dynamics in riparian zones grazed by cattle. The goal of
this study was to determine if long-term cattle grazing in a montane riparian zone of
north-central Colorado has altered ecosystem N cycling. Since herbivory can affect
producer-decomposer feedbacks in an ecosystem, I assessed cattle effects on N dynamics
by investigating both aboveground and belowground N pools and N fluxes across a

landscape gradient from the stream bank to the edge of the riparian zone. I expected to
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find evidence of accelerated N cycling (i.e., increased aboveground N pools, inorganic
soil N pools, soil microbial N pools and increased microbial respiration, mineralization,
nitrification, and denitrification) because the Sheep Creek montane riparian sites are
highly productive and appear resilient to disturbances.

Nitrogen cycling in long-term cattle grazed sites of the Sheep Creek montane
riparian ecosystem did not fit the accelerating nutrient scenario across all landscape
positions compared with sites excluded from grazing for 50 years. Overall, cattle grazing
did not increase aboveground plant production, aboveground or belowground plant N
pools, soil N pools, soil microbial biomass, litter decomposition, potential net N
mineralization or denitrification. And, there were no apparent differences in species
composition between grazed and excluded treatments. The potential for accelerated N
cycling was detected only near the stream bank where net N mineralization in incubated
soils was 13.6 + 1.6 mg N g'soil N in cattle grazed sites compared with 8.8 + 1.3 mg N
g's0il N in excluded sites, while the immobilization index (CO, respired : net N
mineralized) was lower in grazed than excluded sites. This result was mainly attributed
to higher nitrification at one out of 3 grazed streambank sites which also happened to be
most utilized by cattle during the two field seasons. Because I did not have historical
accounts of cattle utilization and frequency at my specific study locations, it is possible
that streambank sites frequently grazed by cattle exhibit accelerated N cycling compared
with other riparian locations less frequently grazed by cattle, but I was unable to fully
capture the grazer-induced response because my study locations likely had unequal
histories of cattle use. Nevertheless, the results of this study suggest that the Sheep Creek

riparian zone is resilient and resistant to cattle grazing and that season-long, light-to-
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moderate grazing does not significantly alter ecosystem functioning. Livestock grazing
under current management appears to be a viable land-use in this montane riparian

corridor.
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Introduction

Riparian zones, the interfaces between terrestrial and aquatic ecosystems, are
complex systems characterized by high productivity, high plant and wildlife diversity,
zones of soil erosion and deposition, and temporally and spatially variable
biogeochemical cycles that vary over small scales (Kauffman and Krueger 1984; Gregory
et al. 1991; Clary and Leininger 2000; Blank et al. 2006). Riparian zones are often
designated as multiple use areas that are managed for recreational activities, wildlife
habitat, and livestock grazing. These different uses have been re-evaluated as economic
and ecological values of the riparian zones become recognized. Chaney et al. (1990)
suggested that most of the degradation of riparian areas in the West had been caused by
improper cattle management. Historically riparian and stream ecosystems of the western
US were viewed as “sacrifice” areas dedicated primarily to providing forage, shade, and
water for domestic livestock (Kauffman and Krueger 1984). Even though most grazing
plans were designed for extensive uplands, management of riparian zones was limited
and cattle concentrated along stream banks. Consequently, historical heavy grazing often
resulted in severe degradation of many riparian zones in the US West.

Cattle grazing in montane riparian zones can affect plant diversity and community
structure (Kauffman et al. 1983; Schulz and Leininger 1990; Clary 1995), forage quality
(Phillips et al. 1999), soil physical properties (Wheeler et al. 2002), stream bank stability,
soil organisms, and nutrient cycling. Alteration of biogeochemical processes (i.e., litter
decomposition, nutrient mineralization, nutrient turnover) by cattle grazing may have
significant effects on plant productivity, community structure, buffering potential of

riparian zones and overall ecosystem health (Bardgett et al. 1998). Although it has been

51



demonstrated that ungulate grazing has indirect effects on nutrient cycling, soil microbial
communities and their functions (Holland and Detling 1990; Bardgett et al. 1998; Tracy
and Frank 1998; Frank et al. 2000; Bardgett et al. 2001; Bardgett and Wardle 2003;
Binkley et al. 2003; Le Roux et al. 2003; Kauffman et al. 2004; Sankaran and Augustine
2004; Schoenecker et al. 2004), many of these studies have focused mainly on wild
ungulates (elk, bison) or livestock (sheep, cattle) in grasslands, shrublands, or
pasturelands and only few studies have investigated cattle grazing effects on nutrient
dynamics in montane riparian zones (Groffman et al. 1992; Trlica et al. 2003; Kauffman
et al. 2004; Blank et al. 2006).

Herbivory can indirectly affect nutrient cycling by affecting the quantity and
quality of plant-derived nutrients available to soil microorganisms, rates of microbial
litter decomposition and mineralization, and nutrient supply rates to plants (Phillips et al.
1999; Hamilton and Frank 2001). Ungulate grazing may alter any of the three main
components of the N cycle:

a) N pools (aboveground and belowground plant N pools, inorganic soil N, and
total soil N),

b) annual N fluxes (denitrification, NO3™ leaching, NH;" volatilization, N
transport in or out of ecosystems by ungulate movements or wind and surface
runoff), and

¢) daily N fluxes (plant uptake and transport of N to aboveground tissues,
consumption of plant N by ungulates, litter N deposition to soil, fecal and
urine N deposition, litter decomposition and mineralization rates, and daily
transport of N between habitats by ungulates) (Singer and Schoenecker 2003).

The potential effects of ungulate grazing on N cycling in upland ecosystems have

been summarized into an accelerating — decelerating nutrient cycling scenarios

framework. The accelerating nutrient scenario has been proposed for fertile, productive
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ecosystems. In productive ecosystems, selective consumption is low and herbivores
promote compensatory plant growth while returning some organic matter as labile fecal
material to the soil. There is an acceleration of N uptake by plants which enhances
nutrient concentration in living plant tissue. The resulting high quality litter stimulates
microbial activity which has a positive feedback of high nutrient supply rates to plants
(Ritchie et al. 1998; Bardgett and Wardle 2003; Wardle et al. 2004). According to De
Mazancourt et al. (1998), grazing optimization and nutrient acceleration are likely to
occur when herbivores move nutrients into an ecosystem from areas outside of the
ecosystem (i.e., herbivores redistribute N across a landscape). The decelerating nutrient
scenario is more prevalent in ecosystems that are infertile and unproductive. In infertile
ecosystems, plant species are not resilient to grazing and selective feeding on palatable
plants results in dominance of unpalatable species with poor litter quality. Litter
decomposition and mineralization rates are slowed, nutrient supply rates to plants are
lower and, eventually, labile N pools decline (Ritchie et al. 1998; Bardgett and Wardle
2003; Wardle et al. 2004). The accelerating — decelerating nutrient cycling framework
has not yet been tested in montane riparian ecosystems grazed by cattle. A combined
aboveground and belowground approach is needed to understand if N cycling in montane
riparian zones is altered by cattle grazing (Kauffman et al. 2004).

The main goal of my study was to determine if long-term cattle grazing in a
montane riparian zone has altered N cycling by changing N pools sizes (aboveground and
belowground N, soil N) and N fluxes (microbial respiration, mineralization, nitrification,
immobilization, denitrification). Since the magnitude of herbivory effects on N cycling

appears to depend on soil fertility (Olff et al. 2002; Bardgett and Wardle 2003), 1
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assessed aboveground and belowground N pool sizes and fluxes across a landscape
gradient from the stream bank to the edge of the riparian zone. The specific objectives of
my study were to:

1. Determine if long-term moderate cattle grazing in montane riparian sites has
accelerated or decelerated N cycling in comparison with sites that have been
excluded from cattle grazing for 50 years,

2. Assess cattle grazing effects on N pools (plant, soil, and soil microbial N pools)
and N fluxes (litter decomposition, mineralization, nitrification, immobilization,
and denitrification), and

3. Compare aboveground and belowground N pools and N fluxes at three locations
in the riparian zone: streambank, middle of the riparian zone, and edge of the
riparian zone adjacent to a forested upland to assess potential variation in N
dynamics across a landscape gradient.

I hypothesized that long-term cattle grazing in the Sheep Creek montane riparian
zone of north-central Colorado has accelerated N cycling because the riparian sites are
highly productive and appear resilient to disturbances. I hypothesized that the
accelerating effect would be exhibited by greater aboveground and belowground N pools
(i.e., plant N, inorganic soil N, soil microbial N) and increased N fluxes (i.e., microbial
respiration, litter decomposition, mineralization, and denitrification) in the long-term
grazed compared with excluded sites of the Sheep Creek montane riparian ecosystem. I

expected increases in N cycling to be especially apparent at streambank sites because

cattle generally concentrate near stream banks where forage and water are abundant.
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Methods

Study Site

The Sheep Creek riparian ecosystem is located in north-central Colorado,
approximately 80 km northwest of Fort Collins, CO, within the Roosevelt National Forest
(Fig. 3.1). Sheep Creek is a first-order stream that flows southeasterly into the North
Fork of the Cache la Poudre River. Eaton Reservoir is located in the headwaters of the
stream, 5 km upstream of my study sites which were located at 2,500 m elevation. The
annual hydrograph is characterized by a snowmelt-driven peak in early spring and a
second peak in late July or August when about 1.5 m®s™ are released from the reservoir
for three to four weeks (Stednick and Fernald 1999). Limited weather data exist for this
site, but available data indicate mean annual precipitation of 400 mm with 240 mm
average precipitation during the growing season from May to September. Average daily
temperatures range from 0° to 25°C during the growing season (Holland et al. 2005).

Soils in the Sheep Creek riparian zone are Naz sandy loams (Pachic cryoboroll)
that occur to depths of 76-154 cm. Sandy loams characterize the upper 12 ¢cm of the soil,
while coarse and gravelly sandy loams are more common deeper in the soil profile.
These soils are well-drained, have high hydraulic conductivity and medium water-
holding capacity (Stednick and Fernald 1999; USDA-NRCS 2008). Willows dominante
the overstory vegetation along Sheep Creek and include planeleaf willow (Salix
planifolia Pursch var. planifolia), Geyer willow (Salix geyeriana Andersson), peachleaf
willow (Salix amygdaloides Andersson), coyote willow (Salix exigua Nuttall ssp.
exigua), and mountain willow (Salix monticola Bebb) (Holland et al. 2005). The

herbaceous understory is comprised of several sedge species (Carex aquatilis Whalenb.,
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Carex utriculata Boott, Carex praticola Rydb.), rushes (Juncus arcticus Willd., Juncus
balticus Willd.), numerous forbs (Erigeron formossisimus Greene, Fragaria vesca L.,
Fragaria virginiana Duchesne, Potentilla diversifolia Lehm., Potentilla pulcherrima
Lehm., Taraxacum officionale Weber, and Trifolium repens L.) and grasses (4grostis
stolonifera L., Deschampsia caespitosa L., Phleum alpinum L., Phleum pratense L., Poa
pratensis L., Poa palustris L.) (Schulz and Leininger 1990; Popolizio et al. 1994). My
study locations were in riparian meadows dominated by herbaceous cover and very few
willows.

Grazeable range in the Sheep Creek allotment consists of 1,050 ha which had
been heavily grazed from the 1890s to 1950s (Fig. 3.2). In an effort to protect fish
habitat, the U.S. Forest Service (USFS) and Division of Wildlife constructed two
exclosures in 1956 and one in 1959. A total of 40 ha of the riparian zone and 2.5 km of
stream were fenced to protect the areas from livestock grazing. Cattle stocking rates by
this time were reduced to about 1,000 animal unit months (AUMs) from 1,800 in late
1930s. Forage utilization continued at 70-80% until mid-1980s, when utilization was
reduced to 40-60%, fluctuating at 100-300 AUMs (Schulz and Leininger 1990; Phillips et
al. 1999; Stednick and Fernald 1999; Wheeler et al. 2002). According to Shaw (1992),
streamside forage utilization is light at 20-35%, moderate at 36-55%, heavy at 56-75%,
and very heavy at greater than 75%. The ecological condition of Sheep Creek was
classified in 1991 by the USFS as excellent and range forage value as good (USFS,
unpublished data). Current livestock grazing is season long from 21 June until 25

September.
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Experimental Design

I located control study plots (i.e. exclosure treatments) in sites excluded from
cattle grazing since the late 1950s and grazed treatment study plots in areas that have
been grazed heavily until mid-1980s and moderately since then. I designed my study as a
split-plot factorial experiment (Fig. 3.3) with grazing treatment (2 levels: exclosure and
control) as the whole-plot factor and landscape location (3 levels: streambank, middle
riparian, and edge of riparian) as the subplot factor. Within each landscape location I
established 4, 1-m* permanent plots which I subsampled and then pooled for statistical
analyses. I used 3 blocks as replicates and repeated measures over time for some
variables. Types of data and year in which they were collected are summarized in Table
3.1 and presented in methods and results in two parts as Aboveground Plant Dynamics

and Belowground Soil Dynamics.

Aboveground Plant Dynamics

Aboveground Primary Production and Plant C and N Pools

I used the standard harvest method to estimate aboveground primary production
(APP) by clipping a given year’s standing biomass at the end of each growing season
(Appendix H). The vegetation samples were oven-dried at 60°C for 48 h and weighed.
Subsamples of the dried vegetation were ground with a Wiley mill and analyzed for total
plant carbon (C) and N with a dry combustion method (Sollins et al. 1999) in which
ground samples (~0.1 g) were combusted in a LECO CHN-1000 (Laboratory Equipment
Corp, St. Joseph, Michigan) analyzer and CO, and N gases were analyzed with an

infrared gas analyzer and gas chromatograph, respectively. I multiplied plant %C and
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%N by APP to calculate plant C and N pools (g C m™ and g N m™) for each sampling
location (Appendix I).

To obtain estimates of root C and N, I sorted roots from soil cores collected for
soil analyses in June, August, and October 2006. I washed the roots, dried them at 60°C
for 48 h, ground them in liquid N in a mortar and pestle, and analyzed them with the dry
combustion method on a LECO CHN-1000 analyzer. I converted root %C and %N to C
and N pools by adjusting the percentages by soil bulk density estimates described below

(Appendix J).

Spvecies Composition and Plant Cover

In August 2005, I characterized plant species composition with the point-intercept
method using a laser point frame (Appendix K). The laser point frame was placed 5
times, at 20 cm intervals, across 1-m” plots to obtain readings for 50 laser positions. At
each position, multiple hits on vegetation were recorded by species to obtain absolute
cover of each species. I summed absolute cover for each species to obtain total plant
cover for each sampling location and measured species richness as the number of
different species at each sampling location (Appendix L). I also grouped species by
functional groups (forb, sedge, grass, rush, shrub, tree, moss) to determine if there were
differences in plant functional groups between grazing treatments or across landscape

locations.
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Belowground Soil Dynamics

I used composite soil samples from each sampling location for all soil analyses.
At each sampling location, I composited 10 soil cores (2-cm diameter) collected to a 10
cm depth below the soil O horizon from 4 permanent, 1-m? plots within each sampling
location. Soils were stored in plastic zip-lock bags and transported on ice to the
laboratory where subsamples of field moist soil were taken for analyses of soil moisture,
water-soluble organic C (WSOC) and water-soluble total N (WSTN), denitrification
potential, and soil microbial biomass. Field moist soils were stored in a refrigerator until
these analyses were completed. The remaining soil samples were air-dried, passed
through a 2 mm sieve to remove rocks and gravel, and visible roots and litter were

removed.

Soil Physiochemical Properties

To gain insight into potential differences in soil physiochemical properties and
sizes of soil N pools across sampling locations, I conducted several different soil
analyses. In 2005, I characterized soil particle size distribution (Appendix M) with the
hydrometer method that is adequate for particle size analysis of soils with a clay content
of 5-50% (Elliott et al. 1999). I used the core method to obtain estimates of soil bulk
density (Elliott et al. 1999). I collected bulk density cores to a 10 cm depth with 7.3 cm
diameter corer in mid-August 2005 when the riparian soils were drier than at the
beginning of the growing season and less susceptible to compaction by the corer

(Appendix M).
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Soil pH was measured in June, August, and October 2005 with a standard pH
meter that measured hydrogen ion activity in the soil samples (Robertson et al. 1999)
(Appendix N). I measured soil organic matter (SOM), total C and N, inorganic N and soil
moisture in June, August, and October of both 2005 and 2006. I ashed 1.0-g soil samples
in a 500°C muffle furnace for 5 hours and calculated %SOM from differences in pre- and
post-ashing weights (Nelson and Sommers 1996). I used soil bulk density to convert %
SOM to pool sizes (Appendix P). Similarly to plant and root litter, I used the dry
combustion method to measure soil %C and %N (Elliott et al. 1999) and then converted
them to pool sizes by adjusting the percentages by soil bulk densities (Appendix O). I
measured available inorganic nitrate (NO3"), ammonium (NHy"), and total inorganic N
(NOs3™ + NH4") with the exchangeable ion technique where I used 2M KCl to liberate
NH," into solution by allowing K" to exchange for NH;" and CI” for NO;™ (Robertson et
al. 1999). I then analyzed the extracts colorimetrically for NOs” and NH," on an Alpkem
segmented flow autoanalyzer (Ol Analytical, College Station, TX) and converted
concentrations to pool sizes by adjusting the percentages by soil bulk densities (Appendix
P). I assessed soil moisture at the time of each sampling event by oven-drying samples at
105°C for 24 h and reweighing them to obtain soil gravimetric water content (Jarrell et al.
1999) (Appendix O).

Lastly, I measured WSOC and WSTN in June, August, and October 2006
(Appendix Q). These C and N fractions represent water-extractable C and N pools that
are an estimate of organics from root exudates, leachates from litter, and organic
decomposition by-products (Davidson et al. 1987). Water-solubles can be used as an

index of potential soil microbial activity because they represent the availability of labile
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C and N available for microbial metabolism. I used a 5:1 ratio of deionized water to soil
sample weight to extract WSOC and WSTN from soils. Samples were shaken for 30 min
on a rotary shaker, centrifuged at 10,000 rpm, filtered through a Whatman GF/A glass
microfiber filter, filtered again with a vacuum extractor through a 0.45 p nylon acrodisc
before analysis on a Shimadzu TOC-V instrument (Shimadzu Instruments, Inc.

Columbia, MD).

Litter Decomposition

To assess possible differences in litter decomposition between grazing treatments
and locations across the riparian zone, I conducted a decomposition experiment with litter
bags containing senesced Carex spp. blades cut to 10 cm lengths. In October 2004, I
buried 4 litter bags in each of the 4, 1-m” plots at each sampling location at a 10-15 cm
depth. At the end of April 2005, as well as June, August, and October I removed one bag
from each 1-m? plot for a total of 4 replicates per sampling location. The litter bags were
emptied in the laboratory, the litter was then washed, oven dried at 60°C for 48 h and
weighed. Subsamples of the dried litter (0.5 ~-1.0 g) were ashed in a muffle furnace at
500°C for 5 hours to obtain ash-free litter weights which were then used to calculate %
ash-free dry mass (AFDM) remaining of initial litter mass (Harmon et al. 1999)

(Appendix R).

Soil C and N Mineralization

Soil microbial respiration, N mineralization and immobilization are processes that

control ecosystem-level patterns of C and N cycling, and I measured them to assess
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potential differences in ecosystem function associated with long-term cattle grazing or
landscape position. I used aerobic soil incubations to measure potential N mineralization
and soil respiration potentials of riparian soils. Net mineralization potentials are often a
better indicator of site fertility than extractable inorganic soil N which is largely
immobilized by soil microorganisms and plants, leached, adsorbed to soil or reduced to
other forms. Thus, potential mineralization estimates are a good index of the capacity of
a soil to provide inorganic N to plants (Robertson et al. 1999).

I conducted 21-day aerobic incubations of soils collected in both 2005 and 2006
(June, August, October) (Robertson et al. 1999). I incubated 30 g of dry soil (2 analytical
replicates) in Mason jars at 55% WEFPS which I calculated for each soil sample based on
its bulk density and soil particle density of 2.65 g cm™. Moisture content of the incubated
soils was monitored bi-weekly by reweighing and adding deionized water when
necessary. I measured soil microbial respiration by measuring CO, accumulation in the
headspace of each jar at day 3, 10, and 21 of the incubation period to make sure the
headspaces did not saturate with CO, that could inhibit microbial activity. I analyzed
CO; concentrations with a LI-COR LI-2400 CO, gas analyzer (LI-COR Biosciences,
Lincoln, NE) and used the Ideal Gas Law to convert CO; concentrations to net C
mineralization and express them as mg CO,-C g soil C (Appendix S). At the end of the
incubation I extracted inorganic N with a 2M KCl solution as described above. 1
subtracted inorganic N measured at day 0 of the incubation from inorganic N measured at
day 21 to obtain net N mineralized and expressed it as mg N g! soil N (Appendix S).
Lastly, I calculated the immobilization index to gain insight into potential N

immobilization of incubated soils by dividing soil CO; respiration (mg CO,-C g soil C)
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with net N mineralization (mg N g™ soil N) (Appendix S). This metric has been used as

an index of soil microbial N immobilization (Schimel 1986; Frank and Groffman 1998).

Denitrification Potential

Riparian zones are important buffers of runoff inputs from surrounding uplands to
ground water and stream water (Lowrance et al. 1984; Groffman et al. 1996; Dhondt et
al. 2006). Denitrification is an important process that contributes to the buffering
capacity of riparian zones because it removes NO3™ from soil and ground waters before
they enter streams. Thus, significant alteration of denitrification by cattle grazing could
affect the buffering capacity of a montane riparian zone. Since denitrification is spatially
heterogeneous and in situ N,O emissions are often below detection limits, I used a
denitrification enzyme assay (DEA) to assess the denitrification potential in soils from
the two grazing treatment levels and different riparian locations. The Tiedje (1994)
method that I used estimates denitrifying enzyme concentration in a soil sample and since
denitrifying enzymes are inducible, nitrous oxide production (N,O) indicates conditions
suitable for denitrification. I amended 25 g of field-moist soil (2 analytical replicates)
with NOs’, glucose, and chloramphenicol, purged the incubation jars with N, gas to
remove O,, added acetylene (C,Ha) to achieve a 10% (10 kPa) concentration in gas
phase, and incubated the samples on a rotary shaker at room temperature for 60 min. I
subsampled the headspaces every 15 min to establish linearity of N,O production. The
gas samples were analyzed for N,O on an electron-capture detector (ECD) gas
chromatograph, Shimadzu 14B (Shimadzu, Japan). I expressed the denitrification

potential as N,O production rate (ug N,O-N g'soil h™") (Appendix T).
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Soil Microbial Biomass

I used the chloroform-fumigation extraction (CFE) method to characterize soil
microbial biomass C and N in soils collected in June, August, and October 2006. This
method has been widely used for comparisons of temporal changes in microbial biomass
in natural and disturbed systems (Horwath and Paul 1994). In this procedure, microbial
constituents (soluble C, organic N and NHy") are released by fumigation with chloroform
and extracted directly to determine the size of soil C and N biomass. The CFE has an
advantage over the chloroform fumigation incubation method because it prohibits NH,"
immobilization or denitrification activity, and has low interference from non-microbial
labile C and N (Horwath and Paul 1994). I used 10 g of field-moist soil (2 analytical
replicates) for un-fumigated and fumigated samples. The un-fumigated samples were
extracted at day 0 of the incubation with a 0.5 M K,SO; at a 5:1 ratio of extractant weight
to dry soil weight to provide initial concentrations of soil microbial C and N. Fumigated
samples were placed in 50-ml beakers and fumigated with ethanol-free chloroform. The
chloroform-fumigated samples were incubated in the presence of chloroform fumes in a
desiccator for 5 days to release soluble C, organic N and NH;" from microbial biomass.
The 5-day incubation period is recommended for release of potentially extractable
microbial products until extracellular enzyme activity ceases or substrate becomes
limiting (Horwath and Paul 1994). The fumigated samples were also extracted with a 0.5
M K,SOq4 at a 5:1 ratio of extractant weight to dry soil weight and both fumigated and un-
fumigated extracts were analyzed for microbial C and N on a Shimadzu TOC-V. 1

calculated microbial biomass C and N (Appendix U) by respectively differencing these
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constituents from fumigated and un-fumigated extracts and dividing them by extraction

efficiency coefficients (K¢ = 0.35 and K, = 0.68) (Horwath and Paul 1994).

Data Analysis

I used analysis of variance (ANOVA) to determine the influence of grazing
treatments and landscape locations on aboveground plant dynamics and several
belowground soil response variables (soil physiochemical properties and litter
decomposition). Since these analyses revealed significant differences (P < 0.10) in soil
particle size distribution, C, N, and SOM pools between landscape locations, I used these
variables as covariates in an ANCOVA to determine the influence of grazing treatments
and landscape locations on soil microbial respiration, N mineralization, immobilization,
denitrification, and soil microbial biomass.

I used the mixed procedure in SAS 9.1 software (SAS Institute 2003) for both
repeated-measures ANOVA and ANCOVA, and accepted significant differences at P <
0.10 (Appendix V). Random effects in the proc mixed procedures included block and
block by location, grazing treatment, and time interactions while fixed effects included
location, grazing treatment, and time. In some analyses, I used log or square-root
transformed data to normalize data distribution and make statistical comparisons, but I
reported untransformed least square means and standard errors in tables and figures. The
appropriate data transformations for different response variables are stated in the results
section.

In addition to the above analyses, I used non-metric multidimensional scaling

(NMS), an ordination technique, to evaluate community relationships in species

65



composition across the riparian zone (Kruskal 1964) (Appendix V). I used the Sorensen
(BC) distance measure in PC-ORD software (Mather 1976; McCune and Grace 2002)
with a random starting configuration and an instability criterion of <0.0005. I performed
10 runs with real data, 10 iterations for stability, 200 maximum iterations, and 20
randomized runs for the Monte Carlo test. I assessed dimensionality of the data by
selecting the highest dimensionality (i.e. number of axes) that reduced the final stress by
5 or more (on a scale of 0-100) and where final stress was lower than P < 0.05 for the
Monte Carlo test. Ithen used a joint plot overlay to describe plant functional group
gradients in species composition where the cutoff criteria for key functional groups were

r>0.1.

Results

Aboveground Plant Dynamics

Aboveground Primary Production and Plant C and N Pools

Cattle grazing did not have a significant effect on APP estimated by peak standing
biomass (P = 0.68) in either 2005 or 2006 (Appendix V, Table V-1a). Forage utilization
by cattle was low in both years. In 2005, cattle, on average, utilized 17% of biomass at
streambank locations, 10% in the middle of the riparian zone, and 0% at the edge of the
riparian zone. In 2006, cattle, on average, utilized 32%, 27%, and 10% of biomass at
streambank, middle riparian, and edge of riparian locations, respectively. Although APP
did not differ between grazing treatments, it was significantly higher at streambank and
middle riparian locations than at the riparian edge (P = 0.02; Appendix V, Table V-1a

and V-1b). Aboveground primary production at the streambank and middle riparian
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locations was 35% higher than at the edge of the riparian zone (Fig. 3.4A).
Aboveground primary production was also 36% higher in 2005 than 2006 (P < 0.0001;
Fig. 3.4B).

There were no significant differences in total plant C pools, total plant N pools, or
plant C:N between exclosure and grazed treatments in 2006 (P = 0.50, 0.51, 0.37,
respectively; Table 3.2, Appendix V, Table V-2a). Total plant C and N pools, however,
were higher at streambank and middle riparian locations than at the riparian edge (P =
0.03, 0.03, respectively; Appendix V, Table V-2b). The total plant C pools were 34 to
41% higher at the streambank and middle of the riparian zone while total plant N pools
were 35 and 44% higher at these two locations compared with the edge of the riparian
zone.

Similarly to aboveground plant C and N pools, there were no significant
differences in total root C pools, total root N pools, or root C:N between exclosure and
grazed treatments (P = 0.65, 0.90, 0.53, respectively; Table 3.3). Furthermore, there were
no differences in these root variables across riparian locations (P > 0.41; Appendix V,

Table V-3).

Species Composition and Plant Cover

Ordination of sampling units in species space did not reveal any patterns in
species composition associated with grazing treatment (Fig. 3.5A) or location (Fig. 3.5B).
Stress was 20.5 and instability was 0.00046 for a two-dimensional NMS solution based
on Kruskal’s stress formula 1 (Appendix V, Table V-7). NMS axis 1 and 2, respectively,
represented 48 and 24% of variance in ordination space. The joint plot with functional

groups as predictors revealed three key functional groups (forb, grass, and sedge) that
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were most strongly related with the NMS axes. Forbs were better related with NMS axis
2 (r2 =0.12), grasses were equally related with axis 1 and 2 (r2 =0.12, 0.13,
respectively), while sedges related best with axis 1 (+* = 0.32).

Subsequent analysis of variance on cover of the three functional groups did not
reveal significant differences associated with grazing treatment (P > 0.47; Appendix V,
Table V-4a). Grass cover, however, was significantly greater in streambank and middle
riparian locations compared with the edge of the riparian zone (P = 0.04; Fig. 3.6B,
Appendix V, Table V-4b). Grass cover was 42 and 47% higher in streambank and
middle riparian locations than riparian edge. Sedge and forb cover did not differ
significantly across locations (P > 0.48), however, forb cover exhibited a pattern opposite
that of grasses since forbs were more prevalent at the riparian edge (Fig 3.6D). There
were no significant differences across locations (P = 0.25) or grazing treatments (P =
0.32) in total plant cover which comprised of the three main functional groups and the
less dominant cover classes: rushes, shrubs, moss, and tree saplings (Appendix V, Table
V-5).

Similarly, there were no significant grazing treatment or location effects on
species richness (Table 3.4) which ranged from 11 to 13 across all treatment levels
(Appendix V, Table V-5). Agrostis stolonifera was the most abundant species across
grazing treatments and riparian locations (Table 3.4). However, the only significant
grazing treatment effect on the cover of a key species occurred for Fragaria spp. which
were more abundant in excluded versus grazed sites (P = 0.10; Appendix V, Table V-6a
and V-6b). The major species also differed little across the three riparian locations.

Significant differences occurred for Poa pratensis (P = 0.05) which was most abundant in
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the middle of the riparian zone and Erigeron formosissimus (P = 0.001) that was most

common at the edge of the riparian zone (Appendix V, Table V-6a and V-6b).

Belowground Soil Dynamics

Soil Physiochemical Properties

Soil physical properties (texture and bulk density) as well as pH, soil moisture,
WSOC and WSTN did not differ between excluded and grazed sites (Table 3.5A).
However, there were differences in soil texture and WSOC and WSTN associated with
landscape location. Fine soil fractions (i.e., clay and silt) were significantly lower at
streambank locations than the middle or edge of the riparian zone (P < 0.08), while the
opposite occurred for sand fraction with sand being highest in streambank sites (P = 0.02;
Appendix V, Table V-8a and V-8b). Soil moisture content was greater in 2005 than 2006
(P =0.0002; Appendix V, Table V-11a and V-11b). In both years soil moisture was
lowest in the middle of the growing season, August, relative to the beginning and end of
the growing season, June and October.

Differences in soil pools of organic matter, C, and N occurred between grazing
treatments within each year and between treatments within landscape location (i.e., main
effect interactions, Table 3.5B; Appendix V, Table V-12a, V-12b,V-13a, and V-13b).
Grazing treatment did not have a significant effect on these properties in 2006, but in
2005 the soil C and N pools were respectively 27% and 18% higher in excluded than
grazed sites. Soil C pools were also higher at excluded sites compared with grazed
streambank and middle riparian sites (P < 0.08), while the soil N pool was higher only at

excluded vs. grazed streambank sites (P = 0.04). There were no significant grazing
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treatment effects on SOM pools over time or in any of the landscape locations (P> 0.11).
Soil C:N also did not differ between grazing treatments over time or at different sampling
locations sites resulting in no significant treatment by year or location interactions (P >
0.17).

Soil C,; N, and SOM pools also differed significantly across landscape locations
(P £0.003) and, in addition to clay content, were used as covariates in analyses of soil C
respiration, N mineralization, denitrification, and soil microbial biomass. The three pools
were lower at streambank locations compared with the middle and edge of the riparian
zone (Fig 3.7). Water soluble organic C and total N were also significantly lower at
streambank sites compared with the edge of the riparian zone (Table 3.5A).

With respect to time during the growing season, soil C, N, and SOM pools
differed significantly over time (P £ 0.02). The soil C pool increased from 3.9 to 4.3 kg
m?, soil N pool increased from 0.27 to 0.29 kg m™, and SOM pool increased from 8.9 to
9.5 kg m? between June and October. However, these differences are small and probably
not biologically significant. Soil C and SOM pools were also higher in 2005 than 2006
(P £0.003) but no difference between the two years for soil N pool was found (P = 0.38).

Water soluble organic C and total N were measured only in 2006, but both of
these pools were highest in August when soil moisture was also lower which suggests a
concentration effect of organic C and total N (P < 0.0001; Appendix V, Table V-14a and
V-14b). However, these differences were very small and might not be biologically
important; WSOC was 3.9 g m™ in August, 2.6 gm™inJuneand 3.3 ing m? October,
while WSTN was 0.05 g m™ in August compared with 0.03 g m™ in June and 0.04 g m*

in October.
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Pools of inorganic N species and total inorganic N were not different between
exclosure and grazed treatments (P > 0.31; Table 3.6, Appendix V, Table V-15a and V-
15b). Ammonium and total inorganic N also did not differ between locations, however,
the NO5™-N pool at streambank sites was 75 and 33% lower than in the middle and edge
of the riparian zone, respectively (P = 0.02). The soil NO3™-N pool was highest in June
and declined significantly over the course of the growing season (P < 0.0001).
Ammonium did not differ in June and August; however, it declined significantly by
October (P = 0.06). Since ammonium comprised 95 — 97% more of the total inorganic N
pool than nitrate, the total inorganic N pool also decreased significantly from June to

August and October (P = 0.02).

Litter Decomposition

There were no significant differences in litter decomposition between grazing
treatments (P = 0.43) or riparian locations (P = 0.34; Appendix V, Table V-16a and V-
16b). Over the course of the winter, litter mass decreased by 12% (88% AFDM at the
end of April). Litter remaining in the litter bags declined another 10% by early June to
78% AFDM. Most decomposition of litter occurred between June and early August
when litter mass decreased from 78 to 48% AFDM (Fig. 3.8). After one year, litter

decomposed to 47% AFDM by October 2005.

Soil C and N Mineralization

Moderate (light over the 2 years of the study, light-to-moderate over the last 20

years) cattle grazing did not accelerate C or N mineralization when these estimates were
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pooled over landscape locations (P > 0.28; Table 3.7, Appendix V, Table V-17a and V-
17b). However, there was a significant treatment by location interaction for nitrification,
net N mineralization, and the immobilization index (P < 0.05) at streambank sites only.
The long-term moderate cattle grazing increased nitrification potential by 72%, increased
net N mineralization by 35% and decreased immobilization by 42% at the streambank
(Fig. 3.9). This increase in N mineralization at streambank sites, however, was not
reflected by soil CO; respiration which was similar between grazing treatments at all
three locations (P = 0.19). Furthermore, raw data suggest that the significant increase in
potential nitrification in soils from grazed streambank sites could be associated with
much higher nitrification at one out of three grazed streambank sites. At this particular
streambank site, nitrification was on average 97% higher compared with the two other
streambank sites. This site was also utilized the most by cattle in 2005 and 2006.
Nitrification and net N mineralization were higher at the beginning and middle of
the growing season compared with the end of the season in October (P = 0.03), whereas
the immobilization index exhibited an opposite trend of low immobilization in June and
August compared with higher immobilization at the end of the growing season (P =
0.03). There were no significant differences in soil microbial respiration over the course
of the two growing seasons. Furthermore, only nitrification was higher in 2005 (when
averaged over treatments, location, and time of growing season) compared with 2006 (P
= (0.007), while immobilization was lower in 2005 compared with 2006 (P = 0.02; Table

3.7).
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Denitrification Potential

Denitrification potential, measured as N,O production rate, was 147 + 49 SE pg
N,O-N g”'soil h in excluded sites compared with 227 + 49 SE pg N,O-N g’ soil h in
grazed sites. But, this difference was not significant for log transformed data (P = 0.38,
Appendix V, Table V-18a and V-18b). There were also no significant differences in
denitrification potential across the riparian zone (P = 0.02). Nitrous oxide production
rate at streambank sites was 194 + 77 SE pg N,O-N g soil h™', 173 + 57 SE ug N;O-N g
"soil h™! in the middle of the riparian zone and 195 + 61 SE pg N,O-N g soil h! at the
edge of the riparian zone. Denitrification potential was similar when compared by
treatment within each location (Fig. 3.10A). However, there was a significant location by
time of growing season interaction (P = 0.06) which revealed highest denitrification
potential at the beginning of the growing season, June, within each riparian location (Fig.
3.10B). Although mean denitrification potential at the riparian edge in June was 46%
higher than mean denitrification potential in June at the streambank, this difference was

not significant (P = 0.44).

Soil Microbial Biomass

Soil microbial biomass C , N or C:N ratios (Table 3.8) did not differ between
grazing treatments (P > 0.15; Appendix V, Table V-18a and V-18b). Microbial C was
greater at the streambank than at both middle riparian and edge of riparian locations (P <
0.09). Microbial N was also higher at the streambank than the edge of the riparian zone
(P <0.07), but not the middle riparian locations. Soil microbial biomass also changed

over the course of a growing season (P <0.05). The microbial C pool was 100 + 4.30 SE
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mg C m? at the end of the growing season in October compared with 90 + 4.04 SE mg C
m? in June and 87 + 4.24 SE mg C m? in August. Similarly, the microbial N pool was

higher in October, 7.21 £ 0.63 SE mg C m?, compared with 5.52 + 0.60 SE mg C m?in
June and 5.72 £ 0.62 SEmg C m™ in August. Soil microbial C:N ratios ranged between

15 and 19 across landscape locations (Table 3.8).

Discussion

Cattle Grazing Effects on N Dynamics

Overall, N cycling in long-term cattle grazed sites of the Sheep Creek montane
riparian ecosystem did not fit the accelerating nutrient cycling scenario (Ritchie et al.
1998; Wardle et al. 2004). Cattle grazing did not enhance APP, aboveground or
belowground plant N pools, soil N pools, soil microbial biomass, litter decomposition,
potential N mineralization or denitrification in the riparian zone as a whole. Also, there
were no apparent differences in plant species composition between grazed and excluded
treatments.

The potential for accelerated N cycling was detected only near the stream bank
where net N mineralization in incubated soils was 13.6 + 1.6 mg N g's0il N in cattle
grazed sites compared with 8.8 £ 1.3 mg N ¢ s0il N in excluded sites, while the
immobilization index was lower in grazed than excluded sites. Areas repeatedly and
frequently grazed by large herbivores such as cattle have been shown to influence N
cycling by increasing available N through urine and fecal inputs, lowering C:N ratios of
plant litter and soil organic matter, increasing mineralization rates and reducing microbial

immobilization of N (Risser and Parton 1982; Ritchie et al. 1998; Singer and
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Schoenecker 2003). Studies reporting increased N mineralization in grazed sites were
often conducted in upland sites grazed only by wild ungulates (Frank and Groffman
1998; Singer and Schoenecker 2003) or sites where domestic cattle grazing was light to
moderate (Risser and Parton 1982; Shariff et al. 1994). A study of cattle grazing effects
on belowground ecosystem responses in riparian wet and dry meadows of eastern Oregon
reported lower net potential nitrification and mineralization in grazed compared with
exclosed wet meadows (but not dry meadows), and lower aboveground and belowground
production in exclosed than cattle grazed sites (Kauffman et al. 2004). Rates of N
transformations are correlated with primary productivity (Vitousek and Howarth 1991;
Hart et al. 1994). In my study, I did not observe significant differences in aboveground
production between grazed and excluded riparian sites and net N mineralization was
greater only in streambank grazed compared with excluded sites.

Increased net N mineralization only in the streambank grazed sites resulted from
higher nitrification of mineralized NH;" to NO5™ in streambank grazed than excluded
sites. Nitrification is accomplished by a small number of obligate aerobic bacteria and is
generally optimized when bulk soils are near field capacity or about 60% WFPS (Myrold
2005). I measured potential mineralization in aerobic incubations under controlled
abiotic conditions where soil moisture of incubated soils was optimized at 55% WFPS.
Similar soil moisture in all incubated soil samples should have equally affected
nitrification in soil samples, unless there were inherent differences in the soil
environment or soil microbial communities of the incubated samples.

Data suggest that higher nitrification in grazed streambank sites could have been

specifically associated with high nitrification (§9% higher) at one out of the three grazed
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streambank sites | sampled. This particular site was unique because it had higher soil N
pools than the other two grazed streambank sites: 48% more total soil N, 26% more
inorganic N, 75% more water-soluble total N, 44% more microbial N, and 45% more soil
organic matter. This site also had 21% higher APP, 33% higher aboveground C, and
30% higher aboveground N compared with the other grazed streambank sites. Although
these differences were not statistically significant, the larger N pools do not suggest that
N is being lost from this site. Rather, N cycling might be accelerated at this particular
streambank site via higher N mineralization and plant uptake of N (i.e., higher
aboveground plant N), especially since this site was utilized the most by cattle compared
with all other study locations in 2005 and 2006.

Spatial heterogeneity of N distribution on a landscape can be amplified by
ungulate selection of habitats and patches (Hobbs 1996). Since cattle tend to concentrate
near the stream where forage and water are abundant (Kauffman and Krueger 1984), it is
likely that they move N from surrounding areas to the streambank. Although I did not
quantify cattle movements or inputs of labile fecal material in this study, [ observed most
cattle use and loafing near stream banks. In contrast, Blank et al. (2006) found cattle
grazing effects on nutrient dynamics to be most pronounced at the forest edge of a Sierra
Nevada montane riparian meadow, and attributed them to spatial transfer of nutrients via
urine and feces to these locations. However, the forest edge in that study received a
greater proportion of loafing use because cattle had access to mineral salts that were
placed along the forest edge (Blank et al. 2006).

According to De Mazancourt (1998), grazing optimization and nutrient

acceleration are likely to occur when herbivores transport nutrients from outside the
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ecosystem to areas that are being considered. The transport of a limiting nutrient, such as
N, to a site reduces (or makes negative) the proportion of the nutrient lost when the
herbivore leaves the system. For example, Singer and Schoenecker (2003) found an
accelerating nutrient scenario in the grasslands of Yellowstone National Park (YNP)
where elk are abundant (i.e., doubled soil N mineralization, increased aboveground N
yield, increased N in most plant species and enhanced aboveground production).
However, they found nutrient cycling to be decelerated by elk in willow and aspen
vegetation communities of Rocky Mountain National Park (RMNP): declines in soil N
mineralization rates, N pools, aboveground N yield and aboveground production.
Nutrient deceleration in RMNP was attributed to higher ungulate densities and
consumption rates in RMNP relative to YNP, coupled with a tendency of the ungulates to
daily transport N from willow and aspen communities to other vegetation types in RMNP
(Singer and Schoenecker 2003).

Because I did not find differences in N pools or N fluxes between cattle grazed
and long-term excluded sites, the Sheep Creek riparian zone appears to be resilient and
resistant to cattle grazing. Several studies have shown that riparian ecosystems exhibit
signs of recovery within 5 to 20 years of livestock exclusion. Although data on soils and
vegetation prior to the change in Sheep Creek livestock management in the late 1950s do
not exist, historic photographs indicate that willow cover and streambank stability has
recovered over the last 50 years. Signs of resiliency in herbaceous and shrub cover were
observed 10-15 years after cattle exclusion from parts of the riparian zone (Trlica 2008,
personal communication). Shulz and Leininger (1990) measured increased shrub and

graminoid cover after 26 years of livestock exclusion in the Sheep Creek riparian
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corridor. Based on another study at Sheep Creek, Holland et al. (2005) concluded that
livestock removal can be effective for initiating rapid recovery of willow canopy cover
and height within 5 years of exclosure. Thus, the Sheep Creek riparian zone appears to
have recovered from severe degradation from heavy livestock grazing in the early to mid-
20" century.

Current cattle grazing does not appear to be detrimental to ecosystem functioning
and suggests that the Sheep Creek montane riparian zone is resistant to change from
light-to-moderate, season-long grazing. Other riparian ecosystems might not be as
resistant to grazing especially if large herbivores affect soil physical properties. For
instance, Kauffman et al. (2004) found that effects of cattle on soil physical properties in
riparian meadows exerted stronger influences on N dynamics than did altered
belowground production or fecal and urine inputs. They observed increased soil bulk
density, decreased pore space and infiltration rates in grazed sites. Other studies have
also reported increased bulk density and/or decreased soil pore space in cattle grazed sites
(Orr 1960; Bohn and Buckhouse 1985; Clary 1995). The Sheep Creek montane riparian
zone, however, is unique because seasonal changes in soil bulk density and infiltration
rates are restored annually through freeze-thaw activity. Wheeler et al. (2002) found that
a one-time heavy grazing event at Sheep Creek caused increase bulk density and
decreased infiltration rates at 5-10 cm and 10-15 cm soil depths but not in the surface
organic layer of 0-5 cm. These soil parameters returned to pre-disturbance values within

one year and were attributed to frequent freeze-thaw activity and high soil organic matter

in soils of this montane riparian zone (Wheeler et al. 2002). These soil structural
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properties likely contribute to the resiliency and resistance of the Sheep Creek riparian

zone to cattle grazing.

Spatial Variation in N Dynamics

Aboveground and belowground ecosystem components associated with N
dynamics varied across the Sheep Creek riparian zone from the streambank to sites near
the edge of the riparian zone. In general, streambank sites were more productive and had
greater aboveground plant C and N pools than sites at the edge of the riparian zone. My
study locations were in sites dominated by herbaceous cover (i.e., meadows) with very
few if any willows. Herbaceous vegetation near the streambank was dominated by
grasses and sedges whereas forbs were more prevalent at riparian edge sites. A similar
pattern of plant functional group composition was observed by Blank et al. (2006) in a
Sierra Nevada montane riparian meadow. Dwire et al. (2004) also found that narrow
zonation of dominant vegetation occurs along a landscape gradient from the stream to the
floodplain terrace of a montane riparian meadows in northeastern Oregon. Differences in
species composition were also reflected in biomass distribution. Total biomass was
highest in sedge-dominated stream edges, intermediate biomass occurred in grass-sedge
moist meadow communities in transitions of the riparian meadows, and biomass was
lowest in dry meadows (near floodplain terrace) dominated by grasses and forbs.

Belowground nutrient pools in the Sheep Creek riparian zone exhibited a pattern
opposite of aboveground dynamics: streambank sites had smaller total soil C and N
pools, smaller WSOC and WSTN pools, and less soil organic matter than sites at the edge

of the riparian zone. These patterns indicate that turnover rates of C and N might be
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faster at streambank sites compared with sites farther away from the stream. Faster
nutrient supply rates at streambank sites were supported by higher soil microbial biomass
C and N and higher mineralization (ammonification or NH," production) measured with
ion-exchange resin (IER) bags (see Chapter V) in streambank soils compared with
riparian edge soils. Denitrification also occurred near the stream bank throughout the
growing season because the groundwater level remained elevated at the streambank while
it declined at the edge of the riparian zone by early fall.

However, I did not detect significant differences in potential net N mineralization
or litter decomposition among the three riparian locations. Because it is difficult to
duplicate in situ soil moisture during soil incubations (Robertson et al. 1999), I used a
constant moisture of 55% water-filled pore space for all samples which might have
contributed to no relative differences between soils from different riparian locations
under similar laboratory conditions. After one year, litter decomposed to 46-49% AFDM
across the three riparian locations. However, one year might not have been long enough
for decomposition of recalcitrant litter fractions. Aerts and de Caluwe (1997) estimated
percent of initial mass remaining of 4 different Carex spp. to range from 5 to 43% after 3
years of decomposition depending on litter chemistry and soil fertility of the plants’
native growing sites. Vitousek et al. (1994) also found that site characteristics explained
most variation in decomposition rates across an environmental gradient and different
substrates. Thus, it is possible that decomposition of Carex litter in my study could have
differed across riparian sites after a longer litter bag incubation period, especially since |
observed larger microbial biomass pools at the streambank compared with the riparian

edge.
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Merrill and Benning (2006) also found landscape variation in N dynamics in a
montane riparian zone along Ward Creek, a tributary to Lake Tahoe. They found
significant differences in denitrification potential, net mineralization, net nitrification, and
groundwater nutrient flux among five different ecosystem types. They also compared
direct and indirect control factors (e.g., soil redox, soil temperature, groundwater
elevation, valley form, flood frequency) on denitrification dynamics and found
differences in these controls among ecosystem types. The ecosystem types spanned a
longitudinal gradient from upper alluvial valleys to steep mid-reaches and lower wide
alluvial valleys. Their results suggest that riparian zones should be stratified or classified
by ecosystem types when evaluating landscape differences in riparian N processes or

water quality effects.

Conclusions

Cattle grazing did not accelerate ecosystem-level N cycling (i.e., increase N pools
or fluxes) in the Sheep Creek montane riparian zone. Evidence of accelerated N cycling
was found only at cattle-grazed streambank sites where potential net N mineralization
measured in laboratory soil incubations was greater compared with cattle excluded
streambank sites. The higher net N mineralization rates, however, were not reflected by
significantly higher aboveground or belowground N pools that were measured in situ.
The results of this study suggest that the Sheep Creek riparian zone is resistant to cattle
grazing and that season-long, light-to-moderate grazing does not significantly alter plant
production, species composition, litter decomposition, or N dynamics. The riparian

ecosystem appears to have recovered from severe degradation from heavy livestock
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grazing in the early to mid-20" century, and current livestock management is a viable use
within the Sheep Creek allotment.

Furthermore, the results of my study confirm that spatial variation occurs in
montane-riparian nutrient dynamics even across relatively narrow riparian zones such as
Sheep Creek. Streambank sites were more productive but had smaller soil C and N pools
than upland edges of the riparian zone. Denitrification was also higher near the stream
bank than the edge of the riparian zone, but N mineralization did not differ along the
landscape gradient. Consequently, montane riparian corridors should not be viewed as a
uniform swath of land adjacent to a stream but rather should be stratified by zones or
ecosystem types when considered in the context of larger spatial scales such as

watersheds.
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Figure 3.1. Location of the Sheep Creek study site in north-central Colorado, Roosevelt National Forest.
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Figure 3.2. Animal unit months on the Sheep Creek Grazing Allotment since 1936. Source: USFS Sheep
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Figure 3.6. A) Total plant cover (%), B) grass cover (%), C) sedge cover, and D) forb cover (%) at three
locations across the riparian zone. Different letters above standard error bars (+ 1 SE) indicate significant
differences from an ANOVA at P <0.10,n = 18.

94



A)

10 -
— 8 -
&Y
E a
o
= T
1) L
:‘6':
]
Streambank Middle Riparian Edge Riparian
LLOCATION
B
) 1.
= 0.8 -
o
=
= a
S T
(/) .
Streambank Middle Riparian  Edge Riparian
LOCATION
C
) 20 -
@
=
©
£ a
2
5=
.‘c:')
7]

Streambank Middle Riparian = Edge Riparian
LOCATION
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Table 3.1. Summary of data collected at Sheep Creek, north-central Colorado.

Data Collected Year Month
Aboveground Plant Dynamics
Peak standing biomass 2005, 2006 Oct.
Plant C and N pools 2005, 2006 Oct.
Root C and N pools 2006 Jun., Aug. Oct.
Species composition 2005 Oct.
Species richness 2005 Oct.
Plant cover 2005 Oct.
Belowground Soil Dynamics
Soil texture, bulk density 2005 Aug.
Soil pH 2005 Jun., Aug. Oct.
Soil moisture, organic matter, C and N 2005, 2006 Jun., Aug. Oct.
Soil water soluble organic C and total N 2006 Jun., Aug. Oct.
Soil inorganic N (NH,", NO5’, total inorganic N) 2005, 2006 Jun., Aug. Oct.
Soil CO, respiration and N mineralization 2005, 2006 Jun., Aug. Oct.
Litter decomposition 2005 Apr. - Oct.
Denitrification 2006 Jun., Aug. Oct.
Soil Microbial Biomass 2006 Jun., Aug. Oct.
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Table 3.2. Comparisons of plant C and N pools and C:N ratios across grazing treatments, locations, and
years. Different letters next to means indicate significant differences from an ANOVA at P <0.10 between
treatments, locations, or years for each respective plant variable, n = 36.

Plant C (g m?) Plant N (g m?) Plant C:N

Effect Mean 1SE Mean 1 SE Mean 1SE
Treatment

Exclosure 76a 14 1.3a 0.3 63a 2

Grazed 91a 14 1.6a 0.3 60a
Location

Streambank 90a 12 1.5a 0.2 6la 3

Middle Riparian 100a 12 1.7a 0.2 59a 3

Edge Riparian 59b 12 1.0b 0.2 63a 3
Year

2005 105a 10 1.6a 0.2 69a

2006 62b 10 1.2b 0.2 53b
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Table 3.3. Comparisons of root C and N pools and C:N ratios across grazing treatments and locations.
Same letters next to means indicate no significant differences from an ANOVA at P <0.10 between
locations or grazing treatments for each respective root variable, n = 54.

Root C (g m?) Root N (g m?) Root C:N

Effect Mean 1SE Mean 1SE Mean 1SE
Treatment

Exclosure 245a 60 4.3a 1.0 57a

Grazed 237a 60 4.6a 1.0 54a
Location

Streambank 294a 68 5.3a 1.2 57a 3

Middle Riparian 225a 68 4.0a 1.2 55a 3

Edge Riparian 205a 68 4.1a 1.2 55a 3
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Table 3.8. Comparisons of soil microbial C and N pools and C:N ratios across grazing treatments and
locations. There were no differences between grazing treatments, but location had a significant effect on
microbial C and N at P <0.10, n = 54 in an ANCOVA with clay content, soil C, N, and SOM pools as

covariates.
Microbial C (mg C m'z) Microbial N (mg N m.z) Microbial C:N

Effect Mean Mean 1 SE Mean 1 SE
Treatment

Exclosure 84a 6.1a 0.7 15a 3

Grazed 101a 6.2a 0.7 18a 3
Location

Streambank 107a 7.6a 0.9 15a

Middle Riparian 86b 5.8ab 0.7 17a

Edge Riparian 84b 5.1a 0.7 19a
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CHAPTER 1V

CATTLE GRAZING EFFECTS ON STREAM AND GROUNDWATER
NITROGEN IN A MONTANE RIPARIAN ECOSYSTEM

Abstract

Riparian zones are important aquatic-terrestrial interfaces because they have the
potential to decrease nitrogen (N) inputs from upland ecosystems to surface water and act
as a N sink. Cattle grazing is an important land-use in montane riparian ecosystems of
the western U.S. that could alter site specific properties (e.g., soil properties, hydrology,
oxidation-reduction potentials, N pools, vegetation) and hence affect N dynamics in
riparian zones. In this study, I evaluated cattle grazing effects on stream and groundwater
nitrate (NO3") and ammonium (NH,") concentrations in a montane riparian ecosystem of
north-central Colorado. I determined gaining and losing streamflow conditions from
stream stage and groundwater piezometric surface and used these conditions to
characterize sink-source relationships for groundwater N in the riparian zone. I also
measured nitrification and N mineralization in surface soils to compare soil and
groundwater N dynamics in the riparian zone.

Annual streamflows in Sheep Creek are characterized by a spring snowmelt peak

and a second mid-summer peak from an upstream storage reservoir water releases. These
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flows create spring gaining and summer losing streamflow conditions. Season-long cattle
grazing at light-to-moderate utilization levels did not affect stream or groundwater NO3
and NH," during gaining or losing streamflows. When averaged over grazing treatments,
stream NO5” and NH," concentrations during gaining streamflows were 0.07 and 0.05
mg-L™, respectively, while groundwater NO;” and NH4" concentrations were 0.06 and
0.07 mg-L'l. Under losing streamflows, stream NO3™ and NH," concentrations were 0.05
and 0.07 mg-L™" and groundwater NO3” and NH,"* concentrations were 0.12 and 0.11
mg-L". Results suggest that the Sheep Creek riparian zone may be a potential sink for
groundwater N during spring gaining streamflow conditions (i.e., lower N in riparian
zone than stream) and a potential source of groundwater N to the stream during summer
losing streamflow conditions (i.e., higher N in riparian zone than stream). In contrast to
groundwater N, soil NO;" did not change over time and soil NH;" decreased from spring
to early fall. Different soil and groundwater N dynamics suggest that NO3” and NH,"

attenuation mechanisms change seasonally in montane riparian soils and groundwater.
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Introduction

Riparian zones are important aquatic-terrestrial interfaces because they have the
potential to reduce nitrogen (N) inputs from upland ecosystems to surface water and act
as a N sink (Tilton and Kadlec 1979; Seitzinger 1994; Griffiths et al. 1997). Numerous
studies have measured the ability of riparian zones to retain or lose N, especially nitrate
(NOy"), to aquatic systems (Simmons et al. 1992; Irons et al. 1994; Seitzinger 1994;
Groffman et al. 1996; Griffiths et al. 1997; Verchot et al. 1997; Spruill 2000). The main
mechanisms that have been suggested to explain NO3™ removal in riparian zones include
denitrification, plant uptake, microbial immobilization, and dissimilatory NO3™ reduction
to ammonium NH," (Groffman et al. 1992; Simmons et al. 1992; Verchot et al. 1997;
Dhondt et al. 2006). Denitrification is the prominent agent of NO5™ attenuation during the
dormant season (winter) when groundwater levels are high and soils are anaerobic
(Lowrance 1992; Haycock and Pinay 1993; Jacks et al. 1994). Plant uptake is usually the
dominant groundwater NOj3” sink during the growing season (summer) when the water
table is generally low and soils are aerobic (Groffman et al. 1992; Verchot et al. 1997,
Van der Putten et al. 2001). Since the end product of denitrification are nitrogenous gases
(N>0, N»), denitrification removes NOj" from an ecosystem and should not cause this sink
to become saturated by long-term inputs of N to the system (Groffman et al. 1991;
Dhondt et al. 2006). Nitrogen species taken up by plants, however, can eventually be
recycled back to an ecosystem through decomposition and mineralization of plant litter
(Groffman et al. 1991; Groffman et al. 1992; Hanson et al. 1994; Dhondt et al. 2006).

Nitrogen attenuation mechanisms in riparian zones are temporally and spatially

variable and have been attributed to site-specific soil properties (i.e., texture, drainage,
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soil carbon (C) content, hydrology (i.e., groundwater levels, lateral flow), dilution effects,
oxygen levels, vegetation type and land-use activities (Lowrance et al. 1984; Cooper
1990; Seitzinger 1994; Hill 1996; Flite et al. 2001). Spatially, groundwater NO5’
concentrations attenuate in riparian zones via denitrification, plant and microbial uptake
within the first few meters of the input source of NO;™ such as upslope environments
(Dhondt et al. 2006). Soil properties are spatially heterogeneous across riparian zone
width because riparian systems are subject to disturbances such as flooding, erosion, and
sediment deposition which result in variable microtopography and hydrogeomorphic
settings. Different vegetation types also have different N removal efficiencies. In
general, trees or shrubs are better at removing N from groundwater than herbaceous
plants such as grasses because they have deeper roots that can remove more N and supply
C at depth for denitrification (Haycock and Pinay 1993; Lowrance et al. 1995).
Furthermore, plant phenology of different riparian species can affect temporal variability
of plant uptake of N from riparian soils and groundwater (Haycock and Pinay 1993).
Numerous studies have been conducted to determine nutrient retention of riparian
strips in maintaining stream water quality in areas of intensive agriculture (Lowrance et
al. 1984; Peterjohn and Correll 1984; Jordan et al. 1993; Cey et al. 1999). Less attention
has been given to the effects of cattle grazing on N in stream and groundwater of small
headwater streams (Stednick and Fernald 1999). Cattle grazing is an important land-use
in montane riparian ecosystems of the western U.S. Large ungulates can alter ecosystem
N pools as well as N inputs and outputs (losses) to an ecosystem (Ritchie et al. 1998;
Wardle et al. 2004). Removal of aboveground plant tissue by ungulates and inputs of

labile fecal material could accelerate N cycling in fertile and productive systems such as
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riparian zones by increasing N pools (i.e., plant N, total soil N, inorganic N) and N fluxes
(i.e., mineralization, nitrification, denitrification) (Singer and Schoenecker 2003). In the
short-term, aboveground herbivory and N inputs can result in release of root exudates,
stimulation of microbial decomposition and mineralization, and increased N availability
in the soil (Hamilton and Frank 2001). Long-term transport and inputs of N through
urine and feces to riparian zones could enrich soil organic matter and microbial
communities and lead to increased N mineralization and nitrification. If plant and
microbial pools become enriched over time and lose their capacity to retain N, excess
NO; and NH;" could be exported from the riparian zone to the stream (Aber et al. 1989;
Hill and Shackleton 1989; Groffman et al. 1992). The goal of my study was to determine
if light-to-moderate cattle grazing at Sheep Creek, Colorado has altered stream and
groundwater N in a montane riparian zone.

Stednick and Fernald (1999) concluded that the montane Sheep Creek riparian
corridor may serve as a sink for NOj;™ in both gaining (spring snowmelt) and losing
(summer) streamflow conditions, and as a source of NHy" during gaining conditions.
These analyses were conducted on soil water samples collected from tension lysimeters at
30-cm soil depth. In my study, I collected groundwater samples from piezometers to
determine NO;” and NH," dynamics deeper in the soil profile. Specific objectives of my
study were to 1) measure stream stage and groundwater piezometric potentials to
determine gaining and losing streamflow conditions, 2) measure NO;" and NH," in
stream water and groundwater in streambank, middle riparian, and riparian edge locations
in both cattle grazed and excluded areas, 3) relate NO;” and NH," concentrations to

streamflow stage to determine sink-source relationships in the Sheep Creek riparian zone
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with and without cattle grazing, and 4) measure N mineralization and nitrification in

surface soils to better explain groundwater NO3” and NH4" dynamics.

Methods

Study Site

Sheep Creek is located in north-central Colorado, approximately 80 km northwest
of Fort Collins, CO, within the Arapaho-Roosevelt National Forest (Fig. 1). Sheep Creek
is a first-order stream that flows southeasterly into the North Fork of the Cache la Poudre
River. Eaton Reservoir is located in the headwaters of the stream, 5 km upstream of the
study sites which were located at 2,500 m elevation. The annual hydrograph is
characterized by a snowmelt peak in early spring and a second peak in late July or August
when about 1.5 m’ s are released from an upstream reservoir for three to four weeks
(Stednick and Fernald 1999). Limited weather data exist for this site, but available data
indicate mean annual precipitation of 400 mm with 240 mm average precipitation during
the growing season from May to September. Average daily temperatures range from 0°
to 25°C during the growing season (Holland et al. 2005).

Soils in the Sheep Creek riparian zone are Naz sandy loams (Pachic cryoboroll)
that occur to depths of 76-154 cm. These soils are well-drained, have moderately rapid
permeability and medium water-holding capacity (Stednick and Fernald 1999; USDA-
NRCS 2008). The overstory vegetation along Sheep Creek is dominated by several
species of willow (Salix planifolia Pursch var. planifolia, S. geyeriana Andersson, S.
amygdaloides Andersson, S. exigua Nuttall ssp. exigua, and S. monticola Bebb) (Holland

et al. 2005). The herbaceous understory is comprised of several sedge species (Carex
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aquatilis Whalenb., C. utriculata Boott, C. praticola Rydb.), rushes (Juncus arcticus
Willd., J. balticus Willd.), numerous forbs (Erigeron formossisimus Greene, Taraxacum
officionale Weber, and Trifolium repens L.) and grasses (Agrostis stolonifera L.,
Deschampsia caespitosa L., Phleum alpinum L., Phleum pratense L., Poa pratensis L.,
Poa palustris L.) (Schulz and Leininger 1990, Popolizio et al. 1994). My study transects
were in riparian meadows dominated by herbaceous cover with very few willows.
Current livestock grazing in the Sheep Creek allotment is season long from 21
June until 25 September and fluctuates between 100-300 animal unit months (AUMs).
Utilization has been estimated at 40-60% since the mid -1980s. Cattle are restricted to
only certain riparian pastures along Sheep Creek and are excluded from three long-term
riparian exclosures that were established in the late 1950s (Schulz and Leininger 1990;

Holland et al. 2005).

Experimental Design

I established three pairs of transects (14-25 m long) perpendicular to the stream to
measure NO;” and NH;" in Sheep Creek stream water and groundwater. One transect
from each pair was located in a control treatment (50-y exclosure) and the second transect
was located in a grazed treatment (areas that have been grazed heavily until mid-1980
and moderately since then). At the end of each transect I installed a stream staff gage in
the thalweg of the stream channel to measure stream stage. To measure groundwater
piezometric potential or head across the riparian zone, | installed piezometers at three
locations along each transect: streambank, middle riparian and riparian edge in fall 2004.

After each piezometer was placed in the ground, the hole was backfilled with soil
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collected from excavation to prevent water piping. Streambank piezometers were 1.5 2
m from the bank of the stream channel, piezometers near edges of the riparian zone were
at 14, 20, or 25 m from the bank of the stream channel depending on the width of the
riparian zone. And, middle riparian piezometers were half-way between the streambank
and riparian edge piezometers. The study design was a split-plot with grazing treatment
(2 levels: exclosure and grazed) as the whole-plot factor and landscape location (3 levels:

streambank, middle riparian, and riparian edge) as the subplot factor.

Sample Collection

Stream stage was measured by recording stream water level at each transect from
May to mid-July 2005 and thereafter mostly bi-weekly until October 2005 (Appendix
W). Piezometric potential (cm) was determined by measuring the distance from the top
of the piezometer to the water level in the piezometer and then adjusted by the distance
between the top of the piezometer and soil surface. Lastly, I referenced all head (cm)
measurements for each piezometer and channel thalweg to a common transect datum by
surveying each transect with an auto-leveler (Appendix X).

Stream water and groundwater samples were collected on the same dates as
stream stage and piezometric potential measurements from early May to late September
2005 (Appendix Z). I collected grab samples of stream water at each transect for analysis

of NOs;” and NH,". Piezometers were completely evacuated by a hand pump only at the

beginning of May, one week prior to the first sampling date to remove groundwater from
the winter season. Thereafter, I collected groundwater samples by pumping water out of

the piezometers into a flask and filtering 20 mL of the sample through a Whatman® GF/A
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glass microfiber filter into polypropylene scintillation vials. All samples were
transported on ice to the laboratory and frozen until analysis. The stream and
groundwater samples were analyzed colorimetrically for NO3 and NH;" on an Alpkem®
segmented flow autoanalyzer (OI Analytical, College Station, TX).

I used the ion-exchangeable resin (IER) method to measure NO;” and NHy" in the
top 10 cm of soil at each sampling location and use nitrification and N mineralization as
an index of microbial activity (Binkley and Matson 1983) (Appendix AA). I made [ER
bags by placing 10 g of cation and 10 g of anion resin in a nylon bag. Four IER bags
were buried 10 cm below the soil surface at each riparian location within each transect
for one month starting in early June 2005; the bags were replaced with fresh IER bags at
the beginning of each month. Thus, the bags captured NO; and NH," available in the
surface soil solution during June, July, August, and September 2005. Upon removal from
soil, the IER bags were stored in individual plastic bags and iced until extraction with 2M
KCl on the same day. The extracts were then frozen until colorimetric NOs” and NH,"

analysis on an Alpkem® segmented flow autoanalyzer (OI Analytical).

Data Analysis

I determined gaining and losing streamflow conditions by calculating slopes
(change in head elevation divided by change in distance) between 1) the stream thalweg
and streambank piezometer, 2) the streambank and middle riparian piezometers, and 3)
the middle and riparian edge piezometers (Appendix Y). Positive slopes between the
piezometers indicated gaining streamflow conditions while negative slopes indicated

losing streamflow conditions. I also used an analysis of variance (ANOVA) with
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repeated measures (by month) to test significant differences in water levels between the
stream and the three piezometer locations to verify the characterization of gaining vs.
losing streamflow conditions.

I used repeated measures ANOVA to test the effect of cattle grazing treatments
on stream NO3” and NH,4*. This analysis was also used to test differences in stream NO3’
and NH,;" between months and if cattle grazing had an effect on stream N during different
months of the growing season. I used an analysis of covariance (ANCOVA) with
piezometric potential as the covariate for groundwater N to test whether cattle grazing
had altered groundwater NO3  and NH4" concentrations during gaining or losing
streamflow conditions. I also conducted another ANCOVA with water elevation as the
covariate for all locations (stream stage for stream locations and piezometric potential for
riparian locations) and month as repeated measures to a) make multiple comparisons of
stream N with groundwater N at different times of the growing season and b) to
determine N sink-source relationships in the Sheep Creek riparian zone. Stream and
groundwater N data were log transformed to normalize data distribution for the
ANCOVAs but untransformed means and confidence intervals are presented.

Lastly, I used an ANOV A with repeated measures to test cattle grazing effects,
riparian locations, and time of season on surface soil nitrification and N mineralization
measured with IER bags. I used the results of this analysis to explain NO3” and NH;"
dynamics in the Sheep Creek riparian zone. I conducted all statistical analyses in SAS
9.1 software (SAS Institute 2003) and accepted significant differences at P < 0.05.

Summary statistics of all analyses are presented in Appendix AB.
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Results

Stream Stage and Groundwater Dynamics

The 2005 Sheep Creek hydrograph had two peaks (Figure 4.1). The highest peak
occurred as snowmelt between mid-May and early June. Stream flows were lower
between mid-June and early July and then increased again from late July to late August
when Eaton Reservoir releases occurred, with a second reservoir release in early
September.

The groundwater potential or head in the piezometers decreased over the course
of the field season (Table 4.1). Gaining streamflow conditions occurred in May and
June, and losing streamflow conditions existed from July to September. Significant
differences in stream stage and riparian piezometric potentials occurred only at the
beginning of the growing season (Appendix AB, Table AB-1b). In May, stream stage
was higher than piezometric potential at streambank sites (P < 0.01) because streamflow
was above bankfull. At this time, head at the riparian edge was also higher than head at
the streambank (P < 0.02) and indicated gaining streamflow conditions. Gaining
streamflow conditions persisted from May through June when head at the riparian edge
remained higher than head in streambank piezometers (P < 0.04). There were no
significant differences in stream stage and riparian piezometric potentials (P > 0.11) as
head decreased from July to September (Table 4.1). These results indicated losing
streamflow conditions during summer months (July and August) and into early fall
(September). These results are consistent with Stednick and Fernald (1999) who
observed gaining streamflow conditions during spring snowmelt runoff and losing

streamflow conditions during summer reservoir releases.
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Stream and Groundwater Nitrogen

Cattle grazing had no significant effect on stream NO3™ or NH," concentrations (P
> 0.19; Appendix AB, Table AB-2a). Stream NO; ranged from 0.02 — 0.09 mg-L'] and
NH," from 0.03 — 0.09 mg-L™" (Fig. 4.2). Concentrations of NOs™ or NH," changed over
time in stream water (P < 0.001; Appendix AB, Table AB-2b). Stream NOj decreased
by 29% between May and June. It then increased in July and August to similar levels as
in May before declining to lowest concentrations of 0.02 mg L. Ammonium, however,
increased on average by 46% from May to September (Fig. 4.2). Average stream NO;3
during gaining conditions was 0.07 mg L™ and 0.05 mg L' during losing streamflow
conditions. Average stream NH," during gaining conditions was 0.05 mg L" and 0.07
mg L during losing streamflow conditions. The NO5 concentrations were below the
EPA water quality standard of 45 mg L. Water quality standard for NH4" is not
available but for unionized ammonia NH; it is 0.02 mg L™ (US-EPA 2006).

Season-long, light-to-moderate grazing also did not have a significant effect on
groundwater NO;™ or NH, " concentrations during gaining or losing streamflow conditions
(P>0.75; Appendix AB, Table AB-3a). Groundwater NO3 ranged from below
detection, or measured 0, to 0.64 mg L™ and NH;" from 0.03 to 0.79 mg L. The upper
bounds of these ranges were caused by infrequent but high spikes in both N species.
Piezometric potential explained 34% of variation in groundwater NO;™ and 56% of
variation in groundwater NH;". The piezometric potential or head covariate adjusted
monthly groundwater NO5™ concentration means to 0.05 — 0.17 mg L™ and monthly
groundwater NH;" concentration means to 0.06 — 0.13 mg L™ (Fig. 4.3). Groundwater

NO;" and NH," concentrations increased from May to September as piezometric potential
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decreased. Average groundwater NO3 was 0.06 mg L™ during gaining streamflow
conditions and 0.12 mg L™ during losing streamflow conditions. Average groundwater
NH," was 0.07 mg L™ during gaining streamflow conditions and 0.11 mg L™ during
losing streamflow conditions.

Although cattle grazing did not affect N sink-source relationships under different
streamflow stages, N sink-source relationships differed during gaining and losing
streamflow conditions when averaged over grazing treatments. Nitrate concentrations in
the stream did not differ from groundwater NO3 concentrations during gaining
streamflow conditions in May and June (P > 0.46; Appendix AB, Table AB-4b) which
suggests that the riparian zone may serve as a potential sink for NO3™ during spring,
gaining streamflows (Fig. 4.4B). Stream and groundwater NO;3™ concentrations did not
differ during losing streamflow conditions in July and August (P > 0.10; Appendix AB,
Table AB-4b). However, in September when piezometric potential was lowest in riparian
piezometers, NO3~ concentrations were significantly higher in groundwater than in stream
water (P <0.04; Appendix AB, Table AB-4b). Groundwater NO3  was higher in the
riparian edge piezometers than elsewhere. Although NO;™ concentrations were
significantly different only during losing streamflow conditions in September, median
NOj™ concentrations suggest that the riparian zone may also be a potential source of NO3”
to the stream during losing streamflow conditions in July and August.

Ammonium concentrations in the stream were not significantly different from
groundwater NH;" concentrations during gaining streamflow conditions (P > 0.08; Fig.
4.5B, Appendix AB, Table AB-4b). Thus, the riparian zone may be a potential sink for

NH," during spring, gaining streamflow stage. During losing streamflow conditions,
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however, groundwater NH,;" concentrations were higher in most riparian piezometers
than in the stream (P < 0.04; Appendix AB, Table AB-4b). The riparian zone may serve

as a potential source of NH," to the stream during losing streamflow conditions.

Soil Nitrogen Mineralization and Nitrification

Cattle grazing did not significantly alter nitrification or N mineralization in
surface soils (P > 0.82; Appendix AB, Table AB-5a). Nitrification in surface soils of the
riparian zone was very low (0.0003 to 0.01 mg NOs™ g™ resin month™) and did not
change significantly during the growing season (P = 0.57; Fig. 4.4A) or between riparian
sampling locations (P = 0.80; Appendix AB, Table AB-5a). These patterns were
different from groundwater NO5™ which increased in the riparian zone from May to
September (Fig. 4.3 and 4.4). Nitrogen mineralization declined from June to September
from 0.03 to 0.007 mg NH," g resin month™ (P < 0.001; Fig. 4.5A, Appendix AB, Table
AB-5b). The seasonal decline in soil NH, " contrasted with an increase in groundwater
NH;" from May to September (Fig. 4.3 and 4.5). Also, N mineralization differed
between riparian locations (P = 0.02; Appendix AB, Table AB-5b). It declined from the
streambank to the middle and edge of the riparian zone, and it was higher in streambank

soils compared with the edge of the riparian zone.

Discussion

Light-to-moderate cattle grazing did not affect stream or groundwater NO3™ and
NH," concentrations. High cattle inputs of N via urine and feces to riparian zones could

lead to higher N concentrations via enhanced nitrification and mineralization (Groffman
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et al. 1992). Consequently, N export from the riparian zone to surface waters could be
increased if denitrification, plant, and microbial pools become enriched with N and lose
their capacity to retain it (Aber et al. 1989; Hill and Shackleton 1989; Groffman et al.
1992). Trlica et al. (2003) showed a high filtration capacity for N and phosphorus (P) in
the Sheep Creek riparian zone. Runoff from simulated rainfall under a heavy grazing
treatment increased nutrient runoff by 70% in grazed compared with control plots, but
concentrations of NO;™ and NH;" did not exceed EPA criteria. Furthermore, current light
grazing intensity by cattle does not appear to lead to high inputs of fecal material to the
riparian zone. Thus, season-long cattle grazing at light to moderate utilization levels does
not seem to alter stream and groundwater NOs™ and NH;" dynamics in the Sheep Creek
allotment.

Although cattle grazing did not affect stream or groundwater NO;™ and NH,"
concentrations, I detected seasonal changes in NOs™ and NH," sink-source relationships.
The riparian zone may serve as a potential sink for groundwater NO3” and NH," during
gaining streamflows (spring) and as a potential source of NO;3 and NH,;" during losing
streamflows (summer). Soil nitrification and N mineralization also were not affected by
cattle grazing, but seasonal patterns in these processes may help to explain seasonal
groundwater N dynamics.

Nitrification (NO3") was low in the riparian soils during both gaining (spring) and
losing (summer) streamflow conditions while N mineralization (NH,4") was high in the
spring and low in the summer. Similarly, Stednick and Fernald (1999) did not find
seasonal differences in soil NO3™ concentrations, but found higher NH," concentrations in

soil water during the spring compared with the summer. In contrast to no seasonal
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change in soil NOs” and a decline in soil NH4*, groundwater NO;™ and NH," increased
from spring to summer. The seasonal differences in soil and groundwater N dynamics,
suggest that NO;™ and NH,4" attenuation mechanisms are different in upper riparian soils
than in groundwater.

In a companion study (Chapter III), I observed that denitrification potential in
surface soils was highest in early spring and lowest in late summer, while microbial
biomass C and N was low in early spring and high in late summer. Thus, denitrification
may be the main mechanism for NO3™ removal from upper Sheep Creek soils and
groundwater during spring gaining streamflow conditions when the groundwater level is
high, anaerobic conditions exist, and groundwater interacts with soil organic matter near
the soil surface (Lowrance 1992; Haycock and Pinay 1993; Jacks et al. 1994). Under
anaerobic conditions, NO3” could also be removed through dissimilatory NO;3™ reduction
to ammonium NH," (DNRA) (Yin et al. 2002; Dhondt et al. 2006). DNRA could also
explain high NH," in riparian soils during spring gaining streamflow conditions.
Ammonium in groundwater, however, might be low at this time if N mineralization is
low at depth.

As the groundwater level declines and streamflow conditions become losing in
summer to early fall, plant uptake and microbial immobilization likely attenuate NO3™ and
NH," in upper riparian soils (i.e., net soil nitrification and N mineralization are low).
Plant uptake often becomes the dominant sink for groundwater N during losing
streamflow conditions (Groffman et al. 1992; Verchot et al. 1997; van der Peijl and
Verhoeven 1999). However, it is possible that during summer and early fall the

groundwater level at my study sites declined below the major rooting zone of herbaceous
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vegetation which was more abundant than deeper-rooted woody plants. Low attenuation
of groundwater NO;™ and NH;" by plants deeper in the soil profile might have resulted in
elevated groundwater concentrations of NO;” and NH4" during the summer and early fall.
Thus, the riparian zone may serve as a source of NO; and NH," to the stream during
losing streamflow conditions.

Detailed analyses of NO; and NH," attenuation mechanisms discussed above
were outside the scope of this study but should be considered in the future to better
understand the functioning of this montane riparian zone. Characterization of spatial and
temporal variation of oxidation-reduction potentials could help to explain fluctuations
and spikes in groundwater N concentrations. Oxidation-reduction potential (ORP)
measurements taken at two different sampling dates in 2005 indicated large fluctuations
in ORP within and between piezometers and could indicate heterogeneity in subsurface
groundwater pathways and parent material. A tracer study (Br™ or CI') with a larger
network of piezometers and wells could be uﬁlized to trace N flows in subsurface and
groundwater to better understand lateral flows and potential dilution effects of N
concentrations (Simmons et al. 1992). In addition to groundwater tracers, "°N tracers
could be used to estimate spatial and temporal variation in plant uptake and microbial

immobilization of N species (Ostrom et al. 2002; Yin et al. 2002).

Conclusions

Annual streamflows in Sheep Creek are characterized by a spring snowmelt peak
and a second mid-summer peak from an upstream storage reservoir release. These flows

create spring gaining and summer losing streamflow conditions. Season long, light-to-
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moderate cattle grazing had no significant effect on stream or graoundwater NO;™ and
NH," concentrations. Although seasonal changes in NO;” and NH," concentrations were
statistically significant, they might not be biologically important because average
concentrations were very low and below EPA water quality standards. Average stream
NOs;™ and NH," concentrations were respectively 0.07 and 0.05 mg L™ during gaining
streamflows and 0.05 and 0.07 mg L™ during losing streamflows. Average groundwater
NO;” was 0.06 mg L™ during gaining streamflow conditions and 0.12 mg L™ during
losing streamflow conditions. Average groundwater NH," was 0.07 mg L™ during
gaining streamflow conditions and 0.11 mg L™ during losing streamflow conditions.

The stream and groundwater N concentrations suggest that the Sheep Creek
riparian zone acts as a potential sink for groundwater NO3 and NH," during spring
gaining streamflow conditions and a potential source of NO3;” and NH," during summer
losing streamflow conditions. These sink-source relationships however were different in
upper riparian soils: soil NO; did not change over time but soil NH," decreased from
spring to early fall. The differences in soil and groundwater N dynamics suggest that
NO; and NHy" attenuation mechanisms change seasonally in riparian soils and

groundwater, but these patterns are not affected by current cattle grazing practices.

124



Literature Cited

Aber, J.D., K.J. Nadelhoffer, P. Steudler, J.M. Melillo. 1989. Nitrogen saturation in
northern forest ecosystems. Bioscience 39:378-386.

Binkley, D., P. Matson. 1983. Ion-exchange resin bag method for assessing forest soil-
nitrogen availability. Soil Science Society of America Journal 47:1050-1052.

Cey, E.E., D.L. Rudolph, R. Aravena, G. Parkin. 1999. Role of the riparian zone in
controlling the distribution and fate of agricultural nitrogen near a small stream in
southern Ontario. Journal of Contaminant Hydrology 37:45-67.

Cooper, A.B. 1990. Nitrate depletion in the riparian zone and stream channel of a small
headwater catchment. Hydrobiologia 202:13-26.

Dhondt, K., P. Boeckx, N.E.C. Verhoest, G. Hofman, O. Van Cleemput. 2006.
Assessment of temporal and spatial variation of nitrate removal in riparian zones.
Environmental Monitoring and Assessment 116:197-215.

Flite, O.P., R.D. Shannon, R.R. Schnabel, R.R. Parizek. 2001. Nitrate removal in a
riparian wetland of the Appalachian Valley and ridge physiographic province.
Journal of Environmental Quality 30:254-261.

Griffiths, R.P., J.A. Entry, E.R. Ingham, W.H. Emmingham. 1997. Chemistry and
microbial activity of forest and pasture riparian-zone soils along three Pacific
northwest streams. Plant and Soil 190:169-178.

Groffman, P.M., E.A. Axelrod, J.L. Lemunyon, W.M. Sullivan. 1991. Denitrification in
grass and forest vegetated filter strips. Journal of Environmental Quality 20:671-
674.

Groffman, P.M., A.J. Gold, R.C. Simmons. 1992. Nitrate dynamics in riparian forests:
microbial studies. Journal of Environmental Quality 21:666-671.

Groffman, P.M., G. Howard, A.J. Gold, W.M. Nelson. 1996. Microbial nitrate processing

in shallow groundwater in a riparian forest. Journal of Environmental Quality
25:1309-1316.

125



Hamilton, E.W., D.A. Frank. 2001. Can plants stimulate soil microbes and their own
nutrient supply? Evidence from a grazing tolerant grass. Ecology 82:2397-2402.

Hanson, G.C., P.M. Groffman, A.J. Gold. 1994. Denitrification in riparian wetlands

receiving high and low groundwater nitrate inputs. Journal of Environmental
Quality 23:917-922.

Haycock, N.E., G. Pinay. 1993. Groundwater nitrate dynamics in grass and poplar
vegetated riparian buffer strips during the winter. Journal of Environmental
Quality 22:273-278.

Hill, A.R. 1996. Nitrate removal in stream riparian zones. Journal of Environmental
Quality 25:743-755.

Hill, A.R., M. Shackleton. 1989. Soil N-mineralization and nitrification in relation to

nitrogen solution chemistry in a small forested watershed. Biogeochemistry 8:167-
184.

Holland, K.A., W.C. Leininger, M.J. Trlica. 2005. Grazing history affects willow
communities in a montane riparian ecosystem. Rangeland Ecology &
Management 58:148-154.

Irons, J.G., M.W. Oswood, R.J. Stout, C.M. Pringle. 1994. Latitudinal patterns in leaf-
litter breakdown: is temperature really important? Freshwater Biology 32:401-
411.

Jacks, G., A. Joelsson, S. Fleischer. 1994. Nitrogen-retention in forest wetlands. Ambio
23:358-362.

Jordan, T.E., D.L. Correll, D.E. Weller. 1993. Nutrient interception by a riparian forest

receiving inputs from adjacent cropland. Journal of Environmental Quality
22:467-473.

Lowrance, R. 1992. Groundwater nitrate and denitrification in a coastal-plain riparian
forest. Journal of Environmental Quality 21:401-405.

Lowrance, R., R. Todd, J. Fail, O. Hendrickson, R. Leonard, L. Asmussen. 1984.
Riparian forests as nutrient filters in agricultural watersheds. Bioscience 34:374-
377.

Lowrance, R., G. Vellidis, R.K. Hubbard. 1995. Denitrification in a restored riparian
forest wetland. Journal of Environmental Quality 24:808-815.

Ostrom, N.E., L.O. Hedin, J.C. von Fischer, G.P. Robertson. 2002. Nitrogen

transformations and NOj3;” removal at a soil-stream interface: a stable isotope
approach. Ecological Applications 12:1027-1043.

126



Peterjohn, W.T., D.L. Correll. 1984. Nutrient dynamics in an agricultural watershed:
observations on the role of a riparian forest. Ecology 65:1466-1475.

Ritchie, M.E., D. Tilman, J.M.H. Knops. 1998. Herbivore cffects on plant and nitrogen
dynamics in oak savanna. Ecology 79:165-177.

Schulz, T.T., W.C. Leininger. 1990. Differences in riparian vegetation structure between
grazed areas and exclosures. Journal of Range Management 43:295-299.

Seitzinger, S.P. 1994. Linkages between organic-matter mineralization and denitrification
in 8 riparian wetlands. Biogeochemistry 25:19-39.

Simmons, R.C., A.J. Gold, P.M. Groffman. 1992. Nitrate dynamics in riparian forests:
groundwater studies. Journal of Environmental Quality 21:659-665.

Singer, F.J., K.A. Schoenecker. 2003. Do ungulates accelerate or decelerate nitrogen
cycling? Forest Ecology and Management 181:189-204.

Spruill, T.B. 2000. Statistical evaluation of effects of riparian buffers on nitrate and
ground water quality. Journal of Environmental Quality 29:1523-1538.

Stednick, J.D., A.G. Fernald. 1999. Nitrogen dynamics in stream and soil waters. Journal
of Range Management 52:615-620.

Tilton, D.L., R.H. Kadlec. 1979. Utilization of a freshwater wetland for nutrient removal
from secondarily treated waste-water effluent. Journal of Environmental Quality
8:328-334.

Trlica, M.J., M.A. Wheeler, W.C. Leininger. 2003. Nitrogen and phosphorus allocation
as affected by grazing in a riparian community. /n: A.R.P. N. Allsopp, S.J.
Milton, K.P. Kirkman, G.I.H. Kerley, C.R. Hurt, C.J. Brown [ed.] Proceedings of
the VIIth International Rangelands Congress. Durban, South Africa.

USDA-NRCS. 2008. Web soil survey. Available at: http://websoilsurvey.nrcs.usda.gov.
Accessed 20 March 2008.

US-EPA. 2006. Classifications and numeric standards for South Platte River Basin,
Laramie River Basin, Republican River Basin, Smoky Hill River Basin,
Regulation No. 38 (2006). Available at:

http://www.epa.gov/waterscience/standards/wqslibrary/co/. Accessed 30 March

2008
van der Peijjl, M.J., J.T.A. Verhoeven. 1999. A model of carbon, nitrogen and phosphorus

dynamics and their interactions in river marginal wetlands. Ecological Modelling
118:95-130.

127


http://websoilsurvey.nrcs.usda.gov
http://www.epa.gov/waterscience/standards/wqslibrary/co/

Van der Putten, W.H., L.E.M. Vet, J.A. Harvey, F.L. Wackers. 2001. Linking above- and
belowground multitrophic interactions of plants, herbivores, pathogens, and their
antagonists. Trends in Ecology & Evolution 16:547-554.

Verchot, L.V., E.C. Franklin, J.W. Gilliam. 1997. Nitrogen cycling in piedmont vegetated
filter zones: II. Subsurface nitrate removal. Journal of Environmental Quality
26:337-347.

Wardle, D.A., R.D. Bardgett, J.N. Klironomos, H. Setala, W.H. van der Putten, D.H.
Wall. 2004. Ecological linkages between aboveground and belowground biota.
Science 304:1629-1633.

Yin, S.X., D. Chen, L.M. Chen, R. Edis. 2002. Dissimilatory nitrate reduction to

ammonium and responsible microorganisms in two Chinese and Australian paddy
soils. Soil Biology & Biochemistry 34:1131-1137.

128



(=)
[~
o

o
p=4
-

Q0 9 O [ = e =)

(w2) wnjep
aroqe abeis wealg

So )
%0,
&)
) W\%

.@\% L

L bQ\\ \\%

L hQ\V\%

So. \%W\%

S0, \W\%

L %Q\V \\%

L $ Q\N\%

S,

(]
Z

Yo,

?,
Z

%,
%,

L %Q\Q \\N

S0 \%\N
S0 \%W\,o
.@\% Lo
.@\W Lo
k7 %6
S0 \%W\h
So \WW\%
So \b\\b
So \%\b

Soy,

Figure 4.1. Stream stage of Sheep Creek measured from May to October 2005. Stream and groundwater

samples were collected on dates marked by solid circles.
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Figure 4.2. Stream NO; and NH," (mg L) measured from May to September 2005. Letters above means
indicate significant differences, from an ANOVA, between months for NOs™ (a, b, ¢, d) and NH,' (%, y, z)
at P <0.05, n =6 for each mean. Bars are standard errors of the mean (= 1 SEM).
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Figure 4.3. Groundwater NO;” and NH,* (mg L") measured from May to September 2005. Letters above
means indicate significant differences, from an ANCOVA, between months for NO; (a, b, ¢) and NH," (x,
y, z) at P <0.05, n = 6 for each mean. Means were adjusted by piezometric potential and untransformed
from log transformation. Bars are confidence intervals for untransformed means.
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Figure 4.4. A) Nitrification (mg NO; g resin month™) in riparian soils measured from June to September
2005. Letters above means and standard error bars (= 1 SEM) indicate significant differences from an
ANOVA at P <0.05. B) NO,™ concentration (mg L") measured in the stream and riparian piezometers
from May to September 2005. Gaining streamflow conditions occurred in May and June and losing
streamflow conditions existed from July to September. Letters above untransformed least square means
from the log transformation indicate significant differences between sampling locations within a given
month at P <0.05. Bars are confidence intervals calculated for untransformed means.
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Figure 4.5. A) N mineralization (mg NH," g resin month™) in riparian soils measured from June to
September 2005. Letters above means and standard error bars (= 1 SEM) indicate significant differences
from an ANOVA at P <0.05. B) NH," concentration (mg L") measured in the stream and riparian
piezometers from May to September 2005. Gaining streamflow conditions occurred in May and June and
losing streamflow conditions existed from July to September. Letters above untransformed least square
means from the log transformation indicate significant differences between sampling locations within a
given month at P < 0.05. Bars are confidence intervals calculated for untransformed means.
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Table 4.1. Means of stream stage and riparian piezometric potential (head) measured between May and
September 2005. Letters next to means indicate significant differences, from an ANOVA, between
locations for a given month at P < 0.05, SEM = 1 standard error of the mean, n = number of observations
for each mean.

Sheep Creek Streambank Middle Riparian Riparian Edge

Stage (cm) SEM  n Head (cm) SEM  n Head (cm) SEM n Head (cm) SEM

May 88a 172 5 58b 16.8 6 72ab 16.8 6 82a 16.8
June 66b 17.2 5 67b 16.8 6 80ab 168 6 88a 16.8
July 74a 17.2 5 60a 16.8 6 62a 16.8 6 71a 16.8
August Tla 172 5 54a 16.8 6 6la 169 5 67a 16.9
September 46a 17.2 5 39a 16.9 5 50a 16.9 5 45a 173
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CHAPTER V

SUMMARY AND FUTURE CONSIDERATIONS

Summary

I investigated the effects of large ungulates on nitrogen (N) dynamics in riparian
ecosystems of Colorado. Large ungulates can alter N inputs and outputs in aboveground
and belowground N pools, and thus affect nutrient mineralization rates, soil food webs,
and turnover rates of these pools at different temporal and spatial scales (Hobbs 1996;
Bardgett and Wardle 2003; Singer and Schoenecker 2003). Studies have shown both
positive and negative effects of ungulates on ecosystem N cycling (McNaughton 1985;
De Mazancourt et al. 1998; Frank and Groffman 1998; Ritchie et al. 1998; Tracy and
Frank 1998; Bardgett and Wardle 2003; Le Roux et al. 2003; Singer and Schoenecker
2003). Most of these studies have focused on the effects of wild ungulates or livestoék
on upland ecosystems such as grasslands, shrublands, or pasturelands. Little is known
about the effects of large ungulates on N cycling in riparian ecosystems, especially their
effects on belowground N pools and processes (but see: Kauffman et al. 2004; Blank et
al. 2006).

The effects of large ungulates on nutrient cycling have been generalized into an

accelerating — decelerating nutrient scenarios framework. The accelerating effect usually
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occurs in fertile, productive ecosystems; where selective consumption of plants by
herbivores is low, herbivores may promote compensatory aboveground plant growth and
return some organic matter as labile fecal material to the soil. This in turn enhances
nutrient concentration in living plant tissue and the resulting high quality litter stimulates
microbial activity which has a positive feedback of high nutrient supply rates to plants
(Ritchie et al. 1998; Wardle et al. 2004). In contrast, the decelerating nutrient scenario is
more prevalent in ecosystems with low fertility and composed of plant species less
resilient to grazing. Additionally selective feeding on palatable plants results in
dominance of unpalatable species and poor litter quality, which leads to slow
decomposition and low nutrient supply rates to plants; a negative feedback (Ritchie et al.
1998; Wardle et al. 2004).

I evaluated the effects of large ungulates on N dynamics in two different riparian
ecosystems of Colorado. In the first study, I tested whether bison and cattle accelerate or
decelerate soil N mineralization in riparian and wet meadow communities of the Great
Sand Dunes region in south-central Colorado. In the second study, I evaluated the effects
of long-term cattle grazing on N dynamics in soils, groundwater, and stream water of the
Sheep Creek montane riparian ecosystem in north-central Colorado. Cattle grazing
treatment effects across a landscape gradient were evaluated at Sheep Creek sites located
adjacent to the stream bank, in the middle of the riparian zone and at the edge of the
riparian zone to capture spatial variation in aboveground and belowground ecosystem
components. Based on Ritchie et al. (1998) and Wardle et al. (2004), I expected to find
evidence of accelerated nutrient cycling associated with ungulate herbivory in both

studies because riparian ecosystems are fertile and productive.
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In the Great Sand Dunes study, I rejected my hypothesis that in addition to elk
herbivory, bison and cattle accelerate N cycling in riparian or wet meadow soils. 1
expected increased potential soil N mineralization in riparian and wet meadow sites
utilized by bison or cattle because these communities are more productive and provide
more palatable forage for herbivores than the surrounding xeric uplands. Although data
did not support the accelerating nutrient effect scenario (Ritchie et al. 1998), I observed
highest estimates of potentially mineralizable N pools and measured highest net N
mineralization in soils from cattle grazed wet meadows. Potentially mineralizable N and
net N mineralization were also considerably higher (130% and 28%, respectively) in
cattle grazed wet meadows than bison grazed meadows. This might be a result of long
contemporary presence of cattle grazing in the Great Sand Dunes region compared with
only 15 years of bison grazing (and 3 years of bison exclosure treatments) at the time of
this study. The cattle grazing effect, however, was not statistically significant because of
high variation in the mean value of mineralization parameters (high SE).

I attributed the high variance to difficulty in maintaining constant soil moisture in
samples during the long-term incubation, potential differences in fine root or litter
content among laboratory replicates, and variable leaching efficiencies of the vacuum
manifold I used. The high variance in N mineralization estimates might have also been a
result of differences in riparian and wet meadow site characteristics that were not
measured in this study. For example, the magnitude of grazer effects on N
mineralization have been attributed to plant community structure, aboveground plant
production, litter quality, water availability, presence of mineral licks, and differences in

soil microbial communities (Tracy and McNaughton 1995; Brussaard et al. 1997; Frank
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and Groffman 1998; Frank et al. 2000; Bardgett et al. 2001; Augustine et al. 2003; Singer
and Schoenecker 2003). Some of these variables as well as estimates of elk populations,
bison movements, and forage offtake in the Great Sand Dunes region are currently being
investigated in a collaborative effort between the US Geological Survey, The Nature
Conservancy, and the Great Sand Dunes National Park. The results of these studies will
be complementary to my study; although I did not find strong evidence for ungulate
alteration of soil N dynamics, ecosystem level N processes might be significantly altered
if the carrying capacity of all ungulates (bison, cattle, and elk) is exceeded in the Great
Sand Dunes region.

[ also rejected the hypothesis that long-term cattle grazing in the Sheep Creek
montane riparian zone has accelerated N cycling. I expected to find elevated
aboveground plant N pools and belowground N pools (root N, soil microbial N, available
soil N) as well as increased N processes (mineralization, denitrification) in the long-term
grazed sites. Instead, cattle grazing did not significantly increase aboveground
production, aboveground or belowground plant N pools, soil N pools, soil microbial
biomass, litter decomposition, potential net N mineralization or denitrification in the
riparian zone as a whole. There were no apparent differences in plant species
composition between cattle grazed and excluded treatments. Also, there was no evidence
of high forage utilization and transport of N via feces to surrounding uplands. Thus,
cattle did not appear to increase system N at the Sheep Creek riparian zone.

The potential for accelerated N cycling was detected only at streambank sites
where net N mineralization in incubated soils was 13.6 + 1.6 mg N g soil N in cattle

grazed sites compared with 8.8 + 1.3 mg N g™ soil N in excluded sites, while the
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immobilization index was lower in grazed than excluded sites. Increased net N
mineralization in the streambank grazed sites was a result of high nitrification. High
potential nitrification could indicate a higher likelihood of N loss because NOj;™ is more
readily lost from most ecosystems than NH," (Robertson 1999). Thus, cattle grazed
streambank sites could potentially be a source of NOj3 to the stream. In the stream and
groundwater N study, I found that streambank sites are a source of NO3 only during
losing streamflow conditions in late-summer. However, there was no difference in this
response between cattle grazed and excluded sites.

Data suggest that higher nitrification in grazed streambank sites could have been
specifically associated with high nitrification (89% higher) for one of the three grazed
streambank sites I sampled. This particular site also had higher aboveground production,
plant N pools and soil N pools than the other two grazed streambank sites and was
utilized the most by cattle compared with all other study locations in 2005 and 2006.
Areas repeatedly and frequently grazed by large herbivores such as cattle have been
shown to enhance N cycling by increasing available N through urine and fecal inputs,
lowering carbon C:N ratios of plant litter and soil organic matter, increasing
mineralization rates and reducing microbial immobilization of N (Risser and Parton
1982; Ritchie et al. 1998; Singer and Schoenecker 2003). Since cattle tend to concentrate
near the stream where forage and water are abundant (Kauffman and Krueger 1984), it is
likely that they move N from surrounding areas to the streambank. It is possible that
Sheep Creek streambank sites repeatedly grazed by cattle exhibit enhanced N cycling
compared with other riparian locations, but I was unable to fully capture this in my study

because my site replicates might have unequal histories of cattle use. When I set up the
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study, there were no records or data available on cattle site preferences at Sheep Creek
since the change in livestock management in the late 1950s.

Aboveground and belowground ecosystem components associated with N
dynamics varied across the Sheep Creek riparian zone from the streambank to sites near
the edge of the riparian zone. In general, streambank sites were more productive and had
greater aboveground plant C and N pools than sites at the edge of the riparian zone.
Herbaceous vegetation near the streambank was dominated by grasses and sedges
whereas forbs were more prevalent at the upland edge of the riparian zone. Similar
patterns in plant composition have been observed along riparian landscape gradients from
the stream to the floodplain terrace in montane riparian meadows of northeastern Oregon
and the Sierra Nevada (Dwire et al. 2004; Blank et al. 2006). Belowground nutrient
pools in the Sheep Creek riparian zone exhibited a pattern opposite of aboveground
dynamics: streambank sites had smaller total soil C and N pools, smaller water-soluble
organic C (WSOC) and water-soluble total N (WSTN) pools, and less soil organic matter
than sites at the edge of the riparian zone. These patterns indicate that turnover rates of C
and N might be faster at streambank sites compared with sites farther away from the
stream. Faster nutrient supply rates at streambank sites were supported by higher soil
microbial biomass C and N and higher mineralization (ammonification or NH,4"
production) measured with ion-exchange resin (IER) bags in streambank soils compared
with riparian edge soils.

Lastly, season-long, light to moderate cattle grazing does not appear to have
significant effects on stream or groundwater N dynamics at Sheep Creek. Higher grazing

intensity, however, might increase N loading into the stream and groundwater because
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high cattle inputs of N to riparian zones could lead to higher N production via enhanced
nitrification and mineralization (Groffman et al. 1992). Consequently, N export from the
riparian zone to surface waters could be increased if denitrification, plant, and microbial
pools become enriched with N and lose their capacity to retain N (Aber et al. 1989; Hill
and Shackleton 1989; Groffman et al. 1992).

Annual streamflows in Sheep Creek were characterized by a spring snowmelt
peak and a second flat top peak in mid-summer from a storage reservoir release. These
flows created spring gaining and summer losing streamflow conditions. Stream and
groundwater NOs™ and NH," were generally low and met U.S. EPA water quality
standards for surface waters (US-EPA 2008). During gaining streamflows, stream NO3’
and NH," concentrations were 0.07 and 0.05 mg-L™, respectively, while groundwater
NO; and NH4" concentrationé were 0.06 and 0.07 mg-L™. Under losing streamflows,
stream NOs™ and NH, " concentrations were 0.05 and 0.07 mg-L™ and groundwater NO;’
and NH," concentrations were 0.12 and 0.11 mg-L™. Results suggest that the Sheep
Creek riparian zone may be a potential sink for groundwater N during spring gaining
streamflow conditions (i.e., lower N in riparian zone than stream) and a potential source
of groundwater N to the stream during summer losing streamflow conditions (i.e., higher
N in riparian zone than stream).

These results differed from N dynamics found by Stednick and Fernald (1999) in
soil water at a 30-cm soil depth. They concluded that the Sheep Creek riparian corridor
may be a NO;” sink during both gaining and losing streamflow conditions but, a source of
NH," during gaining streamflow conditions and a sink of NH," during losing streamflow

conditions. The results of my study and Stednick and Fernald’s (1999) study suggest that
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different N attenuation mechanisms may be responsible for N sink-source relationships in
upper riparian soils and groundwater. Under gaining streamflow conditions NOj™ is most
likely removed from surface soils and groundwater by denitrification (Lowrance 1992;
Haycock and Pinay 1993; Jacks et al. 1994). Under losing streamflow conditions NOj3’
could be attenuated in surface soils by plant uptake and microbial immobilization but it
could increase in the groundwater if the water table declines below the rooting zone
(Groffmaﬁ et al. 1992; Verchot et al. 1997; van der Peijl and Verhoeven 1999).
Groundwater NO5;™ might have been elevated at the end of the 2005 growing season if the
groundwater table dropped below the rooting zone of herbaceous vegetation (which was
more abundant than woody plants) at my study transects.

Sheep Creek surface soils are a source of NH;" during gaining streamflow
conditions because plant uptake and microbial immobilization should be low and the high
water table and anaerobic conditions are conducive to dissimilatory NO;™ reduction to
ammonium NH4" (DNRA) (Yin et al. 2002; Dhondt et al. 2006). Ammonium in
groundwater, however, was low during spring gaining streamflows and might be
attributed to low N mineralization at deeper depths in the soil profile. Under losing
streamflow conditions NH," in surface soils could decrease if DNRA decreases and plant
uptake and microbial immobilization increase and remove soil NH;". Thus, surface soils
might be a sink of NH;" during summer losing streamflows. Groundwater, however, can
be a source of NH," during losing streamflow conditions if the water table declines below
the rooting zone of riparian vegetation and microbial immobilization is low at deeper

depths in the soil profile.
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In summary, I did not find strong evidence for accelerated N cycling in riparian
zones grazed by large ungulates. The overall conclusion, however, should be qualified
with several observations from both the Great Sand Dunes and Sheep Creek studies.
Although not statistically significant because of high variance, net N mineralization was
highest in the cattle grazed Great Sand Dunes wet meadows with the longest history of
ungulate grazing. At Sheep Creek, net N mineralization was significantly higher in cattle
grazed compared with excluded sites near the stream bank. These results were especially
apparent at one particular streambank site that had been utilized repeatedly by cattle.
These observations suggest increased N mineralization, and thus potential acceleration of
N cycling, is more likely in riparian systems that have a long history of grazing, are
grazed frequently at moderate intensity, and do not lose N via ungulate movements to
other habitats. Although little support for this inference exists in the literature, studies of
ungulate effects on N dynamics and primary production in upland ecosystems have
suggested that the direction of the response depends on the evolutionary history of the
ecosystem, intensity of grazing or browsing, and the opportunity for plant re-growth
(McNaughton 1984; Holland and Detling 1990; Shariff et al. 1994; Hobbs 1996; Bardgett

et al. 2001; Augustine et al. 2003; Le Roux et al. 2003; Singer and Schoenecker 2003).

Future Considerations
My work and other studies have shown that there is a great deal of spatial
heterogeneity in plant communities, groundwater dynamics, soil properties and processes
in riparian zones along landscape gradients (i.e., across riparian zone width) and along

longitudinal gradients (i.e., along riparian corridor length) (Groffman et al. 1992; Dwire

143



et al. 2004; Blank et al. 2006; Dhondt et al. 2006; Merrill and Benning 2006; Merrill et
al. 2006). Studies of riparian ecosystems should account for this heterogeneity by
stratifying riparian zones into appropriate ecosystem types or process domains, especially
when considering riparian functioning and disturbances on a watershed scale
(Montgomery 1999; Merrill and Benning 2006).

I attempted to account for spatial and temporal variation in my Sheep Creek
studies by stratifying sampling sites into streambank, middle riparian, and edge of
riparian landscape locations and collecting repeated measures data over the course of two
growing seasons. However, one limitation of my study was its design because the
sampling locations were set up by pairing equal length grazed and excluded study
transects so that I could establish groundwater piezometers at equal intervals in the three
landscape locations. This approach minimized variance within blocks for piezometer
locations but it did not necessarily minimize within block variation in plant and soil
characteristics between each paired grazed and excluded landscape location. For
example, within a given block, a middle riparian site in a grazed treatment might have
had different plant species composition or microtopography characteristics than its paired
excluded treatment middle riparian site. Blocking is most effective when experimental
units within each block are as similar as possible (Gotelli and Ellison 2004).

Future studies should attempt to minimize within block variance of experimental
units to better test treatment effects. They should also have more replicates for each
treatment combination. I had only three field replicates of each grazing treatment level
per landscape position. Although the total number of samples collected during each

sampling event was barely manageable for completion of a series of different soil
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analyses, more replicates could have better normalized variances of response variables
for a given treatment effect. However, more time and greater expense would be
involved.

Many grazing studies are limited by pseudoreplication of grazing treatments,
unequal histories of grazing treatments for comparisons between different herbivores or
ecosystems, or limited data on historical intensity or frequency of grazing. In my Great
Sand Dunes study, cattle had a longer contemporary history of grazing in the area than
did bison. Furthermore, at the time of the study cattle had been excluded from control
sites for 15 years while bison had been excluded from control sites for only three years.
Thus, the regulatory influence of bison on soil N dynamics in riparian and wet meadow
sites might be underestimated in my study.

My Sheep Creek study was limited by unequal utilization of grazed study sites by
cattle. Patterns of cattle use at Sheep Creek have not been quantified, but based on my
field observations, cattle do not equally utilize all parts of the riparian pastures they are
allotted to. For example, cattle utilized one of the three streambank sites more frequently
and repeatedly during my two field seasons. Cattle generally concentrate near the stream
where forage and water are abundant (Kauffman and Krueger 1984). Based on my study,
it also appears that they prefer some streambank locations over others. Since my study
sites likely had unequal utilization levels and frequencies since the change in livestock
management in the late 1950s, it is possible that [ underestimated long-term effects of
cattle grazing on N dynamics in areas of the montane riparian zone used more repeatedly

by cattle. Future studies of N dynamics in riparian ecosystems should better account for
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potential differences in historical livestock or wildlife management, herbivore
movements, frequency of use, and utilization of different landscape habitats or patches.
The methods I used in both of my studies for analyzing soil properties and
processes were developed for upland mineral soils. Riparian soils, however, are quite
different from most upland soils because they contain very high soil organic matter and
are frequently saturated with water for extended periods of time. Thus, collection of soil
core samples in riparian zones is difficult because soil cores can be easily compressed or
soils are too saturated and waterlogged for a soil core to be pulled. In the laboratory,
preparation of riparian soil samples is incredibly time intensive because fine roots and
pieces of organic matter (i.e. particulate organic matter, POM) have to be separated from
mineral soil before analysis. In the end, soil samples are often laden with
indistinguishable fine organic matter which can affect the results of many soil analyses
(i.e., N mineralization, denitrification, water-soluble fractions, microbial biomass, etc.).
Fine roots and organic matter can be especially problematic for laboratory soil
incubations because they can contribute to large variation in soil microbial activity which
mediates soil processes such as N mineralization and C respiration. High organic matter
and fine particle sizes of riparian soils are also problematic for maintaining constant soil
moisture in incubated soils, especially if the samples are leached periodically as was the
case in my Great Sand Dunes study. Thus, extra care should be taken when collecting,
preparing, and analyzing riparian soils. Furthermore, there is a need for improved
methods of soil analysis for riparian soils. These methods could potentially be developed
from existing protocols for mineral soils by including correction factors such as soil

organic matter, POM, bulk density, or extraction efficiency coefficients.
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Lastly, future studies of N groundwater dynamics, especially at Sheep Creek,
should utilize groundwater tracers (e.g., Br or CI') and a larger network of piezometers
and wells to better understand lateral flows and potential dilution effect on NO3™ and
NH,4" concentrations (Simmons et al. 1992; Verchot et al. 1997). Furthermore, although
numerous studies have demonstrated the ability of riparian zones to remove N, especially
NOj’, from upland waters before they enter streams, there is still uncertainty about the
specific mechanisms of N attenuation (Lowrance et al. 1984; Cooper 1990; Groffman et
al. 1996). Novel approaches with N isotopes (8"°N techniques) should be evaluated
further to elucidate spatial and temporal variation of N attenuation by denitrification,
plant uptake, and microbial immobilization. Non-conservative behavior of N isotopes
allows for a fine spatial resolution of different microbial processes (e.g. denitrification,
nitrification, uptake) that are variable over short distances in riparian environments (Cey
et al. 1999; Ostrom et al. 2002; Dhondt et al. 2003). A better understanding of N
attenuation mechanisms in different riparian ecosystems would be useful for predicting
changes in potential for nutrient retention of riparian zones under different disturbance

regimes.
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Appendix B. Soil microbial CO2 respiration rates of incubated soils from Great Sand Dunes wetlands.
Respiration rates were measured periodically during a 6- month incubation period.

Wetland Grazing Day of Microbial CO, respiration rate

Site type treatment Replicate incubation (mg C g soil C d)
Big Spring Creek riparian control 1 3 1.80
Big Spring Creek riparian control 1 6 1.27
Big Spring Creek riparian control 1 10 1.09
Big Spring Creek riparian control 1 13 1.03
Big Spring Creek riparian control 1 20 0.77
Big Spring Creek riparian control 1 34 091
Big Spring Creek riparian control 1 48 1.29
Big Spring Creek riparian control 1 69 0.92
Big Spring Creek riparian control 1 89 -
Big Spring Creek riparian control 1 116 0.77
Big Spring Creek riparian control 1 140 0.54
Big Spring Creek riparian control 1 164 0.51
Big Spring Creek riparian control 2 3 1.52
Big Spring Creek riparian control 2 6 1.83
Big Spring Creek riparian control 2 10 1.13
Big Spring Creek riparian control 2 13 1.09
Big Spring Creek riparian control 2 20 0.92
Big Spring Creek riparian control 2 34 0.48
Big Spring Creek riparian control 2 48 0.60
Big Spring Creek riparian control 2 69 0.93
Big Spring Creek riparian control 2 89 0.92
Big Spring Creek riparian control 2 116 0.98
Big Spring Creek riparian control 2 140 0.58
Big Spring Creek riparian control 2 164 0.62
Big Spring Creek riparian control 3 3 3.68
Big Spring Creek riparian control 3 6 2.61
Big Spring Creek riparian control 3 10 220
Big Spring Creek riparian control 3 13 2.06
Big Spring Creek riparian control 3 20 1.70
Big Spring Creek riparian control 3 34 1.66
Big Spring Creek riparian control 3 48 1.96
Big Spring Creek riparian control 3 69 1.46
Big Spring Creek riparian control 3 89 1.75
Big Spring Creek riparian control 3 116 1.50
Big Spring Creek riparian control 3 140 1.01
Big Spring Creek riparian control 3 164 1.12
Big Spring Creck riparian control 4 3 1.97
Big Spring Creek riparian control 4 6 2.64
Big Spring Creek riparian control 4 10 1.37
Big Spring Creek riparian control 4 13 1.06
Big Spring Creek riparian control 4 20 1.01
Big Spring Creek riparian control 4 34 0.80
Big Spring Creek riparian control 4 48 0.84
Big Spring Creek riparian control 4 69 1.08
Big Spring Creek riparian control 4 89 0.74
Big Spring Creek riparian control 4 116 091
Big Spring Creek riparian control 4 140 0.68
Big Spring Creek riparian control 4 164 0.75
Big Spring Creek riparian bison 1 3 3.89
Big Spring Creck riparian bison 1 6 2.46
Big Spring Creek riparian bison 1 10 1.69
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Appendix B. Contmued.

Wetland Grazing Day of Microbial CO, respiration rate
Site type treatment Replicate incubation (mg C g’ soil C d™)
Big Spring Creek riparian bison 1 13 1.59
Big Spring Creek riparian bison 1 20 135
Big Spring Creek riparian bison 1 34 1.02
Big Spring Creek riparian bison 1 48 1.14
Big Spring Creek riparian bison 1 69 1.51
Big Spring Creek riparian bison 1 89 1.58
Big Spring Creek riparian bison 1 116 1.28
Big Spring Creek riparian bison 1 140 0.57
Big Spring Creek riparian bison 1 164 0.74
Big Spring Creek riparian bison 2 3 2.88
Big Spring Creek riparian bison 2 6 1.74
Big Spring Creck riparian bison 2 10 1.36
Big Spring Creeck riparian bison 2 13 1.20
Big Spring Creek riparian bison 2 20 1.05
Big Spring Creek riparian bison 2 34 0.89
Big Spring Creek riparian bison 2 48 1.16
Big Spring Creek riparian bison 2 69 0.94
Big Spring Creek riparian bison 2 89 0.89
Big Spring Creck riparian bison 2 116 0.91
Big Spring Creek riparian bison 2 140 0.60
Big Spring Creek riparian bison 2 164 0.67
Big Spring Creek riparian bison 3 3 3.07
Big Spring Creck riparian bison 3 6 2.01
Big Spring Creek riparian bison 3 10 2.02
Big Spring Creek riparian bison 3 13 1.96
Big Spring Creek riparian bison 3 20 1.42
Big Spring Creek riparian bison 3 34 1.19
Big Spring Creek riparian bison 3 48 1.08
Big Spring Creek riparian bison 3 69 0.95
Big Spring Creek riparian bison 3 89 1.08
Big Spring Creek riparian bison 3 116 0.90
Big Spring Creek riparian bison 3 140 0.61
Big Spring Creek riparian bison 3 164 0.79
Big Spring Creek riparian bison 4 3 2.48
Big Spring Creek riparian bison 4 6 1.80
Big Spring Creek riparian bison 4 10 1.20
Big Spring Creek riparian bison 4 13 1.09
Big Spring Creek riparian bison 4 20 0.94
Big Spring Creek riparian bison 4 34 1.14
Big Spring Creek riparian bison 4 48 1.13
Big Spring Creek riparian bison 4 69 1.93
Big Spring Creek riparian bison 4 89 1.67
Big Spring Creek riparian bison 4 116 1.28
Big Spring Creek riparian bison 4 140 1.03
Big Spring Creek riparian bison 4 164 1.13
Little Spring Creek riparian control 1 3 2.66
Little Spring Creek riparian control 1 6 2.06
Little Spring Creek riparian control 1 10 1.70
Little Spring Creek riparian control 1 13 1.49
Little Spring Creek riparian control 1 20 1.28
Little Spring Creek riparian control 1 34 1.53
Little Spring Creek riparian control 1 48 1.35
Little Spring Creck riparian control 1 69 1.19
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Appendix B. Continued.

Wetland Grazing Day of Microbial CO, respiration rate
Site type treatment Replicate incubation (mg C g'l soil C d'l)
Little Spring Creek riparian control 1 89 1.71
Little Spring Creek riparian control 1 116 1.83
Little Spring Creek riparian control 1 140 0.95
Little Spring Creek riparian control 1 164 0.83
Little Spring Creek riparian control 2 3 2.52
Little Spring Creek riparian control 2 6 1.88
Little Spring Creek riparian control 2 10 1.48
Little Spring Creck riparian control 2 13 1.32
Little Spring Creek riparian control 2 20 091
Little Spring Creek riparian control 2 34 1.43
Little Spring Creek riparian control 2 48 1.57
Little Spring Creek riparian control 2 69 2.08
Little Spring Creek riparian control 2 89 211
Little Spring Creek riparian control 2 116 2.40
Little Spring Creek riparian control 2 140 1.50
Little Spring Creek riparian control 2 164 1.32
Little Spring Creek riparian control 3 3 3.49
Little Spring Creek riparian control 3 6 237
Little Spring Creek riparian control 3 10 223
Little Spring Creek riparian control 3 13 1.63
Little Spring Creek riparian control 3 20 1.41
Little Spring Creek riparian control 3 34 1.61
Little Spring Creek riparian control 3 48 1.62
Little Spring Creek riparian control 3 69 1.24
Little Spring Creek riparian control 3 89 2.90
Little Spring Creek riparian control 3 116 331
Little Spring Creek riparian control 3 140 235
Little Spring Creek riparian control 3 164 1.88
Little Spring Creek riparian control 4 3 2.41
Little Spring Creek riparian control 4 6 1.69
Little Spring Creck riparian control 4 10 1.23
Little Spring Creek riparian control 4 13 1.23
Little Spring Creck riparian control 4 20 1.12
Little Spring Creek riparian control 4 34 1.21
Little Spring Creek riparian control 4 48 1.13
Little Spring Creek riparian control 4 69 1.97
Little Spring Creck riparian control 4 89 238
Little Spring Creek riparian control 4 116 2.56
Little Spring Creek riparian control 4 140 1.92
Little Spring Creek riparian control 4 164 1.44
Little Spring Creek riparian bison 1 3 4.09
Little Spring Creek riparian bison 1 6 2.38
Little Spring Creek riparian bison 1 10 1.96
Little Spring Creek riparian bison 1 13 1.89
Little Spring Creek riparian bison 1 20 1.56
Little Spring Creek riparian bison 1 34 1.36
Little Spring Creek riparian bison 1 48 0.55
Little Spring Creek riparian bison 1 69 137
Little Spring Creek riparian bison 1 89 1.74
Little Spring Creck riparian bison 1 116 1.38
Little Spring Creek riparian bison 1 140 1.07
Little Spring Creek riparian bison 1 164 1.05
Little Spring Creek riparian bison 2 3 3.98

157



Appendix B. Continued.

Wetland Grazing Day of Microbial CO, respiration rate

Site type treatment Replicate incubation (mg C g” soil C d™)
Little Spring Creek riparian bison 2 6 3.11
Little Spring Creek riparian bison 2 10 272
Little Spring Creek riparian bison 2 13 2.24
Little Spring Creek riparian bison 2 20 2.02
Little Spring Creek riparian bison 2 34 221
Little Spring Creek riparian bison 2 48 2.06
Little Spring Creek riparian bison 2 69 2.42
Little Spring Creek riparian bison 2 89 2.89
Little Spring Creek riparian bison 2 116 2.84
Little Spring Creek riparian bison 2 140 1.95
Little Spring Creek riparian bison 2 164 1.96
Little Spring Creek riparian bison 3 3 2.88
Little Spring Creek riparian bison 3 6 2.15
Little Spring Creek riparian bison 3 10 1.62
Little Spring Creek riparian bison 3 13 1.54
Little Spring Creek riparian bison 3 20 1.39
Little Spring Creek riparian bison 3 34 1.49
Little Spring Creek riparian bison 3 48 1.23
Little Spring Creek riparian bison 3 69 2.58
Little Spring Creek riparian bison 3 89 2.68
Little Spring Creek riparian bison 3 116 3.08
Little Spring Creek riparian bison 3 140 -
Little Spring Creek riparian bison 3 164 233
Little Spring Creek riparian bison 4 3 2.84
Little Spring Creek riparian bison 4 6 1.90
Little Spring Creek riparian bison 4 10 1.45
Little Spring Creek riparian bison 4 13 1.33
Little Spring Creek riparian bison 4 20 0.92
Little Spring Creek riparian bison 4 34 1.20
Little Spring Creek riparian bison 4 48 1.21
Little Spring Creek riparian bison 4 69 1.02
Little Spring Creek riparian bison 4 89 1.03
Little Spring Creek riparian bison 4 116 1.00
Little Spring Creek riparian bison 4 140 0.79
Little Spring Creek riparian bison 4 164 0.55
Elk Springs wet meadow contro} 1 3 447
Elk Springs wet meadow control 1 6 3.55
Elk Springs wet meadow control 1 10 2.70
Elk Springs wet meadow control 1 13 1.79
Elk Springs wet meadow control 1 20 1.73
Elk Springs wet meadow control 1 34 1.73
Elk Springs wet meadow control 1 48 1.15
Etk Springs wet meadow control 1 69 215
Elk Springs wet meadow control 1 89 1.87
Elk Springs wet meadow control 1 116 2.07
Elk Springs wet meadow control 1 140 1.13
Elk Springs wet meadow control 1 164 1.12
Elk Springs wet meadow control 2 3 5.84
Elk Springs wet meadow control 2 6 4.16
Elk Springs wet meadow . control 2 10 3.74
Elk Springs wet meadow control 2 13 2.72
Elk Springs wet meadow control 2 20 2.46
Elk Springs wet meadow control 2 34 228
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Appendix B. Continued.

Wetland Grazing Day of Microbial CO, respiration rate
Site type treatment Replicate incubation (mg C g'1 soil C d")
Elk Springs wet meadow control 2 48 1.75
Elk Springs wet meadow control 2 69 1.73
Elk Springs wet meadow control 2 89 231
Elk Springs wet meadow control 2 116 2.05
Elk Springs wet meadow control 2 140 1.71
Elk Springs wet meadow control 2 164 1.59
Elk Springs wet meadow control 3 3 3.50
Elk Springs wet meadow control 3 6 2.48
Elk Springs wet meadow control 3 10 1.83
Elk Springs wet meadow control 3 13 1.66
Elk Springs wet meadow control 3 20 1.18
Elk Springs wet meadow control 3 34 1.53
Elk Springs wet meadow control 3 48 145
Elk Springs wet meadow control 3 69 1.61
Elk Springs wet meadow control 3 89 1.89
Elk Springs wet meadow control 3 116 1.78
Elk Springs wet meadow control 3 140 1.59
Elk Springs wet meadow control 3 164 1.07
Elk Springs wet meadow control 4 3 4.59
Elk Springs wet meadow control 4 6 2.79
Elk Springs wet meadow control 4 10 2.81
Elk Springs wet meadow control 4 13 1.59
Elk Springs wet meadow control 4 20 1.36
Elk Springs wet meadow control 4 34 1.36
Elk Springs wet meadow control 4 48 1.38
Elk Springs wet meadow control 4 69 1.72
Elk Springs wet meadow control 4 89 2.06
Elk Springs wet meadow control 4 116 1.98
Elk Springs wet meadow control 4 140 1.19
Elk Springs wet meadow control 4 164 0.93
Elk Springs wet meadow bison 1 3 4.16
Elk Springs wet meadow bison 1 6 325
Elk Springs wet meadow bison 1 10 297
Elk Springs wet meadow bison 1 13 2.41
Elk Springs wet meadow bison 1 20 1.95
Elk Springs wet meadow bison 1 34 1.30
Elk Springs wet meadow bison 1 48 1.82
Elk Springs wet meadow bison 1 69 2.02
Elk Springs wet meadow bison 1 89 2.24
Elk Springs wet meadow bison 1 116 1.56
Elk Springs wet meadow bison 1 140 1.72
Elk Springs wet meadow bison 1 164 1.35
Elk Springs wet meadow bison 2 3 5.39
Elk Springs wet meadow bison 2 6 3.99
Elk Springs wet meadow bison 2 10 3.62
Elk Springs wet meadow bison 2 13 2.66
Elk Springs wet meadow bison 2 20 1.89
Elk Springs wet meadow bison 2 34 2.30
Elk Springs wet meadow bison 2 48 2.48
Elk Springs wet meadow bison 2 69 3.54
Elk Springs wet meadow bison 2 89 373
Elk Springs wet meadow bison 2 116 2.76
Elk Springs wet meadow bison 2 140 2.94

159



Appendix B. Continued.

Wetland Grazing Day of Microbial CO, respiration rate

Site type treatment Replicate incubation (mg C g'1 soil C d'l)
Elk Springs wet meadow bison 2 164 2.19
Elk Springs wet meadow bison 3 3 4.55
Elk Springs wet meadow bison 3 6 3.30
Elk Springs wet meadow bison 3 10 2.64
Elk Springs wet meadow bison 3 13 2.18
Elk Springs wet meadow bison 3 20 1.61
Elk Springs wet meadow bison 3 34 1.82
Elk Springs wet meadow bison 3 48 1.85
Elk Springs wet meadow bison 3 69 2.21
Elk Springs wet meadow bison 3 89 223
Elk Springs wet meadow bison 3 116 1.48
Elk Springs wet meadow bison 3 140 1.23
Elk Springs wet meadow bison 3 164 1.19
Elk Springs wet meadow bison 4 3 4.65
Elk Springs wet meadow bison 4 6 3.59
Elk Springs wet meadow bison 4 10 2.95
Eik Springs wet meadow bison 4 13 2.25
Elk Springs wet meadow bison 4 20 1.83
Elk Springs wet meadow bison 4 34 1.76
Elk Springs wet meadow bison 4 48 1.80
Elk Springs wet meadow bison 4 69 2.08
Elk Springs wet meadow bison 4 89 2.09
Elk Springs wet meadow bison 4 116 1.92
Elk Springs wet meadow bison 4 140 225
Elk Springs wet meadow bison 4 164 1.45
Twin Lakes wet meadow control 1 3 292
Twin Lakes wet meadow control 1 6 1.34
Twin Lakes wet meadow control 1 10 1.10
Twin Lakes wet meadow control 1 13 1.04
Twin Lakes wet meadow control 1 20 1.13
Twin Lakes wet meadow control 1 34 1.12
Twin Lakes wet meadow control 1 48 1.29
Twin Lakes wet meadow control 1 69 2.47
Twin Lakes wet meadow control 1 89 —--
Twin Lakes wet meadow control 1 116 ---
Twin Lakes wet meadow control 1 140 -—-
Twin Lakes wet meadow control 1 164 -
Twin Lakes wet meadow control 2 3 1.52
Twin Lakes wet meadow control 2 6 0.99
Twin Lakes wet meadow control 2 10 0.96
Twin Lakes wet meadow control 2 13 0.92
Twin Lakes wet meadow control 2 20 0.76
Twin Lakes wet meadow control 2 34 0.90
Twin Lakes wet meadow control 2 48 0.94
Twin Lakes wet meadow control 2 69 2.69
Twin Lakes wet meadow control 2 89 1.70
Twin Lakes wet meadow control 2 116 1.95
Twin Lakes wet meadow control 2 140 1.69
Twin Lakes wet meadow control 2 164 1.46
Twin Lakes wet meadow control 3 3 223
Twin Lakes wet meadow control 3 6 1.38
Twin Lakes wet meadow control 3 10 1.20
Twin Lakes wet meadow control 3 13 1.08
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Appendix B. Continued.

Wetland Grazing Day of Microbial CO, respiration rate

Site type treatment Replicate incubation (mg Cg’ soil Cd™)
Twin Lakes wet meadow control 3 20 0.94
Twin Lakes wet meadow control 3 34 1.16
Twin Lakes wet meadow control 3 48 1.09
Twin Lakes wet meadow control 3 69 1.71
Twin Lakes wet meadow control 3 89 1.83
Twin Lakes wet meadow control 3 116 1.74
Twin Lakes wet meadow control 3 140 1.44
Twin Lakes wet meadow control 3 164 1.35
Twin Lakes wet meadow control 4 3 2.40
Twin Lakes wet meadow control 4 6 1.46
Twin Lakes wet meadow control 4 10 1.16
Twin Lakes wet meadow control 4 13 0.98
Twin Lakes wet meadow control 4 20 0.92
Twin Lakes wet meadow control 4 34 1.11
Twin Lakes wet meadow control 4 48 1.27
Twin Lakes wet meadow control 4 69 1.87
Twin Lakes wet meadow control 4 89 2.01
Twin Lakes wet meadow control 4 116 1.96
Twin Lakes wet meadow control 4 140 1.63
Twin Lakes wet meadow control 4 164 1.53
Twin Lakes wet meadow bison 1 3 2.01
Twin Lakes wet meadow bison 1 6 1.16
Twin Lakes wet meadow bison 1 10 0.77
Twin Lakes wet meadow bison 1 13 0.84
Twin Lakes wet meadow bison 1 20 0.72
Twin Lakes wet meadow bison 1 34 0.96
Twin Lakes wet meadow bison 1 48 1.02
Twin Lakes wet meadow bison 1 69 1.58
Twin Lakes wet meadow bison 1 89 1.84
Twin Lakes wet meadow bison 1 116 2.24
Twin Lakes wet meadow bison 1 140 1.55
Twin Lakes wet meadow bison 1 164 1.31
Twin Lakes wet meadow bison 2 3 1.72
Twin Lakes wet meadow bison 2 6 1.03
Twin Lakes wet meadow bison 2 10 0.77
Twin Lakes wet meadow bison 2 13 0.83
Twin Lakes wet meadow bison 2 20 0.93
Twin Lakes wet meadow bison 2 34 0.92
Twin Lakes wet meadow bison 2 48 0.83
Twin Lakes wet meadow bison 2 69 1.61
Twin Lakes wet meadow bison 2 89 1.76
Twin Lakes wet meadow bison 2 116 2.03
Twin Lakes wet meadow bison 2 140 1.58
Twin Lakes wet meadow bison 2 164 1.42
Twin Lakes wet meadow bison 3 3 2.33
Twin Lakes wet meadow bison 3 6 1.50
Twin Lakes wet meadow bison 3 10 1.06
Twin Lakes wet meadow bison 3 13 1.05
Twin Lakes wet meadow bison 3 20 1.02
Twin Lakes wet meadow bison 3 34 121
Twin Lakes wet meadow bison 3 48 1.60
Twin Lakes wet meadow bison 3 69 -
Twin Lakes wet meadow bison 3 89 3.44
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Appendix B. Continued.

Wetland Grazing Day of Microbial CO, respiration rate

Site type treatment Replicate incubation (mg C g s0il C d")
Twin Lakes wet meadow bison 3 116 3.35
Twin Lakes wet meadow bison 3 140 3.17
Twin Lakes wet meadow bison 3 164 2.73
Twin Lakes wet meadow bison 4 3 2.20
Twin Lakes wet meadow bison 4 6 1.34
Twin Lakes wet meadow bison 4 10 1.06
Twin Lakes wet meadow bison 4 13 1.04
Twin Lakes wet meadow bison 4 20 0.92
Twin Lakes wet meadow bison 4 34 1.14
Twin Lakes wet meadow bison 4 48 1.27
Twin Lakes wet meadow bison 4 69 2.99
Twin Lakes wet meadow bison 4 89 3.14
Twin Lakes wet meadow bison 4 116 4,03
Twin Lakes wet meadow bison 4 140 3.97
Twin Lakes wet meadow bison 4 164 3.50
South MZ Ranch wet meadow control 1 3 2.07
South MZ Ranch wet meadow control 1 6 1.70
South MZ Ranch wet meadow control 1 10 1.58
South MZ Ranch wet meadow control 1 13 1.71
South MZ Ranch wet meadow control 1 20 2.76
South MZ Ranch wet meadow control 1 34 1.59
South MZ Ranch wet meadow control 1 48 1.77
South MZ Ranch wet meadow control 1 69 2.01
South MZ Ranch wet meadow control 1 89 220
South MZ Ranch wet meadow control 1 116 1.86
South MZ Ranch wet meadow control 1 140 1.67
South MZ Ranch wet meadow control 1 164 1.59
South MZ Ranch wet meadow control 2 3 2.76
South MZ Ranch wet meadow control 2 6 2.47
South MZ Ranch wet meadow control 2 10 2.55
South MZ Ranch wet meadow control 2 13 271
South MZ Ranch wet meadow control 2 20 2.29
South MZ Ranch wet meadow control 2 34 2.29
South MZ Ranch wet meadow control 2 48 1.80
South MZ Ranch wet meadow control 2 69 2.15
South MZ Ranch wet meadow control 2 89 1.68
South MZ Ranch wet meadow control 2 116 1.56
South MZ Ranch wet meadow control 2 140 1.44
South MZ Ranch wet meadow control 2 164 1.50
South MZ Ranch wet meadow control 3 3 2.44
South MZ Ranch wet meadow control 3 6 1.38
South MZ Ranch wet meadow control 3 10 1.76
South MZ Ranch wet meadow control 3 13 1.65
South MZ Ranch wet meadow control 3 20 1.80
South MZ Ranch wet meadow control 3 34 2.30
South MZ Ranch wet meadow control 3 48 2.10
South MZ Ranch wet meadow control 3 69 —
South MZ Ranch wet meadow control 3 89 -
South MZ Ranch wet meadow control 3 116 2.68
South MZ Ranch wet meadow control 3 140 241
South MZ Ranch wet meadow control 3 164 2.43
South MZ Ranch wet meadow control 4 3 1.72
South MZ Ranch wet meadow control 4 6 1.32
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Appendix B. Continued.

Microbial CO, respiration rate

Wetland Grazing Day of

Site type treatment Replicate incubation (mg C g'] soil C d'l)
South MZ Ranch wet meadow control 4 10 1.32
South MZ Ranch wet meadow control 4 13 1.19
South MZ Ranch wet meadow control 4 20 2.00
South MZ Ranch wet meadow control 4 34 1.60
South MZ Ranch wet meadow control 4 48 1.53
South MZ Ranch wet meadow control 4 69 1.83
South MZ Ranch wet meadow control 4 89 2.45
South MZ Ranch wet meadow control 4 116 1.93
South MZ Ranch wet meadow control 4 140 1.43
South MZ Ranch wet meadow control 4 164 1.24
South MZ Ranch wet meadow cattle 1 3 3.87
South MZ Ranch wet meadow cattle 1 6 2.35
South MZ Ranch wet meadow cattle 1 10 2.87
South MZ Ranch wet meadow cattle 1 13 2.85
South MZ Ranch wet meadow cattle 1 20 2.19
South MZ Ranch wet meadow cattle 1 34 2.46
South MZ Ranch wet meadow cattle 1 48 341
South MZ Ranch wet meadow cattle 1 69 4.12
South MZ Ranch wet meadow cattle 1 89 2.62
South MZ Ranch wet meadow cattle 1 116 3.03
South MZ Ranch wet meadow cattle 1 140 1.78
South MZ Ranch wet meadow cattle 1 164 1.48
South MZ Ranch wet meadow cattle 2 3 4.59
South MZ Ranch wet meadow cattle 2 6 3.15
South MZ Ranch wet meadow cattle 2 10 3.02
South MZ Ranch wet meadow cattle 2 13 2.86
South MZ Ranch wet meadow cattle 2 20 2.87
South MZ Ranch wet meadow cattle 2 34 3.06
South MZ Ranch wet meadow cattle 2 48 3.17
South MZ Ranch wet meadow cattle 2 69 3.94
South MZ Ranch wet meadow cattle 2 89 425
South MZ Ranch wet meadow cattle 2 116 6.12
South MZ Ranch wet meadow cattle 2 140 3.49
South MZ Ranch wet meadow cattle 2 164 2.48
South MZ Ranch wet meadow cattle 3 3 3.50
South MZ Ranch wet meadow cattle 3 6 2.69
South MZ Ranch wet meadow cattle 3 10 292
South MZ Ranch wet meadow cattle 3 13 3.21
South MZ Ranch wet meadow cattle 3 20 337
South MZ Ranch wet meadow cattle 3 34 2.89
South MZ Ranch wet meadow cattle 3 48 2.61
South MZ Ranch wet meadow cattle 3 69 3.29
South MZ Ranch wet meadow cattle 3 89 245
South MZ Ranch wet meadow cattle 3 116 3.85
South MZ Ranch wet meadow cattle 3 140 2.32
South MZ Ranch wet meadow cattle 3 164 191
South MZ Ranch wet meadow cattle 4 3 2.11
South MZ Ranch wet meadow cattle 4 6 -
South MZ Ranch wet meadow cattle 4 10 -
South MZ Ranch wet meadow cattle 4 13 -
South MZ Ranch wet meadow cattle 4 20 -
South MZ Ranch wet meadow cattle 4 34 -
South MZ Ranch wet meadow cattle 4 48 -
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Appendix B. Continued.

Wetland Grazing Day of Microbial CO, respiration rate

Site type treatment Replicate  incubation (mg C g” soil C d")
South MZ Ranch wet meadow cattle 4 69 -
South MZ Ranch wet meadow cattle 4 89 -
South MZ Ranch wet meadow cattle 4 116 ——-
South MZ Ranch wet meadow cattle 4 140 2.00
South MZ Ranch wet meadow cattle 4 164 1.88
West MZ Ranch wet meadow control 1 3 2.96
West MZ Ranch wet meadow control 1 6 1.14
West MZ Ranch wet meadow control 1 10 091
West MZ Ranch wet meadow control 1 13 0.86
West MZ Ranch wet meadow control 1 20 0.74
West MZ Ranch wet meadow control 1 34 0.84
West MZ Ranch wet meadow control 1 48 0.80
West MZ Ranch wet meadow control 1 69 1.14
West MZ Ranch wet meadow control 1 89 1.10
West MZ Ranch wet meadow control 1 116 1.10
West MZ Ranch wet meadow control 1 140 1.19
West MZ Ranch wet meadow control 1 164 0.91
West MZ Ranch wet meadow control 2 3 3.96
West MZ Ranch wet meadow control 2 6 2.16
West MZ Ranch wet meadow control 2 10 1.99
West MZ Ranch wet meadow control 2 13 1.60
West MZ Ranch wet meadow control 2 20 1.25
West MZ Ranch wet meadow control 2 34 0.97
West MZ Ranch wet meadow control 2 48 1.27
West MZ Ranch wet meadow control 2 69 143
West MZ Ranch wet meadow control 2 89 1.50
West MZ Ranch wet meadow control 2 116 1.54
West MZ Ranch wet meadow control 2 140 1.37
West MZ Ranch wet meadow control 2 164 1.08
West MZ Ranch wet meadow control 3 3 4.61
West MZ Ranch wet meadow control 3 6 1.71
West MZ Ranch wet meadow control 3 10 1.10
West MZ Ranch wet meadow control 3 13 1.31
West MZ Ranch wet meadow control 3 20 1.13
West MZ Ranch wet meadow control 3 34 1.12
West MZ Ranch wet meadow control 3 48 0.97
West MZ Ranch wet meadow control 3 69 1.44
West MZ Ranch wet meadow control 3 89 1.48
West MZ Ranch wet meadow control 3 116 1.22
West MZ Ranch wet meadow control 3 140 1.16
West MZ Ranch wet meadow control 3 164 1.08
West MZ Ranch wet meadow control 4 3 2.92
West MZ Ranch wet meadow control 4 6 1.60
West MZ Ranch wet meadow control 4 10 1.40
West MZ Ranch wet meadow control 4 13 1.36
West MZ Ranch wet meadow control 4 20 1.07
West MZ Ranch wet meadow control 4 34 1.07
West MZ Ranch wet meadow control 4 48 1.14
West MZ Ranch wet meadow control 4 69 2.88
West MZ Ranch wet meadow control 4 89 2.64
West MZ Ranch wet meadow control 4 116 2.54
West MZ Ranch wet meadow control 4 140 2.28
West MZ Ranch wet meadow control 4 164 2.02
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Appendix B. Continued.

Wetland Grazing Day of Microbial CO, respiration rate
Site type treatment Replicate incubation (mg C g'1 soil C d'l)
West MZ Ranch wet meadow cattle 1 3 2.64
West MZ Ranch wet meadow cattle 1 6 1.66
West MZ Ranch wet meadow cattle 1 10 1.63
West MZ Ranch wet meadow cattle 1 13 1.60
West MZ Ranch wet meadow cattle 1 20 1.26
West MZ Ranch wet meadow cattle 1 34 1.36
West MZ Ranch wet meadow cattle 1 48 1.58
West MZ Ranch wet meadow cattle 1 69 1.92
West MZ Ranch wet meadow cattle 1 89 142
West MZ Ranch wet meadow cattle 1 116 1.31
West MZ Ranch wet meadow cattle 1 140 0.88
West MZ Ranch wet meadow cattle 1 164 0.81
West MZ Ranch wet meadow cattle 2 3 3.64
West MZ Ranch wet meadow cattle 2 6 2.22
West MZ Ranch wet meadow cattle 2 10 2.11
West MZ Ranch wet meadow cattle 2 13 1.59
West MZ Ranch wet meadow catile 2 20 1.71
West MZ Ranch wet meadow cattle 2 34 1.94
West MZ Ranch wet meadow cattle 2 48 1.90
West MZ Ranch wet meadow cattle 2 69 1.59
West MZ Ranch wet meadow cattle 2 89 1.84
West MZ Ranch wet meadow cattle 2 140 1.29
West MZ Ranch wet meadow cattle 2 164 1.29
West MZ Ranch wet meadow cattle 2 116 1.58
West MZ Ranch wet meadow cattle 3 3 2.20
West MZ Ranch wet meadow cattle 3 6 1.75
West MZ Ranch wet meadow cattle 3 10 1.68
West MZ Ranch wet meadow cattle 3 13 1.62
West MZ Ranch wet meadow cattle 3 20 1.37
West MZ Ranch wet meadow cattle 3 34 1.26
West MZ Ranch wet meadow cattle 3 48 1.12
West MZ Ranch wet meadow cattle 3 69 1.57
West MZ Ranch wet meadow cattle 3 89 1.58
West MZ Ranch wet meadow cattle 3 116 1.12
West MZ Ranch wet meadow cattle 3 140 0.71
West MZ Ranch wet meadow cattie 3 164 0.86
West MZ Ranch wet meadow cattle 4 3 2.98
West MZ Ranch wet meadow cattle 4 6 1.51
West MZ Ranch wet meadow cattle 4 10 1.49
West MZ Ranch wet meadow cattle 4 13 1.70
West MZ Ranch wet meadow cattle 4 20 1.22
West MZ Ranch wet meadow cattle 4 34 142
West MZ Ranch wet meadow cattle 4 48 1.27
West MZ Ranch wet meadow cattle 4 69 221
West MZ Ranch wet meadow cattle 4 89 2.33
West MZ Ranch wet meadow cattle 4 116 2.66
West MZ Ranch wet meadow cattle 4 140 1.96
West MZ Ranch wet meadow cattle 4 164 2,04
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Appendix D. N mineralization parameters for soils from Great Sand Dunes riparian corridors and wet
meadows estimated with the first-order model.

Table D-1. N, = potentially mineralizable N (mg N g soil N) and k = mineralization rate
constant (week'l) estimated with the first-order model. Models which did not converge did
not produce parameter estimates.

Wetland Grazing k

Site type treatment Replicate ¢

Big Spring Creek riparian control 1 93.03 0.005
Big Spring Creek riparian control 2 30.17 0.015
Big Spring Creek riparian control 3 111.11 0.005
Big Spring Creek riparian control 4 43.84 0.012
Big Spring Creek riparian bison 1 65.03 0.015
Big Spring Creek riparian bison 2 67.75 0.024
Big Spring Creek riparian bison 3 64.74 0.009
Big Spring Creek riparian bison 4 48.78 0.009
Little Spring Creek riparian control 1 80.00 0.004
Little Spring Creek riparian control 2 108.82 0.004
Little Spring Creek riparian control 3 70.45 0.007
Little Spring Creek riparian control 4 63.14 0.018
Little Spring Creek riparian bison 1 57.14 0.012
Little Spring Creek riparian bison 2 171.25 0.003
Little Spring Creek riparian bison 3 67.51 0.013
Little Spring Creek riparian bison 4 53.02 0.019
Elk Springs wet meadow control 1 78.68 0.013
Elk Springs wet meadow control 2 81.86 0.010
Elk Springs wet meadow control 3 75.47 0.020
Elk Springs wet meadow control 4 11533 0.005
Elk Springs wet meadow bison 1 123.54 0.006
Elk Springs wet meadow bison 2 143.65 0.007
Elk Springs wet meadow bison 3 104.92 0.009
Elk Springs wet meadow bison 4 260.30 0.003
Twin Lakes wet meadow control 1 109.71 0.006
Twin Lakes wet meadow control 2 118.66 0.004
Twin Lakes wet meadow control 3 118.48 0.005
Twin Lakes wet meadow control 4 281.32 0.002
Twin Lakes wet meadow bison 1 140.68 0.003
Twin Lakes wet meadow bison 2 141.74 0.003
Twin Lakes wet meadow bison 3 116.53 0.005
Twin Lakes wet meadow bison 4 - -
South MZ Ranch wet meadow cattle 1 -— -—-
South MZ Ranch wet meadow cattle 2 - -
South MZ Ranch wet meadow cattle 3 609.04 0.001
South MZ Ranch wet meadow cattle 4 513.67 0.002
South MZ Ranch wet meadow control 1 103.69 0.010
South MZ Ranch wet meadow control 2 131.00 0.009
South MZ Ranch wet meadow control 3 135.28 0.005
South MZ Ranch wet meadow control 4 94.86 0.007
West MZ Ranch wet meadow cattle 1 106.70 0.005
West MZ Ranch wet meadow cattle 2 199.40 0.003
West MZ Ranch wet meadow cattle 3 71.39 0.011
West MZ Ranch wet meadow cattle 4 91.75 0.004
West MZ Ranch wet meadow control 1 68.13 0.010
West MZ Ranch wet meadow control 2 85.80 0.005
West MZ Ranch wet meadow control 3 71.14 0.006
West MZ Ranch wet meadow control 4 164.40 0.002
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Appendix D. Continued.

Table D-2. N, = cumulative N mineralized at time t (mg N g”* soil N) estimated with the first-order
model during the incubation period. Models which did not converge did not produce parameter
estimates.

Wetland Grazing Day of N

Site type treatment Replicate incubation !

Big Spring Creek riparian control 1 7 3.04
Big Spring Creek riparian control 1 14 5.98
Big Spring Creek riparian control 1 21 8.82
Big Spring Creek viparian control 1 35 1423
Big Spring Creek riparian control 1 49 19.30
Big Spring Creek riparian control 1 70 26.29
Big Spring Creek riparian control 1 90 32.33
Big Spring Creek riparian control 1 117 39.63
Big Spring Creek riparian control 1 143 45.82
Big Spring Creek riparian control 1 165 50.50
Big Spring Creek riparian control 2 7 3.06
Big Spring Creek riparian control 2 14 5.81
Big Spring Creek riparian control 2 21 8.28
Big Spring Creek riparian control 2 35 12.49
Big Spring Creek riparian control 2 49 15.89
Big Spring Creek riparian control 2 70 19.81
Big Spring Creek riparian control 2 90 22.54
Big Spring Creck riparian control 2 117 25.12
Big Spring Creek riparian control 2 143 26.77
Big Spring Creck riparian control 2 165 27.74
Big Spring Creek riparian control 3 7 3.46
Big Spring Creek riparian control 3 14 6.80
Big Spring Creek riparian control 3 21 10.05
Big Spring Creek riparian control 3 35 16.23
Big Spring Creek riparian control 3 49 22.04
Big Spring Creek riparian control 3 70 30.10
Big Spring Creek riparian control 3 90 37.09
Big Spring Creek riparian control 3 117 45.58
Big Spring Creek riparian control 3 143 52.83
Big Spring Creek riparian control 3 165 58.34
Big Spring Creek riparian control 4 7 3.41
Big Spring Creck riparian control 4 14 6.56
Big Spring Creek riparian control 4 21 9.47
Big Spring Creck riparian control 4 35 14.61
Big Spring Creek riparian control 4 49 18.99
Big Spring Creek riparian control 4 70 24.36
Big Spring Creek riparian control 4 90 28.39
Big Spring Creek riparian control 4 117 32.54
Big Spring Creck riparian control 4 143 35.48
Big Spring Creek riparian control 4 165 37.36
Big Spring Creek riparian bison 1 7 6.36
Big Spring Creek riparian bison 1 14 12.10
Big Spring Creck riparian bison 1 21 17.28
Big Spring Creek riparian bison 1 35 26.17
Big Spring Creek riparian bison 1 49 33.40
Big Spring Creek riparian bison 1 70 41.81
Big Spring Creck riparian bison 1 90 47.73
Big Spring Creek riparian bison 1 117 53.40
Big Spring Creek riparian bison 1 143 57.10
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Appendix D. Table D-2. Continued.

Wetland Grazing Day of N,

Site } type treatment Replicate incubation

Big Spring Creck riparian bison 1 165 59.29
Big Spring Creek riparian bison 2 7 10.34
Big Spring Creek riparian bison 2 14 19.10
Big Spring Creek riparian bison 2 21 26.52
Big Spring Creek riparian bison 2 35 38.14
Big Spring Creek riparian bison 2 49 46.49
Big Spring Creek riparian bison 2 70 54.81
Big Spring Creek riparian bison 2 90 59.68
Big Spring Creck riparian bison 2 117 63.49
Big Spring Creck riparian bison 2 143 65.45
Big Spring Creek riparian bison 2 165 66.38
Big Spring Creek riparian bison 3 7 3.82
Big Spring Creek riparian bison 3 14 7.42
Big Spring Creek riparian bison 3 21 10.80
Big Spring Creek riparian bison 3 35 16.98
Big Spring Creek riparian bison 3 49 22.46
Big Spring Creek riparian bison 3 70 29.51
Big Spring Creek riparian bison 3 90 35.13
Big Spring Creek riparian bison 3 117 41.33
Big Spring Creck riparian bison 3 143 46.06
Big Spring Creek riparian bison 3 165 49.31
Big Spring Creek riparian bison 4 7 3.14
Big Spring Creek riparian bison 4 14 6.07
Big Spring Creek riparian bison 4 21 8.82
Big Spring Creek riparian bison 4 35 13.79
Big Spring Creek riparian bison 4 49 18.15
Big Spring Creek riparian bison 4 70 23.69
Big Spring Creek riparian bison 4 90 28.03
Big Spring Creek riparian bison 4 117 32.72
Big Spring Creek riparian bison 4 143 36.24
Big Spring Creek riparian bison 4 165 38.60
Little Spring Creek riparian control 1 7 247
Little Spring Creek riparian control 1 14 4.87
Little Spring Creek riparian control 1 21 7.19
Little Spring Creek riparian control 1 35 11.62
Little Spring Creek riparian control 1 49 15.78
Little Spring Creek riparian control 1 70 21.56
Little Spring Creek riparian control 1 90 26.57
Little Spring Creek riparian control 1 117 32,67
Little Spring Creek riparian control 1 143 37.88
Little Spring Creek riparian control 1 165 41.83
Little Spring Creek riparian control 2 7 291
Little Spring Creek riparian control 2 14 5.74
Little Spring Creek riparian control 2 21 8.50
Little Spring Creek riparian control 2 35 13.79
Little Spring Creek riparian control 2 49 18.81
Little Spring Creek riparian control 2 70 25.84
Little Spring Creek riparian control 2 90 32.02
Little Spring Creek riparian control 2 117 39.64
Little Spring Creek riparian control 2 143 46.27
Little Spring Creck riparian control 2 165 51.38
Little Spring Creek riparian control 3 7 3.15
Little Spring Creek riparian control 3 14 6.16
Little Spring Creek riparian control 3 21 9.04
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Appendix D. Table D-2. Continued.

Wetland Grazing Day of N

Site type treatment Replicate incubation !

Little Spring Creek riparian control 3 35 14.41
Little Spring Creek riparian control 3 49 19.32
Little Spring Creek riparian control 3 70 25.88
Little Spring Creek riparian control 3 90 31.34
Little Spring Creek riparian control 3 117 37.67
Little Spring Creek riparian control 3 143 42,80
Little Spring Creek riparian control 3 165 46.51
Little Spring Creek riparian control 4 7 7.36
Little Spring Creek riparian control 4 14 13.87
Little Spring Creek riparian control 4 21 19.61
Little Spring Creek riparian control 4 35 20.18
Little Spring Creek riparian control 4 49 36.64
Little Spring Creek riparian control 4 70 44.87
Little Spring Creek riparian control 4 90 50.32
Little Spring Creek riparian control 4 117 55.20
Little Spring Creek riparian control 4 143 58.13
Little Spring Creek riparian control 4 165 59.75
Little Spring Creek riparian bison 1 7 447
Little Spring Creek riparian bison 1 14 8.58
Little Spring Creek riparian bison 1 21 12.38
Little Spring Creek riparian bison 1 35 19.10
Little Spring Creek riparian bison 1 49 24.81
Little Spring Creek riparian bison 1 70 31.82
Little Spring Creek riparian bison 1 90 37.07
Little Spring Creek riparian bison 1 117 42.48
Little Spring Creek riparian bison 1 143 46.30
Little Spring Creek riparian bison 1 165 48.75
Little Spring Creek riparian bison 2 7 3.01
Little Spring Creek riparian bison 2 14 5.96
Little Spring Creek riparian bison 2 21 8.86
Little Spring Creek riparian bison 2 35 14,52
Little Spring Creek riparian bison 2 49 19.97
Little Spring Creek riparian bison 2 70 27.80
Little Spring Creek riparian bison 2 90 34.88
Little Spring Creek riparian bison 2 117 43.89
Little Spring Creek riparian bison 2 143 52.00
Little Spring Creek riparian bison 2 165 58.46
Little Spring Creek riparian bison 3 7 5.73
Little Spring Creek riparian bison 3 14 10.98
Little Spring Creek riparian bison 3 21 15.78
Little Spring Creek riparian bison 3 35 24.19
Little Spring Creek riparian bison 3 49 31.23
Little Spring Creek riparian bison 3 70 39.71
Little Spring Creek riparian bison 3 90 45,94
Little Spring Creek riparian bison 3 117 52.19
Little Spring Creek riparian bison 3 143 56.49
Little Spring Creek riparian bison 3 165 59.17
Little Spring Creek riparian bison 4 7 6.58
Little Spring Creek riparian bison 4 14 12.34
Little Spring Creek riparian bison 4 21 17.38
Little Spring Creek riparian bison 4 35 25.67
Little Spring Creek riparian bison 4 49 32.04
Little Spring Creek riparian bison 4 70 38.92
Little Spring Creek riparian bison 4 90 43.36
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Appendix D. Table D-2. Continued.

Wetland Grazing Day of N

Site type treatment Replicate incubation !

Little Spring Creek riparian bison 4 117 4722
Little Spring Creek riparian bison 4 143 4948
Little Spring Creek riparian bison 4 165 50.68
Elk Springs wet meadow control 1 7 6.89
Elk Springs wet meadow control 1 14 13.18
Elk Springs wet meadow control 1 21 1891
Elk Springs wet meadow control 1 35 28.92
Elk Springs wet meadow control 1 49 37.25
Elk Springs wet meadow control 1 70 4721
Elk Springs wet meadow control 1 90 54.46
Eik Springs wet meadow contro} 1 117 61.67
Elk Springs wet meadow control 1 143 66.58
Elk Springs wet meadow control 1 165 69.61
Elk Springs wet meadow control 2 7 5.28
Elk Springs wet meadow control 2 14 10.23
Elk Springs wet meadow control 2 21 14.85
Elk Springs wet meadow control 2 35 2322
Elk Springs wet meadow control 2 49 30.54
Elk Springs wet meadow control 2 70 39.85
Elk Springs wet meadow control 2 90 47.14
Elk Springs wet meadow control 2 117 55.02
Elk Springs wet meadow control 2 143 60.91
Elk Springs wet meadow control 2 165 64.87
Elk Springs wet meadow control 3 7 9.82
Elk Springs wet meadow control 3 14 18.37
Elk Springs wet meadow control 3 21 25.80
Elk Springs wet meadow control 3 35 37.89
Elk Springs wet meadow control 3 49 47.03
Elk Springs wet meadow control 3 70 56.75
Elk Springs wet meadow control 3 90 62.90
Elk Springs wet meadow control 3 117 68.13
Elk Springs wet meadow control 3 143 71.10
Elk Springs wet meadow control 3 165 72.65
Elk Springs wet meadow control 4 7 4.13
Elk Springs wet meadow control 4 14 8.12
Elk Springs wet meadow control 4 21 11.96
Elk Springs wet meadow control 4 35 19.23
Elk Springs wet meadow control 4 49 25.99
Elk Springs wet meadow control 4 70 35.25
Elk Springs wet meadow control 4 90 43.18
Elk Springs wet meadow control 4 117 52.65
Elk Springs wet meadow control 4 143 60.59
Elk Springs wet meadow control 4 165 66.52
Elk Springs wet meadow bison 1 7 5.39
Elk Springs wet meadow bison 1 14 10.55
Elk Springs wet meadow bison 1 21 15.48
Elk Springs wet meadow bison 1 35 24.70
Elk Springs wet meadow bison 1 49 33.14
Elk Springs wet meadow bison 1 70 44.47
Elk Springs wet meadow bison 1 90 53.93
Elk Springs wet meadow bison 1 117 64.94
Elk Springs wet meadow bison 1 143 73.89
Elk Springs wet meadow bison 1 165 80.38
Elk Springs wet meadow bison 2 7 6.47
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Appendix D. Table D-2. Continued.

Wetland Grazing Day of N

Site type treatment Replicate incubation t

Elk Springs wet meadow bison 2 14 12.66
Elk Springs wet meadow bison 2 21 18.56
Elk Springs wet meadow bison 2 35 29.58
Elk Springs wet meadow bison 2 49 39.64
Elk Springs wet meadow bison 2 70 53.08
Elk Springs wet meadow bison 2 90 64.26
Elk Springs wet meadow bison 2 117 77.20
Elk Springs wet meadow bison 2 143 87.66
Elk Springs wet meadow bison 2 165 95.21
Elk Springs wet meadow bison 3 7 6.54
Elk Springs wet meadow bison 3 14 12.67
Elk Springs wet meadow bison 3 21 18.42
Elk Springs wet meadow bison 3 35 28.86
Elk Springs wet meadow bison 3 49 38.04
Elk Springs wet meadow bison 3 70 49.78
Elk Springs wet meadow bison 3 90 59.04
Elk Springs wet meadow bison 3 117 69.12
Elk Springs wet meadow bison 3 143 76.73
Elk Springs wet meadow bison 3 165 81.89
Elk Springs wet meadow bison 4 7 4.66
Elk Springs wet meadow bison 4 14 9.24
Elk Springs wet meadow bison 4 21 13.74
Elk Springs wet meadow bison 4 35 22.50
Elk Springs wet meadow bison 4 49 30.95
Elk Springs wet meadow bison 4 70 43.06
Elk Springs wet meadow bison 4 90 53.99
Elk Springs wet meadow bison 4 117 67.89
Elk Springs wet meadow bison 4 143 80.39
Elk Springs wet meadow bison 4 165 90.33
Twin Lakes wet meadow control 1 7 4.47
Twin Lakes wet meadow control 1 14 8.75
Twin Lakes wet meadow control 1 21 12.87
Twin Lakes wet meadow control 1 35 20.59
Twin Lakes wet meadow control 1 49 27.70
Twin Lakes wet meadow control 1 70 3732
Twin Lakes wet meadow control 1 90 45.43
Twin Lakes wet meadow countrol 1 117 54.95
Twin Lakes wet meadow control 1 143 62.79
Twin Lakes wet meadow control 1 165 68.54
Twin Lakes wet meadow control 2 7 3.63
Twin Lakes wet meadow control 2 14 7.14
Twin Lakes wet meadow control 2 21 10.55
Twin Lakes wet meadow control 2 35 17.06
Twin Lakes wet meadow control 2 49 23.17
Twin Lakes wet meadow control 2 70 31.66
Twin Lakes wet meadow control 2 90 39.04
Twin Lakes wet meadow control 2 117 48.03
Twin Lakes wet meadow control 2 143 55.72
Twin Lakes wet meadow control 2 165 61.57
Twin Lakes wet meadow control 3 7 4.19
Twin Lakes wet meadow control 3 14 823
Twin Lakes wet meadow control 3 21 12.13
Twin Lakes wet meadow control 3 35 19.51
Twin Lakes wet meadow control 3 49 26.39
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Appendix D. Table D-2. Continued.

Wetland

Grazing

Day of

Site type treatment Replicate incubation N

Twin Lakes wet meadow control 3 70 35.81
Twin Lakes wet meadow control 3 90 43.89
Twin Lakes wet meadow control 3 117 53.56
Twin Lakes wet meadow control 3 143 61.68
Twin Lakes wet meadow control 3 165 67.76
Twin Lakes wet meadow control 4 7 3.22
Twin Lakes wet meadow control 4 14 6.40
Twin Lakes wet meadow control 4 21 9.55
Twin Lakes wet meadow control 4 35 15.73
Twin Lakes wet meadow control 4 49 21.77
Twin Lakes wet meadow control 4 70 30.58
Twin Lakes wet meadow control 4 90 38.69
Twin Lakes wet meadow control 4 117 49.22
Twin Lakes wet meadow control 4 143 5893
Twin Lakes wet meadow control 4 165 66.83
Twin Lakes wet meadow bison 1 7 2,78
Twin Lakes wet meadow bison 1 14 5.50
Twin Lakes wet meadow bison 1 21 8.17
Twin Lakes wet meadow bison 1 35 13.35
Twin Lakes wet meadow bison 1 49 18.33
Twin Lakes wet meadow bison 1 70 2543
Twin Lakes wet meadow bison 1 90 31.81
Twin Lakes wet meadow bison 1 117 39.87
Twin Lakes wet meadow bison 1 143 47.07
Twin Lakes wet meadow bison 1 165 52.76
Twin Lakes wet meadow bison 2 7 3.20
Twin Lakes wet meadow bison 2 14 6.33
Twin Lakes wet meadow bison 2 21 9.39
Twin Lakes wet meadow bison 2 35 15.30
Twin Lakes wet meadow bison 2 49 20.95
Twin Lakes wet meadow bison 2 70 28.95
Twin Lakes wet meadow bison 2 90 36.08
Twin Lakes wet meadow bison 2 117 45.00
Twin Lakes wet meadow bison 2 143 52.87
Twin Lakes wet meadow bison 2 165 59.03
Twin Lakes wet meadow bison 3 7 3.92
Twin Lakes wet meadow bison 3 14 7.71
Twin Lakes wet meadow bison 3 21 11.37
Twin Lakes wet meadow bison 3 35 18.33
Twin Lakes wet meadow bison 3 49 24.83
Twin Lakes wet meadow bison 3 70 33.78
Twin Lakes wet meadow bison 3 90 41.49
Twin Lakes wet meadow bison 3 117 50.77
Twin Lakes wet meadow bison 3 143 58.62
Twin Lakes wet meadow bison 3 165 64.53
Twin Lakes wet meadow bison 4 7 -
Twin Lakes wet meadow bison 4 14 ——-
Twin Lakes wet meadow bison 4 21 -
Twin Lakes wet meadow bison 4 35 -—-
Twin Lakes wet meadow bison 4 49 -
Twin Lakes wet meadow bison 4 70 ---
Twin Lakes wet meadow bison 4 90 -
Twin Lakes wet meadow bison 4 117 -
Twin Lakes wet meadow bison 4 143 -
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Appendix B. Continued.

Wetland Grazing Day of Microbial CO, respiration rate
Site type treatment Replicate incubation (mg C g'l soil C d'l)
Little Spring Creek riparian control 1 89 1.71
Little Spring Creek riparian control 1 116 1.83
Little Spring Creek riparian control 1 140 0.95
Little Spring Creek riparian control 1 164 0.83
Little Spring Creek riparian control 2 3 2.52
Little Spring Creek riparian control 2 6 1.88
Little Spring Creek riparian control 2 10 1.48
Little Spring Creck riparian control 2 13 1.32
Little Spring Creek riparian control 2 20 091
Little Spring Creek riparian control 2 34 1.43
Little Spring Creek riparian control 2 48 1.57
Little Spring Creek riparian control 2 69 2.08
Little Spring Creek riparian control 2 89 211
Little Spring Creek riparian control 2 116 2.40
Little Spring Creek riparian control 2 140 1.50
Little Spring Creek riparian control 2 164 1.32
Little Spring Creek riparian control 3 3 3.49
Little Spring Creek riparian control 3 6 237
Little Spring Creek riparian control 3 10 223
Little Spring Creek riparian control 3 13 1.63
Little Spring Creek riparian control 3 20 1.41
Little Spring Creek riparian control 3 34 1.61
Little Spring Creek riparian control 3 48 1.62
Little Spring Creek riparian control 3 69 1.24
Little Spring Creek riparian control 3 89 2.90
Little Spring Creek riparian control 3 116 331
Little Spring Creek riparian control 3 140 235
Little Spring Creek riparian control 3 164 1.88
Little Spring Creek riparian control 4 3 2.41
Little Spring Creek riparian control 4 6 1.69
Little Spring Creck riparian control 4 10 1.23
Little Spring Creek riparian control 4 13 1.23
Little Spring Creck riparian control 4 20 1.12
Little Spring Creek riparian control 4 34 1.21
Little Spring Creek riparian control 4 48 1.13
Little Spring Creek riparian control 4 69 1.97
Little Spring Creck riparian control 4 89 238
Little Spring Creek riparian control 4 116 2.56
Little Spring Creek riparian control 4 140 1.92
Little Spring Creek riparian control 4 164 1.44
Little Spring Creek riparian bison 1 3 4.09
Little Spring Creek riparian bison 1 6 2.38
Little Spring Creek riparian bison 1 10 1.96
Little Spring Creek riparian bison 1 13 1.89
Little Spring Creek riparian bison 1 20 1.56
Little Spring Creek riparian bison 1 34 1.36
Little Spring Creek riparian bison 1 48 0.55
Little Spring Creek riparian bison 1 69 137
Little Spring Creek riparian bison 1 89 1.74
Little Spring Creck riparian bison 1 116 1.38
Little Spring Creek riparian bison 1 140 1.07
Little Spring Creek riparian bison 1 164 1.05
Little Spring Creek riparian bison 2 3 3.98
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Appendix B. Continued.

Wetland Grazing Day of Microbial CO, respiration rate
Site type treatment Replicate incubation (mg C g'1 soil C d")
Elk Springs wet meadow control 2 48 1.75
Elk Springs wet meadow control 2 69 1.73
Elk Springs wet meadow control 2 89 231
Elk Springs wet meadow control 2 116 2.05
Elk Springs wet meadow control 2 140 1.71
Elk Springs wet meadow control 2 164 1.59
Elk Springs wet meadow control 3 3 3.50
Elk Springs wet meadow control 3 6 2.48
Elk Springs wet meadow control 3 10 1.83
Elk Springs wet meadow control 3 13 1.66
Elk Springs wet meadow control 3 20 1.18
Elk Springs wet meadow control 3 34 1.53
Elk Springs wet meadow control 3 48 145
Elk Springs wet meadow control 3 69 1.61
Elk Springs wet meadow control 3 89 1.89
Elk Springs wet meadow control 3 116 1.78
Elk Springs wet meadow control 3 140 1.59
Elk Springs wet meadow control 3 164 1.07
Elk Springs wet meadow control 4 3 4.59
Elk Springs wet meadow control 4 6 2.79
Elk Springs wet meadow control 4 10 2.81
Elk Springs wet meadow control 4 13 1.59
Elk Springs wet meadow control 4 20 1.36
Elk Springs wet meadow control 4 34 1.36
Elk Springs wet meadow control 4 48 1.38
Elk Springs wet meadow control 4 69 1.72
Elk Springs wet meadow control 4 89 2.06
Elk Springs wet meadow control 4 116 1.98
Elk Springs wet meadow control 4 140 1.19
Elk Springs wet meadow control 4 164 0.93
Elk Springs wet meadow bison 1 3 4.16
Elk Springs wet meadow bison 1 6 325
Elk Springs wet meadow bison 1 10 297
Elk Springs wet meadow bison 1 13 2.41
Elk Springs wet meadow bison 1 20 1.95
Elk Springs wet meadow bison 1 34 1.30
Elk Springs wet meadow bison 1 48 1.82
Elk Springs wet meadow bison 1 69 2.02
Elk Springs wet meadow bison 1 89 2.24
Elk Springs wet meadow bison 1 116 1.56
Elk Springs wet meadow bison 1 140 1.72
Elk Springs wet meadow bison 1 164 1.35
Elk Springs wet meadow bison 2 3 5.39
Elk Springs wet meadow bison 2 6 3.99
Elk Springs wet meadow bison 2 10 3.62
Elk Springs wet meadow bison 2 13 2.66
Elk Springs wet meadow bison 2 20 1.89
Elk Springs wet meadow bison 2 34 2.30
Elk Springs wet meadow bison 2 48 2.48
Elk Springs wet meadow bison 2 69 3.54
Elk Springs wet meadow bison 2 89 373
Elk Springs wet meadow bison 2 116 2.76
Elk Springs wet meadow bison 2 140 2.94
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Appendix B. Continued.

Wetland Grazing Day of Microbial CO, respiration rate

Site type treatment Replicate  incubation (mg C g” soil C d")
South MZ Ranch wet meadow cattle 4 69 -
South MZ Ranch wet meadow cattle 4 89 -
South MZ Ranch wet meadow cattle 4 116 ——-
South MZ Ranch wet meadow cattle 4 140 2.00
South MZ Ranch wet meadow cattle 4 164 1.88
West MZ Ranch wet meadow control 1 3 2.96
West MZ Ranch wet meadow control 1 6 1.14
West MZ Ranch wet meadow control 1 10 091
West MZ Ranch wet meadow control 1 13 0.86
West MZ Ranch wet meadow control 1 20 0.74
West MZ Ranch wet meadow control 1 34 0.84
West MZ Ranch wet meadow control 1 48 0.80
West MZ Ranch wet meadow control 1 69 1.14
West MZ Ranch wet meadow control 1 89 1.10
West MZ Ranch wet meadow control 1 116 1.10
West MZ Ranch wet meadow control 1 140 1.19
West MZ Ranch wet meadow control 1 164 0.91
West MZ Ranch wet meadow control 2 3 3.96
West MZ Ranch wet meadow control 2 6 2.16
West MZ Ranch wet meadow control 2 10 1.99
West MZ Ranch wet meadow control 2 13 1.60
West MZ Ranch wet meadow control 2 20 1.25
West MZ Ranch wet meadow control 2 34 0.97
West MZ Ranch wet meadow control 2 48 1.27
West MZ Ranch wet meadow control 2 69 143
West MZ Ranch wet meadow control 2 89 1.50
West MZ Ranch wet meadow control 2 116 1.54
West MZ Ranch wet meadow control 2 140 1.37
West MZ Ranch wet meadow control 2 164 1.08
West MZ Ranch wet meadow control 3 3 4.61
West MZ Ranch wet meadow control 3 6 1.71
West MZ Ranch wet meadow control 3 10 1.10
West MZ Ranch wet meadow control 3 13 1.31
West MZ Ranch wet meadow control 3 20 1.13
West MZ Ranch wet meadow control 3 34 1.12
West MZ Ranch wet meadow control 3 48 0.97
West MZ Ranch wet meadow control 3 69 1.44
West MZ Ranch wet meadow control 3 89 1.48
West MZ Ranch wet meadow control 3 116 1.22
West MZ Ranch wet meadow control 3 140 1.16
West MZ Ranch wet meadow control 3 164 1.08
West MZ Ranch wet meadow control 4 3 2.92
West MZ Ranch wet meadow control 4 6 1.60
West MZ Ranch wet meadow control 4 10 1.40
West MZ Ranch wet meadow control 4 13 1.36
West MZ Ranch wet meadow control 4 20 1.07
West MZ Ranch wet meadow control 4 34 1.07
West MZ Ranch wet meadow control 4 48 1.14
West MZ Ranch wet meadow control 4 69 2.88
West MZ Ranch wet meadow control 4 89 2.64
West MZ Ranch wet meadow control 4 116 2.54
West MZ Ranch wet meadow control 4 140 2.28
West MZ Ranch wet meadow control 4 164 2.02
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Appendix D. Continued.

Table D-2. N, = cumulative N mineralized at time t (mg N g”* soil N) estimated with the first-order
model during the incubation period. Models which did not converge did not produce parameter
estimates.

Wetland Grazing Day of N

Site type treatment Replicate incubation !

Big Spring Creek riparian control 1 7 3.04
Big Spring Creek riparian control 1 14 5.98
Big Spring Creek riparian control 1 21 8.82
Big Spring Creek viparian control 1 35 1423
Big Spring Creek riparian control 1 49 19.30
Big Spring Creek riparian control 1 70 26.29
Big Spring Creek riparian control 1 90 32.33
Big Spring Creek riparian control 1 117 39.63
Big Spring Creek riparian control 1 143 45.82
Big Spring Creek riparian control 1 165 50.50
Big Spring Creek riparian control 2 7 3.06
Big Spring Creek riparian control 2 14 5.81
Big Spring Creek riparian control 2 21 8.28
Big Spring Creek riparian control 2 35 12.49
Big Spring Creek riparian control 2 49 15.89
Big Spring Creek riparian control 2 70 19.81
Big Spring Creek riparian control 2 90 22.54
Big Spring Creck riparian control 2 117 25.12
Big Spring Creek riparian control 2 143 26.77
Big Spring Creck riparian control 2 165 27.74
Big Spring Creek riparian control 3 7 3.46
Big Spring Creek riparian control 3 14 6.80
Big Spring Creek riparian control 3 21 10.05
Big Spring Creek riparian control 3 35 16.23
Big Spring Creek riparian control 3 49 22.04
Big Spring Creek riparian control 3 70 30.10
Big Spring Creek riparian control 3 90 37.09
Big Spring Creek riparian control 3 117 45.58
Big Spring Creek riparian control 3 143 52.83
Big Spring Creek riparian control 3 165 58.34
Big Spring Creek riparian control 4 7 3.41
Big Spring Creck riparian control 4 14 6.56
Big Spring Creek riparian control 4 21 9.47
Big Spring Creck riparian control 4 35 14.61
Big Spring Creek riparian control 4 49 18.99
Big Spring Creek riparian control 4 70 24.36
Big Spring Creek riparian control 4 90 28.39
Big Spring Creek riparian control 4 117 32.54
Big Spring Creck riparian control 4 143 35.48
Big Spring Creek riparian control 4 165 37.36
Big Spring Creek riparian bison 1 7 6.36
Big Spring Creek riparian bison 1 14 12.10
Big Spring Creck riparian bison 1 21 17.28
Big Spring Creek riparian bison 1 35 26.17
Big Spring Creek riparian bison 1 49 33.40
Big Spring Creek riparian bison 1 70 41.81
Big Spring Creck riparian bison 1 90 47.73
Big Spring Creek riparian bison 1 117 53.40
Big Spring Creek riparian bison 1 143 57.10
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Appendix D. Table D-2. Continued.

Wetland Grazing Day of N,

Site } type treatment Replicate incubation

Big Spring Creck riparian bison 1 165 59.29
Big Spring Creek riparian bison 2 7 10.34
Big Spring Creek riparian bison 2 14 19.10
Big Spring Creek riparian bison 2 21 26.52
Big Spring Creek riparian bison 2 35 38.14
Big Spring Creek riparian bison 2 49 46.49
Big Spring Creek riparian bison 2 70 54.81
Big Spring Creek riparian bison 2 90 59.68
Big Spring Creck riparian bison 2 117 63.49
Big Spring Creck riparian bison 2 143 65.45
Big Spring Creek riparian bison 2 165 66.38
Big Spring Creek riparian bison 3 7 3.82
Big Spring Creek riparian bison 3 14 7.42
Big Spring Creek riparian bison 3 21 10.80
Big Spring Creek riparian bison 3 35 16.98
Big Spring Creek riparian bison 3 49 22.46
Big Spring Creek riparian bison 3 70 29.51
Big Spring Creek riparian bison 3 90 35.13
Big Spring Creek riparian bison 3 117 41.33
Big Spring Creck riparian bison 3 143 46.06
Big Spring Creek riparian bison 3 165 49.31
Big Spring Creek riparian bison 4 7 3.14
Big Spring Creek riparian bison 4 14 6.07
Big Spring Creek riparian bison 4 21 8.82
Big Spring Creek riparian bison 4 35 13.79
Big Spring Creek riparian bison 4 49 18.15
Big Spring Creek riparian bison 4 70 23.69
Big Spring Creek riparian bison 4 90 28.03
Big Spring Creek riparian bison 4 117 32.72
Big Spring Creek riparian bison 4 143 36.24
Big Spring Creek riparian bison 4 165 38.60
Little Spring Creek riparian control 1 7 247
Little Spring Creek riparian control 1 14 4.87
Little Spring Creek riparian control 1 21 7.19
Little Spring Creek riparian control 1 35 11.62
Little Spring Creek riparian control 1 49 15.78
Little Spring Creek riparian control 1 70 21.56
Little Spring Creek riparian control 1 90 26.57
Little Spring Creek riparian control 1 117 32,67
Little Spring Creek riparian control 1 143 37.88
Little Spring Creek riparian control 1 165 41.83
Little Spring Creek riparian control 2 7 291
Little Spring Creek riparian control 2 14 5.74
Little Spring Creek riparian control 2 21 8.50
Little Spring Creek riparian control 2 35 13.79
Little Spring Creek riparian control 2 49 18.81
Little Spring Creek riparian control 2 70 25.84
Little Spring Creek riparian control 2 90 32.02
Little Spring Creek riparian control 2 117 39.64
Little Spring Creek riparian control 2 143 46.27
Little Spring Creck riparian control 2 165 51.38
Little Spring Creek riparian control 3 7 3.15
Little Spring Creek riparian control 3 14 6.16
Little Spring Creek riparian control 3 21 9.04
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Appendix D. Table D-2. Continued.

Wetland Grazing Day of N

Site type treatment Replicate incubation !

Little Spring Creek riparian bison 4 117 4722
Little Spring Creek riparian bison 4 143 4948
Little Spring Creek riparian bison 4 165 50.68
Elk Springs wet meadow control 1 7 6.89
Elk Springs wet meadow control 1 14 13.18
Elk Springs wet meadow control 1 21 1891
Elk Springs wet meadow control 1 35 28.92
Elk Springs wet meadow control 1 49 37.25
Elk Springs wet meadow control 1 70 4721
Elk Springs wet meadow control 1 90 54.46
Eik Springs wet meadow contro} 1 117 61.67
Elk Springs wet meadow control 1 143 66.58
Elk Springs wet meadow control 1 165 69.61
Elk Springs wet meadow control 2 7 5.28
Elk Springs wet meadow control 2 14 10.23
Elk Springs wet meadow control 2 21 14.85
Elk Springs wet meadow control 2 35 2322
Elk Springs wet meadow control 2 49 30.54
Elk Springs wet meadow control 2 70 39.85
Elk Springs wet meadow control 2 90 47.14
Elk Springs wet meadow control 2 117 55.02
Elk Springs wet meadow control 2 143 60.91
Elk Springs wet meadow control 2 165 64.87
Elk Springs wet meadow control 3 7 9.82
Elk Springs wet meadow control 3 14 18.37
Elk Springs wet meadow control 3 21 25.80
Elk Springs wet meadow control 3 35 37.89
Elk Springs wet meadow control 3 49 47.03
Elk Springs wet meadow control 3 70 56.75
Elk Springs wet meadow control 3 90 62.90
Elk Springs wet meadow control 3 117 68.13
Elk Springs wet meadow control 3 143 71.10
Elk Springs wet meadow control 3 165 72.65
Elk Springs wet meadow control 4 7 4.13
Elk Springs wet meadow control 4 14 8.12
Elk Springs wet meadow control 4 21 11.96
Elk Springs wet meadow control 4 35 19.23
Elk Springs wet meadow control 4 49 25.99
Elk Springs wet meadow control 4 70 35.25
Elk Springs wet meadow control 4 90 43.18
Elk Springs wet meadow control 4 117 52.65
Elk Springs wet meadow control 4 143 60.59
Elk Springs wet meadow control 4 165 66.52
Elk Springs wet meadow bison 1 7 5.39
Elk Springs wet meadow bison 1 14 10.55
Elk Springs wet meadow bison 1 21 15.48
Elk Springs wet meadow bison 1 35 24.70
Elk Springs wet meadow bison 1 49 33.14
Elk Springs wet meadow bison 1 70 44.47
Elk Springs wet meadow bison 1 90 53.93
Elk Springs wet meadow bison 1 117 64.94
Elk Springs wet meadow bison 1 143 73.89
Elk Springs wet meadow bison 1 165 80.38
Elk Springs wet meadow bison 2 7 6.47

185



Appendix D. Table D-2. Continued.

Wetland Grazing Day of N

Site type treatment Replicate incubation t

Elk Springs wet meadow bison 2 14 12.66
Elk Springs wet meadow bison 2 21 18.56
Elk Springs wet meadow bison 2 35 29.58
Elk Springs wet meadow bison 2 49 39.64
Elk Springs wet meadow bison 2 70 53.08
Elk Springs wet meadow bison 2 90 64.26
Elk Springs wet meadow bison 2 117 77.20
Elk Springs wet meadow bison 2 143 87.66
Elk Springs wet meadow bison 2 165 95.21
Elk Springs wet meadow bison 3 7 6.54
Elk Springs wet meadow bison 3 14 12.67
Elk Springs wet meadow bison 3 21 18.42
Elk Springs wet meadow bison 3 35 28.86
Elk Springs wet meadow bison 3 49 38.04
Elk Springs wet meadow bison 3 70 49.78
Elk Springs wet meadow bison 3 90 59.04
Elk Springs wet meadow bison 3 117 69.12
Elk Springs wet meadow bison 3 143 76.73
Elk Springs wet meadow bison 3 165 81.89
Elk Springs wet meadow bison 4 7 4.66
Elk Springs wet meadow bison 4 14 9.24
Elk Springs wet meadow bison 4 21 13.74
Elk Springs wet meadow bison 4 35 22.50
Elk Springs wet meadow bison 4 49 30.95
Elk Springs wet meadow bison 4 70 43.06
Elk Springs wet meadow bison 4 90 53.99
Elk Springs wet meadow bison 4 117 67.89
Elk Springs wet meadow bison 4 143 80.39
Elk Springs wet meadow bison 4 165 90.33
Twin Lakes wet meadow control 1 7 4.47
Twin Lakes wet meadow control 1 14 8.75
Twin Lakes wet meadow control 1 21 12.87
Twin Lakes wet meadow control 1 35 20.59
Twin Lakes wet meadow control 1 49 27.70
Twin Lakes wet meadow control 1 70 3732
Twin Lakes wet meadow control 1 90 45.43
Twin Lakes wet meadow countrol 1 117 54.95
Twin Lakes wet meadow control 1 143 62.79
Twin Lakes wet meadow control 1 165 68.54
Twin Lakes wet meadow control 2 7 3.63
Twin Lakes wet meadow control 2 14 7.14
Twin Lakes wet meadow control 2 21 10.55
Twin Lakes wet meadow control 2 35 17.06
Twin Lakes wet meadow control 2 49 23.17
Twin Lakes wet meadow control 2 70 31.66
Twin Lakes wet meadow control 2 90 39.04
Twin Lakes wet meadow control 2 117 48.03
Twin Lakes wet meadow control 2 143 55.72
Twin Lakes wet meadow control 2 165 61.57
Twin Lakes wet meadow control 3 7 4.19
Twin Lakes wet meadow control 3 14 823
Twin Lakes wet meadow control 3 21 12.13
Twin Lakes wet meadow control 3 35 19.51
Twin Lakes wet meadow control 3 49 26.39
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Appendix D. Table D-2. Continued.

Wetland

Grazing

Day of

Site type treatment Replicate incubation N

Twin Lakes wet meadow control 3 70 35.81
Twin Lakes wet meadow control 3 90 43.89
Twin Lakes wet meadow control 3 117 53.56
Twin Lakes wet meadow control 3 143 61.68
Twin Lakes wet meadow control 3 165 67.76
Twin Lakes wet meadow control 4 7 3.22
Twin Lakes wet meadow control 4 14 6.40
Twin Lakes wet meadow control 4 21 9.55
Twin Lakes wet meadow control 4 35 15.73
Twin Lakes wet meadow control 4 49 21.77
Twin Lakes wet meadow control 4 70 30.58
Twin Lakes wet meadow control 4 90 38.69
Twin Lakes wet meadow control 4 117 49.22
Twin Lakes wet meadow control 4 143 5893
Twin Lakes wet meadow control 4 165 66.83
Twin Lakes wet meadow bison 1 7 2,78
Twin Lakes wet meadow bison 1 14 5.50
Twin Lakes wet meadow bison 1 21 8.17
Twin Lakes wet meadow bison 1 35 13.35
Twin Lakes wet meadow bison 1 49 18.33
Twin Lakes wet meadow bison 1 70 2543
Twin Lakes wet meadow bison 1 90 31.81
Twin Lakes wet meadow bison 1 117 39.87
Twin Lakes wet meadow bison 1 143 47.07
Twin Lakes wet meadow bison 1 165 52.76
Twin Lakes wet meadow bison 2 7 3.20
Twin Lakes wet meadow bison 2 14 6.33
Twin Lakes wet meadow bison 2 21 9.39
Twin Lakes wet meadow bison 2 35 15.30
Twin Lakes wet meadow bison 2 49 20.95
Twin Lakes wet meadow bison 2 70 28.95
Twin Lakes wet meadow bison 2 90 36.08
Twin Lakes wet meadow bison 2 117 45.00
Twin Lakes wet meadow bison 2 143 52.87
Twin Lakes wet meadow bison 2 165 59.03
Twin Lakes wet meadow bison 3 7 3.92
Twin Lakes wet meadow bison 3 14 7.71
Twin Lakes wet meadow bison 3 21 11.37
Twin Lakes wet meadow bison 3 35 18.33
Twin Lakes wet meadow bison 3 49 24.83
Twin Lakes wet meadow bison 3 70 33.78
Twin Lakes wet meadow bison 3 90 41.49
Twin Lakes wet meadow bison 3 117 50.77
Twin Lakes wet meadow bison 3 143 58.62
Twin Lakes wet meadow bison 3 165 64.53
Twin Lakes wet meadow bison 4 7 -
Twin Lakes wet meadow bison 4 14 ——-
Twin Lakes wet meadow bison 4 21 -
Twin Lakes wet meadow bison 4 35 -—-
Twin Lakes wet meadow bison 4 49 -
Twin Lakes wet meadow bison 4 70 ---
Twin Lakes wet meadow bison 4 90 -
Twin Lakes wet meadow bison 4 117 -
Twin Lakes wet meadow bison 4 143 -
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Appendix D. Table D-2. Continued.

Wetland Grazing Day of

Site type treatment Replicate incubation

Twin Lakes wet meadow bison 4 165 -
South MZ Ranch wet meadow control 1 7 6.69
South MZ Ranch wet meadow control 1 14 12.95
South MZ Ranch wet meadow control 1 21 18.80
South MZ Ranch wet meadow control 1 35 29.40
South MZ Ranch wet meadow control 1 49 38.67
South MZ Ranch wet meadow control 1 70 50.46
South MZ Ranch wet meadow control 1 90 59.69
South MZ Ranch wet meadow control 1 117 69.67
South MZ Ranch wet meadow control 1 143 77.13
South MZ Ranch wet meadow control 1 165 82.15
South MZ Ranch wet meadow control 2 7 8.07
South MZ Ranch wet meadow control 2 14 15.64
South MZ Ranch wet meadow control 2 21 22.75
South MZ Ranch wet meadow control 2 35 35.67
South MZ Ranch wet meadow control 2 49 47.05
South MZ Ranch wet meadow control 2 70 61.63
South MZ Ranch wet meadow control 2 90 73.15
South MZ Ranch wet meadow control 2 117 85.73
South MZ Ranch wet meadow control 2 143 9525
South MZ Ranch wet meadow control 2 165 101.73
South MZ Ranch wet meadow control 3 7 5.10
South MZ Ranch wet meadow control 3 14 10.02
South MZ Ranch wet meadow control 3 21 14.74
South MZ Ranch wet meadow control 3 35 23.67
South MZ Ranch wet meadow control 3 49 31.93
South MZ Ranch wet meadow control 3 70 43.19
South MZ Ranch wet meadow control 3 90 52.78
South MZ Ranch wet meadow control 3 117 64.15
South MZ Ranch wet meadow control 3 143 73.62
South MZ Ranch wet meadow control 3 165 80.64
South MZ Ranch wet meadow control 4 7 473
South MZ Ranch wet meadow control 4 14 9.22
South MZ Ranch wet meadow control 4 21 13.49
South MZ Ranch wet meadow control 4 35 21.40
South MZ Ranch wet meadow control 4 49 28.54
South MZ Ranch wet meadow control 4 70 37.97
South MZ Ranch wet meadow control 4 90 45.70
South MZ Ranch wet meadow control 4 117 54.50
South MZ Ranch wet meadow control 4 143 61.48
South MZ Ranch wet meadow control 4 165 66.43
South MZ Ranch wet meadow cattle 1 7 -
South MZ Ranch wet meadow cattle 1 14 -
South MZ Ranch wet meadow cattle 1 21 -
South MZ Ranch wet meadow cattle 1 35 -
South MZ Ranch wet meadow cattle 1 49 —
South MZ Ranch wet meadow cattle 1 70 -
South MZ Ranch wet meadow cattle 1 90 -
South MZ Ranch wet meadow cattle 1 117 -
South MZ Ranch wet meadow cattle 1 143 —
South MZ Ranch wet meadow cattle 1 165 -
South MZ Ranch wet meadow cattle 2 7 -
South MZ Ranch wet meadow cattle 2 14 -
South MZ Ranch wet meadow cattle 2 21 -

188



Appendix D. Table D-2. Continued.

Wetland Grazing Day of

Site type treatment Replicate incubation

Twin Lakes wet meadow bison 4 165 -
South MZ Ranch wet meadow control 1 7 6.69
South MZ Ranch wet meadow control 1 14 12.95
South MZ Ranch wet meadow control 1 21 18.80
South MZ Ranch wet meadow control 1 35 29.40
South MZ Ranch wet meadow control 1 49 38.67
South MZ Ranch wet meadow control 1 70 50.46
South MZ Ranch wet meadow control 1 90 59.69
South MZ Ranch wet meadow control 1 117 69.67
South MZ Ranch wet meadow control 1 143 77.13
South MZ Ranch wet meadow control 1 165 82.15
South MZ Ranch wet meadow control 2 7 8.07
South MZ Ranch wet meadow control 2 14 15.64
South MZ Ranch wet meadow control 2 21 22.75
South MZ Ranch wet meadow control 2 35 35.67
South MZ Ranch wet meadow control 2 49 47.05
South MZ Ranch wet meadow control 2 70 61.63
South MZ Ranch wet meadow control 2 90 73.15
South MZ Ranch wet meadow control 2 117 85.73
South MZ Ranch wet meadow control 2 143 9525
South MZ Ranch wet meadow control 2 165 101.73
South MZ Ranch wet meadow control 3 7 5.10
South MZ Ranch wet meadow control 3 14 10.02
South MZ Ranch wet meadow control 3 21 14.74
South MZ Ranch wet meadow control 3 35 23.67
South MZ Ranch wet meadow control 3 49 31.93
South MZ Ranch wet meadow control 3 70 43.19
South MZ Ranch wet meadow control 3 90 52.78
South MZ Ranch wet meadow control 3 117 64.15
South MZ Ranch wet meadow control 3 143 73.62
South MZ Ranch wet meadow control 3 165 80.64
South MZ Ranch wet meadow control 4 7 473
South MZ Ranch wet meadow control 4 14 9.22
South MZ Ranch wet meadow control 4 21 13.49
South MZ Ranch wet meadow control 4 35 21.40
South MZ Ranch wet meadow control 4 49 28.54
South MZ Ranch wet meadow control 4 70 37.97
South MZ Ranch wet meadow control 4 90 45.70
South MZ Ranch wet meadow control 4 117 54.50
South MZ Ranch wet meadow control 4 143 61.48
South MZ Ranch wet meadow control 4 165 66.43
South MZ Ranch wet meadow cattle 1 7 -
South MZ Ranch wet meadow cattle 1 14 -
South MZ Ranch wet meadow cattle 1 21 -
South MZ Ranch wet meadow cattle 1 35 -
South MZ Ranch wet meadow cattle 1 49 —
South MZ Ranch wet meadow cattle 1 70 -
South MZ Ranch wet meadow cattle 1 90 -
South MZ Ranch wet meadow cattle 1 117 -
South MZ Ranch wet meadow cattle 1 143 —
South MZ Ranch wet meadow cattle 1 165 -
South MZ Ranch wet meadow cattle 2 7 -
South MZ Ranch wet meadow cattle 2 14 -
South MZ Ranch wet meadow cattle 2 21 -
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Appendix D. Table D-2. Continued.

Wetland Grazing Day of N

Site type treatment Replicate incubation !

South MZ Ranch wet meadow cattle 2 35 -
South MZ Ranch wet meadow cattle 2 49 -
South MZ Ranch wet meadow cattle 2 70 -
South MZ Ranch wet meadow cattle 2 90 -
South MZ Ranch wet meadow cattle 2 117 -
South MZ Ranch wet meadow cattle 2 143 -
South MZ Ranch wet meadow cattle 2 165 -
South MZ Ranch wet meadow cattle 3 7 5.89
South MZ Ranch wet meadow cattle 3 14 11.73
South MZ Ranch wet meadow cattle 3 21 17.51
South MZ Ranch wet meadow cattle 3 35 28.90
South MZ Ranch wet meadow cattle 3 49 40.07
South MZ Ranch wet meadow cattle 3 70 56.42
South MZ Ranch wet meadow cattle 3 90 71.56
South MZ Ranch wet meadow cattle 3 117 91.34
South MZ Ranch wet meadow cattle 3 143 109.70
South MZ Ranch wet meadow cattle 3 165 124,72
South MZ Ranch wet meadow cattle 4 7 7.94
South MZ Ranch wet meadow cattle 4 14 15.75
South MZ Ranch wet meadow cattle 4 21 23.45
South MZ Ranch wet meadow cattle 4 35 38.48
South MZ Ranch wet meadow cattle 4 49 53.06
South MZ Ranch wet meadow cattle 4 70 74.08
South MZ Ranch wet meadow cattle 4 90 93.22
South MZ Ranch wet meadow cattle 4 117 117.73
South MZ Ranch wet meadow cattle 4 143 139.99
South MZ Ranch wet meadow cattle 4 165 157.84
West MZ Ranch wet meadow control 1 7 4.43
West MZ Ranch wet meadow control 1 14 8.56
West MZ Ranch wet meadow control 1 21 12.43
West MZ Ranch wet meadow control 1 35 19.44
West MZ Ranch wet meadow control 1 49 25.56
West MZ Ranch wet meadow control 1 70 3333
West MZ Ranch wet meadow control 1 90 39.40
West MZ Ranch wet meadow control 1 117 4596
West MZ Ranch wet meadow control 1 143 50.86
West MZ Ranch wet meadow controt 1 165 54.14
West MZ Ranch wet meadow control 2 7 324
West MZ Ranch wet meadow control 2 14 6.36
West MZ Ranch wet meadow control 2 21 9.36
West MZ Ranch wet meadow control 2 35 15.02
West MZ Ranch wet meadow control 2 49 20.26
West MZ Ranch wet meadow control 2 70 27.41
West MZ Ranch wet meadow control 2 90 33.49
West MZ Ranch wet meadow control 2 117 40.70
West MZ Ranch wet meadow control 2 143 46.71
West MZ Ranch wet meadow control 2 165 51.16
West MZ Ranch wet meadow control 3 7 2.85
West MZ Ranch wet meadow control 3 14 5.58
West MZ Ranch wet meadow control 3 21 8.20
West MZ Ranch wet meadow control 3 35 13.14
West MZ Ranch wet meadow control 3 49 17.69
West MZ Ranch wet meadow control 3 70 23.85
West MZ Ranch wet meadow control 3 90 29.06
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Appendix D. Table D-2. Continued.

Wetland Grazing Day of N

Site type treatment Replicate incubation !

West MZ Ranch wet meadow control 3 117 35.19
West MZ Ranch wet meadow control 3 143 40.25
West MZ Ranch wet meadow control 3 165 43.97
West MZ Ranch wet meadow control 4 7 233
West MZ Ranch wet meadow control 4 14 4.62
West MZ Ranch wet meadow control 4 21 6.88
West MZ Ranch wet meadow control 4 35 11.31
West MZ Ranch wet meadow control 4 49 15.62
West MZ Ranch wet meadow control 4 70 21.85
West MZ Ranch wet meadow control 4 90 27.54
West MZ Ranch wet meadow control 4 117 34.86
West MZ Ranch wet meadow control 4 143 41.55
West MZ Ranch wet meadow control 4 165 46.93
West MZ Ranch wet meadow cattle 1 7 3.71
West MZ Ranch wet meadow cattle 1 14 7.29
West MZ Ranch wet meadow cattle 1 21 10.74
West MZ Ranch wet meadow cattle 1 35 17.30
West MZ Ranch wet meadow cattle 1 49 23.41
West MZ Ranch wet meadow cattle 1 70 31.79
West MZ Ranch wet meadow cattle 1 90 38.99
West MZ Ranch wet meadow cattle 1 117 47.63
West MZ Ranch wet meadow cattle 1 143 54.90
West MZ Ranch wet meadow cattle 1 165 60.35
West MZ Ranch wet meadow cattle 2 7 3.60
West MZ Ranch wet meadow cattle 2 14 7.13
West MZ Ranch wet meadow cattle 2 21 10.60
West MZ Ranch wet meadow cattle 2 35 17.35
West MZ Ranch wet meadow cattle 2 49 23.86
West MZ Ranch wet meadow cattle 2 70 33.19
West MZ Ranch wet meadow cattle 2 90 41.61
West MZ Ranch wet meadow cattle 2 117 52.31
West MZ Ranch wet meadow cattle 2 143 61.93
West MZ Ranch wet meadow cattle 2 165 69.57
West MZ Ranch wet meadow cattle 3 7 5.46
West MZ Ranch wet meadow cattle 3 14 10.51
West MZ Ranch wet meadow cattle 3 21 15.16
West MZ Ranch wet meadow cattle 3 35 23.44
West MZ Ranch wet meadow cattle 3 49 30.49
West MZ Ranch wet meadow cattle 3 70 39.18
West MZ Ranch wet meadow cattle 3 90 45.73
West MZ Ranch wet meadow cattle 3 117 52.52
West MZ Ranch wet meadow cattle 3 143 57.35
West MZ Ranch wet meadow cattle 3 165 60.45
West MZ Ranch wet meadow cattle 4 7 291
West MZ Ranch wet meadow cattle 4 14 5.73
West MZ Ranch wet meadow cattle 4 21 8.47
West MZ Ranch wet meadow cattle 4 35 13.70
West MZ Ranch wet meadow cattle 4 49 18.62
West MZ Ranch wet meadow cattle 4 70 25.48
West MZ Ranch wet meadow cattle 4 90 3145
West MZ Ranch wet meadow cattle 4 117 38.74
West MZ Ranch wet meadow cattle 4 143 45.00
West MZ Ranch wet meadow cattle 4 165 49.77
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Appendix E. N mineralization parameters for soils from Great Sand Dunes riparian corridors and wet
meadows estimated with the mixed-order model. Nt = cumulative N mineralized at time t (mg N g soil
N), t = 24 weeks, for N mineralized during the incubation period, NI = potentially mineralizable labile N
(mg N g 50il N), h = mineralization rate constant of the labile N pool (week™), ¢ = mineralization rate
constant for recalcitrant N pool (mg N g™ soil N week™"). Models which did not converge, did not produce
parameter estimates.

. Wetland Grazing . N, N h c

Site type treatment Replicate

Big Spring Creek riparian control 1 - - - ---
Big Spring Creek riparian control 2 30.00 9.05 0.099 0.127
Big Spring Creek riparian control 3 60.54 4.66 0.163 0339
Big Spring Creek riparian control 4 35.00 12.97 0.042 0.158
Big Spring Creek riparian bison 1 63.85 19.24 0.091 0.270
Big Spring Creek riparian bison 2 73.24 30.56 0.098 0259
Big Spring Creek riparian bison 3 - - --- -—-
Big Spring Creek riparian bison 4 38.87 30.36 0.014 0.071
Little Spring Creek riparian control 1 42.48 5.20 0.283 0.226
Little Spring Creek riparian control 2 52.54 4,58 0.185 0.291
Little Spring Creek riparian control 3 48.15 723 0.123 0.248
Little Spring Creek riparian control 4 65.47 2124 0.120 0.268
Little Spring Creek riparian bison 1 50.17 22.07 0.029 0.172
Little Spring Creek riparian bison 2 59.30 3.56 0.126 0.338
Little Spring Creek riparian bison 3 62.09 21.48 0.046 0.246
Little Spring Creek riparian bison 4 53.82 25.55 0.048 0.171
Elk Springs wet meadow control 1 72.25 31.25 0.034 0.249
Elk Springs wet meadow control 2 64.58 11832 0.007 -
Elk Springs wet meadow control 3 80.29 27.56 0.126 0.320
Elk Springs wet meadow control 4 68.12 10.01 0.051 0352
Elk Springs wet meadow bison 1 82.19 18.54 0.032 0.386
Elk Springs wet meadow bison 2 97.81 19.89 0.040 0472
Elk Springs wet meadow bison 3 82.49 63.45 0.013 0.158
Elk Springs wet meadow bison 4 90.90 6.98 1.033 0.509
Twin Lakes wet meadow control 1 77.70 4.89 0.190 0.441
Twin Lakes wet meadow control 2 62.66 8.62 0.045 0.328
Twin Lakes wet meadow control 3 70.28 6.84 0376 0.385
Twin Lakes wet meadow control 4 67.21 3.06 2.444 0.389
Twin Lakes wet meadow bison 1 53.06 4.63 1.176 0294
Twin Lakes wet meadow bison 2 60.00 471 1.105 0.335
Twin Lakes wet meadow bison 3 65.54 13.05 0.027 0.319
Twin Lakes wet meadow bison 4 56.86 0.42 1.038 0.342
South MZ Ranch wet meadow control 1 82.15 104.28 0.010 -
South MZ Ranch wet meadow control 2 == - ne -
South MZ Ranch wet meadow control 3 81.31 35.49 0.014 0.300
South MZ Ranch wet meadow control 4 68.25 16.27 0.036 0.315
South MZ Ranch wet meadow cattle 1 .- - - -
South MZ Ranch wet meadow cattle 2 --- —— - -
South MZ Ranch wet meadow cattle 3 127.29 0.83 0.964 0.766
South MZ Ranch wet meadow cattle 4 —— ——n - ——-
West MZ Ranch wet meadow control 1 56.30 15.23 0.046 0.249
West MZ Ranch wet meadow control 2 52.63 7.23 0.072 0.275
West MZ Ranch wet meadow control 3 45.07 7.31 0.061 0.229
West MZ Ranch wet meadow control 4 47.12 296 0.994 0.268
West MZ Ranch wet meadow cattle 1 - - - --
West MZ Ranch wet meadow cattle 2 72.80 3.03 3.050 0.423
West MZ Ranch wet meadow cattle 3 - - -—- -
West MZ Ranch wet meadow cattle 4 51.27 4.43 0.171 0.284
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Appendix G. Statistical analyses of Great Sand Dunes riparian corridors and wet meadows soil N
mineralization parameters and soil properties.

Table G-1a. Analysis of variance (ANOVA) of community type, grazing treatment (Trt), and day

of incubation (Day) effects on cumulative N mineralization (N,) estimated with the first-order model.
Community types were bison-riparian, bison-wet meadow, and cattle-wet meadow. Sites were 2 study
locations in each community type. Treatments were grazed and control. Rep were 2 analytical
replicates for each incubated soil sample. Data were log-transformed and significant differences were
accepted at P < 0.05.

Covariance Parameter Estimates

Covariance Parameter Subject Estimate
Site(Community Type) 0.08
Site*Tr(Community Type) (]
Rep(Site*Community Type*Trt) 0
Site*Day(Community Type) 0
Site*Trt*Day(Community Type) 0
SP(POW)] Rep(Site*Community Type*Trt) 0.9996
Residual 0.06

'SP(POW) is power function correction for repeated measures (Day) with subject = Rep(Site*Community Type*Trt)

Type III Tests of Fixed Effects

Effect Numerator DF Denominator DF F-value P-value
Community Type 2 0.43 0.68
Trt 1 471 0.12
Community Type*Trt 2 1.73 0.32
Day 9 27 10248.2 <.0001
Community Type*Day 18 27 4.81 0.0001
Trt*Day 9 27 0.18 1.00
Community Type*Trt*Day 18 27 2.77 0.008
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Appendix G. Continued.

Table G-1b. Differences of least square means in cumulative N mineralization (N,) for
Community Type* Treatment*Day interaction in Table G-1a. Differences were compared
between grazing treatments at each community type over the course of the incubation
period at P < 0.05, P-diff = difference between log-transformed least square means.

Day Grazing treatment P -diff DF t-value P-value

Bison effects in riparian zones

7 control grazed -0.39 27 -3.10 0.01
14 control grazed -0.37 27 -2.98 0.01
21 control grazed -0.36 27 -2.87 0.01
35 control grazed -0.33 27 -2.66 0.01
49 control grazed -0.31 27 -247 0.02
70 control grazed -0.27 27 -2.19 0.04
90 control grazed -0.24 27 -1.96 0.06

117 control grazed -0.21 27 -1.68 0.11

143 control grazed -0.18 27 -1.44 0.16

165 control grazed -0.16 27 -1.26 0.22
Bison effects in wet meadows

7 control grazed 0.11 27 0.84 0.41
14 control grazed 0.10 27 0.74 0.47
21 control grazed 0.09 27 0.66 0.51
35 control grazed 0.07 27 0.52 0.61
49 control grazed 0.05 27 0.38 0.71
70 control grazed 0.02 27 0.18 0.86
90 control grazed 0.00 27 0.02 0.99

117 control grazed -0.02 27 -0.19 0.85

143 control grazed -0.05 27 -0.36 0.72

165 control grazed -0.06 27 -0.49 0.63
Cattle effects in wet meadows

7 control grazed -0.16 27 -1.20 0.24
14 control grazed -0.17 27 -1.26 0.22
21 control grazed -0.18 27 -1.32 0.20
35 control grazed -0.19 27 -143 0.16
49 control grazed -0.21 27 -1.54 0.13
70 control grazed -0.23 27 -1.70 0.10
90 control grazed -0.25 27 -1.85 0.07

117 control grazed -0.28 27 -2.05 0.05

143 control grazed -0.30 27 -2.22 0.03

165 control grazed -0.32 27 -2.37 0.03
Bison vs. cattle effects in wet meadows

7 grazed grazed -0.15 27 -0.47 0.64
14 grazed grazed -0.15 27 -0.48 0.64
21 grazed grazed -0.15 27 -0.49 0.63
35 grazed grazed -0.16 27 -0.50 0.62
49 grazed grazed -0.16 27 -0.51 0.61
70 grazed grazed -0.17 27 -0.53 0.60
90 grazed grazed -0.17 27 -0.55 0.58

117 grazed grazed -0.18 27 -0.58 0.57
143 grazed grazed -0.19 27 -0.60 0.55
165 grazed grazed -0.20 27 -0.62 0.54

195



Appendix G. Continued.

Table G-2a. Analysis of variance (ANOVA) of community type, and grazing treatment (Trt) effects
on potentially mineralizable (N,) estimated with the first-order model. Community types were
bison-riparian, bison-wet meadow, and cattle-wet meadow. Sites were 2 study locations in each
community type. Treatments were grazed and control. Significant differences were accepted at

P -value <0.05.

Covariance Parameter Estimates

Covariance Parameter

Estimate

Site(Community Type)
Site*Trt(Community Type)

Residual

1127
14699
2231

Type III Tests of Fixed Effects

Effect Numerator DF Denominator DF F-value P-value
Community Type 2 3 1.24 0.40
Trt 1 1.38 0.32
Community Type*Trt 2 3 1.04 0.45

Table G-2b. Differences of least square means in potentially mineralizable (N,) for Community Type*Trt
interactionin Table G-2a. Comparisons were made between grazing treatments at each community type
over the course of the incubation period at P <0.05, P -diff = difference between least square means.

Effect Grazing treatment P-diff DF t-value P -value
Bison effects in riparian zones control grazed 0.67 3 0.01 1.00
Bison e¢ffects in wet meadows control grazed -23.19 3 -0.19 0.86
Cattle effects in wet meadows control grazed -229.59 3 -1.85 0.16
Bison vs. cattle effects in wet meadows grazed grazed -190.75 3 -1.48 0.23
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Appendix G. Continued.

Table G-3a. Analysis of variance (ANOVA) of community wetland type and grazing treatment
(Trt) effects on mineralization constant (k) estimated with the first-order model. Community
types were bison-riparian, bison-wet meadow, and cattle-wet meadow. Sites were 2 study
locations in each community type. Treatments were grazed and control. Significant differences
were accepted at P -value < 0.05,

Covariance Parameter Estimates

Covariance Parameter Estimate

Site(Community Type) 0.0000024
Site*Tri(Community Type) 0
Residual 0.000022

Type 111 Tests of Fixed Effects

Effect Numerator DF Denominator DF F-value P -value
Community Type 2 3 2.80 0.21
Trt 1 3 0.10 0.78
Community Type*Trt 2 3 2.90 0.20

Table G-3b. Differences of least square means in mineralization rate constat (k) for Community Type*Trt
interaction in Table G-3a. Comparisons were made between grazing treatments at each community type
over the course of the incubation period at P < 0.05, P -diff = difference between least square means.

Effect Grazing treatment P-diff DF t-value P -value
Bison effects in riparian zones control grazed -0.004 3 -1.80 0.17
Bison effects in wet meadows control grazed 0.003 3 1.32 0.28
Cattle effects in wet meadows control grazed 0.002 3 0.92 043
Bison vs. cattle effects in wet meadows grazed grazed 0.0005 3 0.16 0.89
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Appendix G. Continued.

Table G-4a. Analysis of variance (ANOVA) of community type and grazing treatment (Trt)

effects on net N mineralized by the end of the 24 week incubation period. Community
types were bison-riparian, bison-wet meadow, and cattle-wet meadow. Sites were 2 study
locations in each community type. Treatments were grazed and control. Significant
differences were accepted at P -value < 0.05.

Covariance Parameter Estimates

Covariance Parameter Estimate

Site(Community Type) 448

Site*Trt(Community Type) 233

Residual 101

Type I1I Tests of Fixed Effects

Effect Numerator DF Denominator DF F-value P-value
Community Type 2 3 0.82 0.52
Trt 1 2.26 0.23
Community Type*Trt 2 3 0.66 0.58

Table G-4b. Differences of least square means in net N mineralized at the end of the incubation period
(Wetland Type*Trt interaction in Table G-4a). Comparisons were made between grazing treatments
at each wetland type over the course of the incubation period at P < 0.05, P -diff = difference between

least square means.

Effect Graziug treatment P-diff DF t-value P -value
Bison effects in riparian zones control grazed -7.34 3 -0.46 0.68
Bison effects in wet meadows control grazed -5.52 3 -0.34 0.75
Cattle effects in wet meadows control grazed -33.94 3 -2.19 0.12
Bison vs. cattle effects in wet meadows grazed grazed -26.84 3 -1.01 0.39
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Appendix G. Continued.

Table G-5a. Analysis of variance (ANOVA) of community type and grazing treatment (Trt) effects on
soil properties. Community types were bison-riparian, bison-wet meadow, and cattle-wet meadow.

Sites were 2 study locations in each community type. Treatments were grazed and control. Soil C, N,

and organic matter data were log-transformed and significant differences were accepted at P -value < 0.05.

Covariance Parameter Estimates Type HI Tests of Fixed Effects

Covariance Parameter Estimate Effect NumI:;ator Denominator DF  F-value  P-value
Soil Carbon (%)

Site(Community Type) 0.47 Community Type 2 3 0.01 0.99

Site*Trt(Community Type) 0.03 Trt 1 3 2.37 022

Residual 0.09 Community Type*Trt 2 3 1.55 0.34
Soil Nitrogen (%)

Site(Community Type) 0.44 Community Type 2 3 0.09 0.92

Site*Trt(Community Type) 0.03 Trt I 3 3.01 0.18

Residual 0.07 Community Type*Trt 2 3 1.50 035
Soil C:N ratio

Site(Community Type) 0 Community Type 2 3 18.88 0.02

Site*Trt(Community Type) 0.02 Trt 1 3 0.63 0.48

Residual 1.41 Community Type*Trt 2 3 0.15 0.87
Soil Organic Matter (%)

Site(Community Type) 0.29 Community Type 2 3 0.02 0.98

Site*Trt(Community Type) 0.04 Trt 1 3 1.96 0.26

Residual 0.06 Community Type*Trt 2 3 1.29 0.39
Sand (%)

Site(Community Type) 225 Community Type 2 3 1.41 0.37

Site*Trt(Community Type) 13.52 Trt 1 3 0.72 0.46

Residual 1 Community Type*Trt 2 3 2.57 022
Clay (%)

Site(Community Type) 18.37 Community Type 2 3 113 0.43

Site*Trt(Community Type) 8.09 Trt 1 3 0.01 0.92

Residual 1 Community Type*Trt 2 3 0.76 0.54
Silt (%)

Site(Community Type) 106 Community Type 2 3 1.56 0.34

Site*Trt(Community Type) 5.73 Trt 1 3 1.90 0.26

Residual 1 Community Type*Trt 2 3 2.04 0.28
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Appendix G. Continued.

Table G-5b. Differences in least square means of soil properties in Great Sand Dunes riparian corridors
and wet meadows. Comparisons were made between community types averaged over grazing treatment
(i.e., significant Community Type effect in Table G-5b) at P < 0.05, P -diff = difference between least
square means. Soil C, N, and organic matter data were. Bison-wet meadows were Elk Springs and

Twin Lakes sites, bison-riparian were Big and Little Spring Creek sites, cattle-wet meadows were

South and West MZ Ranch sites.

Soil property Wetland type P -diff DF t-value P-value
Soil Carbon (%)

bison-wet meadow vs. bison-riparian 0.002 3 0.003 1.00

bison-wet meadow vs.  cattle-wet meadow -0.08 3 -0.12 0.91

bison-riparian vs. cattle-wet meadow -0.09 3 -0.12 0.91
Soil Nitrogen (%)

bison-wet meadow vs. bison-riparian 0.20 3 0.29 0.79

bison-wet meadow vs. cattle-wet meadow -0.07 3 -0.11 0.92

bison-riparian vs. cattle-wet meadow -0.27 3 -0.40 0.72
Soil C:N ratio

bison-wet meadow vs.  bison-riparian -2.32 3 -5.39 0.01

bison-wet meadow vs. cattle-wet meadow -0.06 3 -0.13 0.90

bison-riparian vs. cattle-wet meadow 2.26 3 5.25 0.01
Soil Organic Matter (%)

bison-wet meadow vs. bison-riparian 0.06 3 0.10 0.92

bison-wet meadow vs. cattle-wet meadow -0.07 3 -0.12 091

bison-riparian vs. cattle-wet meadow -0.13 3 -0.22 0.84
Sand (%)

bison-wet meadow vS.  bison-riparian -14.14 3 -0.93 0.42

bison-wet meadow vs. cattle-wet meadow 11.41 3 0.75 0.51

bison-riparian vs. cattle-wet meadow 25.54 1.68 0.19
Clay (%)

bison-wet meadow vs. bison-riparian 327 3 0.68 0.54

bison-wet meadow vs. cattle-wet meadow -3.91 3 -0.82 0.47

bison-riparian vs. cattle-wet meadow -7.19 3 -1.50 0.23
Silt (%)

bison-wet meadow vs. bison-riparian 10.86 3 1.04 0.37

bison-wet meadow vs.  cattle-wet meadow -7.49 3 -0.72 0.53

bison-riparian vs. cattle-wet meadow -18.36 3 -1.76 0.18
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Appendix H. Aboveground Primary Production (APP) and cattle utilization measured at Sheep Creek in
2005 and 2006. Four plots were visually estimated for APP (biomass) and two of these plots were

randomly selected and clipped to correct estimated weights in this double sampling procedure.

Block Transect Location Plot Grazing treatment Year Blomiss Utilization
(gm™) (%)
1 1 Streambank 1* grazed 2005 254 0
1 1 Streambank 2 grazed 2005 236 0
1 1 Streambank 3 grazed 2005 241 0
1 1 Streambank 4* grazed 2005 261 0
1 1 Middle 1* grazed 2005 118 0
1 1 Middle 2 grazed 2005 203 0
1 1 Middle 3* grazed 2005 95 0
1 1 Middle 4 grazed 2005 186 0
1 1 Edge 1 grazed 2005 38 0
1 1 Edge 2 grazed 2005 48 0
1 1 Edge 3* grazed 2005 87 0
1 1 Edge 4* grazed 2005 76 0
1 2 Streambank 1* excluded 2005 269 0
1 2 Streambank 2 excluded 2005 130 0
1 2 Streambank 3* excluded 2005 322 0
1 2 Streambank 4 excluded 2005 288 0
1 2 Middle 1 excluded 2005 510 0
1 2 Middle 2 excluded 2005 380 0
1 2 Middle 3* excluded 2005 457 0
1 2 Middle 4* excluded 2005 100 0
1 2 Edge 1* excluded 2005 155 0
1 2 Edge 2 excluded 2005 116 0
1 2 Edge 3* excluded 2005 129 0
1 2 Edge 4 excluded 2005 111 0
2 3 Streambank 1 grazed 2005 292 50
2 3 Streambank 2* grazed 2005 412 50
2 3 Streambank 3 grazed 2005 431 50
2 3 Streambank 4* grazed 2005 303 50
2 3 Middle 1 grazed 2005 326 30
2 3 Middle 2 grazed 2005 339 30
2 3 Middle 3* grazed 2005 303 30
2 3 Middle 4* grazed 2005 355 30
2 3 Edge 1 grazed 2005 293 0
2 3 Edge 2% grazed 2005 297 0
2 3 Edge 3* grazed 2005 278 0
2 3 Edge 4 grazed 2005 374 0
2 4 Streambank 1 excluded 2005 141 0
2 4 Streambank 2 excluded 2005 191 0
2 4 Streambank 3* excluded 2005 210 0
2 4 Streambank 4* excluded 2005 115 0
2 4 Middle 1 excluded 2005 226 0
2 4 Middle 2 excluded 2005 123 0
2 4 Middle 3* excluded 2005 202 0
2 4 Middle 4* excluded 2005 172 0
2 4 Edge 1 excluded 2005 136 0
2 4 Edge 2* excluded 2005 217 0
2 4 Edge 3 excluded 2005 191 0
2 4 Edge 4* excluded 2005 129 0
3 5 Streambank 1* grazed 2005 350 0
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Appendix H. Continued.

Block Transect Location Plot Grazing treatment Year Blom_azss Utilization

(gm™) (%)
3 5 Streambank 2 grazed 2005 284 0
3 5 Streambank 3* grazed 2005 276 0
3 5 Streambank 4 grazed 2005 311 0
3 5 Middle 1 grazed 2005 385 0
3 5 Middle 2* grazed 2005 333 0
3 5 Middle 3* grazed 2005 345 0
3 5 Middle 4 grazed 2005 406 0
3 5 Edge 1 grazed 2005 181 0
3 5 Edge 2 grazed 2005 313 0
3 5 Edge 3* grazed 2005 164 0
3 5 Edge 4* grazed 2005 302 0
3 6 Streambank 1* excluded 2005 284 0
3 6 Streambank 2* excluded 2005 283 0
3 6 Streambank 3 excluded 2005 268 0
3 6 Streambank 4 excluded 2005 282 0
3 6 Middle 1* excluded 2005 269 0
3 6 Middle 2 excluded 2005 258 0
3 6 Middle 3 excluded 2005 235 0
3 6 Middle 4* excluded 2005 265 0
3 6 Edge 1* excluded 2005 180 0
3 6 Edge 2 excluded 2005 314 0
3 6 Edge 3 excluded 2005 211 0
3 6 Edge 4* excluded 2005 216 0
1 1 Streambank 1* grazed 2006 198 30
1 1 Streambank 2 grazed 2006 172 30
1 1 Streambank 3 grazed 2006 207 30
1 1 Streambank 4* grazed 2006 172 30
1 1 Middle 1* grazed 2006 133 0
1 1 Middle 2 grazed 2006 132 0
1 1 Middle 3 grazed 2006 46 0
1 1 Middle 4* grazed 2006 54 0
1 1 Edge 1 grazed 2006 17 0
1 1 Edge 2 grazed 2006 30 0
1 1 Edge 3* grazed 2006 112 0
1 1 Edge 4* grazed 2006 35 0
1 2 Streambank 1* excluded 2006 152 0
1 2 Streambank 2 excluded 2006 237 0
1 2 Streambank 3* excluded 2006 183 0
1 2 Streambank 4 excluded 2006 221 0
1 2 Middle 1 excluded 2006 208 0
1 2 Middle 2 excluded 2006 250 0
1 2 Middle 3* excluded 2006 262 0
1 2 Middle 4* excluded 2006 178 0
1 2 Edge 1* excluded 2006 7 0
1 2 Edge 2 excluded 2006 95 0
1 2 Edge 3* excluded 2006 83 0
1 2 Edge 4 excluded 2006 55 0
2 3 Streambank 1 grazed 2006 127 65
2 3 Streambank 2 grazed 2006 226 65
2 3 Streambank 3* grazed 2006 153 65
2 3 Streambank 4* grazed 2006 211 65
2 3 Middle 1 grazed 2006 125 50
2 3 Middle 2 grazed 2006 95 50
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Appendix H. Continued.

Block Fransect Location Plot Grazing treatment Year me:ss Utilization

(gm™) (%)
2 3 Middle 3* grazed 2006 139 50
2 3 Middle 4* grazed 2006 159 50
2 3 Edge 1 grazed 2006 164 30
2 3 Edge 2* grazed 2006 226 30
2 3 Edge 3* grazed 2006 127 30
2 3 Edge 4 grazed 2006 215 30
2 4 Streambank 1 excluded 2006 142 0
2 4 Streambank 2 excluded 2006 198 0
2 4 Streambank 3* excluded 2006 71 0
2 4 Streambank 4* excluded 2006 209 0
2 4 Middle 1 excluded 2006 165 0
2 4 Middle 2 excluded 2006 211 0
2 4 Middle 3* excluded 2006 159 0
2 4 Middle 4* excluded 2006 72 0
2 4 Edge 1 excluded 2006 74 0
2 4 Edge 2% excluded 2006 116 0
2 4 Edge 3 excluded 2006 97 0
2 4 Edge 4* excluded 2006 116 0
3 5 Streambank 1* grazed 2006 228 50
3 5 Streambank 2 grazed 2006 248 50
3 5 Streambank 3* grazed 2006 260 50
3 5 Streambank 4 grazed 2006 225 50
3 5 Middie 1 grazed 2006 312 30
3 5 Middle 2% grazed 2006 234 30
3 5 Middie 3+ grazed 2006 223 30
3 5 Middle 4 grazed 2006 181 30
3 5 Edge 1 grazed 2006 61 0
3 5 Edge 2 grazed 2006 202 0
3 5 Edge 3+ grazed 2006 163 0
3 5 Edge 4* grazed 2006 72 0
3 6 Streambank 1* excluded 2006 119 0
3 6 Streambank 2% excluded 2006 199 0
3 6 Streambank 3 excluded 2006 107 0
3 6 Streambank 4 excluded 2006 159 0
3 6 Middle 1* excluded 2006 251 0
3 6 Middle 2 excluded 2006 268 0
3 6 Middle 3* excluded 2006 248 0
3 6 Middle 4 excluded 2006 257 0
3 6 Edge 1* excluded 2006 56 0
3 6 Edge 2 excluded 2006 114 0
3 6 Edge 3 excluded 2006 55 0
3 6 Edge 4* excluded 2006 211 0
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Appendix I. Aboveground plant C and N pools measured at Sheep Creek in October 2005 and 2006.
Aboveground plant C and N pools were calculated by multiplying plant %C and %N by APP of clipped
plots.

. . Plant C Plant N
Block  Transect  Laocation Plot Grazing treatment Year 2 2
(g Cm™) (gNm™)
1 1 Streambank 1 grazed 2005 109 1.8
1 1 Streambank 4 grazed 2005 103 1.4
1 1 Middle 1 grazed 2005 50 0.7
1 1 Middie 3 grazed 2005 88 1.1
1 1 Edge 3 grazed 2005 20 0.3
1 1 Edge 4 grazed 2005 16 0.3
1 2 Streambank 1 excluded 2005 114 1.6
1 2 Streambank 3 excluded 2005 56 0.9
1 2 Middle 3 excluded 2005 215 34
1 2 Middle 4 excluded 2005 163 2.6
1 2 Edge 1 excluded 2005 67 0.8
1 2 Edge 3 excluded 2005 51 0.6
2 3 Streambank 2 grazed 2005 131 1.3
2 3 Streambank 4 grazed 2005 183 2.5
2 3 Middle 3 grazed 2005 149 2.5
2 3 Middle 4 grazed 2005 134 22
2 3 Edge 2 grazed 2005 157 23
2 3 Edge 3 grazed 2005 124 23
2 4 Streambank 3 excluded 2005 81 12
2 4 Streambank 4 excluded 2005 48 0.7
2 4 Middle 3 excluded 2005 100 1.4
2 4 Middle 4 excluded 2005 54 0.7
2 4 Edge 2 excluded 2005 85 12
2 4 Edge 4 excluded 2005 58 0.5
3 5 Streambank 1 grazed 2005 152 1.9
3 5 Streambank 3 grazed 2005 124 2.1
3 5 Middle 2 grazed 2005 178 2.5
3 5 Middle 3 grazed 2005 145 1.6
3 5 Edge 3 grazed 2005 129 1.8
3 5 Edge 4 grazed 2005 75 1.8
3 6 Streambank 1 excluded 2005 120 2.1
3 6 Streambank 2 excluded 2005 114 2.1
3 6 Middle 1 excluded 2005 102 1.9
3 6 Middle 4 excluded 2005 11t 22
3 6 Edge 1 excluded 2005 80 1.4
3 6 Edge 4 excluded 2005 92 13
1 1 Streambank 1 grazed 2006 85 1.5
1 1 Streambank 4 grazed 2006 74 1.1
1 1 Middle 1 grazed 2006 56 1.0
1 1 Middle 4 grazed 2006 23 0.4
1 1 Edge 3 grazed 2006 48 0.8
1 1 Edge 4 grazed 2006 15 02
1 2 Streambank 1 excluded 2006 67 14
1 2 Streambank 3 excluded 2006 80 1.5
1 2 Middle 3 excluded 2006 114 23
1 2 Middle 4 excluded 2006 76 1.4
1 2 Edge 1 excluded 2006 3 0.1
1 2 Edge 3 excluded 2006 37 0.5
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Appendix 1. Continued.

. i Plant C Plant N
Block  Transect  Location Plot Grazing treatment Year 2 2
(Cm”) (gNm™)
2 3 Streambank 3 grazed 2006 55 1.1
2 3 Streambank 4 grazed 2006 90 1.7
2 3 Middle 3 grazed 2006 54 1.3
2 3 Middle 4 grazed 2006 68 1.4
2 3 Edge 2 grazed 2006 53 1.1
2 3 Edge 3 grazed 2006 91 2.0
2 4 Streambank 3 excluded 2006 60 1.2
2 4 Streambank 4 excluded 2006 30 0.7
2 4 Middle 3 excluded 2006 68 1.5
2 4 Middle 4 excluded 2006 31 0.7
2 4 Edge 2 excluded 2006 33 0.5
2 4 Edge 4 excluded 2006 43 0.6
3 5 Streambank 1 grazed 2006 97 22
3 5 Streambank 3 grazed 2006 95 22
3 5 Middie 2 grazed 2006 135 33
3 5 Middle 3 grazed 2006 76 19
3 5 Edge 3 grazed 2006 68 1.4
3 5 Edge 4 grazed 2006 29 0.6
3 6 Streambank 1 excluded 2006 52 0.7
3 6 Streambank 2 excluded 2006 47 0.7
3 6 Middle 1 excluded 2006 110 1.9
3 6 Middle 3 excluded 2006 111 1.9
3 6 Edge 1 excluded 2006 24 0.5
3 6 Edge 4 excluded 2006 24 0.5
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Appendix J. Root C and N pools measured at Sheep Creek during the 2006 growing season. Root C and
N pools were calculated by multiplying %C and %N of roots from composite soil cores (from each
location) by soil bulk densities of each location.

. . Root C Root N
Block Transect Location Grazing treatment Month 2 2
(gCm™) (gNm™)
1 1 Streambank grazed June 330 5.4
1 1 Middle grazed June 375 6.4
1 1 Edge grazed June 111 1.5
1 2 Streambank excluded June 210 4.1
1 2 Middle excluded June 84 1.7
1 2 Edge excluded June 15 0.3
2 3 Streambank grazed June 192 34
2 3 Middle grazed June 142 37
2 3 Edge grazed June 369 8.7
2 4 Streambank excluded June 214 33
2 4 Middle excluded June 513 8.7
2 4 Edge excluded June 355 6.8
3 5 Streambank grazed June 305 7.3
3 5 Middle grazed June 148 3.1
3 5 Edge grazed June 185 4.0
3 6 Streambank excluded June 522 9.8
3 6 Middle excluded June 91 1.7
3 6 Edge excluded June 199 33
1 1 Streambank grazed August 325 4.8
1 1 Middle grazed August 368 5.6
1 1 Edge grazed August 110 1.6
1 2 Streambank excluded August 210 35
1 2 Middle excluded August 85 14
1 2 Edge excluded August 15 0.2
2 3 Streambank grazed August 192 35
2 3 Middle grazed August 143 34
2 3 Edge grazed August 362 73
2 4 Streambank excluded August 212 3.1
2 4 Middle excluded August 511 9.0
2 4 Edge excluded August 357 8.0
3 5 Streambank grazed August 268 5.8
3 5 Middle grazed August 149 29
3 5 Edge grazed August 188 3.8
3 6 Streambank excluded August 528 8.2
3 6 Middle excluded August 90 1.4
3 6 Edge excluded August 197 29
1 1 Streambank grazed October 322 4.6
1 1 Middle grazed October 373 6.7
1 1 Edge grazed October 108 1.7
1 2 Streambank excluded October 212 3.8
1 2 Middle excluded October 85 14
1 2 Edge excluded October 16 0.3
2 3 Streambank grazed October 192 35
2 3 Middle grazed October 142 2.7
2 3 Edge grazed October 362 77
2 4 Streambank excluded October 210 44
2 4 Middle excluded October 512 7.4
2 4 Edge excluded October 358 6.8
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Appendix J. Continued.

Block Transect  Location Grazing treatment Month Root (; Root Di
(gCm™) (gNm™)
3 5 Streambank grazed October 309 6.9
3 5 Middle grazed October 148 2.9
3 5 Edge grazed October 185 39
3 6 Streambank excluded October 531 10.0
3 6 Middle excluded October 84 1.6
3 6 Edge excluded October 206 43
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Appendix M. Soil particle size distribution and bulk density measured at Sheep Creek in mid-August
2005.

i i Bulk densi
Block Transect Location t?el::xz:elxg]t S(?)/':;l ?:/‘3’ (S‘;l); g on) ty
1 1 Streambank grazed 75 7 18 0.84
1 1 Middle grazed 69 10 22 1.02
1 1 Edge grazed 66 10 24 1.02
1 2 Streambank excluded 68 8 23 0.81
1 2 Middle excluded 59 13 28 0.74
1 2 Edge excluded 59 15 26 0.84
2 3 Streambank grazed 75 7 18 1.08
2 3 Middle grazed 65 8 26 0.76
2 3 Edge grazed 62 10 28 0.76
2 4 Streambank excluded 68 7 25 0.80
2 4 Middle excluded 63 10 28 0.89
2 4 Edge excluded 64 10 26 0.85
3 5 Streambank grazed 73 6 21 0.72
3 5 Middle grazed 75 7 18 091
3 5 Edge grazed 68 10 22 1.09
3 6 Streambank excluded 69 10 21 0.71
3 6 Middle excluded 61 13 26 0.62
3 6 Edge excluded 72 10 18 0.78
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Appendix N. Soil pH measured at Sheep Creek in 2005.

Block Transect Location Grazing Month pH
treatment
1 1 Streambank grazed June 5.5
1 1 Middle grazed June 5.3
1 1 Edge grazed June 5.1
1 2 Streambank excluded June 5.3
1 2 Middle excluded June 52
1 2 Edge excluded June 5.4
2 3 Streambank grazed June 6.1
2 3 Middle grazed June 58
2 3 Edge grazed June 6.0
2 4 Streambank excluded June 53
2 4 Middle excluded June 6.1
2 4 Edge excluded June 5.8
3 5 Streambank grazed June 4.9
3 5 Middle grazed June 5.5
3 5 Edge grazed June 5.7
3 6 Streambank excluded June 5.6
3 6 Middle excluded June -
3 6 Edge excluded June 5.8
1 1 Streambank grazed August 55
1 1 Middle grazed Aungust 53
1 1 Edge grazed August 52
1 2 Streambank excluded August 52
1 2 Middle excluded August 5.3
1 2 Edge excluded August 5.5
2 3 Streambank grazed August 6.0
2 3 Middle grazed August 5.8
2 3 Edge grazed August 6.0
2 4 Streambank excluded August 5.4
2 4 Middle excluded August 59
2 4 Edge excluded August 5.7
3 5 Streambank grazed August 49
3 5 Middle grazed August 5.5
3 5 Edge grazed August 5.8
3 6 Streambank excluded August 5.7
3 6 Middle excluded August 5.5
3 6 Edge excluded August 57
1 1 Streambank grazed October 5.4
1 1 Middle grazed October 53
1 1 Edge grazed October 5.1
1 2 Streambank excluded October 52
1 2 Middle excluded October 54
1 2 Edge excluded October 5.5
2 3 Streambank grazed October 6.0
2 3 Middle grazed October 6.0
2 3 Edge grazed October 5.9
2 4 Streambank excluded October 5.4
2 4 Middle excluded October 6.1
2 4 Edge excluded October 59
3 5 Streambank grazed October 5.1
3 5 Middle grazed October 5.6
3 5 Edge grazed October 5.9
3 6 Streambank excluded October 5.7
3 6 Middle excluded October 5.5
3 6 Edge excluded October 5.9
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Appendix O. Soil moisture, soil C and N pools, soil C:N measured at Sheep Creek in 2005 and 2006.

Block Transect Location Grazing Month Year Soil moisture Seil C_z Soil N_z C:N
treatment (%) (kgCm™) (kgNm™)
1 1 Streambank grazed June 2005 60 1.99 0.11 18
1 1 Middle grazed June 2005 25 249 022 11
1 1 Edge grazed June 2005 24 3.63 0.21 17
1 2 Streambank excluded June 2005 34 3.00 020 15
1 2 Middle excluded June 2005 46 3.65 0.24 15
1 2 Edge excluded June 2005 25 343 0.22 16
2 3 Streambank grazed June 2005 33 2.81 0.25 11
2 3 Middle grazed June 2005 52 4.75 0.33 14
2 3 Edge grazed June 2005 75 7.72 0.43 18
2 4 Streambank excluded June 2005 57 428 0.25 17
2 4 Middle excluded June 2005 48 492 0.38 13
2 4 Edge excluded June 2005 34 4.55 0.35 13
3 5 Streambank grazed June 2005 66 242 0.14 18
3 5 Middle grazed June 2005 33 2.45 0.19 13
3 5 Edge grazed June 2005 43 3.02 0.26 12
3 6 Streambank excluded June 2005 89 6.10 0.29 21
3 6 Middle excluded June 2005 - 9.43 0.43 22
3 6 Edge excluded June 2005 45 5.13 0.32 16
1 1 Streambank grazed August 2005 55 2.05 0.12 18
1 1 Middle grazed August 2005 20 249 022 11
1 1 Edge grazed August 2005 15 3.47 0.18 19
1 2 Streambank excluded August 2005 24 3.23 0.22 14
1 2 Middle excluded August 2005 25 3.64 0.24 15
1 2 Edge excluded August 2005 18 3.60 0.23 16
2 3 Streambank grazed August 2005 20 271 0.23 12
2 3 Middle grazed August 2005 27 4.53 0.32 14
2 3 Edge grazed August 2005 70 8.21 0.45 18
2 4 Streambank excluded August 2005 29 4.70 0.27 17
2 4 Middle excluded August 2005 17 4.72 0.37 13
2 4 Edge excluded August 2005 15 4.74 0.37 13
3 5 Streambank grazed August 2005 45 3.13 0.17 18
3 5 Middle grazed August 2005 31 2.90 0.25 12
3 5 Edge grazed August 2005 20 3.52 031 11
3 6 Streambank excluded August 2005 81 5.54 0.27 21
3 6 Middle excluded August 2005 120 9.58 0.42 23
3 6 Edge excluded August 2005 31 5.50 0.33 17
1 1 Streambank grazed October 2005 108 3.01 0.14 21
1 1 Middle grazed October 2005 78 2.64 0.23 11
1 1 Edge grazed October 2005 87 425 0.24 18
1 2 Streambank excluded October 2005 79 343 0.23 15
1 2 Middle excluded Qctober 2005 89 3.77 0.25 15
1 2 Edge excluded October 2005 82 3.66 0.23 16
2 3 Streambank grazed October 2005 21 3.00 0.26 11
2 3 Middle grazed October 2005 30 4.65 0.33 14
2 3 Edge grazed October 2005 46 7.57 042 18
2 4 Streambank excluded October 2005 28 5.32 0.29 18
2 4 Middle excluded October 2005 18 5.08 0.39 13
2 4 Edge excluded October 2005 17 498 0.38 13
3 5 Streambank grazed October 2005 29 3.77 0.20 19
3 5 Middle grazed October 2005 27 3.64 0.27 13
3 5 Edge grazed October 2005 19 3.66 0.31 12
3 6 Streambank excluded October 2005 36 7.04 0.34 21
3 6 Middle excluded October 2005 79 9.15 0.41 22
3 6 Edge excluded October 2005 29 5.77 0.34 17
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Appendix O. Continued.

Block Transect Location Grazing Month Year Soil moisture Seil C_z Seil N_z
treatment (%) (kgCm”) (kgNm™)
1 1 Streambank grazed June 2006 42 2.08 0.14 15
1 1 Middle grazed June 2006 17 295 0.25 12
1 1 Edge grazed June 2006 18 421 0.24 17
1 2 Streambank excluded June 2006 24 2.80 023 12
1 2 Middle excluded June 2006 28 2.83 0.24 12
1 2 Edge excluded June 2006 18 3.00 0.22 14
2 3 Streambank grazed June 2006 18 4.00 0.32 12
2 3 Middle grazed June 2006 27 3.54 0.30 12
2 3 Edge grazed June 2006 32 591 0.39 15
2 4 Streambank excluded June 2006 44 346 0.24 14
2 4 Middle excluded June 2006 32 4.72 0.37 13
2 4 Edge excluded June 2006 19 398 033 12
3 5 Streambank grazed June 2006 37 1.92 0.15 13
3 5 Middle grazed June 2006 34 3.04 0.25 12
3 5 Edge grazed June 2006 27 3.86 0.30 13
3 6 Streambank excluded June 2006 39 3.80 0.24 16
3 6 Middle excluded June 2006 74 5.14 0.32 16
3 6 Edge excluded June 2006 29 425 0.30 14
1 1 Streambank grazed August 2006 49 1.92 0.14 14
1 1 Middle grazed August 2006 17 292 0.24 12
1 1 Edge grazed August 2006 15 4.24 0.24 18
1 2 Streambank excluded August 2006 18 2.79 0.23 12
1 2 Middle excluded August 2006 21 2.81 0.24 12
1 2 Edge excluded August 2006 16 3.08 0.22 14
2 3 Streambank grazed August 2006 19 3.78 0.30 13
2 3 Middle grazed August 2006 12 3.47 0.29 12
2 3 Edge grazed August 2006 25 6.14 0.40 15
2 4 Streambank excluded August 2006 44 3.40 0.24 14
2 4 Middle excluded August 2006 35 4.50 0.34 13
2 4 Edge excluded August 2006 16 4.14 0.34 12
3 5 Streambank grazed August 2006 27 2.12 0.16 13
3 5 Middle grazed August 2006 17 2.98 0.25 12
3 5 Edge grazed August 2006 14 3.57 027 13
3 6 Streambank excluded August 2006 22 3.57 0.21 17
3 6 Middle excluded August 2006 46 6.03 0.36 17
3 6 Edge excluded August 2006 13 4.46 0.30 15
1 1 Streambank grazed October 2006 42 1.81 0.13 14
1 1 Middle grazed October 2006 28 333 0.26 13
1 1 Edge grazed October 2006 22 4.29 0.24 18
1 2 Streambank excluded October 2006 31 3.01 0.24 13
1 2 Middle excluded October 2006 33 2.86 023 12
1 2 Edge excluded October 2006 28 3.08 0.22 14
2 3 Streambank grazed October 2006 22 4.12 0.32 13
2 3 Middle grazed October 2006 33 3.86 0.32 12
2 3 Edge grazed October 2006 38 6.29 0.39 16
2 4 Streambank excluded October 2006 49 3.79 0.26 15
2 4 Middle excluded October 2006 36 4.96 0.37 14
2 4 Edge excluded October 2006 34 4.44 0.35 13
3 5 Streambank grazed October 2006 37 2.17 0.17 13
3 5 Middle grazed October 2006 25 335 0.27 12
3 5 Edge grazed October 2006 23 4.47 0.32 14
3 6 Streambank excluded October 2006 38 3.87 0.23 17
3 6 Middle excluded October 2006 63 5.78 0.36 16
3 6 Edge excluded October 2006 35 4.56 0.32 14
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Appendix Q. Water soluble organic C (WSOC) and water soluble total N (WSTN) measured at Sheep
Creek in 2006.

Block Transect Location ‘t:::{:;ct:l tf‘;el::f!ilelit Month (:VCS (l)ncz) (:Vs:lli)
1 1 Streambank 1 grazed June 0.72 0.02
1 1 Streambank 2 grazed June 0.56 0.02
1 1 Middle 1 grazed June 1.20 0.03
1 1 Middle 2 grazed June 1.32 0.03
1 1 Edge 1 grazed June 373 0.04
1 1 Edge 2 grazed June 3.64 0.04
1 2 Streambank 1 excluded June 0.67 0.02
1 2 Streambank 2 excluded June 0.55 0.02
1 2 Middle 1 excluded June 0.21 0.04
1 2 Middle 2 excluded June 0.36 0.04
1 2 Edge 1 excluded June 1.07 0.03
1 2 Edge 2 excluded June 0.99 0.03
2 3 Streambank 1 grazed June 3.79 0.08
2 3 Streambank 2 grazed June 3.25 0.07
2 3 Middie 1 grazed June 2.46 0.08
2 3 Middle 2 grazed June 2.18 0.07
2 3 Edge 1 grazed June 534 0.07
2 3 Edge 2 grazed June 4.97 0.06
2 4 Streambank 1 excluded June 3.21 0.03
2 4 Streambank 2 excluded June 3.18 0.03
2 4 Middle 1 excluded June 3.80 0.05
2 4 Middle 2 excluded June 4.04 0.05
2 4 Edge 1 excluded June 4.13 0.07
2 4 Edge 2 excluded June 4.12 0.08
3 5 Streambank 1 grazed June 1.83 0.01
3 5 Streambank 2 grazed June 1.62 0.01
3 5 Middle 1 grazed June 1.94 0.04
3 5 Middle 2 grazed June 1.97 0.04
3 5 Edge 1 grazed June 2.62 0.05
3 5 Edge 2 grazed June 2.97 0.05
3 6 Streambank 1 excluded June 4.70 0.03
3 6 Streambank 2 excluded June 5.15 0.04
3 6 Middle 1 excluded June 3.73 0.02
3 6 Middle 2 excluded June 3.95 0.02
3 6 Edge 1 excluded June 3.21 0.03
3 6 Edge 2 excluded June 333 0.03
1 1 Streambank 1 grazed August 1.57 0.02
1 1 Streambank 2 grazed August 1.94 0.02
1 1 Middle 1 grazed August 2.80 0.04
1 1 Middle 2 grazed August 2.86 0.04
1 1 Edge 1 grazed August 6.57 0.06
1 1 Edge 2 grazed August 6.03 0.05
1 2 Streambank 1 excluded August 3.26 0.04
1 2 Streambank 2 excluded August 3.40 0.04
1 2 Middle 1 excluded August 2.39 0.05
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Appendix Q.

Block Transect Location Analytical Grazing Month WSOS WSTE
replicate treatment ECm) ENm™)
1 2 Middle 2 excluded August 2.34 0.05
1 2 Edge 1 excluded August 2.82 0.04
1 2 Edge 2 excluded August 2.76 0.04
2 3 Streambank 1 grazed August 4.80 0.08
2 3 Streambank 2 grazed August 4.34 0.08
2 3 Middle 1 grazed August 5.48 0.10
2 3 Middle 2 grazed August 5.37 0.10
2 3 Edge 1 grazed August 4.74 0.05
2 3 Edge 2 grazed August 5.38 0.06
2 4 Streambank 1 excluded August 2.80 0.02
2 4 Streambank 2 excluded August 2.85 0.02
2 4 Middle 1 excluded August 4.05 0.05
2 4 Middle 2 excluded August 6.52 0.06
2 4 Edge 1 excluded August 5.48 0.07
2 4 Edge 2 excluded August 5.11 0.07
3 5 Streambank 1 grazed August 273 0.03
3 5 Streambank 2 grazed August 2.70 0.03
3 5 Middle 1 grazed August 332 0.06
3 5 Middle 2 grazed August 3.16 0.06
3 5 Edge 1 grazed August 538 0.10
3 5 Edge 2 grazed August 5.10 0.09
3 6 Streambank 1 excluded August 6.09 0.05
3 6 Streambank 2 excluded August 5.83 0.06
3 6 Middle 1 excluded August 3.07 0.03
3 6 Middle 2 excluded August 3.39 0.03
3 6 Edge 1 excluded August 3.83 0.05
3 6 Edge 2 excluded August 3.43 0.05
1 1 Streambank 1 grazed October 1.40 0.01
1 1 Streambank 2 grazed October 1.60 0.01
1 1 Middle 1 grazed October 228 0.02
1 1 Middle 2 grazed October 2.41 0.02
1 1 Edge 1 grazed October 4.06 0.02
1 1 Edge 2 grazed October 4.08 0.02
1 2 Streambank 1 excluded October 217 0.01
1 2 Streambank 2 excluded October 2.01 0.02
1 2 Middle 1 excluded October 1.66 0.02
1 2 Middle 2 excluded October 1.58 0.02
1 2 Edge 1 excluded October 1.74 0.01
1 2 Edge 2 excluded October 1.69 0.01
2 3 Streambank 1 grazed October 433 0.06
2 3 Streambank 2 grazed October 4.29 0.06
2 3 Middle 1 grazed October 2.86 0.08
2 3 Middle 2 grazed October 2.99 0.08
2 3 Edge 1 grazed October 6.32 0.05
2 3 Edge 2 grazed October 7.24 0.06
2 4 Streambank 1 excluded October 291 0.01
2 4 Streambank 2 excluded October 3.28 0.02
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Appendix Q.

Block Transect Location ﬁ::;i}:;ct:] t:;e;z:lzrll:;glt Month (:Vs (l)ncz) (:Vs Tmri)
2 4 Middle 1 excluded October 391 0.03
2 4 Middle 2 excluded October 3.80 0.03
2 4 Edge 1 excluded October 3.63 0.03
2 4 Edge 2 excluded October 4.07 0.03
3 5 Streambank 1 grazed October 2.63 0.02
3 5 Streambank 2 grazed October 2.81 0.02
3 5 Middle 1 grazed October 221 0.05
3 5 Middle 2 grazed October 2.24 0.05
3 5 Edge 1 grazed October 4.02 0.06
3 5 Edge 2 grazed October 4.04 0.05
3 6 Streambank 1 excluded October 4.53 0.03
3 6 Streambank 2 excluded October 4.82 0.03
3 6 Middle 1 excluded October 439 0.02
3 6 Middle 2 excluded October 4.16 0.02
3 6 Edge 1 excluded October 3.66 0.03
3 6 Edge 2 excluded October 3.85 0.04
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Appendix R. Ash-free dry mass remaining (% AFDM) in litter bags upon removal from soil. Bags were
buried at Sheep Creek in October 2004 and one bag from each plot was removed from April to October
2005.

Block Transect Location Plot Grazing Month removed %AFDM
treatment
1 1 Streambank 1 grazed End of April 77
1 1 Streambank 2 grazed - End of April 67
1 1 Streambank 3 grazed End of April 72
1 1 Streambank 4 grazed End of April 71
1 1 Middle 1 grazed End of April 76
1 1 Middle 2 grazed End of April 78
1 1 Middle 3 grazed End of April 78
1 1 Middle 4 grazed End of April 80
1 1 Edge 1 grazed End of April 75
1 1 Edge 2 grazed End of April 83
1 1 Edge 3 grazed End of April 74
1 1 Edge 4 grazed End of April 77
1 2 Streambank 1 excluded End of April 67
1 2 Streambank 2 excluded End of April 72
1 2 Streambank 3 excluded End of April 75
1 2 Streambank 4 excluded End of April 80
1 2 Middle 1 excluded End of April 74
1 2 Middle 2 excluded End of April 80
1 2 Middle 3 excluded End of April 70
1 2 Middle 4 excluded End of April 79
1 2 Edge 1 excluded End of April 75
1 2 Edge 2 excluded End of April 78
1 2 Edge 3 excluded End of April 79
1 2 Edge 4 excluded End of April 71
2 3 Streambank 1 grazed End of April 98
2 3 Streambank 2 grazed End of April 102
2 3 Streambank 3 grazed End of April 93
2 3 Streambank 4 grazed End of April 96
2 3 Middle 1 grazed End of April 102
2 3 Middle 2 grazed End of April 109
2 3 Middle 3 grazed End of April 104
2 3 Middle 4 grazed End of April 116
2 3 Edge 1 grazed End of April 88
2 3 Edge 2 grazed End of April 117
2 3 Edge 3 grazed End of April 98
2 3 Edge 4 grazed End of April 98
2 4 Streambank 1 excluded End of April 96
2 4 Streambank 2 excluded End of April 88
2 4 Streambank 3 excluded End of April 100
2 4 Streambank 4 excluded End of April 93
2 4 Middle 1 excluded End of April 103
2 4 Middle 2 excluded End of April 99
2 4 Middle 3 excluded End of April 104
2 4 Middle 4 excluded End of April 106
2 4 Edge 1 excluded End of April 97
2 4 Edge 2 excluded End of April 102
2 4 Edge 3 excluded End of April 97
2 4 Edge 4 excluded End of April 99
3 5 Streambank 1 grazed End of April 81
3 5 Streambank 2 grazed End of April 97
3 5 Streambank 3 grazed End of April 80
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Appendix R. Continued.

Block Transect Location Plot Grazing Month removed %AFDM
treatment
3 5 Streambank 4 grazed End of April 98
3 5 Middle 1 grazed End of April 85
3 5 Middle 2 grazed End of April 83
3 5 Middle 3 grazed End of April 86
3 5 Middle 4 grazed End of April 93
3 5 Edge 1 grazed End of April 92
3 5 Edge 2 grazed End of April 97
3 5 Edge 3 grazed End of April 84
3 5 Edge 4 grazed End of April 94
3 6 Streambank 1 excluded End of April 77
3 6 Streambank 2 excluded End of April 90
3 6 Streambank 3 excluded End of April 85
3 6 Streambank 4 excluded End of April 84
3 6 Middle 1 excluded End of April 82
3 6 Middle 2 excluded End of April 86
3 6 Middle 3 excluded End of April 92
3 6 Middle 4 excluded End of April 93
3 6 Edge 1 excluded End of April 83
3 6 Edge 2 excluded End of April 94
3 6 Edge 3 excluded End of April 88
3 6 Edge 4 excluded End of April 82
1 1 Streambank 1 grazed June 88
1 1 Streambank 2 grazed June 78
1 1 Streambank 3 grazed June 79
1 1 Streambank 4 grazed June 73
1 1 Middle 1 grazed June 77
1 1 Middle 2 grazed June 79
1 1 Middle 3 grazed June 81
1 1 Middle 4 grazed June 72
1 1 Edge 1 grazed June 86
1 1 Edge 2 grazed June 94
1 1 Edge 3 grazed June 86
1 1 Edge 4 grazed June 86
1 2 Streambank 1 excluded June 77
1 2 Streambank 2 excluded June 73
1 2 Streambank 3 excluded June 86
1 2 Streambank 4 excluded June 84
1 2 Middie 1 excluded June 75
1 2 Middle 2 excluded June 80
1 2 Middle 3 excluded June 76
1 2 Middle 4 excluded June 76
1 2 Edge 1 excluded June 75
1 2 Edge 2 excluded June 75
1 2 Edge 3 excluded June 78
1 2 Edge 4 excluded June 80
2 3 Streambank 1 grazed June 89
2 3 Streambank 2 grazed June 70
2 3 Streambank 3 grazed June 76
2 3 Streambank 4 grazed June 78
2 3 Middle 1 grazed June 88
2 3 Middle 2 grazed June 92
2 3 Middle 3 grazed June 85
2 3 Middle 4 grazed June 91
2 3 Edge 1 grazed June 87
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Appendix R. Continued.

Block Transect Location Plot Grazing Month removed %AFDM
treatment

2 3 Edge 2 grazed June 82
2 3 Edge 3 grazed June 92
2 3 Edge 4 grazed June 93
2 4 Streambank 1 excluded June 82
2 4 Streambank 2 excluded June 84
2 4 Streambank 3 excluded June 76
2 4 Streambank 4 excluded June 82
2 4 Middle 1 excluded June 85
2 4 Middle 2 excluded June 79
2 4 Middle 3 excluded June 77
2 4 Middle 4 excluded June 77
2 4 Edge 1 excluded June 92
2 4 Edge 2 excluded June 87
2 4 Edge 3 excluded June 84
2 4 Edge 4 excluded June 80
3 S Streambank 1 grazed June 73
3 5 Streambank 2 grazed June 75
3 S Streambank 3 grazed June 68
3 5 Streambank 4 grazed June 77
3 5 Middle 1 grazed June 76
3 S Middle 2 grazed June 71
3 5 Middle 3 grazed June 70
3 5 Middle 4 grazed June 55
3 5 Edge 1 grazed June 85
3 5 Edge 2 grazed June 69
3 S Edge 3 grazed June 68
3 5 Edge 4 grazed June 74
3 6 Streambank 1 excluded June 64
3 6 Streambank 2 excluded June 66
3 6 Streambank 3 excluded June 54
3 6 Streambank 4 excluded June 83
3 6 Middle 1 excluded June 80
3 6 Middle 2 excluded June 76
3 6 Middle 3 excluded June 76
3 6 Middle 4 excluded June 73
3 6 Edge 1 excluded June 78
3 6 Edge 2 excluded June 71
3 6 Edge 3 excluded June 77
3 6 Edge 4 excluded June 69
1 1 Streambank 1 grazed August 52
1 1 Streambank 2 grazed August 44
1 1 Streambank 3 grazed August 55
1 1 Streambank 4 grazed August 0

1 1 Middle 1 grazed August 42
1 1 Middle 2 grazed August 65
1 1 Middle 3 grazed August 55
1 1 Middle 4 grazed August 38
1 1 Edge 1 grazed August 66
1 1 Edge 2 grazed August 64
1 1 Edge 3 grazed August 58
1 1 Edge 4 grazed August 56
1 2 Streambank 1 excluded August 40
1 2 Streambank 2 excluded August 44
1 2 Streambank 3 excluded August 51
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Appendix R. Continued.

Block Transect Location Plot Grazing Month removed %AFDM
treatment
| 2 Streambank 4 excluded August 40
1 2 Middle 1 excluded August 44
1 2 Middle 2 excluded August 44
1 2 Middle 3 excluded August 49
1 2 Middle 4 excluded August 55
1 2 Edge 1 excluded August 48
1 2 Edge 2 excluded August 55
1 2 Edge 3 excluded August 57
1 2 Edge 4 excluded August 58
2 3 Streambank 1 grazed August 53
2 3 Streambank 2 grazed August 47
2 3 Streambank 3 grazed August 51
2 3 Streambank 4 grazed August 44
2 3 Middle 1 grazed August 55
2 3 Middle 2 grazed August 51
2 3 Middle 3 grazed August 53
2 3 Middle 4 grazed August 56
2 3 Edge 1 grazed August 52
2 3 Edge 2 grazed August 30
2 3 Edge 3 grazed August 45
2 3 Edge 4 grazed August 53
2 4 Streambank 1 excluded August 59
2 4 Streambank 2 excluded August 54
2 4 Streambank 3 excluded August 58
2 4 Streambank 4 excluded August 50
2 4 Middle 1 excluded August 65
2 4 Middle 2 excluded August 61
2 4 Middle 3 excluded August 57
2 4 Middle 4 excluded August 58
2 4 Edge 1 excluded August 54
2 4 Edge 2 excluded August 48
2 4 Edge 3 excluded August 58
2 4 Edge 4 excluded August 26
3 S Streambank 1 grazed August 34
3 5 Streambank 2 grazed August 26
3 5 Streambank 3 grazed August 39
3 5 Streambank 4 grazed August 55
3 5 Middle 1 grazed August 35
3 5 Middle 2 grazed August 35
3 5 Middle 3 grazed August 47
3 S Middle 4 grazed August 46
3 5 Edge 1 grazed August 42
3 5 Edge 2 grazed August 43
3 5 Edge 3 grazed August 20
3 5 Edge 4 grazed August 27
3 6 Streambank 1 excluded August 16
3 6 Streambank 2 excluded August 33
3 6 Streambank 3 excluded August 22
3 6 Streambank 4 excluded August 35
3 6 Middle 1 excluded August 43
3 6 Middle 2 excluded August 50
3 6 Middle 3 excluded August 38
3 6 Middle 4 excluded August 30
3 6 Edge 1 excluded August 40
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Appendix R. Continued.

Block Transect Location Plot Grazing Month removed %AFDM
treatment

3 6 Edge 2 excluded August 48
3 6 Edge 3 excluded August 42
3 6 Edge 4 excluded August 23
1 1 Streambank 1 grazed October 53
1 1 Streambank 2 grazed October 51
1 1 Streambank 3 grazed October 53
1 1 Streambank 4 grazed October 0

1 1 Middle 1 grazed October 36
1 1 Middle 2 grazed October 51
1 1 Middle 3 grazed October 45
1 1 Middle 4 grazed October 0

1 1 Edge 1 grazed October 54
1 1 Edge 2 grazed October 62
1 1 Edge 3 grazed October 54
1 1 Edge 4 grazed October 38
1 2 Streambank 1 excluded October 37
1 2 Streambank 2 excluded October 50
1 2 Streambank 3 excluded October 41
1 2 Streambank 4 excluded October 54
1 2 Middle 1 excluded October 43
1 2 Middle 2 excluded October 55
1 2 Middle 3 excluded October 34
1 2 Middle 4 excluded October 26
1 2 Edge 1 excluded October 50
1 2 Edge 2 excluded October 61
1 2 Edge 3 excluded October 64
1 2 Edge 4 excluded October 48
2 3 Streambank 1 grazed October 43
2 3 Streambank 2 grazed October 37
2 3 Streambank 3 grazed October 43
2 3 Streambank 4 grazed October 49
2 3 Middle 1 grazed October 65
2 3 Middle 2 grazed October 62
2 3 Middle 3 grazed October 60
2 3 Middle 4 grazed October 44
2 3 Edge 1 grazed October 52
2 3 Edge 2 grazed October 39
2 3 Edge 3 grazed October 57
2 3 Edge 4 grazed October 71
2 4 Streambank 1 excluded October 45
2 4 Streambank 2 excluded October 59
2 4 Streambank 3 excluded October 47
2 4 Streambank 4 excluded October 56
2 4 Middle 1 excluded October 52
2 4 Middle 2 excluded October 56
2 4 Middle 3 excluded October 66
2 4 Middle 4 excluded October 0

2 4 Edge 1 excluded October 37
2 4 Edge 2 excluded October 37
2 4 Edge 3 excluded October 36
2 4 Edge 4 excluded October 34
3 5 Streambank 1 grazed October 40
3 5 Streambank 2 grazed October 68
3 5 Streambank 3 grazed October 51
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Appendix R. Continued.

Block Transect Location Plot Grazing Month removed %AFDM
treatment
3 S Streambank 4 grazed October 61
3 5 Middle 1 grazed October 44
3 5 Middie 2 grazed October 31
3 5 Middle 3 grazed October 41
3 5 Middle 4 grazed October 41
3 S Edge 1 grazed October 61
3 5 Edge 2 grazed October 71
3 5 Edge 3 grazed October 35
3 5 Edge 4 grazed October 54
3 6 Streambank 1 excluded October 36
3 6 Streambank 2 excluded October 52
3 6 Streambank 3 excluded October 38
3 6 Streambank 4 excluded October 35
3 6 Middle 1 excluded October 34
3 6 Middle 2 excluded October 39
3 6 Middle 3 excluded October 36
3 6 Middle 4 excluded October 39
3 6 Edge 1 excluded October 37
3 6 Edge 2 excluded October 52
3 6 Edge 3 excluded October 55
3 6 Edge 4 excluded October 56
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Appendix T. Denitrification potential measured as denitrification enzyme activity (DEA) rate in short-
term incubated soils collected at Sheep Creek in 2006.

. Analytical Grazing DEA
Block Transect  Location replicate treatment Month (ug N,O-N g soil b))
1 1 Streambank 1 grazed June 129
1 1 Streambank 2 grazed June 46
1 1 Middle 1 grazed June 281
1 1 Middle 2 grazed June 205
1 1 Edge 1 grazed June 225
1 1 Edge 2 grazed June 186
1 2 Streambank 1 excluded June 34
1 2 Streambank 2 excluded June 248
1 2 Middle 1 excluded June 43
1 2 Middle 2 excluded June 79
1 2 Edge 1 excluded June 80
1 2 Edge 2 excluded June 218
2 3 Streambank 1 grazed June 248
2 3 Streambank 2 grazed June 298
2 3 Middle 1 grazed June 922
2 3 Middle 2 grazed June 686
2 3 Edge 1 grazed June -
2 3 Edge 2 grazed June 815
2 4 Streambank 1 excluded June 73
2 4 Streambank 2 excluded June 131
2 4 Middle 1 excluded June 510
2 4 Middle 2 excluded June 438
2 4 Edge 1 excluded June 403
2 4 Edge 2 excluded June 588
3 5 Streambank 1 grazed June 54
3 5 Streambank 2 grazed June 55
3 5 Middle 1 grazed June 505
3 5 Middle 2 grazed June 118
3 5 Edge 1 grazed June 878
3 5 Edge 2 grazed June 897
3 6 Streambank 1 excluded June 432
3 6 Streambank 2 excluded June 153
3 6 Middle 1 excluded June 565
3 6 Middle 2 excluded June 124
3 6 Edge 1 excluded June 460
3 6 Edge 2 excluded June 1007
1 1 Streambank 1 grazed August 16
1 1 Streambank 2 grazed August 4
1 1 Middle 1 grazed August 6
1 1 Middle 2 grazed August 3
1 1 Edge 1 grazed August 3
1 1 Edge 2 grazed August 3
1 2 Streambank 1 excluded August 5
1 2 Streambank 2 excluded August 0
1 2 Middle 1 excluded August —
1 2 Middle 2 excluded August 0
1 2 Edge 1 excluded August 0
1 2 Edge 2 excluded August 1
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Appendix T. Continued.

Block Transect  Location Anal?’tlcal Grazing Month DE[: el
replicate treatment (ug N,O-N g™ soil h™)
2 3 Streambank 1 grazed August 111
2 3 Streambank 2 grazed August 46
2 3 Middle 1 grazed August 127
2 3 Middle 2 grazed August 225
2 3 Edge 1 grazed August 279
2 3 Edge 2 grazed August 813
2 4 Streambank 1 excluded August 110
2 4 Streambank 2 excluded August 70
2 4 Middle 1 excluded August 44
2 4 Middle 2 excluded August 97
2 4 Edge 1 excluded August 55
2 4 Edge 2 excluded August 174
3 5 Streambank 1 grazed August 88
3 5 Streambank 2 grazed August -
3 5 Middle 1 grazed August 17
3 5 Middle 2 grazed August 10
3 5 Edge 1 grazed August -
3 5 Edge 2 grazed August 24
3 6 Streambank 1 excluded August 18
3 6 Streambank 2 excluded August 200
3 6 Middle 1 excluded August 44
3 6 Middle 2 excluded August 22
3 6 Edge 1 excluded August 13
3 6 Edge 2 excluded August 50
1 1 Streambank 1 grazed October 29
1 1 Streambank 2 grazed October 10
1 1 Middle 1 grazed October 6
1 1 Middle 2 grazed October 14
1 1 Edge 1 grazed October 9
1 1 Edge 2 grazed October 14
1 2 Streambank 1 excluded October 4
1 2 Streambank 2 excluded October 3
1 2 Middle 1 excluded October 9
1 2 Middle 2 excluded October 7
1 2 Edge 1 excluded October 9
1 2 Edge 2 excluded October 16
2 3 Streambank 1 grazed October 35
2 3 Streambank 2 grazed October 28
2 3 Middle 1 grazed October 16
2 3 Middle 2 grazed October 727
2 3 Edge 1 grazed October 169
2 3 Edge 2 grazed October 396
2 4 Streambank 1 excluded October 54
2 4 Streambank 2 excluded October 10
2 4 Middle 1 excluded October 816
2 4 Middle 2 excluded October 84
2 4 Edge 1 excluded October 177
2 4 Edge 2 excluded October 63
3 5 Streambank 1 grazed October 5
3 5 Streambank 2 grazed October 23
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Appendix T. Continued.

R Analytical Grazin, DEA
Block Transect Location repl?ca te treatmelglt Month (ug N;O-N g'l soil h'l)
3 5 Middle 1 grazed October 13
3 5 Middle 2 grazed October 5
3 5 Edge 1 grazed October 12
3 5 Edge 2 grazed October 18
3 6 Streambank 1 excluded October 9
3 6 Streambank 2 excluded October 47
3 6 Middle 1 excluded October 1195
3 6 Middle 2 excluded October 91
3 6 Edge 1 excluded October 58
3 6 Edge 2 excluded QOctober 317
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Appendix U. Soil microbial biomass C and N pools and microbial C:N ratio of 2006 Sheep Creek soils

estimated with the chloroform-fumigation extraction method.

Block  Transect Location Anal?’tical Grazing Month MicrobiaLC MicrobiaLN Microbial
replicate treatment (mg C m™) (mg Nm™) C:N

1 1 Streambank 1 grazed June 23 1.0 24
1 1 Streambank 2 grazed June 33 1.5 22
1 1 Middle 1 grazed June 66 2.0 33
1 1 Middle 2 grazed June 76 2.6 29
1 1 Edge 1 grazed June 80 25 32
1 1 Edge 2 grazed June 83 2.6 32
1 2 Streambank 1 excluded June 78 2.8 28
1 2 Streambank 2 excluded June 81 2.9 28
1 2 Middle 1 excluded June 74 2.6 28
1 2 Middle 2 excluded June 71 2.5 28
1 2 Edge 1 excluded June 74 2.2 34
1 2 Edge 2 excluded June 74 22 34
2 3 Streambank 1 grazed June 88 2.8 32
2 3 Streambank 2 grazed June 91 7.5 12
2 3 Middle 1 grazed June 94 2.8 33
2 3 Middle 2 grazed June 106 33 32
2 3 Edge 1 grazed June 166 5.1 32
2 3 Edge 2 grazed June 145 43 34
2 4 Streambank 1 excluded June 66 6.2 11
2 4 Streambank 2 excluded June 69 6.6 11
2 4 Middle 1 excluded June 110 103 11
2 4 Middle 2 excluded June 111 9.7 11
2 4 Edge 1 excluded June 101 8.1 12
2 4 Edge 2 excluded June 98 7.2 14
3 5 Streambank 1 grazed June 40 42 9

3 5 Streambank 2 grazed June 43 47 9

3 5 Middle 1 grazed June 76 6.4 12
3 5 Middle 2 grazed June 80 6.8 12
3 5 Edge 1 grazed June 115 9.5 12
3 5 Edge 2 grazed June 114 92 12
3 6 Streambank 1 excluded June 108 33 13
3 6 Streambank 2 excluded June 87 7.4 12
3 6 Middle 1 excluded June 129 9.2 14
3 6 Middle 2 excluded June 120 7.8 15
3 6 Edge 1 excluded June 96 8.0 12
3 6 Edge 2 excluded June 96 7.6 13
1 1 Streambank 1 grazed August 34 3.0 11
1 1 Streambank 2 grazed August 43 34 12
1 1 Middle 1 grazed August 66 5.1 13
1 1 Middle 2 grazed August 80 5.4 15
1 1 Edge 1 grazed August 70 3.8 18
1 1 Edge 2 grazed August 71 3.7 19
1 2 Streambank 1 excluded August 79 4.7 17
1 2 Streambank 2 excluded August 78 4.7 17
1 2 Middle 1 excluded August 69 45 15
1 2 Middle 2 excluded August 66 44 15
1 2 Edge 1 excluded August 65 3.6 18
1 2 Edge 2 excluded August 67 3.7 18
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Appendix U. Continued.

Block Transect Location Anal.ytical Grazing Month MicrobialzC MicrobialzN Microbial
replicate treatment (mg C m™) (mg N m™) C:N
2 3 Streambank 1 grazed August 87 1.5 12
2 3 Streambank 2 grazed August 102 8.4 12
2 3 Middle 1 grazed August 76 2.8 27
2 3 Middle 2 grazed August 87 33 26
2 3 Edge 1 grazed August 148 7.6 19
2 3 Edge 2 grazed August 158 8.0 20
2 4 Streambank 1 excluded August 81 7.3 11
2 4 Streambank 2 excluded August 76 6.5 12
2 4 Middie 1 excluded August 110 10.0 11
2 4 Middie 2 excluded August 100 8.1 12
2 4 Edge 1 excluded August 96 5.7 17
2 4 Edge 2 excluded August 103 5.8 18
3 5 Streambank 1 grazed August 41 34 12
3 5 Streambank 2 grazed August 46 35 13
3 5 Middle 1 grazed August 72 4.7 16
3 5 Middle 2 grazed August 78 4.8 16
3 5 Edge 1 grazed August 93 5.0 19
3 5 Edge 2 grazed August 98 4.7 21
3 6 Streambank 1 excluded August 85 4.8 18
3 6 Streambank 2 excluded August 82 5.1 16
3 6 Middle 1 excluded August 142 9.3 15
3 6 Middle 2 excluded August 145 9.4 15
3 6 Edge 1 excluded August 82 33 25
3 6 Edge 2 excluded August 86 34 25
1 1 Streambank 1 grazed October 44 32 14
1 1 Streambank 2 grazed October 45 3.1 14
1 1 Middle 1 grazed October 87 7.4 12
1 1 Middle 2 grazed October 95 72 13
1 1 Edge 1 grazed October 82 6.1 13
1 1 Edge 2 grazed October 84 59 14
1 2 Streambank 1 excluded October 89 6.0 15
1 2 Streambank 2 excluded October 81 5.6 14
1 2 Middle 1 excluded October 73 5.6 13
1 2 Middle 2 excluded October 69 52 13
1 2 Edge 1 excluded October 79 5.5 14
1 2 Edge 2 excluded October 77 5.4 14
2 3 Streambank 1 grazed October 108 9.4 12
2 3 Streambank 2 grazed October 112 9.7 11
2 3 Middle 1 grazed October 116 89 13
2 3 Middle 2 grazed October 124 9.0 14
2 3 Edge 1 grazed October 216 14.9 15
2 3 Edge 2 grazed October 226 14.8 15
2 4 Streambank 1 excluded October 69 6.4 11
2 4 Streambank 2 excluded October 79 6.4 12
2 4 Middle 1 excluded October 105 8.4 13
2 4 Middle 2 excluded October 110 9.0 12
2 4 Edge 1 excluded October 120 9.5 13
2 4 Edge 2 excluded October 122 9.8 13
3 5 Streambank 1 grazed October 58 4.1 14
3 5 Streambank 2 grazed October 61 4.6 13
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Appendix U. Continued.

Block Transect Location Anal.ytical Grazing Month MicrobiaLC Microbiasz Microbial
replicate treatment {mg Cm™) (mg N m™) C:N
3 5 Middle 1 grazed October 78 5.8 14
3 5 Middle 2 grazed October 76 5.8 13
3 5 Edge 1 grazed October 126 9.6 13
3 5 Edge 2 grazed October 124 9.2 14
3 6 Streambank 1 excluded October 95 6.5 15
3 6 Streambank 2 excluded October 92 6.8 13
3 6 Middle 1 excluded October 206 12.6 16
3 6 Middle 2 excluded October 190 12.1 16
3 6 Edge 1 excluded October 112 8.6 13
3 6 Edge 2 excluded October 116 8.4 14
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Appendix V. Statistical analyses of N pools and processes in aboveground and belowground ecosystem
components at the Sheep Creek montane riparian zone.

Table V-1a. Analysis of variance (ANOVA) of location, grazing treatment (Trt), and year effects

on aboveground primary production (APP, g A6m™). Significant differences were accepted
at P -value <0.10.

Covariance Parameter Estimates

Covariance Parameter Estimate
Block 0
Block *Trt 2168
Block*Trt*Location 1093
Block*Trt*Location* Year 1997
Residual 0.97

Type I Tests of Fixed Effects

Effect Numerator DF Denominator DF F -value P-value
Location 2 8 6.13 0.02
Trt 1 0.23 0.68
Location*Trt 2 8 1.05 0.39
Year 1 12 34.44 <.0001
Location*Year 2 12 0.03 0.97
Trt*Year 1 12 1.57 023
Location*Trt*Year 2 12 0.51 0.61

Table V-1b. Differences of least square means in APP between Location and Year (significant effects
in Table V-1a). Comparisons were made at P < 0.10, P -diff = difference between least square means.

Location Location Year Year P-diff DF t-value P-value
Middle Streambank 2 8 0.07 0.94
Middle Edge 81 8 3.07 0.02
Streambank Edge 79 8 2.99 0.02

2005 2006 87 12 5.87 <.0001
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Appendix V. Continued.

Table V-2a. Analysis of variance (ANOVA) of location, grazing treatment (Trt), and year effects on

aboveground plant C and N pools (g m'2) and C:N ratios. Plant C:N data were log-transformed and
significant differences were accepted at P -value < 0.10.

Covariance Parameter Estimates

Type III Tests of Fixed Effects

Covariance Parameter Estimate Effect Numerator  Denominator F-value  P-value
DF DF
Plant C pool
Block 0 Location 2 8 545 0.03
Block *Trt 383 Trt 1 2 0.65 0.50
Block*Trt*Location 209 Location*Trt 2 8 1.48 0.28
Block*Trt*Location*Year 590 Year 1 12 28.57 0.0002
Residual 1.16 Location*Year 2 12 0.07 0.94
Trt*Year 1 12 0.28 0.61
Location*Trt* Year 2 12 0.28 0.76
Plant N pool
Block 0 Location 2 8 5.77 0.03
Block *Trt 0.16 Trt 1 2 0.62 0.51
Block*Trt*Location 0.06 Location*Trt 2 8 1.50 028
Block*Trt*Location* Year 0 Year 1 12 5.68 0.03
Residual 0.20 Location* Year 2 12 0.18 0.84
Trt*Year 1 12 029 0.60
Location*Trt* Year 2 12 0.02 0.98
Plant C:N
Block 0.002 Location 2 8 0.97 0.42
Block *Trt 0 Trt 1 2 1.32 037
Block*Trt*Location 0 Location*Trt 2 8 2.62 0.13
Block*Trt*Location* Year 0 Year 1 12 27.75 0.0002
Residual 0.02 Location*Year 2 12 0.63 0.55
Trt*Year 1 12 1.58 023
Location*Trt*Year 2 12 0.88 0.44
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Appendix V. Continued.

Table V-2b. Differences of least square means in aboveground plant C and N pools and C:N ratios
between Location and Year (significant effects in Table V-2a). Comparisons were made at P <0.10,
P -diff = difference between least square means.

Location Location Year Year P-diff DF t-value P-value

Plant C pool
Middle Streambank 10 8 0.79 0.45
Middle Edge 41 8 3.17 0.01
Streambank Edge 31 8 2.38 0.04
2005 2006 43 12 535 0.0002

Plant N pool
Middle Streambank 0.26 8 1.12 0.30
Middle Edge 0.77 8 334 0.01
Streambank Edge 0.51 8 222 0.06
2005 2006 0.35 12 238 0.03

Plant C:N

Middle Streambank -0.05 8 -0.83 0.43
Middle Edge -0.08 8 -1.38 0.20
Streambank Edge -0.03 8 -0.55 0.60
2005 2006 0.25 12 5.27 0.0002
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Appendix V. Continued.

Table V-3. Analysis of variance (ANOVA) of location, grazing treatment (Trt), and month effects on

root C and N pools (g m’z) and C:N ratios. Root C pool and C:N data were log-transformed and

significant differences were accepted at P -value <0.10,

Covariance Parameter Estimates

Type III Tests of Fixed Effects

Covariance Parameter Estimate Effect Numerator  Denominator F-value P-value
DF DF
Root C pool
Block 0 Location 2 8 1.01 041
Block *Trt 0.14 Trt 1 2 0.29 0.65
Block*Trt*Location 0.67 Location*Trt 2 8 0.29 0.76
Block*Trt*Location* Year 0 Month 2 24 1.15 033
Residual 0.0005 Location*Month 4 24 0.81 0.53
Trt*Month 2 24 0.60 0.56
Location*Trt*Mont] 4 24 1.80 0.16
Root N pool
Block 0.22 Location 2 0.37 0.70
Block *Trt 0 Trt 1 0.02 0.90
Block*Trt*Location 8.75 Location*Trt 2 0.08 0.92
Block*Trt*Location*Year 0 Year 2 24 2.55 0.10
Residual 0.27 Location*Year 4 24 1.46 0.24
Trt*Year 2 24 0.62 0.55
Location*Trt*Year 4 24 0.90 0.48
Root C:N
Block 0.0003 Location 2 8 0.16 0.85
Block *Trt 0.01 Trt 1 2 0.56 0.53
Block*Trt*Location 0.005 Location*Trt 2 8 0.42 0.67
Block*Trt*Location* Year 0 Year 2 24 3.05 0.07
Residual 0.01 Location*Year 4 24 1.04 0.40
Trt*Year 2 24 0.88 0.43
Location*Trt*Year 4 24 0.41 0.80
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Appendix V. Continued.

Table V-4a. Analysis of variance (ANOVA) of location and grazing treatment (Trt) effects on absolute
cover (%) of main functional groups (grass, sedge, forb). Forb data were log-transformed and

significant differences were accepted at P-value < 0.10.

Covariance Parameter Estimates

Type Il Tests of Fixed Effects

Covariance Parameter Estimate Effect Nun;)e;ator Denogl ll?nator F-value  P-value

Grass
Block 1977 Location 2 4.99 0.04
Block *Trt 0 Trt 1 0.26 0.66
Block*Trt*Location 0 Location*Trt 2 0.29 0.75
Residual 2158

Sedge
Block 546 Location 2 8 0.80 0.48
Block *Trt 0 Trt 1 2 0.76 0.47
Block*Trt*Location 1232 Location*Trt 2 8 0.70 0.53
Residual 0.87

Forb
Block 0.14 Location 2 8 0.55 0.60
Block *Trt 0 Trt 1 2 0.43 0.58
Block*Trt*Location 0 Location*Trt 2 1.60 0.26
Residual 043

Table V-4b. Differences of least square means in absolute cover (%) of grass, sedge, and forb

functional groups between Location (significant effect in Table V-4a). Comparisons were made at

P <0.10, P -diff = difference between least square means.

Location Location P -diff DF f-value P-value
Grass

Middle Streambank 11 8 0.85 0.42

Middle Edge 56 8 441 0.002

Streambank Edge 46 8 3.57 0.01
Sedge

Middle Streambank 12 8 0.57 0.59

Middle Edge 26 8 1.27 0.24

Streambank Edge 14 8 0.70 0.50
Forb

Middle Streambank -0.05 8 -0.14 0.89

Middle Edge -0.37 8 -0.97 0.36

Streambank Edge -0.32 8 -0.83 0.43
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Appendix V. Continued.

Table V-5. Analysis of variance (ANOVA) of location and grazing treatment (Trt) effects on total
total plant cover (%) and species richness. Significant differences were accepted at P- value <0.10.

Covariance Parameter Estimates

Type III Tests of Fixed Effects

Covariance Parameter Estimate Effect Numerator  Denominator F-value P-value
DF DF

Total plant cover
Block 1861 Location 2 8 1.65 025
Block *Trt 409 Trt 1 2 1.70 032
Block*Trt*Location 3179 Location*Trt 2 0.68 0.53
Residual 1

Species richness
Block 5.01 Location 2 1.81 022
Block *Trt 0 Trt 1 0.07 0.82
Block*Trt*Location 4.27 Location*Trt 2 0.17 0.85
Residual 0.97

Table V-6a. Analysis of variance (ANOVA) of location and grazing treatment (Trt) effects on absolute
cover (%) of most dominant species. Data were square-root transformed and significant differences

were accepterd at P -value < 0.10.

Covariance Parameter Estimates

Type III Tests of Fixed Effects

Covariance Parameter Estimate Effect Numerator  Denominator F-value  P-value
DF DF

Achillea millefolium
Block 0.69 Location 2 8 0.06 0.94
Block *Trt 0.02 Trt 1 2 2.18 0.28
Block*Trt*Location 0 Location*Trt 2 4.63 0.05
Residual 0.84

Agrostis stolonifera
Block 0.76 Location 2 8 2.38 0.15
Block *Trt 0 Trt 1 2 0.95 043
Block*Trt*Location 2.36 Location*Trt 2 8 1.68 0.25
Residual 0.75

Carex aquatilis
Block 0.86 Location 2 8 1.39 0.30
Block *Trt 0 Trt 1 2 5.06 0.15
Block*Trt*Location 2.72 Location*Trt 2 8 0.33 0.73
Residual 0.79

Carex praticola
Block 0 Location 2 8 1.00 041
Block *Trt 0.44 Trt 1 2 1.00 0.42
Block*Trt*Location 0.0002 Location*Trt 2 8 1.00 041
Residual 0.06
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Appendix V. Table V-6a. Continued.

Covariance Parameter Estimates Type I Tests of Fixed Effects
Covariance Parameter Estimate Effect Numerator  Denominator F-yalue P-value
DF DF

Carex utriculata
Block 0.74 Location 2 8 1.20 035
Block *Trt 0.57 Trt i 2 0.00 0.95
Block*Trt*Location 1.45 Location*Trt 2 8 0.19 0.83
Residual 0.85

Erigeron formosissimus
Block 0 Location 2 8 18.91 0.001
Block *Trt 1.30 Tt 2 0.88 0.45
Block*Trt*Location 0 Location*Trt 2 8 15.63 0.002
Residual 0.34

Fragaria spp.
Block 0.15 Location 2 8 0.00 1.00
Block *Trt 0 Trt 1 2 8.37 0.10
Block*Trt*Location 0.96 Location*Trt 2 8 1.83 0.22
Residual 0.55

Juncus arcticus
Block 0.32 Location 2 8 0.34 0.72
Block *Trt 0.11 Trt 1 2 225 0.27
Block*Trt*Location 1.31 Location*Trt 2 8 0.30 0.75
Residual 0.72

Juncus balticus
Block 0 Location 2 8 0.54 0.60
Block *Trt 0 Trt 1 2 0.07 0.82
Block* Trt* Location 141 Location*Trt 2 8 097 0.42
Residual 0.56

Phleum pratense
Block 1.15 Location 2 8 1.26 0.34
Block *Trt 0.02 Trt 1 2 372 0.19
Block*Trt*Location 1.57 Location*Trt 2 8 1.20 0.35
Residual 0.84

Potentilla spp.
Block 0.81 Location 2 8 1.18 0.36
Block *Trt 0.12 Trt 1 2 0.14 0.75
Block*Trt*Location 0.82 Location*Trt 2 8 2.08 0.19
Residual 0.83

Poa pratensis
Block 0 Location 2 8 4.64 0.05
Block *Trt 0.78 Trt 1 2 0.06 0.83
Block*Trt*Location 1.04 Location*Trt 2 8 0.06 0.94
Residuat 1.68

Taraxacum officinale
Block 0 Location 2 8 1.56 0.27
Block *Trt 0 Trt 1 2 1.81 0.31
Block*Trt*Location 0.84 Location*Trt 2 8 0.26 0.77
Residual 0.55

Trifolium repens
Block 0 Location 2 8 0.07 0.93
Block *Trt 0.75 Trt 1 2 0.86 0.45
Block*Trt*Location 0.56 Location*Trt 2 8 0.07 0.93
Residual 0.69
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Appendix V. Continued.

Table V-6b. Differences of least square means in absolute cover (%) of dominant species that differed
between locations or grazing treatmenst (Trt) (significant Location or Trt effect in Table V-6a).
Comparisons were made at P <0.10, P -diff = difference between square-root transformed least square

means.

Location Location Trt Trt P-diff DF t-value P -value
Fragaria spp.
Middie Streambank 0.02 8 0.03 0.98
Middle Edge 0.03 8 0.04 0.97
Streambank Edge 0.01 8 0.01 0.99
grazed excluded 1.68 2 2.89 0.10
Erigeron formosissimus
Middle Streambank -0.38 8 -1.14 0.29
Middle Edge -1.94 8 -5.80 0.0004
Streambank Edge -1.56 8 -4.66 0.002
Poa pratensis
Middle Streambank 1.70 8 1.78 0.11
Middle Edge 2.89 8 3.03 0.02
Streambank Edge 1.19 8 1.25 0.25

Table V-7a. Plot of stress vs. iteration number for non-metric multidimensional scaling

(NMS) of species space in landscape location. Stress for a 2-dimensional solution

was 20.5 and instability was 0.00046 after 53 iterations.

464 .

STRESS .

LTSS
ELLL LS
R kAR

ITERATION NUMBER
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Appendix V. Continued.

Table V-8a. Analysis of variance (ANOVA) of location and grazing treatment (Trt) effects on soil
particle distribution (% sand, clay, silt). Significant differences were accepted at P -value < 0.10.

Covariance Parameter Estimates

Type 111 Tests of Fixed Effects

Covariance Parameter Estimate Effect Numerator  Denominator F -value P -value
DF DF

Sand
Block 1.83 Location 2 8 6.22 0.02
Block *Trt 0 Trt 1 2 9.26 0.09
Block*Trt*Location 11.20 Location*Trt 2 8 2.09 0.19
Residual 0.91

Clay
Block 0.20 Location 2 8 948 0.01
Block *Trt 0.73 Trt 1 2 5.99 0.13
Block*Trt*Location 1.13 Location*Trt 2 8 0.98 0.42
Residual 0.79

Silt
Block 3.38 Location 2 342 0.08
Block *Trt 0 Trt 1 5.36 0.15
Block*Trt*Location 5.10 Location*Trt 2 2.76 0.12
Residual 0.84

Table V-8b. Differences of least square means in soil particle sizes (% sand, clay, silt) between
locations or grazing treatments (Trt) (significant Location or Trt effect in Table V-8a). Comparisons
were made at P < 0.10, P -diff = difference between least square means.

Location Location Trt Trt P -diff DF t-value P-value
Sand
Middle Streambank -6.05 8 -3.01 0.02
Middle Edge 0.18 8 0.09 0.93
Streambank Edge 6.22 8 3.10 0.01
grazed excluded -4.99 2 -3.04 0.09
Clay
Middle Streambank 2.66 8 333 0.01
Middle Edge -0.61 8 -0.76 0.47
Streambank Edge -3.27 8 -4.09 0.004
Silt
Middle Streambank 338 3 2.40 0.04
Middle Edge 0.43 8 0.31 0.77
Streambank Edge -2.95 8 -2.10 0.07
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Appendix V. Continued.

Table V-9. Analysis of variance (ANOVA) of location and grazing treatment (Trt) effects on soil
bulk density. Significant differences were accepted at P -value < 0.10.

Covariance Parameter Estimates

Type Il Tests of Fixed Effects

Numerator

Denominator

Covariance Parameter Estimate Effect DF DF F-value P-value
Block 0 Location 2 8 0.49 0.63
Block *Trt 0 Trt 4.33 0.17
Block*Trt*Location 0.0003 Location*Trt 2 0.04 0.96
Residual 0.02

Table V-10. Analysis of variance (ANOVA) of location, grazing treatment (Trt), and month effects
on soil pH. Significant differences were accepted at P -value < 0.10.

Covariance Parameter Estimates

Type I1I Tests of Fixed Effects

Covariance Parameter Estimate Effect Numerator  Denominator F-value P-value
DF DF

Block 0.06 Location 2 8 1.04 0.40

Block *Trt 0 Trt 1 0.01 0.92

Block*Trt*Location 0.07 Location*Trt 2 0.10 0.90

Block*Trt*Location*Month 0 Month 2 23 235 0.12

Residual 0.01 Location*Month 4 23 0.88 0.49
Trt*Month 2 23 0.26 0.77
Location*Trt*Month 4 23 0.62 0.65
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Appendix V. Continued.

Table V-11a. Analysis of variance (ANOVA) of location, grazing treatment (Trt), month, and
year effects on soil moisture (% gravimetric water content). Data were log-transformed and
significant differences were accepted at P -value < 0.10.

Covariance Parameter Estimates

Covariance Parameter Estimate
Block 0
Block *Trt 0
Block*Trt*Location 0.08
Block*Trt*Location*Month 0.002
Block*Trt*Location*Month*Year 0
Residual 0.17

Type 111 Tests of Fixed Effects

Effect Numerator DF Denominator DF F -value P-value
Location 2 8 1.48 0.28
Trt 1 2 0.60 0.52
Location*Trt 2 8 1.22 0.35
Month 2 24 9.04 0.001
Location*Month 4 24 0.60 0.67
Trt*Month 2 24 0.03 097
Location*Trt*Month 4 24 0.30 0.87
Year 1 35 17.97 0.0002
Location* Year 2 35 0.08 0.92
Trt*Year I 35 0.56 0.46
Location*Trt*Year 2 35 0.17 0.85
Month*Year 2 35 0.63 0.54
Location*Month*Year 4 35 0.06 0.99
Trt*Month* Year 2 35 0.10 0.90
Location*Trt*Month*Year 4 35 0.13 0.97

Table V-11b. Differences of least square means in soil moisture between months and years
(significant Month and Year effects in Table V-11a). Comparisons were made at P <0.10,
P -diff = difference between log-transformed least square means.

Month Month Year P-diff DF t-value P-value
August June -0.35 24 -3.51 0.002
August October -0.38 24 -3.82 0.001
June October -0.03 24 -0.26 0.80

2006 0.34 35 4.24 0.0002
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Appendix V. Continued.

Table V-12a. Analysis of variance (ANOVA) of location, grazing treatment (Trt), month, and

year effects on soil C and N pools (kg m‘z) and C:N ratio. Data were log-transformed and
significant differences were accepted at P -value < 0.10.

Covariance Parameter Estimates

Covariance Parameter Estimate
Soil C pool
Block 0.02
Block *Trt 0.05
Block*Trt*Location 0.01
Block*Trt*Location*Month 0
Block*Trt*Location*Month* Year 0
Residual 0.02
Soil N pool
Block 0.04
Block *Trt 0.01
Block*Trt*Location 0.01
Block*Trt*Location*Month 0
Block*Trt*Location*Month*Year 0
Residual 0.007
Soil C:N
Block 0
Block *Trt 0.005
Block*Trt*Location 0.02
Block*Trt*Location*Month 0
Block*Trt*Location*Month*Year 0
Residual 0.006
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Appendix V. Table V-12a. Continued.

Type III Tests of Fixed Effects

Effect Numerator DF Denominator DF F-value P-value
Soil C pool
Location 2 8 13.37 0.003
Trt 1 2 141 0.36
Location*Trt 2 8 10.90 0.01
Month 2 24 4.96 0.02
Location*Month 4 24 022 0.93
Trt*Month 2 24 0.31 0.73
Location*Trt*Month 4 24 0.10 0.98
Year 1 36 2443 <.0001
Location*Year 2 36 1.42 0.26
Trt* Year 1 36 16.48 0.0003
Location*Trt*Year 2 36 0.25 0.78
Month*Year 2 36 0.65 0.53
Location*Month*Year 4 36 0.50 0.74
Trt*Month*Year 2 36 029 0.75
Location*Trt*Month* Year 4 36 0.13 0.97
Soil N pool
Location 2 8 16.65 0.001
Trt 1 2 2.59 0.25
Location*Trt 2 8 3.42 0.08
Month 2 24 6.89 0.004
Location*Month 4 24 0.37 0.83
Trt*Month 2 24 045 0.64
Location*Trt*Month 4 24 0.26 0.90
Year 1 36 0.78 0.38
Location*Year 2 36 0.22 0.80
Trt*Year 1 36 16.87 0.0002
Location*Trt*Year 2 36 1.04 0.36
Month*Year 2 36 1.89 0.17
Location*Month*Year 4 36 0.55 0.70
Trt*Month*Year 2 36 0.40 0.67
Location*Trt*Month*Year 4 36 0.18 0.95
Soil C:N
Location 2 8 1.03 0.40
Trt 1 2 0.58 0.52
Location*Trt 2 8 1.48 0.28
Month 2 24 1.34 0.28
Location*Month 4 24 0.09 0.99
Trt*Month 2 24 0.10 0.90
Location*Trt*Month 4 24 0.02 1.00
Year 1 36 59.73 <.0001
Location*Year 2 36 4.85 0.01
Trt*Year 1 36 6.50 0.02
Location*Trt* Year 2 36 097 0.39
Month*Year 2 36 0.03 0.97
Location*Month* Year 4 36 0.12 0.97
Trt*Month* Year 2 36 0.07 0.93
Location*Trt*Month* Year 4 36 0.17 0.95
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Appendix V. Continued.

Table V-12b. Differences of least square means in soil C and N pools and C:N ratios by significant
effects in Table V-12a. Comparisons were made at P < 0.10, P -diff = difference between log-transformed
least square means.

Location Trt Trt Month Month Year Year P-diff DF t-value P -value
Soil C pool
Streambank  excluded  grazed 0.40 3 1.97 0.08
Middle excluded  grazed 0.39 8 1.91 0.09
Edge excluded  grazed -0.11 8 -0.55 0.60
August June 0.02 24 0.63 0.54
August  October -0.08 24 -2.36 0.03
June October -0.10 24 -2.99 0.01
excluded excluded 2005 2006 0.25 36 6.37 <.0001
excluded grazed 2005 2005 0.34 36 1.75 0.09
excluded  grazed 2006 2006 0.12 36 0.61 0.55
grazed grazed 2005 2006 0.02 36 0.62 0.54
Soil N pool
Streambank  excluded grazed 0.31 8 2.45 0.04
Middle excluded grazed 0.21 8 1.62 0.14
Edge excluded grazed -0.03 8 -0.21 0.84
August June 0.01 24 0.64 0.53
August  October -0.06 24 -2.85 0.01
June October -0.07 24 -3.49 0.002
excluded excluded 2005 2006 0.08 36 3.53 0.001
excluded grazed 2005 2005 0.23 36 225 0.03
excluded  grazed 2006 2006 0.10 36 0.93 0.36
grazed grazed 2005 2006 -0.05 36 -2.28 0.03
Soil C:N
Streambank 2005 2006 0.18 36 6.75 <.0001
Middle 2005 2006 0.11 36 4.28 0.0001
Edge 2005 2006 0.06 36 2.36 0.02
excluded excluded 2005 2006 0.16 36 7.27 <.0001
excluded grazed 2005 2005 0.11 36 1.19 0.24
excluded  grazed 2006 2006 0.03 36 0.31 0.76
grazed grazed 2005 2006 0.08 36 3.66 0.001
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Appendix V. Continued.

Table V-13a. Analysis of variance (ANOVA) of location, grazing treatment (Trt), month, and

year effects on soil organic matter (kg m™). Significant differences were accepted at

P -value <0.10.

Covariance Parameter Estimates

Covariance Parameter Estimate
Block 1.19
Block *Trt 1.81
Block*Trt*Location 0.68
Block*Trt*Location*Month 0
Block*Trt*Location*Month* Year 0
Residual 0.37

Type III Tests of Fixed Effects

Effect Numerator DF Denominator DF F-value P-value
Location 2 8 15.54 0.002
Trt 1 2 0.45 0.57
Location*Trt 2 8 9.95 0.01
Month 2 24 13.70 0.0001
Location*Month 4 24 044 0.78
Trt*Month 2 24 222 0.13
Location*Trt*Month 4 24 0.52 0.72
Year 1 36 9.90 0.003
Location*Year 2 36 0.04 0.96
Trt*Year 1 36 10.88 0.002
Location*Trt*Year 2 36 1.97 0.15
Month*Year 2 36 1.46 0.24
Location*Month* Year 4 36 0.39 0.82
Trt*Month*Year 2 36 1.08 0.35
Location*Trt*Month*Year 4 36 0.23 0.92
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Appendix V. Continued.

Table V-13b. Differences of least square means in soil organic matter by significant effects in

Table V-13a. Comparisons were made at P < 0.10, P -diff = difference between least square means.

Location Trt Trt Month Month Year Year P -diff DF t-value P -value
Streambank excluded grazed 1.76 8 1.35 0.22
Middle excluded grazed 2.35 8 1.80 0.11
Edge excluded grazed -1.75 8 -1.34 0.22
August June -0.17 24 -1.18 0.25
August  October -0.71 24 -5.01 <.0001
June October -0.55 24 -3.82 0.001
excluded excluded 2005 2006 0.75 36 456 0.0001
excluded grazed 2005 2005 1.17 36 1.00 033
excluded grazed 2006 2006 0.40 36 0.34 0.73
grazed grazed 2005 2006 -0.02 36 -0.11 0.91

Appendix V. Continued.

Table V-14a. Analysis of variance (ANOV A) of location, grazing treatment (Trt), and month effects

on water soluble organic C (WSOCN) and water soluble total N (WSTN) pools (g m?). WSTN data
were log-transformed and significant differences were accepted at P -value < 0.10.

Covariance Parameter Estimates

Covariance Parameter Estimate
wsocC
Block 0.59
Block *Trt 0.51
Block*Trt*Location 0.32
Block*Trt*Location*Month 0
Residual 0.47
WSTN
Block 0.08
Block *Trt 0.02
Block*Trt*Location 0.11
Block*Trt*Location*Month 0
Residual 0.08
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Appendix V. Table V-14a. Continued.

Type III Tests of Fixed Effects

Effect Numerator DF Denominator DF F -value P-value

wsoc
Location 2 8 471 0.04
Trt 1 2 0.03 0.88
Location*Trt 2 8 451 0.05
Month 2 24 14.84 <.0001
Location*Month 4 24 0.10 0.98
Trt*Month 2 24 1.03 0.37
Location*Trt*Month 4 24 0.92 0.47

WSTN
Location 2 8 343 0.08
Trt 1 2 1.27 0.38
Location*Trt 2 8 0.54 0.60
Month 2 24 17.95 <.0001
Location*Month 4 24 0.16 0.96
Trt*Month 2 24 0.85 0.44
Location*Trt*Month 4 24 0.17 0.95

Table V-14b. Differences of least square means in water soluble organic C (WSOCN) and water
soluble total N (WSTN) pools by significant effects in Table V-14a. Comparisons were made at
P <0.10, P -diff = difference between least square means.

Location Location Trt Trt Month Month  P-diff DF t-value P-value
WSOCN
Streambank excluded  grazed 0.81 8 0.99 0.35
Middle excluded  grazed 0.32 8 0.40 0.70
Edge excluded  grazed -1.47 8 -1.80 0.11
August June 124 24 5.45 <0001
August  October 0.62 24 2.74 0.01
June  October  -0.62 24 -2.71 0.01
WSTN
Middle Streambank 0.43 2.04 0.08
Middle Edge -0.09 -0.41 0.69
Streambank Edge -0.52 -2.44 0.04
August  June 0.27 24 2.87 0.01
August  October 0.57 24 5.99 <.0001
June  October 0.30 24 3.12 0.005
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Appendix V. Continued.

Table V-15a. Analysis of variance (ANOVA) of location, grazing treatment (Trt), month and

year effects on soil available inorganic N pools (2M KCI extractable N, g m'z). Data were log-
transformed and significant differences were accepted at P -value <0.10.

Covariance Parameter Estimates

Covariance Parameter Estimate

Nitrate(NO ;")

Block 0.12
Block *Trt 0.19
Block*Trt*Location 0.24
Block*Trt*Location*Month 0
Block*Trt*Location*Month*Year 0
Residual 0.42
Ammonium (NH 4 * )
Block 0
Block *Trt 0
Block*Trt*Location 0.005
Block*Trt*Location*Month 0
Block*Trt*Location*Month*Year 0
Residual 0.05
Total inorganic N
Block 0.0001
Block *Trt 0
Block*Trt*Location 0.005
Block*Trt*Location*Month 0
Block*Trt*Location*Month*Year 0
Residual 0.05
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Appendix V. Table V-15a. Continued.

Type III Tests of Fixed Effects

Effect Numerator DF Denominator DF F-value P-value

Nitrate(NO ;7)

Location 2 8 7.29 0.016
Trt 1 2 1.85 0.31
Location*Trt 2 8 1.00 0.41
Month 2 24 2227 <.0001
Location*Month 4 24 0.74 0.57
Trt*Month 2 24 0.45 0.64
Location*Trt*Month 4 24 1.01 0.42
Year 1 34 1.12 0.30
Location*Year 2 34 143 0.25
Trt*Year 1 34 0.01 0.92
Location*Trt*Year 2 34 1.21 0.31
Month*Year 2 34 15.21 <,0001
Location*Month*Year 4 34 1.67 0.18
Trt*Month*Year 2 34 1.90 0.17
Location*Trt*Month* Year 4 34 0.66 0.63
Ammonium (NH , M )
Location 2 8 0.96 042
Trt 1 2 0.17 0.72
Location*Trt 2 8 2.37 0.16
Month 2 24 3.10 0.06
Location*Month 4 24 0.41 0.80
Trt*Month 2 24 0.47 0.63
Location*Trt*Month 4 24 042 0.79
Year 1 36 16.49 0.0003
Location*Year 2 36 0.64 0.53
Trt*Year 1 36 0.61 0.44
Location*Trt* Year 2 36 0.50 0.61
Month*Year 2 36 4.12 0.02
Location*Month* Year 4 36 0.52 0.72
Trt*Month*Year 2 36 0.33 0.72
Location*Trt*Month*Year 4 36 0.64 0.64
Total inorganic N
Location 2 8 1.84 0.22
Trt 1 2 0.51 0.55
Location*Trt 2 8 2.20 0.17
Month 2 24 4.46 0.02
Location*Month 4 24 0.49 0.75
Trt*Month 2 24 0.39 0.68
Location*Trt*Month 4 24 0.42 0.79
Year 1 36 16.39 0.0003
Location*Year 2 36 0.68 0.52
Trt*Year 1 36 0.45 0.51
Location*Trt*Year 2 36 0.54 0.59
Month*Year 2 36 4.90 0.01
Location*Month*Year 4 36 0.50 0.73
Trt*Month*Year 2 36 0.42 0.66
Location*Trt*Month*Year 4 36 0.60 0.66
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Appendix V. Continued.

Table V-15b. Differences of least square means in soil available inorganic N pools by significant

effects in Table V-15a. Comparisons were made at P < 0.10, P -diff = difference between
log-transformed least square means.

Location Location Month Month Year Year P -diff DF t-value P-value
Nitrate(NO ;7)
Middle Streambank 122 8 3.79 0.01
Middle Edge 0.48 8 1.50 0.17
Streambank Edge -0.74 8 -2.29 0.05
August June -0.68 24 -4.44 0.0002
August  October 0.34 24 2.18 0.04
June October 1.02 24 6.52 <.0001
Ammonium (NH , M )
August June -0.08 24 -1.42 0.17
August  October 0.06 24 1.06 0.30
June October 0.13 24 2.48 0.02
2005 2006 -0.18 36 -4.06 0.0003
June June 2005 2006 -0.28 36 -3.67 0.001
August August 2005 2006 0.00 36 -0.01 0.99
October  October 2005 2006 -0.26 36 -3.36 0.002
Total inorganic N
August June -0.10 24 -1.83 0.08
August  October 0.06 24 1.13 0.27
June October 0.16 24 2.96 0.01
2005 2006 -0.18 36 -4.05 0.0003
June June 2005 2006 -0.28 36 -3.69 0.001
August August 2005 2006 0.02 36 0.22 0.83
October  October 2005 2006 -0.27 36 -3.53 0.001
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Appendix V. Continued.
Table V-16a. Analysis of variance (ANOVA) of location, grazing treatment (Trt), and month
effects on litter decomposition (% ash-free dry mass remaining). Significant differences were

accepted at P -value <0.10.

Covariance Parameter Estimates

Covariance Parameter Estimate
Block 27
Block *Trt 0
Block*Trt*Location 1.29
Block*Trt*Location*Month 56
Residual 1.09

Type III Tests of Fixed Effects

Effect Numerator DF Denominator DF F-value P-value
Location 2 123 0.34
Trt 1 2 0.96 0.43
Location*Trt 2 0.07 0.93
Month 3 36 138.14 <.0001
Location*Month 6 36 0.26 0.95
Trt*Month 3 36 0.14 0.94
Location*Trt*Month 6 36 0.08 1.00

Table V-16b. Differences of least square means in litter decomposition by month (significant
Month effect in Table V-16a). Comparisons were made at P < 0.10, P -diff = difference
between log-transformed least square means.

Month Month P-diff DF t-value P-value
April August 40 36 15.87 <0001
April June 9 36 3.69 0.001
April October 41 36 16.14 <.0001
August June -31 36 -12.17 <.0001
August October 1 36 0.27 0.79
June October 31 36 12.44 <0001
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Appendix V. Continued.

Table V-17a. Analysis of covariance (ANCOVA) of location, grazing treatment (Trt), month
and year effects on soil CO, respiration, nitrification, mineralization, net N mineralization and
immobilization measured in incubated soils. Covariates were soil C and N pool, soil organic
matter pool, and clay content. Significant differences were accepted at P -value < 0.10.

Covariance Parameter Estimates

Covariance Parameter Estimate

Soil CO, respiration (mg CO, g'l soil C)

Block 0
Block *Trt 434
Block*Trt*Location 4.14
Block*Trt*Location*Month 0
Residual 39

Nitrification (mg NO 3~ g'I soil N)

Block 0
Block *Trt 1.58
Block*Trt*Location 1.89
Block*Trt*Location*Month 0
Residual 1.92

Ammonification (mg NH ,* g™ soil N)

Block 3.93
Block *Trt 0
Block*Trt*Location 5.12
Block*Trt*Location*Month 0
Residual 3.98

Net N mineralization (mg N g" soil N)

Block 0
Block *Trt 2.31
Block*Trt*Location 1.00
Block*Trt*Location*Month 0
Residual 4.02
Immobilization index (soil CO ; respiration : net N mineralization)
Block 0
Block *Trt 0.82
Block*Trt*Location 0
Block*Trt*Location*Month 0
Residual 141
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Appendix V. Table V-17a. Continued.

Type HI Tests of Fixed Effects

Effect Numerator DF Denominator DF F-value P-value
Soil CO , respiration (mg CO , g™ soil C)
Location 2 8 2.18 0.18
Tnt 1 2 0.32 0.63
Location*Trt 2 8 2.05 0.19
Month 2 24 2.35 0.12
Location*Month 4 24 0.11 0.98
Trt*Month 2 24 0.34 0.72
Location*Trt*Month 4 24 1.78 0.17
Year 1 32 0.01 0.92
Location*Year 2 32 1.31 0.28
Trt*Year 1 32 2.31 0.14
Location*Trt*Year 2 32 0.88 0.42
Month* Year 2 32 525 0.01
Location*Month*Year 4 32 0.63 0.65
Trt*Month*Year 2 32 0.24 0.7
Location*Trt*Month* Year 4 32 0.33 0.86
Soil C pool 1 32 022 0.64
Soil N pool 1 32 0.18 0.67
Soil organic matter pool 1 32 0.55 0.46
Clay 1 32 0.76 0.39
Nitrification (mg NO ;~ g" soil N)
Location 2 8 0.44 0.66
Trt 1 2 4.86 0.16
Location*Trt 2 8 0.56 0.59
Month 2 24 1414 <,0001
Location*Month 4 24 1.61 0.20
Trt*Month 2 24 0.10 0.91
Location*Trt*Month 4 24 0.15 0.96
Year 1 32 8.38 001
Location*Year 2 32 0.60 0.55
Trt*Year 1 32 1.23 0.28
Location*Trt*Year 2 32 0.20 0.82
Month*Year 2 32 1.51 0.24
Location*Month*Year 4 32 028 0.89
Trt*Month*Year 2 32 0.17 0.84
Location*Trt*Month* Year 4 32 0.61 0.66
Soil C pool 1 32 6.77 0.01
Soil N pool 1 32 9.46 0.004
Soil organic matter pool 1 32 0.13 0.72
Clay 1 32 0.62 0.44
Ammonification (mg NH ;" g s0il N)
Location 2 8 0.41 0.68
Trt 1 2 1.57 0.34
Location*Trt 2 8 0.38 0.70
Month 2 24 0.96 0.40
Location*Month 4 24 1.77 0.17
Trt*Month 2 24 0.08 0.93
Location*Trt*Month 4 24 0.28 0.89
Year 1 32 2.01 0.17
Location*Year 2 32 0.60 0.55
Trt* Year 1 32 2.96 0.10
Location*Trt*Year 2 32 0.26 0.77
Month*Year 2 32 3.19 0.05
Location*Month*Year 4 32 0.19 0.94
Trt*Month*Year 2 32 0.12 0.89
Location*Trt*Month* Year 4 32 0.18 0.95
Soil C pool 1 32 2.89 0.10
Soil N pool 1 32 3.72 0.06
Soil organic matter pool 1 32 0.99 0.33
Clay 1 32 0.56 0.46
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Appendix V. Table V-17a. Continued.

Type 111 Tests of Fixed Effects

Effect Numerator DF Denominator DF F-value P-value

Net N mineralization (mg N g soil N)
Location 2 8 1.66 0.25
Trt 1 2 2.13 0.28
Location*Trt 2 8 3.75 0.07
Month 2 24 430 0.03
Location*Month 4 24 0.24 091
Trt*Month 2 24 0.15 0.86
Location*Trt*Month 4 24 0.44 0.78
Year 1 32 23.79 <.0001
Location*Year 2 32 0.31 0.73
Trt*Year 1 32 426 0.05
Location*Trt*Year 2 32 0.02 0.98
Month*Year 2 32 6.50 0.00
Location*Month*Year 4 32 0.25 0.91
Trt*Month*Year 2 32 042 0.66
Location*Trt*Month* Year 4 32 0.46 0.77
Soil C pool 1 32 0.08 0.77
Soil N pool 1 32 1.00 033
Soil organic matter pool 1 32 0.04 0.84
Clay 1 32 0.31 0.58

Immobilization index (soil CO ; respiration : net N mineralization)
Location 2 8 0.21 0.82
Trt 1 2 023 0.68
Location*Trt 2 8 10.46 0.01
Month 2 24 422 0.03
Location*Month 4 24 0.22 0.93
Trt*Month 2 24 0.25 0.78
Location*Trt*Month 4 24 0.72 0.59
Year 1 32 5.73 0.02
Location*Year 2 32 1.74 0.19
Trt*Year 1 32 4.62 0.04
Location*Trt*Year 2 32 0.81 0.45
Month*Year 2 32 5.59 0.01
Location*Month* Year 4 32 0.16 0.95
Trt*Month* Year 2 32 1.49 0.24
Location*Trt*Month*Year 4 32 0.07 0.99
Soil C pool 1 32 0.29 0.59
Soil N pool 1 32 0.10 0.76
Soil organic matter pool 1 32 0.06 0.81
Clay 1 32 0.67 0.42
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Appendix V. Continued.

Table V-17b. Differences of least square means in soil CO, respiration, nitrification, mineralization,
net N mineralization and immobilization index by significant effects in Table V-17a. Comparisons
were made at P < 0.10, P -diff = difference between log-transformed least square means.

Location Trt Trt Month Month Year  Year  P-diff DF t-value P -value
Soil CO, respiration (mg CO , g'l soil C)
June June 2005 2006 425 32 1.91 0.07
August  August 2005 2006 -5.23 32 -2.40 0.02
October  October 2005 2006 0.58 32 0.26 0.80
Nitrification (mg NO 3~ g™ s0il N)
August June -0.26 24 -0.78 0.44
August  October 1.52 24 4.11 0.0004
June October 1.78 24 5.10 <.0001
2005 2006 0.98 32 2.90 0.01
Ammonification (mg NH ;* g™ s0il N)
excluded excluded 2005 2006 -1.42 32 -2.05 0.05
excluded  grazed 2005 2005 1.31 32 0.77 0.45
excluded grazed 2006 2006 2.77 32 1.67 0.11
grazed grazed 2005 2006 0.04 32 0.06 0.95
June June 2005 2006 0.61 32 0.79 0.43
August  August 2005 2006 -0.76 32 -1.05 0.30
October  October 2005 2006 -1.92 32 -2.56 0.02
Net N mineralization (img N g 7 soil N)
Streambank  excluded grazed -4.75 8 -2.67 0.03
Middle excluded grazed -0.64 8 -0.31 0.76
Edge excluded grazed -1.60 -0.85 0.42
excluded excluded 2005 2006 1.39 32 2.09 0.04
excluded  grazed 2005 2005 -3.19 32 -1.91 0.07
excluded grazed 2006 2006 -1.47 32 -0.90 0.37
grazed grazed 2005 2006 3.12 32 5.41 <.0001
June June 2005 2006 3.36 32 4.56 <.0001
August  August 2005 2006 325 32 453 <.0001
October  October 2005 2006 0.16 32 0.22 0.83
Immobilization index (soil CO , respiration : net N mineralization)
Streambank  excluded grazed 2.03 8 227 0.05
Middle excluded grazed -0.44 8 -0.45 0.66
Edge excluded  grazed -0.37 8 -0.39 0.71
excluded excluded 2005 2006 -0.09 32 -0.25 0.80
excluded  grazed 2005 2005 0.93 32 1.04 0.30
excluded grazed 2006 2006 -0.12 32 -0.14 0.89
grazed grazed 2005 2006 -1.14 32 -3.42 0.002
June June 2005 2006 -0.61 32 -1.45 0.16
August August 2005 2006 -1.59 32 -3.83 0.001
October ~ October 2005 2006 0.35 32 0.81 0.42
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Appendix V. Continued.

Table V-18a. Analysis of covariance (ANCOV A) of location, grazing treatment (Trt), and month
effects on soil denitrification potential, soil microbial biomass C and N pools, and microbial C:N
Covariates were soil C and N pool, soil organic matter pool, and clay content. Only denitrification
data were log-transformed, and significant differences were accepted at P -value < 0.10.

Covariance Parameter Estimates

Covariance Parameter Estimate

Denitrification potential (mg N ; O-N g'l soil k™! )

Block 122
Block *Trt 0
Block*Trt*Location 021
Residual 0.71

Soil microbial biomass C pool (mg C m™)

Block 11
Block *Trt 0
Block*Trt*Location 54
Residual 173
Soil microbial biomass N pool (mg N m )
Block 0.24
Block *Trt 0.80
Block*Trt*Location 0
Residual 2.63
Soil microbial biomass C:N
Block 0
Block *Trt 0.04
Block*Trt*Location 0
Residual 0.08
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Appendix V. Table V-18a. Continued.

Type II Tests of Fixed Effects

Effect Numerator DF Denominator DF F-value P-value

Denitrification potential (mg N, 0-N g “soil k™ )

Location 2 7 0.02 0.98
Trt 1 2 1.23 0.38
Location*Trt 2 7 0.54 0.61
Month 2 19 35.59 <.0001
Location*Month 4 19 2.72 0.06
Trt*Month 2 19 0.36 0.70
Location*Trt*Month 4 19 1.66 0.20
Soil C pool 1 19 5.47 0.03
Soil N pool 1 19 0.05 0.83
Soil organic matter pool 1 19 0.80 0.38
Clay 1 19 3.59 0.07
Soil microbial biomass C pool (mg C m? )
Location 2 7 240 0.16
Trt 1 2 5.20 0.15
Location*Trt 2 7 0.72 0.52
Month 2 21 3.49 0.05
Location*Month 4 21 0.97 0.45
Trt*Month 2 21 0.36 0.70
Location*Trt*Month 4 21 0.71 0.60
Soil C pool 1 21 2.56 0.12
Soil N pool 1 21 6.28 0.02
Soil organic matter pool 1 21 6.44 0.02
Clay 1 21 0.08 0.78

Soil microbial biomass N pool (mg N m™)

"~ Location 2 7 2.40 0.16
Trt 1 2 0.01 0.92
Location*Trt 2 7 025 0.79
Month 2 21 4.42 0.03
Location*Month 4 21 1.59 0.21
Trt*Month 2 21 0.62 0.55
Location*Trt*Month 4 21 0.31 0.87
Soil C pool 1 21 0.30 0.59
Soil N pool 1 21 2.85 0.11
Soil organic matter pool 1 21 0.48 0.49
Clay 1 21 1.26 0.27

Soil microbial biomass C:N
Location 2 7 0.79 0.49
Trt 1 2 0.59 0.52
Location*Trt 2 7 1.31 0.33
Month 2 21 4.82 0.02
Location*Month 4 21 0.83 0.52
Trt*Month 2 21 0.26 0.77
Location*Trt*Month 4 21 0.77 0.56
Soil C pool 1 21 2.25 0.15
Soil N pool 1 21 0.00 0.98
Soil organic matter pool 1 21 0.53 048
Clay 1 21 2.84 0.11
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Appendix V. Continued.

Table V-18b. Differences of least square means in soil denitrification potential, soil microbial
biomass C and N, and microbial biomass C:N by significant effects in Table V-18a. Comparison:
were made at P <0.10, P -diff = difference between least square means (LSM), log-transformed
LSMs only for denitrification.

Location Month Month P -diff DF t-value P-value

Denitrification potential (mg N ; O-N g" soil B )

Streambank August June -1.27 19 -2.60 0.02
Streambank August October 0.58 19 1.14 027
Streambank June October 1.85 19 3.63 0.002
Middle August June -2.90 19 -5.34 <.0001
Middle August October -1.50 19 -2.59 0.02
Middle June October 1.40 19 2.72 0.01
Edge August June -3.00 19 -5.33 <.0001
Edge August October -0.65 19 -1.13 0.27
Edge June October 2.35 19 4.72 0.0001

Soil microbial biomass C pool (mg C m™)
August June -2.46 21 -0.54 0.60
August October -12.91 21 -2.47 0.02
June October -10.46 21 -2.21 0.04

Soil microbial biomass N pool (mg N m -2 )
August June 0.20 21 0.35 0.73
August October -1.49 21 -2.31 0.03
June October -1.69 21 -2.87 0.01

Soil microbial biomass C:N

August June -4.63 21 -2.38 0.03
August October 1.06 21 0.48 0.64
June October 5.69 21 2.80 0.01
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Appendix W. Sheep Creek stream stage (cm) measured in 2005 at T-posts that were installed in the stream
thalweg at each piezometer transect. Stream stage was not recorded at transect 6 because the T-post was
washed out by high stream flow in early May.

Sampling date Transect Grazing treatment Stream stage (cm)
5.12.05 1 grazed 65.3
5.12.05 2 control 57.3
5.12.05 3 grazed 104.8
5.12.05 4 control 87.0
5.12.05 5 grazed 68.8
5.19.05 1 grazed 65.3
5.19.05 2 control 573
5.19.05 3 grazed 104.8
5.19.05 4 control 87.0
5.19.05 5 grazed 68.8
5.26.05 1 grazed 90.9
5.26.05 2 control 79.5
5.26.05 3 grazed 1184
5.26.05 4 control 109.2
5.26.05 5 grazed 80.7
6.03.05 1 grazed 85.5
6.03.05 2 control 81.3
6.03.05 3 grazed 120.1
6.03.05 4 control -
6.03.05 5 grazed 824
6.09.05 1 grazed 89.6
6.09.05 2 control 85.0
6.09.05 3 grazed 123.5
6.09.05 4 control 116.6
6.09.05 5 grazed 80.7
6.16.05 1 grazed 32.1
6.16.05 2 control 347
6.16.05 3 grazed 64.6
6.16.05 4 control 55.4
6.16.05 5 grazed 31.6
6.23.05 1 grazed 36.9
6.23.05 2 control 39.8
6.23.05 3 grazed 67.5
6.23.05 4 control 58.8
6.23.05 5 grazed 35.6
6.30.05 1 grazed 382
6.30.05 2 control 61.0
6.30.05 3 grazed 72.0
6.30.05 4 control 54.2
6.30.05 5 grazed 34.6
7.07.05 1 grazed 35.8
7.07.05 2 control 36.1
7.07.05 3 grazed 74.0
7.07.05 4 control 51.7
7.07.05 5 grazed 33.9
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Appendix W, Continued.

Sampling date Transect Grazing treatment Stream stage (cm)
7.21.05 1 grazed 72.0
7.21.05 2 control 62.8
7.21.05 3 grazed 109.9
7.21.05 4 control 833
7.21.05 5 grazed 70.5
8.02.05 1 grazed 74.7
8.02.05 2 control 66.5
8.02.05 3 grazed 111.6
8.02.05 4 control 87.0
8.02.05 5 grazed 73.9
8.11.05 1 grazed 80.1
8.11.05 2 control 72.1
8.11.05 3 grazed 1133
8.11.05 4 control 94 .4
8.11.05 5 grazed 77.3
8.18.05 1 grazed 774
8.18.05 2 control 72.1
8.18.05 3 grazed 1133
8.18.05 4 control 90.7
8.18.05 5 grazed 773
8.25.05 1 grazed 12.3
8.25.05 2 control 16.8
8.25.05 3 grazed 55.0
8.25.05 4 control 31.7
8.25.05 5 grazed 144
9.08.05 1 grazed 443
9.08.05 2 control 70.2
9.08.05 3 grazed 109.9
9.08.05 4 control 87.0
9.08.05 5 grazed 73.9
9.15.05 1 grazed 8.9
9.15.05 2 control 14.3
9.15.05 3 grazed 43.8
9.15.05 4 control 30.1
9.15.05 5 grazed 11.6
9.30.05 1 grazed 9.5
9.30.05 2 control 14.6
9.30.05 3 grazed 442
9.30.05 4 control 29.7
9.30.05 5 grazed 11.8
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Appendix X. Piezometric potential or head (cm) measured in piezometers at 3 locations in the SheepCreek
riparian zone: streambank, middle riparian, and riparian edge in 2005. Head and the soil surface were
referenced to a common datum which was the bottom of the stream at the staff gage.

Sampling Grazing Piezometer distance from Soil surface above Head above
date Transect Location treatment channel thalweg (m) datum (cm) datum (cm)
5.12.05 1 Streambank grazed 6.5 575 21.9
5.12.05 1 Middle grazed 132 79.1 53.1
5.12.05 1 Edge grazed 20.2 834 56.6
5.19.05 1 Streambank grazed 6.5 575 21.1
5.19.05 1 Middle grazed 132 79.1 39.8
5.19.05 1 Edge grazed 20.2 83.4 38.1
5.26.05 1 Streambank grazed 6.5 57.5 57.9
5.26.05 1 Middle grazed 13.2 79.1 35.1
5.26.05 1 Edge grazed 20.2 83.4 38.1
6.03.05 1 Streambank grazed 6.5 57.5 64.6
6.03.05 i Middle grazed 13.2 79.1 59.7
6.03.05 1 Edge grazed 20.2 834 779
6.09.05 1 Streambank grazed 6.5 57.5 70.8
6.09.05 1 Middle grazed 132 79.1 69.0
6.09.05 1 Edge grazed 20.2 83.4 74.9
6.16.05 1 Streambank grazed 6.5 57.5 324
6.16.05 1 Middle grazed 13.2 79.1 60.9
6.16.05 1 Edge grazed 20.2 834 60.8
6.23.05 1 Streambank grazed 6.5 57.5 382
6.23.05 1 Middle grazed 132 79.1 39.3
6.23.05 1 Edge grazed 202 834 42.0
6.30.05 1 Streambank grazed 6.5 57.5 359
6.30.05 1 Middle grazed 13.2 79.1 333
6.30.05 1 Edge grazed 20.2 834 32.3
7.07.05 1 Streambank grazed 6.5 575 349
7.07.05 1 Middle grazed 13.2 79.1 28.5
7.07.05 1 Edge grazed 20.2 83.4 254
7.21.05 1 Streambank grazed 6.5 575 331
7.21.05 1 Middle grazed 13.2 79.1 232
7.21.05 1 Edge grazed 20.2 834 15.4
8.02.05 1 Streambank grazed 6.5 57.5 39.1
8.02.05 1 Middle grazed 132 79.1 25.7
8.02.05 i Edge grazed 20.2 83.4 14.7
8.11.05 1 Streambank grazed 6.5 575 489
8.11.05 1 Middle grazed 132 79.1 353
8.11.05 1 Edge grazed 20.2 83.4 29.8
8.18.05 1 Streambank grazed 6.5 57.5 43.6
8.18.05 1 Middle grazed 13.2 79.1 35.8
8.18.05 1 Edge grazed 20.2 83.4 328
8.25.05 1 Streambank grazed 6.5 575 11.9
8.25.05 1 Middle grazed 13.2 79.1 331
8.25.05 1 Edge grazed 20.2 83.4 30.2
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Appendix X. Continued.

Sampling Grazing Piezometer distance from Soil surface above Head above
date Transect Location treatment stream channel (m) datum (cm) datum (cm)
9.08.05 1 Streambank grazed 6.5 575 39.2
9.08.05 1 Middle grazed 13.2 79.1 15.9
9.08.05 1 Edge grazed 20.2 83.4 143
9.15.05 i Streambank grazed 6.5 57.5 10.1
9.15.05 1 Middle grazed 13.2 79.1 12.7
9.15.05 1 Edge grazed 20.2 83.4 8.8
9.30.05 1 Streambank grazed 6.5 575 0.2
9.30.05 1 Middle grazed 13.2 79.1 -—-
9.30.05 1 Edge grazed 20.2 83.4 ---
5.12.05 2 Streambank conrol 3.0 97.7 293
5.12.05 2 Middle conrol 9.7 100.4 37.3
5.12.05 2 Edge conrol 16.7 102.5 42.9
5.19.05 2 Streambank conrol 3.0 97.7 28.9
5.19.05 2 Middle conrol 9.7 100.4 28.8
5.19.05 2 Edge conrol 16.7 102.5 303
5.26.05 2 Streambank conrol 3.0 97.7 443
5.26.05 2 Middle conrol 9.7 100.4 29.1
5.26.05 2 Edge conrol 16.7 102.5 314
6.03.05 2 Streambank conrol 3.0 97.7 65.7
6.03.05 2 Middle conrol 9.7 100.4 364
6.03.05 2 Edge conrol 16.7 102.5 34.5
6.09.05 2 Streambank conrol 3.0 97.7 73.5
6.09.05 2 Middle conrol 9.7 100.4 40.6
6.09.05 2 Edge conrol 16.7 102.5 38.7
6.16.05 2 Streambank conrol 3.0 97.7 54.1
6.16.05 2 Middle conrol 9.7 1004 54.8
6.16.05 2 Edge conrol 16.7 102.5 57.8
6.23.05 2 Streambank conrol 3.0 97.7 38.4
6.23.05 2 Middle conrol 9.7 1004 43.0
6.23.05 2 Edge conrol 16.7 102.5 56.2
6.30.05 2 Streambank conrol 3.0 97.7 45.6
6.30.05 2 Middle conrol 9.7 100.4 41.2
6.30.05 2 Edge conrol 16.7 102.5 455
7.07.05 2 Streambank conrol 3.0 97.7 433
7.07.05 2 Middle conrol 9.7 100.4 377
7.07.05 2 Edge conrol 16.7 102.5 41.7
7.21.05 2 Streambank conrol 3.0 97.7 40.7
7.21.05 2 Middle conrol 9.7 100.4 337
7.21.05 2 Edge conrol 16.7 102.5 38.6
8.02.05 2 Streambank conrol 3.0 97.7 46.0
8.02.05 2 Middle conrol 9.7 100.4 31.7
8.02.05 2 Edge conrol 16.7 102.5 328
8.11.05 2 Streambank conrol 3.0 97.7 56.7
8.11.05 2 Middle conrol 9.7 100.4 314
8.11.05 2 Edge conrol 16.7 102.5 33.0
§.18.05 2 Streambank conrol 3.0 97.7 55.7
8.18.05 2 Middle conrol 9.7 100.4 21.9
8.18.05 2 Edge conrol 16.7 102.5 28.8
8.25.05 2 Streambank conrol 3.0 97.7 44 .4
8.25.05 2 Middle conrol 9.7 100.4 26.0
8.25.05 2 Edge conrol 16.7 102.5 30.0

296



Appendix X. Continued.

Sampling Grazing Piezometer distance from Soil surface above Head above
date Transect Location treatment stream channel (m) datum (cm) datum (cm)
9.08.05 2 Streambank conrol 3.0 97.7 303
9.08.05 2 Middle conrol 9.7 100.4 25.0
9.08.05 2 Edge conrol 16.7 102.5 -
9.15.05 2 Streambank conrol 3.0 97.7 -
9.15.05 2 Middle conrol 9.7 100.4 -
9.15.05 2 Edge conrol 16.7 102.5 -—
9.30.05 2 Streambank conrol 3.0 97.7 -
9.30.05 2 Middle conrol 9.7 100.4 ——
9.30.05 2 Edge conrol 16.7 102.5 ——m
5.12.05 3 Streambank grazed 3.7 114.4 93.5
5.12.05 3 Middie grazed 18.0 144.6 133.9
5.12.05 3 Edge grazed 28.6 146.7 149.7
5.19.05 3 Streambank grazed 37 1144 94.5
5.19.05 3 Middle grazed 18.0 144.6 131.0
5.19.05 3 Edge grazed 28.6 146.7 169.3
5.26.05 3 Streambank grazed 3.7 1144 95.0
5.26.05 3 Middle grazed 18.0 144.6 125.3
5.26.05 3 Edge grazed 28.6 146.7 149.2
6.03.05 3 Streambank grazed 3.7 114.4 107.8
6.03.05 3 Middle grazed 18.0 144.6 133.6
6.03.05 3 Edge grazed 28.6 146.7 150.1
6.09.05 3 Streambank grazed 37 114.4 112.7
6.09.05 3 Middle grazed 18.0 144.6 137.0
6.09.05 3 Edge grazed 28.6 146.7 150.2
6.16.05 3 Streambank grazed 3.7 114.4 109.9
6.16.05 3 Middle grazed 18.0 144.6 129.7
6.16.05 3 Edge grazed 28.6 146.7 149.9
6.23.05 3 Streambank grazed 37 1144 103.7
6.23.05 3 Middle grazed 18.0 144.6 117.5
6.23.05 3 Edge grazed 28.6 146.7 149.7
6.30.05 3 Streambank grazed 37 1144 994
6.30.05 3 Middle grazed 18.0 144.6 98.9
6.30.05 3 Edge grazed 28.6 146.7 140.9
7.07.05 3 Streambank grazed 37 1144 94.9
7.07.05 3 Middle grazed 18.0 144.6 82.6
7.07.05 3 Edge grazed 28.6 146.7 1252
7.21.05 3 Streambank grazed 3.7 114.4 88.9
7.21.05 3 Middle grazed 18.0 144.6 75.6
7.21.05 3 Edge grazed 28.6 146.7 115.1
8.02.05 3 Streambank grazed 37 114.4 82.8
8.02.05 3 Middle grazed 18.0 144.6 77.8
8.02.05 3 Edge grazed 28.6 146.7 98.2
8.11.05 3 Streambank grazed 3.7 114.4 79.1
8.11.05 3 Middle grazed 18.0 144.6 85.6
8.11.05 3 Edge grazed 28.6 146.7 116.5
8.18.05 3 Streambank grazed 3.7 114.4 74.7
8.18.05 3 Middle grazed 18.0 144.6 85.6
8.18.05 3 Edge grazed 28.6 146.7 114.7
8.25.05 3 Streambank grazed 3.7 114.4 72.7
8.25.05 3 Middle grazed 18.0 1446 812
8.25.05 3 Edge grazed 28.6 146.7 110.9
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Appendix X. Continued.

Sampling Grazing Piezometer distance from Soil surface above Head above
date Transect Location treatment stream channel (m) datum (cm) datum (cm)
9.08.05 3 Streambank grazed 37 114.4 69.6
9.08.05 3 Middle grazed 18.0 144.6 68.0
9.08.05 3 Edge grazed 28.6 146.7 92.8
9.15.05 3 Streambank grazed 3.7 114.4 65.0
9.15.05 3 Middle grazed 18.0 1446 64.8
9.15.05 3 Edge grazed 28.6 146.7 88.1
9.30.05 3 Streambank grazed 3.7 114.4 62.5
9.30.05 3 Middle grazed 18.0 144.6 60.4
9.30.05 3 Edge grazed 28.6 146.7 83.6
5.12.05 4 Streambank conrol 39 115.5 89.1
5.12.05 4 Middle conrol 18.6 160.3 125.3
5.12.05 4 Edge conrol 29.9 187.1 124.1
5.19.05 4 Streambank conrol 3.9 115.5 63.5
5.19.05 4 Middle conrol 18.6 160.3 113.1
5.19.05 4 Edge conrol 29.9 187.1 98.8
5.26.05 4 Streambank conrol 3.9 115.5 69.0
5.26.05 4 Middle conrol 18.6 160.3 118.3
5.26.05 4 Edge conrol 299 187.1 99.4
6.03.05 4 Streambank conrol 39 115.5 -—-
6.03.05 4 Middle conrol 18.6 160.3 -
6.03.05 4 Edge conrol 29.9 187.1 -
6.09.05 4 Streambank conrol 39 115.5 75.1
6.09.05 4 Middle conrol 18.6 160.3 124.0
6.09.05 4 Edge corol 29.9 187.1 1054
6.16.05 4 Streambank conrol 3.9 115.5 76.4
6.16.05 4 Middle conrol 18.6 160.3 116.5
6.16.05 4 Edge conrol 29.9 187.1 105.0
6.23.05 4 Streambank conrol 39 1155 75.5
6.23.05 4 Middle conrol 18.6 160.3 105.2
6.23.05 4 Edge conrol 209 187.1 104.5
6.30.05 4 Streambank conrol 39 115.5 30.0
6.30.05 4 Middle conrol 18.6 160.3 97.3
6.30.05 4 Edge conrol 29.9 187.1 146.1
7.07.05 4 Streambank conrol 39 115.5 75.0
7.07.05 4 Middle conrol 18.6 160.3 87.3
7.07.05 4 Edge conrol 29.9 187.1 93.1
7.21.05 4 Streambank conrol 39 115.5 70.5
7.21.05 4 Middle conrol 18.6 160.3 -
7.21.05 4 Edge conrol 29.9 187.1 87.1
8.02.05 4 Streambank conrol 39 115.5 672
8.02.05 4 Middle conrol 18.6 160.3 -
8.02.05 4 Edge conrol 29.9 187.1 -
8.11.05 4 Streambank conrol 39 115.5 59.0
8.11.05 4 Middle conrol 18.6 160.3 —
8.11.05 4 Edge conrol 299 187.1 -
8.18.05 4 Streambank conrol 3.9 115.5 56.5
8.18.05 4 Middle corol 18.6 160.3 ——
8.18.05 4 Edge conrol 29.9 187.1 -
8.25.05 4 Streambank conrol 39 115.5 53.7
8.25.05 4 Middle conrol 18.6 160.3 —
8.25.05 4 Edge conrol 29.9 187.1 -
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Appendix X. Continued.

Sampling Grazing Piezometer distance from Soil surface above Head above
date Transect Location treatment stream channel (m) datum (cm) datum (cm)
9.08.05 4 Streambank conrol 39 115.5 -
9.08.05 4 Middle conrol 18.6 160.3 -
9.08.05 4 Edge conrol 29.9 187.1 -
9.15.05 4 Streambank conrol 3.9 1155 -
9.15.05 4 Middle conrol 18.6 160.3 —
9.15.05 4 Edge conrol 29.9 187.1 -
9.30.05 4 Streambank conrol 39 115.5 -
9.30.05 4 Middle conrol 18.6 160.3 -
9.30.05 4 Edge conrol 29.9 187.1 -
5.12.05 5 Streambank grazed 6.5 52.7 222
5.12.05 5 Middle grazed 16.5 63.3 482
5.12.05 5 Edge grazed 25.6 81.6 43.6
5.19.05 5 Streambank grazed 6.5 52.7 18.9
5.19.05 5 Middle grazed 16.5 633 352
5.19.05 5 Edge grazed 25.6 81.6 16.0
5.26.05 5 Streambank grazed 6.5 52.7 30.8
5.26.05 5 Middle grazed 16.5 63.3 39.7
5.26.05 5 Edge grazed 25.6 81.6 23.2
6.03.05 5 Streambank grazed 6.5 52.7 55.8
6.03.05 5 Middie grazed 16.5 63.3 44.7
6.03.05 5 Edge grazed 25.6 81.6 30.2
6.09.05 5 Streambank grazed 6.5 527 439
6.09.05 5 Middle grazed 16.5 633 47.1
6.09.05 5 Edge grazed 25.6 81.6 34.1
6.16.05 5 Streambank grazed 6.5 52.7 323
6.16.05 5 Middle grazed 16.5 633 48.3
6.16.05 5 Edge grazed 25.6 81.6 373
6.23.05 5 Streambank grazed 6.5 527 27.7
6.23.05 5 Middle grazed 16.5 63.3 47.0
6.23.05 5 Edge grazed 25.6 81.6 378
6.30.05 5 Streambank grazed 6.5 52.7 23.5
6.30.05 S Middle grazed 16.5 63.3 44.6
6.30.05 5 Edge grazed 25.6 81.6 375
7.07.05 5 Streambank grazed 6.5 527 213
7.07.05 5 Middle grazed 16.5 63.3 40.0
7.07.05 S Edge grazed 25.6 81.6 353
7.21.05 5 Streambank grazed 6.5 52.7 19.5
7.21.05 5 Middle grazed 16.5 63.3 36.8
7.21.05 5 Edge grazed 25.6 81.6 323
8.02.05 5 Streambank grazed 6.5 52.7 21.0
8.02.05 5 Middle grazed 16.5 63.3 34.5
8.02.05 5 Edge grazed 256 8l.6 279
8.11.05 5 Streambank grazed 6.5 52.7 28.3
8.11.05 5 Middle grazed 16.5 63.3 329
8.11.05 5 Edge grazed 25.6 81.6 253
8.18.05 5 Streambank grazed 6.5 527 23.9
8.18.05 5 Middle grazed 16.5 633 29.1
8.18.05 S Edge grazed 25.6 81.6 203
8.25.05 5 Streambank grazed 6.5 527 217
8.25.05 S Middle grazed 16.5 63.3 28.5
8.25.05 5 Edge grazed 25.6 81.6 21.6
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Appendix X. Continued.

Sampling Grazing Piezometer distance from Soil surface above Head above
date Transect Location treatment stream channel (m) datum (cm) datum (cm)
9.08.05 5 Streambank grazed 6.5 527 15.9
9.08.05 5 Middle grazed 16.5 63.3 16.6
9.08.05 5 Edge grazed 25.6 81.6 19.4
9.15.05 S Streambank grazed 6.5 527 -
9.15.05 5 Middle grazed 16.5 633 239
9.15.05 S Edge grazed 25.6 816 19.0
9.30.05 5 Streambank grazed 6.5 527 ---
9.30.05 S Middle grazed 16.5 633 21.3
9.30.05 5 Edge grazed 25.6 81.6 16.0
5.12.05 6 Streambank conrol 4.0 113.7 82.5
5.12.05 6 Middle conrol 14.6 109.4 86.2
5.12.05 6 Edge conrol 23.3 129.2 122.7
5.19.05 6 Streambank conrol 4.0 113.7 819
5.19.05 6 Middle conrol 14.6 109.4 54.5
5.19.05 6 Edge conrol 233 129.2 120.1
5.26.05 6 Streambank conrol 4.0 113.7 104.8
5.26.05 6 Middle conrol 14.6 1094 652
5.26.05 6 Edge conrol 233 129.2 1233
6.03.05 6 Streambank conrol 4.0 113.7 -
6.03.05 6 Middie conrol 14.6 109.4 —
6.03.05 6 Edge conrol 233 129.2 -
6.09.05 6 Streambank conrol 4.0 113.7 107.9
6.09.05 6 Middle conrol 14.6 109.4 99.4
6.09.05 6 Edge conrol 233 129.2 125.4
6.16.05 6 Streambank conrol 4.0 113.7 822
6.16.05 6 Middle conrol 14.6 109.4 104.0
6.16.05 6 Edge conrol 233 129.2 125.3
6.23.05 6 Streambank conrol 4.0 113.7 88.4
6.23.05 6 Middle conrol 14.6 109.4 105.9
6.23.05 6 Edge conrol 233 1292 1242
6.30.05 6 Streambank conrol 4.0 113.7 842
6.30.05 6 Middle conrol 14.6 1094 107.8
6.30.05 6 Edge conrol 233 129.2 124.2
7.07.05 6 Streambank conrol 4.0 113.7 842
7.07.05 6 Middle conrol 14.6 109.4 106.8
7.07.05 6 Edge conrol 233 1292 1232
7.21.05 6 Streambank conrol 4.0 113.7 109.8
7.21.05 6 Middle conrol 14.6 109.4 104.8
7.21.05 6 Edge conrol 23.3 129.2 123.3
8.02.05 6 Streambank conrol 4.0 113.7 79.0
8.02.05 6 Middle conrol 14.6 109.4 100.6
8.02.05 6 Edge conrol 233 129.2 121.7
8.11.05 6 Streambank conrol 4.0 113.7 824
8.11.05 6 Middle conrol 14.6 109.4 95.7
8.11.05 6 Edge conrol 233 129.2 120.2
8.18.05 6 Streambank conrol 4.0 113.7 77.9
8.18.05 6 Middle conrol 14.6 109.4 93.4
8.18.05 6 Edge conrol 233 1292 117.7
8.25.05 6 Streambank conrol 4.0 113.7 66.9
8.25.05 6 Middle conrol 14.6 109.4 79.6
8.25.05 6 Edge conrol 23.3 129.2 106.2
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Appendix X. Continued.

Sampling Grazing Piezometer distance from Soil surface above Head above

date Transect Location treatment stream channel (m) datum (cm) datum (cm)
9.08.05 6 Streambank conrol 4.0 113.7 70.1
9.08.05 6 Middle conrol 14.6 109.4 86.5
9.08.05 6 Edge conrol 233 129.2 95.4
9.15.05 6 Streambank conrol 4.0 1137 56.8
9.15.05 6 Middle conrol 14.6 109.4 85.3
9.15.05 6 Edge conrol 233 129.2 85.7
9.30.05 6 Streambank conrol 4.0 113.7 54.0
9.30.05 6 Middle conrol 14.6 109.4 79.6
9.30.05 6 Edge conrol 233 129.2 69.9
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Appendix Y. Slope of groundwater between channel thalweg and streambank piezometers (1), streambank
and middle riparian piezometers (2), and middle and edge of riparian piezometers (3). Slopes were
calculated as change in piezometric potential (head) between locations (cm) divided by distance between
locations (cm).

Sampling Slope 1: thalweg to Slope 2: streambank to Slope 3: middle riparian to
date Transect streambank middle riparian edge of riparian
5.12.05 1 0.034 0.046 0.005
5.19.05 1 0.033 0.028 -0.002
5.26.05 1 0.090 -0.034 0.004
6.03.05 1 0.100 -0.007 0.026
6.09.05 1 0.110 -0.003 0.008
6.16.05 1 0.050 0.042 0.000
6.23.05 1 0.059 0.002 0.004
6.30.05 1 0.056 -0.004 -0.001
7.07.05 1 0.054 -0.010 -0.004
7.21.05 1 0.051 -0.015 -0.011
8.02.05 1 0.061 -0.020 -0.016
8.11.05 1 0.076 -0.020 -0.008
8.18.05 1 0.068 -0.012 -0.004
8.25.05 1 0.018 0.031 -0.004
9.08.05 1 0.061 -0.035 -0.002
9.15.05 1 0.016 0.004 -0.005
9.30.05 1 0.000 dry dry
5.12.05 2 0.098 0.012 0.008
5.19.05 2 0.096 0.000 0.002
5.26.05 2 0.148 -0.023 0.003
6.03.05 2 0.219 -0.044 -0.003
6.09.05 2 0.245 -0.049 -0.003
6.16.05 2 0.180 0.001 0.004
6.23.05 2 0.128 0.007 0.019
6.30.05 2 0.152 -0.007 0.006
7.07.05 2 0.144 -0.008 0.006
7.21.05 2 0.136 -0.010 0.007
8.02.05 2 0.153 -0.021 0.001
8.11.05 2 0.189 -0.038 0.002
8.18.05 2 0.186 -0.050 0.010
8.25.05 2 0.148 -0.027 0.006
9.08.05 2 0.101 -0.008 dry
9.15.05 2 dry dry dry
9.30.05 2 dry dry dry
5.12.05 3 0.256 0.028 0.015
5.19.05 3 0.259 0.026 0.036
5.26.05 3 0.260 0.021 0.022
6.03.05 3 0.295 0.018 0.016
6.09.05 3 0.309 0.017 0.012
6.16.05 3 0.301 0.014 0.019
6.23.05 3 0.284 0.010 0.030
6.30.05 3 0.272 0.000 0.039
7.07.05 3 0.260 -0.009 0.040
7.21.05 3 0.244 -0.009 0.037
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Appendix Y. Continued.

Sampling Slope 1: thalweg to Slope 2: streambank to Slope 3: middle riparian to
date Transect streambank middle riparian edge of riparian
8.02.05 3 0227 -0.004 0.019
8.11.05 3 0217 0.005 0.029
8.18.05 3 0.205 0.008 0.027
8.25.05 3 0.199 0.006 0.028
9.08.05 3 0.191 -0.001 0.023
9.15.05 3 0.178 0.000 0.022
9.30.05 3 0.171 -0.001 0.022
5.12.05 4 0.229 0.025 -0.001
5.19.05 4 0.163 0.034 -0.013
5.26.05 4 0.177 0.034 -0.017
6.03.05 4 rained out rained out rained out
6.09.05 4 0.193 0.033 -0.016
6.16.05 4 0.196 0.027 -0.010
6.23.05 4 0.194 0.020 -0.001
6.30.05 4 0.077 0.046 0.043
7.07.05 4 0.192 0.008 0.005
7.21.05 4 0.181 dry dry
8.02.05 4 0.172 dry dry
8.11.05 4 0.151 dry dry
8.18.05 4 0.145 dry dry
8.25.05 4 0.138 dry dry
9.08.05 4 dry dry dry
9.15.05 4 dry dry dry
9.30.05 4 dry dry dry
5.12.05 5 0.034 0.026 -0.005
5.19.05 5 0.029 0.016 -0.021
5.26.05 5 0.048 0.009 -0.018
6.03.05 5 0.086 -0.011 -0.016
6.09.05 5 0.068 0.003 -0.014
6.16.05 5 0.050 0.016 -0.012
6.23.05 5 0.043 0.019 -0.010
6.30.05 5 0.036 0.021 -0.008
7.07.05 5 0.033 0.019 -0.005
7.21.05 5 0.030 0.017 -0.005
8.02.05 5 0.033 0.014 -0.007
8.11.05 5 0.044 0.005 -0.008
8.18.05 5 0.037 0.005 -0.010
8.25.05 5 0.034 0.007 -0.008
9.08.05 5 0.025 0.001 0.003
9.15.05 5 dry + -0.005
9.30.05 5 dry + -0.006
5.12.05 6 0.209 0.004 0.042
5.19.05 6 0.207 -0.026 0.075
5.26.05 6 0.265 -0.037 0.067
6.03.05 6 rained out rained out rained out
6.09.05 6 0.273 -0.008 0.030
6.16.05 6 0.208 0.021 0.024
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Appendix Y. Continued.

Sampling Slope 1: thalweg to Slope 2: streambank to Slope 3: middle riparian to
date Transect streambank middle riparian edge of riparian
6.23.05 6 0.224 0.016 0.021
6.30.05 6 0.213 0.022 0.019
7.07.05 6 0.213 0.021 0.019
7.21.05 6 0.278 -0.005 0.021
8.02.05 6 0.200 0.020 0.024
8.11.05 6 0.209 0.013 0.028
8.18.05 6 0.197 0.015 0.028
8.25.05 6 0.169 0.012 0.031
9.08.05 6 0.177 0.015 0.010
9.15.05 6 0.144 0.027 0.000
9.30.05 6 0.137 0.024 -0.011

304



Appendix Z. Concentrations of NO;” and NH, (mg L) in stream water (Sheep Creek) and groundwater
collected from piezometers at streambank, middle riparian, and riparian edge in 2005.

+

Sampling Grazing NOsy' NH4
date Transect Location treatment (mg LY (mg LY
5.12.05 1 Sheep Creek grazed 0.08 0.01
5.19.05 1 Sheep Creek grazed 0.03 0.04
5.26.05 1 Sheep Creek grazed 0.09 0.04
6.03.05 1 Sheep Creek grazed 0.06 0.04
6.09.05 1 Sheep Creek grazed 0.06 0.02
6.16.05 1 Sheep Creek grazed 0.08 0.04
6.23.05 1 Sheep Creek grazed 0.07 0.04
6.30.05 1 Sheep Creek grazed 0.05 0.08
7.07.05 1 Sheep Creek grazed 0.07 0.04
7.21.05 1 Sheep Creek grazed 0.08 0.06
8.01.05 1 Sheep Creek grazed 0.07 0.07
8.10.05 1 Sheep Creek grazed 0.05 0.06
8.18.05 1 Sheep Creek grazed 0.07 0.08
8.25.05 1 Sheep Creek grazed 0.14 0.05
9.08.05 1 Sheep Creek grazed 0.02 0.06
9.15.05 1 Sheep Creek grazed 0.03 0.08
9.30.05 1 Sheep Creek grazed 0.02 0.09
5.12.05 2 Sheep Creek control 0.09 0.02
5.19.05 2 Sheep Creek control 0.04 0.05
5.26.05 2 Sheep Creek control 0.10 0.07
6.03.05 2 Sheep Creek control 0.05 0.03
6.09.05 2 Sheep Creek control 0.06 0.01
6.16.05 2 Sheep Creek control 0.08 0.04
6.23.05 2 Sheep Creek control 0.07 0.06
6.30.05 2 Sheep Creek control 0.04 0.09
7.07.05 2 Sheep Creek control 0.06 0.04
7.21.05 2 Sheep Creek control 0.08 0.08
8.01.05 2 Sheep Creek control 0.07 0.09
8.10.05 2 Sheep Creek control 0.06 0.08
8.18.05 2 Sheep Creek control 0.07 0.10
8.25.05 2 Sheep Creek control 0.13 0.07
9.08.05 2 Sheep Creek control 0.02 0.04
9.15.05 2 Sheep Creek control 0.03 0.07
9.30.05 2 Sheep Creek control 0.02 0.09
5.12.05 3 Sheep Creek grazed 0.08 0.03
5.19.05 3 Sheep Creek grazed 0.04 0.06
5.26.05 3 Sheep Creek grazed 0.09 0.04
6.03.05 3 Sheep Creek grazed 0.05 0.04
6.09.05 3 Sheep Creek grazed 0.06 0.01
6.16.05 3 Sheep Creek grazed 0.08 0.04
6.23.05 3 Sheep Creek grazed 0.07 0.08
6.30.05 3 Sheep Creek grazed 0.03 0.05
7.07.05 3 Sheep Creek grazed 0.06 0.06
7.21.05 3 Sheep Creek grazed 0.07 0.08
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Appendix Z. Continued.

Sampling Grazing NOy NH,"

date Transect Location treatment (mg L'l) (mg L’l)
8.01.05 3 Sheep Creek grazed 0.08 0.08
8.10.05 3 Sheep Creek grazed 0.06 0.07
8.18.05 3 Sheep Creek grazed 0.06 0.07
8.25.05 3 Sheep Creek grazed 0.12 0.05
9.08.05 3 Sheep Creek grazed 0.03 0.09
9.15.05 3 Sheep Creek grazed 0.03 0.09
9.30.05 3 Sheep Creek grazed 0.01 0.06
5.12.05 4 Sheep Creek control 0.12 0.03
5.19.05 4 Sheep Creek control 0.02 0.04
5.26.05 4 Sheep Creek control 0.08 0.05
6.03.05 4 Sheep Creek control - -
6.09.05 4 Sheep Creek control 0.05 0.01
6.16.05 4 Sheep Creek control 0.05 0.04
6.23.05 4 Sheep Creek control 0.05 0.14
6.30.05 4 Sheep Creek control 0.02 0.04
7.07.05 4 Sheep Creek control 0.03 0.05
7.21.05 4 Sheep Creek control 0.08 0.10
8.01.05 4 Sheep Creek control 0.06 0.05
8.10.05 4 Sheep Creek control 0.05 0.07
8.18.05 4 Sheep Creek control 0.07 0.15
8.25.05 4 Sheep Creek control 0.07 0.05
9.08.05 4 Sheep Creek control 0.03 0.07
9.15.05 4 Sheep Creek control 0.02 0.10
9.30.05 4 Sheep Creek control 0.02 0.10
5.12.05 5 Sheep Creek grazed 0.13 0.04
5.19.05 5 Sheep Creek grazed 0.03 0.06
5.26.05 5 Sheep Creek grazed 0.10 0.04
6.03.05 5 Sheep Creek grazed 0.06 0.04
6.09.05 5 Sheep Creek grazed 0.06 0.03
6.16.05 5 Sheep Creek grazed 0.07 0.04
6.23.05 5 Sheep Creek grazed 0.07 0.12
6.30.05 5 Sheep Creek grazed 0.03 0.07
7.07.05 5 Sheep Creek grazed 0.05 0.04
7.21.05 5 Sheep Creek grazed 0.10 0.07
8.01.05 5 Sheep Creek grazed 0.06 0.07
8.10.05 5 Sheep Creek grazed 0.05 0.05
8.18.05 5 Sheep Creek grazed 0.07 0.07
8.25.05 5 Sheep Creek grazed 0.11 0.06
9.08.05 5 Sheep Creek grazed 0.02 0.08
9.15.05 5 Sheep Creek grazed 0.02 0.06
9.30.05 5 Sheep Creek grazed 0.02 0.06
5.12.05 6 Sheep Creek control 0.12 0.04
5.19.05 6 Sheep Creek control 0.02 0.04
5.26.05 6 Sheep Creek control 0.09 0.04
6.03.05 6 Sheep Creek control - -
6.09.05 6 Sheep Creek control 0.04 0.02
6.16.05 6 Sheep Creek control 0.05 0.03
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Appendix Z. Continued.

Sampling Grazing NOy NH,"

date Transect Location treatment (mgLh (mg LY
6.23.05 6 Sheep Creek control 0.05 0.05
6.30.05 6 Sheep Creek control 0.02 0.06
7.07.05 6 Sheep Creek control 0.04 0.07
7.21.05 6 Sheep Creek control 0.07 0.06
8.01.05 6 Sheep Creek control 0.06 0.05
8.10.05 6 Sheep Creek control 0.05 0.08
8.18.05 6 Sheep Creck control 0.07 0.09
8.25.05 6 Sheep Creek control 0.08 0.07
9.08.05 6 Sheep Creek control 0.02 0.10
9.15.05 6 Sheep Creek control 0.02 0.05
9.30.05 6 Sheep Creek control 0.02 0.08
5.12.05 1 Middle grazed 0.06 0.01
5.19.05 1 Middle grazed 0.05 0.06
5.26.05 1 Middle grazed 0.05 0.05
6.03.05 1 Middle grazed 0.06 0.03
6.09.05 1 Middle grazed 0.05 0.01
6.16.05 1 Middle grazed 0.06 0.06
6.23.05 1 Middle grazed - -
6.30.05 1 Middle grazed 0.12 0.05
7.07.05 1 Middle grazed 0.09 0.03
7.21.05 1 Middle grazed 0.21 0.05
8.01.05 1 Middle grazed 0.08 0.06
8.10.05 1 Middle grazed 0.05 0.07
8.18.05 1 Middle grazed 0.02 0.06
8.25.05 1 Middle grazed 0.04 0.05
9.08.05 1 Middle grazed 0.15 0.09
9.15.05 1 Middle grazed 0.21 0.07
9.30.05 1 Middle grazed - -
5.12.05 2 Middle control 0.45 0.07
5.19.05 2 Middle control 0.04 0.10
5.26.05 2 Middle control 0.04 0.11
6.03.05 2 Middle control 0.05 0.10
6.09.05 2 Middle control 0.00 0.12
6.16.05 2 Middle control 0.06 0.16
6.23.05 2 Middle control 0.10 0.12
6.30.05 2 Middle control 0.07 0.11
7.07.05 2 Middle control 0.13 0.21
7.21.05 2 Middle control 0.24 0.24
8.01.05 2 Middle control 0.27 0.11
8.10.05 2 Middle control 0.22 0.09
8.18.05 2 Middle control 0.18 0.17
8.25.05 2 Middle control 0.21 0.26
9.08.05 2 Middle control - -
9.15.05 2 Middle control - -
9.30.05 2 Middle control - -
5.12.05 3 Middle grazed 0.03 0.03
5.19.05 3 Middle grazed 0.02 0.04

307



Appendix Z. Continued.

Sampling Grazing NOy NH,"

date Transect Location treatment (mg LY (mg L")
5.26.05 3 Middle grazed 0.01 0.04
6.03.05 3 Middle grazed 0.02 0.02
6.09.05 3 Middle grazed 0.01 0.01
6.16.05 3 Middle grazed 0.02 0.07
6.23.05 3 Middle grazed 0.01 0.04
6.30.05 3 Middle grazed 0.01 0.06
7.07.05 3 Middle grazed 0.01 0.04
7.21.05 3 Middie grazed 0.02 0.07
8.01.05 3 Middle grazed 0.02 0.06
8.10.05 3 Middle grazed 0.02 0.12
8.18.05 3 Middle grazed 0.04 0.19
8.25.05 3 Middle grazed 0.02 0.15
9.08.05 3 Middle grazed 0.08 0.17
9.15.05 3 Middle grazed 0.15 0.20
9.30.05 3 Middle grazed 0.11 0.15
5.12.05 4 Middie control 0.11 0.04
5.19.05 4 Middle control 0.03 0.04
5.26.05 4 Middle control 0.03 0.03
6.03.05 4 Middle control - -
6.09.05 4 Middle control 0.05 0.01
6.16.05 4 Middle control 0.06 0.04
6.23.05 4 Middie control 0.07 0.05
6.30.05 4 Middle control 0.09 0.10
7.07.05 4 Middie control 0.08 0.04
7.21.05 4 Middle contro} - -
8.01.05 4 Middle control - ---
8.10.05 4 Middle control - -
8.18.05 4 Middle control - .-
8.25.05 4 Middle control - -
9.08.05 4 Middle control - -
9.15.05 4 Middle control - -
9.30.05 4 Middle control - -
5.12.05 5 Middle grazed 0.20 0.04
5.19.05 5 Middle grazed 0.05 0.19
5.26.05 5 Middle grazed 0.06 0.15
6.03.05 5 Middle grazed 0.14 0.10
6.09.05 5 Middle grazed 0.19 0.09
6.16.05 5 Middle grazed 023 0.05
6.23.05 5 Middle grazed 0.24 0.04
6.30.05 5 Middle grazed 0.23 0.03
7.07.05 5 Middle grazed 0.23 0.03
7.21.05 5 Middle grazed 0.22 0.05
8.01.05 5 Middle grazed 0.22 0.23
8.10.05 5 Middle grazed 0.10 0.51
8.18.05 5 Middle grazed 0.08 0.38
8.25.05 5 Middle grazed 0.05 0.44
9.08.05 5 Middle grazed 0.06 0.59
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Appendix Z. Continued.

Sampling Grazing NOy NH,

date Transect Location treatment (mg L") (mg L'l)
9.15.05 5 Middle grazed 0.07 048
9.30.05 5 Middle grazed 0.51 0.06
5.12.05 6 Middle control 0.04 0.08
5.19.05 6 Middle control 0.01 0.09
5.26.05 6 Middle control 0.01 0.0
6.03.05 6 Middle control - -
6.09.05 6 Middle control 0.01 0.05
6.16.05 6 Middle control 0.04 0.06
6.23.05 6 Middle control 0.03 0.06
6.30.05 6 Middle control 0.02 0.04
7.07.05 6 Middle control 0.02 0.07
7.21.05 6 Middle control 0.02 0.08
8.01.05 6 Middle control 0.02 0.04
8.10.05 6 Middle control 0.01 0.06
8.18.05 6 Middle control 0.02 0.04
8.25.05 6 Middle control 0.02 0.06
9.08.05 6 Middle control 0.02 0.09
9.15.05 6 Middle control 0.03 0.14
9.30.05 6 Middle control 0.01 0.06
5.12.05 1 Streambank grazed 0.05 0.02
5.19.05 1 Streambank grazed 0.09 0.05
5.26.05 1 Streambank grazed 0.04 0.05
6.03.05 1 Streambank grazed 0.06 0.04
6.09.05 1 Streambank grazed 0.03 0.02
6.16.05 1 Streambank grazed 0.03 0.05
6.23.05 1 Streambank grazed 0.06 0.04
6.30.05 1 Streambank grazed 0.10 0.09
7.07.05 1 Streambank grazed 0.11 0.11
7.21.05 1 Streambank grazed 0.74 0.06
8.01.05 1 Streambank grazed 0.61 0.04
8.10.05 1 Streambank grazed 0.42 0.05
8.18.05 1 Streambank grazed 0.46 0.07
8.25.05 1 Streambank grazed 0.42 0.14
9.08.05 1 Streambank grazed 0.05 0.13
9.15.05 1 Streambank grazed 0.11 026
9.30.05 1 Streambank grazed 0.12 0.13
5.12.05 2 Streambank control 0.18 0.05
5.19.05 2 Streambank control 0.02 0.09
5.26.05 2 Streambank control 0.02 0.04
6.03.05 2 Streambank control 0.01 0.02
6.09.05 2 Streambank control 0.00 6.01
6.16.05 2 Streambank control 0.02 0.07
6.23.05 2 Streambank control 0.04 0.05
6.30.05 2 Streambank control 0.02 0.08
7.07.05 2 Streambank control 0.03 0.12
7.21.05 2 Streambank control 0.10 0.16
8.01.05 2 Streambank control 0.04 0.08
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Appendix Z. Continued.

+

Sampling Grazing NOy NH,

date Transect Location treatment (mgL?) (mg L?)
8.10.05 2 Streambank control 0.06 0.12
8.18.05 2 Streambank control 0.14 0.14
8.25.05 2 Streambank control 0.25 0.06
9.08.05 2 Streambank control 0.05 0.13
9.15.05 2 Streambank control - -
9.30.05 2 Streambank control - -
5.12.05 3 Streambank grazed 0.06 0.29
5.19.05 3 Streambank grazed 0.14 0.13
5.26.05 3 Streambank grazed 0.07 0.16
6.03.05 3 Streambank grazed 0.08 0.17
6.09.05 3 Streambank grazed 0.08 0.18
6.16.05 3 Streambank grazed 0.13 0.16
6.23.05 3 Streambank grazed 0.36 0.06
6.30.05 3 Streambank grazed 0.39 0.03
7.07.05 3 Streambank grazed 0.46 0.05
7.21.05 3 Streambank grazed 0.48 0.09
8.01.05 3 Streambank grazed 0.65 0.06
8.10.05 3 Streambank grazed 0.16 0.26
8.18.05 3 Streambank grazed 0.67 032
8.25.05 3 Streambank grazed 1.09 0.06
9.08.05 3 Streambank grazed 0.52 0.10
9.15.05 3 Streambank grazed 0.51 0.15
9.30.05 3 Streambank grazed 0.47 0.07
5.12.05 4 Streambank control 0.08 0.06
5.19.05 4 Streambank control 0.02 0.10
5.26.05 4 Streambank control 0.02 0.07
6.03.05 4 Streambank control - -
6.09.05 4 Streambank control 0.01 0.07
6.16.05 4 Streambank control 0.01 0.07
6.23.05 4 Streambank control 0.01 0.05
6.30.05 4 Streambank control 0.01 0.06
7.07.05 4 Streambank control 0.01 0.05
721.05 4 Streambank control 0.05 0.18
8.01.05 4 Streambank control 0.03 0.16
8.10.05 4 Streambank control 0.04 024
8.18.05 4 Streambank control 0.22 0.40
8.25.05 4 Streambank control 0.04 0.16
9.08.05 4 Streambank control --- -
9.15.05 4 Streambank control - e
9.30.05 4 Streambank control - -
5.12.05 5 Streambank grazed 0.06 0.10
5.19.05 5 Streambank grazed 0.02 0.12
5.26.05 5 Streambank grazed 0.01 0.12
6.03.05 5 Streambank grazed 0.02 0.03
6.09.05 5 Streambank grazed 0.02 0.03
6.16.05 5 Streambank grazed 0.02 0.05
6.23.05 5 Streambank grazed 0.02 0.06
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Appendix Z. Continued.

+

Sampling Grazing NOy NH,

date Transect Location treatment (mg LY (mg LY
6.30.05 5 Streambank grazed 0.01 0.08
7.07.05 5 Streambank grazed 0.02 0.11
7.21.05 5 Streambank grazed 0.03 0.27
8.01.05 5 Streambank grazed 0.02 0.44
8.10.05 5 Streambank grazed 0.01 0.30
8.18.05 5 Streambank grazed 0.02 0.35
8.25.05 5 Streambank grazed 0.02 0.36
9.08.05 5 Streambank grazed 0.53 0.78
9.15.05 5 Streambank grazed - -
9.30.05 5 Streambank grazed - -
5.12.05 6 Streambank control 0.07 0.07
5.19.05 6 Streambank control 0.04 0.05
5.26.05 6 Streambank control 0.06 0.03
6.03.05 6 Streambank control --- --
6.09.05 6 Streambank control 0.02 0.03
6.16.05 6 Streambank control 0.06 0.08
6.23.05 6 Streambank control 0.09 0.04
6.30.05 6 Streambank control 0.09 0.06
7.07.05 6 Streambank control 0.14 0.08
7.21.05 6 Streambank control 0.12 0.07
8.01.05 6 Streambank control 0.25 0.06
8.10.05 6 Streambank control 022 0.18
8.18.05 6 Streambank control 0.29 0.06
8.25.05 6 Streambank control 0.36 0.05
9.08.05 6 Streambank control 0.44 0.08
9.15.05 6 Streambank control 045 0.10
9.30.05 6 Streambank control 0.37 0.08
5.12.05 1 Edge grazed 0.13 0.07
5.19.05 1 Edge grazed 0.11 0.06
5.26.05 1 Edge grazed 0.08 0.10
6.03.05 1 Edge grazed 0.04 0.07
6.09.05 1 Edge grazed 0.03 0.05
6.16.05 1 Edge grazed 0.06 0.04
6.23.05 1 Edge grazed - -
6.30.05 1 Edge grazed 0.14 0.07
7.07.05 1 Edge grazed 0.13 0.04
7.21.05 1 Edge grazed 0.19 0.15
8.01.05 1 Edge grazed 0.17 0.12
8.10.05 1 Edge grazed 0.11 0.11
8.18.05 1 Edge grazed 0.10 0.12
8.25.05 1 Edge grazed 0.15 0.13
9.08.05 1 Edge grazed 0.24 0.17
9.15.05 1 Edge grazed 0.19 0.12
9.30.05 1 Edge grazed - -
5.12.05 2 Edge control 0.79 0.06
5.19.05 2 Edge control 0.06 0.20
5.26.05 2 Edge control 0.03 0.23
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Appendix Z. Continued.

Sampling Grazing NO; NH,"

date Transect Location treatment (mg L") (mg L™y
6.03.05 2 Edge control 0.02 023
6.09.05 2 Edge control 0.00 0.27
6.16.05 2 Edge control 0.02 0.29
6.23.05 2 Edge control 0.01 0.19
6.30.05 2 Edge control 0.02 0.26
7.07.05 2 Edge control 0.02 0.35
7.21.05 2 Edge control 0.09 0.32
8.01.05 2 Edge control 0.27 0.15
8.10.05 2 Edge control 030 0.16
8.18.05 2 Edge control 0.14 0.11
8.25.05 2 Edge control 0.13 0.11
9.08.05 2 Edge control - -—-
9.15.05 2 Edge control - -
9.30.05 2 Edge control - -
5.12.05 3 Edge grazed 0.05 0.05
5.19.05 3 Edge grazed 0.06 0.06
5.26.05 3 Edge grazed 0.05 0.03
6.03.05 3 Edge grazed 0.06 0.03
6.09.05 3 Edge grazed 0.05 0.01
6.16.05 3 Edge grazed 0.26 0.06
6.23.05 3 Edge grazed 0.07 0.05
6.30.05 3 Edge grazed 0.07 0.04
7.07.05 3 Edge grazed 0.09 0.11
7.21.05 3 Edge grazed 0.08 0.04
8.01.05 3 Edge grazed 0.12 0.09
8.10.05 3 Edge grazed 0.09 0.07
8.18.05 3 Edge grazed 0.19 0.19
8.25.05 3 Edge grazed 0.21 0.20
9.08.05 3 Edge grazed 0.29 0.08
9.15.05 3 Edge grazed 032 0.05
9.30.05 3 Edge grazed 0.26 0.14
5.12.05 4 Edge control -- -
5.19.05 4 Edge control 0.04 0.09
5.26.05 4 Edge control 0.10 0.08
6.03.05 4 Edge control - -
6.09.05 4 Edge control 0.14 0.03
6.16.05 4 Edge control 0.19 0.03
6.23.05 4 Edge control 0.19 0.06
6.30.05 4 Edge control 0.20 0.05
7.07.05 4 Edge control 0.21 0.11
7.21.05 4 Edge control - -
8.01.05 4 Edge control --- -
§.10.05 4 Edge control - -—-
8.18.05 4 Edge control - -
8.25.05 4 Edge control -—- -
9.08.05 4 Edge control - -—-
9.15.05 4 Edge control - -
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Appendix Z. Continued.

+

Sampling Grazing NOy NH,

date Transect Location treatment (mg L'l) (mgLY)
9.30.05 4 Edge control - -
5.12.05 5 Edge grazed 0.27 0.03
5.19.05 5 Edge grazed 0.01 0.08
5.26.05 5 Edge grazed 0.01 0.04
6.03.05 5 Edge grazed 0.02 0.02
6.09.05 5 Edge grazed 0.04 0.02
6.16.05 5 Edge grazed 0.02 0.03
6.23.05 5 Edge grazed 0.02 0.05
6.30.05 5 Edge grazed 0.02 0.04
7.07.05 5 Edge grazed 0.01 0.18
7.21.05 5 Edge grazed 0.03 0.18
8.01.05 5 Edge grazed 0.02 0.30
8.10.05 5 Edge grazed 0.06 0.26
8.18.05 5 Edge grazed 0.04 0.14
8.25.05 5 Edge grazed 0.15 0.12
9.08.05 5 Edge grazed 0.15 022
9.15.05 5 Edge grazed 0.10 0.23
9.30.05 5 Edge grazed 0.27 0.07
5.12.05 6 Edge control 0.02 0.05
5.19.05 6 Edge control 0.01 0.04
5.26.05 6 Edge control 0.01 0.03
6.03.05 6 Edge control - -
6.09.05 6 Edge control 0.00 0.03
6.16.05 6 Edge control 0.01 0.05
6.23.05 6 Edge control 0.02 0.05
6.30.05 6 Edge control 0.01 0.03
7.07.05 6 Edge control 0.02 0.07
7.21.05 6 Edge control 0.02 0.07
8.01.05 6 Edge control 0.02 0.13
8.10.05 6 Edge control 0.02 0.17
8.18.05 6 Edge control 0.03 0.15
8.25.05 6 Edge control 0.03 0.16
9.08.05 6 Edge control 0.21 0.10
9.15.05 6 Edge control 0.33 0.05
9.30.05 6 Edge control 0.30 0.07
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Appendix AA. Nifrification and nitrogen mineralization in surface soils of Sheep Creek riparian zone

measured with ion-exchange resin (IER) bags on a monthly basis in 2005.

Grazing Nitrification N mineralization
Transect  Location treatment Month (mg NO; g'resin month™) (mg NH," g”'resin month™")
1 Streambank grazed  June 0.004 0.025
1 Streambank grazed  July 0.002 0.008
1 Streambank grazed  August 0.002 0.005
1 Streambank grazed  September 0.002 0.010
2 Streambank control  June 0.008 0.022
2 Streambank control  July 0.004 0.018
2 Streambank control  August 0.004 0.013
2 Streambank control  September 0.004 0.002
3 Streambank grazed  June 0.003 0.033
3 Streambank grazed  July 0.004 0.022
3 Streambank grazed  August 0.003 0.012
3 Streambank grazed  September 0.004 0.013
4 Streambank control  June 0.002 0.041
4 Streambank control  July 0.016 0.025
4 Streambank control  August 0.011 0.016
4 Streambank control  September 0.004 0.022
5 Streambank grazed  June 0.001 0.025
5 Streambank grazed  July 0.007 0.025
5 Streambank grazed  August 0.004 0.020
5 Streambank grazed  September 0.003 0.008
6 Streambank control  June 0.001 0.063
6 Streambank control  July 0.006 0.017
6 Streambank control  August 0.002 0.015
6 Streambank control  September 0.003 0.018
1 Middie grazed  June 0.003 0.024
1 Middle grazed  July 0.003 0.002
1 Middle grazed  August 0.004 0.007
1 Middle grazed  September 0.002 0.002
2 Middle control  June - 0.033
2 Middle control  July 0.004 0.006
2 Middle control  August 0.006 0.010
2 Middle control  September 0.005 0.003
3 Middle grazed  June 0.007 0.018
3 Middle grazed  July 0.002 0.031
3 Middle grazed  August 0.005 0.013
3 Middle grazed  September 0.007 0.002
4 Middle control  June 0.003 0.018
4 Middle control  July 0.002 0.005
4 Middle control  August 0.004 0.005
4 Middle control  September 0.002 0.001
5 Middle grazed  June 0.010 0.030
5 Middle grazed  July 0.004 0.006
5 Middle grazed  August 0.006 0.024
5 Middle grazed  September 0.003 0.009
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Appendix AA. Continued.

Grazing Nitrification N mineralization
Transect Location treatment Month (mg NOj3’ g" resin month‘l) (mg NH,* g‘lresin month")
6 Middie control  June 0.001 0.073
6 Middle control  July 0.003 0.022
6 Middle control  August 0.000 0.035
6 Middie control  September 0.003 0.010
1 Edge grazed  June 0.002 0.011
1 Edge grazed  July 0.003 0.002
1 Edge grazed  August 0.003 0.003
1 Edge grazed  September 0.002 0.003
2 Edge control  June 0.003 0.009
2 Edge control  July 0.002 0.002
2 Edge control  August 0.003 0.006
2 Edge control  September 0.007 0.001
3 Edge grazed  June 0.001 0.021
3 Edge grazed  July 0.005 0.015
3 Edge grazed  August 0.005 0.010
3 Edge grazed  September 0.008 0.004
4 Edge control  June 0.001 0.022
4 Edge control  July 0.006 0.006
4 Edge control  August 0.006 0.004
4 Edge control  September 0.002 0.000
S Edge grazed  June 0.003 0.005
S Edge grazed  July 0.002 0.005
5 Edge grazed  August 0.003 0.005
5 Edge grazed  September 0.005 0.003
6 Edge control  June 0.002 0.026
6 Edge control  July 0.003 0.019
6 Edge control  August 0.005 0.015
6 Edge control _ September 0.005 0.009
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Appendix AB. Statistical analyses of Sheep Creek stream stage, groundwater piezometric potential,
stream NO; and NH,", and groundwater NO;™ and NH,".

Table AB-1a. Analysis of variance (ANOVA) of location (Sheep Creek, streambank, middle riparian,
riparian edge), grazing treatment (Trt), and month effects on water elevations in stream (stage)
and piezometers (head). Significant differences were accepted at P- value < 0.05.

Covariance Parameter Estimates

Covariance Parameter Estimate

Block 303
Block *Trt 786
Block*Trt*Location 204
Block*Trt*Location*Month 88
Residual 1.01

Type III Tests of Fixed Effects

Effect Numerator DF Denominator DF F-value P-value
Location 3 11 1.18 0.36
Trt 1 2 041 0.59
Location*Trt 3 11 0.17 0.92
Month 4 54 30.40 <0.0001
Location*Month 12 54 2.46 0.01
Trt*Month 4 54 1.36 0.26
Location*Trt*Month 12 54 0.91 0.54
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Appendix AB. Continued.

Table AB-1b. Differences of least square means in water elevations for the Location*Month
interaction in Table Y-1a. Comparisons were made between locations within each month at
P <0.05, P-diff = difference between least square means.

Month Location Location P -diff DF t-value P-value
May Sheep Creek Middle 15.59 54 1.47 0.15
May Sheep Creek Streambank 29.49 54 2.78 0.01
May Sheep Creek Edge 5.67 54 0.53 0.60
May Middle Streambank 13.90 54 141 0.17
May Middle Edge 9.92 54 -1.00 0.32
May Streambank Edge -23.82 54 241 0.02
June Sheep Creek Middle -13.68 54 -1.29 0.20
June Sheep Creek Streambank -0.63 54 -0.06 0.95
June Sheep Creek Edge -21.60 54 -2.03 0.05
June Middle Streambank 13.05 54 1.32 0.19
June Middle Edge -7.92 54 -0.80 043
June Streambank Edge -20.97 54 -2.12 0.04
July Sheep Creek Middle 12.07 54 1.14 0.26
July Sheep Creek Streambank 14.40 54 1.36 0.18
July Sheep Creek Edge 2.17 54 0.26 0.80
July Middle Streambank 2.33 54 0.24 0.81
July Middle Edge -9.30 54 -0.94 0.35
July Streambank Edge -11.63 54 -1.18 0.24
August Sheep Creek Middle 10.63 54 098 0.33
August Sheep Creek Streambank 17.42 54 1.64 0.11
August Sheep Creek Edge 4.01 54 0.37 0.71
August Middle Streambank 6.78 54 0.67 0.51
August Middle Edge -6.62 54 -0.64 0.53
August Streambank Edge -13.41 54 -1.32 0.19
September Sheep Creek Middle -4.29 54 -0.40 0.69
September Sheep Creek Streambank 6.39 54 0.59 0.56
September Sheep Creek Edge 0.75 54 0.06 0.95
September Middle Streambank 10.68 54 1.03 0.31
September Middle Edge 5.04 54 0.46 0.65
September Streambank Edge -5.64 54 -0.51 0.61

317



Appendix AB. Continued.

Table AB-2a. Analysis of variance (ANOVA) of grazing treatment (Trt) and month effects on stream
NO; and NH,". Significant differences were accepted at P -value < 0.05.

Covariance Parameter Estimates Type III Tests of Fixed Effects
Covariance Parameter Estimate Effect Numerator DF Denoll;lllTnator F-value P-value
Stream NO ;~ Stream NO §~
Block 0 Trt 1 2 291 0.23
Block *Trt 0.00001 Month 4 16 98.86  <0.0001
Block*Trt*Month 0 Trt*Month 4 16 2.05 0.14
Residual 0.00003
Stream NH , * Stream NH ;*
Block 0 Trt 1 2 3.89 0.19
Block *Trt 0 Month 4 16 2622  <0.0001
Block*Trt*Month 0 Trt*Month 4 16 1.41 0.27
Residual 0.00005

Table AB-2b. Differences of least square means in stream NO;” and NH," by month (Month
effects in Table Y-2a). Comparisons were made between locations within each month at P < 0.053,
P -diff = difference between square means.

Stream NO 3~

Month Month P-diff DF ¢ -value P-value
August July 0.01 16 3.02 0.01
August June 0.02 16 6.59 <0.0001
August May -0.002 16 -0.56 0.58
August September 0.05 16 16.64 <0.0001
July June 0.01 16 3.57 0.003
July May -0.01 16 -3.58 0.002
July September 0.04 16 13.62 <0.0001
June May -0.02 16 -7.15 <0.0001
June September 0.03 16 10.04 <0.0001
May September 0.05 16 17.20 <0.0001
Stream NH , *

Month Month P -diff DF t-value P-value
August July 0.01 16 2.62 0.02
August June 0.03 16 5.94 <0.0001
August May 0.031 16 7.41 <0.0001
August September -0.004 16 -0.90 0.38
July June 0.01 16 332 0.004
July May 0.02 16 4.79 0.0002
July September -0.01 16 -3.52 0.003
June May 0.01 16 1.48 0.16
June September -0.03 16 -6.84 <0.0001
May September -0.04 16 -8.31 <0.0001
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Appendix AB. Continued.

Table AB-3a. Analysis of covariance (ANCOVA) of riparian location, grazing treatment (Trt) and

month effects on groundwater NO;” and NH, with piezometric potential (head) as covariate.

Data were log transformed and significant differences were accepted at P -value < 0.05,

R? = coefficient of determination for proportion of variability in N concentrations explained by
piezometric potential (head).

Covariance Parameter Estimates

Covariance Parameter Estimate
Groundwater NO 3~
Block 0.02
Block *Trt 0
Block*Trt*Location 0.77
Residual 0.49
Groundwater NH ;*
Block 0
Block *Trt 0.08
Block*Trt*Location 0.04
Residual 0.20

Type III Tests of Fixed Effects

Effect Numerator DF Denominator DF F-value P-value R’
Groundwater NO 3~ 0.34
Location 2 8 0.40 0.68
Trt 1 2 0.14 0.75
Location*Trt 2 8 023 0.80
Month 4 40 4.10 0.01
Location*Month 8 40 1.75 0.12
Trt*Month 4 40 0.60 0.66
Location*Trt*Month 8 40 0.82 0.59
Head 1 40 0.87 0.36
Groundwater NH ;* 0.56
Location 2 8 0.84 0.47
Trt 1 2 0.06 0.83
Location*Trt 2 8 1.28 0.33
Month 4 40 5.75 0.0009
Location*Month 8 40 0.84 0.58
Trt*Month 4 40 2.18 0.09
Location*Trt*Month 8 40 0.51 0.34
Head 1 40 3.76 0.06
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Appendix AB. Continued.

Table AB-3b. Differences of least square means in groundwater NO;” and NH," by month (Month
effects in Table Y-3a). Comparisons were made between locations within each month at P < 0.05,
P -diff = difference between log-transformed least square means.

Groundwater NO 3~

Month Month P -diff DF t-value P-value
August July 0.19 40 0.78 0.44
August June 0.76 40 2.85 0.007
August May 0.46 40 1.80 0.08
August September -0.55 40 -1.81 0.08
July June 0.57 40 2.30 0.03
July May 0.26 40 1.11 0.27
July September -0.74 40 -2.44 0.02
June May -0.31 40 -1.29 0.20
June September -1.31 40 -3.83 0.0004
May September -1.00 40 -3.15 0.003
Groundwater NH ,+

Month Month P-diff DF t-value P-value
August July 0.30 40 1.90 0.06
August June 0.71 40 4.27 0.0001
August May 0.56 40 3.52 0.001
August September 0.02 40 0.13 0.89
July June 0.42 40 2.68 0.01
July May 0.26 40 1.77 0.08
July September -0.27 40 -1.45 0.15
June May -0.15 40 -1.00 0.32
June September -0.69 40 -3.32 0.002
May September -0.54 40 -2.75 0.009
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Appendix AB. Continued.

Table AB-4a. Analysis of covariance (ANCOVA) of location, grazing treatment (Trt) and
month effects on groundwater NO, and NH," with stream stage and piezometric potential
(head) as the covariate. Data were log transformed and significant differences were
accepted at P-value < 0.05.

Covariance Parameter Estimates

Covariance Parameter Estimate
Groundwater NO 3~
Block 0.03
Block *Trt 0
Block*Trt*Location 0.60
Residual 0.38
Groundwater NH ;*
Block 0
Block *Trt 0.05
Block*Trt*Location 0.05
Residual 0.16

Type I Tests of Fixed Effects

Effect Numerator DF Denominator DF F -value P-value

Groundwater NO 3~
Location 3 11 0.70 0.57
Trt 1 2 0.19 0.71
Location*Trt 3 11 0.20 0.89
Month 4 52 3.21 0.02
Location*Month 12 52 432 <0.0001
Trt*Month 4 52 0.63 0.65
Location*Trt*Month 12 52 0.76 0.69
Head 1 52 1.13 029

Groundwater NH ;*
Location 3 il 3.94 0.04
Trt 1 2 0.09 0.79
Location*Trt 3 11 0.92 0.46
Month 4 52 7.92 <0.0001
Location*Month 12 52 0.87 0.58
Trt*Month 4 52 2.05 0.10
Location*Trt*Month 12 52 0.66 0.78
Head 1 52 5.09 0.03
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Appendix AB. Continued.

Table AB-4b. Differences of least square means in groundwater NO;” and NH," for the Location*Month
interaction in Table Y-4a. Comparisons were made between locations within each month at P < 0.05,
P -diff = difference between log-transformed least square means.

Groundwater NO ;~

Month Location Location P-diff DF t-value P-value
May Sheep Creek Middle 0.39 52 0.64 0.52
May Sheep Creek Streambank 0.46 52 0.74 0.46
May Sheep Creek Edge 0.02 52 0.03 0.98
May Middle Streambank 0.07 52 0.11 0.91
May Middle Edge -0.37 52 -0.65 0.52
May Streambank Edge -0.44 52 -0.75 0.46
June Sheep Creek Middle -0.03 52 -0.05 0.96
June Sheep Creek Streambank 0.36 52 0.59 0.56
June Sheep Creek Edge 0.12 52 0.20 0.85
June Middle Streambank 0.39 52 0.68 0.50
June Middle Edge 0.15 52 0.27 0.79
June Streambank Edge -0.24 52 -0.40 0.69
July Sheep Creek Middle -0.16 52 -0.27 0.79
July Sheep Creek Streambank -0.46 52 -0.76 0.45
July Sheep Creek Edge 0.03 52 0.05 0.96
July Middle Streambank -0.30 52 -0.52 0.60
July Middle Edge 0.19 52 0.34 0.74
July Streambank Edge 0.49 52 0.86 0.40
August Sheep Creek Middle 0.30 52 0.49 0.63
August Sheep Creek Streambank -0.69 52 -1.12 0.27
August Sheep Creek Edge -0.42 52 -0.67 0.50
August Middle Streambank -0.99 52 -1.68 0.10
August Middle Edge -0.72 52 -1.19 0.24
August Streambank Edge 0.27 52 0.45 0.65
September Sheep Creek Middle -1.37 52 -2.04 0.05
September Sheep Creek Streambank 2.09 52 335 0.002
September Sheep Creek Edge -3.05 52 -4.55 <0.0001
September Middle Streambank -0.71 52 -1.09 0.28
September Middle Edge -1.67 52 -2.40 0.02
September Streambank Edge -0.96 52 -1.47 0.15
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Appendix AB. Table AB-4b. Continued.

Groundwater NH 4 *

Month Location Location P-diff DF ¢-value P-value
May Sheep Creek Middie -0.36 52 -1.29 0.20
May Sheep Creek Streambank -0.47 52 -1.62 0.11
May Sheep Creek Edge -0.50 52 -1.79 0.08
May Middle Streambank -0.11 52 -0.41 0.69
May Middle Edge -0.14 52 -0.52 0.61
May Streambank Edge -0.03 52 -0.11 092
June Sheep Creek Middle -0.26 52 -0.93 0.35
June Sheep Creck Streambank -0.24 52 -0.86 0.40
June Sheep Creek Edge -0.32 52 -1.13 0.27
June Middle Streambank 0.02 52 0.09 0.93
June Middle Edge -0.06 52 -0.22 0.82
June Streambank Edge -0.08 52 -0.31 0.76
July Sheep Creek Middle -0.01 52 -0.03 0.98
July Sheep Creek Streambank -0.51 52 -1.82 0.07
July Sheep Creek Edge -0.74 52 -2.66 0.01
July Middle Streambank -0.50 52 -1.93 0.06
July Middle Edge -0.73 52 -2.79 0.01
July Streambank Edge -0.23 52 -0.87 0.39
August Sheep Creek Middle -0.33 52 -1.13 0.26
August Sheep Creek Streambank -0.64 52 -2.26 0.03
August Sheep Creek Edge -0.67 52 -2.29 0.03
August Middle Streambank -0.30 52 -1.10 0.27
August Middle Edge -0.34 52 -1.17 0.25
August Streambank Edge -0.03 52 -0.12 0.91
September Sheep Creek Middie -0.70 52 -2.11 0.04
September Sheep Creek Streambank -0.79 52 -2.70 0.01
September Sheep Creek Edge -0.46 52 -1.41 0.17
September Middle Streambank -0.09 52 -0.28 0.78
September Middle Edge 0.23 52 0.65 0.52
September Streambank Edge 0.32 52 0.99 0.33
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Appendix AB. Continued.
Table AB-5a. Analysis of variance (ANOVA) of location, grazing treatment (Trt) and
month effects on nitrification and N mineralization estimated with jon-exchange resin (IER)

Data were log transformed and significant differences were accepted at P -value < 0.05.

Covariance Parameter Estimates

Covariance Parameter Estimate
Groundwater NO ;~
Block 0
Block *Trt 0.07
Block*Trt*Location 0.04
Block*Trt*Location*Month 0.06
Residual 037
Groundwater NH ;*
Block 0.07
Block *Trt 0.19
Block*Trt*Location*Month 0.11
Block*Trt*Location 0
Residual 0.42

Type III Tests of Fixed Effects

Effect Numerator DF Denominator DF F-value P value

Nitrification
Location 2 0.23 0.80
Trt 1 0.07 0.82
Location*Trt 2 1.82 0.22
Month 3 36 0.68 0.57
Location*Month 6 36 2,07 0.08
Trt*Month 3 36 0.13 0.94
Location*Trt*Month 6 36 037 0.89

N mineralization
Location 2 8.47 0.01
Trt 1 0.02 0.91
Location*Trt 2 0.15 0.87
Month 3 36 25.29 <0.0001
Location*Month 6 36 1.50 0.21
Trt*Month 3 36 2.04 0.13
Location*Trt*Month 6 36 0.57 0.75
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Appendix AB. Continued.

TableAB-5b. Differences of least square means in nitrification and N mineralization by month and
location (Month and Location effects in Table Y-5a). Comparisons were made between at P < 0.05,

P -diff = difference between log-transformed least square means.

Nitrification (NO ;")

Month Month Location Location P-diff DF t-value P-value
August July -0.04 36 -0.17 0.87
August June 023 36 1.07 0.29
August September -0.02 36 -0.11 091
July June 027 36 123 0.23
July September 0.01 36 0.06 0.95
June September -0.26 36 -1.18 0.25
Middle Streambank 0.02 8 0.07 0.95
Middle Edge 0.14 8 0.62 0.55
Streambank  Edge 0.12 8 0.55 0.60
N mineralization (NH ;*)
Month Month Location Location P -diff DF ¢-value P -value
August July 0.04 36 0.20 0.85
August June -0.85 36 -3.97 0.0003
August September 1.01 36 473 <0.0001
July June -0.90 36 -4.17 0.0002
July September 0.97 36 453 0.0001
June September 1.87 36 8.70 <0.0001
Middle Streambank -0.54 8 -1.99 0.08
Middle Edge 0.57 8 2.13 0.07
Streambank ~ Edge 1.11 8 4.12 0.003
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