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ABSTRACT OF THESIS 

 
IMPACTS OF CLIMATE CHANGE ON THE HYDROLOGIC RESPONSE OF 

HEADWATER BASINS IN COLORADO 

 The headwater basins of Colorado are heavily relied upon for freshwater 

resources on an annual basis.  However, knowledge concerning generation of such 

resources, and implications of climate change on their availability in the future, is not 

well understood.  Thus, this research has been undertaken to develop, calibrate, and test a 

comprehensive process-based model in four mountainous watersheds of Colorado, and 

investigate the potential impacts of changing climate on hydrologic response in these 

basins.  Specifically, the four study watersheds considered for analysis include the Cache 

la Poudre, Gunnison, San Juan and Yampa River basins.  Calibration of the model 

compared several parameter optimization techniques for performance in each of the study 

basins, which included the more common Shuffled Complex Evolution – University of 

Arizona (SCE-UA) method and a Markov Chain Monte Carlo (MCMC) method known 

as the Gibbs Sampler Algorithm (GSA).  Fully calibrated and tested models were driven 

by a suite of 112 climate projections, downscaled both spatially and temporally, and were 

run on a daily time-step for a period of 90 years from 2010 – 2099. 

Results from model calibration indicate GSA outperformed SCE-UA in a majority 

of the study basins, in addition to revealing promising results from a two-stage method 

that combined the strengths of the two techniques.  Error statistics showed very good 
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(Nash-Sutcliffe coefficient of efficiency > 0.75 and relative error < +/- 10%) performance 

of monthly streamflow simulations compared to naturalized flows at the outlet of each 

watershed over a period of 16 years (1990 – 2005).  Additionally, the models provided 

satisfactory results for simulating monthly streamflow at multiple sites nested within each 

watershed, which increased confidence in model parameterization and representation of 

dominant hydrologic processes.  Results indicate that on an average annual basis, 55% – 

65% of precipitation goes to evapotranspiration, and lateral flow contributes to between 

64% and 82% of gross water yield.  Results from future simulations over the course of 

the 21st century indicate inconsistent responses in streamflow to increasing temperature 

and variable precipitation projections.  However, results did show consistency in the 

Yampa River basin, where 71 out of 112 future projections resulted in statistically 

significant (α<0.1) positive trends of average annual streamflow.  Furthermore, all study 

basins exhibited a decreasing ratio of precipitation to potential evapotranspiration from 

emissions scenario ensemble averages, which suggest Colorado basins will become more 

arid over the 21st century.  Future forecasting of water availability in Colorado may 

benefit from this research, as specific climate projections were provided that resulted in 

consistent responses (increasing and decreasing) in streamflow across all watersheds.  

Implications of this study are considerable, as management of water resources, both 

within the state and across the West, will be affected by freshwater availability in 

headwater basins of Colorado in the future.       

Caleb R. Foy 
Department of Civil and Environmental Engineering 

Colorado State University 
Fort Collins, CO  80523 

Fall 2010 
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CHAPTER 1: INTRODUCTION 

Freshwater is one of the most basic necessities required to sustain all forms of life on this 

planet.  Not only are freshwater resources needed to sustain all living organisms, but 

access to them is needed for nearly all human activities.  In fact, the United Nations 

recently regarded access to safe freshwater as a universal human right (United Nations 

Committee on Economic, 2003).  However, access to freshwater, let alone safe and 

usable freshwater, is far from secure as the 21st century progresses.  More than one-sixth 

of the world’s population live in glacier- or snowmelt-fed river basins, where impacts of 

climate change, resulting from observed and projected increases in temperature and 

precipitation variability, will be potentially felt through alterations to availability of 

freshwater resources (Kundzewicz et al., 2007).  Not only is future climate change 

predicted to affect the mean hydrology of river basins, but it is also likely to affect the 

frequency and magnitude of extreme hydrologic events (Praskievicz and Chang, 2009).  

Thus, hydrologic modeling has increasingly been recognized as an important tool for 

improved understanding of the processes involved in generation of freshwater resources, 

as well as prediction of the potential impacts from changing climate and land use on such 

supplies  (Praskievicz and Chang, 2009). 

 A majority of the watersheds in the western United States are prime examples of 

complex systems.  The snow-dominated mountainous terrain which characterize such 

basins make simulation of hydrologic processes difficult, let alone projections of future 
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conditions.  Additionally, effective water management relies on accurate representation 

of mountainous watersheds in this region, where 50-70% of the precipitation may fall in 

the form of snow (Serreze et al., 1999), and the seasonal snowmelt of the spring and early 

summer may account for 50-80% of the total annual runoff (Stewart et al., 2004).  

Therefore, it is expected that policy makers and stakeholders of the present and future 

will be looking to scientists for explanations and predictions concerning the availability 

of the freshwater resources in order to make informed decisions as the 21st century 

progresses.   

 The future availability of freshwater is especially important in the headwater 

basins of Colorado.  The headwater basins of Colorado are located primarily on and near 

the Continental Divide, of which those on the western side drain into the Upper Colorado 

River (Figure 1.1).  Thus, there is a great deal of interest concerning the future yield of 

Colorado watersheds, especially those draining into the Upper Colorado River, as they 

provide many of the surrounding drier states (e.g. Arizona, New Mexico, Utah, and 

California) a substantial amount of water on an annual basis.  However, the future of such 

supplies is also extremely important within the state due to a majority of Colorado’s 

population residing east of the Continental Divide in the Front Range.  These areas 

typically receive considerably less precipitation than those on the Western Slope, and will 

continue to rely upon the transfer of foreign water, across the divide, to meet increasing 

agricultural, municipal, environmental, and recreational demands.     
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Figure 1.1 – Spatial extent and major tributaries of the Upper Colorado River basin.  
Map courtesy of Bureau of Reclamation (2009). 
   
 Existing studies concerning the impacts of climate change on the hydrology and 

water resources of Colorado have typically been undertaken at very coarse spatial scales, 

with grid cells ranging in size from as large as several hundred miles (e.g. Milly et al., 
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2005), to as little as eight miles (e.g. Christensen and Lettenmaier, 2007).  Such studies 

have discerned the hydrologic response to climate change from General Circulation 

Model (GCM) output and macro-scale hydrologic models, respectively, and do not 

include comprehensive analyses of processes important at the watershed scale.  

Additionally, the majority of studies have focused on the Upper Colorado River basin and 

have neglected to analyze other headwater basins in Colorado.  The overall goal of this 

study is also to predict the impacts of climate change on the hydrology and water 

resources in Colorado, but to do so at a localized, watershed scale in an attempt to 

provide stakeholders and decision makers the information they need at the scales they 

work.  The four watersheds chosen for this study represent a diverse set of attributes 

characteristic of headwater catchments in Colorado.  One area of study, the Cache la 

Poudre watershed, is located on the eastern side of the Continental Divide in the north-

central portion of the state and provides water for a variety of uses along the Front Range.  

The other three study areas are located on the western side of the Continental Divide and 

represent three headwater tributaries of the Upper Colorado River.  From north to south 

the tributaries include the Yampa, Gunnison, and San Juan Rivers, respectively, and 

provide water to the Upper Colorado River, Western Slope of Colorado, and Front Range 

via transbasin diversions and transfers.  Thus, future availability of freshwater in these 

basins has important implications to many users, policymakers, and stakeholders both 

within the state of Colorado and across the West as a whole.  

 In order to determine the impacts of climate change specific to water resources of 

four headwater basins in Colorado, the objectives of this thesis are (i) to develop and test 

a comprehensive process-based watershed model that can, with a high level of 
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confidence, represent important hydrologic processes in the snowmelt-dominated 

headwater catchments of Colorado; (ii) to observe the dominance of various hydrologic 

fluxes in the study watersheds based on observed conditions in the past; (iii) to 

downscale, in space and time, an ensemble of climate projections in a manner which 

addresses both the error involved and uncertainty inherent in climate modeling through 

incorporation of numerous models and diverse emissions scenarios; and (iv) to 

objectively identify the direction and degree of potential impacts on water resources, 

namely water yield, in Colorado and associate specific climate projections with low and 

high conditions of freshwater availability. 

 This thesis is organized into two standalone chapters and the information is 

presented in the following manner.  The second chapter describes, in detail, the 

framework of the hydrologic model chosen for the study, as well as the development, 

calibration, and validation of the model for each of the study watersheds within Colorado.  

The third chapter presents the future climate projections that were utilized in addition to 

the temporal and spatial downscaling techniques implemented, and provides results from 

simulations driven by each of the projections in the study basins.  The fourth and final 

chapter concludes with a synthesis of the overall results and possible applications of the 

research. 
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CHAPTER 2: HYDROLOGIC MODELING OF COLORADO WATERSHEDS 

 

2.1 INTRODUCTION 

Hydrologic modeling has increasingly been recognized as an important tool for improved 

understanding of the processes involved in generation of freshwater resources, as well as 

prediction of the potential impacts from changing climate and land use on such supplies  

(Praskievicz and Chang, 2009).  Hydrologic fluxes in mountainous watersheds, often 

headwater basins that exhibit a steep gradient in elevation, are particularly important as 

these areas often provide a significant source of freshwater for more arid surrounding 

lowlands.  In the mountainous regions of western North America, where 50-70% of the 

precipitation may fall in the form of snow (Serreze et al., 1999), the seasonal snowmelt of 

the spring and early summer may account for 50-80% of the total annual runoff (Stewart 

et al., 2004).  In fact, all major headwater river basins in Colorado provide substantial 

amounts of water to surrounding western and midwestern states, including Arizona, 

California, Kansas, Nebraska, Nevada, New Mexico, Oklahoma, Texas, Utah, and 

Wyoming.  Therefore, understanding and quantifying the hydrologic processes that 

control generation and movement of water in headwater catchments of Colorado has 

significant implications for management of scarce water resources in the western United 

States. The comprehension and ability to represent such processes is vital for the proper 
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and effective management of water resources, both in the present and future years to 

come. 

Hydrologic modeling of mountainous watersheds is often complicated by 

confounding factors such as scarcity and inadequate distribution of high elevation 

meteorological stations (Stonefelt et al., 2000), poor resolution of available climatic data 

(Marks et al., 1992), orographic effects on both precipitation (Hjermstad, 1970) and 

temperature (Barry and Chorley, 1976), and presence of snow accumulation and 

snowmelt processes (Luce et al., 1998).  In addition, in areas where storage and 

redistribution of snowmelt driven flows are important (e.g. headwater basins of 

Colorado), modeling efforts may be complicated by the intricate system of reservoirs, 

diversions, transfers, and other man-made structures typically present in such watersheds. 

The complexity of hydrologic models, specifically those designed for basin-wide 

analyses, has increased significantly since creation of the first continuous watershed 

model in the mid-1960s, the Stanford Watershed Model (SWM) (Crawford and Linsley, 

1966).  Such advancement in model complexity is mainly attributable to the spread and 

advancement of computing technologies, which has given models the ability to 

simultaneously represent more processes over larger spatial scales at smaller time steps.  

The sheer number of contemporary hydrologic models makes it inappropriate to 

document each of them herein.  However, a selection of those commonly used include 

two successors of SWM, the Hydrologic Simulation Program—Fortran (HSPF) (Bicknell 

et al., 1997) and the Storm Water Management Model (SWMM) (Rossman, 2009), in 

addition to the Precipitation-Runoff Modeling System (PRMS) (Leavesley et al., 1983), 

the watershed-scale model MIKE-SHE (DHI, 2004), the Variable Infiltration Capacity 
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(VIC) model (Liang et al., 1994; Liang et al., 1996), and the model of choice in this 

study, the Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998).  Although 

each of the previously mentioned models are unique in the way certain hydrologic 

processes are described and interactions between them are simulated, a commonality 

shared by all is the multitude of parameters required to describe such phenomena.  

 One difficulty in the application of process-based hydrologic models is 

parameterization of the model.  Parameterization of models becomes more challenging in 

large complex watersheds due to the spatial variability of watershed characteristics (e.g. 

elevation, land use, soil, climate, etc.).  Furthermore, actual measurements of physically-

based parameters are subject to measurement error and issues of scaling, such that many 

of the parameters in a hydrologic model will not be known.  The ensuing adjustment of 

parameters to align select model output(s) with their respective observations is performed 

to reduce uncertainty in both parameterization and simulation of the model, and is a 

process known as model calibration.  Manual calibration, when a user specifies the 

optimal set of parameters based on experience with the model and knowledge of the 

processes involved, can be both subjective and time consuming depending on the user.  

Automatic calibration, on the other hand, requires nothing more than identification of the 

parameters to be calibrated along with a range of allowable values for each of them, 

therefore addressing the disadvantages associated with manual calibration. 

 Methods for automatic calibration have been evolving for over four decades, 

stemming from the initial works of Dawdy and O’Donnell (1965), Nash and Sutcliffe 

(1970), Ibbit and O’Donnel (1971), and Johnston and Pilgrim (1976).  Today, one of the 

most widely used optimization algorithms adopted for automatic calibration of 



10 
 

hydrologic models is the Shuffled Complex Evolution – University of Arizona (SCE-UA) 

method (Duan et al., 1993; Duan et al., 1992).  SCE-UA is a global optimization method 

that has been shown to be both robust and efficient in finding the global optimum of an 

objective function in the hyper-cubic parameter space of several physically-based models 

(e.g. Duan et al., 1992; Kuczera, 1997; Sorooshian et al., 1993).  One critique of the 

method is the number of runs it takes to converge upon a solution, which becomes 

prohibitive when the number of model parameters to be estimated exceeds a dozen (Lin 

and Radcliffe, 2006).  This critique was substantiated by an application of SCE-UA to 

SWAT (Eckhardt and Arnold, 2001), where it took nearly 18,000 model runs to converge 

to a solution of 18 parameters.  Other optimization algorithms may be better suited for 

applications involving an abundance of parameters (e.g. SWAT), such as those that fall 

under the category of Markov Chain Monte Carlo (MCMC) methods, as convergence is 

typically not slowed by increasing dimensionality problems (Givens and Hoeting, 2005).  

Several of such MCMC methods have previously been applied to SWAT as 

parameterization tools (e.g. Kuczera and Parent, 1998; Vrugt et al., 2003; Yang et al., 

2008), but one notable exception remains the Gibbs sampler algorithm (GSA), which is 

specifically adapted for multidimensional target distributions.  To date, no attempt to 

implement GSA into SWAT or compare its performance to other optimization 

algorithms, has been found in primary literature. 

There have been multiple studies involving the development, calibration, and 

testing of SWAT to simulate hydrology in mountainous basins across the country, and 

include applications in the Upper Wind River Basin, WY (Fontaine et al., 2002; Stonefelt 

et al., 2000), Cannonsville Reservoir Watershed, NY (Tolson and Shoemaker, 2007), 
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Blue River Watershed, CO (Lemonds and McCray, 2007), Tenderfoot Creek Basin, MT 

(Ahl et al., 2008), Dry Creek Experimental Watershed, ID (Stratton et al., 2009), and 

Reynolds Creek Experimental Watershed, ID (Sridhar and Nayak, 2010).  However, no 

studies to date have been found which specifically address the suitability of SWAT to 

simulate hydrologic processes in the major mountainous river basins of Colorado, at the 

larger watershed-scale proposed herein.  Additionally, many of the previous studies have 

applied SWAT to one watershed in a region, whereas this research addresses four 

watersheds within the state of Colorado.  Furthermore, the SWAT model is typically 

calibrated and tested at a single site (the outlet) of a watershed.  In an attempt to obtain 

higher confidence in the model’s ability to accurately simulate physical processes, results 

from multiple sites within each of the watersheds were analyzed.   

This study aims to identify critical hydrologic processes that control the 

generation of streamflow and movement of water at varying spatial scales within four 

snow-dominated, mountainous watersheds of Colorado.  To this end, the following 

objectives are defined: (i) development of a comprehensive, process-based watershed 

model for each of the study watersheds through incorporation of detailed watershed 

characteristics and necessary modifications for mountainous basins; (ii) evaluation of the 

efficiency of two parameter estimation techniques, SCE-UA and GSA, for 

parameterization of the models using naturalized streamflows at multiple sites within 

each basin; and (iii) evaluation of the importance of specific hydrologic components (e.g. 

evapotranspiration, snow processes, groundwater processes, etc.) occurring in the 

complex, high-elevation watersheds of Colorado. 
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2.2 METHODS 

The comprehensive, process-based watershed model SWAT was developed, calibrated, 

and tested in four mountain watersheds to assess and quantify the dominant hydrologic 

processes occurring at the watershed-scale in the headwaters of Colorado.  A SWAT 

model was developed for each of the study basins which utilized a variety of high-

resolution spatial datasets describing terrain, land cover, soil, and climatic characteristics.  

In order to ensure accurate representation of hydrology within the basins, the model 

simulations were compared to naturalized flow data at multiple locations within the 

watersheds.  Naturalized flows reflect the records of streamflow with the influence of 

flow modifications removed.  Two separate optimization techniques were utilized to 

calibrate the models on a monthly time-step over a period spanning January 1990 through 

December 1997, a total of 8 years.  The optimal parameter sets from the calibration 

period were applied to the model and tested for an additional 8 years at the monthly time-

step, from January 1998 through December 2005.  Multiple commonly-used error 

statistics were computed to evaluate the performance of the model over the calibration 

and validation periods.  The outputs of the SWAT model were analyzed to quantify and 

compare the dominant hydrological processes occurring in the mountainous headwater 

basins of Colorado. 

 

2.2.1 STUDY WATERSHEDS 

Four headwater catchments in the state of Colorado were considered for this study, 

including the Cache la Poudre, Gunnison, San Juan, and Yampa River basins (Figure 

2.1).  The study watersheds range in size from the 2732 km2 Cache la Poudre basin to the 
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10,284 km2 Gunnison basin.  Three of the watersheds are located on the western side of 

the continental divide, making them tributaries of the Upper Colorado River, while only 

one of the watersheds is located on the eastern side of the continental divide, making it a 

tributary of the Mississippi River.  As with many mountain watersheds located in the 

western United States, the four basins exhibit a wide variety of characteristics related to 

geology, climate, and land cover.  Such variability in watershed characteristics is mainly 

attributable to complex terrain and high relief of elevation found within each of the 

basins. 

 
CACHE LA POUDRE RIVER BASIN 

The Cache la Poudre River basin spans two states, located primarily in northern Colorado 

with a small portion extending into southeastern Wyoming.  The highest headwater 

tributaries originate in the southwest of the basin, on the eastern side of the Continental 

Divide in and around Rocky Mountain National Park, and drain the Mummy Range into 

the mainstem of the Cache la Poudre (Poudre) River.  The Poudre River flows first 

through the Poudre Canyon before reaching the Great Plains and the Front Range 

municipalities of Fort Collins and Greeley, and finally its confluence with the South 

Platte River.  For the purposes of this study, the outlet of the Cache la Poudre River basin 

was defined at the mouth of the Poudre Canyon at USGS Gage 06752000 (Figure 2.1). 

 
GUNNISON RIVER BASIN 

The Gunnison River basin rests on the west side of the Continental Divide, located 

centrally in the state of Colorado.  The headwater tributaries of the basin originate on the 

western side of the Continental Divide and drain the Elk Mountains, Southern Sawatch 
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Range, and La Garita Mountains into the mainstem of the Gunnison River.  The 

mainstem then flows northwest through the deep gorge of Black Canyon of the Gunnison 

National Park before meeting its confluence with the Colorado River just west of Grand 

Junction, CO.  For the purposes of this study, the outlet of the Gunnison River basin was 

defined just upstream of Black Canyon of the Gunnison National Park, below the 

Gunnison Tunnel at USGS Gage 09128000 (Figure 2.1). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 2.1 – Location of study basins and United States Geological Survey (USGS) 
surface water gauges considered during analysis. 
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SAN JUAN RIVER BASIN 

The San Juan River basin flanks the west side of the Continental Divide, located 

primarily in southwestern Colorado with a sizable portion located in northwestern New 

Mexico.  The headwater tributaries of the basin originate on the western side of the 

Continental Divide and drain the La Plata Mountains and portions of the San Juan 

Mountains into the mainstem of the San Juan River.  The mainstem takes on many 

tributaries while flowing west through several states of the Four Corners region before 

meeting its confluence with the Colorado River as a tributary of the present-day Lake 

Powell.  For the purposes of this study, the outlet of the San Juan River basin was defined 

near Archuleta, NM at USGS Gage 09355500 (Figure 2.1).  

 
YAMPA RIVER BASIN 

The Yampa River basin sits on the west side of the Continental Divide, nestled in the 

northwestern corner of Colorado and parts of southern Wyoming.  The headwater 

tributaries of the basin originate on the western flank of the Continental Divide and drain 

the Elkhead Mountains, Central Park Range, and North Williams Fork Mountains into the 

mainstem of the Yampa River, which meanders through broad rural valleys and the desert 

canyons of Dinosaur National Monument before meeting its confluence with the Green 

River just east of the Utah state line.  The Green River is a main tributary of the Colorado 

River, and joins it above present-day Lake Powell in Canyonlands National Park, UT.  

For the purposes of this study, the outlet of the Yampa River basin was defined near the 

town of Maybell, CO at USGS Gage 09251000 (Figure 2.1). 
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CLIMATE 

The climate of mountainous watersheds in Colorado is not only highly variable amongst 

watersheds, but is also significantly different between locations within each watershed, 

even those locations in close geographic proximity.  For instance in the Cache la Poudre 

River basin between the years 1998-2004, the average annual precipitation recorded at 

Deadman Hill of 721 millimeters was over twice that of the 308 millimeters of average 

annual precipitation recorded in Rustic (see Figure 2.2 for meteorological station 

locations).  Not only was precipitation variable within the watershed, but during the same 

period, the average annual temperature at Deadman Hill (0.3 ⁰C) was nearly six degrees 

Centigrade cooler than the average annual temperature in Rustic (6.0 ⁰C).  Although the 

two stations are relatively near one another (approximately 12 km), the variability in 

climate may be attributed to the difference in elevation, which is approximately 768 

meters between Deadman Hill (3115.1 m) and Rustic (2347.0 m).  Large gradients in 

elevation are typical of the mountainous watersheds of Colorado, and the distribution of 

elevation within each watershed may be seen in Figure 2.3.   

 
OROGRAPHIC EFFECTS ON PRECIPITATION AND TEMPERATURE 

It is well established that regional climate of mountainous watersheds is correlated with 

surface elevation.  Thus, lapse rates were calculated for each of the study basins, which 

were used to quantify the rate at which temperature decreased and precipitation increased 

with increasing elevation. 
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Due to the limited number of meteorological stations and also the scarcity of data, 

especially at SNOTEL climate stations located in higher elevations (Figure 2.2), a single 

lapse rate for surface temperature and a single lapse rate for precipitation was calculated 

in each of the study watersheds.  This lapse rate was then assumed constant over the 

entirety of each respective watershed.  The lapse rates were calculated from mean annual 

values averaged over a period of at least five years for precipitation and temperature, of 

which the period was chosen based on the most complete and reliable set of continuous 

years on record.  This was found to be important for accurate characterization of annual 

Figure 2.2 – Topography, as represented by a digital elevation model (DEM), and 
location of meteorological stations (SNOTEL and NCDC) in each of the headwater 
basins of the Rocky Mountains, CO. 
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averages of temperature and precipitation, as a missing month of data could skew annual 

values depending on the season of that month.  All meteorological stations (Figure 2.2) 

were utilized for the calculations with the exception of the Red Feather Lakes station in 

the Cache la Poudre watershed, which could not be used due to a lack of contemporary 

data.  Graphical depictions of orographic effects on precipitation and temperature are 

presented in Appendix A. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 Figure 2.3 – Hypsometric curves depicting the distribution of elevation within each 
of the (a) Cache la Poudre, (b) Gunnison, (c) San Juan, and (d) Yampa study basins.  
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 Lapse rates for both temperature and precipitation varied among the study 

watersheds (Table 2.1).  The precipitation lapse rates, which depict an increase in mean 

annual precipitation with an increase in elevation, varied from 353.9 mm/km in the 

Gunnison River Basin to 658.4 mm/km in the Cache la Poudre River Basin.  The 

temperature lapse rates, which depict a decrease in mean annual temperature with an 

increase in elevation, varied from -2.7 ⁰C/km in the Gunnison River Basin to -5.5 ⁰C/km 

in the Cache la Poudre River Basin.  The lapse rates computed and implemented in this 

study are similar to other published values including lapse rates for precipitation and 

temperature of 511.2 mm/km and -3.8 ⁰C/km, respectively, in the Blue River Watershed, 

CO (Lemonds and McCray, 2007), and 500 mm/km and -5.0 ⁰C/km, respectively, in the 

Upper Wind River Basin, WY (Fontaine et al., 2002).  

Table 2.1 – Temperature and precipitation lapse rates representing orographic effects. 

 
Study Watershed 

Precipitation 
Lapse Rate 

(mm/km)/R2 

 

Temperature 
Lapse Rate 
(⁰C/km)/R2

 

 

Period of 
Record 

 
Elevation (m) 

Cache la Poudre 658.4/0.87 
 

-5.5/0.93 
 

1998-2004 
 

1594 – 4132 
 

Gunnison 353.9/0.58 
 

-2.7/0.57 
 

1996-2001 
 

1982 – 4359 
 

San Juan 434.9/0.79 
 

-5.4/0.83 
 

2000-2004 
 

1724 – 4280 
 

Yampa 497.8/0.62 
 

-3.4/0.78 
 

2002-2007 
 

1804 – 3764 
 

 
 
LAND COVER/LAND USE 
 
The land cover distribution within each of the study basins was described using 2001 

National Land Cover Data (NLCD 2001), and major types may be seen in Figure 2.4.  At 

the highest elevations, land cover consists mainly of alpine tundra.  Below tree line at 

moderate elevations, land cover consists mainly of subalpine coniferous forests and 
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deciduous forests.  At the lowest elevations, land cover consists of shrub and scrublands, 

herbaceous grasslands, and pasture/hay. 

 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 Figure 2.4 - Distribution of land cover in the (a) Cache la Poudre, (b) Gunnison, (c) San 
Juan, and (d) Yampa study basins, computed from NLCD 2001. 
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SOIL 

The distribution of soil within each of the study basins was described using a 

combination of the Soil Survey Geographic (SSURGO) Database and the State Soil 

Geographic (STATSGO2) Database.  The distribution of the representative hydrologic 

soil groups is shown in Figure 2.5.  The procedure utilized to combine the two datasets is 

outlined in the forthcoming section SWAT MODEL DEVELOPMENT, where details 

may be found regarding implementation of the soil databases into the SWAT model.  The 

hydrologic soil group is a classification which refers to the drainage potential of a soil.  

Group A soils have the greatest ability to drain water (lowest runoff potential), and 

typically have less than 10% clay and more than 90% sand or gravel.  Group B soils have 

a lower ability to drain water (moderately low runoff potential), and typically consist of 

10 – 20% clay and 50 – 90% sand.  Group C soils have a low ability to drain water 

(moderately high runoff potential), and typically consist of 20 – 40% clay and less than 

50% sand.  Group D soils have the lowest ability to drain water (high runoff potential), 

and typically consist of greater than 40% clay and less than 50% sand.  In general, the 

soils in the study watersheds of Colorado have a relatively low ability to drain water, 

which is mainly attributable to the high amounts of clay found in the soils.   
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2.2.2 HYDROLOGIC MODEL 

The Soil and Water Assessment Tool Version 2005 (SWAT2005, referred to as SWAT 

hereafter) is a hydrologic model originally developed (as an earlier version) for the 

United States Department of Agriculture (USDA) Agricultural Research Service (ARS) 

as a tool to predict the effect of management practices on water, sediment, nutrient, and 

pesticide yields in agricultural basins over long periods of time (Arnold et al., 1998).  

Although SWAT was developed for agricultural watersheds, its application has now been 

extended to study the consequences of land use and climate change on hydrologic 

regimes (e.g. Li et al., 2009; Miller et al., 2002; Stone et al., 2001; Stonefelt et al., 2000).  

The model is semi-distributed, computationally efficient, process-based, and uses readily 

available input data (Neitsch et al., 2005), all of which assist in providing the ability to 

represent complex watersheds.  SWAT is also a comprehensive model in that it has the 

ability to simulate important hydrologic processes such as surface runoff, return flow, 

Figure 2.5 - Distribution of soil, as represented by hydrologic soil groups (A, B, C, 
and D), in each of the study basins. 
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percolation, evapotranspiration, snow accumulation, snowmelt, and sediment movement, 

in addition to other agricultural processes such as crop growth and nutrient and pesticide 

loading (Figure 2.6).  

 

Figure 2.6 – Schematic of the hydrologic process and pathways which are simulated in 
SWAT.  Figure adapted from Eckhardt and Arnold (2001). 
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SWAT is a semi-distributed hydrologic model based on two levels of subdivision 

within a watershed.  The first level of subdivision is the subbasin, which are linked 

together by main channel segments, or reaches.  Each of the subbasins may be thought of 

as an individual unit, as they may be defined with unique climate and hydrologic 

properties.  Within a subbasin, further partitioning is performed into areas with unique 

combinations of land use, management, and soil attributes, referred to as hydrologic 

response units (HRUs).  The SWAT model simplifies runs by lumping together identical 

HRUs within a subbasin into single, non-interacting units of response (Neitsch et al., 

2004), which in turn provides the model greater computational efficiency.  Loadings of 

water, sediment, nutrients, etc. are aggregated at the HRU level, where they are 

transferred to the respective subbasin.  From the subbasin-level, the constituents are 

delivered to the main channel reach at each subbasin outlet, from which they are routed to 

the outlet of the entire watershed. 

 
PHYSICAL BASIS 

SWAT is a physically-based hydrologic model in that most of its parameters can be 

measured in the field and physically-based equations are used to represent hydrologic 

processes, as opposed to empirical, regression-based equations.  For example, the land 

phase of the hydrologic cycle is based on the water balance equation within each HRU 

(Neitsch et al., 2005): 

𝑆𝑊𝑡 = 𝑆𝑊0 + ��𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 − 𝑤𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤�
𝑡

𝑖=1

    Equation 2.1 

 
where SWt is the final soil water content on day t (mm of water), SW0 is the initial soil 

water content (mm of water), t is the time (days), Rday is the amount of precipitation on 
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day i (mm of liquid water), Qsurf is the amount of surface runoff on day i (mm of water), 

Ea is the amount of evapotranspiration (ET) on day i (mm of water), wseep is the amount 

of water entering the vadose zone from the soil profile on day i (mm of water), and Qgw is 

the amount of return flow on day i (mm of water). 

Potential evapotranspiration (PET) may be modeled in SWAT through the 

application of one of three physically-based methods: the Penman-Monteith method 

(Allen, 1986; Allen et al., 1989; Monteith, 1965), the Priestley-Taylor method (Priestley 

and Taylor, 1972), and the Hargreaves method (Hargreaves and Samani, 1985).  Each of 

the methods requires a different amount of input data.  The Penman-Monteith method 

requires solar radiation, air temperature, relative humidity, and wind speed, the Priestley-

Taylor method requires solar radiation, air temperature, and relative humidity, while the 

Hargreaves method requires air temperature.  The Penman-Monteith method is the 

default SWAT method for simulating PET, and was utilized in all watersheds except for 

the Cache la Poudre, where the Hargreaves method yielded better results. 

 
GROUNDWATER PROCESSES 

Water that reaches the soil has several pathways for movement in SWAT.  The first 

pathway is removal from the soil, either through plant transpiration or evaporation.  The 

second pathway is that of subsurface lateral flow, where water moves through the 

saturated soil profile and is ultimately contributed back to streamflow further down in the 

basin.  The final pathway available to water that reaches the soil profile is aquifer 

recharge, where water percolates through the entire profile and is made available to the 

underlying aquifer as recharge. 
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 Subsurface lateral flow is typically significant in areas with soils having high 

hydraulic conductivities and an impermeable or semi-permeable layer at a shallow depth 

(Neitsch et al., 2005), and is analogous to saturated subsurface flow.  The SWAT model 

simulates such flow using a kinematic storage model developed by Sloan et al. (1984; 

1983), from which the net daily discharge of subsurface lateral flow at the hillslope 

outlet, Qlat (mm), is calculated within each HRU as: 

𝑄𝑙𝑎𝑡 = 0.024 �
2 ∗ 𝑆𝑊𝑙𝑦,𝑒𝑥𝑐𝑒𝑠𝑠 ∗ 𝐾𝑠𝑎𝑡 ∗ 𝑠𝑙𝑝

∅𝑑 ∗ 𝐿ℎ𝑖𝑙𝑙
�    Equation 2.2 

 
where SWly,excess is the specific drainable volume of water stored in the saturated zone of 

the hillslope per unit area (mm), Ksat is the saturated hydraulic conductivity of the soil 

(mm/hr), slp (SWAT parameter SLOPE) is the slope (m/m), ∅𝑑 is the drainable porosity 

of the soil (mm/mm), and Lhill is the hillslope length (m). 

 In large subbasins where not all subsurface lateral flow will reach the main 

channel in one day, a portion of the flow is lagged, or stored, for later release.  The lateral 

flow released to the main channel on a given day, Qlat,channel, within each subbasin is: 

𝑄𝑙𝑎𝑡,𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = �𝑄′𝑙𝑎𝑡 + 𝑄𝑙𝑎𝑡𝑠𝑡𝑜𝑟,𝑖−1� �1 − 𝑒𝑥𝑝 �
−1
𝑇𝑇𝑙𝑎𝑔

��    Equation 2.3 

 
where Q’lat is the amount of subsurface lateral flow generated in a subbasin (summed 

across all HRUs within the subbasin) on a given day (mm), Qlatstor, i-1 is the amount of 

subsurface lateral flow stored from the previous day (mm), and TTlag is the travel time of 

the subsurface lateral flow (days). 

SWAT represents subsurface hydrologic processes of aquifers through application 

of a kinematic storage model, which is based on conservation of mass (of water).  Such 

processes are represented within the model at the subbasin level, where water percolating 
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through the entire soil profile may enter one or two aquifers; the shallow aquifer, an 

unconfined aquifer that contributes water to baseflow of the stream on the surface, and/or 

the deep aquifer, a confined aquifer where the water is assumed lost to the system 

(assumed to contribute to streamflow at a location further downstream of the watershed 

boundaries).  The water balance for the shallow aquifer within each HRU is: 

𝑎𝑞𝑠ℎ,𝑖 = 𝑎𝑞𝑠ℎ,𝑖−1 + 𝑤𝑟𝑐ℎ𝑟𝑔,𝑠ℎ − 𝑄𝑔𝑤 − 𝑤𝑟𝑒𝑣𝑎𝑝 − 𝑤𝑝𝑢𝑚𝑝,𝑠ℎ    Equation 2.4 

 
where aqsh,i is the amount of water stored in the shallow aquifer on day i (mm), aqsh,i-1 is 

the amount of water stored in the shallow aquifer on day i-1 (mm), wrchrg,sh is the amount 

of recharge entering the shallow aquifer on day i (mm), Qgw is the groundwater flow, or 

baseflow, into the main channel on day i (mm), wrevap is the amount of water moving up 

into the soil profile in response to water deficiencies on day i, and wpump,sh is the amount 

of water pumped from the shallow aquifer on day i (mm). 

 The aquifer percolation coefficient, βdeep, determines the amount of total recharge 

from the soil profile, wrchrg (mm), which is percolated to the deep aquifer within each 

HRU: 

𝑤𝑑𝑒𝑒𝑝 = 𝛽𝑑𝑒𝑒𝑝 × 𝑤𝑟𝑐ℎ𝑟𝑔    Equation 2.5 

 
where wdeep is the amount of water percolating into the deep aquifer on day i.  The 

remainder of the total recharge which does not enter the deep aquifer is allocated to the 

shallow aquifer, as wrchrg,sh. 

 
SNOW-RELATED PROCESSES 

SWAT has the ability to represent several hydrologic processes specifically related to 

snow, including snow accumulation, snow distribution/cover, and snowmelt.  Accounting 
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for snow hydrology is important, especially in the mountainous watersheds of Colorado 

where a substantial portion of the annual precipitation falls as snow over the winter 

months.  Precipitation is simulated as snowfall when the mean daily air temperature is 

less than the snowfall threshold temperature (SWAT parameter SFTMP). 

 SWAT stores snowfall on the ground in the form of a snowpack, which is 

described by the snow water equivalent it holds.  The daily mass balance for the 

snowpack within each HRU is represented as: 

𝑆𝑁𝑂𝑖 = 𝑆𝑁𝑂𝑖−1 + 𝑅𝑑𝑎𝑦,𝑖 − 𝐸𝑠𝑢𝑏,𝑖 − 𝑆𝑁𝑂𝑚𝑙𝑡,𝑖     Equation 2.6 

 
where SNO is the snow water equivalent of the snowpack on day i (mm), Rday is the 

amount of precipitation falling as snow on day i (mm), Esub is the amount of sublimation 

on day i (mm), and SNOmlt is the amount of snowmelt on day i (mm). 

 The snowpack of a subbasin is rarely uniform in distribution, and is often 

complicated by processes such as drifting and shading in complex topography.  Thus, the 

areal coverage of the snowpack in a subbasin is dependent upon an areal depletion curve, 

which SWAT bases on a natural logarithm model, to correlate the areal coverage of the 

snowpack with the amount of snow present in the subbasin.  A threshold depth of snow 

(SWAT parameter SNO100) determines the amount of snow above which there will be 

100% cover in a subbasin. 

 Daily snowmelt is modeled in SWAT as a function of maximum air temperature, 

snowpack temperature, melting threshold temperature, snow cover, and snow melting 

rate within each HRU as: 

𝑆𝑁𝑂𝑚𝑙𝑡 = 𝑏𝑚𝑙𝑡 × 𝑠𝑛𝑜𝑐𝑜𝑣 × �
𝑇𝑠𝑛𝑜𝑤 + 𝑇𝑚𝑎𝑥

2
− 𝑇𝑚𝑙𝑡� 

   Equation 2.7 
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where SNOmlt is the amount of snowmelt in a day, bmlt is the melt fact (mm/day-⁰C), 

snocov is the fraction of the HRU area covered by snow, Tsnow is the snow pack 

temperature (⁰C), Tmax is the maximum daily air temperature (⁰C), and 𝑇𝑚𝑙𝑡 is the 

threshold temperature above which snow is allowed to melt (SWAT parameter SMTMP) 

(⁰C). 

 
STREAMFLOW PARAMETERS 

SWAT has the ability to readily represent both snow-related and groundwater hydrologic 

processes through the previously discussed physically-based methods.  Additional 

physically-based water balances are used for other components of the hydrologic cycle, 

and details may be found in the SWAT Theoretical Documentation (Neitsch et al., 2005).  

In order to represent such an array of hydrologic processes, SWAT has numerous 

parameters to represent the physical phenomena in which it simulates.  In the present 

study, thirty streamflow-related parameters were adjusted for each watershed.  The 

parameters, along with their associated minimum and maximum allowable values, 

descriptions, and related processes, are presented in Appendix B.  The lower and upper 

bound of parameter values were obtained from the SWAT Theoretical Documentation 

(Neitsch et al., 2005).  Parameters of SWAT may be defined at three spatial scales 

including the basin, subbasin, and HRU discretization levels.  Thus, several parameters 

(indicated by an asterisk) have multiple values in subbasins with more than one HRU due 

to their dependence on land use and soil.  In order to maintain the spatial variability of 

such parameters, they were adjusted as a fraction of their default value during 

optimization procedures. 
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SWAT MODEL DEVELOPMENT 

The SWAT extension for ArcGIS, ArcSWAT Interface for SWAT2005 (Winchell et al., 

2007), was utilized for model development in each of the four study basins.  ArcSWAT is 

a graphical user interface which allows the user to easily assimilate the readily available 

input data during model development.  The necessary spatial datasets and databases were 

collected and modified, as required by the model, before implementation into ArcSWAT.  

The input data, summarized in Table 2.2, were prepared as set forth in the ArcSWAT 

documentation (Winchell et al., 2007), and ensuing development of the model will be 

discussed in the following sections.   

Table 2.2 – SWAT input data. 
Data Type Description Access 

Topography 30-m DEM http://seamless.usgs.gov/ - September, 2008 
Land cover NLCD 1992; 

NLCD 2001 
http://www.mrlc.gov/index.php - September, 2009; 
http://www.mrlc.gov/index.php - September, 2009 

Soil STATSGO2; 
SSURGO 

http://soildatamart.nrcs.usda.gov/ - September, 2009; 
http://soildatamart.nrcs.usda.gov/ - September, 2009 

Weather SNOTEL;  
NCDC  

http://www.wcc.nrcs.usda.gov/snow/; September, 2008; 
http://www.ncdc.noaa.gov/oa/ncdc.html - September, 2008  

 
The first step in SWAT model development was to delineate the watershed as a 

whole, as well as the subbasins within the watershed.  Delineation was performed using 

the interface and a 30-meter resolution Digital Elevation Model (DEM) from the U.S. 

Geological Survey (USGS) National Elevation Dataset (Gesch, 2007; Gesch et al., 2002).  

The whole watersheds were defined by their respective outlets, while subbasins were 

defined by outlets created at stream junctions, of which the extent is defined by a 

threshold area for stream initiation. 

The land use/land cover attributes for each watershed were characterized by 

NLCD 2001 and NLCD 1992, which were produced by the Multi-Resolution Land 

http://www.mrlc.gov/index.php�
http://www.mrlc.gov/index.php�
http://soildatamart.nrcs.usda.gov/�
http://soildatamart.nrcs.usda.gov/�
http://www.wcc.nrcs.usda.gov/snow/�
http://www.ncdc.noaa.gov/oa/ncdc.html�
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Characteristics Consortium (MLRC) with a methodology presented in two separate 

studies (Homer et al., 2004; Vogelman et al., 2001), respectively.  The 1992 version of 

NLCD was used for model simulations during the years 1990-1997, while the 2001 

version of NLCD was used for model simulations during the years 1998-present.  SWAT 

classifies each type of NLCD land use/land cover into a corresponding type of SWAT 

land use/land cover (LULC) according to lookup tables, which may be found for both 

NLCD 1992 and NLCD 2001 in Appendix B.  A thorough description of the types of 

land use/land cover present in each of the NLCD datasets are available in the original 

NLCD documentations (Homer et al., 2004; Vogelman et al., 2001).   

Typically, the source for soil attributes utilized in SWAT are taken from the U.S. 

General Soil Map (STATSGO2), which was developed by the USDA Natural Resource 

Conservation Service (NRCS) National Cooperative Soil Survey (Soil Survey Staff, 

2006).  STATSGO2 provides a broad-based inventory of soils for the contiguous United 

States, Alaska, Hawaii, Puerto Rico, and the U.S. Virgin Islands in the form of geo-

referenced vector and tabular digital data, and provides such soil attributes as texture, 

bulk density, hydraulic conductivity, and available water capacity.  STATSGO2 has now 

been succeeded by the most detailed level of soil mapping provided by the NRCS, the 

Soil Survey Geographic (SSURGO) Database (Soil Survey Staff, 2009).  SSURGO 

provides a county-level, more detailed inventory of soils for most of the contiguous 

United States, and is also provided in the form of geo-referenced vector and tabular 

digital data.  Utilization of SSURGO as an alternative to STATSGO2 has the potential to 

not only better represent the physical properties of a basin (Anderson et al., 2006), but 

may lead to improvements in hydrologic simulations as well (Anderson et al., 2006; Di 
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Luzio et al., 2004; Wang and Melesse, 2006).  Thus, in an attempt to improve simulation 

results, SSURGO soils were utilized wherever possible for each of the study watersheds. 

In order to represent SSURGO soils in the SWAT model, a preprocessing tool 

was implemented.  The preprocessing tool was originally developed for a similar SWAT 

interface, AvSWAT (Di Luzio et al., 2004; Peschel et al., 2006), and was modified for 

ArcSWAT as set forth by Sheshukov et al. (2009).  However, due to the fine-scale 

resolution and continuing development of the SSURGO data, its extent does not cover the 

entire United States.  Unfortunately, the SSURGO data has missing features which 

included portions of the four study watersheds in Colorado.  In areas where SSURGO 

data was unavailable, the soil attributes were taken from STATSGO2, which created a 

SWAT model with the most detailed soil data available.  Table 2.3 displays the difference 

in the number of unique soil types between STATSGO2, and the combination of 

SSURGO/STATSGO2 utilized in the analysis. 

Table 2.3 – Difference in resolution between soil datasets, as expressed by the number of 
unique soil types within each of the study basins. 

Watershed STATSGO2 
Soil Types 

SSURGO / 
STATSGO2 
Soil Types 

Cache la Poudre 10 164 
Gunnison 25 248 
San Juan 46 348 
Yampa 25 317 

 
With the land use and soil data input process complete, unique HRUs were 

defined and distributed throughout each subbasin.  As previously stated, HRUs are areas 

with unique combinations of soil and land use, and those areas are lumped together 

within a subbasin to increase computation efficiency of the model.  The same HRU may 

be distributed across a subbasin, depending on the distribution of soil and land use, in 
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areas that are not adjacent.  The number of HRUs in a subbasin is determined by the 

number of unique combinations of soil and land use that are present.  Threshold levels for 

both soil and land use may be implemented to avoid distribution of very small HRUs 

with little effect on model simulations.  The ArcSWAT Documentation (Winchell et al., 

2007), recommends a land use threshold of 20% and a soil threshold of 10% as default 

values.  The land use threshold specifies a value below which the areal coverage of a 

given land use is neglected.  For example, the 20% land use threshold indicates that all 

land uses that cover less than 20% of a subbasin will be neglected, of which the area will 

be reapportioned to all remaining land uses.  The soil threshold eliminates minor soils 

within each remaining land use whose areal coverage is less than the value.  Thus, a 10% 

threshold eliminates all soils which cover less than 10% of a given land use.  In order to 

avoid oversimplifying the complex distribution of soil and land use within the study 

watersheds of Colorado, thresholds of 10% and 5% were applied to land use and soils, 

respectively, which limited the number of HRUs, land use types, and soil types modeled 

in each basin (Table 2.4). 

Table 2.4 – Distribution of subbasins, HRUs, and types of land use and soil (before and 
after application of thresholds), within each of the study basins. 

Watershed Subbasins HRUs1 Land Use Types2 Soil Types3 

Pre-4 Post-5 Pre-4 Post-5 Pre-4 Post-5 

Cache la Poudre 33 4,269 350 14 6 164 72 
Gunnison 39 7,259 518 15 7 248 125 
San Juan 25 5,677 316 15 8 348 110 
Yampa 29 9,170 336 15 5 317 122 
1Number of HRUs created with SWAT LULC classification derived from NLCD 2001. 
2Number of SWAT LULC types. 
3Number of soil types derived from the combination SSURGO/STATSGO2 coverage. 
4Pre- refers to pre-threshold application. 
5Post- refers to post-threshold application. 

 
The SWAT model requires climatic data in the form of daily values of 

precipitation, maximum temperature, minimum temperature, solar radiation, relative 
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humidity, and wind speed.  This data may be provided to the model in one of two ways; 

through generation of the data by the internal WXGEN weather generator model 

(Sharpley and Williams, 1990), or through provided measurements taken at nearby 

weather stations.  Daily measurements of precipitation, maximum temperature, and 

minimum temperature from stations in and around the study watersheds were available 

from the National Climatic Data Center (NCDC) archives (Satellite and Information 

Service, 2009) and the NRCS Snowpack Telemetry (SNOTEL) Data Network (Natural 

Resources Conservation Service, 2009).  The stations were selected based on proximity 

to/within the study basin, type of data provided (e.g. precipitation, maximum 

temperature, minimum temperature), length of record, and completeness of record 

(Appendix B).  The WXGEN weather generator model was utilized to fill in missing 

daily values of precipitation, maximum temperature, and minimum temperature, as well 

as to simulate those variables not measured at stations including solar radiation, relative 

humidity, and wind speed.  Details regarding implementation and use of the WXGEN 

weather generator model within SWAT may be found in the SWAT2005 Theoretical 

Documentation (Neitsch et al., 2005). 

 
INCORPORATION OF ELEVATION BANDS & LAPSE RATES 

The daily values of precipitation and temperature for a particular subbasin are taken from 

the meteorological station closest to the centroid of that subbasin.  This implies an 

assumption that temperature and precipitation of a given day are not only distributed 

uniformly across an individual subbasin, but also across all subbasins that share a 

meteorological station.  However, in watersheds which exhibit a steep gradient in 

elevation over small areas, such as the mountainous watersheds of Colorado, this 
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assumption may be invalid due to orographic effects.  Elevation bands may be 

incorporated in the SWAT model during development, when necessary, in order to 

improve simulation of orographic effects on atmospheric and hydrologic processes 

(Fontaine et al., 2002).   

Each subbasin within the SWAT model may be topographically discretized into a 

set of up to ten elevation bands.  For each band, the average elevation and the percentage 

of subbasin area within that band must be specified.  In order to distribute the orographic 

effects on precipitation and temperature within a subbasin as much as possible, the 

maximum number of ten elevation bands per subbasin was utilized in each of the 

watershed models.  The elevation bands were created by dividing the overall relief in 

each subbasin (maximum elevation minus minimum elevation) by ten, which resulted in 

a set of ten, equal-interval bands.  The temperature and precipitation of each elevation 

band in a subbasin are computed as: 

𝑇𝐸𝐵 = 𝑇 + (𝑍𝐸𝐵 − 𝑍)
𝑑𝑇
𝑑𝑍

 
   Equation 2.8 

 

𝑃𝐸𝐵 = 𝑃 + (𝑍𝐸𝐵 − 𝑍)
𝑑𝑃
𝑑𝑍

 
Equation 2.9 

 
where TEB is the adjusted elevation band temperature (⁰C), T is the meteorological station 

temperature (⁰C), ZEB is the elevation of the center of the elevation band (m), Z is the 

elevation of the meteorological station (m), dT/dZ is the temperature lapse rate (⁰C/m), 

PEB is the adjusted elevation band precipitation (mm), P is the meteorological station 

precipitation (mm), and dP/dZ is the precipitation lapse rate (mm/m). 
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MODELING CONSIDERATIONS FOR MOUNTAINOUS WATERSHEDS 

Previous applications of SWAT have showed that the model does not always simulate 

streamflow accurately in basins with freezing temperatures where snow accumulation and 

snowmelt processes dominate a majority of the year, such as in Pennsylvania (Peterson 

and Hamlett, 1998) and in Upstate New York (Tolson and Shoemaker, 2004; Tolson and 

Shoemaker, 2007).  Thus, several modifications related to frozen soils and snowfall and 

snowmelt processes were incorporated into the SWAT model source code as set forth in 

Tolson and Shoemaker (2004).  

(i) The default SWAT approach for handling soil water above field capacity in 

frozen soils is to assume that no subsurface lateral flow occurs, that the soil layer can 

hold excess water until soil saturation is reached, and that any additional percolate from 

above a frozen soil layer passes through the layer to become percolate to the subsequent 

layer.  This approach results in the routing of all rainfall on a frozen and saturated soil 

layer directly to groundwater, which delays the transfer of water to the stream.  A simple 

modification to the SWAT source code was made such to allow the model to predict 

subsurface lateral flow in frozen soils (Tolson and Shoemaker, 2004).  Algorithms for 

partitioning of water into percolate and subsurface lateral flow were made no longer 

dependent on whether or not the soil is frozen. 

(ii) SWAT utilizes average monthly maximum and minimum temperatures to 

generate weather with an internal weather generator, WXGEN, which fills in missing 

values at meteorological stations.  Each subbasin then utilizes the precipitation, 

maximum temperature, and minimum temperature values from the meteorological station 

closest to its centroid for simulation.  It was found that for scenarios where elevation 
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bands and lapse rates were implemented in the model, the average monthly maximum 

and minimum temperatures in a subbasin were not adjusted for orographic effects 

(Tolson and Shoemaker, 2004).  Therefore, the SWAT source code was modified such 

that the average monthly maximum and minimum temperatures of a subbasin were 

adjusted using the temperature lapse rate and difference between the average elevation of 

the subbasin and the elevation of the meteorological station. 

(iii) The SWAT default logic for estimating snowmelt was found to be 

inconsistent depending on whether elevation bands are utilized (Tolson and Shoemaker, 

2004).  For configurations that do not incorporate elevation bands, SWAT allows both 

snow accumulation and snowmelt to occur on the same day.  Conversely, with elevation 

bands implemented, SWAT does not allow for both accumulation of snow and snowmelt 

to occur on the same day.  A final modification to SWAT utilized logic from the portion  

of the source code which simulated elevation bands and applied it to the setting with 

elevation bands, which allowed for both snowfall and snowmelt to occur on the same day 

regardless of whether elevation bands were implemented in the model.   

      

2.2.3 NATURALIZED STREAMFLOW 

Diversions, transfers (both inter- and intra-basin), storage reservoirs, and irrigation 

canals/ditches are prevalent in the study watersheds of Colorado.  A majority of the 

precipitation in these basins falls as snow in the winter months, and is stored as snowpack 

at high elevations until the annual spring melt occurs.  Therefore, in order to support both 

agricultural and municipal use across the state (and other states), manmade structures are 

required to store and distribute the annual snowmelt-dominated hydrograph to other times 
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of the year when the demand of water exceeds its availability.  Any reasonable 

representation of hydrologic processes in the study watersheds must take into account the 

impacts of such structures, either by direct representation of the features within the model 

itself, or by removing the effect of such features out of the streamflow record, resulting in 

what are referred to as naturalized streamflows.  For example, one study in the Cache la 

Poudre River basin described several effects resulting from flow modifications including 

delayed hydrograph rise (in spring), decreased peak flows, and lower winter baseflows, 

with an average net reduction of 56 million cubic meters, or 23% of annual streamflow 

between 2000 and 2006 (Richer, 2009). 

 For each of the four study basins, the SWAT models were calibrated to monthly 

naturalized streamflows from multiple sites within the watersheds.  While the outlet of 

the entire watershed was used as one of the calibration sites for each of the study basins, 

other sites within the watershed were chosen based on availability of data at subbasin 

outlets created in the modeling set up (Figure 2.1).  Naturalized streamflows at the 

monthly time-step were obtained from Colorado’s Decision Support Systems (CO 

Division of Water Resources and CO Water Conservation Board, 2010) for the Gunnison 

(1/1990-12/2005), San Juan (1/1990-12/2005), and Yampa (1/1990-12/2004) River 

basins.  Naturalized flow data for the Cache la Poudre River basin (1/1990 – 12/2005) 

were obtained from the Northern Colorado Water Conservancy District (Northern Water, 

2009).  Graphs of naturalized versus measured streamflows at the USGS gauges used for 

monthly calibration may be found herein (Figure 2.7) for the watershed outlets, while 

graphs for sites within the watersheds may be found in Appendix A. 

 



 

 
 

39 

 
(a)                                                                                                     (b) 

 
(c)                                                                                                      (d) 

Figure 2.7 – The impact of diversions, transfers, and reservoirs on streamflow, as shown by a comparison between naturalized 
streamflow and measured streamflow recorded at (a) USGS 06752000 – Cache la Poudre River, (b) USGS 09128000 – Gunnison 
River, (c) USGS 09355500 – San Juan River, and (d) USGS 09251000 – Yampa River. 
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2.2.4 CALIBRATION & TESTING 

The ability of a hydrologic model to accurately simulate physical phenomena, especially 

a comprehensive, semi-distributed model in a complex mountain watershed, depends on 

the knowledge and skill of the user to both identify and provide values for the set of 

parameters that result in the most accurate model outputs, a process referred to as manual 

calibration.  Thus, the manual calibration process may not only be subjective, depending 

on the user, but may also be an extremely time consuming process, depending on the 

complexity of the model and number of parameters.  In order to avoid the difficulties and 

subjectivity associated with the manual calibration process, automated methods have 

been developed to calibrate hydrologic models, including specific applications to SWAT, 

of which two unique methods will be analyzed in this study.   

 
SCE-UA ALGORITHM 

One of the parameter optimization procedures consisted of an application of the Shuffled 

Complex Evolution - University of Arizona (SCE-UA) method, as first proposed by 

Duan et al. (1993; 1992) and reviewed in Duan et al. (1994).  The SCE-UA procedure 

combines the concept of the simplex procedure (Nelder and Mead, 1965) with concepts 

of controlled random search (Price, 1987), competitive evolution (Holland, 1975), and 

complex shuffling (Duan et al., 1992).  The SCE-UA methodology begins with a random 

sample of a number of points from a feasible parameter space, as defined by the range of 

allowable parameter values (Appendix B).  The sampled points are sorted based on an 

objective function value, and are further partitioned into complexes containing a fixed 

number of points.  Each complex is then evolved, separately, by a defined number of 

evolution steps, and complex shuffling is performed.  Convergence is satisfied when 
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either the maximum number of trials has been met, or when improvement of the objective 

function value is less than a defined percentage within shuffling loops.   

Previous applications of SCE-UA as a calibration procedure for streamflow 

parameterization have proven to be successful in the SWAT modeling framework and 

include studies in two central German catchments (Eckhardt and Arnold, 2001; Eckhardt 

et al., 2005), the Luohe River basin (Zhang et al., 2007), and the Dill catchment in mid-

Hesse, Germany (Pohlert et al., 2005).  Additional studies documenting the application of 

SCE-UA in SWAT may be found in Gassman et al. (2007). 

 
GIBBS SAMPLER ALGORITHM 

The performance of the Gibbs Sampler Algorithm (GSA), a Markov Chain Monte Carlo 

(MCMC) method, was compared with the performance of SCE-UA to establish 

guidelines for the use of these methods for calibration of watershed models in 

mountainous basins.  The MCMC methods, as a whole, are generally distinguished from 

other Monte Carlo numerical optimization techniques in that they are iterative in nature, 

relatively easy to customize and implement, and are able to handle high dimensionality 

problems without slowing convergence (Givens and Hoeting, 2005).  The basic premise 

behind all MCMC methods is the construction of an irreducible, aperiodic Markov chain 

which has the target distribution as its equilibrium, or stationary distribution.  A variety 

of methods have been proposed for the construction of such chains, with one of the 

simplest, and arguable the most popular classes of methods being based on the 

Metropolis algorithm (Metropolis et al., 1953).  GSA is a special application of the 

Metropolis algorithm that sequentially samples each parameter’s conditional distribution 

in order to create a Markov chain, which makes it specifically tailored to problems with 
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high dimensionality and multiple target distributions.  The basic GSA utilized in this 

study simply starts in a random point of hyper-cubic parameter space, and adjusting one 

parameter at a time, moves through space until convergence is satisfied. 

 
COMPARISON OF OPTIMIZATION METHODS 

In order to determine which optimization method is better suited for the study watersheds 

of Colorado, a side-by-side performance evaluation was made between the two 

techniques.  This comparison was made in each of the study basins, and utilized an 

identical initial parameter set and same number of runs for each method (2,500).  Thus, 

both convergence speed and the ability to obtain a local optimum were compared 

between the calibration techniques.  A third method was also compared, which combined 

both SCE-UA and GSA techniques.  Two-stage optimization routines that incorporate 

more than one method are rarely utilized, but one such study was found by Lin and 

Radcliffe (2006), who combined SCE-UA and a local search method based on a variant 

of the Levenberg-Marquart method to calibrate SWAT.  The two-stage calibration 

procedure in this study consisted of an initial 1,250 runs with SCE-UA.  The optimal 

parameter set from those 1,250 runs was taken and used as the initial parameter set for 

GSA, which was then ran for an additional 1,250 runs for a combined method total of 

2,500 runs.  Results from each of the three methods were then compared to determine if 

either of the three significantly outperformed the others in the mountainous headwater 

basins of Colorado. 
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ERROR STATISTICS 

Five error statistics were utilized to determine how accurately SWAT was representing 

hydrologic processes, through comparison of observed and simulated streamflows in each 

of the four study basins.  The relative error (RE) is a measure of goodness of fit between 

simulated and observed streamflows, and is expressed as a percentage by:      

𝑅𝐸 (%) =
∑ (𝑄𝑖 − Q�i )n
i=1
∑ 𝑄𝑖n
i=1

× 100  Equation 2.10 

 
where 𝑄𝑖 and 𝑄𝚤�  refer to the observed and simulated streamflows, respectively, and i 

refers to the time (month). 

The bias (BIAS) is a measure of whether or not simulated streamflows have a 

tendency of being above or below observed values.  A negative bias would result from 

overestimation of observed steamflows, while a positive bias would result from 

underestimation of streamflows.  The bias is calculated as: 

𝐵𝐼𝐴𝑆 =
1
𝑛
�(𝑄𝑖 − 𝑄𝚤� )
𝑛

𝑖=1

  Equation 2.11 

 
where n refers to the number of time steps under analysis.   

The root mean square error (RMSE) is a measure of the error between simulated 

and observed streamflows, with respect to both magnitude and timing, and is found as: 

𝑅𝑀𝑆𝐸 = �
1
𝑛
�(𝑄𝑖 − 𝑄�𝑖)2
𝑛

𝑖=1

   Equation 2.12 

 
The coefficient of correlation (R2) is a measure of how well the observed and 

simulated streamflows are correlated, and is defined as: 



 

44 
 

𝑅2 =
1

𝑛 − 1
�(

𝑄𝑖 − 𝑄𝑚𝑒𝑎𝑛

𝑠𝑄
)(
𝑄�𝑖 − 𝑄�𝑚𝑒𝑎𝑛

𝑠𝑄�
)

𝑛

𝑖=1 

    Equation 2.13 

 
where 𝑄𝑚𝑒𝑎𝑛 and 𝑄�𝑚𝑒𝑎𝑛 refer to the averages of the observed and simulated discharges, 

respectively, and  𝑠𝑄 and 𝑠𝑄�  refer to the standard deviations of the observed and 

simulated discharges, respectively. 

A final measure of goodness of fit that is commonly used in hydrologic modeling 

is the Nash-Sutcliffe efficiency coefficient (ENS).  Originally developed by Nash and 

Sutcliffe (1970), ENS is a measure of how well the plot of observed versus simulated 

streamflows fits the 1:1 line.  The coefficient is identified as: 

𝐸𝑁𝑆 = 1 −
∑ (𝑄𝑖 − 𝑄�𝑖)2𝑛
𝑖=1

∑ (𝑄𝑖 − 𝑄𝑚𝑒𝑎𝑛)2𝑛
𝑖=1

        Equation 2.14 

  
The ENS measure ranges between -∞ and 1, with 1 corresponding to perfect agreement. 

   
PERFORMANCE RATINGS 

Although all five error statistics were analyzed in this study, RE and ENS were considered 

the primary measures and used to rate the performance of the models.  A review of 

published literature revealed performance ratings of very good (ENS>0.75, |RE|<10%), 

good (0.65<ENS<0.75, 10%<|RE|<15%), satisfactory (0.5<ENS<0.65, 15%<|RE|<20%), 

and unsatisfactory (ENS<0.5, |RE| >25%) for monthly simulations of streamflow (Moriasi 

et al., 2007; Santhi et al., 2001). 

 
MULTISITE CALIBRATION AND TESTING 

Calibration of the SWAT models specifically refers to the fine-tuning of 30 streamflow 

parameters within their acceptable ranges in order to obtain simulation of monthly 

streamflows that closely agree with observed (naturalized) streamflows.  For each of the 
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study catchments, calibration to monthly naturalized flow was performed for a period of 

8 years (January 1, 1990 - December 31, 1997) after a 2 year warm-up period (January 1, 

1988 – December 31, 1989), which was implemented to adjust the initial storage 

conditions of the watersheds.  The calibration process was performed for multiple sites 

within each of the watersheds (except for the Cache la Poudre which only had naturalized 

flow for a single site) based on minimization of the objective function (f) defined as: 

𝑓 = 1 − 𝐸𝑁𝑆 =
1
𝑀
�

∑ (𝑄𝑖,𝑗 − 𝑄�𝑖,𝑗)2𝑛
𝑖=1

∑ (𝑄𝑖,𝑗 − 𝑄𝑚𝑒𝑎𝑛,𝑗)2𝑛
𝑖=1

𝑀

𝑗=1

     Equation 2.15 

 
where M reflects the number of calibration sites within each watershed (i.e. M equals 1 in 

the Cache la Poudre watershed and M equals 3 for all other study basins).  Due to the 

period chosen for calibration, the SWAT models developed for this period utilized NLCD 

1992 as an input for land use/land cover. 

The three optimization methods previously described were run for 2,500 

evaluations.  In addition, as the results show it, it appears as if convergence was met by 

2,500 runs.  However, in an attempt to parameterize the models as well as possible, a 

fourth automatic calibration procedure was used.  This procedure used the best parameter 

set from SCE-UA after 2,500 runs, and applied it to GSA, which was run for an 

additional 2,500 runs for a total of 5,000 trials.  The optimal parameter set was then 

chosen from the results of this procedure.  Measures other than the objective function f, 

including RE, BIAS, RMSE, and R2, were analyzed for performance of the model.  

Specifically the calibration run that resulted in the lowest RE, in addition to an ENS 

comparable to the best calibrated ENS, was chosen as the optimal parameter set.  This 
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ensured that the error between simulated and observed streamflows was minimized while 

still maintaining a correlation comparable to the optimal objective function. 

Testing, or validation, of the SWAT model refers to the application of an optimal 

parameter set (obtained from calibration) to a period of time other than that of calibration, 

and is often used as evidence for the performance of the model.  In this application, 

testing of the SWAT models was performed by utilizing the set of parameters which 

resulted in the best simulation from the calibration period, and applying them to the 

models for a period immediately following the calibration period.  In the Cache la 

Poudre, Gunnison, and San Juan River basins the model was validated for a period of 8 

years (January 1, 1998 – December 31, 2005).  Due to unavailability of naturalized 

streamflow for latter half of 2005, the Yampa River basin model was validated for a 

period of 7 years immediately following the calibration procedure (January 1, 1998 – 

December 31, 2004).  For validation, separate SWAT models different from the models 

used during the calibration period were developed which utilized NLCD 2001 as an input 

for land use/land cover, and therefore required a 2 year warm-up period (January 1, 1996 

– December 31, 1997) before testing. 

 

2.3 RESULTS & DISCUSSION 

Three techniques of parameter optimization were compared for performance during 

calibration of the hydrologic model SWAT in four separate watersheds of Colorado.  

Results indicate that GSA outperformed SCE-UA in three watersheds, and similar results 

were obtained in the fourth.  GSA appeared to converge to an optimal solution faster than 

GSA, in addition to finding a better overall solution.  The optimal parameter sets from 
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eight years of calibration over the 1990 – 1997 period were obtained, and tested for an 

addition seven (Yampa) or eight years over the 1998 – 2005 period.  Simulated monthly 

streamflows at multiple sites within each of the watersheds compared favorably to 

observed (naturalized) streamflows, with ENS values of 0.70 to 0.90 obtained at the 

watershed outlets over the calibration period.  Several dominant hydrologic components 

including subsurface lateral flow, surface runoff, baseflow, and evapotranspiration were 

quantified, both over an annual and monthly basis, which showed their relative 

importance within semi-arid mountainous watersheds characteristic of the western United 

States. 

 

2.3.1 CALIBRATION & TESTING 

 
COMPARISION BETWEEN OPTIMIZATION METHODS 

Two separate optimization techniques, SCE-UA and GSA, were compared for 

performance in a SWAT framework applied to four watersheds in Colorado.  The 

progression of the two calibration procedures for each of the watersheds is shown in 

Figure 2.8, below, in addition to the performance of a method which utilized both 

techniques (SCE-UA for 1,250 runs followed by GSA for 1,250 runs).   
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    (a)                                                              (b)        

 

    (c)                                                               (d) 

Figure 2.8 – Comparison of the two calibration techniques and a third combined method 
for the (a) Cache la Poudre, (b) Gunnison, (c) San Juan, and (d) Yampa River basins.   
  

 
Table 2.5 presents the best objective function value at 500 model evaluation 

increments.  It is apparent that GSA outperforms SCE-UA in both convergence speed and 

ability to obtain a better solution in the majority of study watersheds.  Two notable 

exceptions occurred in the San Juan and Yampa watersheds.  In the San Juan watershed, 

SCE-UA was able to obtain a better solution overall, but GSA was able to converge much 

faster (ENS = 0.833 after 500 GSA runs compared to ENS = 0.724 after 500 SCE-UA 

runs).  In the Yampa basin, both methods achieved comparable results and neither was 

determined to significantly outperform the other.  
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Table 2.5 - Progression of individual calibration techniques.  
Watershed Method 500 

Runs 
1000 
Runs 

1500 
Runs 

2000 
Runs 

2500 
Runs 

Cache la 
Poudre 

SCE-UA 0.5657 0.7324 0.7635 0.7997 0.8164 
GSA 0.8223 0.8466 0.8616 0.8810 0.8811 
Combined 0.5657 0.7324 0.8385 0.8716 0.8736 

Gunnison 
SCE-UA 0.5868 0.7728 0.8026 0.8123 0.8242 
GSA 0.8352 0.8587 0.8727 0.8733 0.8800 
Combined 0.5868 0.7728 0.8266 0.8538 0.8625 

San Juan 
SCE-UA 0.7235 0.8019 0.8393 0.8520 0.8582 
GSA 0.8329 0.8411 0.8421 0.8465 0.8557 
Combined 0.7235 0.8019 0.8543 0.8597 0.8603 

Yampa 
SCE-UA 0.7526 0.7529 0.7633 0.7727 0.7736 
GSA 0.7459 0.7576 0.7774 0.7837 0.7842 
Combined 0.7526 0.7529 0.7760 0.7813 0.7816 

 
From the results the usefulness of the third method that combined SCE-UA and 

GSA might be questioned, as it rarely outperformed the other two methods.  The one 

instance when the combined method did outperform either standalone technique was in 

the San Juan watershed, but results indicated only a marginally superior performance.  

The theory behind the combination of the two methods is to take advantage of the 

strengths in each.  SCE-UA is a proven global optimization algorithm, which has been 

applied in many areas of modeling and is thus well documented.  GSA, on the other hand, 

is more of a local optimization algorithm which is able to handle higher dimensionality 

parameter space without slowing convergence, and does not seem to be as well 

documented in application.  After analysis of the comparisons between methods, it was 

certainly appealing to solely use GSA for optimization of SWAT.  However, in doing so 

there runs the risk of getting caught in a local “pit” that is not the true unique global 

optimum (assuming one exists).  Thus, SCE-UA was utilized for the first 1,250 runs not 

to obtain such a global optimum, but to assist in finding a reasonable starting point for the 

more powerful GSA algorithm.  This is not a novel approach in automatic calibration as it 
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has been previously applied (with a different second-stage algorithm used) to SWAT in a 

northern Georgia watershed (Lin and Radcliffe, 2006).      

 
OPTIMAL PARAMETER SETS 

In each watershed, a set of 30 SWAT streamflow parameters was adjusted through 

automatic calibration techniques.  The optimal parameter set which resulted in monthly 

simulations of streamflow that most closely matched observed (naturalized) streamflows 

was chosen based on analysis of performance measures, with particular attention paid to 

ENS and RE.  Although 30 parameters were adjusted in calibration, only some of them 

bear significant influences on streamflow outputs of the model.  The importance of model 

parameters reflects the dominance of physical processes that they represent.  A previous 

study involving a sensitivity analysis of SWAT parameters in the four basins of this study 

showed both sensitivity of and interaction effects between parameters representing 

groundwater and snow processes (Sanadyha, 2009).  Table 2.6, below, displays the 

optimized value from a selection of these parameters in each study basin. 

Table 2.6 – Calibrated SWAT streamflow parameters for each of the study basins. 
Parameter Cache la Poudre Gunnison San Juan  Yampa 
SFTMP (⁰C) 2.480 4.912 2.014 4.968 
SMTMP (⁰C) 3.331 3.415 3.703 3.131 
SNOCOVMX (mm) 299.450 625.833 646.677 554.757 
SNO50COV 0.569 0.304 0.323 0.441 
ALPHA_BF (days) 0.245 0.285 0.524 0.573 
CH_KII (mm/hr) 264.347 102.834 430.087 428.686 
CH_KI (mm/hr) 299.398 299.379 299.619 299.840 

 
 The first four parameters in Table 2.6 correspond to snow-related processes, and 

include the snow fall temperature (SFTMP), the threshold temperature for snowmelt 

(SMTMP), the snow water equivalent corresponding to 100% snow cover 
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(SNOCOVMX), and the fraction of SNOCOVMX resulting in 50% snow cover 

(SNO50COV).  The relative values of these parameters were mostly consistent between 

the study basins, which suggest the dominant hydrologic processes within each of the 

basins are similar.   Two notable exceptions include SFTMP, which was approximately 

twice as high in the Gunnison and Yampa basins than in the Poudre and San Juan basins, 

and SNOCOVMX, which was significantly lower in the Poudre basin than the other 

three.  Additionally, the last four parameters in the table correspond to the flow of water 

either on the surface or underground, and include the baseflow recession constant 

(ALPHA_BF), the effective hydraulic conductivity of the alluvium in the main channel 

reach (CH_KII) and the effective hydraulic conductivity of the tributary channels 

(CH_KI).  The values obtained for ALPHA_BF within each study watershed indicate 

relatively slow groundwater flow responses to aquifer recharge, as expected in large and 

geologically complex watersheds.  The values of CH_KI and CH_KII are relatively high 

and correspond to channels with higher loss rates often composed of coarse materials, 

such as the headwater streams of Colorado.  

   
STREAMFLOW SIMULATIONS 

The optimal parameter sets found for each study basin resulted in streamflow simulations 

with nearly all satisfactory performance over the calibration and testing periods.  Figure 

2.9 displays the simulated and observed streamflows at each of the study watershed 

outlets over the study period, while Table 2.7 presents a summary of supplementary error 

statistics. Additional figures presenting simulated and observed streamflows at sites 

within each watershed may be found in Appendix A.   
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                                                            (a)             (b) 

 
                                                            (c)                (d) 
Figure 2.9 – A time series comparing SWAT streamflow simulations with naturalized streamflows at each of the study watershed 
outlets (a) Cache la Poudre – USGS 06752000 (b) Gunnison – USGS 09128000 (c) San Juan – USGS 09355500 (d) Yampa – USGS 
09251000. 
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Table 2.7 – Error statistics between observed and simulated monthly streamflows for both the calibration and validation periods.  
Performance ratings include very good (green), good (orange), satisfactory (yellow), and unsatisfactory (red shade). 

  Calibration Period Validation Period 
Basin USGS ID RE BIAS RMSE R2 ENS RE BIAS RMSE R2 ENS 

Cache la Poudre 06752000 -4.817 -0.546 4.549 0.967 0.926 -2.987 -0.274 7.172 0.848 0.698 

Gunnison 
09128000 -3.881 -2.314 24.360 0.995 0.885 -15.920 -6.850 24.620 0.935 0.704 
09110000 1.587 0.163 5.275 0.961 0.832 -8.115 -0.569 4.728 0.965 0.455 
09126500 2.258 0.103 1.777 0.951 0.904 -3.648 -0.131 2.201 0.891 0.684 

San Juan 
09355500 9.655 4.793 20.140 0.934 0.860 8.353 3.152 15.650 0.946 0.883 
09341500 -1.268 -0.063 2.225 0.944 0.880 -12.100 -0.467 2.555 0.922 0.742 
09339900 -10.130 -0.280 1.410 0.943 0.853 -10.220 -0.220 0.872 0.969 0.917 

Yampa 
09251000 -5.114 -2.606 16.440 0.978 0.951 -6.281 -2.611 17.940 0.959 0.903 
09249750 -32.560 -2.107 3.870 0.952 0.849 -24.710 -1.349 3.562 0.923 0.794 
09237500 22.230 0.789 1.723 0.899 0.710 26.130 0.776 1.393 0.891 0.631 
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Error statistics between simulated and observed (naturalized) streamflows (Table 

2.7) were nearly all considered satisfactory.  At the outlet of each watershed ENS varied 

between 0.86 and 0.95 during the calibration period and between 0.70 and 0.90 during the 

validation period.  Generally, the models performed slightly better during the calibration 

period, but performance measures from the validation period indicated a satisfactory level 

of model parameterization at nearly all sites.  Overall, the results compare favorably with 

those from other SWAT simulations of monthly streamflow in mountainous watersheds 

including an ENS = 0.71 over an 11 year period in a small watershed in Colorado 

(Lemonds and McCray, 2007), ENS = 0.86 over a 6 year period in the Upper Wind River 

basin of Wyoming (Fontaine et al., 2002), and ENS = 0.79 over a 4 year period in the Dry 

Creek Experimental Watershed of Idaho.  This is consistent with the finding of Ahl et al. 

(2008), who concluded that SWAT is able to predict hydrologic processes in snow-

dominated mountain watersheds with performance levels similar to those from the 

agriculture-dominated basins it was originally designed for.  

In basins with multiple calibration points, a range of performance between sites 

was observed.  Typically, the outlet of the entire basin typically had better error statistics 

than sites within the watershed, as shown in the Yampa basin with ENS = 0.95 at the outlet 

and ENS = 0.85 and 0.71 at two sites within.  One reason for a discrepancy between 

results at different sites within a basin may have to do with the rectification of spatial 

scales within the framework of a watershed model.  When a parameter is defined it is 

often applied over the entire watershed, regardless of the size and characteristics of the 

computational unit.  This is the case for the majority of parameters in SWAT except for a 

select few (marked by an asterisk in Table 2.2) that have different values depending on 
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the soil and land use characteristics of the respective HRU (e.g. CN_F).  The results 

showing better model performance at the outlet of the watershed relative to performance 

within individual subbasins are therefore unsurprising.  This confirms that the application 

of a single parameter value represented over an entire watershed will not necessarily be 

appropriate for the smaller scale, heterogeneous HRU and subbasin areas. 

  

2.3.2 QUANTIFICATION OF HYDROLOGIC PROCESSES 

The simulations from each SWAT model were analyzed on a monthly basis in order to 

determine and quantify dominant hydrologic processes occurring in the mountainous 

headwater catchments of Colorado.  Results were taken from simulations over a period of 

16 years (1990 – 2005) in the Cache la Poudre, Gunnison, and San Juan River basins and 

from simulations ran over a period of 15 years (1990 – 2004) in the Yampa River basin. 

     
DOMINANT PROCESSES IN MOUNTAIN WATERSHEDS 

Figure 2.10 displays the average annual proportion of precipitation that went to ET, gross 

water yield, and other losses during the 16 year (15 year in Yampa) period of study.  The 

amount of basin-averaged annual precipitation varied among study watersheds from 

approximately 475 mm in the Cache la Poudre watershed to nearly 660 mm in the Yampa 

watershed.  Due to the location of the Poudre watershed on the eastern side of the 

Continental Divide, it had the lowest average annual precipitation out of all study 

watersheds.   

 Annual average percentages of precipitation that went to ET ranged between 55% 

in the Gunnison River basins to 65% in the Cache la Poudre River basin.  Other losses 

accounted for between 3% and 12% of annual precipitation, and include soil water 
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storage and contribution to the deep aquifer, which is assumed not to contribute to 

streamflow within the watershed and is therefore lost to the system in SWAT.  Typical 

gross water yield in each basin was on average between 30% and 38% of annual 

precipitation.  However, it is noted that gross water yield was quantified before 

transmission losses were removed.  Transmission losses represent the movement of water 

from the stream channel to the shallow aquifer, and are typically larger in areas with 

ephemeral and/or intermittent streams and lower groundwater tables.  Thus, the net yield 

is the amount of water that leaves the basin and would be calculated by subtracting 

transmission losses from gross yield.  

 

 

Figure 2.10 – Hydrologic budgets displaying the fate of precipitation in the (a) Cache la 
Poudre (b) Gunnison (c) San Juan and (d) Yampa River watersheds.  Each hydrologic 
component was averaged over an annual basis from 1990 – 2005 (1990 – 2004 in 
Yampa).
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 Figure 2.11 displays the average annual proportion of gross yield that came from 

surface runoff, subsurface lateral flow, and baseflow (groundwater contribution to the 

stream).  It is evident that subsurface lateral flow is the dominant process that provides 

between 64% and 82% of the water to gross basin yield on an annual basis in the study 

watersheds of Colorado. 

 
                                     (a)                                                               (b) 

 
                                    (c)                                                                 (d) 
 
Figure 2.11 – Average annual contribution of three major hydrologic processes to the 
gross water yield in the (a) Cache la Poudre, (b) Gunnison, (c) San Juan, and (d) Yampa 
River basins.  Each process was averaged over an annual basis from 1990 – 2005 (1990 – 
2004 in Yampa). 
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ANNUAL HYDROLOGIC CYCLE 

The long-term monthly distributions of precipitation, snowfall, ET, and total water yield 

within a year are presented in Figure 2.12 for each of the study basins in Colorado over 

the period 1990 – 2005 (1990 – 2004 for Yampa).  The monthly patterns occurring on an 

annual basis appear to be similar within all watersheds, and begin with the majority of 

precipitation falling as snow in the winter months (November – April), with little water 

yield anticipated during this time.  Peak yield was estimated to occur in May in all four 

watersheds, most likely due to the rapid temperature increase and resultant snowmelt 

which occurs in the spring.  The summer months were characterized by lower amounts of 

precipitation and decreasing yields, though ET continued to increase whit increasing 

temperatures over summer months.  Interestingly, precipitation in the fall months was 

moderate except for in the San Juan River basin, where on average a significant amount 

of rain fell during August – October and coincides with the monsoon season.  Both ET 

and water yield decreased over fall months, and precipitation began to fall as snow once 

again as a new calendar year approached.          
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                                                     (a)                                                                                                  (b) 

 
         (c)         (d) 
Figure 2.12 – Long-term monthly distribution of precipitation (mm), evapotransporation (mm), and total water yield (mm) in the (a) 
Cache la Poudre, (b) Gunnison, (c) San Juan, and (d) Yampa watersheds during the 1990 – 2005 (1990 - 2004 in Yampa) study period. 
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2.3.3 MODEL LIMITATIONS 

Figure 2.13 depicts the time series of monthly streamflow simulation error, while 

observed versus simulated streamflows at each of the watershed outlets are shown in 

Figure 2.14.  Similar figures corresponding to the other calibration sites within each 

watershed are presented in Appendix B.  Although performance measures indicated high 

model confidence in streamflow simulations, it was apparent that a systematic error 

concerning the recession of the annual snowmelt hydrograph was occurring in each of the 

study basins.  This consistently occurring error was most pronounced in the Gunnison 

River basin (Figures 2.12(b), and 2.13(b)), where the recession of the snowmelt 

hydrograph was overestimated during the summer months (May - November), and 

resultant baseflow during the winter months (December - April) was underestimated.  

The error is systematic in that it is repeatable on an annual basis, as seen in Figure 2.12 in 

all four study basins.  It appears as if the underestimation of streamflow in the winter 

months, which is most likely baseflow contributions from groundwater discharge, may 

have to do with the preceding overestimation of streamflow in the late spring and 

summer.  One speculation for the cause of this is that SWAT may not be holding enough 

of the water from snowmelt in the aquifer, for long enough.  Regardless of the cause, this 

shortcoming may be attributable to either a process misrepresentation within the SWAT 

logic or to a faulty model parameterization (or a combination of the two), and it is 

suggested that future work be concentrated on the representation of snowmelt and 

groundwater processes in mountainous watersheds. 
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                                                       (a)           (b)  

 
                                                       (c)                                                                                                     (d) 
Figure 2.13 – A time series of streamflow simulation error (error = observed – simulated) at each of the study watershed outlets (a) 
Cache la Poudre – USGS 06752000 (b) Gunnison – USGS 09128000 (c) San Juan – USGS 09355500 (d) Yampa – USGS 09251000. 
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   (a)                                                                  (b) 

 
   (c)               (d) 
Figure 2.14 – A plot of observed versus simulated monthly streamflows at each of the 
study watershed outlets over the calibration and validation periods (a) Cache la Poudre – 
USGS 06752000 (b) Gunnison – USGS 09128000 (c) San Juan – USGS 09355500 (d) 
Yampa – USGS 09251000. 
 

 

2.4 CONCLUSIONS 

The suitability of the comprehensive, process-based hydrologic model SWAT was 

assessed in four mountainous headwater basins of Colorado.  Each model was developed 

utilizing detailed sets of geospatial data representing terrain, land use, soil, and climate.  

In order to alleviate the need to represent the complex systems of diversions, reservoirs, 

and irrigation canals within the study basins, the models were calibrated to naturalized 
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streamflow data.  Three separate automatic calibration techniques including SCE-UA, 

GSA, and a method which combined the two were objectively compared for performance 

in the study watersheds.  The automatic calibration techniques were applied at multiple 

sites within each watershed (except Cache la Poudre) to insure accurate parameterization 

representative of the entire watershed.  GSA appeared to outperform SCE-UA in three 

out of the four basins, with near equal performance achieved in the fourth.  The two-stage 

combination of SCE-UA and GSA was found to perform nearly as well as GSA alone, 

and was used (with a slight modification that included more model evaluations) for the 

final parameterization of the models.  Several error measures were calculated to 

determine the performance of the models in simulating monthly streamflows relative to 

observed (naturalized) streamflows.  The measures of performance, namely RE and ENS, 

resulted in a relatively high level of confidence in the models.  Several hydrologic 

components were quantified over the simulation period (1990 – 2005), and include 

precipitation, snow fall, ET, and resulting water yield.  Subsurface lateral flow was 

shown to be a dominant process in all the study basins, and contributed between 64% and 

82% of water to gross basin yields on an average annual basis.  The results of this study 

indicate an overall satisfactory level of performance of SWAT in modeling monthly 

streamflows and dominant hydrologic components in each of the study basins, but also 

show a need for improvement in representation of snowmelt and groundwater processes 

occurring in such mountainous watersheds.  
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CHAPTER 3: HYDROLOGIC RESPONSE TO CLIMATE CHANGE 

 

3.1 INTRODUCTION 

Freshwater is one of the most basic necessities required to sustain all forms of life on this 

planet.  Not only are freshwater resources needed to sustain living organisms, but access 

to them is needed for nearly all human activities.  In fact, the United Nations recently 

regarded access to safe freshwater as a universal human right (United Nations Committee 

on Economic, 2003).  However, access to freshwater, let alone safe and usable 

freshwater, is far from secure as the 21st century progresses.  More than one-sixth of the 

world’s population live in glacier- or snowmelt-fed river basins, where impacts of climate 

change, resulting from observed and projected increases in temperature and precipitation 

variability, will be potentially felt through alterations to availability of freshwater 

resources (Kundzewicz et al., 2007).  Not only is future climate change predicted to 

affect the mean hydrology of river basins, but it is also likely to affect the frequency and 

magnitude of extreme hydrologic events (Praskievicz and Chang, 2009).  Thus, in order 

to improve understanding of the processes involved in generation of freshwater resources, 

as well as predict potential future conditions of such supplies, scientists must rely on 

hydrologic models to simulate such complex systems (Praskievicz and Chang, 2009).  

 On a regional scale, the presence of mountainous terrain further complicates the 

representation of natural phenomena.  Inherent in the simulation of hydrologic processes 
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in such terrain, especially in the future, is a realization of the underlying connections 

between elevation-dependent snow processes and streamflow generation, and the role 

climate change and variability may play in disrupting and modifying such linkages.  

Snow cover plays an important role within the Earth’s hydroclimatic system due to its 

many  uniquely defining characteristics including low thermal conductivity, large spatial 

extent, seasonal amplitude, and longitudinal variation (Stewart, 2009).  In addition, many 

arid and semi-arid lowland areas around the world obtain surface water from precipitation 

that falls on the surrounding higher elevations, mainly in the form of snow.  Such is the 

case in the mountainous regions of western North America, where 50-70% of the 

precipitation may fall in the form of snow (Serreze et al., 1999), and the seasonal 

snowmelt of the spring and early summer may account for 50-80% of the total annual 

runoff (Stewart et al., 2004).  Observations through the 20th century have characterized 

several trends concerning snow-related processes and streamflow generation in these 

areas and, generally speaking, include a decrease in spring snowpack (Hamlet et al., 

2005; Mote et al., 2005), an earlier occurrence of snowmelt runoff (Cayan et al., 2001; 

Stewart et al., 2004), and a decrease in the ratio of snowfall to total annual precipitation 

(Knowles et al., 2006) due to an increase in observed winter and spring temperatures 

(Trenberth et al., 2007).  Such regionalized trends, however, do not produce consistent 

hydrologic responses at the watershed scale, which is due to localized heterogeneity in 

geography, latitude, elevation, vegetation, and climate (Stewart, 2009).   

 The climate in the state of Colorado is unlike that of any other area in the United 

States.  Characterized by high elevations and complex topography of the Rocky 

Mountains, the Colorado Plateau and the Continental Divide, the climate in Colorado 
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varies both spatially, across regions, as well as temporally, across years and decades (Ray 

et al., 2008).  Such heterogeneity leads to difficulties in both developing representative 

models and forecasting of weather and climate.  For instance, a recent study in the Upper 

Colorado River Basin predicted a multi-ensemble model average of a 6% decrease (from 

the 1950-1999 average baseline conditions) in runoff by the mid 21st century (2040-

2069), while individual model predictions varied anywhere from a 40% decrease to an 

18% increase in runoff over that same time period (Christensen and Lettenmaier, 2007; 

Ray et al., 2008).  In addition, while the impact of climate change on the water resources 

of the Colorado River has received the most attention, climate change is projected to 

impact all headwaters of the state.  Although the water delivered to the Upper Colorado is 

extremely important for the West as a whole, there is a need to direct localized attention 

to the watersheds of Colorado.  At a state level, the yield from these basins is heavily 

relied upon for agricultural, municipal, and recreational uses of which demands are only 

projected to increase in the future. 

 Existing studies concerning the impacts of climate change on the hydrology and 

water resources of Colorado have typically been undertaken at coarse spatial scales, with 

model grid cells ranging in size from as large as several hundred miles (e.g. Milly et al., 

2005), to as little as eight miles (e.g. Christensen and Lettenmaier, 2007).  Such studies 

have discerned the hydrologic response to climate change from General Circulation 

Model (GCM) output and macro-scale hydrologic models, respectively, and do not 

include comprehensive analyses of processes important at the watershed scale.  The 

overall goal of this study is to predict the impacts of climate change on the hydrology and 

water resources in Colorado, but to do so at a localized, watershed scale through use of a 
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comprehensive physically-based model.  Specifically, the four study watersheds of 

interest include the Cache la Poudre, Gunnison, San Juan, and Yampa River basins.  

Several objectives critical to the success of the research were (i) to develop a 

comprehensive, process-based watershed model for each of the study watersheds through 

incorporation of detailed watershed characteristics and necessary modifications for 

mountainous basins; (ii) to downscale, in space and time, an ensemble of climate 

projections in a manner which addresses both the error involved and uncertainty inherent 

in climate modeling through incorporation of numerous models and diverse emissions 

scenarios; and (iii) to objectively identify the direction and degree of potential impacts on 

water resources, namely water yield, in Colorado and associate specific climate 

projections with low and high conditions of freshwater availability. 

 
3.2 METHODS 

Typical approaches for projecting the hydrologic response to climate change include 

several pathways leading from GCM outputs to specific physical processes (e.g. 

streamflow), as outlined in Figure 3.1.  At a large, global scale the hydrology component 

of coarse-resolution General Circulation Models (GCMs) may be taken directly (e.g. 

Milly et al., 2005).  However, this is an atypical method for more local scale studies, 

where climate projections must be either hypothetically created through the application of 

incremental changes (Fontaine et al., 2002; Stonefelt et al., 2000) or unbiased and 

downscaled, either statistically or dynamically (e.g. Wood et al., 2004), for use in the 

regional or watershed setting.  Finally, to determine the implications of such downscaled 

projections to hydrologic response, the projections must be driven by either process-

based hydrologic models (e.g. Christensen and Lettenmaier, 2007) or by regression and 
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empirically-based statistical hydrology (e.g. Hoerling and Eischeid, 2007).  The approach 

taken herein is highlighted in orange, and includes forcing a process-based hydrologic 

model with future climatic data that have been statistically downscaled, both spatially and 

temporally, and unbiased from its original GCM output. 

 An extensive collection of 112 separate climate projections, composed of 16 

GCMs covering 3 emissions path scenarios, were obtained for the study.  The projections, 

characterized at a monthly time scale and 1/8⁰ spatial resolution, were first corrected for 

areal average to point bias.  This ensured that initial conditions of areal-averaged future 

climate projections were consistent with actual observations of precipitation and 

temperature at a given meteorological stations within the area.  Next, each scenario was 

temporally downscaled to a daily time step using a resampling and scaling/incrementing 

technique.  The final climate simulations, downscaled to a point location and daily time-

step, were used to run the process-based Soil and Water Assessment Tool (SWAT) for a 

period of 90 years from 2010 – 2099.  The SWAT model specific to each study 

Statistical Dynamical 

GCM 

Hypothetical 
Scenarios 

GCM Hydrology 

Hydrologic 
Response 

Bias-Correction 
Downscaling 

Climate Drivers 
(Precip. & Temp.) 

 

Process-Based 
Models 

Statistical 
Hydrology 

Figure 3.1 - Several general approaches for discerning the impacts of climate change 
on hydrologic response with the approach taken in this study shaded in orange.  Figure 
modified after Ray et al. (2008). 
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watershed was calibrated and tested over a period of 16 years (1990 – 2005), and further 

details regarding development, calibration, and testing of the model may be found in the 

preceding chapter.  Each model was then driven with the downscaled projections of 

precipitation and temperature, for a total of 112 simulations in each of the four 

watersheds, and the results were analyzed for hydrologic response to climate change. 

 

3.2.1 FUTURE CLIMATE PROJECTIONS 

 
GENERAL CIRCULATION MODELS AND EMISSIONS PATH SCENARIOS 

The World Climate Research Programme’s (WCRP’s) Coupled Model Intercomparison 

Project phase 3 (CMIP3) multi-model dataset provides a broad set of climate projections, 

which include both a multitude of GCMs and range of emissions path scenarios.  The 

CMIP3 dataset represents the largest and most comprehensive international global 

coupled climate model [atmospheric-ocean general circulation model (AOGCM)] 

experiment and multi-model analysis effort ever attempted, with initial participation of 16 

modeling groups representing 11 countries who produced 23 models for assessment 

(Meehl et al., 2007).  Of the 23 GCMs embodied in the CMIP3 dataset, 16 were utilized 

for this study and represented work of 14 modeling groups from 10 countries (Table 3.1). 
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Table 3.1 – Characteristics of the 16 GCMs utilized in this study.

Modeling Group Country Name Runs Primary Reference A2 A1B  B1  

Bjerknes Centre for Climate Research  Norway BCCR-
BCM2.0   1 1 1 (Furevik et al., 2003) 

Canadian Centre for Climate Modeling & 
Analysis  Canada CGCM3.1 

(T47)  5 5 5 (Flato and Boer, 2001) 

Meteo-France / Centre National de Recherches 
Meteorologiques France CNRM-CM3  1 1 1 (Salas-Mélia et al., 2005) 

CSIRO Atmospheric Research Australia CSIRO-
Mk3.0  1 1 1 (Gordon et al., 2000) 

US Dept. of Commerce / NOAA / 
Geophysical Fluid Dynamics Laboratory USA GFDL-

CM2.0  1 1 1 (Delworth et al., 2006) 

US Dept. of Commerce / NOAA / 
Geophysical Fluid Dynamics Laboratory USA GFDL-

CM2.1  1 1 1 (Delworth et al., 2006) 

NASA / Goddard Institute for Space Studies USA GISS-ER  1 2 1 (Russell et al., 2000) 
Institute for Numerical Mathematics Russia INM-CM3.0  1 1 1 (Diansky and Volodin, 2002) 
Institut Pierre Simon Laplace France IPSL-CM4  1 1 1 (Marti et al., 2006) 
Center for Climate System Research (The 
University of Tokyo), National Institute for 
Environmental Studies, and Frontier Research 
Center for Global Change (JAMSTEC) 

Japan MIROC3.2 
(medres)  3 3 3 (Hasumi and Emori, 2004) 

Meteorological Institute of the University of 
Bonn, Meteorological Research Institute of 
KMA  

Germany/Korea ECHO-G  3 3 3 (Legutke and Voss, 1999) 

Max Planck Institute for Meteorology Germany ECHAM5/ 
MPI-OM  3 3 3 (Jungclaus et al., 2006) 

Meteorological Research Institute Japan MRI-
CGCM2.3.2  5 5 5 (Yukimoto et al., 2001) 

National Center for Atmospheric Research USA CCSM3  4 6 7 (Collins et al., 2006) 
National Center for Atmospheric Research USA PCM  4 4 2 (Washington et al., 2000) 
Hadley Centre for Climate Prediction and 
Research / Met Office UK UKMO-

HadCM3 1 1 1 (Gordon et al., 2002) 
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Each of the GCMs utilize conditions from a multitude of emissions path 

scenarios, as described by the Intergovernmental Panel on Climate Change (IPCC) 

Special Report on Emissions Scenarios (SRES) (IPCC, 2000).  Additionally, within each 

emissions path scenarios, there are one or more runs representing unique initial 

conditions, which are dependent upon the 20th century “control” simulations as described 

by the WCRP (more information may be found at the WCRP website http://www-

pcmdi.llnl.gov/ipcc/time_correspondence_summary.htm).  The scenarios characterize 

projections of future greenhouse gas (GHG) emissions, and are based on storylines of 

demographic and economic development, technological change, energy resources and 

demand, and land use change with no additional implementation of climate policies.  

Three different emissions scenarios were used in this study (SRES A2, SRES A1B, and 

SRES B1), which correspond to a range of conditions from high GHG emissions to low 

GHG emissions, respectively (Figure 3.2).  A description of the storylines from Climate 

Change 2007: Synthesis Report (Bernstein et al., 2007) is as follows: 

SRES A2 (“higher” emissions path) – very heterogeneous world with high 

population growth, slow economic development, and slow technologic change; 

SRES A1B (“middle” emissions path) – very rapid economic growth with a 

global population that peaks in the mid-21st century and fast introduction of new 

and more efficient technologies, balanced between fossil intensive and non-fossil 

energy sources; 

SRES B1 (“lower” emissions path) – convergent world with the same population 

as A1B, but with more rapid changes in economic structures toward and service 

and information based economy. 

http://www-pcmdi.llnl.gov/ipcc/time_correspondence_summary.htm�
http://www-pcmdi.llnl.gov/ipcc/time_correspondence_summary.htm�
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Figure 3.2 – Global GHG emissions (gigatons CO2-equivalent per year) in the absence of 
future climate policies: six SRES 2000 scenarios (colored lines), 80th percentile range of 
recent scenarios since publication of SRES 2000 (gray shaded area), and complete range 
of post-2000 scenarios (gray dashed lines).  The emissions include CO2, CH4, N2O and F-
gases.  Figure adapted from Bernstein et al. (2007).    
   
 
STATISTICALLY DOWNSCALED DATA 

The spatial scales of the CMIP3 data correspond to the various spatial scales of the 

respective GCMs, and are not adequate to discern the impacts of climate change at a 

watershed-scale, especially in the complex, mountainous terrain of Colorado.  Thus, an 

archive of bias-corrected and spatially downscaled climate projections derived from 

CMIP3 data and served at http://gdo-dcp.ucllnl.org/downscaled_cmip3_projections/, as 

described by Maurer et al. (2007), were utilized for this study.  These data were created 

by a collaborative effort between the Lawrence Livermore National Laboratory (LLNL), 

United States Bureau of Reclamation (USBR), Santa Clara University (SCU), and 

Climate Central (CC), and will be referred to as the LLNL/USBR dataset hereafter.  The 

LLNL/USBR dataset contains 112 climate projections spanning the contiguous United 

http://gdo-dcp.ucllnl.org/downscaled_cmip3_projections/�
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States, culminating from 16 GCMs, 3 emissions path scenarios, and one or more runs 

with unique initial conditions (Table 3.1).  Each climate projection was bias-corrected 

and spatially downscaled using a two-step procedure (Maurer et al., 2007; Wood et al., 

2004; Wood et al., 2002) applied to both monthly precipitation rate (mm/day) and 

monthly surface air temperature (⁰C). 

 The first step in creation of the LLNL/USBR data was to correct the bias between 

each projection’s past climate simulation and actual observations, based on a gridded 

dataset of 20th century (1950-1999) climatic conditions described in Maurer, Wood et al. 

(2002).  The spatial resolution of each of the datasets under comparison had to be 

rectified in order to be comparable, such that the observationally based gridded dataset 

was aggregated from 1/8⁰ to 2⁰ and the GCM gridded dataset was spatially interpolated 

(in the same manner) from its original spatial resolution to 2⁰.  A quantile map was 

created from the probability thresholds between cumulative distribution functions of 

GCM and observed grids (on a monthly basis) for both precipitation and temperature 

during the overlapping period (1950-1999).  Bias-correction was completed by adjusting 

each climate projection (both past and future simulations) using the previously defined 

quantile maps.  This step ensured that adjusted GCM datasets were statistically consistent 

with the observed datasets during the overlapping period. 

The second, and final, step in creation of the LLNL/USBR data was to spatially 

downscale the bias-corrected GCM data (1950-2099) from a 2⁰ grid (~200 km), to a 

higher resolution, watershed-scale of 1/8⁰ (~12 km).  Factor values were computed at 

each 2⁰ grid between the bias-corrected GCM projection (precipitation and temperature) 

and the corresponding observational datum, computed as the given month’s 1950-1999 
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mean from the 2⁰ observational dataset.  The 2⁰ factor values were then spatially 

downscaled using a modified inverse-distance-squared interpolation known as the 

SYMAP algorithm (Shepard, 1984), and applied to the mean of the original 1/8⁰ 

observed dataset for each month (1950-1999). 

The previously summarized methodology ensured that the final GCM projections 

were both statistically consistent with the observed datasets during the overlapping period 

as well as spatially correlated with large and fine-scale climate.  By interpolating the 2⁰ 

factor values (from 1950-1999) to 1/8⁰ and applying them to future periods, an 

assumption was introduced that the topographic and climatic features acting in the 

historical record will be analogous in the future.   

 Further methods for downscaling the LLNL/USBR climate projections, both 

spatially and temporally, were required to implement the climate projections into SWAT 

and meet the objectives of this study.  First, an additional bias-correction technique was 

required to spatially downscale the data from a 1/8⁰ grid to a point location within the 

grid, as SWAT utilizes climatic input data from meteorological stations.  The use of 

meteorological stations allows for representation of orographic effects through 

application of temperature and precipitation lapse rates because each station has an 

associated elevation.  Conversely, application of lapse rates from gridded temperature 

and precipitation data is more difficult, as a representative elevation from each area must 

be established.  Second, a temporal downscaling methodology was required to produce 

daily patterns of precipitation, maximum temperature, and minimum temperature, as 

SWAT requires climatic input data at a daily time-step to simulate those processes 

occurring over smaller time scales (e.g. snow accumulation and snowmelt). 
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AREAL AVERAGE TO POINT BIAS-CORRECTION TECHNIQUE 

The spatial downscaling method, which removed the bias between LLNL/USBR climate 

projections at 1/8⁰ grid and a meteorological station location within the grid (Figure 3.3), 

ensured that projections of precipitation and temperature were consistent with 

observations of the late 20th century.   Observations of precipitation and temperature from 

meteorological stations in and around the study watersheds were compared to the 

Figure 3.3 – Topography, as represented by a digital elevation model (DEM), 
location of meteorological stations (SNOTEL and NCDC), and 1/8⁰ grids 
corresponding to future climate projections in each of the headwater basins of 
Colorado  
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LLNL/USBR data from the single latitudinal/longitudinal grid cell encompassing the 

station, and the bias between the two was removed through scaling (precipitation) and 

incrementing (temperature) on a monthly basis.  This method was applied on a monthly 

time-scale in such a fashion that months with a complete observation record of 

precipitation and temperature were averaged and compared to the averaged values of the 

same months from the LLNL/USBR dataset.  From this comparison a single ratio (for 

precipitation) and a single increment (temperature) was applied to all future monthly 

projections.  Equations 3.1 and 3.2, below, display the computations necessary to remove 

bias from the LLNL/USBR climate projections of the 21st century. 

 𝑃𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑,𝑖 =  
∑ 𝑃𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑚
𝑁
𝑚=1

∑ 𝑃𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑,𝑚
𝑁
𝑚=1

× 𝑃𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑,𝑖       Equation 3.1 

 
where Pcorrected,i is the bias-corrected average daily precipitation for future month i 

(mm/day), Pobserved,m is the observed average daily precipitation for month m with a 

complete record (mm/day), N is the total number of months with a complete record of 

observed data, Pprojected,m is the projected average daily precipitation from LLNL/USBR 

dataset of the corresponding month m (mm/day), and Puncorrected,i is the biased average 

daily precipitation for future month i from LLNL/USBR dataset (mm/day). 

                𝑇𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑,𝑖 =  �∑ 𝑇𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑,𝑚
𝑁
𝑚=1

𝑁
−

∑ 𝑇𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑒𝑑,𝑚
𝑁
𝑚=1

𝑁
� + 𝑇𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑,𝑖     

   Equation 3.2 

 
where Tcorrected,i is the bias-corrected average daily temperature for future month i (⁰C), 

Tobserved,m is the observed average daily temperature for month m with a complete record 

(⁰C),  Tprojected,m is the projected average daily temperature from LLNL/USBR dataset of 

the corresponding month m (⁰C), and Tuncorrected,i is the biased average daily temperature 

for future month i from LLNL/USBR dataset (⁰C). 
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MONTHLY TO DAILY TEMPORAL DOWNSCALING TECHNIQUE 

Following the spatial downscaling/bias-correction method previously described, a dataset 

consisting of average monthly values of precipitation (mm/day) and temperature (⁰C) at 

each meteorological station were available.  However, the hydrologic model utilized to 

assess the impacts of climate change on water resources, SWAT, requires daily values of 

precipitation, maximum temperature, and minimum temperature.  Therefore, an existing 

resampling technique (Bureau of Reclamation, 2009; Maurer et al., 2007; Wood et al., 

2002) was refined for utilization in this study to downscale monthly values of 

precipitation and temperature into daily values of precipitation, maximum temperature, 

and minimum temperature.  This method creates daily values of climatic variables that 

both preserve observed spatial and temporal correlations and aggregate to future monthly 

projections. 

The basic premise of this technique involved moving through a number of 

meteorological stations’ simulated projections (2010 – 2099) and associating a randomly 

selected corresponding historical month with each month simulated in the future.  The 

historical month’s daily series were then scaled (precipitation) and incremented 

(temperature) to create a future month’s daily series which satisfy the future monthly 

projection. 

𝑃𝑓𝑢𝑡𝑢𝑟𝑒,𝑗 =  
𝑃𝑓𝑢𝑡𝑢𝑟𝑒,𝑘

𝑃ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙,𝑙
× 𝑃ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙,𝑗        Equation 3.3 

 
where Pfuture,i is the future precipitation on day j of future month k (mm), Pfuture,k is the 

projected average daily precipitation in future month k (mm/day), Phistorical,l is the 
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observed average daily precipitation in resampled historical month l (mm/day), and 

Phistorical,j is the observed precipitation on day j of resampled historical month l (mm). 

𝑇𝑓𝑢𝑡𝑢𝑟𝑒,𝑗 =  �𝑇𝑓𝑢𝑡𝑢𝑟𝑒,𝑘 − 𝑇ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐,𝑙� + 𝑇ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙,𝑗      Equation 3.4 

 
wherein Tfuture,i is the future temperature on day j of future month k (⁰C), Tfuture,k is the 

projected average daily temperature in future month k (⁰C), Thistorical,l is the observed 

average daily temperature in resampled historical month l (⁰C), and Thistorical,j is the 

observed temperature on day j of resampled historical month l (⁰C). 

 In order to maintain the space-time correlation amongst individual meteorological 

stations in a watershed, the same resampled historical month was applied to all stations in 

a given future month.  This process was completed in each watershed, separately, and for 

all future monthly scenarios from 2010 – 2099.  As may be seen in Equations 3.3 and 3.4 

one of the key components of this technique was in the resampling of an appropriate 

historical month l for simulated future month k.  Although the historical month was 

“randomly” selected, the pool of candidate historic months were determined based on 

several conditions.  The conditions were that the resample historical month had to (i) be 

the same calendar month as the future simulated month (e.g. for a January in the future, 

only historical Januaries could be resampled), (ii) have the same qualitative precipitation-

temperature classification, (iii) have observed historical data in at least half of the 

meteorological stations, and (iv) have non-zero precipitation in all meteorological 

stations (to avoid infinite scaling ratios).   
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Month Classifications 

In order to avoid resampling a “wet-cool” historical month to generate a daily series of 

climatic variables in a “dry-warm” projected month, or vice-versa, a wetness and warmth 

classification scheme was used (Bureau of Reclamation, 2009).  This scheme separated 

months, future and historic separately, into four general classifications: “wet-warm”, 

“wet-cool”, “dry-warm”, and “dry-cool”.  The first component of the classification, 

which refers to the wetness of a given month, was determined by comparing the 

precipitation of that month with the median precipitation of the same calendar month 

over the period of record.  For historical months the period of record differed between 

climate stations, and was determined by the availability of data at each station.  The 

period of record for future months was consistent between all stations, and was composed 

of a 90 year set of data (2010 – 2099) for a given calendar month and a given climate 

projection.  A month with precipitation greater than the median from the period of record 

was classified as “wet”, while a month with a precipitation less than the median was 

classified as “dry”.  Similarly, the temperature of a given month was classified as “warm” 

or “cool” by comparing the average monthly temperature to the median average monthly 

temperature over the period of record.  Thus, a set of monthly classifications was created 

for each meteorological station within each basin for both historical and future months.  

However, due to the classification of each climate station separately, it was not a 

guarantee that all stations in a given month, either future or historical, had the same 

classification.  Therefore, the final classification of a given month in a watershed was 

taken to be the mode of the individual station classifications.     
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Missing Data 

Missing daily measurements of precipitation, maximum temperature, and/or minimum 

temperature were found to be prevalent among many of the basins’ meteorological 

stations.  Such data was either completely missing in a given month, or more commonly 

was missing on only several occasions within an otherwise complete record of a month.  

Several features were added to the technique in an effort to handle the missing daily 

values in either case. 

Missing Precipitation 

When a day, or multiple days, of precipitation were found to be missing in a resampled 

month, an effort was necessary to fill-in the day(s) with a reasonable value(s).  This was 

done through a two-step procedure that first determined if the day of missing data was 

wet or dry, and if wet, determined the amount of precipitation that fell during the day.  

The day was determined to be wet or dry depending on the status of that day in a 

surrogate station.  The surrogate station for precipitation occurrence was found using the 

Jaccard similarity index (Equation 3.5), as first developed by Jaccard (1908) and later 

summarized by McCormick et al. (1992).  The index expresses the similarity, or 

dissimilarity, of nonzero datasets as: 

𝐽(𝐴,𝐵) =
|𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵| =  

∑ ��𝜗𝐴,𝑖 = 𝜗𝐵,𝑖� ∧ �𝜗𝐴,𝑖 ≠ 0 ∨ 𝜗𝐵,𝑖 ≠ 0��𝑇
𝑗=1

∑ �𝜗𝐴,𝑖 ≠ 0 ∨ 𝜗𝐵,𝑖 ≠ 0�𝑇
𝑗=1

     Equation 3.5 

 
where J(A,B) is the Jaccard similarity coefficient between stations A and B, |𝐴 ∩ 𝐵| is the 

size of the intersection between station A and station B, |𝐴 ∪ 𝐵| is the size of the union 

between the two stations, 𝜗𝐴,𝑖 is a binary variable depicting the wet or dry status of day i 

at station A (0 for a dry day, 1 for a wet day), 𝜗𝐵,𝑖 is a binary variable depicting the wet or 
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dry status of day i at station B, and T is the number of historic days that both stations A 

and B have data.  The end result was a list of surrogate stations ordered by the Jaccard 

similarity index and based on correlation of precipitation occurrence.  If the first 

surrogate station (most closely related) also had missing data, the next surrogate station 

(second most closely related) was looked at, and if that station had missing data, the third 

surrogate was examined, and so on, until the day was determined to be wet or dry.  If the 

day was determined to be dry the resampling procedure continued, but if the day was 

determined to be wet, a value of precipitation had to be calculated for that day.  The 

amount of precipitation that fell on a wet day was taken from a Gamma distribution 

function (Equation 3.6) fit to the specific station, month, and wet-warmth classification.  

The use of the Gamma distribution for determination of a given wet day’s rainfall amount 

has been previously proposed by Buishand (1978), and was recently used in a climate 

change study in West Africa (Schuol and Abbaspour, 2007).     

𝑦 = 𝑓(𝑥|𝑎, 𝑏) =
1

𝑏𝑎Γ(𝑎) 𝑥
𝑎−1𝑒−

𝑥
𝑏      Equation 3.6 

 
where y is the gamma probability density function, x is the amount of precipitation on a 

given wet day (mm), a is the gamma distribution shape parameter, and b is the gamma 

distribution scale parameter. 

In several rare cases, precipitation was missing in all stations on a given day, and 

the wet or dry status of the day had to be reconciled in a different manner.  In this case, 

transitional probabilities, calculated for each wet-warmth classification within each 

calendar month within each station, were used to quantify the probability of a wet day 

following a dry day and the probability of a wet day following a wet day.  Then, a 

random number was calculated and compared with the appropriate transitional 
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probability (depending on the state of the previous day), and if the random number was 

less than the transitional probability, the day was deemed wet.  If the random number was 

greater than the transitional probability, the day was determined to be dry. 

Missing Temperature 

Missing daily temperature data came in three forms (a) maximum temperature missing, 

minimum temperature measured, (b) minimum temperature missing, maximum 

temperature measured, and (c) both maximum and minimum temperature missing.  

Situations (a) and (b) were rectified in the same manner, while a different methodology 

had to be used in case (c).  In both cases (a) and (b), when either minimum or maximum 

temperature was missing, the difference between the maximum and minimum 

temperature from the previous day was either added to, or subtracted from whichever 

temperature had a measurement on that day.  However, if no measurement was made for 

maximum or minimum temperature on a given day a surrogate station for temperature 

was determined.  Surrogate stations were based on the correlation between daily mean 

temperatures, and sorted from most closely to least correlated.  Then, when a day with 

both maximum and minimum temperatures missing was encountered, the corresponding 

temperatures from the first surrogate station were used.  If the first surrogate station had 

no data, the second surrogate station was used, and so on until a station with data was 

found.  The temperatures from the surrogate station (either maximum or minimum) were 

then adjusted by the difference between the future projected monthly temperature of that 

station and the future monthly projected temperature of the station with missing data.  As 

a last case scenario, if no stations had temperature data on a given day, a regression 

between the maximum and mean daily temperatures from each station (and calculated 
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separately for wet and dry days) was used to add a random residual to the future monthly 

projected temperature of the given station. 

Specific Modification for the San Juan Watershed 

In the San Juan River basin, a specific modification to the temporal downscaling 

methodology had to be made to account for the prevalence of months with zero 

precipitation.  Located in the southwestern portion of Colorado and the northern portion 

of New Mexico, the climate in parts of the watershed, especially at lower elevations, is 

quite arid.  In five of the ten meteorological stations (Pagosa Springs, CO, Stump Lakes, 

CO, Chamita, NM, Aztec, NM, and Bloomfield, NM) it was observed that the month of 

June had zero precipitation in numerous years on record.  However, one of the conditions 

in creating a pool of eligible months to be resampled from is that the month must have 

nonzero precipitation, to avoid issues associated with infinite scaling.  Typically in the 

other basins of Colorado this was not an issue, as a different year for a given month and 

wet-warmth classification would be chosen.  This could not be done at the five specified 

stations in the San Juan watershed because all Junes in a given classification had zero 

precipitation.  Therefore, if a resampled month in one of the five stations had zero 

precipitation, the given future month was also given zero precipitation.  This was 

considered to be a reasonable assumption as the prevalence of months in the historical 

record with zero precipitation made it realistic.  Additionally, other climate stations with 

higher elevations in the watershed were simulating precipitation over these months, so 

that the entire basin was not being simulated as dry. 
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3.2.2 HYDROLOGIC SIMULATION OF FUTURE PROJECTIONS 

The Soil and Water Assessment Tool (SWAT) is a comprehensive, process-based 

hydrologic model that was utilized to drive the downscaled and bias-corrected climate 

scenarios.  Future daily projections of precipitation and temperature were used as input to 

the models, and were represented at meteorological stations throughout each study 

watershed (Figure 3.3).  Development, calibration, and testing of the model specific to 

each study watershed is described in thorough detail in the previous chapter, and is 

therefore not described herein.  The model was run on a daily time-step for 90 years from 

2010 – 2099 and various model outputs at a monthly resolution will be discussed in the 

forthcoming sections.   

 
STATISTICAL TREND TESTS 

Two statistical tests were utilized to discern the impacts of climate change on hydrologic 

response, specifically through measures of trend in annually averaged streamflow over 

the period 2012 - 2099.  The statistical tests were calculated with MAKESENS, a 

spreadsheet application developed by the Finish Meteorological Institute and available at 

http://www.fmi.fi/organization/contacts_25.html, with methods as outlined in Salmi et al. 

(2002).  The first method, known as the Mann-Kendall test (Mann, 1945), is a 

nonparametric method  with the ability to detect monotonic trends in non-seasonal time 

series.  The null hypothesis, H0, of no trend in the data was tested against the alternative 

hypothesis, H1, of an increasing or decreasing trend in the data.  From the series of n 

years (n = 88) of average annual streamflows for each future scenario the Mann-Kendall 

test statistic (S) was calculated as: 

http://www.fmi.fi/organization/contacts_25.html�
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𝑆 = � � 𝑠𝑔𝑛�𝑥𝑝 − 𝑥𝑞�
𝑛

𝑝=𝑞+1

𝑛−1

𝑞=1

     Equation 3.7 

 
where xp and xq are annual average streamflows in years p and q, respectively, and: 

𝑠𝑔𝑛�𝑥𝑝 − 𝑥𝑞� =  �
  1     𝑖𝑓 𝑥𝑝 − 𝑥𝑞 > 0 
0     𝑖𝑓 𝑥𝑝 − 𝑥𝑞 = 0
−1   𝑖𝑓 𝑥𝑝 − 𝑥𝑞 < 0

�      Equation 3.8 

 
In order to calculate the test Z-statistic, VAR(S) was calculated as: 

𝑉𝐴𝑅(𝑆) =
1

18 �
𝑛(𝑛 − 1)(2𝑛 + 5) −�𝑡𝑠(𝑡𝑠 − 1)(2𝑡𝑠 + 5)

𝑟

𝑠=1

�    Equation 3.9 

 
where r is the number of tied groups and ts is the number of values in the sth tied group. 

 Previous calculations of S and VAR(S) were then used to compute the test Z-

statistic: 

𝑍 =  

⎩
⎪
⎨

⎪
⎧  

𝑆 − 1
�𝑉𝐴𝑅(𝑆)

    𝑖𝑓 𝑆 > 0   

0                    𝑖𝑓 𝑆 = 0
𝑆 + 1

�𝑉𝐴𝑅(𝑆)
    𝑖𝑓 𝑆 < 0

�  Equation 3.10 

 
 The Z-statistic was then compared to Z1-α/2, which was obtained from a normal 

cumulative distribution table at the desired significance level (α).  Each scenario trend 

was tested at the significance levels 0.001, 0.01, 0.05, and 0.1; of which the lowest value 

was taken when H0 was rejected.   

 For all future scenarios with a statistically significant trend in projected annual 

streamflow (α ≤ 0.1), Sen’s slope estimator (Sen, 1968) was used to quantify the rate of 

the trend, along with a 95% confidence interval around the slope.  Through the 

assumption of a linear trend, an estimate of Sen’s slope (Q) was calculated by first 

computing the slopes between all pairs as of points in the series: 
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𝑄𝑖 =
𝑥𝑝 − 𝑥𝑞
𝑝 − 𝑞

    Equation 3.11 

 
wherein p > q.  The number (N) of slope estimates (Qi) from a time series of n years is 

equal to n(n-1)/2.  The Sen’s method takes the median of all slopes Qi as the final 

estimate of the trend.  The 100(1-α)% two-sided confidence interval was determined for 

each Sen’s slope estimate first, by calculating: 

𝐶∝ = 𝑍1−∝/2�𝑉𝐴𝑅(𝑆)  Equation 3.12 

 
where VAR(S) is calculated in Equation 3.9 and Z1-α/2 is taken from the standard normal 

distribution.  The confidence interval boundaries, Qmin and Qmax, are taken from an 

ordered list of the N slope estimates Qi as the M1
th largest and the (M2 + 1)th values. 

𝑀1 =
𝑁 − 𝐶∝

2
    Equation 3.13 

𝑀2 =
𝑁 + 𝐶∝

2
 Equation 3.14 

 
where M1 and M2 resulting in decimal numbers required interpolation of the respective 

limit. 

 

3.3 RESULTS & DISCUSSIONS 

Model simulations driven by downscaled future climate projections were analyzed for 

their respective changes in basin average temperature and precipitation, in addition to 

changes in hydrologic response, over the course of the 21st century.  The direction, 

magnitude, and variability of impacts were analyzed by combining SRES emissions 

scenarios and computing ensemble means, medians, and quartiles.  The 21st century was 

split into three periods including near-future (2012 – 2039), mid-century (2040 – 2069), 

and late-century (2070 – 2099) of which averages were taken for analysis of results.  
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Additionally, statistical trend tests were performed on annual streamflow for each of the 

112 scenarios in order to correlate specific scenarios with bounds of hydrologic response. 

 
3.3.1 DOWNSCALED TEMPERATURE & PRECIPITATION 

Figure 3.4 displays the annual basin averaged temperature and precipitation throughout 

the 21st century in each of the study basins.  The grey lines represent annual projections 

from each of the 112 climate scenarios and the colored lines represent the ensemble 

averaged annual values for each of the three SRES emissions paths. 

The individual projected changes in temperature over the 21st century are variable 

in nature, but appear to follow a general pattern when grouped by SRES emissions 

scenario in each of the basins.  The ensemble averaged temperature from each of the 

three scenarios appears to increase at approximately the same rate until about 2039, when 

the paths begin to diverge.  From 2040–2069, the increase in temperature in B1 is 

substantially lower than that of A1B and A2, which appear to continue increasing at 

nearly the same rate.  After 2070, A1B and A2 begin to diverge with A2 showing greater 

increasing temperatures by the end of the century.  Conversely, projected changes in 

precipitation over the 21st century do not appear to differ drastically when grouped by 

SRES emissions scenarios, but do display a large amount of variability between 

individual projections. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.4 - Basin averaged annual temperature and precipitation in the (a) Cache la 
Poudre, (b) Gunnison, (c) San Juan, and (d) Yampa River basins.  The grey lines 
represent annual values from each of the 112 projections and the colored lines 
represent the ensemble averaged annual values from SRES emissions scenarios A2 
(red), A1B (orange), and B1 (yellow). 
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3.3.2 IMPLICATIONS TO HYDROLOGIC RESPONSE 

 
PROJECTION VARIABILITY 

As depicted in Figure 3.4, there is considerable variability associated with projections of 

precipitation and temperature in each of the study basins.  This variability of climatic 

drivers appears to be translated into a range of hydrologic responses via model 

simulations.  Figures 3.5 shows the variability in projected temperature, precipitation, ET, 

and the resulting water yield in each of the study basins.  The box and whisker plots 

represent the minimum, maximum, upper and lower quartile, and median of period 

averaged annual values within each SRES emissions scenario. 

 Two patterns from Figure 3.5 were immediately apparent.  The first is the general 

increasing range in projections, regardless of the variable, that appears over time.  This 

makes intuitive sense, as the variability in simulations should increase over time as the 

results from individual scenarios diverge due to different GCM configurations, specific 

initial conditions used in GCM runs, and different emissions scenarios.  Additionally, the 

uncertainty involved in long-term projections of climatic variables, especially 

precipitation, would be expected to increase as the forecast period progresses into the 

future.  The second pattern noticed was the similarity in both range and direction of 

change between precipitation and water yield.  This relationship between precipitation 

and water yield is not surprising, as precipitation is more highly correlated with total 

yield than other hydroclimatic variables such as temperature and ET (Stonefelt et al., 

2000).   
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(a) 

 
  (b) 

Figure 3.5 - Variability in temperature, precipitation, evapotranspiration, and water yield projections in the (a) Cache la Poudre and 
(b) Gunnison River basins from 112 scenarios consisting of 16 GCMs.  The traditional box and whisker plots represent the minimum 
and maximum, upper and lower quartiles, and median of the data; annual averages of the SRES B1, A1B, and A2 emissions scenarios  
over the three future periods 2012-2039 (28 years), 2040-2069 (30 years), and 2070-2099 (30 years).  The dashed red line represents 
the average annual value over the 1990 – 2005 historic period (1990 – 2004 in Yampa). 
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(c) 

  
(d) 

Figure 3.5 (contd) - Variability in temperature, precipitation, evapotranspiration, and water yield projections in the (c) San Juan and 
(d) Yampa River basins from 112 scenarios consisting of 16 GCMs.  The traditional box and whisker plots represent the minimum and 
maximum, upper and lower quartiles, and median of the data; annual averages of the SRES B1, A1B, and A2 emissions scenarios  
over the three future periods 2012-2039 (28 years), 2040-2069 (30 years), and 2070-2099 (30 years).  The dashed red line represents 
the average annual value over the 1990 – 2005 historic period (1990 – 2004 in Yampa). 
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Figure 3.6 shows the variability in future projections of the precipitation to 

potential evapotranspiration (PET) ratio (P:PET).  This ratio is often used as a measure of 

aridity of a landscape, and was shown to decrease throughout the 21st century in all four 

study basins.  As expected, decreasing trends in the aridity index corresponded well with 

increasing trends in temperature, as the A2 ensemble average had the highest projected 

increase in temperature and therefore the highest projected decrease in aridity index over 

the 21st century.  Although all four study basins are expected to become more arid over 

the 21st century, the shift is more pronounced in the watersheds on the west side of the 

Continental Divide when compared to the Cache la Poudre watershed, which was the 

most arid study watershed over the historic simulation period (1990 – 2005). 

 
         (a)                                                (b)         

  
                                         (c)                                               (d) 

Figure 3.6 - Variability of the aridity index in the (a) Cache la Poudre, (b) Gunnison, (c) 
San Juan, and (d) Yampa River basins from 112 scenarios consisting of 16 GCMs.  The 
box and whisker plots represent annual averages of the SRES B1, A1B, and A2 emissions 
scenarios  over the three future periods 2012-2039 (28 years), 2040-2069 (30 years), and 
2070-2099 (30 years).  The dashed red line represents the average annual value over the 
1990 – 2005 historic period (1990 – 2004 in Yampa). 
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The variability amongst future projections stems from two sources of uncertainty; 

the uncertainty associated with projections of future temperature and precipitation and the 

uncertainty associated with hydrologic modeling using SWAT.  Additionally, it is clear 

that the impacts of climate change on hydrologic fluxes will vary amongst study 

watersheds across the state.  The localized effects will have different implications to the 

management of water resources within each of the study basins, and are presented in the 

following section.  

 
BASIN-SPECIFIC IMPACTS  
 
The monthly distributions of basin-averaged annual temperature, precipitation, snow to 

precipitation ratio (S:P), ET, and streamflow for SRES emissions ensemble averages over 

three future periods and the historic baseline period are presented in Figures 3.7 – 3.11.  

Changes over the 21st century were quantified as an increment (for temperature) or 

percentage change (for all other variables) between ensemble averages from the near-

future (2012-2039) and the late-century (2070-2099). 

 In the Cache la Poudre River basin, the ensemble averaged annual temperature 

increases by 3⁰C, 2.2⁰C, and 1.3⁰C from the near-future period to the late-century period 

in scenarios A2, A1B, and B1, respectively.  The most pronounced changes in 

temperature appear to occur during the summer months (June – September) and winter 

months (January – Precipitation), while less dramatic changes were simulated during the 

remaining fall and spring months.  This general pattern of greater increases in 

temperature during the summer and winter months than during spring and fall months 

applies to all study watersheds.  Annual precipitation is also projected to increase over 

the same periods by 4%, 4.7%, and 2.9% in scenarios A2, A1B, and B1, respectively.  
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Most of the increase in precipitation is attributed to increases occurring over the winter, 

from November – March.  As would be anticipated with an increase in both temperature 

and precipitation, annual ET is projected to increase by 5.5%, 5.7%, and 3.8% in 

scenarios A2, A1B, and B1, respectively.  Ensemble-averaged annual streamflow 

increases in the Cache la Poudre River basin by 2.8%, 5.6%, and 3.7% in scenarios A2, 

A1B, and B1, respectively.  An increase in streamflow over the 21st century came with an 

earlier and larger peak, which is most likely resultant of increased winter precipitation 

and warmer temperatures.  Thus, the recession of the annual hydrograph also appeared 

earlier in the year and resulted in decreased streamflows over the summer months.  

Generally, streamflow appeared to increase from October – May and decrease from June 

– September in the Cache la Poudre River basin. 

 Ensemble-averaged temperature in the Gunnison River basin shows an increase 

over the 21st century of 3⁰C, 2.3⁰C, and 1.3⁰C in SRES A2, A1B, and B1, respectively.  

Changes in precipitation are not consistent in direction, and include changes of -1.5%, 

+1.3%, and +0.4% in paths A2, A1B, and B1, respectively.  Unlike the Cache la Poudre 

River basin, S:P did not appear to be affected in all months snow fell.  While the ratio did 

decrease during the spring and fall months, all precipitation continued to fall as snow in 

the deep winter months of December, January, and February.  This is not surprising, as 

the Gunnison watershed is higher in elevation than the Cache la Poudre, thus deep-winter 

temperatures remain well below freezing.  Surprisingly, even with a decrease in 

precipitation in the A2 ensemble average, ET is projected to increase across all three 

ensembles, which includes increases of 1.6%, 2.4%, and 0.7%.  Similar to projections of 

precipitation, results from the SRES ensembles did not agree on a direction in change of 



 
 

102 
 

annual average streamflow from the late-century period to the near-future period, and 

include changes of -2.4%, +1.4%, and +1% in SRES A2, A1B, and B1, respectively.  The 

relationship between the direction of change in precipitation and that of water yield is 

identified in the Gunnison River basin, as the only emissions scenario ensemble that 

results in a decrease in streamflow (A2) was the only ensemble that projects a decrease in 

precipitation.  Similarly to the Cache la Poudre watershed, the snowmelt hydrograph of 

the Gunnison River basin is shifted to earlier in the year with a slight increase in peak.   

 Annual basin-wide temperature in the San Juan River basin is projected to 

increase by 3⁰C, 2.2⁰C, and 1.4⁰C in ensembles A2, A1B, and B1, respectively.  

Precipitation in the watershed is anticipated to decrease across all emissions ensemble 

averages, and includes declines of 3.5%, 0.2%, and 0.8%.  Unlike the other three study 

basins, which predict a noticeable increase in precipitation over the winter months, the 

San Juan watershed predicts a very small increase in precipitation over the winter, if any, 

over the course of the 21st century.  With decreases in ensemble-averaged annual 

precipitation occurring in all three emissions scenarios, it was not surprising to find 

decreases of 3.2%, 1.7%, and 1.8% in annual ET in scenarios A2, A1B, and B1, 

respectively.  Interestingly, the majority of such annual decreases in ET appear to occur 

in the months of June and July, which have no intuitive explanation as no appreciable 

changes in precipitation occur during those months.  The direction of change in 

streamflow across the three emissions scenarios was inconsistent, and included 

alterations of -3.9%, +1.5%, and 0% between near-future and late-century periods.  

Although an increase of 1.5% in streamflow was simulated from the near-future to the 

late-century in the average of A1B scenarios, the calculation is slightly misleading as the 
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increase in streamflow actually occurred between the near-future and mid-century periods 

(2%) and was followed by a decrease in streamflow between the mid-century and late-

century periods (-0.5%).  Similarly, the net change of 0 % between near-future and late-

century periods in scenario B1 was actually a decrease of 1.4% (from near-future to mid-

century) followed by an increase of 1.4% (from mid-century to late-century).                 

 Similar to the other three study watersheds, the ensemble-averaged projections of 

temperature in the Yampa River basin include increases of 3⁰C, 2.4⁰C, and 1.4⁰C in 

ensembles A2, A1B, and B1, respectively.  Future changes of precipitation in the 

watershed include increases of 3.7%, 4.7%, and 2.9%.  The S:P ratio declined in all 

months that snow fell, with the greatest changes pronounced in the spring and fall 

months.  Similarly to the Gunnison River basin, S:P is projected to only decrease slightly 

during the deep winter months of December, January, and February as the temperatures 

during these months were projected to be well below freezing through the end of the 21st 

century.  As anticipated from increases in both temperature and precipitation in all 

ensemble averages, an increase in ET of 0.8% and 0.3% were calculated for scenarios A2 

and A1B, respectively.  However, a change in ET of -1.5% was calculated for ensemble 

B1, which was surprising with increases in both precipitation and temperature calculated 

for that scenario.  Regardless of the change in ET between future periods, annual 

streamflow increases of 13.6%, 19.6%, and 16% were found for ensemble-averaged 

emissions scenarios A2, A1B, and B1, respectively.  The projected increases in 

ensemble-averaged streamflow were appreciably higher in the Yampa watershed than 

either of the other three study basins, which correspond to the projected increases in 

precipitation over the basin.   
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(a) 

 
(b) 

 
(c)

 
(d) 

Figure 3.7 - Projections of average monthly temperature in the (a) Cache la Poudre, (b) 
Gunnison, (c) San Juan, and (d) Yampa River basins over three future periods.  The graph 
shows the ensemble-averaged monthly temperature for each emissions scenario (dashed 
colored lines) and historic period (solid black line), in addition to reporting the average 
annual temperature over each respective period. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.8 - Projections of average monthly precipitation in the (a) Cache la Poudre, (b) 
Gunnison, (c) San Juan, and (d) Yampa River basins over three future periods.  The graph 
shows the ensemble-averaged monthly precipitation for each emissions scenario (dashed 
colored lines) and historic period (solid black line), in addition to reporting the average 
annual precipitation over each respective period. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.9 - Projections of average monthly snowfall to precipitation ratio (S:P) in the (a) 
Cache la Poudre, (b) Gunnison, (c) San Juan, and (d) Yampa River basins over three 
future periods.  The graph shows the ensemble-averaged monthly S:P for each emissions 
scenario (dashed colored lines) and historic period (solid black line). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.10 - Projections of average monthly ET in the (a) Cache la Poudre, (b) 
Gunnison, (c) San Juan, and (d) Yampa River basins over three future periods.  The graph 
shows the ensemble-averaged monthly ET for each emissions scenario (dashed colored 
lines) and historic period (solid black line), in addition to reporting the average annual ET 
over each respective period. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3.11 - Projections of the average annual hydrograph in the (a) Cache la Poudre, 
(b) Gunnison, (c) San Juan, and (d) Yampa River basins over three future periods.  The 
graph shows the ensemble-averaged monthly streamflow for each emissions scenario 
(dashed colored lines) and historic period (solid black line), in addition to reporting the 
average annual streamflow over each respective period. 
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SENSITIVITY OF STREAMFLOW TO PRECIPITATION VARIABILITY 

The sensitivity of streamflow to future projections of precipitation varied amongst the 

four study basins.  Figure 3.12 shows a plot of annual precipitation versus annual yield 

(streamflow) from the annual emissions scenario ensemble averages over 88 years (2012 

– 2099) and historic baseline (1990 – 2005).  A linear trend line was fit to each study 

basin, and the resulting equation and coefficient of determination (R2) are presented in 

the figure.  The trend lines for the Yampa and Gunnison River basins exhibit the steepest 

slopes, which correspond to a greater sensitivity of streamflow to precipitation.  

Physically, this makes sense as these watersheds were shown to be less arid than the 

Cache la Poudre and Gunnison watersheds (Figure 3.6), and thus have less capacity to 

store and evaporate/transpire an increase in precipitation.  Therefore, increasing 

precipitation results in a greater increase in streamflow than would be observed in a more 

arid watershed.  Alternately, the Cache la Poudre River basin exhibits the mildest slope, 

which corresponds to less sensitivity of streamflow to precipitation.  Again, this makes 

sense as more arid watersheds have a greater capacity to store and evaporate/transpire an 

increase in precipitation, and streamflow will not increase as much as it would in a less 

arid watershed. 

   Another notable observation in Figure 3.12 is the variability in annual 

precipitation and streamflow of the observed period versus that of the emissions scenario 

ensemble averages over the future.  Caution should be used when analyzing emissions 

scenario ensemble averages, as they do not represent the variability associated with a 

single climate projection.  Thus, emissions scenario ensemble averages make the data 

appear less variable than they actually are.     
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   (a)      (b) 

 
   (c)      (d) 
Figure 3.12 – Sensitivity of streamflow to precipitation, as depicted by plots of annual 
precipitation versus annual yield (streamflow) for the (a) baseline period 1990 – 2005 
(1990 – 2004 in Yampa), (b) SRES A2 annual ensemble averages from 2012 – 2099, (c) 
SRES A1B annual ensemble averages from 2012 – 2099, and (d) SRES B1 annual 
ensemble averages from 2012 – 2099.  The Cache la Poudre basin is depicted by blue 
diamonds, Gunnison basin by red squares, San Juan basin by green triangles, and Yampa 
basin by purple dots.   
 
 
TRENDS IN STREAMFLOW 

Up to this point, the results from model simulations have been analyzed using ensemble 

statistics from each of the three SRES emissions scenarios.  Although this is a common 

method to represent climate projections and their resultant hydrologic impacts (e.g. 

Christensen and Lettenmaier, 2007; Milly et al., 2005; Ray et al., 2008), one of the 

objectives of this study was to identify specific GCMs and emissions scenarios that 

resulted in the extremes, or in this case the bounds of trends in average annual streamflow 

over the study period (2012-2099).  Figure 3.13 displays the number of statistically 

significant (α<0.1) increasing (dark grey) and decreasing (light grey) trends in average 
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annual streamflow at the outlet of each basin over 88 years in the 21st century.  All 112 

simulations driven by separate climate scenarios in each basin were tested for trends 

using the non-parametric Mann-Kendall test.   

 As expected, the four basins yielded different results regarding the direction and 

magnitude of streamflow trends over the 21st century.  The Cache la Poudre basin yielded 

40 statistically significant trends of streamflow, of which 26 were increasing and 14 were 

decreasing.  However, at the highest significance level tested (α = 0.001) there were 6 

trends, of which 3 were increasing and 3 were decreasing.  The Gunnison watershed was 

determined to have a total of 26 significant trends in annual streamflow, of which 11 

were positive and 15 were negative.  The San Juan River basin had 32 significant trends, 

which half (16) were increasing and the other half (16) were decreasing.  The Yampa 

River basin had 72 significant trends, of which all were increasing with the exception of 1 

that was decreasing (at the lowest acceptable significance level of 10%). 
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                                                 (a)                                                             (b) 

 
                                                (c)                                                               (d) 
Figure 3.13 - Histogram of significant trends in future average annual streamflows (dark 
grey bars indicate the number of increasing trends and light grey bars indicate the number 
of decreasing trends) during the period 2012 – 2099 in the (a) Cache la Poudre, (b) 
Gunnison, (c) San Juan, and (d) Yampa River basins.  Each of the 112 projections in each 
watershed was tested separately for a monotonic trend in average annual streamflow.  
Significant trends were determined using the nonparametric Mann-Kendall test, and are 
grouped by the significance level in which they rejected the null hypothesis of no trend.  
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Estimates of the change in average annual streamflow (cms/year) through 2099 

were taken from Sen’s slope estimate and as expected, varied in both magnitude and 

direction amongst the study basins.  In the Cache la Poudre watershed, increasing trends 

are between 0.02 and 0.06 cms/year, while decreasing trends are between -0.02 and -0.05 

cms/year.  The range in positive trends correspond to an increase in average annual 

streamflow between 1.8 cms and 5.3 cms from 2012 – 2099 (88 years), and the negative 

trends correspond to a decrease between 1.8 cms and 4.4 cms over the same period.  

Positive trends in both the Gunnison and San Juan basins vary between approximately 0.1 

and 0.25 cms/year and negative trends vary between approximately -0.1 and -0.2 

cms/year.  These ranges correspond to an increase in average annual streamflow between 

8.8 cms and 22 cms, and a decrease in average annual streamflow between 8.8 cms and 

17.6 cms over the 88 year future period.  Furthermore, positive trends in the Yampa 

watershed vary between 0.2 and 0.55 cms/year, which correspond to an increase in 

average annual streamflow between 17.6 cms and 48.4 cms.  As may be seen from the 

figure, there appears to be no correlation between the projections with significant positive 

or negative trends, and the emissions scenarios they represent.  Additionally, there also 

appears to be no pattern between the significance level at which a trend was determined 

and the direction of that trend.  
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                                                                   (a)                                                                                     (b) 

 
                                                                    (c)                                                                                     (d) 
Figure 3.14 - Change in average annual streamflow (cms/year) for individual scenarios with statistically significant trends during 
2012 – 2099 in the (a) Cache la Poudre, (b) Gunnison, (c) San Juan, and (d) Yampa River basins.  The projections were grouped by 
their respective emissions path scenarios.  All trends determined to be significant were quantified using Sen’s slope, of which the most 
significant are displayed here.  The diamond represents the trend slope, which is enclosed by a grey shaded box to show the associated 
95% confidence interval.  The color of the diamond indicates the significance level associated with the Mann-Kendall test and include 
red (α = 0.001), yellow (α = 0.01), and dark blue (α = 0.05). 
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 Twelve individual projections were found to have the same direction of 

significant (α<0.05) trend across all study basins (Table 3.2).  Six of the projections 

corresponded to significant positive trends in average annual streamflow across all 

basins, while the other six were related to significant negative trends in average annual 

streamflow across all basins (except for Yampa, which had only one significant negative 

trend with α = 0.10).  The table depicts the GCM, SRES emissions scenario, run number 

(when applicable), and Sen’s slope in each basin for each of the 12 projections.   

Table 3.2 – Individual projections with similar trends in streamflow for all study basins. 

GCM SRES Run #  
Sen’s slope (cms/year) 

Poudre Gunnison San Juan Yampa 
CNRM-CM3 A2 NA -0.04 -0.20 -0.14 -0.14 
CNRM-CM3 B1 NA -0.03 -0.22 -0.17 -0.14 
IPSL-CM4 A2 NA -0.04 -0.15 -0.20 0.04 
MIROC3.2 A2 1 -0.04 -0.17 -0.12 -0.03 
MIROC3.2 A2 2 -0.05 -0.18 -0.15 -0.06 
MIROC3.2 A2 3 -0.03 -0.15 -0.14 -0.04 

ECHAM5/MPI-OM A2 1 0.03 0.12 0.10 0.36 
MRI-CGCM2.3.2 B1 4 0.03 0.16 0.11 0.29 
PCM A2 2 0.04 0.19 0.13 0.40 
PCM B1 3 0.04 0.19 0.12 0.40 
PCM A1B 4 0.06 0.23 0.15 0.52 
UKMO-HadCM3 A1B NA 0.03 0.18 0.18 0.36 

 
  
 
3.3.3 ASSUMPTIONS & LIMITATIONS 

Inherent in any field of research, especially that concerning projection of future climate 

and hydrologic modeling at the watershed-scale, is the need to both make assumptions 

and recognize limitations of the study.  One of several assumptions regarding the 

downscaling methodology taken herein was from the resampling technique used to 

temporally downscale future projections.  By resampling historical daily patterns and 
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implementing them in future scenarios (after scaling/incrementing), an assumption in 

stationarity, of a sort, was made.  The stationarity assumed was that the relative 

magnitude of temperature and precipitation fluctuations on a day to day basis remains 

constant in the future.  Although the occurrence of extreme events is expected to be 

impacted by climate change, this assumption was determined to be relatively insignificant 

as analysis of the results was performed on a monthly scale. 

 One assumption immediately recognized during hydrologic simulation of future 

climate projections was that of a time-invariant land use throughout the future.  The 

SWAT model for each study watershed was developed based on the 2001 National Land 

Cover Dataset (NLCD).  It is apparent that the land use distribution throughout the study 

basins will change over time, but such change may be relatively minor in high elevation 

mountain watersheds.  However, the current outbreak of Mountain Pine Beetle in a 

substantial portion of all the watersheds could potentially impact water yield in the future 

(e.g. Potts, 1984), which was beyond the scope of this study to quantify.  Additionally, 

time-invariant parameters were assumed in the SWAT model.  Although it is recognized 

that some of the SWAT parameters are climate dependent, it was beyond the scope of this 

study to modify them based on future climate scenarios.  One final assumption in using 

the SWAT model was that of stationary lapse rates, which were utilized to model 

orographic effects on temperature and precipitation.  The lapse rates of the future were 

assumed to be similar to those computed over the historical period, and therefore were 

not modified for future simulations over the 21st century.  Furthermore, it is recognized 

that orographic effects are not necessarily constant throughout the year or over all 

elevations in a watershed.  For instance, one study in southwest Idaho found the strongest 
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orographic effects on precipitation to occur during advective storms of winter, than 

compared to summer precipitation driven by convection (Hanson, 1982). 

 

3.4 CONCLUSIONS 

In order to project the impacts of climate change on hydrologic response over a spatial 

scale relevant to Colorado watersheds, 112 individual climate projections from 16 GCMs 

and 3 emissions scenarios were downscaled, in both space and time, and corrected for 

bias.  The resulting projections of daily precipitation and temperature at point locations 

were used to drive a comprehensive, process-based watershed model (SWAT), which 

was calibrated and tested for monthly simulation of streamflow in four mountainous 

headwater river basins located throughout the state.  The model was run for 90 years 

through the end of the 21st century, and results were analyzed from both emissions 

scenarios ensemble averages and individual scenarios.  The results display a substantial 

amount of variability amongst future projections of temperature and precipitation, which 

resulted in variability in simulated hydrologic response.  However, several generalities 

found across all four basins in Colorado through the end of the 21st century include a 

greater increase in temperature over winter and summer months relative to spring and fall 

months, an increase in winter precipitation and a decrease in late spring precipitation, a 

decrease in the ratio of snow fall to total precipitation, especially in the fall and spring 

months, a shift in the annual snowmelt hydrograph to earlier times in the year, and a 

progression towards more arid environments.  Additionally, trends in average annual 

streamflow through the end of the century did not agree upon a direction, either 

increasing or decreasing, in the Poudre, Gunnison, and San Juan River basins.  The 
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Yampa River basin, on the other hand, had better agreement on trends of average annual 

streamflow, which appeared to increase from 2012-2099.  Finally, 12 individual climate 

scenarios were identified as the worst-case or best-case scenarios for water yield across 

all study basins through the 21st century, which may direct future work in bounding of 

water availability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

119 
 

3.5 REFERENCES 

Bernstein, L., Bosch, P., Canziani, O.F., Chen, Z., Christ, R., Davidson, O., Hare, W., 
Huq, Q., Karoly, D., Kattsov, V., Coauthors, 2007. 3.1 Emissions scenarios. In: 
Allali, A., Bojariu, R., Diaz, S., Elgizouli, I., Griggs, D., Hawkins, D., Hohmeyer, 
O., Jallow, B.P., Kajfez-Bogataj, L., Leary, N., Lee, H., Wratt, D. (Eds.), Climate 
Change 2007: Synthesis Report. IPCC, Geneva, pp. 44. 

Buishand, T.A., 1978. Some remarks on the use of daily rainfall models. Journal of 
Hydrology, 36(3-4): 295-308. 

Bureau of Reclamation, U.S., 2009. Long-Term Planning Hydrology based on Various 
Blends of Instrumental Records, Paleoclimate, and Projected Climate 
Information. 

Cayan, D.R., Kammerdiener, S.A., Dettinger, M.D., Caprio, J.M., Peterson, D.H., 2001. 
Changes in the onset of spring in the western United States. Bulletin of the 
American Meteorological Society, 82(3): 399-416. 

Christensen, N.S., Lettenmaier, D.P., 2007. A multimodel ensemble approach to 
assessment of climate change impacts on the hydrology and water resources of the 
Colorado River Basin. Hydrology and Earth System Sciences, 11(4): 1417-1434. 

Collins, W.D., Bitz, C.M., Blackmon, M.L., Bonan, G.B., Bretherton, C.S., Carton, J.A., 
Chang, P., Doney, S.C., Hack, J.J., Henderson, T.B., 2006. The community 
climate system model: CCSM3. Journal of Climate, 19(11): 2122-2143. 

Delworth, T.L., Broccoli, A.J., Rosati, A., Stouffer, R.J., Balaji, V., Beesley, J.A., Cooke, 
W.F., Dixon, K.W., Dunne, J., Dunne, K.A., 2006. GFDL's CM2 global coupled 
climate models. Part I: Formulation and simulation characteristics. Journal of 
Climate, 19(5): 643-674. 

Diansky, N.A., Volodin, E.M., 2002. Simulation of present-day climate with a coupled 
atmosphere-ocean general circulation model. Izvestiya Atmospheric and Oceanic 
Physics, 38(6): 732-747. 

Flato, G.M., Boer, G.J., 2001. Warming asymmetry in climate change simulations. 
Geophysical Research Letters, 28(1): 195-198. 

Fontaine, T.A., Cruickshank, T.S., Arnold, J.G., Hotchkiss, R.H., 2002. Development of 
a snowfall-snowmelt routine for mountainous terrain for the soil water assessment 
tool (SWAT). Journal of Hydrology, 262(1-4): 209-223. 

Furevik, T., Bentsen, M., Drange, H., Kindem, I.K.T., Kvamstø, N.G., Sorteberg, A., 
2003. Description and evaluation of the Bergen climate model: ARPEGE coupled 
with MICOM. Climate Dynamics, 21(1): 27-51. 



 
 

120 
 

Gordon, C., Cooper, C., Senior, C.A., Banks, H., Gregory, J.M., Johns, T.C., Mitchell, 
J.F.B., Wood, R.A., 2000. The simulation of SST, sea ice extents and ocean heat 
transports in a version of the Hadley Centre coupled model without flux 
adjustments. Climate Dynamics, 16(2-3): 147-168. 

Gordon, H.B., Rotstayn, L.D., McGregor, J.L., Dix, M.R., Kowalczyk, E.A., O’Farrell, 
S.P., Waterman, L.J., Hirst, A.C., Wilson, S.G., Collier, M.A., Watterson, I.G., 
Elliot, T.I., 2002. The CSIRO Mk3 climate system model, Victoria, Australia. 

Hamlet, A.F., Mote, P.W., Clark, M.P., Lettenmaier, D.P., 2005. Effects of temperature 
and precipitation variability on snowpack trends in the western United States. 
Journal of Climate, 18: 4545-4561. 

Hanson, C., 1982. Distribution and stochastic generation of annual and monthly 
precipitation on a mountainous watershed in southwest Idaho. Journal of the 
American Water Resources Association, 18(5): 875-883. 

Hasumi, H., Emori, S., 2004. K-1 coupled model (MIROC) description. 

Hoerling, M., Eischeid, J., 2007. Past peak water in the Southwest. Southwest Hydrology, 
6(1): 18-19. 

IPCC, 2000. Special Report on Emissions Scenarios, Cambridge, UK, 612 pp. pp. 

Jaccard, P., 1908. Nouvelles recherches sur la distribution florale. Bulletin de la Société 
Vaudoise des Sciences Naturelles, 44(163): 223-269. 

Jungclaus, J., Keenlyside, N., Botzet, M., Haak, H., Luo, J., Latif, M., Marotzke, J., 
Mikolajewicz, U., Roeckner, E., 2006. Ocean circulation and tropical variability 
in the coupled model ECHAM5/MPI-OM. Journal of Climate, 19(16): 3952-3972. 

Knowles, N., Dettinger, M.D., Cayan, D.R., 2006. Trends in snowfall versus rainfall in 
the western United States. Journal of Climate, 19(18): 4545-4559. 

Kundzewicz, Z.W., Mata, L.J., Arnell, N.W., Doll, P., Kabat, P., Jiménez, B., Miller, K., 
Oki, T., Sen, Z., Shiklomanov, I., 2007. Freshwater resources and their 
management. In: Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J., 
Hanson, C.E. (Eds.), Climate Change 2007: Impacts, Adaptation and 
Vulnerability.  Contribution of Working Group II to the Fourth Assessment 
Report of the Intergovernmental Panel on Climate Change. Cambridge University 
Press, Cambridge, UK, pp. 173-210. 

Legutke, S., Voss, R., 1999. The Hamburg atmosphere-ocean coupled circulation model-
ECHO-G, Hamburg. 

Mann, H.B., 1945. Nonparametric tests against trend. Econometrica: Journal of the 
Econometric Society, 13(3): 245-259. 



 
 

121 
 

Marti, O., Braconnot, P., Bellier, J., Benshila, R., Bony, S., Brockmann, P., Cadule, P., 
Caubel, A., Denvil, S., Dufresne, J.L., Fairhead, L., Filiberti, M.A., Foujols, 
M.A., T. Fichefet, T., Friedlingstein, P., Gosse, H., Grandpeix, J.Y., F. Hourdin, 
F., Krinner, G., Lévy, C., Madec, G., Musat, I., de Noblet, N., Polcher, J., 
Talandier, C., 2006. The new IPSL climate system model: IPSL-CM4, Paris, 
France. 

Maurer, E.P., Brekke, L., Pruitt, T., Duffy, P.B., 2007. Fine-resolution climate 
projections enhance regional climate change impact studies. EOS Transactions 
American Geophysical Union, 88(47): 504. 

Maurer, E.P., Wood, A.W., Adam, J.C., Lettenmaier, D.P., Nijssen, B., 2002. A long-
term hydrologically based dataset of land surface fluxes and states for the 
conterminous United States. Journal of Climate, 15(22): 3237-3251. 

McCormick, W.P., Lyons, N.I., Hutcheson, K., 1992. Distributional properties of 
jaccard’s index of similarity. Communications in Statistics-Theory and Methods, 
21(1): 51-68. 

Meehl, G.A., Covey, C., Delworth, T., Latif, M., McAvaney, B., Mitchell, J.F.B., 
Stouffer, R.J., Taylor, K.E., 2007. The WCRP CMIP3 multimodel dataset. 
Bulletin of the American Meteorological Society, 88(9): 1383-1394. 

Milly, P.C.D., Dunne, K.A., Vecchia, A.V., 2005. Global pattern of trends in streamflow 
and water availability in a changing climate. Nature, 438(17): 347-350. 

Mote, P.W., Hamlet, A.F., Clark, M.P., Lettenmaier, D.P., 2005. Declining Mountain 
Snowpack in Western North America. Bulletin of the American Meteorological 
Society, 86(1): 39-49. 

Potts, D.F., 1984. Hydrologic impacts of a large-scale Mountain Pine Beetle 
(Dendroctonus Ponderosae) epidemic. American Water Resources Association, 
20(3): 373-377. 

Praskievicz, S., Chang, H., 2009. A review of hydrological modelling of basin-scale 
climate change and urban development impacts. Progress in Physical Geography, 
33(5): 650-671. 

Ray, A.J., Barsugli, J.J., Averyt, K.B., Wolter, K., Hoerling, M., Doesken, N., Udall, B., 
Webb, R.S., 2008. Climate Change in Colorado:  A Synthesis to Support Water 
Resources Management and Adaptation. 

Russell, G.L., Miller, J.R., Rind, D., Ruedy, R.A., Schmidt, G.A., Sheth, S., 2000. 
Comparison of model and observed regional temperature changes during the past 
40 years. Journal of Geophysical Research, 105(D11): 14,891-14,898. 



 
 

122 
 

Salas-Mélia, D., Chauvin, F., Déqué, M., Douville, H., Gueremy, J.F., Marquet, P., 
Planton, S., Royer, J.F., Tyteca, S., 2005. Description and validation of the 
CNRM-CM3 global coupled model. Climate Dynamics (in review). 

Salmi, T., Määttä, A., Anttila, P., Ruoho-Airola, T., Amnell, T., 2002. Detecting Trends 
of Annual Values of Atmospheric Pollutants by the Mann-Kendall Test and Sen's 
Slope Estimates - The Excel Template Application MAKESENS, Helinski. 

Schuol, J., Abbaspour, K.C., 2007. Using monthly weather statistics to generate daily 
data in a SWAT model application to West Africa. Ecological Modelling, 201(3-
4): 301-311. 

Sen, P., 1968. Estimates of the regression coefficient based on Kendall's tau. Journal of 
the American Statistical Association, 63(324): 1379-1389. 

Serreze, M.C., Clark, M.P., Armstrong, R.L., McGinnis, D.A., Pulwarty, R.S., 1999. 
Characteristics of the western United States snowpack from snowpack telemetry 
(SNOTEL) data. Water Resources Research, 35(7): 2145-2160. 

Shepard, D., 1984. Computer mapping: The SYMAP interpolation algorithm. In: Gaile, 
G.L., Willmott, C. (Eds.), Spatial Statistics and Models. Springer, pp. 133–145. 

Stewart, I.T., 2009. Changes in snowpack and snowmelt runoff for key mountain regions. 
Hydrological Processes, 23(1): 78-94. 

Stewart, I.T., Cayan, D.R., Dettinger, M.D., 2004. Changes in snowmelt runoff timing in 
western North America under abusiness as usual'climate change scenario. 
Climatic Change, 62(1-3): 217-232. 

Stonefelt, M.D., Fontaine, T.A., Hotchkiss, R.H., 2000. Impacts of climate change on 
water yield in the Upper Wind River Basin. Journal of the American Water 
Resources Association, 36(2): 321-336. 

Trenberth, K.E., Jones, P.D., Ambenje, P., Bojariu, R., Easterling, D., Tank, A.K., 
Parker, D., Rahimzadeh, F., Renwick, J.A., Rusticucci, M., Soden, B., Zhai, P., 
2007. Observations: surface and atmospheric climate change. In: Solomon, S., 
Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, 
H.L. (Eds.), Climate Change 2007: The Physical Science Basis: Contribution of 
Working Group I to the Fourth Assessment Report of the Intergovernmental Panel 
on Climate Change. Cambridge University Press, Cambridge, UK, pp. 236-336. 

United Nations Committee on Economic, S.a.C.R., 2003. General Comment No. 15 
(2002). United Nations Economic and Social Council, Geneva, pp. 1-18. 

Washington, W.M., Weatherly, J.W., Meehl, G.A., Semtner Jr, A.J., Bettge, T.W., Craig, 
A.P., Strand Jr, W.G., Arblaster, J., Wayland, V.B., James, R., 2000. Parallel 
climate model (PCM) control and transient simulations. Climate Dynamics, 
16(10): 755-774. 



 
 

123 
 

Wood, A.W., Leung, L.R., Sridhar, V., Lettenmaier, D.P., 2004. Hydrologic implications 
of dynamical and statistical approaches to downscaling climate model outputs. 
Climatic Change, 62(1-3): 189-216. 

Wood, A.W., Maurer, E.P., Kumar, A., Lettenmaier, D.P., 2002. Long range 
experimental hydrologic forecasting for the eastern US. Journal of Geophysical 
Research, 107(D20): ACL 6-1 - 6-15. 

Yukimoto, S., Noda, A., Kitoh, A., Sugi, M., Kitamura, Y., Hosaka, M., Shibata, K., 
Maeda, S., Uchiyama, T., 2001. The new Meteorological Research Institute 
coupled GCM(MRI-CGCM 2) - Model climate and variability. Papers in 
Meteorology and Geophysics, 51(2): 47-88. 

 
 



124 
 

 
CHAPTER 4: CONCLUSIONS 

 The headwater basins of Colorado are heavily relied upon for freshwater resources, of 

which the demand for is only projected to increase in the future.  However, knowledge 

concerning the generation of such resources and the implications of climate change on 

their availability is not well understood.  Thus, this research was undertaken to 

investigate the potential hydrologic response to a changing climate at the watershed scale 

in mountainous Colorado over the course of the 21st century. Specifically, the objectives 

of this study were (i) to develop and test a comprehensive process-based watershed 

model that can, with a high level of confidence, represent important hydrologic processes 

in the snowmelt-dominated headwater catchments of Colorado; (ii) to observe the 

dominance of various hydrologic fluxes in the study watersheds based on observed 

conditions in the past; (iii) to downscale, in space and time, an ensemble of climate 

projections in a manner which addresses both the error involved and uncertainty inherent 

in climate modeling through incorporation of numerous models and diverse emissions 

scenarios; and (iv) to objectively identify the direction and degree of potential impacts on 

water resources, namely water yield, in Colorado and associate specific climate 

projections with low and high conditions of freshwater availability.  

 The Soil and Water Assessment Tool (SWAT) was used for simulation of 

hydrologic processes on a daily time-step in headwater basins of Colorado.  The study 

watersheds are located on both sides of the Continental Divide and represent various 
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physiographic and climatic conditions occurring across the state.  The SWAT model was 

calibrated and tested over a 16 year period (1990 – 2005) at multiple nested locations 

within each basin to ascertain the robustness of the simulation approach at varying spatial 

scales.  Naturalized streamflows were utilized for calibration and testing in order to 

unambiguously discern the impacts of climate variability on hydrologic fluxes from 

alterations caused by diversions, dams, and other man-made storage and transfer 

structures.  Calibration was performed over the first 8 years (1990 – 1997), and compared 

the more common Shuffled Complex Evolution – University of Arizona (SCE-UA) 

parameter optimization technique to a Markov Chain Monte Carlo (MCMC) method 

known as the Gibbs Sampler Algorithm (GSA).  Hydrologic fluxes including 

evapotranspiration (ET), water yield, surface runoff, subsurface lateral flow, and 

groundwater discharge (baseflow) were quantified over the 16 year simulation period to 

evaluate their respective dominance in Colorado basins.  The calibrated and tested model 

was then forced with a suite of General Circulation Model (GCM) projections of 

precipitation and temperature to take into account the range of aleatory and epistemic 

uncertainties inherent in predicting future conditions.  The suite of projections, consisting 

of 112 individual scenarios, was downscaled in both space and time in a manner that 

preserved the observed spatial and temporal correlations of temperature and precipitation.  

Each watershed model was run for a period of 90 years over the 21st century, from 2010 – 

2099.  Results from the model were used to quantify the range and emission scenario 

ensemble averages (emission paths A2, A1B, and B1) of changes in temperature, 

precipitation, snowfall, ET, potential evapotranspiration (PET), and streamflow (yield).  

Additionally, trends in average annual streamflow for each of the 112 individual 
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projections were tested for statistical significance over the 21st century, and specific 

projections resulting in a similar response across all study watersheds in CO were 

identified.   

 Satisfactory results from the calibration and testing periods indicate a high level 

of confidence in simulation of streamflow, with Nash-Sutcliffe efficiency coefficients 

(ENS) at the watershed outlets ranging from 0.86 – 0.95 and 0.70 – 0.90 over the 

calibration and validation periods, respectively.  The most dominant hydrologic flux 

observed in all study basins was ET, with 55% – 65% of precipitation going to ET on an 

average annual basis over the 16 year period.  Lateral flow was simulated to be a major 

source of gross water yield, with 64% – 82% contributions on an average annual basis 

during the same period.  Future projections of climate showed an increase in temperature 

and variable responses in precipitation across the three emissions scenarios A2, A1B, and 

B1 over the 21st century.  Emissions scenario ensemble averages depicted a general 

increase in winter precipitation, a lower snow to total precipitation ratio, and an earlier 

occurrence of the snowmelt-dominated hydrograph in all study basins.  Statistically 

significant trends in average annual streamflow were variable across the region.  The 

Yampa basin showed strong evidence of increasing streamflow over the 21st century, 

while the other three basins showed mixed results.  Generally, the projections suggest a 

decrease in streamflow in the San Juan and Gunnison basins and an increase in 

streamflow in the Cache la Poudre basin.  Twelve individual projections were found to 

produce the same trend direction of annual streamflow across all four study basins, with 

six corresponding to increasing trends and six corresponding to decreasing trends.  

Regardless of the trends in streamflow, emissions path ensemble averages show a 
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decrease in the ratio of precipitation to PET in all study basins, which suggests all 

watersheds moving towards more arid environments in the future.   

 The results of this research show variable hydrologic response to climate change 

across the region depending on the geographic location and specific characteristics of a 

given watershed.  Implications of this study are considerable, as management of water 

resources, both within the state and across the West, will be affected by the availability of 

freshwater in the future.  The amount and timing of diversion, transfer, and storage of 

water in addition to the infrastructure required by such, will all be reliant on future 

hydrologic conditions.  Thus, predictive tools that can represent hydrologic processes at 

smaller scales will continue to become more important to expose basin-specific 

hydrologic response to climate change, especially in mountainous headwater catchments 

of Colorado.  
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                               (a)                                                         (b) 

 
                               (c)                                                           (d) 
Figure A.1 – Temperature and precipitation lapse rates in the (a) Cache la Poudre, (b) 
Gunnison, (c) San Juan, and (d) Yampa River basins.  Lapse rates were computed using 
linear regression in Microsoft Excel with the coefficient of determination (R2) displayed 
below the equation. 
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                   (a)                                                                                        (b) 

 
                                                               (c)                                                                                        (d) 

 
                                                               (e)                                                                                         (f) 
Figure A.2 - A comparison between  simulated naturalized and measured USGS gauge streamflows at multiple sites within each 
watershed; Gunnison (a) USGS 09110000, (b) USGS 09126500; San Juan (c) USGS 09341500, (d) USGS 09339900; and Yampa (e) 
USGS 09249750 (f) USGS 09237500.  Several sites had either limited or no record of measured streamflow over the study period. 
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           (a)                                                                                     (b) 

 
          (c)                                                                                      (d) 

 
            (e)                                          (f) 
Figure A.3 - Time series of simulated and observed (naturalized) streamflows over the calibration and validation periods at multiple 
sites within each watershed; Gunnison (a) USGS 09110000, (b) USGS 09126500; San Juan (c) USGS 09341500, (d) USGS 
09339900; and Yampa (e) USGS 09249750 (f) USGS 09237500. 
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                                        (a)                                                                 (b) 

 
                                       (c)       (d) 

 
      (e)                                                                   (f) 
Figure A.4 - Time series of streamflow error (observed – simulated) over the calibration 
and validation periods at multiple sites within each watershed; Gunnison (a) USGS 
09110000, (b) USGS 09126500; San Juan (c) USGS 09341500, (d) USGS 09339900; and 
Yampa (e) USGS 09249750 (f) USGS 09237500. 
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                                    (a)                                                                  (b) 

 
   (c)                 (d) 

 
              (e)                                                                  (f) 
Figure A.5 - Observed versus simulated monthly streamflows over the 1990 – 2005 
(1990 – 2004 in Yampa) study period at multiple sites within each study watershed; 
Gunnison (a) USGS 09110000, (b) USGS 09126500; San Juan (c) USGS 09341500, (d) 
USGS 09339900; and Yampa (e) USGS 09249750 (f) USGS 09237500. 
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Table B.1 – NLCD 1992 land use/land cover lookup table. 

NLCD 1992 Type SWAT LULC 
Code SWAT LULC Description 

Open Water WATR Water 
Perennial Ice/Snow WATR Water 
Low-Intensity Residential URLD Residential-Low Density 
High-Intensity Residential URHD Residential-High Density 
Commercial/Industrial/Transportation UCOM Commercial 

Bare Rock/Sand/Clay SWRN Southwestern US (Arid) 
Range 

Quarries/Strip Mines/Gravel Pits SWRN Southwestern US (Arid) 
Range 

Transitional SWRN Southwestern US (Arid) 
Range 

Deciduous Forest FRSD Forest-Deciduous 
Evergreen Forest FRSE Forest-Evergreen 
Mixed Forest FRST Forest-Mixed 
Shrubland RNGB Range-Brush 
Orchards/Vineyards/Other ORCD Orchard 
Grasslands/Herbaceous RNGE Range-Grasses 
Pasture/Hay HAY Hay 

Row Crops AGRR Agricultural Land-Row 
Crops 

Small Grains WWHT Winter Wheat 
Fallow PAST Pasture 
Urban/Recreational Grasses URLD Residential-Low Density 
Woody Wetlands WETF Wetlands-Forested 
Emergent Herbaceous Wetlands WETN Wetlands-Non-Forested 
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Table B.2 – NLCD 2001 Land use/land cover lookup table. 

NLCD 2001 Type SWAT LULC 
Code SWAT LULC Description 

Open Water WATR Water 
Perennial Ice/Snow WATR Water 
Developed, Open Space URLD Residential-Low Density 
Developed, Low Intensity URMD Residential-Medium Density 
Developed, Medium Intensity URHD Residential-High Density 
Developed, High Intensity UIDU Industrial 

Barren Land (Rock/Sand/Clay) SWRN Southwestern US (Arid) 
Range 

Unconsolidated Shore* SWRN Southwestern US (Arid) 
Range 

Deciduous Forest FRSD Forest-Deciduous 
Evergreen Forest FRSE Forest-Evergreen 
Mixed Forest FRST Forest-Mixed 
Dwarf Scrub RNGB Range-Brush 
Shrub/Scrub RNGB Range-Brush 
Grassland/Herbaceous RNGE Range-Grasses 
Sedge/Herbaceous RNGE Range-Grasses 
Lichens RNGE Range-Grasses 
Moss RNGE Range-Grasses 
Pasture/Hay HAY Hay 

Cultivated Crops AGRR Agricultural Land-Row 
Crops 

Woody Wetlands WETF Wetlands-Forested 
Palustrine Forested Wetland* WETF Wetlands-Forested 
Palustrine Scrub/Shrub Wetland* WETL Wetlands-Mixed 
Estuarine Forested Wetland* WETF Wetlands-Forested 
Estuarine Scrub/Shrub Wetland* WETL Wetlands-Mixed 
Emergent Herbaceous Wetlands WETN Wetlands-Non-Forested 
Palustrine Emergent Wetland 
(Persistent)* WETN Wetlands-Non-Forested 

Estuarine Emergent Wetland* WETN Wetlands-Non-Forested 
Palustrine Aquatic Bed* WATR Water 
Estuarine Aquatic Bed* WATR Water 

* Indicates the NLCD description is applicable to coastal areas only. 
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Table B.3 – SWAT streamflow parameters with their allowable ranges and corresponding processes. 
No. Parameter Min Max Definition Process 
x1 DEPIMP_BSN 0 6000 Depth to impervious layer (mm) Groundwater 
x2 EPCO 0.01 1 Plant evaporation compensation factor Evaporation 
x3 SFTMP -5 5 Snowfall temperature (°C) Snow cover 
x4 SMFMN 0 10 Melt factor on June 21 (mm /°C/day) Snowmelt 
x5 SMFMX 0 10 Melt factor on Dec 21(mm/°C/day) Snowmelt 
x6 SMTMP -5 5 Threshold temperture for snowmelt (°C)  Snowmelt 
x7 SNOCOVMX 0 650 Minimum snow water content that corresponds to 100% snow cover 

(mm) 
Snow cover 

x8 SNO50COV 0 1 Fraction of snow volume represented by SNOCOVMX that 
corresponds to 50% snow cover 

Snow cover 

x9 SURLAG 1 24 Surface runoff lag coefficient Runoff 
x10 TIMP 0.01 1 Snow temperature lag factor Snowmelt 
x11 ALPHA_BF 0 1 Baseflow recession constant Groundwater 
x12 GW_DELAY 0 500 Groundwater delay (days) Groundwater 
x13 GW_REVAP 0.02 0.2 Groundwater Revap coefficient Groundwater 
x14 GW_SPYLD* -0.5 1 Fraction change in specific yield of the shallow aquifer Groundwater 
x15 GWHT 0 25 Initial groundwater height (m) Groundwater 
x16 GWQMN 0 5000 Threshold water level in shallow aquifer for baseflow to occur (mm) Groundwater 
x17 RCHRG_DP 0 1 Groundwater recharge to deep aquifer (fraction) Groundwater 
x18 REVEP_MN 0 500 Threshold water level in the shallow aquifer for Revap to occur (mm) Groundwater 
x19 ESCO 0.01 1 Soil evaporation compensation factor Evaporation 
x20 CANMX 0 10 Maximum canopy storage Runoff 
x21 OV_N 0.01 0.3 Manning's n for overland flow Runoff 
x22 SLOPE* -0.1 0.1 Fraction change in slope of HRU Geomorphology 
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Table B.3 (contd) – SWAT streamflow parameters with their allowable ranges and corresponding processes. 
No. Parameter Min Max Definition Process 
x23 CN_F* -0.15 0.15 Fraction change in curve number Runoff 
x24 CH_KII -0.01 500 Effective hydraulic conductivity of channel (mm/hr) Channel 
x25 CH_NII 0.01 0.3 Manning's n for main channel Channel 
x26 CH_SII* -0.05 0.05 Fraction change in average channel slope along channel length  Channel 
x27 SOL_AWC* -0.1 2 Fraction change in available water capacity of the soil layer Groundwater 
x28 SOL_K* -0.5 5 Fraction change in soil conductivity Groundwater 
x29 CH_KI 0 300 Effective hydraulic conductivity of channel (mm/hr) Channel 
x30 CH_NI 0.008 0.3 Manning's n for tributary channel Channel 
* These parameters were varied as a percentage of their default values to maintain their relative spatial variability. 
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Table B.4 – Meteorological stations implemented into the SWAT models. 
Basin Station Name Source Latitude Longitude Elevation (m) Period of Record 

Cache la Poudre 

Deadman Hill, CO SNOTEL 40.80 -105.77 3115.1 10/1/1978 - Present 
Joe Wright, CO SNOTEL 40.53 -105.88 3084.6 10/1/1978 - Present 
Laramie 2NW, WY NCDC 41.33 -105.60 2176.3 5/1/1966 - Present 
Red Feather Lakes 2SE, CO NCDC 40.78 -105.55 2488.7 8/1/1948 - 7/1/1990 
Red Feather Lakes, CO* NCDC 40.80 -105.58 2529.8 7/1/1991 - 5/27/1997 
Rustic 9WSW, CO NCDC 40.70 -105.72 2347.0 4/1/1993 - Present 
Willow Park, CO SNOTEL 40.43 -105.73 3261.4 7/5/1980 - Present 

Gunnison 

Butte, CO SNOTEL 38.90 -106.95 3096.8 10/1/1981 - Present 
Gunnison 3SW, CO NCDC 38.53 -106.97 2323.8 8/1/1948 - Present 
Idarado, CO SNOTEL 37.93 -107.68 2987 7/23/1980 - Present 
Park Cone, CO SNOTEL 38.82 -106.58 2926.1 8/10/1980 - Present 
Porphyry Creek, CO SNOTEL 38.48 -106.33 3279.6 10/1/1978 - Present 
Slumgullion, CO SNOTEL 37.98 -107.20 3486.9 8/19/1980 - Present 

San Juan 

Aztec Ruins National 
Monument, NM 

NCDC 36.83 -108.00 1720.3 7/1/1946 - Present 

Bloomfield 3SE, NM NCDC 36.67 -107.97 1769.7 7/1/1946 - Present 
Chamita, NM SNOTEL 36.95 -106.65 2560.3 10/1/1979 - Present 
Durango, CO NCDC 37.28 -107.88 2011.7 12/1/1904 - 2/27/1991 
Durango, CO** NCDC 37.28 -107.85 2060.8 2/27/1991 - Present 
El Vado Dam, NM NCDC 36.60 -106.73 2054.4 7/1/1946 - Present 
Pagosa Springs, CO NCDC 37.25 -107.02 2209.8 8/1/1948 - 11/18/1998 
Pagosa Springs 2W, CO*** NCDC 37.27 -107.05 2319.5 10/1/1999 - Present 
Stump Lakes, CO SNOTEL 37.48 -107.63 3413.8 10/1/1986 - Present 
Upper San Juan, CO SNOTEL 37.48 -106.83 3108.9 10/1/1978 - Present 
Vallecito, CO SNOTEL 37.48 -107.50 3316.2 10/1/1986 - Present 
Wolf Creek Summit, CO SNOTEL 37.48 -106.80 3352.8 10/1/1986 - Present 
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Table B.4 (contd) – Meteorological stations implemented into the SWAT models. 
Basin Station Name Source Latitude Longitude Elevation (m) Period of Record 

Yampa 

Craig 4SW, CO NCDC 40.45 -107.58 1980.0 5/5/1977 - Present 
Crosho, CO SNOTEL 40.17 -107.05 2773.7 10/1/1986 - Present 
Dry Lake, CO SNOTEL 40.53 -106.78 2560.3 10/1/1980 - Present 
Hayden, CO NCDC 40.50 -107.25 1971.1 8/1/1948 - Present 
Lynx Pass, CO SNOTEL 40.08 -106.67 2706.6 10/1/1980 - Present 
Maybell, CO NCDC 40.52 -108.10 1811.7 6/1/1958 - Present 
Rabbit Ears, CO SNOTEL 40.37 -106.73 2865.1 10/1/1986 - Present 
Ripple Creek, CO SNOTEL 40.10 -107.30 3151.6 10/1/1986 - Present 
Yampa, CO NCDC 40.15 -106.92 2394.8 8/1/1948 - Present 

*Combined with prior Red Feather Lakes 2SE station 
**Combined with prior Durango station 
***Combined with prior Pagosa Springs station 
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