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ABSTRACT

BALANCED AND TRANSIENT ASPECTS OF THE INTERTROPICAL CONVERGENCE

ZONE

The Intertropical Convergence Zone (ITCZ) is one of the primary drivers of tropical circu-

lations and because of its interactions with the extratropics, contributes significantly to Earth’s

general circulation. This dissertation investigates dynamical aspects of the ITCZ using a variety of

analytical and numerical models.

In the first chapter, we learn that deep and shallow balanced Hadley circulations are forced by

deep diabatic heating and Ekman pumping at the top of the boundary layer, respectively. Also,

when the ITCZ is located off of the equator there is an inherent asymmetry between the winter and

summer Hadley cells due to the anisotropic nature of the inertial stability.

The second study examines shallow and deep vertical motionsover the eastern Pacific Ocean

(80◦W–150◦W) using the Year of Tropical Convection reanalysis (YOTC).Vertical motions in

the eastern Pacific tend to be bimodal, with both shallow and deep vertical motions occurring

throughout the year. Shallow vertical motions are typically narrow and restricted to low latitudes

(ITCZ-like) while deep vertical motions tend to be broad andare located poleward of shallow

regimes, except during El Niño conditions.

The study of balanced Hadley circulations is also extended to investigate the role of transient

aspects of the Hadley circulation. The solutions illustrate that inertia-gravity wave packets emanate

from the ITCZ and bounce off a spectrum of turning latitudes when the ITCZ is switched on at

various rates. These equatorially trapped wave packets cause the Hadley cells to pulsate with

periods of 1–3 days.
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In the last part of this dissertation, we focus on boundary layer aspects of the formation of the

ITCZ. Since the ITCZ boundary layer is a region of significantmeridional convergence, meridional

advection should not be neglected. Using a zonally symmetric slab boundary layer model, shock-

like structures appear in the form of near discontinuities in the horizontal winds and near singu-

larities in the vorticity and Ekman pumping after 1–2 days. The numerical model also agrees well

with dynamical fields in YOTC while adding important detailsabout the boundary layer pumping

and vorticity.

In closing, we believe that the ITCZ is a highly transient region vital to the general circulation

of the atmosphere, and many of its features can be explained by dry dynamics.
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CHAPTER 1

Introduction

The tropical atmosphere is a vital component in Earth’s weather and climate. It plays a signif-

icant role in transporting energy, momentum, and moisture poleward. One of the primary drivers

of tropical-extratropical transport is the Hadley circulation (Halley 1686; Hadley 1735; Held and

Hou 1980; Hoskins 1996). Until recently, the Hadley circulation was thought to have been mostly

driven by deep convection in the Intertropical ConvergenceZone (ITCZ) (Schneider and Lindzen

1977; Held and Hou 1980; Lindzen and Hou 1988; Hack et al. 1989). Now we know that shallow

convection and boundary layer processes in the ITCZ play a significant role in the exchange of

energy, momentum, and moisture between the tropics and the extratropics (Lindzen and Nigam

1987; Stevens et al. 2002; Zhang et al. 2004; Zhang and Hagos 2009; Back and Bretherton 2009a).

Chapter 2 of this dissertation explores analytical solutions for deep and shallow Hadley circu-

lations in a zonally symmetric framework. The results suggest that both Hadley circulations can be

described by the same partial differential equations with the same shaping parameters. Therefore,

the asymmetries between the winter and summer hemisphere Hadley cells are a part of the same

dynamical system, with the main difference being their forcing. In the deep Hadley circulation

diabatic heating in the ITCZ is the main forcing, while Ekmanpumping at the top of the ITCZ

boundary layer is the primary forcing for the shallow Hadleycirculation.

The next chapter focuses on shallow and deep vertical motions over the eastern Pacific Ocean

(80◦W–150◦W) using the Year of Tropical Convection reanalysis (YOTC).YOTC was a two year
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project of enhanced satellite coverage, especially over the tropical oceans, where the transient dy-

namics are not well understood. The analysis that is performed characterizes the vertical profile

of the vertical motion as either being shallow or deep. Alongwith an analysis of sea surface tem-

peratures and diabatic heating, it appears that shallow vertical motions are typically narrow and

restricted to low latitudes (ITCZ-like) while deep vertical motions tend to be broad and typically

are found poleward of shallow regimes, except during the El Niño conditions of May 2009–April

2010. During the summer months of May–October, deeper rising motions seem to correspond

with warmer sea surface temperatures while the months of February–April exhibit significant dif-

ferences near the equator. In particular, February–April 2009 illustrate a double shallow ITCZ

structure, while February–April 2010 had a single ITCZ justnorth of the equator with both shal-

low and deep rising motions.

In Chapter 4, we extend the study of balanced, zonally symmetric Hadley circulations to inves-

tigate the role of transient aspects of the zonally symmetric Hadley circulation. We mainly focus

on the Hadley circulations forced by diabatic heating of theexternal mode and first two internal

modes. The solutions illustrate the fundamental result that inertia-gravity wave packets emanate

from the ITCZ and bounce off a spectrum of turning latitudes when the ITCZ is switched on at

various rates. These packets are therefore equatorially trapped and cause the Hadley cells to pul-

sate with periods of 1–3 days. Past studies, such as Wunsch and Gill (1976), have shown evidence

of equatorially-trapped oceanic inertia-gravity waves insea level and surface meridional wind data

over the Pacific Ocean. It is possible that the tropical atmosphere may contain a considerable

amount of inertia-gravity wave activity which our present observational systems are not capable of

detecting. Therefore, this theoretical work serves as motivation for future observational work on

inertia-gravity waves in the tropics.
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Chapters 2–4 analyze dynamical aspects of deep and shallow overturning circulations strictly

above the boundary layer. Also, we made a number of simplifying assumptions about the dynam-

ical and thermodynamical processes in the ITCZ, which act asthe primary forcing for large-scale

tropical circulations. In the final chapter, we devise a high-resolution, zonally symmetric, slab

boundary layer model to study dynamical aspects in the ITCZ.The main motivation for this work

is recent research showing evidence of shock-like structures in the boundary layer of tropical cy-

clones (Williams et al. 2013; Slocum et al. 2014). Also, satellite imagery often shows narrow

zonally elongated strips of tropical convection, especially in the central and eastern Pacific. When

the boundary layer meridional inflow is large enough in the ITCZ, the neglect of the meridional

advection terms is not justifiable. With the inclusion of these terms in the slab boundary layer

model an embedded Burgers’ equation (Burgers 1948) appearsin the meridional momentum equa-

tion. When the model is forced by a broad low pressure region just above the boundary layer, near

discontinuities form in both the zonal and meridional windsafter about 2 days. Along with these

near discontinuities, near singularities arise in the vorticity and Ekman pumping. The numerical

model also agrees well with dynamical fields in YOTC while adding important details about the

boundary layer pumping and vorticity.

3



CHAPTER 2

Balanced Dynamics of Deep and Shallow Hadley Circulations

2.1. SYNOPSIS

This chapter examines the dynamics of large-scale overturning circulations in the tropical at-

mosphere using an idealized zonally symmetric model on the equatorialβ-plane. Under certain

simplifications of its coefficients, the elliptic partial differential equation for the transverse circula-

tion can be solved by first performing a vertical transform toobtain a horizontal structure equation,

and then using Green’s function to solve the horizontal structure equation. When deep diabatic

heating is present in the Intertropical Convergence Zone (ITCZ), the deep Hadley circulation is of

first order importance. In the absence of deep diabatic heating, the interior circulation associated

with Ekman pumping cannot penetrate deep into the troposphere because the resistance of fluid

parcels to horizontal motion (i.e., inertial stability) issignificantly smaller than their resistance to

vertical motion (i.e., static stability). In this scenario, only a shallow Hadley circulation exists.

The shallow overturning circulation is characterized by meridional velocities as large as 7 m s−1

at the top of the boundary layer, in qualitative agreement with observations in the tropical eastern

Pacific. The meridional asymmetry between the winter and summer deep and shallow Hadley cells

is attributed to the anisotropy of the inertial stability parameter, and as the ITCZ widens merid-

ionally or as the forcing involves higher vertical wavenumbers, the asymmetry between the winter

and summer cells increases.
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2.2. INTRODUCTION

Zhang et al. (2004) have presented comprehensive observations of shallow meridional over-

turning circulations in the tropical eastern Pacific. As illustrated in Fig. 2.1, this shallow over-

turning circulation resembles the deep Hadley circulationin many respects, but its cross-equatorial

return flow is located just above the top of the boundary layerinstead of just below the tropopause.

Schneider and Lindzen (1977), Tomas and Webster (1997), andTrenberth et al. (1997) emphasized

the importance of shallow overturning circulations in the tropics before the observations in Zhang

et al. (2004).

FIG. 2.1. Schematic cross section of the deep (dashed lines) andshallow (solid
lines) meridional circulations in the tropical eastern Pacific. Adapted from Figure 1
of Zhang et al. (2004),c© American Meteorological Society, and used with permis-
sion.

Schneider and Lindzen (1977) illustrated a large-scale overturning circulation confined below

800 hPa forced by a zonally symmetric sea surface temperature (SST) distribution. They explain

that the circulation is confined to the boundary layer due to the vertical variation of small-scale

turbulent mixing that they assumed. Tomas and Webster (1997) suggested that a shallow divergent

circulation exists in all tropical ocean basins, but is mostprominent in basins such as the eastern

Pacific, where cross equatorial SST gradients are strongest. They describe the shallow overturn-

ing circulation as a secondary circulation that acts to advect absolute vorticity across the equator,
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allowing the Intertropical Convergence Zone (ITCZ) to formoff of the equator. Trenberth et al.

(1997) performed an Empirical Orthogonal Function (EOF) analysis on the divergent part of the

tropical wind field in the National Centers for Environmental Prediction–National Center for At-

mospheric Research (NCEP–NCAR) and European Centre for Medium-Range Weather Forecasts

(ECMWF) global model reanalysis products in the tropics. The first EOF mode represented deep

overturning circulations while the second EOF mode represented shallow overturning circulations.

Shallow overturning circulations were present in the eastern Pacific, west Africa, the Atlantic,

North America, and South America. Yin and Albrecht (2000) also provided observations of shal-

low overturning circulations in the eastern Pacific (90◦-150◦W) using the First Global Atmospheric

Research Program (GARP) Global Experiment (FGGE) dropsonde sounding data.

Motivated by the observations of Zhang et al. (2004), Nolan et al. (2007) interpreted the shal-

low overturning circulation in the eastern Pacific as a large-scale sea breeze circulation, driven by

anomalously large north-south SST gradients when deep convection is absent in the ITCZ. The

ITCZ of the eastern Pacific is an area of relatively low surface pressure and warm SSTs com-

pared to the area near and just south of the equator, leading to a cross-equatorial southerly flow

in the boundary layer. The ITCZ region has larger thicknesses between pressure levels since it is

warmer, which leads to a reversal in the meridional pressuregradient and an associated shallow

northerly return flow just above the boundary layer. Equatorial regions with significant large-scale

cold tongues, such as the eastern Pacific, and coastal regions with land-ocean contrasts, such as

west Africa, exhibit large enough surface temperature gradients to have this meridional pressure

gradient reversal. Zhang et al. (2008) classify shallow overturning circulations into two types: (i)

the maritime ITCZ type (e.g., the eastern Pacific) and (ii) the summer monsoon type (e.g., west
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Africa). They also note that shallow overturning circulations have a seasonal cycle, can be located

on either side of the ITCZ, and have distinct vertical structures.

The purpose of the present chapter is to discuss several other dynamical aspects, which, in ad-

dition to surface temperature gradients, appear to play an important role in understanding shallow

overturning circulations. The main dynamical aspects discussed here are: (i) diabatic heating in

the inviscid interior of the ITCZ; (ii) Ekman pumping out of the boundary layer in the high positive

vorticity region of the ITCZ; (iii) low inertial stability in the equatorial region, causing the winter

Hadley cell to be stronger than the summer cell in response toboth diabatic and frictional forcings.

Such ideas are similar to those considered by Schubert and McNoldy (2010), who studied

Ekman pumping at the top of the boundary layer in tropical cyclones. They illustrated the existence

of shallow overturning circulations with return flow just above the top of the boundary layer in

tropical cyclones of varying strengths using an axisymmetric model on thef -plane. The analogous

model in the ITCZ is a zonally symmetric model on the equatorial β-plane, which will be used in

this study.

As we will see, the zonally symmetric model equations help explain both shallow overturning

circulations and the deep Hadley circulation, therefore they are useful in discussing both circu-

lations in the context of one theory of large-scale flows in the ITCZ. There are two schools of

thought in modeling flows in the ITCZ. The first involves an assumption of monthly or longer

time scales, as shown by Schneider and Lindzen (1977), Held and Hou (1980), Lindzen and Hou

(1988), and Hou and Lindzen (1992). The model used in this study focuses on the second school

of thought, in which the zonal velocity and temperature fields are transient, as explored by Hack

et al. (1989), Hack and Schubert (1990), Nieto Ferreira and Schubert (1997), and Wang and Mag-

nusdottir (2005). If the zonal flow is balanced in the sense that it is continuously evolving from
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one geostrophically balanced state to another, then the meridional circulation is determined by the

solution of a second order partial differential equation inthe(y, z)-plane (Eliassen 1951). Accord-

ing to this “meridional circulation equation,” the streamfunction for the meridional and vertical

motion in the inviscid interior is forced by the meridional derivative of the diabatic heating and the

Ekman pumping, and is shaped by the static stability, baroclinicity, and inertial stability. Although

solutions of the meridional circulation equation generally yield meridional and vertical velocities

that are much weaker than the zonal velocity, the meridionaland vertical directions are the direc-

tions of large gradients, so the relatively weak meridionalcirculation is crucial for the temporal

evolution of the zonal flow.

The chapter is organized in the following way. In section 2.3, the balanced zonally symmetric

model and the associated meridional circulation equation are presented. Section 2.4 introduces

a vertical transform that converts the meridional circulation equation into a differential equation

for they-structure of the circulation. In section 2.5, the differential equation iny is solved using

the Green’s function. Section 2.6 discusses the deep overturning response associated with diabatic

heating in the ITCZ. Section 2.7 discusses the shallow overturning response due to Ekman pumping

at the top of boundary layer in the absence of diabatic heating. In section 2.8, solutions describing

the asymmetry between the winter and summer Hadley cells arepresented. Concluding remarks

are made in section 2.9.

2.3. MODEL EQUATIONS

Consider zonally symmetric balanced motions in a stratifiedand compressible atmosphere on

the equatorialβ-plane. Only the flow in the inviscid interior (i.e., above the 900 hPa isobaric

surface) is explicitly modeled. Frictional effects are represented through the specification of the

Ekman pumping at the top of the boundary layer,z = 0. This nonzero lower boundary condition

8



will be discussed later in this section. As the vertical coordinate,z = H ln(p0/p) is used, where

p0 = 900 hPa,T0 = 293 K, andH = RT0/g = 8581 m. This study considers the case of

weak horizontal flow and weak baroclinicity (i.e., thev(∂u/∂y) andw(∂u/∂z) terms in the zonal

momentum equation and thev(∂T/∂y) term in the thermodynamic equation are neglected). These

simplifications allow us to construct analytical solutionsof the problem. As will be seen, these

analytical results agree well with the numerical results obtained by Hack et al. (1989), who did not

assume weak horizontal flow and weak baroclinicity and whoseelliptic equation coefficients for

static stability, baroclinicity, and inertial stability do not contain approximations.

Under these assumptions, the governing equations for balanced zonal flow are of the form

∂u

∂t
− βyv = 0, (2.1)

∂v

∂t
+ βyu+

∂φ

∂y
= 0, (2.2)

∂φ

∂z
=

g

T0
T, (2.3)

∂v

∂y
+
∂w

∂z
− w

H
= 0, (2.4)

∂T

∂t
+
T0

g
N2w =

Q

cp
, (2.5)

whereu andv are the zonal and meridional components of velocity,w is the log-pressure vertical

velocity, φ is the perturbation geopotential,T is the perturbation temperature,β = 2Ω/a is the

constant northward gradient of the Coriolis parameter,Ω anda are the Earth’s rotation rate and

radius,Q is the diabatic heating, andN2(z) = (g/T0)[(dT̄/dz) + (κT̄/H)] is the square of the

buoyancy frequency, which is computed from the specified mean temperature profilēT (z). Equa-

tions (2.1)–(2.5) constitute a system of five equations in the six unknownsu, v, w, φ, T,Q, so an
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additional “parameterization” relatingQ to the other unknowns is required for closure. In order to

simplify the problem,Q will be prescribed.

Equations (2.1)–(2.5) can be combined in such a way as to obtain a single equation for the

streamfunction of the meridional overturning circulation. We begin the derivation by multiplying

the zonal wind equation (2.1) byβy and the thermodynamic equation (2.5) by(g/T0), and we

make use of the meridional momentum equation (2.2) and the hydrostatic equation (2.3), thereby

obtaining

∂

∂y

(

∂φ

∂t

)

+

(

∂2

∂t2
+ β2y2

)

v = 0, (2.6)

∂

∂z

(

∂φ

∂t

)

+N2w =
g

cpT0
Q. (2.7)

Eliminating(∂φ/∂t) between (2.6) and (2.7) results in

N2∂w

∂y
−
(

∂2

∂t2
+ β2y2

)

∂v

∂z
=

g

cpT0

∂Q

∂y
. (2.8)

Equations (2.4) and (2.8) can now be regarded as a closed system in v andw. One way of pro-

ceeding from this system is to make use of (2.4) so that the meridional circulation(v, w) can be

expressed in terms of the streamfunctionψ. The formulas that relate(v, w) andψ are

e−z/Hv = −∂ψ
∂z

and e−z/Hw =
∂ψ

∂y
. (2.9)

In order to obtain a single equation inψ(y, z, t), we substitute (2.9) into (2.8). This procedure

yields the partial differential equation given below in (2.10). Assuming thatv → 0 asy → ±∞ and

thatw vanishes at the top boundary (z = zT ), the boundary conditions given below in (2.11) and

(2.12) are obtained. Since this study is concerned with Ekman pumping effects on the fluid interior,

the actual vertical velocity (i.e., the physical height vertical velocity) is specified at the lower

10



isobaric surfacez = 0. Even though the lower boundary condition should be appliedat a fixed

physical height, Haynes and Shepherd (1989) suggest that the errors associated with assuming a

value for the physical height vertical velocity on an isobaric lower boundary are minor compared

to those associated with assuming a value for the log-pressure (or just pressure) vertical velocity

on an isobaric lower boundary. The appropriate linearized version of the lower boundary condition

used here is

∂φ

∂t
+ g

∂ψ

∂y
= gW at z = 0,

whereW(y, t) is the specified physical height vertical velocity atz = 0. Equation (2.6) must

be used to eliminate(∂φ/∂t) and thereby express the lower boundary condition in terms ofthe

streamfunction. From (2.6),

∂

∂y

(

∂φ

∂t

)

−
(

∂2

∂t2
+ β2y2

)

∂ψ

∂z
= 0 at z = 0.

Eliminating(∂φ/∂t) from these last two relations, we obtain the lower boundary condition given

below in (2.13). Concerning the initial conditions, we assume that the meridional circulation and

its tendency both vanish att = 0. In summary, the meridional circulation problem is

(

∂2

∂t2
+ β2y2

)

∂

∂z

(

ez/H ∂ψ

∂z

)

+N2ez/H ∂
2ψ

∂y2
=

g

cpT0

∂Q

∂y
, (2.10)

with boundary conditions

ψ → 0 as y → ±∞, (2.11)

ψ = 0 at z = zT , (2.12)

(

∂2

∂t2
+ β2y2

)

∂ψ

∂z
+ g

∂2ψ

∂y2
= g

∂W
∂y

at z = 0, (2.13)

11



and with the initial conditions

ψ = 0 and
∂ψ

∂t
= 0 at t = 0. (2.14)

Note that the diabatic forcing appears through the right hand side of the interior equation (2.10),

while the Ekman pumping appears through the right hand side of the lower boundary condition

(2.13). Also, note thatN2 is a measure of the static stability andβ2y2 is a measure of the inertial

stability, which both act as shaping parameters. Baroclinicity is also a shaping parameter, but it

does not appear because of the simplifications introduced in(2.1)–(2.5). The meridional circulation

problem (2.10)–(2.14) can be written in a slightly simpler form by definingψ̂(y, z, t) andQ̂(y, z, t)

as

ψ̂(y, z, t) = ψ(y, z, t) ez/2H ,

Q̂(y, z, t) = Q(y, z, t) e−z/2H .

(2.15)

Using (2.15) in (2.10)–(2.14) the meridional circulation problem is written in the form

(

∂2

∂t2
+ β2y2

)

(

∂2ψ̂

∂z2
+N2∂

2ψ̂

∂y2
− ψ̂

4H2

)

=
g

cpT0

∂Q̂

∂y
, (2.16)

with boundary conditions

ψ̂ → 0 as y → ±∞, (2.17)

ψ̂ = 0 at z = zT , (2.18)

(

∂2

∂t2
+ β2y2

)

(

∂ψ̂

∂z
+ g

∂2ψ̂

∂y2
− ψ̂

2H

)

= g
∂W
∂y

at z = 0, (2.19)
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and with the initial conditions

ψ̂ = 0 and
∂ψ̂

∂t
= 0 at t = 0. (2.20)

Note that (2.16) has a convenient form because of the absenceof theez/H factors. We shall solve

(2.16)–(2.20) analytically using transform methods. The first step involves a vertical transform that

converts our(y, z, t) partial differential equations to partial differential equations in(y, t). Hori-

zontal transforms are used after the vertical transform, converting our partial differential equations

in (y, t) to a system of ordinary differential equations in time. Thenwe are able to compute the

analytical solution of the original meridional circulation problem.

2.4. VERTICAL TRANSFORM

Solutions of (2.16)–(2.20) are computed via the vertical transform pair

ψ̂(y, z, t) =

∞
∑

m=0

ψ̂m(y, t)Zm(z), (2.21)

ψ̂m(y, t) =
1

g

∫ zT

0

ψ̂(y, z, t)Zm(z)N2(z)dz + ψ̂(y, 0, t)Zm(0). (2.22)

In other words, the streamfunction̂ψ(y, z, t) is represented in terms of a series of vertical structure

functionsZm(z), with the coefficientsψ̂m(y, t) given by (2.22), wherem refers to the vertical

modes. The reason for the last term in (2.22) arises from the lower boundary condition (2.19), as

will become apparent shortly. The vertical structure functionsZm(z) are solutions of the Sturm-

Liouville eigenvalue problem

d2Zm

dz2
− Zm

4H2
= −N

2Zm

ghm

, (2.23)

Zm = 0 at z = zT , (2.24)

13



dZm

dz
− Zm

2H
= −Zm

hm
at z = 0, (2.25)

with eigenvalues (or equivalent depths) denoted byhm. These equivalent depths correspond to

the solution of the Sturm-Liouville eigenvalue problem (2.23)–(2.25), where the eigenfunctions

are denoted byZm(z). ForN2(z) > 0, the solutions of the Sturm-Liouville problem have the

following three properties (Fulton and Schubert 1985): (i)The eigenvalueshm are real and may be

ordered such thath0 > h1 > · · ·hm > 0 with hm → 0 asm → ∞; (ii) The eigenfunctionsZm(z)

are orthogonal and may be chosen to be real; (iii) The eigenfunctionsZm(z) form a complete set.

A discussion of the transform pair (2.21)–(2.22) is given inAppendix A, along with a proof of

properties (i) and (ii). The derivation of the solutions to the eigenvalue problem (2.23)–(2.25) for

the special case of constantN as well as a proof of property (iii) are given in Appendix B. The first

five vertical structure functionsZm(z) for the special case of constantN are plotted in Fig. 2.2.

To take the vertical transform of (2.16), we multiply it byZm(z) and integrate inz from 0 to

zT to yield

∂2

∂y2

∫ zT

0

ψ̂(y, z, t)Zm(z)N2(z) dz

+

(

∂2

∂t2
+ β2y2

)

[

Zm(z)
∂ψ̂(y, z, t)

∂z
− ψ̂(y, z, t)

dZm(z)

dz

]zT

0

+

(

∂2

∂t2
+ β2y2

)
∫ zT

0

ψ̂(y, z, t)

(

d2Zm(z)

dz2
− Zm(z)

4H2

)

dz

=
g

cpT0

∂

∂y

∫ zT

0

Q̂(y, z, t)Zm(z) dz.

(2.26)

Note that the integral originating from(∂ψ̂/∂z2) in (2.16) is integrated by parts twice. In order to

simplify (2.26), we use (2.23) in the third line and then use (2.18) and (2.24) to show that the upper

boundary term in the second line vanishes. To evaluate the lower boundary term in the second line,
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FIG. 2.2. Vertical structure functionsZm(z) for the external modem = 0 and the
first four internal modesm = 1, 2, 3, 4. As discussed in Appendix B, these vertical
structure functions are solutions of the Sturm-Liouville problem (2.23)–(2.25) with
the constant buoyancy frequencyN = 1.2 × 10−2 s−1 andzT = 13 km.

we eliminate∂ψ̂/∂z by using (2.19) and then group the resulting(∂2ψ̂/∂y2) term with the first

line of (2.26). Similarly, we use (2.25) to eliminatedZm/dz and then group the resultingZm/hm

term with the third line of (2.26). This procedure simplifies(2.26) to

∂2

∂y2

[

1

g

∫ zT

0

ψ̂(y, z, t)Zm(z)N2(z)dz + ψ̂(y, 0, t)Zm(0)

]

− β2y2

ghm

[

1

g

∫ zT

0

ψ̂(y, z, t)Zm(z)N2(z)dz + ψ̂(y, 0, t)Zm(0)

]

=
∂

∂y

[

∫ zT

0

Q̂(y, z, t)

cpT0
Zm(z)dz + W(y, t)Zm(0)

]

.

(2.27)

Making use of (2.22), this procedure then simplifies (2.27) to

∂2ψ̂m

∂t2
− ghm

(

∂2

∂y2
− y2

b4m

)

ψ̂m = −ghm
∂Fm

∂y
, (2.28)
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with boundary conditions

ψ̂m(y, t) → 0 as y → ±∞, (2.29)

and with the initial conditions

ψ̂m = 0 and
∂ψ̂m

∂t
= 0 at t = 0, (2.30)

where the forcing termFm(y, t) on the right hand side of (2.28) is given by

Fm(y, t) =

∫ zT

0

Q̂(y, z, t)

cpT0
Zm(z) dz + W(y, t)Zm(0), (2.31)

and where the equatorial Rossby lengthbm is given by

bm =

(

ghm

4β2

)1/4

= ǫ−1/4
m

a√
2
. (2.32)

Lamb’s parameter is defined byǫm = 4Ω2a2/(ghm). The spectra of equivalent depthshm, equato-

rial Rossby lengthsbm, and Lamb’s parametersǫm for m = 0, 1, 2, . . . , 10 are shown in Table 2.1.

Note that the interior diabatic heatinĝQ(y, z, t) and the boundary layer pumpingW(y, t), which

were separate forcing effects in (2.16) and (2.19), have nowmerged into the single forcing term

Fm(y, t).

2.5. SOLUTION OF THE HORIZONTAL STRUCTURE EQUATION VIA THEGREEN’ S FUNCTION

In order to solve (2.28)–(2.30), we first assume that if the diabatic forcingQ(y, z, t) and the

boundary layer forcingW(y, t) vary slowly in time, the∂2/∂t2 terms in the interior equation (2.28)

and the boundary condition (2.30) can be neglected. By neglecting these second time derivatives,

ψ(y, z, t) has no memory of the past forcing and is diagnostically determined by the current forcing
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TABLE 2.1. The spectra of equivalent depthshm, gravity wave speeds(ghm)1/2

(with approximate values in parentheses), equatorial Rossby lengths bm =
[ghm/(4β

2)]1/4, and Lamb’s parametersǫm = 4Ω2a2/(ghm) for the eleven val-
ues ofm listed in the left column. The values have been computed from(B4) and
(B10) usingzT = 13 km, g = 9.8 m s−2, a = 6371 km, Ω = 7.292 × 10−5 s−1,
N = 1.2 × 10−2 s−1, andH = 8581 m.

m hm (m) (ghm)1/2 (m s−1) bm (km) ǫm
0 7099 263.8 (—–) 2400 12.41
1 229.8 47.46 (48.27) 1018 383.4
2 61.42 24.53 (24.65) 732.0 1434
3 27.66 16.46 (16.50) 599.7 3185
4 15.63 12.38 (12.39) 519.9 5636
5 10.03 9.912 (9.920) 465.3 8787
6 6.970 8.265 (8.270) 424.9 12638
7 5.125 7.087 (7.090) 393.4 17190
8 3.925 6.202 (6.204) 368.1 22442
9 3.103 5.514 (5.515) 347.0 28394
10 2.514 4.963 (4.964) 329.3 35046

only. For the rest of this chapter, we will make use of this assumption. The Green’s function

Gm(y, y′) is introduced, which is the solution of the ordinary differential equation

d2Gm

dy2
− y2

4b4m
Gm = − 1

b2m
δ

(

y − y′

bm

)

, (2.33)

with the boundary conditions

Gm(y, y′) → 0 as y → ±∞, (2.34)

where the Dirac delta function vanishes fory 6= y′ and satisfies

1

bm

∫ y′+

y′
−

δ

(

y − y′

bm

)

dy = 1. (2.35)

The Green’s functionGm(y, y′) is useful in understanding the meridional structure of the

Hadley circulation since the left hand side of (2.33) is equivalent to that of (2.28). As will be

seen, all of the meridional asymmetry of the Hadley circulation is built into the Green’s function.
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The Green’s functionGm(y, y′) is constructed from the parabolic cylinder functionsDν(x), which

satisfy

d2Dν

dx2
+

(

ν +
1

2
− 1

4
x2

)

Dν = 0. (2.36)

Note that the orderν = −1/2 parabolic cylinder functionsD−1/2(y/bm) andD−1/2(−y/bm) are

solutions of the homogeneous version of (2.33). The functionsD−1/2(x) andD−1/2(−x) are plot-

ted in Fig. 2.3.

Only the solutionGm(y, y′) = α1D−1/2(−y/bm) is valid for −∞ ≤ y ≤ y′, and only the

solutionGm(y, y′) = α2D−1/2(y/bm) is valid for y′ ≤ y < ∞ because of the lateral boundary

conditions (2.34). Note thatα1 andα2 depend ony′, and are determined by requiring thatGm(y, y′)

is continuous aty = y′ and that the jump in the first derivative satisfies

bm

[

dGm

dy

]y′+

y′
−

= −1, (2.37)

which is obtained by integrating (2.33) across a narrow region surroundingy = y′, making use of

the delta function property (2.35), and noting that the narrow integral of the first term left of the

equals sign in (2.33) is zero. The two algebraic equations for α1 andα2 can be solved with the aid

of the Wronskian

D−1/2(x)
dD−1/2(−x)

dx
−D−1/2(−x)

dD−1/2(x)

dx
=

√
2. (2.38)

The Wronskian is derived by multiplying (2.36) byDν(−x) and multiplying the version of (2.36)

wherex→ −x byDν(x), and combining the two resulting equations. Solving forα1 andα2 using
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FIG. 2.3. Parabolic cylinder functionsD−1/2(x) andD−1/2(−x) for −3 ≤ x ≤ 3.
The functionD−1/2(x), shown by the blue curve, satisfies they → ∞ boundary
condition and is used to construct the Green’s functionGm(y, y′) north ofy′. Sim-
ilarly, the functionD−1/2(−x), shown by the red curve, satisfies they → −∞
boundary condition and is used to construct the Green’s function Gm(y, y′) south
of y′. Because these two parabolic cylinder functions are solutions of (2.36) with
ν = −1/2, their second derivatives are zero at the equator but becomelarge away
from the equator. All the calculations presented here use the Mathematica function
ParabolicCylinderD[ν, x].

(2.38) results in

Gm(y, y′) =
1√
2























D−1/2(y
′/bm)D−1/2(−y/bm) if −∞ < y ≤ y′

D−1/2(−y′/bm)D−1/2(y/bm) if y′ ≤ y <∞.

(2.39)

Plots ofGm(y, y′) for y′ = −1500,−750, 0, 750, 1500 km andm = 0, 1, 2 are shown in Fig. 2.4.

Note that, asm increases, the jump in the derivative ofGm(y, y′) aty = y′ in (2.37) increases since

bm decreases. Therefore, the Green’s function becomes more confined to the region neary = y′

and we expect the response of the Hadley circulation to become more confined in the meridional
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direction. Also, note the meridional asymmetry of the Green’s function between either side ofy′

wheny′ is placed away from the equator. Therefore, we expect the Hadley cells to reflect this

asymmetry when the ITCZ is placed off of the equator.

FIG. 2.4. Green’s functionsGm(y, y′) for y′ = −1500,−750, 0, 750, 1500 km and
for m = 0 (top panel),m = 1 (middle panel), andm = 2 (bottom panel). These
curves have been computed from (2.39). Note that, because ofthe bm factors in
(2.39), the Green’s functions become more confined as the vertical mode indexm
becomes larger.

To express the solution̂ψm(y, t) in terms of the Green’s function, we multiply (2.28) by

Gm(y, y′), multiply (2.33) by ψ̂m(y, t), and then take the difference of the resulting equations

to obtain

∂

∂y

(

Gm(y, y′)
∂ψ̂m(y, t)

∂y
− ψ̂m(y, t)

dGm(y, y′)

dy

)

=
∂Fm(y, t)

∂y
Gm(y, y′) + ψ̂m(y, t)

1

bm
δ

(

y − y′

bm

)

.

(2.40)
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We now integrate (2.40) overy, apply the boundary conditions (2.29) and (2.34), use the delta

function property (2.35) and the Green’s function symmetrypropertyGm(y′, y) = Gm(y, y′),

resulting in (2.42). In summary, the solution of the meridional circulation problem is

ψ(y, z, t) = e−z/2H
∞
∑

m=0

ψ̂m(y, t)Zm(z), (2.41)

where

ψ̂m(y, t) = −bm
∫

∞

−∞

∂Fm(y′, t)

∂y′
Gm(y, y′) dy′. (2.42)

The solution for the streamfunction is obtained by first calculating Fm(y′, t) from (2.31), then

calculatingψ̂m(y, t) from (2.42), and finally calculatingψ(y, z, t) from (2.41). Although this pro-

cedure generally involves the calculation of two integralsand an infinite sum, there are two special

cases where the formulas (2.41)–(2.42) are considerably simplified. One corresponds to prescribed

diabatic heating in the ITCZ, and the other corresponds to prescribed Ekman pumping at the top

of the boundary layer. Making these prescribed fields step functions iny allows for analytical

solutions. These idealized ITCZ forcings are introduced inthe next two sections.

2.6. DEEP OVERTURNING CIRCULATIONS

Now consider the response to a constant forcing that projects only onto the first internal mode

and is constant in time. We begin by using (2.30), along with the assumption of constantN , to

write

Fm(y) =
gQ̂m(y)

cpT0N2
+

(

W(y) − gQ̂(y, 0)

cpT0N2

)

Zm(0), (2.43)

where

Q̂m(y) =
N2

g

∫ zT

0

Q̂(y, z)Zm(z)dz + Q̂(y, 0)Zm(0). (2.44)
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We assume that̂Q(y, z) vanishes everywhere except in the latitudinal rangey1 < y < y2, where

y1 andy2 are constants that specify the south and north boundaries ofthe ITCZ. Within the ITCZ,

the diabatic heating is assumed to be independent ofy and to have a vertical profile proportional

toZ1(z), i.e.,

Q̂(y, z) =



















Q̃Z1(z) if y1 < y < y2,

0 otherwise,

(2.45)

whereQ̃ will be given later. In addition, we assume that the verticalvelocity at the top of the

boundary layer is given by

W(y) =
gQ̂(y, 0)

cpT0N2
. (2.46)

Since we would like to use the vertical structure of only the first internal modeZ1(z) as the vertical

structure of the prescribed diabatic heating and the vertical structure of the first internal mode is

nonzero at the top of the boundary layer (Fig. 2), there has tobe a nonzeroW atz = 0.

Using these assumptions in (2.43) and (2.44), and then making use of the orthonormality rela-

tion (A.2) we obtain

Fm(y) =
gQ̃

cpT0N2



















1 if m = 1 and y1 < y < y2,

0 otherwise.

(2.47)

Many tropical regions have more complicated vertical diabatic heating profiles, such as the

eastern Pacific, where heating profiles are more “bottom heavy” than theZ1(z) profile, as illus-

trated in the studies of Wu et al. (2000), Wang and Magnusdottir (2005), Zhang and Hagos (2009),

Takayabu et al. (2010), and Ling and Zhang (2013). Due to this, the assumption that the diabatic

heating is deep and made up of only the first internal mode is only meant to represent one aspect
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of heating in the tropical atmosphere, and it is the simplestcase since it can be represented using

only one vertical mode.

Use of (2.47) in (2.42) now yields

ψ̂1(y) = − b1

∫

∞

−∞

∂F1(y
′)

∂y′
G1(y, y

′) dy′

= − b1 G1(y, y1)

∫ y1+

y1−

∂F1(y
′)

∂y′
dy′

− b1 G1(y, y2)

∫ y2+

y2−

∂F1(y
′)

∂y′
dy′

=
gb1Q̃

cpT0N2
[G1(y, y2) −G1(y, y1)] ,

(2.48)

where the final line in (2.48) follows from the fact that the narrow integral acrossy = y1 is

[gQ̃/(cpT0N
2)], while the narrow integral acrossy = y2 is −[gQ̃/(cpT0N

2)]. Use of (2.48) in

(2.41), yields the final solution

ψ(y, z) =
gb1Q̃

cpT0N2
e−z/2HZ1(z) [G1(y, y2) −G1(y, y1)] , (2.49)

where the Green’s functionsG1(y, y1) andG1(y, y2) are given in (2.39). Equation (2.49) is quite

powerful. It states that only two Green’s functions are needed in order to understand the meridional

structure of the deep Hadley circulation.G1(y, y2) gives the meridional structure of the stream-

function attributed to the jump in the diabatic heating at the north edge of the ITCZ, whileG1(y, y1)

gives the meridional structure of the streamfunction attributed to the jump in the diabatic heating

at the south edge of the ITCZ. All of the information about meridional asymmetries between the

winter and summer deep Hadley cells is contained in these twoGreen’s functions. The solution

23



(2.49) can also be written in the form

ψ(y, z) =
gb1Q̃

cpT0N2
√

2
e−z/2HZ1(z)

×















































[D−1/2(y2/b1) −D−1/2(y1/b1)]D−1/2(−y/b1) if −∞ < y ≤ y1,

D−1/2(y2/b1)D−1/2(−y/b1) −D−1/2(−y1/b1)D−1/2(y/b1) if y1 ≤ y ≤ y2,

[D−1/2(−y2/b1) −D−1/2(−y1/b1)]D−1/2(y/b1) if y2 ≤ y <∞.

(2.50)

With these assumptions, the(∂Q̂/∂y)-term on the right hand side of (2.15) vanishes every-

where except along the edges of the ITCZ, where it becomes infinitely large over an infinites-

imally thin layer. Thus, the circulation in the(y, z)-plane consists of a counterclockwise over-

turning cell on the southern edge of the ITCZ and a clockwise overturning cell in the northern

edge of the ITCZ looking from east to west. Figure 2.5 shows these circulation cells via iso-

lines ofψ(y, z) computed from (2.50) using the parameterszT = 13 km, N = 1.2 × 10−2 s−1,

(y1, y2) = (0, 500), (500, 1000), (1000, 1500), (1500, 2000) km, and assuming that̃Q = (cp/B1) 5

K day−1, whereB1 is derived in Appendix B. The cross-equatorial cell, or winter cell, is signifi-

cantly stronger than the summer cell, which is limited to thesummer hemisphere. As the ITCZ is

displaced further away from the equator, the meridional asymmetry between the winter and sum-

mer cell increases in Fig. 2.5a)– 2.5c), and decreases slightly in Fig. 2.5d).The asymmetry between

the two cells is attributed to the meridional asymmetry of the inertial stability parameter,β2y2. The

winter cell is located in a region whereβ2y2 is either zero or close to zero, minimizing the turning

due to the Coriolis force. When the ITCZ is far enough from theequator, the winter cell is mostly

located off of the equator and can no longer efficiently extend into the low inertial stability near the
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FIG. 2.5. Contoured streamfunctionψ(y, z) and shadedQ(y, z)e−z/H/cp fields
for four deep diabatic heating cases: a)(y1, y2) = (0, 500) km, b) (y1, y2) =
(500, 1000) km, c) (y1, y2) = (1000, 1500) km, and d)(y1, y2) = (1500, 2000) km.
The contour interval forψ(y, z) is 400 m2 s−1, the maximum (magnitude) ofψ(y, z)
is 2852 m2 s−1, and the zero line is of double thickness. TheQ(y, z)e−z/H/cp shade
interval is 0.5 K day−1, and the maximum (magnitude) of the diabatic heating is
3.496 K day−1.

equator. Therefore, the mass flux of the winter cell begins todecrease. These results are in general

agreement with the numerical model results of Hack et al. (1989).
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The meridional asymmetry between the two cells is also apparent in Fig. 2.6, where 0–3 day

parcel trajectories are computed fromv(y, z) andw(y, z). The parcel trajectories agree well with

Schubert et al. (1991). The effects of inertial stability are also apparent in this figure since parcels

on the northern edge of the ITCZ travel relatively high in thevertical direction and parcels on the

southern edge of the ITCZ travel relatively far in the meridional direction, even though the diabatic

heating is constant in the ITCZ. Parcels in the southern partof the ITCZ feel lower inertial stability

than parcels on the northern part of the ITCZ.

The approximate time scale it takes a parcel to complete one full cycle in either the winter

or summer Hadley cell is two to three months. This time scale is at least an order of magnitude

larger than the time it takes for the Hadley cells to equilibrate to the diabatic heating. Note that the

zonal velocity is much larger than the meridional velocity,therefore by the time a parcel makes

one meridional revolution it will be located at a different longitude, possibly having traveled an

entire circle of latitude. Also, calculating such a time scale may be a bit more complicated since

combined barotropic and baroclinic instability tends to occur as the zonal winds evolve.

Figure 2.7 shows contours of theTt(y, z) andw(y, z) fields. It is not surprising thatw(y, z)

is discontinuous in the meridional direction because the prescribed diabatic heatinĝQ(y, z) is dis-

continuous in the meridional direction. Although,Tt(y, z) is positive and smooth in the meridional

direction, even across the edges of the ITCZ.Tt remains positive due to diabatic warming asso-

ciated with concentrated rising motion in the ITCZ and adiabatic warming associated with broad

subsidence outside of the ITCZ. The smooth nature of the temperature tendency field agrees with

the idea that temperature gradients are small in the tropics. Also, notice the slight poleward dis-

placement of the peak thermodynamic response in the ITCZ andthe asymmetric changes in both
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FIG. 2.6. Parcel trajectories and shadedQ(y, z)e−z/H/cp field (same as Fig. 2.5)
during the first three days for the four deep diabatic heatingdisplacements men-
tioned in Fig. 5. The arrows indicate the direction of the trajectories inside and
outside of the ITCZ.

Tt(y, z) andw(y, z) as the ITCZ is moved away from the equator. These results agree well with

past studies, such as Hack et al. (1989) and Lindzen and Hou (1988).

Figure 2.8 shows contours of thev(y, z) andut(y, z) fields. Thev(y, z) field shows low-level

convergence and upper-level divergence in and near the ITCZ. Also, the asymmetric response of
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FIG. 2.7. Contoured perturbation temperature tendencyTt(y, z) and shaded log-
pressure vertical velocityw(y, z) for the four deep diabatic heating displacements
mentioned in Fig. 5. TheTt(y, z) contour interval is 0.2 K day−1, the maximum
(magnitude)Tt(y, z) is 1.257 K day−1, and the zero line is of double thickness. The
w(y, z) shade interval is 1 mm s−1, and the maximum (magnitude)w(y, z) is 18.01
mm s−1.

v(y, z) increases in Fig. 2.8a)–2.8c) and decreases slightly in Fig. 2.8d), similar to theψ(y, z)

field. The low-levelut(y, z) field illustrates an increase of westerlies from the equatorto slightly

poleward of the center of the ITCZ and easterlies poleward ofthe westerlies. This meridional
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structure of theut implies a buildup of positive absolute vorticity in the ITCZthat satisfies the

necessary condition for combined barotropic and baroclinic instability. At upper levels, the zonal

velocity increase at a large rate, especially near the edgesof the ITCZ. These upper-level zonal

jets can be considered subtropical jets, but are different than jets seen in nature because zonally

asymmetric eddies are neglected here.

Another view of combined barotropic and baroclinic instability comes from analyzing the po-

tential vorticity anomaly. The potential vorticity equation is

∂q

∂t
+ βv =

gβy

cpT0N2

(

∂

∂z
− 1

H

)

Q, (2.51)

where

q = −∂u
∂y

+
gβy

T0N2

(

∂

∂z
− 1

H

)

T (2.52)

is the potential vorticity anomaly. A reversal of the meridional gradient of the total potential

vorticity, βy + q, occurs on the poleward side of the ITCZ in the lower troposphere and on the

equatorward side of the ITCZ in the upper troposphere in Fig.2.9, agreeing well with Schubert

et al. (1991) and Nieto Ferreira and Schubert (1997). Thus, the necessary condition for combined

barotropic-baroclinic instability is satisfied (Charney and Stern 1962). As the potential vorticity

anomaly increases over time, growth rates of unstable wavesare also expected to increase. In this

sense, the ITCZ contains the seeds of its own destruction.

2.7. SHALLOW OVERTURNING CIRCULATIONS

While the direct effects of friction are confined to the boundary layer flow in the lowest kilo-

meter, the inviscid interior is indirectly affected through the meridional circulation produced by the

upward extension of the Ekman pumping at the top of the boundary layer, as discussed in Holton
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FIG. 2.8. Contoured meridional velocityv(y, z) and shaded zonal velocity ten-
dencyut(y, z) for the four deep diabatic heating displacements mentionedin Fig.
5. Thev(y, z) contour interval is 0.4 m s−1, the maximum (magnitude)v(y, z) is
2.141 m s−1, and the zero line is of double thickness. Theut(y, z) shade interval is
1 m s−1 per day, and the maximum (magnitude)ut(y, z) is 7.403 m s−1 per day.

et al. (1971) and Wang and Rui (1990). An estimate of the Ekmanpumping at the top of the bound-

ary layer in the ITCZ can be obtained by considering an idealized equatorialβ-plane slab model

linearized about a resting basic state of the region between900 hPa and 1013 hPa, a region which
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FIG. 2.9. Potential vorticity anomaly tendencyqt(y, z) for the four deep diabatic
heating displacements mentioned in Fig. 5. Theqt(y, z) contour interval is 1×10−6

s−1 per day, the maximum (magnitude) is 2.927×10−5 s−1 per day, and the zero
line is of double thickness.

has the log-pressure depthhE = H ln(1013/900) ≈ 1015 m. In this Ekman layer the dynamics

are governed by

∂ub

∂t
− βyvb = −kub, (2.53)
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∂vb

∂t
+ βyub = −kvb + βyug, (2.54)

−hE
∂vb

∂y
= w(y, 0, t)− w(y,−hE, t) = W(y, t), (2.55)

whereub(y) andvb(y) are the height independent slab boundary layer velocity components,k is the

proportionality constant for the surface stress,W is the Ekman pumping at the top of the boundary

layer (z = 0), andug(y) is the height independent geostrophic zonal velocity, which is defined in

terms of the imposed pressure gradient force,∂φ(y)/∂y, by

βy ug = −∂φ
∂y
. (2.56)

The first equality in equation (2.55) results from vertical integration of the Boussinesq form of

the continuity equation (2.4). The second equality in equation (2.55) is obtained by first noting

w(y, 0, t) = −(1/g)[∂φ(y, 0, t)/∂t] + W(y, t) at the top of the boundary layer andw(y,−hE, t) =

−(1/g)[T0/T̄ (−hE)][∂φ(y,−hE)/∂t] at the surface, since the physical height vertical velocityis

assumed to vanish atz = −hE . Also, note thatz < 0 is in the boundary layer andz = 0 is the top

of the boundary layer. The difference between these last tworelations, with the assumption that

T0/T̄ (−hE) ≈ 1, yields the second equality in equation (2.55), since we assume the geopotential

tendency is the same at all heights in the boundary layer.

For slowly evolving flows the time derivative terms in (2.53)and (2.54) can be neglected, and

then the resulting two algebraic equations can be solved to obtain

ub(y) =

(

β2y2

k2 + β2y2

)

ug(y), (2.57)

vb(y) =

(

kβy

k2 + β2y2

)

ug(y). (2.58)
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As a typical example,y1 = 750 km, y2 = 1250 km, ug(y1) = 3.0 m s−1, ug(y2) = −3.0 m s−1,

andk = 8.3 × 10−6 s−1, so that equations (2.57) and (2.58) yield

ub(y2) = −2.78 m s−1, vb(y2) = −0.78 m s−1,

ub(y1) = 2.46 m s−1, vb(y1) = 1.15 m s−1.

(2.59)

Using the values ofvb(y1) andvb(y2) given in equation (2.59) and equation (2.55), we obtain the

estimate

Wave ≈ 1015 m

(

1.93 m s−1

500 km

)

≈ 4 mm s−1 (2.60)

for the average Ekman pumping in the ITCZ. Note that it is alsopossible to calculate a value of

vertical velocity at the top of the boundary layer due to other processes. For example, the vertical

velocity associated with boundary layer convergence due toSST gradients can be computed in a

similar manner as done in Stevens et al. (2002) and Back and Bretherton (2009a).

Based on the above estimate of Ekman pumping, and in order to isolate the effects of the

upward penetration of Ekman pumping in (2.28), consider (2.30) for the case in whicĥQ(y, z) = 0

and

W(y) =



















Wave if y1 < y < y2,

0 otherwise.

(2.61)
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Use of (2.61) in (2.42) now yields

ψ̂m(y) = − bmZm(0)

∫

∞

−∞

dW(y′)

dy′
Gm(y, y′) dy′

= − bmZm(0)Gm(y, y1)

∫ y1+

y1−

∂W(y′)

∂y′
dy′

− bmZm(0)Gm(y, y2)

∫ y2+

y2−

∂W(y′)

∂y′
dy′

= bmZm(0)Wave [Gm(y, y2) −Gm(y, y1)] ,

(2.62)

where the final line in (2.62) follows from the fact that the narrow integral acrossy = y1 is Wave,

while the narrow integral acrossy = y2 is−Wave. Use of (2.62) in (2.21), along with (2.14), yields

the final solution

ψ(y, z) = Wavee
−z/2H

∞
∑

m=0

bmZm(0)Zm(z) [Gm(y, y2) −Gm(y, y1)] . (2.63)

This equation is a bit more complicated than the formula (2.49) for the deep Hadley circulation,

but still quite insightful. Equation (2.63) states that a combination of Green’s functions, Rossby

lengths, and eigenfunctions are needed in order to understand the meridional structure of the shal-

low Hadley circulation.

The solution (2.63) can also be written in the form

ψ(y, z) = Wavee
−z/2H

∞
∑

m=0

bmZm(0)Zm(z)

×















































[D−1/2(y2/bm) −D−1/2(y1/bm)]D−1/2(−y/bm) if −∞ < y ≤ y1,

D−1/2(y2/bm)D−1/2(−y/bm) −D−1/2(−y1/bm)D−1/2(y/bm) if y1 ≤ y ≤ y2,

[D−1/2(−y2/bm) −D−1/2(−y1/bm)]D−1/2(y/bm) if y2 ≤ y <∞.

(2.64)
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Using the prescribed Ekman pumping at the top of the boundarylayer, the(∂W/∂y)-term on

the right hand side of (2.18) vanishes everywhere except along the edges of the ITCZ, analogous

to the deep diabatic heating case. Taking the assumed Ekman convergence in the boundary layer

into consideration, the circulation in the(y, z)-plane consists of a counterclockwise overturning

cell on the southern edge of the ITCZ and a clockwise overturning cell on the northern edge of

the ITCZ looking from east to west. Figure 2.10 shows the top half of the circulation cells via

isolines ofψ(y, z) computed from (2.59) using the same parameters as for the deep diabatic heating

case,Wave = 4 mm s−1, and(y1, y2) = (0, 500), (500, 1000), (1000, 1500), (1500, 2000) km. The

solutions have been computed using a maximum vertical wavenumber ofm = 500, and only the

region up toz = 3 km is displayed since the solution is negligible abovez = 3 km. The meridional

overturning circulation is strongly trapped just above theboundary layer because the resistance of

parcels to horizontal motion (i.e., inertial stability) issignificantly smaller than their resistance to

vertical motion (i.e., static stability). The mass flux of the winter cell is significantly stronger than

that of the summer cell, just like the deep Hadley circulation. As the ITCZ is displaced further

away from the equator, the meridional asymmetry between thewinter and summer cells increases

for all of the displacements due once again to the anisotropyof the inertial stability.

In order to see the asymmetric nature of the shallow Hadley circulation in more detail, 0–3

day parcel trajectories calculated fromv(y, z) andw(y, z) are illustrated in Fig. 2.11 for the three

off-equatorial ITCZ positions:(y1, y2) = (500, 1000), (1000, 1500), (1500, 2000) km. For cases

in which the ITCZ touches or straddles the equator (not shown), the numerical convergence of the

v(y, z) andw(y, z) fields is slow because the shallow return circulation is so strongly trapped just

above the top of the boundary layer. The approximate time scale it takes a parcel near the top of
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the boundary layer in the ITCZ to cross the equator depends greatly on the displacement of the

ITCZ, but is on the order of seven days in a) to two months in c).

FIG. 2.10. Contoured streamfunctionψ(y, z) for the four displacements men-
tioned in Fig. 5. The contour interval is 400 m2 s−1, the maximum (magnitude)
ψ(y, z) is 1723 m2 s−1, and the zero line is of double thickness. Note: the domain
is 0 ≤ z ≤ 3, wherez = 0 is the top of the boundary layer.

Figure 2.12 illustrates contours ofv(y, z) for the ITCZ positions: (y1, y2) = (500, 1000),

(1000, 1500), (1500, 2000) km. There is meridional divergence at the top of the boundarylayer
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FIG. 2.11. Parcel trajectories during the first three days for three Ekman pumping
displacements: a)(y1, y2) = (500, 1000) km, b)(y1, y2) = (1000, 1500) km, and c)
(y1, y2) = (1500, 2000) km. Note: the domain is−1 ≤ z ≤ 3, wherez = 0 is the
top of the boundary layer. The arrows indicate the directionof the boundary layer
inflow and associated Ekman pumping.

with maximum meridional winds of 3–7 m s−1, which generally agree with Zhang et al. (2004).

Despite these relatively large values ofv(y, z), the response ofv(y, z) to the Ekman pumping is

relatively weak in the southern hemisphere compared to the deep Hadley circulation, except for

Fig. 2.12a).

The cross-equatorial meridional winds at the top of the boundary layer may have implications

for moisture transport across the equator, as mentioned in both Zhang et al. (2004) and Nolan

et al. (2007). As the ITCZ migrates closer to the equator during December–February in the eastern

Pacific, the cross-equatorial winds at the top of the boundary layer increase in the winter cell of
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FIG. 2.12. Contoured meridional velocityv(y, z) for the three Ekman pumping
displacements mentioned in Fig. 11. Thev(y, z) contour interval is 0.4 m s−1,
the maximum (magnitude)v(y, z) is 7.922 m s−1, and the zero line is of double
thickness. Note: the domain is0 ≤ z ≤ 3, wherez = 0 is the top of the boundary
layer.

the shallow Hadley circulation. These cross-equatorial winds advect moisture across the equator,

and along with warmer SSTs south of the equator, may help in setting up favorable conditions for

an ITCZ south of the equator. Therefore, a double ITCZ is morelikely to been seen during the

months after the ITCZ is close but strictly north of the equator. As the ITCZ north of the equator

begins to migrate poleward again, the cross-equatorial winds at the top of the boundary layer and

SSTs south of the equator decrease, leading to less favorable conditions for an ITCZ south of the

equator.
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In Fig. 2.13, the vertical log-pressure velocityw(y, z) is contoured for the three ITCZ positions:

(y1, y2) = (500, 1000), (1000, 1500), (1500, 2000)km. There is rising motion in and near the ITCZ

up toz ≈ 2 km, and weak sinking motion away from the ITCZ. As the ITCZ is displaced farther

away from the equator, parcels are pumped to higher levels due to the increase in inertial stability

going toward the pole. Also, note that theTt(y, z) field has the same structure asw(y, z), but

with opposite signs (not shown). There is adiabatic coolingwherew(y, z) > 0 and adiabatic

warming wherew(y, z) < 0, with a maximum perturbation temperature tendency at the top of

the ITCZ boundary layer. This result agrees with the theory from Nolan et al. (2007) that shallow

overturning circulations are associated with a reversal ofthe temperature gradient between the

ITCZ and away from the ITCZ at the top of the boundary layer.

Observations (Zhang et al. 2004) and numerical modeling studies (Nolan et al. 2007, 2010)

tend to show that there are distinct multi-level flows in the ITCZ associated with deep and shallow

circulations. Therefore we decided to show theψ(y, z) solution when both forcings are present

(Fig. 2.14). Both the deep and shallow Hadley circulations are present, especially when the ITCZ

is close to equator. Taking the assumed boundary layer convergence into consideration, the di-

vergence just above the top of the boundary layer along with convergence until about the middle

troposphere and divergence at upper-levels is in general agreement with the studies mentioned

above.

2.8. ASYMMETRICAL NATURE OF THE HADLEY CIRCULATION

The meridional asymmetry of the winter and summer cells in both Hadley circulations so far

has only been discussed when the ITCZ is 500 km wide. A compactformula can be derived of the

fractional asymmetry between the two cells for ITCZs of any width. The maximum mass flux of

the winter cell occurs aty = y1 and the maximum mass flux of the summer cell occurs aty = y2
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FIG. 2.13. Contoured vertical log-pressure velocityw(y, z) for the three Ekman
pumping displacements mentioned in Fig. 11. Thew(y, z) contour interval is 0.5
mm s−1, the maximum (magnitude)w(y, z) is 3.774 mm s−1, and the zero line is of
double thickness. Note: there is a discontinuity inW(z = 0) aty = y1 andy = y2,
and the domain is0 ≤ z ≤ 3, wherez = 0 is the top of the boundary layer.

when the ITCZ is north of the equator. Therefore, the fractional mass flux in the summer Hadley

cell as a function of vertical wavenumberm is

ψ̂m(y2)

ψ̂m(y2) − ψ̂m(y1)
=

{

1 − D−1/2(y2/bm)

D−1/2(−y1/bm)

[

D−1/2(−y2/bm) −D−1/2(−y1/bm)

D−1/2(y2/bm) −D−1/2(y1/bm)

]

}

−1

, (2.65)
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FIG. 2.14. Contoured streamfunctionψ(y, z) of both Ekman pumping and deep
diabatic heating for the four displacements mentioned in Fig. 5. The contour inter-
val ofψ(y, z) is 400 m2 s−1, the maximum (magnitude)ψ(y, z) is 2808 m2 s−1, and
the zero line is of double thickness. The arrow heads indicate the general direction
of the flow field.

and the fractional mass flux in the winter Hadley cell as a function of vertical wavenumberm is

−ψ̂m(y1)

ψm(y2) − ψ̂m(y1)
=

{

1 − D−1/2(−y1/bm)

D−1/2(y2/bm)

[

D−1/2(y2/bm) −D−1/2(y1/bm)

D−1/2(−y2/bm) −D−1/2(−y1/bm)

]

}

−1

. (2.66)
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Now consider the limiting case where(y2 − y1) → 0, but Q̃ → ∞ in such a way that̃Q(y2 −

y1) = constant. Equation (2.50) reduces to

ψ(y, z) =
gQ̃(y2 − y1)

cpT0N2
√

2
e−z/2HZ1(z)























D′

−1/2(y1/b1)D−1/2(−y/b1) if −∞ < y < y1

D′

−1/2(−y1/b1)D−1/2(y/b1) if y1 < y <∞,

(2.67)

whereD′

−1/2(x) = dD−1/2(x)/dx andD′

−1/2(−x) = dD−1/2(−x)/dx. Note thatψ(y, z) is dis-

continuous aty = y1. With the aid of (2.38), the fractional mass flux in the summerhemisphere

cell as a function of vertical wavenumberm for an infinitesimally thin ITCZ is

(

Summer Cell

)

m

=
ψ̂m(y+

1 )

ψ̂m(y+
1 ) − ψ̂m(y−1 )

=
1√
2
D′

−1/2(−y1/bm)D−1/2(y1/bm), (2.68)

and the fractional mass flux in the winter hemisphere cell as afunction of vertical wavenumberm

for an infinitesimally thin ITCZ is

(

Winter Cell

)

m

=
−ψ̂m(y−1 )

ψ̂m(y+
1 ) − ψ̂m(y−1 )

= − 1√
2
D′

−1/2(y1/bm)D−1/2(−y1/bm). (2.69)

Plots of (2.65), (2.66), (2.68), and (2.69) are shown in Fig.2.15 form = 0, 1, 2 and for the four

ITCZ widths: (y2 − y1) → 0, (y2 − y1) = 500, 1000, 2000 km. For example, whenm = 1, the

winter cell carries approximately 2–4 times the mass flux of the summer cell, increasing as the

width of the ITCZ increases. This result is in close agreement with the numerical calculations

of Hack et al. (1989) and Hack and Schubert (1990). Asm increases, the asymmetry between

the winter and summer cells also increases. Complicated heating structures force higher vertical

modes, therefore we expect there to be larger asymmetries between the winter and summer cells

compared to the typicalm = 1 mode. Both the width and vertical structure of diabatic heating in
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the ITCZ help explain the large observed asymmetries between the zonally and monthly averaged

Hadley cells.

Now consider the fractional mass flux for Ekman pumping in theITCZ in the absence of

diabatic heating. The fractional mass flux in the shallow summer Hadley cell for an infinitesimally

thin ITCZ is

Summer Cell =
ψ(y+

1 , z)

ψ(y+
1 , z) − ψ(y−1 , z)

=

∑

∞

m=0 bmZm(0)Zm(z)D′

−1/2(−y1/bm)D−1/2(y1/bm)
∑

∞

m=0 bmZm(0)Zm(z)
,

(2.70)

and the fractional mass flux in the shallow winter Hadley cellfor an infinitesimally thin ITCZ is

Winter Cell =
−ψ(y−1 , z)

ψ(y+
1 , z) − ψ(y−1 , z)

= −
∑

∞

m=0 bmZm(0)Zm(z)D′

−1/2(y1/bm)D−1/2(−y1/bm)
∑

∞

m=0 bmZm(0)Zm(z)
.

(2.71)

Plots of (2.70) and (2.71) atz = 0 are shown in Fig. 2.16. The maximum asymmetry between

the winter and summer shallow Hadley cells occurs relatively far from the equator (2800-2900

km). This result is surprising since the shallow Hadley circulation was expected to be made up

of many high vertical wavenumbers, which decrease in equatorial Rossby length asm increases.

Below the total solution in Fig. 2.16, the contributions by them = 0, 1, 2 modes are illustrated,

and they show that the majority of the solution is comprised of the externalm = 0 mode solution

(more than 95% of the total solution). The external mode tends to play a large role in solutions at

the lower boundary, as discussed in Fulton (1980).

It is also interesting to note that asz increases, the contributions from higherm modes in-

creases, therefore the maximum asymmetry between the winter and summer cells changes in mag-

nitude and location as a function ofz. The location of maximum asymmetry between the winter

and summer cells seems to depend highly on the dominant vertical normal modes in the ITCZ so
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FIG. 2.15. Percentage of the total mass flux carried by the summerhemisphere
Hadley cell (red curves) and the winter hemisphere Hadley cell (blue curves) forced
by diabatic heating for four ITCZ widths: infinitesimally thin (y2 − y1) → 0, (y2 −
y1) = 500, 1000, 2000 km. Three vertical modes are shown,m = 0, 1, 2.

that as vertical wavenumber increases, the solutions become more confined in the meridional di-

rection (refer to the Green’s function). The change in asymmetry between the winter and summer

shallow Hadley cells as the ITCZ widens is not shown since theresults are consistent with the

results for the diabatic heating. In fact, the ideas of asymmetry are quite similar for both the deep

and shallow Hadley circulations. The main difference lies in their spectrum of equatorial Rossby

lengths.
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FIG. 2.16. Percentage of the total mass flux carried by the summerhemisphere
Hadley cell (red curves) and the winter hemisphere Hadley cell (blue curves) forced
by Ekman pumping at the top of the boundary layer for an infinitesimally thin ITCZ.
The four panels signify: a) total solution, b) contributionfrom them = 0 mode, c)
contribution from them = 1 mode, and d) contribution from them = 2 mode.

2.9. CONCLUDING REMARKS

In this study, the effects of diabatic heating and Ekman pumping in the ITCZ were explored

using an idealized model on the equatorialβ-plane. The analysis used a linear zonally symmetric

model of the inviscid interior of the tropical atmosphere forced by two prescribed forcings in the

ITCZ: i) deep diabatic heating and ii) Ekman pumping at the top of the boundary layer. The results
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demonstrate that deep diabatic heating in the ITCZ forces a deep overturning circulation in the

absence of Ekman pumping, which we call the deep Hadley circulation. When Ekman pumping at

the top of the boundary layer is present, there is a shallow overturning circulation, with divergence

at the top of the boundary layer up to about 2 km above the top ofthe boundary layer, which

we refer to as the shallow Hadley circulation. Both forcingsillustrate an increase in asymmetry

between the winter and summer Hadley cells until the ITCZ is displaced at a particular distance

away from the equator. This distance depends on the dominantvertical normal modes in the ITCZ

so that as vertical wavenumber increases, the solutions become more confined in the meridional

direction.

The solution method described in section 3 begins with a vertical transform that involves solv-

ing the Sturm-Liouville problem, with a nonzero lower boundary condition, and then solves the

horizontal structure equation (2.28) using Green’s function since it obeys an equation similar to

theψ field. The fields that force the response in the ITCZ using the idealized equatorialβ-plane

model are the meridional structure of the diabatic heating and the Ekman pumping at the top of

the boundary layer, while the inertial stability and staticstability are shaping parameters. Since

the static stability is constant in the solutions presentedhere, the spatial variability of the inertial

stability β2y2 plays the most important role in the asymmetry between the winter and summer

Hadley cells. A physical interpretation is that fluid parcels forced near the equator by diabatic

and frictional processes tend to move much more easily in thehorizontal direction because the

resistance to horizontal motion (i.e., inertial stability) is significantly smaller than the resistance

to vertical motion (i.e., static stability). The asymmetries inherent in both the deep and shallow

Hadley circulations were also explored for different ITCZ widths. The results indicate that as the

ITCZ becomes wider, the asymmetry increases, agreeing wellwith Hack and Schubert (1990). A
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new finding is that as the vertical structure of the forcing becomes more complicated (as vertical

wavenumber increases), the asymmetry increases as well. The asymmetries between the winter

and summer shallow Hadley cells atz = 0 that this model produces have somewhat of a different

structure than expected since the majority of the solution is comprised of the externalm = 0 verti-

cal mode solution. In a model where the boundary layer is explicitly simulated, the shallow Hadley

solution may look slightly different because it may have a larger percentage of contributions from

higher internal vertical modes.

Future research on the topic of deep and shallow overturningcirculations should explore a

model that is able to produce solutions of both the boundary layer and the inviscid interior and

should explore the role of higher internal modes. Such a model should also explore the role of

combined barotropic and baroclinic instability as well as the effect of the basic state fields on the

shallow Hadley circulation. The idealized model used in this study suffers from not being able to

explore such aspects. The understanding of the ITCZ in the eastern Pacific involves ITCZ break-

down and diabatic heating dominates the monthly average solution, leading to deep overturning

circulations. The time period between ITCZ breakdown and reformation is influenced by bound-

ary layer processes, and most likely, shallow overturning circulations. It is still unclear whether

shallow overturning circulations are due mostly to shallowdiabatic heating or boundary layer ef-

fects such as Ekman pumping or vertical motion due to SST gradients. Therefore, the prevalence

of shallow precipitating profiles and their contribution toshallow overturning circulations should

also be explored.
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CHAPTER 3

Deep and Shallow Vertical Motions in the Tropical Eastern Pacific in the YOTC reanalysis

3.1. SYNOPSIS

This chapter analyzes the vertical structure of the vertical pressure velocity field,ω, in the trop-

ical eastern Pacific Ocean (80◦W–150◦W) using the Year of Tropical Convection (YOTC) reanal-

ysis. YOTC provides a great opportunity to investigate tropical features at high spatial resolutions

because of increased satellite coverage, especially over the tropical oceans, where the transient

dynamics are not well understood. Also, both modest La Niña(October 2008–April 2009) and

El Niño (May 2009–April 2010) conditions were observed in YOTC. My analyses focus on sea-

sonal changes inω while retaining the 6 hourly temporal variability of the YOTC fields. The most

striking feature was the zonally-oriented narrow line of shallow vertical motions in the Intertrop-

ical Convergence Zone (ITCZ), especially in the 115◦W–150◦W region. However, this region did

experience some deepening during the summer El Niño monthsof May–October 2009. Vertical

motions in the 80◦W–115◦W eastern Pacific were generally dominated by deep vertical motions,

especially in May–October in both 2008 and 2009. During these summer months, deeper rising

motions seem to correspond with warmer sea surface temperatures, in line with past studies. The

months of November–January of both years highlight the narrow, shallow vertical motions asso-

ciated with the ITCZ and activity to the north and south, where it is believed that Tropical Upper

Tropospheric Troughs (TUTTs) and the South Pacific Convergence Zone (SPCZ) provide deeper

vertical motions north of the ITCZ and in the southern hemisphere, respectively. Finally, the

months of February–April exhibit significant differences near the equator, where February–April
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2009 illustrated a double shallow ITCZ structure while February–April 2010 had a single ITCZ

just north of the equator with both shallow and deep rising motions.

3.2. INTRODUCTION

Tropical diabatic heating profiles and their associated large-scale circulations have been inves-

tigated by many studies, such as the pioneering work of Yanaiet al. (1973). It was assumed for

some time that deep convective diabatic heating profiles of the first baroclinic mode dominated the

tropical atmosphere. As observations of diabatic heating profiles in different tropical regions have

increased it has become apparent that other precipitating diabatic heating profiles, such as shallow

convective and stratiform profiles are also prevalent. A fewrelevant studies that investigate the

variability of circulations associated with shallow, deep, and stratiform diabatic heating are Schu-

macher et al. (2004), Zhang and Hagos (2009), Hagos et al. (2010), Takayabu et al. (2010), Ling

and Zhang (2013), and Yokoyama et al. (2014). It is likely that tropical regions where sea surface

temperatures (SSTs) are relatively cool may be less favorable for deep convective diabatic heating

profiles since convection relies on the contrast of lower tropospheric temperatures with upper tro-

pospheric temperatures to first order through ideas of moiststatic energy (Neelin and Held 1987).

There has also been evidence that regions with large SST gradients tend to have relatively shal-

low vertical motions because of larger boundary layer convergence (Back and Bretherton 2006,

2009a,b; Nolan et al. 2007). Gonzalez and Mora Rojas (2014) illustrated that shallow vertical mo-

tions can be attributed to Ekman pumping at the top of boundary layer not being able to penetrate

deep into the free troposphere of the Intertropical Convergence Zone (ITCZ).

The goal of this chapter is to further look into the spatial variability of vertical motions in

the eastern Pacific region using the Year of Tropical Convection (YOTC) reanalysis since it has

both high horizontal and vertical resolution. Previous studies tend to take monthly or seasonal
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averages while we will retain the full temporal variabilityof the YOTC fields. Also, McNoldy

et al. (2004) suggest that the European Centre for Medium-Range Weather Forecasts (ECMWF)

reanalysis products are superior in the eastern Pacific.

This chapter is organized in the following way. Section 3.3 describes the YOTC reanalysis

fields to be analyzed while section 3.4 shows seasonal plots of the vertical motion, SSTs, and

diabatic heating. Concluding remarks are made in section 3.5.

3.3. DATA

YOTC is a global reanalysis product spanning the time periodof May 2008–April 2010 that

uses four-dimensional variational data assimilation at a horizontal resolution of 0.25 degrees (T799),

with 91 hybrid vertical levels. It is similar to the ECMWF Re-Analysis (ERA-Interim) with a num-

ber of additional observations using satellite data, in-situ data, and a new high resolution modeling

framework. Just like ERA-Interim, the fields are produced every six hours, at 0Z, 6Z, 12Z, and 18Z.

In this chapter, we analyze the vertical pressure velocity fieldω, SSTs, and diabatic heatingQ1/cp

fields at a horizontal resolution of 0.125 degrees. Theω field was interpolated from all hybrid ver-

tical levels at or below 100 hPa to pressure levels using the NCAR Command Language function

vinth2p while the diabatic heating was only available at 15 pressure levels below 100 hPa. Since

YOTC does not explicitly provide the diabatic heating field,it was computed using the individual

terms that make up the diabatic heating using the equationQ1 = Qconv + Qcloud + Qrad + Qturb,

whereQconv is the temperature tendency from deep and shallow convection,Qcloud is the temper-

ature tendency from the cloud scheme,Qrad is the temperature tendency from radiation, andQturb

is the temperature tendency from turbulent diffusion and sub-grid orography.
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3.4. RESULTS

In order to better understand the variability of vertical motions in the tropical eastern (80◦W–

150◦W) Pacific, vertical profiles ofω were divided into shallow and deep rising motions (ω <

0). This was done by defining the lower troposphere as the layerbelow 650 hPa and the upper

troposphere as the layer including 650 hPa until 100 hPa. We also used 600 and 700 hPa as the

level separating the upper and lower troposphere and did notsee qualitatively different results.

The absolute maximum of the lower troposphere was taken as the dominant shallowω profile and

the absolute maximum of the upper troposphere was taken as the dominant deepω profile. If the

vertical profile ofω had maxima in both the lower and upper troposphere, the regime with the

stronger vertical motion was selected. Also, the absolute maximum in rising motion in each layer

was required to be above a threshold of 2 hPa hr−1, which helps eliminate weak cases.

Figure 3.1 shows a map of the percentage of the time the vertical profile ofω was dominated by

either shallow or deep vertical motions along with SSTs for the entire YOTC period, May 2008–

April 2010. It is interesting to note that shallow vertical motions are relatively latitudinally narrow

and do not extend far away from the equator (top panel). Also,there is a relative minimum near

the equator in the shallowω regime, which is related to the equatorial cold tongue. Deepvertical

motions, shown in the bottom panel of Fig. 3.1, are most prevalent north of shallow vertical

motions and are much broader in latitudinal extent. The reasons for these features will be explored

in more detail below, where we analyze individual seasons.

Note that there were modest La Nina and El Niño conditions during the YOTC period, which

may account for many of the features shown in the analyses of particular seasons. Figure 3.2

shows the Niño 1+2 (80◦W–90◦W, 0-10◦S) and Niño 3 region (90◦W–150◦W, 5◦S-5◦N) indices

using version 3 of the Extended Reconstructed Sea Surface Temperature (ERSST) dataset (Smith
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FIG. 3.1. Percentage (%) of the output times during the entire YOTC period (May
2008–April 2010) that were dominated by either shallow or deep rising motions
above a threshold of 2 hPa hr−1 in the shading and SST field (◦C) in the contours.
The SST contour interval is 2◦C.

et al. 2008) and SSTs from the YOTC reanalysis. The base period used to compute anomalies is

1981–2010, where SSTs from ERSST are used as the ERSST base period and ERA-Interim SSTs

are used as the base period of the YOTC anomalies. The YOTC reanalysis seems to replicate

the conditions seen in ERSST quite well, with some discrepancies (more La Nina-like in YOTC)

during May and June 2008 in the ER Niño 3 region, and February–April 2010 in the ER Niño 1+2

region.
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FIG. 3.2. SST anomalies (◦C) from the Extended Reconstructed Sea Surface Tem-
perature (ERSST) dataset version 3 (Smith et al. 2008), and YOTC during May
2008–April 2010 for the Niño 1+2 (80◦W–90◦W, 0-10◦S) and Niño 3 region
(90◦W–150◦W, 5◦S-5◦N). The base period used to compute anomalies from is 1981-
2010, where SSTs from ERSST are used for the ERSST base periodand ERA-
Interim SSTs are used as the base period of YOTC anomalies.

Figures 3.3 and 3.4 illustrate the percentage of the time thevertical profile ofω was dominated

by either shallow or deep rising motions along with isolinesof the SST field during May–July

2008 and August–October 2008, respectively. The 80◦W–115◦W region was dominated by deep

vertical motions covering a broad area while the 115◦W–150◦W region was dominated by shallow
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and latitudinally concentrated vertical motions which seem to resemble a thin ITCZ. It is not sur-

prising that vertical motions in the eastern Pacific are typically deeper since the SSTs are warmer,

as discussed by Neelin and Held (1987). Also, there is typically more tropical cyclone activity

in this part of the eastern Pacific and 2008 had the most activeNorth American monsoon since

1941 (Waliser and Coauthors 2012). The North American monsoon typically occurs during June–

September and impacts not only the American west coasts but also the eastern Pacific through

westward propagating disturbances (Higgins and Coauthors2006; Mapes et al. 2003).

FIG. 3.3. Percentage (%) of the output times during May–July 2008 that were
dominated by either shallow or deep rising motions above a threshold of 2 hPa hr−1

in the shading and SST field (◦C) in the contours. The SST contour interval is 2◦C.
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FIG. 3.4. Percentage (%) of the output times during August–October 2008 that
were dominated by either shallow or deep rising motions above a threshold of 2 hPa
hr−1 in the shading and SST field (◦C) in the contours. The SST contour interval is
2 ◦C.

During May–October of 2009, there were deeper vertical motions, especially in the 115◦W–

150◦W region, as shown in Figures 3.5 for August–October 2009. This increase in coverage of

deep rising motions is most likely due to the strong El Niño conditions in both the Niño 1+2 and 3

regions, as shown in Figure 3.2.
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FIG. 3.5. Same as Fig. 3.4, but for August–October 2009.

Figure 3.6 shows a map of the percentage of the time the vertical profile ofω was dominated

by either shallow or deep vertical motions along with contour lines of the SST field during No-

vember 2008–January 2009. There are three regions of interest: the ITCZ region just north of

the equator, the tropical to subtropical transition regionnorth of the ITCZ, and the South Pacific

Convergence Zone (SPCZ). The ITCZ region was once again a well-defined, thin band of shallow

vertical motion. In fact, shallow rising motions occur about 3/4 of the YOTC output times in the

90◦W–110◦W region during November 2008–January 2009. To try and understand why there is
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such prevalent and latitudinally confined shallow motion inthis region during these months, we

take a look at the diabatic heating field.

FIG. 3.6. Percentage (%) of the output times during November 2008–January 2009
that were dominated by either shallow or deep rising motionsabove a threshold of
2 hPa hr−1 in the shading and SST field (◦C) in the contours. The SST contour
interval is 2◦C.

Figure 3.7 shows the area-averagedω and diabatic heatingQ1/cp over the ocean in two regions:

0◦–10◦N, 80◦W–115◦ (left panels), and 0◦–10◦N, 115◦W–150◦ (right panels) during January 2009.

A daily running mean filter was applied to both fields to removethe diurnal cycle. The vertical

profile ofω andQ1/cp are typically shallow in both regions and are often weak in magnitude (e.g.,
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Q1/cp ≤ 2 K day−1). There seems to be a good correlation between the two fields below 650 hPa,

suggesting that shallow vertical motions in YOTC are possibly due to shallow diabatic heating.

However, since the diabatic heating is often weak, it is alsoquite possible that other adiabatic

processes might be important as well. For example, verticalmotion at the top of the boundary layer

associated with Ekman convergence and meridional SST gradients may help describe why vertical

motions are shallow, as discussed in Gonzalez and Mora Rojas(2014) and Back and Bretherton

(2009b).

FIG. 3.7. January 2009 area averaged vertical motion (-ω, hPa h−1) in the top
panels and diabatic heating field (Q1/cp, K d−1) in the bottom panels. All plots
were averaged over 0◦-10◦N and only over the ocean, and the left panels were also
averaged over 115◦W–150◦W while the right panels were averaged over 80◦W–
115◦W. Note: The contour intervals are 1 hPa h−1 and 1 K d−1.

Returning to Figure 3.6, the region north of the ITCZ (110◦W–150◦W) experiences deep verti-

cal motions that are likely associated with Tropical Upper Tropospheric Troughs (TUTTs) during
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November 2008–January 2009. These events occur during boreal fall–spring and typically last a

few days to a week and involve significant interaction between the tropics and subtropics (Webster

and Holton 1982). In fact, Masarik and Schubert (2013) used the YOTC reanalysis to document

a moderate TUTT during January 2009 (their Fig. 2). The SPCZ was also a prominent feature

during November 2008–January 2009 in the 120◦W–150◦W region. Many global models tend

to overproduce a double ITCZ in the eastern Pacific as a zonally elongated SPCZ (Mechoso and

Coauthors 1995), but the YOTC reanalysis does not seem to do this.

The resulting deep vs. shallowω plot for November–January 2010 is not shown since these

months agree well with those of 2009, except with a slight increase in deep vertical motions. Once

again, it is likely that the modest El Niño conditions played a role during these months.

During February–April 2009 and 2010 vertical profiles ofω and SST differed significantly

over the eastern Pacific attributed to the effects of the 2009La Niña and 2010 El Niño, as shown

in Figures 3.8 and 3.9. February–April 2009 had a double ITCZstructure dominated mainly by

shallow vertical motions while 2010 was dominated by an array of shallow and deep vertical mo-

tions in the form of a single, near-equatorial ITCZ. These results agree with Lietzke et al. (2001),

who suggested that the double ITCZ in the eastern Pacific is most prominent during La Niña years

since the equatorial cold tongue is present, whereas neutral and El Niño years exhibit a single

ITCZ slightly on or north of the equator. The region north of the ITCZ once again exhibited deep

vertical motions in February–April of both years most likely associated with TUTT activity. Also,

the region southwest of the ITCZ was dominated by an array of shallow and deep vertical motions

during both February–April of 2009 and 2010, likely associated with activity in the SPCZ.
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FIG. 3.8. Percentage (%) of the output times during February–April 2009 that were
dominated by either shallow or deep rising motions above a threshold of 2 hPa hr−1

in the shading and SST field (◦C) in the contours. The SST contour interval is 2◦C.

3.5. CONCLUDING REMARKS

We analyzed vertical profiles of the vertical pressure velocity, ω, during the YOTC reanalysis

of May 2008–April 2010 in the tropical eastern Pacific (80◦W–150◦W). We defined the vertical

motions as being dominated by a shallow (up to 650 hPa) or deeppeak (650 hPa to 100 hPa).

During May–October of 2008, the 80◦W–115◦W region of the eastern Pacific was dominated by

deepω profiles covering a broad area while the 115◦W–150◦W region was dominated by shallower,
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FIG. 3.9. Same as Fig. 3.8, but for February–April 2010.

more latitudinally confined ITCZ-like vertical motions. Vertical motions deepened the next year

during these months, especially in the 115◦W–150◦W region. However, deep rising motion is still

more prevalent in the 80◦W–115◦W region. A possible explanation for this is that 80◦W–115◦W

tends to be affected more by convection propagating westward from the North American monsoon

and tropical cyclones.

From October–January of both years of YOTC, the eastern Pacific ITCZ is strongly dominated

by shallowω profiles. We analyzed the diabatic heating field during thesemonths and find that
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diabatic heating was shallower and relatively weak in magnitude, which agrees with the cooler

SSTs. It seems that the diabatic heating field qualitativelyagrees with the shallow vertical mo-

tions. Also, with the lack of significant diabatic heating, adiabatic processes might be important

for understanding the vertical motion field. It is possible that Ekman pumping at the top of the

boundary layer cannot penetrate very deep into the free troposphere in the absence of significant

diabatic heating. Also, these months may also show the effects of activity in the form of TUTTs

and the SPCZ. TUTTs typically account for deep vertical motions while the SPCZ can be deep or

shallow.

During February–April 2009 shallow profiles dominated in the ITCZ region, while there were

an array of shallow and deepω profiles during February–April 2010 in the ITCZ. Rising motion

was usually north of the equator, except during La Niña conditions in 2009 when a double ITCZ

structure was prominent. Once again, TUTTs account for deepvertical motions northwest of the

ITCZ while the SPCZ account for an array of vertical motions south of the equator.

We believe that the YOTC reanalysis has provided an opportunity to analyze fields such asω

at a high resolution for two contrasting years in a region where convection and circulations are

sensitive to the background conditions. Future work shouldconcentrate on variability of large-

scale convection and circulations on smaller scales to continue improving our understanding of

transient convection and circulations in the tropics.
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CHAPTER 4

Transient Hadley Circulations

4.1. SYNOPSIS

This chapter examines the transient dynamics of large-scale, zonally symmetric overturning

circulations in the tropical troposphere. The dynamics arediscussed in the context of idealized

analytical solutions of the meridional circulation equation arising in an equatorialβ-plane model

of the Hadley circulation. This partial differential equation for the meridional circulation can be

solved by first performing a vertical transform to obtain a set of horizontal structure equations, and

then performing a horizontal Hermite transform to obtain a set of second order ordinary differential

equations in time. The solutions of these ordinary differential equations contain terms for the

slow, quasi-balanced part of the response and terms for the transient, zonally symmetric, inertia-

gravity wave part of the response. When the ITCZ is located off the equator, both parts of the

response reveal a basic asymmetry between the winter and summer hemispheres, with the winter

hemisphere side containing most of the quasi-balanced compensating subsidence and most of the

transient inertia-gravity wave activity. Also, the inertia-gravity waves travel in packets, causing the

Hadley cells to pulsate on timescales of about 1, 2, and 3 daysfor diabatic heating of the external,

first internal, and second internal modes. These basic dynamical aspects of the Hadley circulation

are revealed in the upper tropospheric water vapor patternsobserved by the 6.7µm water vapor

channels on the GOES satellites over the Atlantic and eastern Pacific.
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4.2. INTRODUCTION

Figure 4.1 shows a typical, boreal summer 6.7µm water vapor image of the eastern Pacific

from the GOES West satellite. Under clear sky conditions, the 6.7µm channel is sensitive to the

vertically averaged humidity in the 200–500 hPa layer, so the dark blue areas on either side of the

ITCZ indicate regions of low humidity in the upper troposphere, and hence regions of enhanced

subsidence in the downward branches of the summer hemisphere and winter hemisphere Hadley

cells. The complete explanation of atmospheric water vapordistributions can be quite complicated

and involve several different physical processes, such as the stretching and folding processes as-

sociated with the Rossby wave pattern just east of Hawaii in Figure 4.1. For detailed discussions

of tropical moisture distributions, including trajectoryanalysis and the concept of “time since last

condensation,” see Sun and Lindzen (1993), Soden and Fu (1995), Salathé and Hartmann (1997),

Pierrehumbert (1998), Pierrehumbert and Roca (1998), Galewsky et al. (2005), Sherwood et al.

(2006), Cau et al. (2007), and Schreck et al. (2013). In spiteof the intricacies involved in com-

prehensive explanations of tropical water vapor distributions, it appears that, during much of the

year, the explanation of the water vapor distribution in theeastern Pacific is simpler than in many

other areas. An important part of the explanation lies in thedynamics of the Hadley cells, with the

winter hemisphere Hadley cell having a large meridional extent and a large overturning mass flux.

These are the aspects on which the present chapter shall focus.

In the theory presented here, only the flow in the inviscid interior (i.e., above the 900 hPa

isobaric surface) is explicitly considered. The effects ofthe frictional boundary layer appear as the

lower boundary condition on the inviscid interior. The problem consists of a partial differential

equation in(y, z, t), with appropriate boundary and initial conditions. This problem can be solved

by a variety of methods. The methods used here are analyticaland provide important insights into
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FIG. 4.1. The 06 UTC 25 June 2013 water vapor image (6.7µm) from the GOES
West satellite. This image is typical of the eastern Pacific during the boreal summer
when the ITCZ is located near 10–15N. The dark blue areas on either side of the
ITCZ indicate regions of low humidity in the upper troposphere, and hence regions
of enhanced subsidence in the downward branches of the summer hemisphere and
winter hemisphere Hadley cells. For a detailed discussion of 6.7 µm radiance-
to-humidity transformation formulas, see Soden and Bretherton (1993, 1996) and
Jackson and Bates (2001).

the dynamics. As described in section 2.4, the first step involves application of a vertical transform

that converts the original partial differential equation in (y, z, t) into a system of partial differential

equations in(y, t). In a previous paper (Gonzalez and Mora Rojas 2014), the Green’s function

approach (evanescent basis functions) was used to solve theslowly forced version of this problem.

This approach yields the most physical insight into the quasi-balanced meridional flow and the
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fundamental asymmetry between the summer hemisphere and winter hemisphere Hadley cells.

As discussed in section 4.5, the present chapter uses the Hermite transform approach (oscillatory

basis functions) to solve this problem for forcing on any time scale. This approach yields the most

physical insight into the transient aspects of the flow and, in particular, how zonally symmetric

inertia-gravity waves can be emitted due to transient convection in the ITCZ.

The importance of equatorially-trapped inertia-gravity waves in large-scale dynamics has long

been debated. Traditionally, inertia-gravity waves are filtered out in idealized models, such as

those used in Gill (1980) and Chao (1987). This is due to the fact that it is difficult to observe these

waves because of their small time and space scales. However,papers such as Takayabu (1994) and

Haertel and Kiladis (2004) show that inertia-gravity wavesare important for tropical dynamics,

and often are coupled to convection. As we will see, this chapter illustrates that equatorially-

trapped inertia-gravity waves are the fundamental result of the transient zonally symmetric Hadley

circulation. There has been evidence of equatorially-trapped oceanic inertia-gravity waves in sea

level and surface meridional wind data over the Pacific Ocean, as shown in Figure 4.2 (Wunsch

and Gill 1976). It is possible that the tropical atmosphere may contain a considerable amount of

inertia-gravity wave activity which our present observational systems are not capable of detecting.

Therefore, it is important to try to understand theoreticalaspects of the problem in an idealized

model setting.

In order to gain insight into the dynamics of the deep Hadley circulations, this chapter considers

zonally symmetric motions in a stratified, compressible atmosphere on the equatorialβ-plane. The

limitation to zonally symmetric motions is a strong one, because it precludes simulation of Walker-

type circulations. However, as we shall see, the zonally symmetric model can yield insight into

situations such as the one depicted in Figure 4.1.
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FIG. 4.2. Sea level as a function of frequency and energy densityfrom January
1954–August 4, 1957 at Canton Island (2◦S, 171◦W). The top axis shows the period
(days), and the selected peaks are also denoted in days. Notethe 4 day peak has an
error bar next to it and Mf is the fortnightly tide. From Wunsch and Gill (1976).

This chapter follows up on work from Gonzalez and Mora Rojas (2014), where they exam-

ined some aspects of the dynamics of the deep and shallow Hadley circulations of the tropical

troposphere. Their results are based on analytical solutions of the meridional circulation equation

derived from the zonally symmetric equations of equatorialβ-plane theory. The forcing terms for

the meridional circulation equation involve diabatic heating and boundary layer pumping. When

these forcing effects are slowly varying in time, the meridional circulation equation simplifies to

a second order partial differential equation of elliptic type, so transient inertia-gravity waves are

filtered and the meridional circulation has no memory of pastforcing, but is simply diagnostically
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determined from the present forcing. In the following discussion we shall relax the assumption that

forcing effects are slowly varying in time, which means thatthe meridional circulation equation

has an additional term involving two time derivatives, so that it changes from an elliptic partial

differential equation to a hyperbolic partial differential equation.

The chapter is organized in the following way. In section 4.3, the primitive equation model is

presented and the associated meridional circulation equation is derived. Section 4.4 introduces a

Hermite transform iny that converts the set of equations in(y, t) into a set of ordinary differential

equations int. In sections 4.5 and 4.6, we discuss the deep overturning response associated with

diabatic forcing in the ITCZ. Derivations of inertia-gravity wave packet properties are shown in

section 4.7. Some concluding remarks are presented in section 4.8.

4.3. MODEL EQUATIONS

In order to gain insight into the transient aspects of the Hadley circulation, we consider zonally

symmetric motions in a stratified, compressible atmosphereon the equatorialβ-plane. The prob-

lem consists of a partial differential equation in the independent variables(y, z, t), with appropriate

boundary and initial conditions. This problem can be solvedby a variety of methods. The methods

used here are analytical and provide important insights into the dynamics. As described in Chap-

ter 2, we first apply a vertical transform that converts the original partial differential equation in

(y, z, t) into a system of partial differential equations in(y, t) for the horizontal structure of each

vertical mode. As we will discuss in section 4.4, these partial differential equations are then solved

analytically via a horizontal transform method.

As the vertical coordinate we usez = H ln(p0/p), wherep0 = 900 hPa,T0 = 293 K, and

H = RT0/g = 8581 m. We consider the case of weak horizontal flow and weak baroclinicity,

so that thev(∂u/∂y) andw(∂u/∂z) terms in the zonal momentum equation, thev(∂v/∂y) and
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w(∂v/∂z) terms in the meridional momentum equation, and thev(∂T/∂y) term in the thermody-

namic equation can be neglected. Under these assumptions, the governing equations are

∂u

∂t
− βyv = 0, (4.1)

∂v

∂t
+ βyu+

∂Φ

∂y
= 0, (4.2)

∂Φ

∂z
=

g

T0
T, (4.3)

∂v

∂y
+
∂w

∂z
− w

H
= 0, (4.4)

∂T

∂t
+
T0

g
N2w =

Q

cp
, (4.5)

whereu andv are the zonal and meridional components of velocity,w is the log-pressure vertical

velocity, Φ is the perturbation geopotential,T is the perturbation temperature,N2 is the square

of the buoyancy frequency (considered for simplicity to be aconstant),Q is the diabatic heating,

andβy is the Coriolis parameter, withβ = 2Ω/a denoting the constant northward gradient of

the Coriolis parameter and withΩ anda denoting the Earth’s rotation rate and radius. We have

already formally derived the second order partial differential equation in(y, t) for the streamfunc-

tionψm(y, t) in Chapter 2, therefore we will begin from (2.28)–(2.32), which are restated below in

a slightly different form as

∂2ψ̂m

∂t2
− ghm

(

∂2

∂y2
− y2

b̄4m

)

ψ̂m = −ghm
∂Fm

∂y
, (4.6)

with boundary conditions

ψ̂m(y, t) → 0 as y → ±∞, (4.7)
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and with the initial conditions

ψ̂m = 0 and
∂ψ̂m

∂t
= 0 at t = 0, (4.8)

where the equatorial Rossby length is defined byb̄m = (cm/β)1/2 andcm = ghm are the gravity

wave speeds. The spectra of equivalent depthshm, equatorial Rossby lengthsb̄m, and gravity wave

speedscm for m = 0, 1, 2, 3, 4 are shown in Table 4.1. Note that thisb̄m definition of Rossby

length is convenient when working with Hermite polynomialsHn(x) (or the meridional structure

functionsHm
n (x)), while thebm = b̄m/

√
2 definition of Rossby length is convenient when working

with parabolic cylinder functionsDn(x), as in Gonzalez and Mora Rojas (2014). This situation

ruppert@atmos.colostate.edu Show details

arises because the two functions are related byDn(x
√

2) = 2−n/2e−x2/2Hn(x). The forcing

termFm(y, t) on the right hand side of equation (4.6) is given by

Fm(y, t) =
gQ̂m(y, t)

cpT0N2
+

(

W(y, t) − gQ̂(y, 0, t)

cpT0N2

)

Zm(0), (4.9)

where

Q̂m(y, t) =
N2

g

∫ zT

0

Q̂(y, z, t)Zm(z) dz + Q̂(y, 0, t)Zm(0). (4.10)

TABLE 4.1. The spectra of equivalent depthshm, gravity wave speedscm =
(ghm)1/2, and Rossby lengthsbm = (cm/β)1/2 for the five values ofm listed in
the left column. The values have been computed from usingzT = 13 km, g = 9.8
m s−2,N = 1.2 × 10−2 s−1, andH = 8581 m.

m hm (m) cm (m s−1) b̄m (km)
0 7099 263.8 3394
1 229.8 47.46 1440
2 61.42 24.53 1035
3 27.66 16.46 848.1
4 15.63 12.38 735.2
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4.4. SOLUTION VIA HERMITE TRANSFORMS

The solution of equations (4.6)–(4.8) is now constructed byusing Hermite transform methods.

The Hermite transform pair for the streamfunction is

ψ̂m(y, t) =
∞
∑

n=0

ψ̂mn(t)Hm
n (y), (4.11)

ψ̂mn(t) =
1

b̄m

∫

∞

−∞

ψ̂m(y, t)Hm
n (y) dy, (4.12)

where the meridional structure functionsHm
n (y) are related to the Hermite polynomialsHn(y/b̄m)

by

Hm
n (y) =

(

π
1

2 2nn!
)

−
1

2

Hn(y/b̄m) e−
1

2
(y/b̄m)2 . (4.13)

Since the Hermite polynomials satisfy the recurrence relationHn+1(x) = 2xHn(x)− 2nHn−1(x),

it is easily shown that the meridional structure functionsHm
n (y) satisfy the recurrence relation

Hm
n+1(y) =

(

2

n+ 1

) 1

2

(

y

b̄m

)

Hm
n (y) −

(

n

n + 1

) 1

2

Hm
n−1(y). (4.14)

Since the first Hermite polynomial isH0(x) = 1, the first meridional structure function isHm
0 (y) =

π−
1

4e−
1

2
(y/b̄m)2 , from which all succeeding structure functions can be computed using the recur-

rence relation (4.14), with the understanding that the lastterm in (4.14) vanishes whenn = 0.

ComputingHm
n (y) via its recurrence relation is much preferable to computingHn(y/b̄m) via its

recurrence relation and then computingHm
n (y) by evaluation of the right hand side of equation

(4.13), because the former method avoids explicit calculation of the factor2nn! for largen. Plots

of Hm
n (y) for m = 0, 1, 2 andn = 0, 1, 2, 3, 4 are shown below in the three panels of Figure 4.3.
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FIG. 4.3. Plots ofHn(y/b̄m) for m = 0, 1, 2 andn = 0, 1, 2, 3, 4. Note that, asn
increases (for givenm), the width of the oscillatory region ofHn(y/b̄m) increases
asn1/2, so the magnitude ofHn(y/b̄m) in the oscillatory region decreases asn−1/4

in order to satisfy the normalization imposed by (4.16).

The meridional structure functions satisfy the second order equation

(

d2

dy2
− y2

b̄4m

)

Hm
n (y) = −

(

2n+ 1

b̄2m

)

Hm
n (y), (4.15)

so thatHm
n (y) is an eigenfunction of the operator that appears in parentheses on the left hand side of

equation (4.6). This eigenfunction property makes the transform pair (4.11) and (4.12) convenient

for the solution of (4.6). Note that solutions of (4.15) transition from oscillatory to evanescent
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whenỹmn = ±b̄m(2n + 1)1/2, which we denote as the turning (or critical) latitudes (Wunsch and

Gill 1976). These will become important when we analyze the solutions for the streamfunction

later. Another convenient property of the meridional structure functionsHm
n (y) is that they satisfy

the orthonormality relation

∫

∞

−∞

Hm
n (y)Hm

n′(y) dy =



















b̄m n′ = n,

0 n′ 6= n.

(4.16)

Note that equation (4.12) can be obtained through multiplication of equation (4.11) byHm
n′(y),

followed by integration overy and use of equation (4.16).

To take the meridional transform of equation (4.6), first multiply it by Hm
n (y) and integrate

overy. The integral originating from the second ordery-derivative term in equation (4.6) is then

integrated by parts twice, making use of the boundary conditions (4.8), to yield

∂2

∂t2

∫

∞

−∞

ψ̂m(y, t)Hm
n (y) dy

− ghm

∫

∞

−∞

ψ̂m(y, t)

(

d2

dy2
− y2

b̄4m

)

Hm
n (y) dy

= −ghm

∫

∞

−∞

∂Fm(y, t)

∂y
Hm

n (y) dy.

(4.17)

To simplify equation (4.17) we first use equation (4.15) in the integrand on the second line. We then

make use of equation (4.12) to simplify equation (4.17) to the second order ordinary differential

equation

d2ψ̂mn

dt2
+ ν2

mnψ̂mn = −ghmF
′

mn, (4.18)
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with the initial conditions

ψ̂mn = 0 and
dψ̂mn

dt
= 0 at t = 0, (4.19)

where the inertia-gravity wave frequencyνmn is given by

νmn =
1

b̄m
[ghm (2n+ 1)]1/2 , (4.20)

and the forcing by

F ′

mn(t) =
1

b̄m

∫

∞

−∞

∂Fm(y, t)

∂y
Hm

n (y) dy. (4.21)

The inertia-gravity wave frequencies for the first 5 vertical wavenumbers (m = 0, 1, 2, 3, 4) are

shown as a function of meridional moden in Figure 4.4 below. Values of the switch-on function

T (t), which will be formally introduced in the next section, are plotted in the four horizontal

dotted lines,γ−1 = 3, 6, 12, 24 hours. Notice howγ−1 = 24 h does not intersect with any of

them = 0, 1, 2, 3, 4 inertia-gravity wave frequencies. As will be seen later, when diabatic heating

is switched on at this rate, inertia-gravity wave activity is minimal, and the transient solutions are

approximately equal to the balanced solutions derived in Chapter 2. In the next section we solve

(4.18) and (4.19) for a particular forcing.

4.5. TRANSIENT HADLEY CIRCULATIONS FORCED BY A SWITCH-ON OF ITCZ CONVECTION

For illustration purposes, we now consider the response to aforcing for which the Ekman

pumping and the diabatic heating atz = 0 are related by

W(y, t) =
gQ̂(y, 0, t)

cpT0N2
, (4.22)
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FIG. 4.4. Plots ofνmn, computed from equation (4.20), form = 0, 1, 2, 3, 4 and
n = 0, 1, . . . , 20. The four horizontal dotted lines indicate the values ofγ corre-
sponding to the four switch-on functionsT (t) plotted in Figure 4.5.

so that (4.9) simplifies to

Fm(y, t) =
gQ̂m(y, t)

cpT0N2
. (4.23)

Assume thatQ̂(y, z, t) vanishes everywhere except in the latitudinal rangey1 < y < y2, where

y1 andy2 are constants that specify the south and north boundaries ofthe ITCZ. Within this ITCZ

region the diabatic heating is assumed to be independent ofy and to be smoothly switched on to a

steady state value, i.e.,

Q̂(y, z, t) = T (t)



























∞
∑

m=0

Q̃mZm(z) if y1 < y < y2,

0 otherwise,

(4.24)
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where the constants̃Qm specify the projection of the vertical structure ofQ̂(y, z, t) onto the vertical

modes, and where the time dependence is given by

T (t) = 1 − (1 + γt)e−γt, (4.25)

with the constantγ specifying the sharpness of the switch-on functionT (t). Figure 4.5 displays

four T (t) curves for the particular valuesγ−1 = 3, 6, 12, 24 hours.

FIG. 4.5. Plots of the switch-on functionT (t) for the four choicesγ−1 =
3, 6, 12, 24 hours. The “filtered solutions” discussed below are valid for the “slow
switch-on” cases, i.e., for large values ofγ−1.

Substituting (4.24) into (4.9), and then using the orthonormality relation (A.2), we obtain

Q̂m(y, t) = T (t)



















Q̃m if y1 < y < y2,

0 otherwise.

(4.26)

Use of (4.23) and (4.26) in (4.21) now yields

F ′

mn(t) =
gHm

n (y1)

cpT0N2b̄m

∫ y1+

y1−

∂Q̂m(y, t)

∂y
dy +

gHm
n (y2)

cpT0N2b̄m

∫ y2+

y2−

∂Q̂m(y, t)

∂y
dy = T (t)Fmn, (4.27)

76



where

Fmn =
gQ̃m

cpT0N2b̄m
[Hm

n (y1) −Hm
n (y2)] , (4.28)

and where we have made use of the fact that the narrow integralof (∂Q̂m/∂y) acrossy1 is Q̃mT (t),

while the narrow integral acrossy2 is−Q̃mT (t).

The final equality in (4.27) can now be used in the right hand side of equation (4.18), and the

complete solution can be written as the sum of the homogeneous solution and a particular solution.

As is easily checked by direct substitution into equation (4.18), the solution satisfying the initial

conditions (4.19) is

ψ̂mn(t) = −ghmFmn

ν2
mn

{

(

(ν2
mn − γ2)γ2

(ν2
mn + γ2)2

)

cos(νmnt) −
(

2γ3νmn

(ν2
mn + γ2)2

)

sin(νmnt)

+ 1 −
(

ν2
mn + 3γ2

ν2
mn + γ2

+ γt

)(

ν2
mne

−γt

ν2
mn + γ2

)

}

.

(4.29)

In summary, the solution of the original meridional circulation problem (2.10)–(2.14) is obtained

by combining equations (2.15), (2.21), and (4.11) into

ψ(y, z, t) = e−z/2H
∞
∑

m=0

∞
∑

n=0

ψ̂mn(t)Hm
n (y)Zm(z), (4.30)

whereψ̂mn(t) is given by equation (4.29). Plots of the streamfunction canbe constructed by first

calculatingFmn from equation (4.28), then calculatinĝψmn(t) from equation (4.29), and finally

calculatingψ(y, z, t) from equation (4.30).

Note that whenγ ≪ νmn, the solution (4.29) simplifies considerably since the coefficients of

thecos(νmnt) andsin(νmnt) terms become much smaller than unity, while the third line inequation
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(4.29) approachesT (t). Then, the spectral space solution (4.29) simplifies to

ψ̂(b)
mn(t) = −ghmFmnT (t)

ν2
mn

, (4.31)

so that the physical space solution (4.30) becomes

ψ(b)(y, z, t) = e−z/2H
∞
∑

m=0

∞
∑

n=0

ψ̂(b)
mn(t)Hm

n (y)Zm(z), (4.32)

where the superscript(b) indicates the balanced (or filtered) solution. Since the time dependence

on the right hand side of (4.31) isT (t), theψ(b)(y, z, t) field develops in lockstep with the forc-

ing, i.e., there is no time delay between the forcing and the response, no matter how far one is

from the forcing. Since this represents “action at a distance,” it should be regarded as a filtered

approximation of the actual dynamics, valid only in the caseof a “slowly varying forcing.” To

better understand how slow the forcing needs to be, Fig. 4.4 includes horizontal dotted lines for

the four values ofγ used in Fig. 4.5. As an example, form = 1 andγ = (24 h)−1 the condition

γ ≪ νmn holds for essentially alln, while form = 1 andγ = (1 h)−1 the condition does not hold

for the smaller values ofn. Thus, form = 1 and the slowγ = (24 h)−1 forcing, inertia-gravity

wave activity should be weak and the balanced (or filtered) solution (4.32) should be accurate. This

argument will be confirmed by the examples shown in section 4.6.

4.6. EXAMPLES USINGm = 0, 1, 2 DIABATIC HEATING

For simplicity, we assume

Q̃m

cp
=



















(5 K day−1)

(

500 km

y2 − y1

)

if m = 1,

0 if m 6= 1,

(4.33)
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i.e., the diabatic heating projects only onto the first internal mode and has been normalized in such

a way that the horizontally integrated forcing(y2 − y1)Q̃m is fixed.

Thus, for the external mode and the first two internal modes, theγ−1 = 24 h curve in Figure

4.4 yields a forcing that is probably slow enough for the filtered approximation to be reasonably

accurate, but theγ−1 = 3 h curve yields a forcing that excites a non-negligible inertia-gravity wave

response, especially for the higher internal modes, as we will see in the next few figures.

Figure 4.6 shows isolines ofψ(y, z, t) and contour shading ofQ(y, z)e−z/H/cp at t = 32 h,

56 h, 80 h, and 104 h computed from equation (4.30) using the parameterszT = 13 km, N =

1.2 × 10−2 s−1, (y1, y2) = (1000,1500) km, andγ−1= 3 h. Note that the largest asymmetries

between the winter hemisphere Hadley cell and the summer hemisphere Hadley cell occur for this

ITCZ displacement due to the anisotropy of the inertial stability, as discussed in Chapter 2. Also

note that the forcing has been sufficiently switched on byt = 32 h according to Fig. 4.5. The

summer cell is almost nonexistent att = 32 h, then there are very small asymmetries between

the winter and summer cells att = 56 h, and then about a 9:1 asymmetry att = 80 h, and once

again almost no asymmetry att = 104 h. Also note the expansion and contraction of both winter

and summer cells att = 32 h andt = 56 h, respectively. These features, suggest that there is

significant transient activity due to inertia-gravity waves in both the Hadley cells. Another way to

view the transient activity in both the winter and summer Hadley cells is illustrated in Figure 4.7.

We compute the normalized total streamfunctionψ and fractional streamfunctionψ as a function

of time and the power spectrum as a function of frequency using the parameterszT = 13 km,

N = 1.2×10−2 s−1, (y1, y2) = (1000,1500) km, andγ−1= 3 h, shown in the three panels in Figure

4.7. The totalψ is the sum of the maximum values ofψ at the northern and southern edges of the

ITCZ. It is then normalized using the maximum totalψ for all times. The fractionalψ is the the

79



FIG. 4.6. Contoured streamfunctionψ(y, z) and shadedQ(y, z)e−z/H/cp fields for
(y1, y2) = (1000,1500) km andγ−1 = 3 h att = 32 h, 56 h, 80 h, and 104 h. The
contour interval forψ(y, z) is 400 m2 s−1, the maximum (magnitude) ofψ(y, z) is
4149 m2 s−1, and the zero line is omitted. TheQ(y, z)e−z/H/cp shade interval is
0.5 K day−1, and the maximum (magnitude) of the diabatic heating is 3.496 K
day−1.
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fraction of the winter (blue) or summer (red) cellψ divided by the totalψ. The power spectrum is

computed in both the winter (blue) and summer (red) cell using the solutions ofψ from t =0–360

h using the NCL function specxanal, using 10 % tapering and no smoothing. We also normalize

the energy density by dividing by the maximum energy densityin either the winter or summer cell.

The temporal evolution of the normalized total streamfunction ψ, shown in the top panel of

Fig. 4.7, shows the highly variable nature of the how much mass is being fluxed away from the

ITCZ and into the extratropics. When air rises to the tropopause in the ITCZ, it has the option of

turning toward or away from the equator (into the winter or summer cell, respectively). In Chapter

2, we found out that it is easier for the air to turn toward the equator due to the smaller inertial

stability near the equator. When the ITCZ is in a balanced state, as illustrated in the solutions in

Chapter 2, this rising ITCZ air turns toward the equator about twice as often than it turns away

from the equator. The fractional streamfunctionψ in the middle panel of Fig. 4.7 illustrates that

when the ITCZ is time dependent, the behavior of the rising air in the ITCZ is more complicated.

The asymmetry between the winter and summer cells fluctuatesso much so that the winter cell

at times is weaker than the summer cell, e.g.,t ≈ 60 h, and at other times, e.g.,t ≈ 195 h, the

summer cell is almost nonexistent. However, the average winter to summer cell asymmetry over

time is about 2:1, shown in the dashed lines in Fig. 4.7, and issimilar to the balanced results shown

in Figure 2.15. The period of the pulsations is a bit irregular, but in general is on the order of two

days (51.5 h), as shown in the power spectrum in the bottom panel of Figure 4.7. Also note that

the winter cell has a larger normalized energy density than the summer cell, suggesting that there

is more inertia-gravity wave activity in the winter cell.

We have also produced plots using the smae parameters as those used to produce Fig. 4.7

exceptγ−1 = 6, 12, and 24 h. The inertia-gravity activity decreases asγ−1 increases, but the most
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FIG. 4.7. The top panel illustrates the total streamfunctionψ as a function of time
computed by summingψ for the winter and summer Hadley cells and normalizing
it by the maximum totalψ. The middle panel shows the fractionalψ of the winter
(summer) Hadley cell in blue (red) as a function of time in thesolid lines, and
their time average fractionalψ in the dashed lines. The normalized energy density
as a function of frequency is shown in the bottom panel for thewinter (blue) and
summer (red) Hadley cell. Them = 1 diabatic heating is located between 1000 and
1500 km andγ−1 = 3 h.

prominent spectral peak in both Hadley cells is still at the two-day timescale (51.5 h) forγ−1 =

6 and 12 h. Therefore, we choose not to show the plots corresponding to theγ−1 = 6 and 12 h
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cases. Figure 4.8 illustrates the normalized total streamfunctionψ and fractional streamfunction

ψ as a function of time and the power spectrum as a function of frequency using the parameters

as those used to produce Fig. 4.7 exceptγ−1 = 24 h. Note from the top panel of Fig. 4.8 that as

γ−1 increases, the fluctuations in the total mass flux and the fractional mass flux in the winter and

summer Hadley cells decrease. As can be seen in the power spectrum in the bottom panel of Fig.

4.8, the energy density associated with two day oscillations is much smaller than that of the lowest

frequencies, and the winter cell is significantly stronger than the summer cell. The asymmetry

between the winter and summer cells oscillates between 2:1 to 3:1, illustrating the sensitivity of

the Hadley cells to how fast convection in the ITCZ is turned on. There are still inertia-gravity

waves, butγ ≪ νmn, and the solution (4.29) approaches the balanced solution (4.32). Once again,

the average winter to summer cell asymmetry over time is about 2:1 (dashed lines of middle panel),

similar to them = 1 balanced results shown in Figure 2.15.

The spectral space solution (4.29) can be considered to be the sum of two parts, with the first

part consisting of the oscillatory termscos(νmnt) and sin(νmnt) and the second part consisting

of the decaying term with thee−γt factor. There is a third term which is outside of the brackets,

which is the steady state term,−ghmF
′

mn/ν
2
mn. For large times (i.e.,γt ≫ 1), the second part is

negligible and the oscillatory terms represent inertia-gravity waves that have propagated far from

any confined region of forcing (Salby and Garcia 1987; Garciaet al. 1987).

Figure 4.9 shows the totalψ solution atz ≈ 6 km, the oscillatory (or inertia-gravity) part

of ψ (igw), and the decaying (or balanced) part ofψ (bal) using the parameterszT = 13 km,

N = 1.2 × 10−2 s−1, (y1, y2) = (1000,1500) km, andγ−1= 3 h. Now we see that the balancedψ

solutions (bottom panel) change very little after about 10 hours while the inertia-gravity waveψ

solutions (middle panel) continue to be active long after the forcing has been sufficiently switched
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FIG. 4.8. The same as Fig. 4.7, but forγ−1 = 24 h.

on. This signifies the presence of equatorially-trapped inertia-gravity wave packets and the idea

that the tropical atmosphere has memory of the initial forcing. It is interesting to note that the

inertia-gravity wave activity is maximum just south of the ITCZ, in the winter cell. This result is

in line with the fact that there is an inherent asymmetry between the winter and summer cells due

to the anisotropy of the inertial stability. Also, the irregular behavior of the pulsating in the winter

and summer cells is likely due to the idea that the waves are equatorially trapped and bounce off
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the turning latitudes̃ymn = ±b̄m(2n + 1)1/2, where the solutions ofψ transition from oscillatory

to evanescent. The inertia-gravity waves initially travelaway from the ITCZ in the north/south

direction, and when the ITCZ is north of the equator, the waves that initially travel north reach their

turning latitudes before those that initially travel south. This behavior likely causes the pulsations

of the Hadley cells to be irregular. In Table 4.2, we display the turning latitudes form = 0, 1, 2, 3, 4

andn = 0, 1, 2, 3, 4.

FIG. 4.9. Solutions ofψ(y, t) in m2 s−1 atz ≈ 6 km: the totalψ solution (total), the
inertia-gravity part ofψ (igw), and the balanced part ofψ (bal) using the parameters
zT = 13 km,N = 1.2 × 10−2 s−1, (y1, y2) = (1000,1500) km, andγ−1= 3 h.
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TABLE 4.2. The turning latitudes in units of km form = 0, 1, 2, 3, 4 andn =
0, 1, 2, 3, 4 using the formulãymn = ±b̄m(2n+1)1/2. Note how the turning latitude
increases as the meridional moden increases andm decreases.

Turning Latitudes̃ymn (km)
m n = 0 n = 1 n = 2 n = 3 n = 4

0 3395 5880 7590 8981 10184
1 1440 2494 3230 3809 4319
2 1035 1793 2315 2739 3106
3 848.1 1469 1896 2244 2544
4 735.3 1274 1644 1945 2206

Figure 4.10 shows the totalψ solution atz ≈ 6 km, the oscillatory (or inertia-gravity) part

of ψ (igw), and the decaying (or balanced) part ofψ (bal) using the parameterszT = 13 km,

N = 1.2 × 10−2 s−1, (y1, y2) = (1000,1500) km, andγ−1= 24 h. This figure helps confirm

that inertia-gravity wave activity (middle panel) is limited and the total solutions (top panel) are

approximately equal to the balanced solutions (bottom panel).

Thus far we have shown solutions for the streamfunctionψ, but we can easily illustrate the

solutions for meridionalv and log-pressure vertical velocityw using (2.9). We have chosen not to

showv andw because the results are qualitatively the same as the results ofψ shown. However,

an interesting feature of thew field is that the rising motion does not change as much in the ITCZ

compared to the subsidence regions north and south of the ITCZ. This is due to the fact that the

diabatic heating is invariant in they direction in the ITCZ. We now performed experiments in

which the vertical structure of the diabatic heating is solely of them = 0 external mode and solely

of them = 2 internal mode. In Figures 4.11 and 4.12, we show the normalized total streamfunction

ψ and fractional streamfunctionψ fields as a function of time using the parameterszT = 13 km,

N = 1.2 × 10−2 s−1, (y1, y2) = (1000,1500) km, andγ−1= 3 h for them = 2 andm = 0 diabatic

heating, respectively.
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FIG. 4.10. Solutions ofψ(y, t) in m2 s−1 at z ≈ 6 km: the totalψ solution (total),
the inertia-gravity part ofψ (igw), and the balanced part ofψ (bal) using the param-
eterszT = 13 km,N = 1.2 × 10−2 s−1, (y1, y2) = (1000,1500) km, andγ−1= 24
h.

The ideas we have postulated thus far for them = 1 diabatic forcing apply to them = 0

andm = 2 cases in that there is significant pulsating of the winter andsummer Hadley cells

leading to oscillations in the total streamfunction. The pulsating for them = 2 diabatic heating

leads to slower inertia-gravity wave packets than them = 1 case, with a period of about 3 days

(72.1 h), while the pulsating for them = 0 diabatic heating leads to faster inertia-gravity wave
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FIG. 4.11. The top panel illustrates the total streamfunctionψ as a function of time
computed by summingψ for the winter and summer Hadley cells and normalizing
it by the maximum totalψ. The bottom panel shows the fractionalψ of the winter
(summer) Hadley cell in blue (red) as a function of time. The normalized energy
density as a function of frequency is shown in the bottom panel for the winter (blue)
and summer (red) Hadley cell. Them = 2 diabatic heating is located between 1000
and 1500 km andγ−1 = 3 h.

packets than them = 1 case, with a period of about 1 day (22.5 h). This result has to do with

the fact that the internal gravity wave speed decreases as a function of vertical wavenumberm.

Even though the turning latitude decreases asm increases, the decrease in gravity wave speed has
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FIG. 4.12. The same as Fig. 11 for am = 0 diabatic heating.

a larger effect on the wave packets. This implies that the wave packets take longer to reach their

critical latitudes as the vertical structure of diabatic heating becomes more complex (e.g., higher

internal modes), leading to a longer period of pulsating of the Hadley circulation. Another feature

worth discussing is the total streamfunction plots on the top panels of Fig. 4.11 and 4.12. Asm

increases, the influence of the inertia-gravity waves on thetotalψ increases. This is most evident

in them = 0 case, where the inertia-gravity waves seem to have less of animpact on the totalψ.
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A possible explanation for this behavior has to do with the idea that as the forcing involves higher

vertical wavenumbers, the asymmetry between the winter andsummer cells increases, as discussed

in Chapter 2.

In concluding this section it is interesting to note that, ast becomes large,T (t) → 1 and the

forced divergent circulation(v, w) comes into steady state. However, as can be seen from (4.1) and

(4.5), the zonal flow and the temperature continue to evolve.In fact, as discussed by Gonzalez and

Mora Rojas (2014), these fields evolve in such a way that the associated potential vorticity field

develops local extrema in the ITCZ, leading to a zonal flow that satisfies the Charney-Stern nec-

essary condition for combined barotropic-baroclinic instability (Charney and Stern 1962). Thus,

one should not expect the evolving zonal flow to remain zonally symmetric for more than approxi-

mately 10–15 days (Nieto Ferreira and Schubert 1997; Wang and Magnusdottir 2005; Magnusdottir

and Wang 2008).

4.7. ANALYSIS OF THE INERTIA-GRAVITY WAVE PACKETS

Thus far we have learned that when the intensity of ITCZ convection fluctuates, inertia-gravity

wave packets are emitted toward the north and south. The movement of these wave packets depends

critically on the wave guide effect, i.e., the effect by which the variable Coriolis parameter traps the

inertia-gravity wave energy in the equatorial region (Blandford 1966). The meridional structure

of our solutions in the last section are solely composed fromthe Hermite functions, which have

both oscillatory and evanescent behavior. Now we take a different approach by abandoning the

idea of Hermite functions and instead assuming that the meridional structure of the solutions are

solely oscillatory. This procedure is often called an asymptotic, Liouville-Green (LG), or Wentzel-

Kramers-Brillouine-Jeffreys (WKBJ) analysis. To accomplish this, we seek approximate solutions
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of the homogeneous version of (4.6). The approximate solutions have the form

ψ̂m(y, t) = Am(y, t)eiϕm(y,t), (4.34)

whereϕm(y, t) is the phase andAm(y, t) is the local amplitude. The local meridional wavenumber

ℓ(y, t) and the local frequencyω(y, t) are defined by

ℓ(y, t) =
∂ϕ(y, t)

∂y
and ω(y, t) = −∂ϕ(y, t)

∂t
, (4.35)

and a relationship that immediately follows (4.35) is

∂ℓ

∂t
+
∂ω

∂y
= 0. (4.36)

Note that we have dropped the subscriptm and superscript̂ψ for convenience. The functions

A(y, t), ℓ(y, t), andω(y, t) are all assumed to be slowly varying iny andt. Substituting (4.34) into

the homogeneous version of (4.6), neglectingy andt derivatives of the slowly varying functions

A(y, t), ℓ(y, t), andω(y, t), we obtain the local dispersion relation

ω(y, t) = ±
[

c2ℓ2(y, t) + β2y2
]1/2

. (4.37)

Note that, because of theβ2y2 term in (4.37), the inertia-gravity waves propagate through a nonuni-

form medium. In other words,ω varies as a function of bothℓ andy, whereasω depends on onlyℓ

in a uniform medium. From (4.36) and with the knowledege of the additional dependence ofω on

y, we can rewrite (4.36) as

∂ℓ

∂t
+
∂ω

∂ℓ

∂ℓ

∂y
= −∂ω

∂y
,
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and in its characteristic form (Whitham 1974)

dℓ

dt
= −∂ω

∂y
on

dy

dt
=
∂ω

∂ℓ
. (4.38)

As discussed by Whitham (1974), the trajectory (or group velocity) of a wave packet is given by

dy

dt
=
∂ω

∂ℓ
=
c2ℓ

ω
, (4.39)

where the rightmost formula is computed after using the dispersion relation (4.37) and neglecting

y and t derivatives of the slowly varying functionℓ(y, t). Along this trajectory,ω satisfies the

relation

dω

dt
= 0, (4.40)

where we have used the assumption that medium is independentof time in (4.40). In summary, we

have
dω

dt
= 0

dℓ

dt
= −∂ω

∂y



















on
dy

dt
=
∂ω

∂ℓ
. (4.41)

Using the local dispersion relation (4.37), we can write (4.39) in the form

dy

(ω2 − β2y2)1/2
= ±c dt

ω
. (4.42)

Similarly, we can write first entry in (4.40) in the form

dℓ

(ω2 − c2ℓ2)1/2
= ±β dt

ω
. (4.43)

92



Integration of (4.42) and (4.43) yields the solutions

y(t) =

(

ω

β

)

sin

{

sin−1

(

βy0

ω

)

± βct

ω

}

. (4.44)

ℓ(t) =
(ω

c

)

cos

{

sin−1

(

βy0

ω

)

± βct

ω

}

. (4.45)

Note that (4.44) describes two rays, one starting aty0 and initially moving northward, and the other

also starting aty0 but initially moving southward. Plots ofy(t) andℓ(t) are shown in Figure 4.13

for m = 1 and two arbitrary initial meridional wavenumbers,ℓ(t = 0) = 1,2× 10−3 km−1. Note

how the raysy(t) bounce back at particular turning latitudes,≈ 2560 and 4410 km. Recall that

we introduced turning latitudes in the previous section, but because we have abandoned the idea

of meridional modesn, the turning latitudes seen in Fig. 4.13 do not correspond toany partic-

ular meridional mode. When the wave packets reach their turning latitude their local meridional

wavenumber crossesℓ = 0, which signifies that this analysis breaks down as discussedin Wunsch

and Gill (1976). Also note how the rays spread out over time. This behavior has to do with the fact

that the energy decays along rays with time following the formula

dE
dt

= −E
t
, (4.46)

whereE = 1
2
ω2A2 is the energy as derived using Whitham’s the variational approach (Whitham

1974).

4.8. CONCLUDING REMARKS

To understand the dynamics of the deep and shallow meridional overturning circulations, a zon-

ally symmetric model on the equatorialβ-plane has been formulated and the associated meridional

circulation equation has been derived. This meridional circulation equation is a partial differential
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FIG. 4.13. Solutions of (4.44) and (4.45) form = 1 and two arbitrary initial merid-
ional wavenumbers,ℓ(t = 0) = 1,2× 10−3 km−1. Note how the raysy(t) bounce
at particular turning latitudes,≈ 2560 and 4410 km.

equation in(y, z, t). It contains two types of forcing: (1) horizontal variationof the interior dia-

batic heating; (2) Ekman pumping at the top of the boundary layer. Since the problem is linear, the

meridional circulations attributable to these two forcingeffects can be treated separately, and then

the resulting flows can simply be added together to obtain thetotal response. In this chapter we

focus on the diabatic heating of them = 0, 1, 2 vertical modes as the forcing.

The meridional circulation equation has been solved analytically by first performing a ver-

tical transform that converts the partial differential equation in (y, z, t) into a system of partial

differential equations in(y, t) for the meridional structures of all the vertical modes. These partial

differential equations have been solved via both the Green’s function approach (evanescent basis

functions) and the Hermite transform approach (oscillatory basis functions). These two approaches

yield two different mathematical representations of the same physical solution. For understanding

the basic asymmetry between the intensities of the winter hemisphere and the summer hemisphere
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Hadley cells, the Green’s function approach is preferable because of the efficiency of the mathe-

matical representation, which is simply a superposition oftwo Green’s functions written in terms

of parabolic cylinder functions of order−1
2
. For understanding the transient behavior of the Hadley

cells it is preferable to solve the equations using Hermite functions.

The solutions illustrate the fundamental result which involves inertia-gravity wave packets em-

anating from the ITCZ and bouncing off a spectrum of turning latitudes when the ITCZ is switched

on at various rates. These packets are therefore equatorially-trapped and cause the Hadley cells to

pulsate with a period of about 1, 2, and 3 days for them−0, 1, 2 vertical modes. When the forcing

is switched on slowly (e.g., about 100 hours to be almost fully switched on), the transient behavior

is minimal, and the solutions are similar to the balanced results shown in Gonzalez and Mora Rojas

(2014). When the ITCZ is located off the equator, both parts of the response reveal a basic asym-

metry between the winter and summer hemispheres, with the winter hemisphere side containing

most of the quasi-balanced compensating subsidence and most of the transient inertia-gravity wave

activity.

In closing we note that the analytical solutions of the meridional circulation equation are con-

sistent with the extent and shape of upper tropospheric dry regions regularly observed in satellite

water vapor images, such as the one shown in Figure 4.1. Theseupper tropospheric dry regions

play an important role in our ability to observe the universewith surface-based visible, infrared,

and millimeter/sub-millimeter telescopes. The best astronomical observatory sites are at high alti-

tudes in regions of persistently low upper tropospheric water vapor, such as Mauna Kea, Hawaii,

the mountains of northern Chile, and the Canary Islands. These sites are above the trade wind in-

version layer, which normally lies between 2000 and 2500 m. Above the trade wind inversion the

95



clear, dry air generally provides excellent observing conditions, but there can be important varia-

tions on synoptic, seasonal, and interannual time scales. As discussed by Businger et al. (2002),

forecasts of weather conditions can play an important role in telescope scheduling and observing

strategy at these sites.

In closing, we iterate that the tropical atmosphere may contain a considerable amount of inertia-

gravity wave activity which our present observational systems are not capable of detecting. There-

fore, this theoretical work should serve as motivation for future observational work on inertia-

gravity waves in the tropics.
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CHAPTER 5

Shock-like Structures in the ITCZ Boundary Layer

5.1. SYNOPSIS

This chapter presents numerical solutions and idealized analytical solutions of zonally sym-

metric models of the ITCZ boundary layer. In the numerical model, the boundary layer zonal and

meridional flow is forced by a specified pressure field, which can also be interpreted as a specified

geostrophically balanced zonal wind fieldug(φ) or vorticity field ζg(φ). To better understand the

dynamics of boundary layer structures, analytical solutions are presented for two simplified ver-

sions of the model. In the simplified analytical models, which do not include horizontal diffusion,

the v(∂v/a∂φ) term in the meridional equation of motion and thev(∂u/a∂φ) term in the zonal

equation of motion produce discontinuities in the zonal andmeridional wind, with associated sin-

gularities in the boundary layer pumping and the boundary layer vorticity. In the numerical model,

which does include horizontal diffusion, the zonal and meridional wind structures are not true dis-

continuities, but are shock-like. Finally, the numerical model is forced by the Year of Tropical

Convection (YOTC) reanalysis pressure gradient fields during July 2008, March 2009, and March

2010. The numerical model agrees well with the YOTC dynamical fields while adding important

details about the boundary layer pumping and vorticity.

5.2. INTRODUCTION

Figure 5.1 is a GOES visible image of the Pacific on 24 November2010, a day when the ITCZ

formed a well-defined east-west line. A striking feature of this image, and many other similar
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images, is the narrowness of the ITCZ, and hence the narrowness of the rising branch of the Hadley

circulation (Charney 1968). The purpose of this chapter is to better understand the dynamical

FIG. 5.1. NOAA GOES 11 visible image at 00:00 UTC on 24 November 2010.

reasons for this feature. The question is explored by examining the meridional distribution of

Ekman pumping at the top of the boundary layer in and around the ITCZ. The argument is based

on a zonally symmetric slab boundary layer model which does not strictly conform to Ekman
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balance. The model includes the meridional advection terms, such asv(∂v/a∂φ), wherev is

the meridional velocity,φ is the latitude, anda is the Earth’s radius. When the boundary layer

meridional flow is strong, the neglect of this advection termin the meridional momentum equation

is not justifiable. With the inclusion of thev(∂v/a∂φ) term in the boundary layer dynamics, shock-

like structures can appear in both theu andv fields, and the relative vorticity and Ekman pumping

can become very localized. The term, “shock” refers to a discontinuity in the wind field in the

absence of horizontal diffusion whereas “shock-like” refers to a sharp gradient that is not a true

discontinuity due to the presence of diffusion. An analogous process in the hurricane eyewall

has recently been studied by Williams et al. (2013) and Slocum et al. (2014). If a hurricane can

be described as a mesoscale power plant (the eyewall) with a synoptic scale supporting structure

Ooyama (1997), then the Hadley circulation can be describedas a mesoscale power plant (the

ITCZ) with a planetary scale supporting structure.

Classic theory on the formation of the ITCZ stems back to papers such as Charney (1968,

1971); Holton et al. (1971); Yamasaki (1971); Pike (1971, 1972). All of these studies focused on

the idea that the ITCZ rarely forms on the equator and does notform poleward of about 20◦. In

particular, Charney (1971) and Pike (1971) theorized that the ITCZ may form near the equator but

quickly moves poleward due to the upwelling of cold SSTs in the presence of easterly flow. Holton

et al. (1971) approached the problem by using linearized boundary layer equations on the equatorial

β-plane forced by a specified pressure field. They found that convergence is frictionally driven

and concentrated at critical latitudes, where the disturbance frequency is equal to the Coriolis

parameter. Holton (1975) extended Holton et al. (1971) by including the horizontal advection

terms and forcing the model with a mixed Rossby-gravity wavegeopotential field. Once again,

low-level convergence was concentrated near the critical latitudes. Mahrt (1972a,b) considered the
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effects of horizontal advection in a zonally symmetric equatorial β-plane model. These studies

showed that cross-equatorial flow can produce a thick advective boundary layer with strong cross-

isobar flow and with significant off-equatorial rising motion where there is a transition from an

advective-type layer to a quasi-Ekman-type layer. This wasfurther explored by Smith and Mahrt

(1981), but on anf -plane, with the result that low-level convergence is also located at the critical

latitudes. Despite what seemed to be general agreement between many of these studies on the idea

of low-level convergence being concentrated at the critical latitudes, the acceptance of these ideas

began to fade in the early-mid 1980s.

Lindzen and Nigam (1987) presented what is now a well-accepted theory on some of the key

mechanisms to understanding the ITCZ from a steady-state perspective. Their model conforms to

an Ekman balance in the horizontal momentum equations, which is a balance between the Coriolis,

pressure gradient, and frictional forces. They illustratethe importance of SST gradients in creat-

ing large-scale pressure gradients which in turn enhance low-level horizontal wind convergence.

Although there are some limits to their model, they do not usea traditional slab boundary layer

model in that they suppress the influence of the higher layersby forcing horizontal pressure gra-

dients to vanish at 700 hPa. Therefore, they have to use a “back-pressure” effect to include a free

tropospheric redistribution of mass with the trade cumulusboundary layer to minimize excessive

surface convergence. Their model also neglects the local tendencies and horizontal advection of

the horizontal winds, e.g.,v(∂u/a∂φ) andv(∂v/a∂φ). Therefore, Lindzen and Nigam (1987) treat

the ITCZ as a balanced phenomenon instead of a transient phenomenon that goes through ITCZ

breakdown and reformation (Nieto Ferreira and Schubert 1997; Wang and Magnusdottir 2006).

Since Lindzen and Nigam (1987), many studies choose to use a set of equations that is in

some balance to understand the ITCZ boundary layer. For example, the extended Ekman model
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(a local balance) was used by Stevens et al. (2002) and by McGauley et al. (2004). Raymond

et al. (2006) studied data from the East Pacific Investigations of Climate (EPIC) field project and

also used the extended Ekman model. They argued that scale analysis shows that thev(∂v/a∂φ)

term is not important. However, in shock formation there is no well-defined horizontal scale on

which to base a scale analysis due to scale-collapse. A more general model, one that includes

thev(∂v/a∂φ) term, was used by Tomas et al. (1999), who suggest that the meridional advection

of the zonal velocityv(∂u/a∂φ) is the term most vital to correctly simulating the ITCZ. They

claim that this term allows for anticyclonic absolute vorticity to form on the low pressure side of

the equator, leading to a convergence-divergence doublet in the boundary layer. Sobel and Neelin

(2006) studied the ITCZ boundary layer and free troposphereusing an equatorialβ-plane model

which includes thev(∂u/a∂φ) andv(∂v/a∂φ) terms. Their experiments were run until a steady

state was reached, and then a scale analysis of the individual terms was performed. They note

that SST gradients associated with the Lindzen and Nigam (1987) effect are most important in

determining ITCZ width and intensity. Indeed the next largest term in their scale analysis is the

horizontal advection, but it’s likely that their large diffusion might lessen the effects of shocks. In

fact, as they decrease the value of the horizontal moisture diffusivity, they produce narrower and

more intense ITCZs, but state that such precipitation ratesare unrealistic.

A recent study by Back and Bretherton (2009b) agrees with some of the ideas in Lindzen

and Nigam (1987) and Sobel and Neelin (2006). More specifically, Back and Bretherton (2009b)

suggest that boundary layer temperature gradients are the primary contributor to the meridional

winds, low-level convergence, and 850 hPa vertical motion,while the zonal surface winds are

mainly determined by free tropospheric pressure gradientsand downward momentum mixing. In

this study, we present a dynamical and transient viewpoint of the ITCZ, where the pressure gradient

101



in and just above the boundary layer support both the evolution of the boundary layer zonal and

meridional winds along with the formation and narrowing of Ekman pumping and vorticity in

the ITCZ due to the Burgers’ equation (Burgers 1948) embedded in the meridional momentum

equation.

Another interesting feature of the tropical circulation isthe formation of ITCZs just north and

south of the equator, often referred to as double ITCZs. Figure 5.2 is a GOES visible image of

the Pacific on 11 March 2015, a day when the eastern Pacific contained two thin ITCZs on either

side of the equator. There are many observational papers on the double ITCZ in the eastern Pacific,

starting with Hubert et al. (1969) and continuing with the work of Hayes et al. (1989), Mitchell and

Wallace (1992); Lietzke et al. (2001); Zhang (2001); Liu andXie (2002). A very interesting paper

is that of Gu et al. (2005), who analyzed TRMM precipitation data and QuikScat surface wind

divergence data for several boreal springs (March and April). They identify four types of patterns

in the eastern Pacific: (1) El Niño; (2) double ITCZ; (3) north dominant double ITCZ; (4) south

dominant double ITCZ. This chapter discusses the some of thedynamical reasons for the formation

of double ITCZs in regions such as the eastern Pacific. Many studies identify double ITCZs by

convection or precipitation using satellite data mainly because there is a lack of observational wind

data in the tropics. If double ITCZs were instead defined using the low-level convergence field,

as the name ITCZ suggests, double ITCZs seem to be more common, as suggested by Liu and

Xie (2002) and McNoldy et al. (2004). In fact, Liu and Xie (2002) note that double ITCZs are

common year round in both the Atlantic and eastern Pacific Ocean. There are a number of theories

that explore why low-level convergence does not always leadto convection, such as those described

by Zhang et al. (2004), Gonzalez and Mora Rojas (2014), and Back and Bretherton (2006).
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FIG. 5.2. NOAA GOES 11 visible image at 18:00 UTC on 11 March 2015.

The ITCZ boundary layer is an environment conducive to shockformation. We expect such

shocks to appear intermittently in the ITCZ, causing thin east-west lines of deep convection in this

conditionally unstable region. These lines are expected tobe more common in the eastern oceans,

where the opposing meridional flows associated with the subtropical highs are stronger.

The chapter is organized in the following way. Section 5.3 presents the governing set of partial

differential equations for the slab model. Sections 5.4 and5.5 present heuristic models in order
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to gain insight into the role of Burgers’ equation on the slabboundary layer dynamics. Section

5.6 contains numerical solutions of the slab boundary layermodel forced by an idealized balanced

zonal wind field. Section 5.7 presents numerical solutions of the slab boundary layer model forced

by a pressure field from the Year of Tropical Convection (YOTC) reanalysis. Some concluding

remarks are presented in section 5.8.

5.3. SLAB BOUNDARY LAYER MODEL

The model considers zonally symmetric, boundary layer motions of an incompressible fluid

on the sphere. The frictional boundary layer is assumed to have constant depthh, with zonal and

meridional velocitiesu(φ, t) andv(φ, t) that are independent of height between the top of a thin

surface layer and heighth, and with vertical velocityw(φ, t) at heighth. In the overlying layer the

meridional velocity is assumed to be negligible and the zonal velocity ug(φ, t) is assumed to be in

geostrophic balance and to be a specified function of latitude and time. The governing system of

differential equations for the boundary layer variablesu(φ, t), v(φ, t), andw(φ, t) then takes the

form

∂u

∂t
+ v

∂u

a∂φ
− w

h
(1 − α)(u− ug) =

(

2Ω sinφ+
u tanφ

a

)

v − cDU
u

h
+K

∂

a∂φ

(

∂(u cosφ)

a cosφ∂φ

)

,

(5.1)
∂v

∂t
+ v

∂v

a∂φ
− w

h
(1 − α)v = −

(

2Ω sinφ+
u tanφ

a

)

u− 1

ρ

∂p

a∂φ
− cDU

v

h

+K
∂

a∂φ

(

∂(v cos φ)

a cosφ∂φ

)

,

(5.2)

w = −h∂(v cosφ)

a cos φ∂φ
and α =



















1 if w ≥ 0

0 if w < 0,

(5.3)
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where

U = 0.78
(

u2 + v2
)1/2

(5.4)

is the wind speed at 10 m height,Ω is the Earth’s rotation rate, andK is the constant horizontal

diffusivity. The drag factorcDU is assumed to depend on the 10 m wind speed according to (Large

et al. 1994)

cDU = 10−3
(

2.70 + 0.142U + 0.0764U2
)

, (for U ≤ 25), (5.5)

where the 10 m wind speedU is expressed in m s−1.

The boundary layer flow is driven by the same meridional pressure gradient force that occurs in

the overlying fluid, so that, in the meridional equation of boundary layer motion, the pressure gra-

dient force can be expressed as the specified function[2Ω sinφ+ (ug tanφ)/a]ug so that equation

(5.2) can be written in the form

∂v

∂t
+v

∂v

a∂φ
−w
h

(1−α)v = −
(

2Ω sinφ+
(u+ ug) tanφ

a

)

(u− ug)−cDU
v

h
+K

∂

a∂φ

(

∂(v cosφ)

a cosφ∂φ

)

,

(5.6)

In the absence of the horizontal diffusion terms, the slab boundary layer equations constitute a

hyperbolic system that can be written in characteristic form (see Appendix C). A knowledge of the

characteristic form is useful in understanding the formation of shocks. In fact, before presenting

numerical solutions of the system (5.1), (5.3), and (5.6) insection 6, we first discuss analytical

solutions of two simplified versions of the model, i.e., two versions that have very simple charac-

teristic forms. These analytical solutions aid in understanding the formation of discontinuities in

the zonal and meridional flow, and hence singularities in thevorticity and vertical velocity.
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5.4. HEURISTIC ARGUMENT I

The formation of shocks in the ITCZ boundary layer depends onthev(∂v/a∂φ) term in (5.2),

with the term proportional to the ageostrophic zonal flow(u−ug) serving as a forcing mechanism

for (∂v/∂t), the surface friction term serving to dampv, and the horizontal diffusion term serving

to control the structure near the shock. The formation of a shock inv leads to a shock inu through

the v(∂u/a∂φ) term in (5.1). This discontinuity in the zonal flow means there is an east-west

oriented infinite vorticity sheet in the boundary layer.

To obtain a semi-quantitative understanding of the above concepts before computing numerical

solutions, we now approximate (5.1) and (5.2) by neglectingthe horizontal diffusion terms, thew

terms, the surface drag terms, and the(u − ug) forcing term. By making these assumptions, we

aim to understand the atmospheric conditions needed to formshocks in the ITCZ boundary layer

given a suite of different initial conditions. The zonal andmeridional momentum equations (5.1)

and (5.2) then simplify to

∂m

∂t
+ v

∂m

a∂φ
= 0, (5.7)

∂v

∂t
+ v

∂v

a∂φ
= 0, (5.8)

wherem = (u+ Ωa cos φ)a cosφ is the absolute angular momentum per unit mass.

The solutions of (5.7) and (5.8) are easily obtained by noting that these two equations can be

written in the form

dm

dt
= 0, (5.9)

dv

dt
= 0, (5.10)
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where(d/dt) = (∂/∂t)+ v(∂/a∂φ) is the derivative following the boundary layer meridional mo-

tion. Integration of (5.9) and (5.10), with use of appropriate initial conditions yields the solutions

u(φ, t) =
(

u0(φ̂) + Ωa cos φ̂
)cos φ̂

cosφ
− Ωa cos φ, (5.11)

v(φ, t) = v0(φ̂), (5.12)

where the characteristicŝφ(φ, t) are given implicitly by

φ = φ̂+ (t/a)v0(φ̂), (5.13)

which is easily obtained by integration of(dφ/dt) = v/a, with v given by (5.12). For a given

φ̂, (5.13) defines a straight characteristic in(φ, t), along which the absolute angular momentum

(u + Ωa cosφ)a cosφ is fixed according to (5.11), and along whichv(φ, t) is fixed according to

(5.12).

To understand when the derivatives(∂u/∂φ) and(∂v/∂φ) become infinite, and to also check

that (5.11)–(5.13) constitute solutions of (5.7) and (5.8), we first note that(∂/∂t) and(∂/∂φ) of

(5.13) yield

−∂φ̂
∂t

=
v0(φ̂)

a+ tv′0(φ̂)
,

∂φ̂

∂φ
=

a

a+ tv′0(φ̂)
.

(5.14)
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Therefore(∂/∂t) andv(∂/a∂φ) of m(φ, t) = m0(φ̂) yield

∂m

∂t
= m′

0(φ̂)
∂φ̂

∂t
= −v0(φ̂)m′

0(φ̂)

a + tv′0(φ̂)
,

v
∂m

a∂φ
= v0(φ̂)m′

0(φ̂)
∂φ̂

a∂φ
=
v0(φ̂)m′

0(φ̂)

a+ tv′0(φ̂)
,

(5.15)

while (∂/∂t) andv(∂/a∂φ) of v(φ, t) = v0(φ̂) yield

∂v

∂t
= v′0(φ̂)

∂φ̂

∂t
= −v0(φ̂)v′0(φ̂)

a + tv′0(φ̂)
,

v
∂v

a∂φ
= v0(φ̂)v′0(φ̂)

∂φ̂

a∂φ
=
v0(φ̂)v′0(φ̂)

a+ tv′0(φ̂)
,

(5.16)

where the final equalities in (5.15) and (5.16) follow from using (5.14) to eliminate(∂φ̂/∂t) and

(∂φ̂/∂φ). The sum of the two lines in (5.15) then confirms that (5.11) and (5.13) constitute a

solution of (5.7), while the sum of the two lines in (5.16) confirms that (5.12) and (5.13) constitute

a solution of (5.8). However, these solutions may be multivalued, in which case (5.11) and (5.12)

must be amended in such a way as to guarantee the solutions aresingle valued. We will return to

this point by using a shock fitting procedure later. From the denominators on the right hand sides

of (5.15) and (5.16), it is evident that the derivatives(∂m/∂t), (∂m/∂φ),(∂v/∂t), and(∂v/∂φ)

become infinite when

tv′0(φ̂) = −a (5.17)

along one or more of the characteristics. Letφ̂s denote the characteristic that originates at the

minimum value ofv′0(φ̂), i.e.,v′0(φ̂s) = [v′0(φ)]min. Then, the time of shock formation, determined

from (5.17), is

ts = − a

v′0(φ̂s)
, (5.18)
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and the latitude of shock formation, determined from (5.13)and (5.18), is

φs = φ̂s −
v0(φ̂s)

v′0(φ̂s)
. (5.19)

From the solutions (5.11) and (5.12) we can compute the solutions for the relative vorticity

ζ(φ, t) = −∂[u(φ, t) cosφ]/a cosφ ∂φ and the divergenceδ(φ, t) = ∂[v(φ, t) cosφ]/a cosφ ∂φ.

It is interesting to first note that the way in whichζ andδ behave along a characteristic is quite

different than the way in whichm andv behave. For example, from (5.7) or (5.9), it is easily

shown that

dη

dt
= −ηδ, (5.20)

whereη = 2Ω sin φ + ζ is the absolute vorticity. Thus, whilem andv are fixed along a given

characteristic according to (5.9) and (5.10), the absolutevorticity can rapidly increase along cer-

tain characteristics whenδ < 0. A similar argument applies to the variation ofδ along certain

characteristics.

The relative vorticity is obtained by differentiation of (5.11), which yields

ζ(φ, t) =

(

2Ω sin φ̂+ ζ0(φ̂)

1 + (t/a)v′0(φ̂)

)

cos φ̂

cosφ
− 2Ω sinφ, (5.21)

whereζ0(φ) = −∂[u0(φ) cosφ]/a cosφ ∂φ is the initial relative vorticity. Similarly, the bound-

ary layer divergenceδ(φ, t), or equivalently the boundary layer pumpingw(φ, t) = −hδ(φ, t), is

obtained by using (5.12) in (5.3), which yields

w(φ, t) = −h
a

(

v′0(φ̂)

1 + (t/a)v′0(φ̂)
− v0(φ̂) tanφ

)

. (5.22)
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Because of the factors1+(t/a)v′0(φ̂) in the denominators of (5.21) and (5.22), the relative vorticity

ζ(φ, t) and the boundary layer pumpingw(φ, t) become infinite at the same time (t = ts) and the

same place (φ = φs).

As a simple example, consider the initial condition

v0(φ) = vm

(

2φw(φ0 − φ)

φ2
w + (φ− φ0)2

)

, (5.23)

where the constantsvm, φ0, andφw specify the strength, location, and half-width of the initial

ITCZ inflow. The derivative of (5.23) is

v′0(φ) = −2vm

φw

(

1 − [(φ− φ0)/φw]2

{1 + [(φ− φ0)/φw]2}2

)

. (5.24)

From (5.18), the shock formation time is

ts =
aφw

2vm

. (5.25)

Table 5.1 lists the constants used in various test cases of Heuristic Model I and Heuristic Model II

(to be discussed in the next section) using the initial conditions (5.23) and (5.24). Plots ofu(φ, t),

v(φ, t),w(φ, t), andζ(φ, t) are shown in Figure 5.3 for test case S5, which uses the constants:aφ0

= 1000 km,vm = 2.5 m s−1, andaφw = 400 km. Theu andv fields become discontinuous while

thew andζ fields become singular ataφ = aφs = 1000 km andt = ts = 22.2 h. This implies that in

the absence of surface drag, a shock would form in less than a day for a 800 km wide ITCZ with

2.5 m s−1 meridional winds on either side. Of course surface drag doesplay a significant role on

such timescales, therefore we extend Heuristic Model I to include a linearized surface drag in the

next section.
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TABLE 5.1. Test Cases and Results for Heuristic Models I and II

Parameters Defining Typical Values Shock Results From
Initial Conditions Needed in Model II Models I and II

Test aφw vm U τ aφs t
(I)
s t

(II)
s

Case (km) (m s−1) (m s−1) (h) (km) (h) (h)

S1 400 0.5 0.87 96.4 1000 111 No Shock

S2 400 1.0 2.84 74.7 1000 55.6 102
S3 400 1.5 3.33 69.1 1000 37.0 53.1

S4 400 2.0 4.20 59.8 1000 27.8 37.3

S5 400 2.5 4.36 58.2 1000 22.2 28.0
S6 400 3.0 4.55 56.4 1000 18.5 22.4

S7 400 3.5 4.76 54.4 1000 15.9 18.8

S8 400 4.0 4.99 52.3 1000 13.9 16.1

After shock formation, the multivalued solutions for (5.17)–(5.19) need to be amended by a

shock fitting procedure that guarantees a single valued solution. LetΦ(t) denote the shock latitude

at timet, and letφ̂1(t) denote the label of the characteristic that just touches thesouthern edge of

the shock at timet, and letφ̂2(t) denote the label of the characteristic that just touches thenorthern

edge of the shock at timet.

Then, using (5.19), we obtain the algebraic relations

Φ(t) = φ̂1(t) + (t/a)v0(φ̂1(t)), (5.26)

Φ(t) = φ̂2(t) + (t/a)v0(φ̂2(t)). (5.27)

Since the meridional velocity of the shock is simply the average of the (discontinuous) meridional

flow velocities across the shock, the first order ordinary differential equation forΦ(t) is given by

a
dΦ(t)

dt
= 1

2

[

v0(φ̂1(t)) + v0(φ̂2(t))
]

, (5.28)
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FIG. 5.3. Plots ofu(φ, t), v(φ, t), ζ(φ, t), andw(φ, t) at t = 0 in the blue curves,
and right before shock formation,t = ts in the red curves for Heuristic Model I
equations (5.7), (5.8), and (5.3). Fluid particle displacements are also shown by
the black curves for equally spaced particles at the initialtime. We use the initial
condition (5.23) and the constants in test case S5:aφ0 = 1000 km,vm = 2.5 m−1,
andaφw = 400 km.

for the three functionsΦ(t), φ̂1(t), φ̂2(t). Once the shock positionΦ(t) is determined from (5.26)–

(5.28), characteristics intersectingΦ(t) from lower latitudes are terminated there, while character-

istics intersectingΦ(t) from higher latitudes are also terminated there. This guarantees thatu and

v are single valued but discontinuous acrossΦ(t). For more details about this procedure, refer to

Whitham (1974).
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Since the initial condition (5.23) is antisymmetric aroundφ = φ0, the right hand side ofΦ(t) =

φ0 for t ≥ ts. Thus, for the initial condition (5.23), the solution of (5.12) becomes

v(φ, t) = vm

(

2φw(φ0 − φ̂)

φ2
w + (φ̂− φ0)2

)

, (5.29)

whereφ̂(φ, t) is given implicitly by

φ = φ̂+ vmt

(

2φw(φ0 − φ̂)

φ2
w + (φ̂− φ0)2

)

, (5.30)

with the requirement that̂φ(φ, t) < φ0 if φ < φ0 andφ̂(φ, t) > φ0 if φ > φ0. Figure 5.4 shows

another view of the solutions, via contours ofu(φ, t) andv(φ, t) in the (φ, t)-plane, along with a

family of characteristicŝφ(φ, t) for the choicesvm = 2.5 m s−1, aφ0 = 1000 km,aφw = 400 km,

and for φ̂ = -1.5◦, -0.5◦, · · · 21.5◦. It is apparent thatv is constant along the characteristics but

u increases in magnitude along characteristics. We can see why u increases in magnitude along

characteristics by rewriting an approximate form of (5.7) as (du/dt) ≈ 2Ωv sinφ. The asymmetry

in u about theφ = φ0 arises from thesin φ factor, allowingu to speed up faster on the north side

of φ = φ0.

5.5. HEURISTIC ARGUMENT II

We now consider a second analytical model that adds surface drag effects to the model consid-

ered in the previous section. For simplicity, we linearize the surface drag terms so the zonal and

meridional momentum equations become

∂m

∂t
+ v

∂m

a∂φ
= −m−me

τ
, (5.31)
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FIG. 5.4. Analytical solutions of the Heuristic Model I equations (5.7) and (5.8) of
u(φ, t) andv(φ, t) in the(φ, t)-plane (contours), along with the family of character-
isticsφ̂(φ, t) for test case S5, and wherêφ = -1.5◦, -0.5◦, · · · 21.5◦.

∂v

∂t
+ v

∂v

a∂φ
= −v

τ
, (5.32)

where the constant damping time scaleτ is a typical value ofh/(cDU) computed using typical

values ofU .

The solutions of (5.31) and (5.32) are easily obtained by noting that these two equations can

be written in the form

d

dt

(

u cosφ et/τ + v et/τ F (φ, t)
)

= 0, (5.33)

d

dt

(

v et/τ
)

= 0, (5.34)
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where(d/dt) = (∂/∂t) + v(∂/a∂φ) is the derivative following the boundary layer meridional

motion andF (φ, t) is given by

F (φ, t) = Ωτ

{

sin [2 (φ+ τv/a)] ci (2τv/a) − cos [2 (φ+ τv/a)] si (2τv/a)

}

, (5.35)

and where

si(x) = −
∫

∞

x

sin x′

x′
dx′ and ci(x) = −

∫

∞

x

cos x′

x′
dx′ (5.36)

are respectively the sine integral and the cosine integral.Thereforex(d/dx) ci(x) = cos(x) and

x(d/dx) si(x) = sin(x).

Integration of (5.33) and (5.34), with use of appropriate initial conditions and (5.35), yields the

solutions

u(φ, t) =

{

u0(φ̂) cos φ̂− v0(φ̂)
[

F (φ, t) − F0(φ̂)
]

}

e−t/τ

cosφ
, (5.37)

v(φ, t) = v0(φ̂)e−t/τ , (5.38)

where the characteristicŝφ(φ, t) are given implicitly by

φ = φ̂+ (t̂/a)v0(φ̂), (5.39)

which is easily obtained by integration of(dφ/dt) = v/a, with v given by (5.38), and where

t̂ = τ
(

1 − e−t/τ
)

. (5.40)

For a givenφ̂, (5.39) defines a curved characteristic in(φ, t), along whichv(φ, t) exponentially

damps according to (5.38).
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To check that (5.37) and (5.38) constitute a solution of (5.31) and (5.32), we first note that

(∂/∂t) and(∂/∂φ) of (5.39) yield

−∂φ̂
∂t

=
v0(φ̂)e−t/τ

a+ t̂v′0(φ̂)

∂φ̂

∂φ
=

a

a+ t̂v′0(φ̂)
,

(5.41)

so that(∂/∂t + 1/τ) andv(∂/a∂φ) of (5.37) yields

∂m

∂t
+
m−me

τ
= a

[

aζ0(φ̂) cos φ̂+ v0(φ̂)F ′

0(φ̂)
] ∂φ̂

∂t
e−t/τ

− a

(

∂v

∂t
+
v

τ

)

[

F (φ, t) − F0(φ̂)
]

− va
∂F

∂t

v
∂m

a∂φ
=
[

aζ0(φ̂) cos φ̂+ v0(φ̂)F ′

0(φ̂)
] ∂φ̂

∂φ
v0(φ̂)e−2t/τ

− v
∂v

∂φ

[

F (φ, t) − F0(φ̂)
]

− v2∂F

∂φ
− 2Ωva sinφ cosφ,

(5.42)

and(∂/∂t + 1/τ) andv(∂/a∂φ) of (5.38) yields

∂v

∂t
+
v

τ
= e−t/τv′0(φ̂)

∂φ̂

∂t
= −e

−2t/τ v0(φ̂)v′0(φ̂)

a + t̂v′0(φ̂)
,

v
∂v

a∂φ
= e−2t/τ v0(φ̂)v′0(φ̂)

∂φ̂

a∂φ
=
e−2t/τv0(φ̂)v′0(φ̂)

a+ t̂v′0(φ̂)

(5.43)

The final equalities in (5.42) and (5.43) follow from using (5.41) to eliminate(∂φ̂/∂t) and(∂φ̂/∂φ).

The sum of the four lines in (5.42) then confirms that (5.37) constitutes a solution of (5.31) and

the sum of the two lines in (5.43) confirms that (5.38) constitutes a solution of (5.32). Once again,

this solution may be multivalued, in which case (5.37)–(5.39) must be amended in such a way as

to guarantee the solution is single valued. The shock fittingprocedure involves solving the same

system as (5.26) and (5.27) witht/a replaced bŷt/a on the right hand sides and multiplying (5.28)
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by et/τ . From the denominators on the right hand sides of (5.42) and (5.43), it is evident that the

derivatives(∂v/∂t) and(∂v/a∂φ), for example, can become infinite if

(

1 − e−t/τ
)

(τ/a)v′0(φ̂) = −1 (5.44)

along one or more of the characteristics. This is possible ifand only if

(τ/a)[v′0(φ)]min < −1 (5.45)

where[v′0(φ)]min denotes the minimum value of the derivative of the initial condition. In other

words, if the initial meridional velocityv0(φ) has a large enough negative slope, the solution will

become multivalued. The time of shock formation, determined from (5.44), is

ts = −τ ln

(

1 − a

τ [v′0(φ)]min

)

. (5.46)

From the solutions (5.37) and (5.38) we can compute the solutions for the relative vorticity

ζ(φ, t) = −∂[u(φ, t) cosφ]/a cosφ ∂φ and the divergenceδ(φ, t) = ∂[v(φ, t) cosφ]/a cosφ ∂φ.

The relative vorticity is obtained by differentiation of (5.37), which yields

ζ(φ, t) = v0(φ̂)
∂F

∂φ

e−t/τ

a cosφ

+

[

ζ0(φ̂)a cos φ̂+ v′0(φ̂)
(

F (φ, t) − F0(φ̂)
)

− v0(φ̂)F ′

0(φ̂)

]

e−t/τ

a cosφ
[

1 + (t̂/a)v′0(φ̂)
] ,

(5.47)

whereζ0(φ) = −∂[u0(φ) cosφ]/a cosφ ∂φ is the initial relative vorticity. Similarly, the bound-

ary layer divergenceδ(φ, t), or equivalently the boundary layer pumpingw(φ, t) = −hδ(φ, t), is
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obtained by using (5.38) in (5.3), which yields

w(φ, t) = −h
a

(

v′0(φ̂)

1 + (t̂/a)v′0(φ̂)
− v0(φ̂) tanφ

)

e−t/τ . (5.48)

Because of the factors1+(t/a)v′0(φ̂) in the denominators of (5.47) and (5.48), the relative vorticity

ζ(φ, t) and the boundary layer pumpingw(φ, t) become infinite at the same time (t = ts) and the

same place (φ = φs).

As a simple example, consider the initial condition given (5.23) from section 3. Note that the

minimum value ofv′0(φ) occurs atφ = φ0, so that[v′0(φ)]min = −2vm/φw and the condition (5.44)

for shock formation becomes

aφw

2τvm
< 1. (5.49)

When the initial condition satisfies (5.23), a shock forms atφ = φ0. From (5.46), the shock

formation time is

ts = −τ ln

(

1 − aφw

2τvm

)

. (5.50)

The last column of Table 5.1 lists values ofts for an ITCZ with half-widthaφw = 400 km and for

eight values ofvm. Plots ofu(φ, t), v(φ, t), w(φ, t), andζ(φ, t) are shown in Figure 5.5 for test

case S5. Theu andv fields become discontinuous while thew andζ fields become singular ataφ

= aφs = 1000 km andt = ts = 28.0 h. Thus, if the difference in the meridional flow acrossa 800

km wide ITCZ is 1 m s−1 or larger, the surface drag in the meridional equation of motion cannot

prevent the development of a shock in thev-field.

We also emphasize the dual role played by the surface stress terms. In the zonal equation of

motion the surface stress term decelerates the zonal flow, producing subgeostrophic flow. In the

meridional equation of motion this(u − ug) term produces a meridional flow down the pressure
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gradient, which is favorable for shock formation. In contrast, the surface stress term in the merid-

ional equation of motion tends to retard shock formation. For a narrow enough ITCZ, this retarding

effect is overcome by the shock generation process.
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FIG. 5.5. Same as Figure 5.3, but for Heuristic Model II equations (5.31), (5.32),
and (5.3) for test case S5.

Since the initial condition (5.23) is antisymmetric aroundφ = φ0, Φ(t) = φ0 for t ≥ ts. Thus,

for the initial condition (5.23), the solution (5.37)–(5.38) becomes

v(φ, t) = vmax

(

2(φ0 − φ̂)/φw

1 + [(φ̂− φ0)/φw]2

)

e−t/τ , (5.51)
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whereφ̂(φ, t) is given implicitly by

φ = φ̂+ vmax(τ/a)
(

1 − e−t/τ
)

(

2(φ0 − φ̂)/φw

1 + [(φ̂− φ0)/φw]2

)

, (5.52)

with the requirement that̂φ(φ, t) < φ0 if φ < φ0 and φ̂(φ, t) > φ0 if φ > φ0. Figures 5.5 and

5.6 display isolines ofv(φ, t) in the(φ, t)-plane, along with a family of characteristicŝφ(φ, t) for

the choicesvmax = 4 m s−1, aφ0 = 1000 km,aφw = 400 km, and forφ̂ = −1.5◦,−0.5◦, · · ·21.5◦.

The characteristics are now curved instead of straight, indicating the retarding effect of surface

drag. Because of this,v decreases along the characteristics butu still increases in magnitude along

characteristics. We rewrite (5.31) in the approximate form(du/dt) ≈ 2Ωv sinφ− u/τ and realize

that the surface drag is not strong enough to preventu from increasing with time, but the magnitude

of u is smaller compared to when surface drag is neglected.

5.6. NUMERICAL SIMULATION OF ITCZ SHOCKS- IDEALIZED ug FORCING

Now that we have some understanding of how shocks form using asimplified version of the

slab boundary layer model, we shall perform experiments with the full slab boundary layer equa-

tions, (5.1), (5.3), and (5.6). The problem has been solved using centered, second-order, spatial

finite difference methods on the domain−π/4 ≤ φ ≤ π/4 or −45◦ ≤ φ ≤ 45◦ with a uniform

meridional grid spacing ofa∆φ ≈ 100 m, and a three-stage third-order strong stability-preserving

Runge-Kutta time differencing scheme (Shu and Osher 1988) with a time step∆t of 5 s. The

boundary conditions are given by

∂ (u cosφ)

∂φ
= 0,

∂ (v cosφ)

∂φ
= 0,



















at φ = ±π
4
. (5.53)
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FIG. 5.6. Same as Figure 5.4, but for Heuristic Model II equations (5.31) and
(5.32) for test case S5.

We would like to run the model until a steady state is reached,therefore we use the initial conditions

u(φ, 0) = ug(φ) andv(φ, 0) = 0. The constants have been chosen ash = 1 km, ρ = 1.2 kg m−3,

andK = 1000 m2 s−1. The CFL condition associated with the horizontal diffusion terms sets the

stability constraintK∆t/(a∆φ)2 ≤ 2/3 so that fora∆φ = 100 m and∆t = 5 s we have to satisfy

K ≤ 1333 m2 s−1. The forcing is prescribed through theζg(φ) field, from which we can integrate
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to computeug(φ) andp(φ). We assumeζg is of the form

ζg(φ) =















































































































0 −π
4
≤ φ ≤ φ1,

ζ1S
(

φ2−φ
φ2−φ1

)

φ1 ≤ φ ≤ φ2,

ζ1S
(

φ−φ2

φ3−φ2

)

+ ζ2S
(

φ3−φ
φ3−φ2

)

φ2 ≤ φ ≤ φ3,

ζ2S
(

φ−φ3

φ4−φ3

)

+ ζ3S
(

φ4−φ
φ4−φ3

)

φ3 ≤ φ ≤ φ4,

ζ3S
(

φ−φ4

φ5−φ4

)

+ ζ4S
(

φ5−φ
φ5−φ4

)

φ4 ≤ φ ≤ φ5,

ζ4S
(

φ−φ5

φ6−φ5

)

φ5 ≤ φ ≤ φ6,

0 φ6 ≤ φ ≤ π
4
.

(5.54)

whereφ1, φ2, φ3, φ4, φ5, φ6, ζ1, ζ2, ζ3, andζ4 are specified constants, andS(s) = 1 − 3s2 + 2s3

is an interpolating function that satisfiesS(0) = 1, S(1) = 0, andS ′(1) = S ′(0) = 0. Figure

5.7 showsζg(φ) along with its associated fieldsug(φ) andp(φ) for the three test cases with the

parameter values listed in Table 5.2. The difference between these ITCZs is the strength of the

westerlies south of the relative vorticity maximum, with maximum westerlies of 0, 3, and 6 m s−1

respectively. Thep(φ, t) field illustrates that as the westerlies increase, the low pressure minimum

north of the equator exceeds that of the minimum at the equator. Also note that the pressure

difference between the tropics and subtropics is on the order of 6–8 hPa.

TABLE 5.2. Information about the first set of experiments at 10◦.

Test φ1 φ2 φ3 φ4 φ5 φ6 ζ1 ζ2 ζ3 ζ4
Case (◦) (◦) (◦) (◦) (◦) (◦) (10−6 s−1) (10−6 s−1) (10−6 s−1) (10−6 s−1)
C1 -35 -20 6 10 20 40 6.20 -7.26 14.18 -6.80
C2 -35 -20 6 10 20 40 6.45 -9.18 18.20 6.90
C3 -35 -20 6 10 20 40 6.66 -11.10 22.40 7.00
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FIG. 5.7. Idealizedug(φ), ζg(φ), p(φ) fields for the 10◦ ITCZ displacement set
of experiments using (5.54) and the values listed in Table 5.2. C1, C2, and C3
correspond to maximum westerlies of 0, 3, and 6 m s−1 respectively.

It turns out that shock-like structures do not appear in the vicinity of 10◦ if the westerlies are

weak (< 4 m s−1), such as in cases C1 and C2. Therefore, we will focus on the C3experiment,

where the westerlies maximize at 6 m s−1. Figure 5.8 shows the temporal evolution of the boundary

layer flow in the C3 run. The four plots of Figure 5.8 show meridional profiles (−25◦ ≤ φ ≤

25◦) of the boundary layer zonal windu, meridional windv, relative vorticity ζ , and vertical

velocity at the top of the boundary layerw for two times: t = 0 and 12 days. Remember that

the initial v is zero while the initialu is in geostrophic balance with the pressure gradient in

the overlying layer. Note that meridional inflow, supergeostrophic/subgeostrphic zonal winds,

large Ekman pumping at the top of the boundary layer, and large boundary layer relative vorticity

quickly develop, with the establishment of a near steady state around 8–12 days. Such timescales

seem reasonable for the formation of the ITCZ, as discussed by Nieto Ferreira and Schubert (1997);

Wang and Magnusdottir (2006).

123



−8−6−4−2 0 2 4 6

u (m s−1 )

−20

−10

0

10

20
La

ti
tu

d
e
 (
◦ )

−2 −1 0 1 2 3

v (m s−1 )
−2−1 0 1 2 3 4 5

ζ (10−5  s−1 )
−1 0 1 2 3 4 5

w (cm s−1 )

initial
final

FIG. 5.8. Slab boundary layer model results for the 10◦ ITCZ displacement C3
forcing case (6 m s−1 westerlies). The four plots show the zonal windsu(φ, t),
meridional windsv(φ, t), relative vorticityζ(φ, t), and vertical velocity at the top
of the boundary layerw(φ, t) for the region−25◦ ≤ φ ≤ 25◦. The results at the
two timest = 0 and 12 days are color coded.

Note that a shock-like structure develops a few hundred kilometers north of the meridional

location of maximum westerlies. This response is due to thev(∂v/a∂φ) term in the meridional

momentum equation. The maximum meridional inflow associated with these supergeostrophic

westerlies is approximately 2.3 m s−1. Near this shock, the meridional winds decrease by about 2

m s−1 over a 30 km interval, thereby producing a narrow spike in theEkman pumping at the top of

the boundary layer of about 6.0 cm s−1. Associated with this concentrated region of convergence

is a relative vorticity sheet, which is almost six times as large (11.9× 10−5 s−1) as its initial

value (2.2× 10−5 s−1). Also note that the easterlies north of the the westerlies never become

supergeostrophic, therefore they do not produce shock-like structures, but they do produce weak
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boundary layer pumping of≈ 5 mm s−1. This process is explained as follows: the Coriolis force

2Ωv sinφ acts to speed up the zonal winds while the surface drag acts toslow down the easterlies.

To form shock-like structures, the zonal flow must be sufficiently subgeostrophic at some point in

time to able to produce strong enough meridional inflow. Therefore, the region south of the ITCZ

is slowed down more by the surface drag.

Another region of localized Ekman pumping worth mentioningis the region near the equator,

where the Coriolis force approaches zero. In this region theforcing is quite weak, although it does

help produce some southerly flow. It acts more like the viscous Burgers’ equation (e.g., Heuristic

Model II) in that the surface drag tries to overcome the shock. The model tends to produce shock-

like structures (≈ 2 cm s−1 pumping) near the equator even though an ITCZ at the equator is rarely

observed in nature. Also, the vorticity sheet associated with this shock-like structure is anticyclonic

in the northern hemisphere, which seems to be unrealistic. However, observations such as those

shown by Liu and Xie (2002) suggest that localized low-levelconvergence near the equator is more

common than previously thought, especially in regions suchas the Atlantic and eastern Pacific, as

illustrated in Fig. 5.9. Since this convergence does not typically couple to convection it is possible

that the atmospheric thermodynamic conditions and Ekman upwelling of cold ocean water in this

region helps to suppress convection, as discussed by Charney (1968, 1971); Pike (1971, 1972).

Table 5.3 shows the next set of experiments, which test the sensitivity of shock-like formation

to the meridional location of the forcing: 0◦ (d00), 5◦ (d05), 10◦ (d10), and 15◦ (d15). Each test

case considers aug(φ) profile that has maximum westerlies of 6 m s−1, as done in the previous

test case C3 at 10◦. Note that test case d10 is the same as C3 in Table 5.2. Figure 5.10 shows

ζg(φ) along with its associated fieldsug(φ) andp(φ) for the three test cases d05, d10, and d15,

with the parameter values listed in Table 5.2. Thep(φ, t) field illustrates that as the ITCZ is
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FIG. 5.9. Surface wind convergence (10−5 s−1) from QuikSCAT for the months of
March, June, September, and December 2001. From Liu and Xie (2002).

displaced poleward, the low pressure minimum north of the equator exceeds that of the minimum

at the equator. As we will see, this does not necessarily meanthat ITCZ shock-like structures are

stronger as the ITCZ is displaced poleward.

Figure 5.11 illustrates the slab boundary layer modelu(φ, t), v(φ, t), ζ(φ, t),andw(φ, t) fields

at t = 12 days for the three ITCZ displacements: 5◦ (d05), 10◦ (d10), and 15◦ (d15). Shock-

like structures form in the initially cyclonic vorticity region in experiments d05 and d10, but not
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so much in d15. The determining factor involves the region that initially had cyclonic relative

vorticity. If this region’s cyclonic relative vorticity contains a vorticity sheet significantly stronger

than the initial cyclonic vorticity and a collocated narrowspike in Ekman pumping, then it has

produced ITCZ shock-like structures where we expect them. Experiment d15 does indeed produce

shock-like structures near the equator, but this is not the region where the initial relative vorticity

was cyclonic. Also, the vorticity sheet associated with theequatorial spike in Ekman pumping is

anticyclonic in the northern hemisphere, which seems to be unrealistic. A fourth experiment where

the initial cyclonic vorticity region is centered about 20◦ (d20, not shown) also failed to produce

shock-like structures in the initially cyclonic vorticityregion. These results suggest that ITCZ

shocks are most common close to the equator,−15◦ < φ < 15◦. The reasons for this result have to

do with the delicate balance between the forcing (pressure gradient force), the Coriolis force, and

the surface drag throughout the time period before a steady state is reached, as discussed before.

TABLE 5.3. Information about the second set of experiments at 5◦, 10◦, and 15◦.

Displacement φ1 φ2 φ3 φ4 φ5 φ6 ζ1 ζ2 ζ3 ζ4
(◦) (◦) (◦) (◦) (◦) (◦) (10−6 s−1) (10−6 s−1) (10−6 s−1) (10−6 s−1)

d05 -40 -30 0 5 15 35 6.77 -11.07 22.40 -6.90
d10 -35 -25 5 10 20 40 6.66 -11.10 22.40 -7.00
d15 -30 -20 10 15 25 45 6.55 -11.13 22.50 -7.10

Figure 5.11 also shows theu(φ, t), v(φ, t), ζ(φ, t),andw(φ, t) fields att = 12 days for the

d05 run. Shock-like structures develop in a similar manner as in d10, with meridional inflow,

supergeostrophic/subgeostrphic zonal winds, large Ekmanpumping at the top of the boundary

layer, and large boundary layer relative vorticity. The boundary layer pumping is a bit smaller in

magnitude when compared to d10, and that is due to the weaker meridional inflow produced by the

forcing. It is interesting to note that the steady-state westerlies just south of the narrow vorticity

sheet are about 2 m s−1 slower than those in the d10 run. There is still a region of supergeostrophic
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FIG. 5.10. Idealizedug(φ), ζg(φ), p(φ) fields for the 10◦ ITCZ displacement set of
experiments using (5.54) and the values listed in the last three rows d05, d10, and
d15 listed in Table 5.3.

flow, but the region of subgeostrophic flow is broader than thed10 run. This result is due to the

fact that the forcing goes to zero as one approaches the equator, allowing surface drag to be more

efficient in slowing down the horizontal winds in this case.

As we discussed in the Heuristic Model sections, characteristics are very helpful in understand-

ing the development of shocks and shock-like structures. Since the form of the slab boundary layer

model used here contains horizontal diffusion, we do not have a hyperbolic system with associated

families of characteristics. For simplicity, we limit our analysis to trajectories rather than charac-

teristics. Figure 5.12 shows the trajectories in the(φ, t)-plane along with contours of the zonal and

meridional windsu(φ, t) andv(φ, t) for the 10◦ (d10) experiment. The trajectories were computed

by numerically integratinga(dφ/dt) = v using the same 5 s time step used for the numerical so-

lutions of (5.1) and (5.6). To aid in our interpretation of the trajectories we have the Lagrangian
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FIG. 5.11. Slab boundary layer model results for the 5◦ (d05), 10◦(d10), and 15◦

(d15) ITCZ displacements (6 m s−1 westerlies). The four plots show the zonal
windsu(φ, t), meridional windsv(φ, t), relative vorticityζ(φ, t), and vertical ve-
locity at the top of the boundary layerw(φ, t) for the region−25◦ ≤ φ ≤ 25◦. The
results shown are whent = 12 days and the different displacements are color coded.

form of (5.1)

du

dt
=

(

w(1 − α)(u− ug) − cDUu

h

)

+

(

2Ω sinφ+
u tanφ

a

)

v+K
∂

a∂φ

(

∂(u cosφ)

a cosφ∂φ

)

, (5.55)

and the Lagrangian form of (5.6)

dv

dt
=

(

w(1 − α) − cDU

h

)

v −
(

2Ω sinφ+
(u+ ug) tanφ

a

)

(u− ug) +K
∂

a∂φ

(

∂(v cosφ)

a cosφ∂φ

)

,

(5.56)
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where(d/dt) = (∂/∂t) + v(∂/a∂φ) is the derivative following the meridional flow, i.e., the deriv-

ative along trajectories defined bya(dφ/dt) = v. The trajectories are horizontal for the first few

hours since the meridional flow is negligible there, and theyare always horizontal near the equator

since the meridional flow is negligible there. As the meridional flow increases, the trajectories flow

toward the convergence regions, but note that they are not straight lines. Instead, they curve toward

or away from the convergence regions. This is reminiscent ofthe Heuristic Model II results in that

surface drag acts to curve the characteristics (or trajectories) away from the convergence regions.
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FIG. 5.12. Trajectory curves in the(φ, t) plane for the d10 forcing case in the two
plots, along with contours of the zonal windsu (left) and meridional windsv (right).

For example, the trajectories a couple of degrees north of the equator experience an increase

in meridional flow as they move northward until the are just south of 8◦, where their meridional

flow decreases and they converge with the other trajectories, producing a shock-like structure after
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about 72 h (Fig. 5.12, right panel). When these trajectoriesare south of 8◦ their zonal winds are

subgeostrophic (Fig. 5.12, left panel), causing(dv/dt) > 0 due to(u−ug) < 0 andsinφ > 0 in the

Coriolis terms in (5.56), despite the presence of meridional surface drag. Once these trajectories

are north of about 8◦ their zonal winds become supergeostrophic, which along with the meridional

surface drag, act to decreasev quickly, as shown in (5.56). This quick decrease inv signifies the

spike in boundary layer pumping, shown in Fig. 5.13. We must emphasize the importance of the

Burgers’ termv(∂v/a∂φ) in the first 10 hours, which is when the zonal flow is decreasingwith

time along trajectories. The zonal surface drag plays a vital role in slowing down the zonal winds,

helping drive meridional inflow down the pressure gradient.This is why we believe shocks are

features confined to the boundary layer.

Taking a look at the isolines ofu in Figure 5.12, we see that they behave quite differently

than meridional winds along trajectories. The zonal winds weaken along trajectories for the first

10 h due to zonal surface drag, then begin to increase in magnitude due to thesinφ factors in the

Coriolis terms in (5.57). As the trajectories move toward the convergence regions their zonal winds

decrease in magnitude quickly due to both the quick weakening of v in the Coriolis terms in (5.57)

and the presence of zonal surface drag. In this region there forms a narrow vorticity sheet along

with a spike in Ekman pumping, as illustrated in Figure 5.13.

In Figure 5.13, the boundary layer relative vorticityζ and pumping at the top of the boundary

layerw are shown. As we discussed before in the Heuristic Model sections, the vorticity and

pumping increase very quickly along trajectories. There are three main regions of large vorticity–

near the equator, 8◦-10◦, and 11◦-13◦. Despite this, there is only one region that is collocated with

significant Ekman pumping, 8◦-10◦. It is also interesting to note that the spike inζ is not exactly

collocated with the peak in Ekman pumping. The pumping is located slightly south of the peak in
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ζ and where the trajectories come together. This is similar towhat was observed in the results of

Williams et al. (2013).
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FIG. 5.13. Trajectory curves in the(φ, t) plane for the d10 forcing case in the two
plots, along with contours of the relative vorticityζ (left) and vertical velocityw
(right).

In Figure 5.14, we show the trajectories as well as isolines of the absolute angular momentum

m. As important relation to consider when interpreting this figure is

a cosφ
du

dt
=
dm

dt
+ (2Ωa cosφ+ u) v sin φ. (5.57)

In the region a few degrees north of the equator,m decreases along trajectories despite the fact

thatu increases after the first 10 hours. That is because the strongmeridional inflow causes in the

second term on the right hand side of (5.57) to be larger thana cosφ(du/dt). In the regions south of
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the equator and north about 10◦ m increases along trajectories along withu because the the second

term on the right hand side of (5.57) is negative and is largerdue to thecosφ andsinφ factors.

South of the equator there are northward trajectories and a second shock-like structure appears

near the equator. This shock-like structure takes about 100h to become established. It remains to

be seen how realistic this equatorial shock-like structureis, but it causes information coming from

south of the equator to never cross it. North of the 10◦ a third shock-like structure tries to develop.

But, as shown in Figure 5.13, there is no narrow vorticity or boundary layer pumping associated

with it.
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FIG. 5.14. Trajectory curves in the(φ, t) plane for the d10 forcing case in the two
plots, along with contours of the absolute angular momentumm.
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5.7. NUMERICAL SIMULATION OF ITCZ SHOCKS- YOTC REANALYSIS FORCING

Thus far we have analyzed the slab boundary layer model response to a variety of idealized

ug(φ) forcings. We would like to force the model with reanalysis fields during the contrasting

months of July and March during Year of Tropical Convection (YOTC) reanalysis to investigate

if our idealized zonally symmetric model can reproduce the dynamical aspects of the ITCZ. We

shall use the slab boundary layer equations (5.1), (5.2), and (5.6) with the same constants as those

used in the previous section but with the boundary conditionsu = v = 0 at φ = ±π/4. We run

the model at two horizontal resolutions: 100 m (high) and 28 km (low). The low resolution run is

meant to emulate a resolution consistent with operational models such as the one used to produce

the YOTC reanalysis fields. We also neglect one of the Ekman suction terms,w(1 − α)(u − ug).

This simplification allows us to prescribe one field, which isthe pressure gradient field felt in the

boundary layer. Experience from other runs (not shown for brevity) convinces us that this Ekman

suction term tends to be small (differences inu, v on the order of 0.5–1 m s−1). We compute the

boundary layer pressure gradient by using the 950 hPa geopotential field from YOTC. Also, we

switch on the pressure gradient forcing with time using the separable function

T (t) = 1 − (1 + γt) e−γt, (5.58)

which is plotted previously in Figure 4.5. We use the constant γ = (12 h)−1. This switch on function

is used to avoid erratic oscillations that occur when the forcing is switched on too quickly. Also,

the derivative of the geopotential field is quite erratic, therefore we use only ocean data points and

smooth its derivative with the NCAR Command Language built-in cubic spline function csa1xd.

YOTC is a global reanalysis product spanning the time periodof May 2008–April 2010 that uses

four-dimensional variational data assimilation at a horizontal resolution of 0.25 degrees (28 km,
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FIG. 5.15. YOTC July 2008 monthly and 90W–150W zonally averaged950 hPa
geopotential field (blue curve) and the idealized geopotential field used in the slab
boundary layer model (red curve). The idealized geopotential was computed using
the cubic spline interpolating NCAR Command Language function csa1xd.

T799), with 91 vertical levels. We choose the model fields outputted at a horizontal resolution of

0.25 degrees (28 km) for direct comparisons to the low resolution slab boundary layer model fields.

5.7.1. JULY 2008

July 2008 was a relatively weak El Niño month in the 90W–150W(Niño 3) region, as illus-

trated previously in Fig. 3.3. Figure 5.15 shows the July 2008 monthly and zonally averaged

(90W–150W) geopotential field as seen before and after usinga cubic spline interpolation, with

appropriate treatment of the domain boundaries to satisfy the boundary conditions. There is low

pressure in the tropics and high pressure in the subtropics due to the summertime subtropical an-

ticyclones. We should note that even though the lowest pressure is located near 45S, the ITCZ is

expected to form where the lowest pressure occurs in the tropics, about 10◦–15◦.
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Figure 5.16 illustrates both high (sblm-hr) and low resolution (sblm-lr) slab boundary layer

modelu, v, ζ ,andw fields when they reach a quasi steady state as well as the July 2008 monthly

and 90W–150W zonally averagedu, v, ζ ,andw YOTC fields (yotc). YOTC does not output the

w field, but instead provides the horizontal divergenceδ field. We use the formulaw = −hδ with

h = 1 km for consistency with the slab model. Overall, the slab boundary layer model qualitatively

agrees with the monthly averaged YOTC fields, although the YOTC wind fields tend to be larger in

magnitude while the relative vorticity and vertical velocity at the top of the boundary layer tend to

be larger in the slab model. The 100 m model experiment shows amuch more confined and intense

Ekman pumping region. Also, there is a vorticity sheet seen in the 100 m run which is not seen in

the 28 km run or in the YOTC vorticity field. These differences, albeit not surprising, are intended

to highlight transient dynamical processes in the ITCZ suchas Burgers’ shock-like structures that

are not captured as well in the YOTC or sblm-lr fields. It wouldbe more practical to compare

the slab boundary layer model to the YOTC fields if it were not zonally symmetric, so that the

ITCZ could be influenced by zonal variations and breakdown. The timescale for breakdown is a

few days to 3 weeks, as discussed in Wang and Magnusdottir (2006). It takes about 2 days for the

pressure forcing to be sufficiently switched on (> 90%) and about 4 days until the peak in Ekman

pumping occurs (2.3 m s−1), so that the approximate timescale for ITCZ shock formation is about

2 days. Since the model fields reach a quasi steady state afterabout 8-10 days, it is likely that the

ITCZ would break down after the shock has occurred and eitherbefore or after a quasi steady state

has been reached. Also, the timescale for shock formation of2 days is in line with the results in

Heuristic Model II.

Another interesting feature of the slab boundary layer model runs is the asymmetrical response

of the meridional velocity. The pressure gradient force is about the same magnitude on either side
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FIG. 5.16. High (sblm-hr) and low resolution (sblm-lr) slab boundary layer model
solutions after 12 days against the corresponding YOTC July2008 monthly and
90W–150W zonally averaged 950 hPa fields. The four plots showthe zonal winds
u, meridional windsv, relative vorticityζ , and vertical velocity at the top of the
boundary layerw for the region−25◦ ≤ φ ≤ 25◦. The model runs are forced
solely by the YOTC July 2008 monthly and 90W–150W zonally averaged 950 hPa
pressure gradient force. Refer to the text for more details.

of the two equatorial minima in geopotential (Figure 5.16, -5◦–15◦), but there are small asymme-

tries in between the two minima as well. It is possible that these small asymmetries in the pressure

gradient force are the main contributors to the asymmetriesin v in the slab model, but it is also

possible that the Coriolis force plays a role since it is anisotropic. This asymmetrical meridional

wind response is also in the YOTC meridional winds, but it is not as dramatic. One possible ex-

planation for this discrepancy between the slab model and YOTC is that there are nonlinear eddy

contributions that are neglected in the slab boundary layermodel since it is zonally symmetric. For
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example, the eddy termu(∂v/a∂λ) is large in the eastern ocean basins, where the subtropical highs

help support strong meridional inflow. In particular, thereis larger meridional inflow in the sum-

mer hemisphere since the subtropical highs are typically stronger (McNoldy et al. 2004). Figure

5.17 confirms that the subtropical highs were stronger during July 2008 in the summer hemisphere

over the eastern Pacific. Another possible explanation for the discrepancies in the northerlies is the

uncertainty in the pressure gradient field over land (there is land strictly north of about 12◦).

FIG. 5.17. YOTC July 2008 monthly averaged 950 hPa geopotentialfield (m) over
the eastern Pacific Ocean. Note that the subtropical high in the summer hemisphere
is significantly stronger than the subtropical highs in the winter hemisphere.

5.7.2. MARCH 2009

March 2009 was a month with modest La Niña conditions in the eastern and central Pacific

(Niño 3 region), as illustrated before in Fig. 3.8. Hayes etal. (1989); Lietzke et al. (2001); Zhang

(2001); Gu et al. (2005) have illustrated that double ITCZs are quite common during La Niña
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and neutral conditions. In fact, the YOTC low-level 950 hPa divergence field does show a double

ITCZ structure during March 2009. We would like to see if the slab boundary layer model can

also reproduce a double ITCZ in the form of Ekman pumping on either side of the equator. In

Figure 5.18, we illustrate the YOTC monthly and zonally averaged (90W–150W) geopotential

field alongside the smoothed geopotential field used in the model. There is a broad low pressure

region that is approximately symmetric about the equator within about 25 degrees of the equator.

One might speculate that with only one pressure minimum there should only be one ITCZ, but

as we will see, the Ekman pumping has two primary peaks on either side of the equator in both

the slab boundary layer model and the YOTC reanalysis. Figure 5.19 shows the high and low

FIG. 5.18. YOTC March 2009 monthly and 90W–150W zonally averaged 950 hPa
geopotential field (blue curve) and the idealized geopotential field used in the slab
boundary layer model (red curve). The idealized geopotential was computed using
the cubic spline interpolating NCAR Command Language function csa1xd.

resolution model runu, v, ζ , andw fields forced by the smoothed geopotential field shown in

Figure 5.18 alongside the March 2009 monthly and zonally averaged YOTCu, v, ζ , andw fields.

The slab boundary layer model horizontal winds are comparable to the YOTC zonal winds except
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near the equator where the slab model tends to produce weakereasterlies in the 28 km run (up to 3

m s−1 weaker), and produces weak westerlies in the high resolution run (up to 5 m s−1 difference).

Also, north of about 7◦ the model tends to have weaker northerlies, just as seen in the July 2008

model runs. Despite these discrepancies, the model does form a double ITCZ structure, with two

peaks in cyclonic vorticity and Ekman pumping on either sideof the equator, at about 3◦. These

fields tend to be narrower and more intense in the model experiments, just like the July 2008 runs.

Another result worth mentioning is that the Ekman suction onthe equator is weaker in the low and

high resolution model runs compared to the YOTCw. Typically, the double ITCZ is described

as having a cold SSTs in between the two ITCZs. Both the subsidence and cold water tend to

stabilize the boundary layer, resisting the formation of anITCZ on the equator and possibly further

enhancing this subsidence.

5.7.3. MARCH 2010

Figure 5.20 illustrates the YOTC monthly and 90W–150W zonally averaged geopotential field

alongside the smoothed geopotential field used in the model.March 2010 was characterized by

modest El Niño conditions in the eastern and central Pacific(Niño 3 region), as illustrated previ-

ously in Fig. 3.9. Once again, studies such as Hayes et al. (1989); Lietzke et al. (2001); Zhang

(2001); Gu et al. (2005) have illustrated that a single ITCZ just north of or on the equator is com-

monplace during El Niño conditions, mainly due to warmer SSTs on the equator. Just like March

2009, there is a broad low pressure region that is approximately symmetric about the equator within

about 25 degrees of the equator. Therefore it would be surprising to see different results than those

from March 2009.

The high and low resolution modelu, v, ζ , andw fields are shown in Figure 5.21 alongside

the March 2010 monthly and zonally averaged YOTC fields. The slab boundary layer model zonal
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FIG. 5.19. High (sblm-hr) and low resolution (sblm-lr) slab boundary layer model
solutions after 12 days against the corresponding YOTC March 2009 monthly and
90W–150W zonally averaged 950 hPa fields. The four plots showthe zonal winds
u, meridional windsv, relative vorticityζ , and vertical velocity at the top of the
boundary layerw for the region−25◦ ≤ φ ≤ 25◦. The model runs are forced
solely by the YOTC March 2009 monthly and 90W–150W zonally averaged 950
hPa pressure gradient force. Refer to the text for more details.

winds are comparable to the YOTC zonal winds except in the northern hemisphere north of the

peak Ekman pumping and near the equator. Near the equator the100 m slab model once again

tends to produce weaker easterlies of up to 2 m s−1, similar to the behavior in the March 2009

runs. North of the peak Ekman pumping the slab model runs produce stronger easterlies (up to 3

m s−1) than in YOTC. The meridional winds are once again weaker north of the ITCZ for the slab

model runs. The model does agree with YOTC in producing a single ITCZ structure, with a peak
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FIG. 5.20. YOTC March 2010 monthly and 90W–150W zonally averaged 950 hPa
geopotential field (blue curve) and the idealized geopotential field used in the slab
boundary layer model (red curve). The idealized geopotential was computed using
the cubic spline interpolating NCAR Command Language function csa1xd.

in cyclonic vorticity and Ekman pumping around 4◦. Once again these fields tend to be narrower

and stronger in the model when compared to the YOTC fields.

It is quite surprising that the slab boundary layer model “correctly” produces a single ITCZ

given the nearly symmetric structure (within 25 degrees of the equator) of the geopotential field

shown in Fig. 5.20. This implies that small asymmetries in the pressure gradient field can make a

significant difference in where the ITCZ will form. Even though the slab boundary layer model has

no explicit information about the thermodynamics, it has implicit information about the tempera-

ture gradient since the temperature gradient affects the structure of the pressure gradient (Lindzen

and Nigam 1987). Also, the location of the minimum in easterlies (or maximum in westerlies for

the sblm-hr runs) seems to be quite telling for whether a single or double ITCZ will be produced.

If this easterly minimum (or westerly maximum) is north of the equator, a single ITCZ north of

142



the equator seems to be favored while if this zonal wind minimum is south of the equator, a double

ITCZ seems to be favored.
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FIG. 5.21. High (sblm-hr) and low resolution (sblm-lr) slab boundary layer model
solutions after 12 days against the corresponding YOTC March 2010 monthly and
90W–150W zonally averaged 950 hPa fields. The four plots showthe zonal winds
u, meridional windsv, relative vorticityζ , and vertical velocity at the top of the
boundary layerw for the region−25◦ ≤ φ ≤ 25◦. The model runs are forced
solely by the YOTC March 2010 monthly and 90W–150W zonally averaged 950
hPa pressure gradient force. Refer to the text for more details.

Overall, the slab boundary layer model high and low resolution runs are able to reproduce

the gross dynamical features in the YOTC fields. The main differences are that the slab boundary

layer model tends to produce stronger gradients, most likely due to its higher resolution (especially

in sblm-hr). Our results emphasize the importance of resolving small scale features in order to

improve the placement of the Ekman pumping and vorticity in the ITCZ.
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5.8. CONCLUDING REMARKS

The structure of the boundary layer wind field near the ITCZ has been interpreted in terms of

a zonally symmetric slab boundary layer model. The narrowness of the ITCZ has been explained

by dry dynamics, i.e., by the formation of a shock in the boundary layer meridional flow, with

northerly flow on the north edge of the shock and southerly flowon the south edge of the shock.

Shock formation is associated with thev(∂v/a∂φ) term in the meridional momentum equation

due to the presence of Burgers’ equation. Sincev is an order of magnitude larger in the boundary

layer than in the overlying fluid (approximately 5 m s−1 versus 0.5 m s−1), shocks are primarily a

phenomenon of the boundary layer. The development of a shockin the boundary layer meridional

wind v leads to a shock in the boundary layer zonal windu, since(∂u/∂t) = −v(∂u/a∂φ) + · · · ,

with large northerly flow (v < 0) producing a large easterly acceleration (∂u/∂t < 0) on the north

edge of the shock and a large westerly acceleration (∂u/∂t > 0) on the south edge of the shock. A

thin sheet of very high vorticity develops in the boundary layer, and it may extend upward due to

vertical advection. Horizontal diffusion has been used here to avoid multivalued solutions near the

shock. Although horizontal diffusion is a simple and effective way to avoid this problem, it is not

the only way. Alternatively, a shock fitting procedure couldbe used, such as in the Fortran routines

in the Conservation Laws Package (Clawpack) described by Leveque (2002).

For the boundary layer structures simulated here, we have chosen to use the terms “boundary

layer shock” or “Burgers’ shock,” rather than the terms “bore” or “front.” Our assumption of con-

stanth obviously precludes the development of jumps in the boundary layer depth, so use of the

term “bore” would be confusing. In addition, we have chosen to reserve the term “front” for struc-

tures that arise not fromv(∂v/a∂φ), but rather from the combination ofv(∂u/a∂φ), w(∂u/∂z),
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v(∂θ/a∂φ), andw(∂θ/∂z), with the rotational flowu and the potential temperatureθ being re-

lated by thermal wind balance. However, it should be noted that this distinction is not completely

sharp, since the “boundary layer shocks” studied here depend not only on thev(∂v/a∂φ) term

in the meridional equation of motion, but also on thev(∂u/a∂φ) term (or more generally on the

(2Ω sinφ + ζ)v term) in the zonal equation of motion, which leads to the shock-like structure in

theu-field. Even with this caveat, it is helpful to use terminology that distinguishes features that

can be accurately modeled using the geostrophic balance assumption (i.e., fronts) from features

that cannot be modeled using geostrophic balance (i.e., boundary layer shocks).

The slab boundary layer model described in section 5.3 can beregarded as a model that is at or

near the bottom of a hierarchy of boundary layer models of increasing complexity. Although the

constant depth slab model does not capture certain important features found in height-resolving

models of the tropical boundary layer, the constant depth slab model does appear to capture the

essence of the shock structure in the meridional flow and its consequences for boundary layer

pumping and subgeostrophic/supergeostrophic behavior inthe zonal wind.

The phenomenon of ITCZ boundary layer shocks puts demandinghorizontal resolution re-

quirements on global NWP and climate models. These horizontal resolution requirements are as

strict or even stricter than those for accurate simulation of moist convection. In view of the im-

portance of boundary layer shocks in determining the location of diabatic heating, accurate ITCZ

simulations probably require accurate simulations of suchfine scale aspects of the boundary layer.

In closing we reiterate the conclusion that a boundary layershock is one of the essential ingre-

dients of the ITCZ. In fact, it could be said that the formation of a boundary layer shock is one of

the most important events in the formation of a narrow ITCZ, for it imposes on the ITCZ a classic

shock-like structure.
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APPENDIX A

Vertical transform

The mathematical principles underlying the vertical transform pair (2.21) and (2.22) are the

orthonormality and completeness of the eigenfunctionsZm(z). Consider the eigenfunctionZm(z),

which is a solution of (2.23)–(2.23), and the eigenfunctionZm′(z), which is a solution of (2.23)–

(2.25) withm replaced bym′. To obtain the orthonormality relation, we multiply the equation

for Zm(z) by Zm′(z), then multiply the equation forZm′(z) by Zm(z), and finally integrate the

difference of the resulting equations to obtain

1

g

(

1

hm

− 1

hm′

)
∫ zT

0

Zm(z)Zm′(z)N2(z) dz

+

[

Zm′(z)
dZm(z)

dz
− Zm(z)

dZm′(z)

dz

]zT

0

= 0.

(A.1)

The second line in (A.1) can be evaluated with the aid of the boundary conditions (2.24) and (2.25).

Then, for distinct eigenvalues (hm 6= hm′) and for normalizedZm(z), there is an orthonormality

relation

1

g

∫ zT

0

Zm(z)Zm′(z)N2(z) dz + Zm(0)Zm′(0)

=



















1 if m = m′

0 if m 6= m′.

(A.2)
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To confirm that (2.21) is the proper transform for the expansion (2.22), we multiply (2.22) by

Zm′(z)N2(z) and then integrate overz to obtain

∫ zT

0

ψ̂(y, z)Zm′(z)N2(z) dz

=
∞
∑

m=0

ψ̂m(y)

∫ zT

0

Zm(z)Zm′(z)N2(z) dz.

(A.3)

Similarly, we multiply (2.22), evaluated atz = 0, byZm′(0) to obtain

ψ̂(y, 0)Zm′(0) =

∞
∑

m=0

ψ̂m(y)Zm(0)Zm′(0). (A.4)

Multiplying (A.3) by 1/g, adding the result to (A.4), and then using the orthonormality relation

(A2), (2.21) is obtained, confirming the validity of the transform pair (2.21) and (2.22).

To prove that all the eigenvalues of the problem (2.23)–(2.25) are positive, we multiply (2.23)

by Zm(z) to obtain

N2Z2
m

ghm

+
d

dz

(

Zm
dZm

dz

)

=

(

dZm

dz

)2

+

(Zm

2H

)2

. (A.5)

Integrating (A.5) overz and making use of the boundary conditions (2.24) and (2.25) results in

1

hm

{

1

g

∫ zT

0

Z2
m(z)N2(z) dz + Z2

m(0)

}

=

∫ zT

0

{

(

dZm(z)

dz

)2

+

(Zm(z)

2H

)2
}

dz +
Z2

m(0)

2H
.

(A.6)

The right hand side of (A.6) is positive. SinceN2 > 0, the term in braces on the left hand side of

(A.6) is also positive. Thus, all the eigenvalues are positive, i.e.,hm > 0 for all m.
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To determine if the eigenfunctionsZm(z) form a complete set, we first write (2.21) in the form

ψ̂m(y) =
1

g

∫ zT

0

[1 + δ(z′)] ψ̂(y, z′)Zm(z′)N2(z′)dz′, (A.7)

whereδ(z′) satisfies

1

g

∫ zT

0

δ(z′)N2(z′)dz′ = 1. (A.8)

Using (A.7) in (2.22) results in

ψ̂(y, z) =

1

g

∫ zT

0

{

[1 + δ(z′)]
∞
∑

m=0

Zm(z)Zm(z′)

}

ψ̂(y, z′)N2(z′)dz′.

(A.9)

The right hand side of (A.9) evaluates tôψ(y, z) if

[1 + δ(z′)]
∞
∑

m=0

Zm(z′)Zm(z) = δ(z′ − z), (A.10)

which is the completeness relation. Although a general proof of (A.7) is not given, it is confirmed

numerically for the special case of constantN in Appendix B. For further discussion, see section

8.4 of Arfken and Weber (1985) and section 6.3 of Courant and Hilbert (1953).
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APPENDIX B

Calculation ofhm andZm(z)

To solve the Sturm-Liouville problem (2.23)–(2.25), consider the idealized case in which the

buoyancy frequencyN is a constant given byN = 1.2×10−2 s−1. The solution of the second order

equation (2.23) has different forms depending on the eigenvalueshm. We begin by exploring the

possibility that one of the eigenvalues is given byĥ, which is defined bŷh = (2NH)2/g = 4328

m. The corresponding eigenfunction̂Z(z) then satisfiesd2Ẑ/dz2 = 0, in which case the solution

satisfying the upper boundary condition (2.24) iŝZ(z) = C(zT − z), whereC is a constant.

The lower boundary condition is satisfied if{1 + zT [(1/H) − (1/ĥ)]}C = 0. We assume that

the constantzT is specified in such a way thatzT 6= [(1/ĥ) − (1/H)]−1 = 8731 m, so that

1 + zT [(1/H) − (1/ĥ)] 6= 0 andC = 0, meaning that the boundary value problem does not

have a nontrivial eigenfunction with corresponding eigenvaluehm = ĥ. Below, the two cases are

investigated separately:hm > ĥ (Case 1) and0 < hm < ĥ (Case 2). The solutions involve solving

a transcendental equation using Newton’s iterative methodfor hm.

Case 1. If the eigenvalues satisfyhm > ĥ, then the equation forZm(z) is

d2Zm(z)

dz2
− µ2

m

z2
T

Zm = 0, (B.1)

where

µ2
m

z2
T

=
N2

g

(

1

ĥ
− 1

hm

)

> 0. (B.2)
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In this case the vertical structure functions satisfying the upper boundary condition are

Zm(z) = Am sinh[µm(1 − z/zT )], (B.3)

whereAm is the normalization factor. Through application of the lower boundary condition (2.25),

it can be shown thatµm is the solution of

tanh(µm) =
µm

(zT/ĥ)[1 − ĥ/2H − (2Hµm/zT )2]
. (B.4)

The transcendental equation (B.4) has only one solution, denoted byµ0 and having the value

µ0 = 0.4686. The corresponding eigenvalueh0 is obtained from (B2), written in the form

h0 = ĥ
[

1 − (2Hµ0/zT )2
]

−1 ≈ 7075 m. (B.5)

The top line in the orthonormality relation (A2) is satisfiedif the normalization factor is given by

A0 =

{

N2zT

2g

[

sinh(µ0) cosh(µ0)

µ0

− 1

]

+ sinh2(µ0)

}

−1/2

. (B.6)

Case 2. If the eigenvalues lie in the range0 < hm < ĥ, then the equation forZm(z) is

d2Zm(z)

dz2
+
ν2

m

z2
T

Zm = 0, (B.7)

where

ν2
m

z2
T

=
N2

g

(

1

hm
− 1

ĥ

)

> 0. (B.8)
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In this case the vertical structure functions satisfying the upper boundary condition are

Zm(z) = Bm sin[νm(1 − z/zT )], (B.9)

whereBm is the normalization factor. Through application of the lower boundary condition (2.25),

it can be shown thatνm is the solution of

tan(νm) =
νm

(zT /ĥ)[1 − ĥ/2H + (2Hνm/zT )2]
. (B.10)

After the transcendental equation (B.10) is solved forνm, the eigenvalueshm can be obtained from

(B.8), written in the form

hm = ĥ
[

1 + (2Hνm/zT )2
]

−1 ≈ ĥ
[

1 + (2Hmπ/zT )2
]

−1
. (B.11)

The second (approximate) equality follows from the fact that the solutions of the transcendental

equation (B.10) are approximatelyνm ≈ mπ for m = 1, 2, · · · , with the accuracy of the estimate

improving asm increases. The exact and approximate eigenvalues are listed in Table 2.1. Finally,

the top line in the orthonormality relation (A2) is satisfiedif the normalization factor is given by

Bm =

{

N2zT

2g

[

1 − sin(νm) cos(νm)

νm

]

+ sin2(νm)

}

−1/2

. (B.12)

Note that the dependence of the normalization factorsBm onm is weak becauseνm ≈ mπ, making

thesin(νm) terms in (B.12) negligible, which leads toBm ≈ [2g/(N2zT )]1/2 ≈ 3.2.

To summarize, the eigenvalue for the external mode is given by (B.5) whereµ0 is the single

solution of the transcendental equation (B4), while the eigenvalues for the internal modes are given

by (B.11) whereνm are the solutions of the transcendental equation (B.10). The corresponding
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eigenfunctions are

Zm(z) =



















A0 sinh[µ0(1 − z/zT )] m = 0

Bm sin[νm(1 − z/zT )] m ≥ 1,

(B.13)

where the normalization factors are given by (B.6) and (B.12). The first five eigenvalueshm (m =

0, 1, 2, 3, 4) are listed in Table 2.1, while the corresponding eigenfunctions are plotted in Fig. 2.2.

FIG. B.1. Four plots of the left hand side of (B.15) for the choices ẑ = 1 km
(black),ẑ = 4 km (blue),ẑ = 7 km (red), and̂z = 10 km (green). The two sums on
the left hand side of (B.15) have been truncated atm = 500. These plots, and others
with different truncations, demonstrate that the left handside of (B.15) converges
in the mean to the right hand side of (B.15), thereby confirming the completeness
of the basis functionsZm(z) for the case of constantN .
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To numerically confirm the completeness relation (A10) for the case of constantN , first we

write it in the form

[1 + δ(z′)]Z0(z
′)Z0(ẑ)

+ [1 + δ(z′)]

∞
∑

m=1

Zm(z′)Zm(ẑ) = δ(z′ − ẑ),

(B.14)

where, for notational convenience,ẑ replacesz. The numerical confirmation of (B.14) is simpler

if (B.14) is converted to an integrated form because then thetwo delta functions will not appear.

Thus, integrating (B.14) overz′ from zero toz, making use of (B.13), and finally multiplying by

N2/g results in

A0N
2zT

gµ0
Z0(ẑ) {cosh(µ0) − cosh [µ0(1 − z/zT )]}

+
∞
∑

m=1

BmN
2zT

gνm
Zm(ẑ) {cos [νm(1 − z/zT )] − cos(νm)}

+

∞
∑

m=0

Zm(0)Zm(ẑ) =



















1 if z > ẑ

0 if z < ẑ.

(B.15)

Figure B.1 shows plots of the left hand side of (B.15) whenẑ = 1, 4, 7, 10 km and when 500

terms are used in the summation overm. Plots similar to Fig. B.1, but for different truncations of

the sums, confirm that, although the Gibbs phenomenon occursnearz = ẑ, the left hand side of

(B.15) converges (in the mean) to the unit step function as the number of terms is increased. This

is numerical confirmation that (B.14) is valid and thereforethat the basis functions (B.13) form a

complete set in the special case of constantN .
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APPENDIX C

Characteristic form

Equations (5.1)–(5.5) constitute a quasi-linear first order system, i.e., the system is linear in

the first derivatives but the coefficients of these derivatives are functions of the dependent variables

u andv. In the absence of the horizontal diffusion terms, these equations constitute a hyperbolic

system, which means that it can be rewritten in characteristic form. Knowledge of the characteristic

form allows for a deeper understanding of the way that characteristics can intersect and thereby

produce discontinuities inu andv and singularities inw andζ . To derive the characteristic form

we shall rearrange (5.1) and (5.2) in such a way that all the terms involving the derivatives(∂u/∂t),

(∂u/a∂φ), (∂v/∂t), (∂v/a∂φ) appear on the left-hand sides and all the other terms appear on the

right-hand sides. This procedure requires splitting thew terms. In regions wherew ≥ 0, thew

terms in (5.1) and (5.2) vanish. In regions wherew < 0, thew terms do not vanish, in which

case these terms need to be expressed in terms of(∂v/a∂φ)− (v tanφ)/a, and then the(∂v/a∂φ)

parts need to be kept on the left-hand sides of (5.1) and (5.2)while the(v tanφ)/a parts need to

be brought over to the right-hand sides. This procedure is easily accomplished by noting that the

mass continuity equation in (5.3) yields

w = −h
(

∂v

a∂φ
− v tanφ

a

)

(C.1)

which allows (5.1) and (5.2) to be written in the form

∂u

∂t
+ v

∂u

a∂φ
+ (1 − α)(u− ug)

∂v

a∂φ
= F1, (C.2)
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∂v

∂t
+ (2 − α)v

∂v

a∂φ
= F2, (C.3)

where

F1 =
(1 − α)(u− ug)v tanφ

a
+

(

2Ω sinφ+
u tanφ

a

)

v − cDU
u

h
, (C.4)

F2 =
(1 − α)v2 tanφ

a
−
(

2Ω sinφ+
u tanφ

a

)

u− 1

ρ

∂p

a∂φ
− cDU

v

h
. (C.5)

The forms (C.2) and (C.3) are convenient because the nonlinearities associated with spatial deriva-

tives are on the left-hand side while all the other linear andnonlinear terms are on the right-hand

side. The classification of the system (C.2) and (C.3) as a hyperbolic system and the determination

of the characteristic form of this system depends on finding the eigenvalues and left eigenvectors

of the matrixA, which is defined by

A =











v (1 − α)(u− ug)

0 (2 − α)v











(C.6)

(see Chapter 5 of Whitham (1974)). Note that the matrixA is composed of the coefficients of

the (∂u/a∂φ) and (∂v/a∂φ) terms on the left-hand sides of (C.2) and (C.3). Forn = 1, 2, let
(

ℓ
(n)
1 ℓ

(n)
2

)

be the left eigenvector ofA corresponding to the eigenvalueλ(n), i.e.,

(

ℓ
(n)
1 ℓ

(n)
2

)











v (1 − α)(u− ug)

0 (2 − α)v











= λ(n)
(

ℓ
(n)
1 ℓ

(n)
2

)

. (C.7)

162



As is easily checked by direct substitution into (C.7), the two eigenvalues and the two correspond-

ing left eigenvectors are

λ(1) = v ⇐⇒ ℓ
(1)
1 = −v, ℓ(1)2 = u− ug,

λ(2) = (2 − α)v ⇐⇒ ℓ
(2)
1 = 0, ℓ

(2)
2 = 1.

(C.8)

Since the eigenvaluesλ(1) andλ(2) are real and the corresponding left eigenvectors are linearly

independent, the system (C.2)–(C.3) is hyperbolic and can be rewritten in characteristic form. To

obtain this characteristic form, we next take the sum ofℓ
(n)
1 times (C.2) andℓ(n)

2 times (C.3) to

obtain

ℓ
(n)
1

{

∂u

∂t
+ v

∂u

a∂φ

}

+ ℓ
(n)
2

{

∂v

∂t
+

[

(2 − α)v + (1 − α)(u− ug)
ℓ
(n)
1

ℓ
(n)
2

]

∂v

a∂φ

}

= ℓ
(n)
1 F1 + ℓ

(n)
2 F2.

(C.9)

Using the eigenvector components given in (C.8), equation (C.9) becomes (forn = 1 andn = 2)

v

(

∂u

∂t
+ v

∂u

a∂φ

)

− (u− ug)

(

∂v

∂t
+ v

∂v

a∂φ

)

= vF1 − (u− ug)F2, (C.10)

∂v

∂t
+ (2 − α)v

∂v

a∂φ
= F2. (C.11)

Since (C.11) is identical to (C.3), we conclude that (C.3) isalready in characteristic form. We now

write (C.10) and (C.11) in the form

v
du

dt
− (u− ug)

dv

dt
= vF1 − (u− ug)F2 on a

dφ

dt
= v, (C.12)

dv

dt
= F2 on a

dφ

dt
= (2 − α)v. (C.13)
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Equations (C.12) and (C.13) constitute the characteristicform of the original system (C.2) and

(C.3). An advantage of (C.12) and (C.13) is that, along each family of characteristic curves, the

partial differential equations have been reduced to ordinary differential equations. It is interest-

ing to note that, in regions of subsidence (i.e., whereα = 0), information onv is carried along

characteristics given bya(dφ/dt) = 2v, while information on a combination ofu andv is carried

along characteristics given bya(dφ/dt) = v. Thus, in regions of subsidence there are two distinct

families of characteristics. In contrast, for regions of boundary layer pumping (i.e., whereα = 1),

the two families of characteristics become identical.

Although in practice the forcing termsF1 andF2 are too complicated to allow analytical solu-

tion of (C.12) and (C.13), the numerical solution of these ordinary differential equations can serve

as the basis of the shock-capturing methods described by Leveque (2002). In sections 5.6 and 5.7

we have adopted the simpler approach of solving (5.1)–(5.3)using standard finite differences with

the inclusion of horizontal diffusion to control the solution near shocks. Although this approach

has some disadvantages (e.g., unphysical oscillation neara shock), it provides a useful guide to the

expected results when full-physics hurricane models can berun at the high horizontal resolution

used here.

In regions wherew < 0, we haveα = 0 and the characteristic forms (C.12) and (C.13) distin-

guish two families of characteristics, one given bya(dφ/dt) = v and one given bya(dφ/dt) = 2v.

In regions wherew ≥ 0, we haveα = 1 and there is only one family of characteristics, given by

a(dφ/dt) = v. In that case, (C.13) can be used to eliminate(dv/dt) in (C.12), which leads to the

conclusion that(du/dt) = F1 and(dv/dt) = F2 ona(dφ/dt) = v. This case of only one family of

characteristics is the one explored analytically in sections 3 and 4, with the forcing termsF1 and
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F2 set to zero in section 3, and with these forcing terms representing linear surface drag in section

4.

In passing we note that there is a less formal, more intuitiveroute from (C.2) and (C.3) to the

characteristic forms (C.12) and (C.13). This intuitive route results from simply noting that (C.3) is

already in characteristic form and can be directly written as (C.13), while the characteristic form

(C.12) can be simply obtained by combining (C.2) and (C.3) insuch a way as to eliminate terms

containing the factor(1 − α)(∂v/a∂φ).
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