DISSERTATION

Characterize Southwestern U.S. Piñon-Juniper Woodlands: SEEING THE "OLD" TREES FOR THE "YOUNG" FOREST

Submitted By:
Brian Francis Jacobs

Graduate Degree Program in Ecology

In partial fulfillment of the requirements for the Degree of Doctor of Philosophy

Colorado State University
Fort Collins, Colorado
Fall 2008

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

UMI Microform 3346442
Copyright 2009 by ProQuest LLC.
All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway
PO Box 1346
Ann Arbor, Ml 48106-1346

COLORADO STATE UNIVERSITY

October 31, 2008

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UNDER OUR SUPERVISION BY BRIAN FRANCIS JACOBS ENTITLED CHARACTERIZE SOUTHWESTERN USS. PIÑON-JUNIPER WOODLANDS: SEEING THE ‘OLD’ TREES FOR THE 'YOUNG' FOREST BE ACCEPTED AS FULFILLING IN PART REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Committee on Graduate Work

\qquad

Department Head

Abstract of Dissertation

CHARACTERIZE SOUTHWESTERN U.S. PIÑON-JUNIPER WOODLANDS: SEEING THE "OLD" TREES FOR THE "YOUNG" FOREST

Southwestern U.S. piñon pine and juniper woodlands are often represented as an expanding and even invasive vegetation type, a legacy of historic grazing and culpable in the degradation of western rangelands. Yet the extent and dynamics of piñon-juniper communities pre-dating intensive Euro-American settlement activities are poorly known or understood, while the intrinsic ecological, aesthetic, and economic values of oldgrowth woodlands are often overlooked. Historical changes in piñon-juniper include two related, but poorly differentiated, processes: recent tree expansion into grass or shrub dominated (i.e., non-woodland) vegetation and thickening or infilling of savanna or mosaic woodlands pre-dating settlement. My work addresses the expansion pattern, modeling the occurrence of "older" savanna and woodland stands extant prior to 1850, in contrast to "younger" piñon-juniper growth of more recent, post-settlement origin. I present criteria in the form of a diagnostic key for distinguishing "older", pre-EuroAmerican settlement woodlands from "younger" (post-1850) stands, and report results of predictive modeling and mapping efforts within the Four Corners states (i.e., Arizona, Colorado, New Mexico, and Utah) of the American southwest in piñon-juniper types characterized by Pinus edulis and three associated junipers (Juniperus osteosperma, J. monosperma, J. scopulorum). Selected models suggest a primary role for soil moisture in the current distribution of "old" versus "young" piñon-juniper stands. Pre-settlement era
woodlands are shown to occupy a discrete ecological space, defined by the interaction of effective (seasonal) moisture with landform setting and fine-scale (soil-water) depositional patterns. "Older" stands are generally found at higher elevations or on skeletal soils in upland settings, while "younger" stands (often dominated by one-seed juniper, Juniperus monosperma) are most common at lower elevations or in productive, depositional settings. Areas of the southwestern U.S. with strong monsoonal (summer moisture) patterns appear to have been the most susceptible to historical woodland expansion, but even here the great majority of extant piñon-juniper has pre-settlement origins (although widely thickened and infilled historically) and old-growth structure is not uncommon in appropriate upland settings. Modeling at broad regional scales can enhance a general understanding of piñon-juniper ecology, while predictive mapping of local areas has potential to provide products useful for land management.

Brian Francis Jacobs
Graduate Degree Program in Ecology
Colorado State University
Fort Collins, CO 80523
Fall 2008

Acknowledgements

Dr. Bill Romme provided thoughtful and consistent oversight of my graduate program and I appreciate his willingness to host and mentor a non-traditional student. Dr. Craig Allen was supportive in many ways including technical review of preliminary products and research project administration. An essential introduction to geospatial modeling was gained from Dr. Denis Dean, Dr. William Jacobi highlighted the importance of insect and disease agents in structuring woodland communities, Dr. Peter Brown offered an orientation to dendrochronological methods, and Dr. William Lauenroth shared important insights regarding the central role of soil moisture in controlling the expression of vegetation in semi-arid systems. I also want to acknowledge the friendly and supportive academic environment fostered by Dr. Dan Binkley (former Chair GDPE) and Dr. Ed Redente (former Chair FRWS). My research was supported by the National Park Service (NPS) and USGS- Biological Resources Discipline (BRD) in cooperation with the CSU Office of Sponsored Programs, and I want to recognize the very capable staff at the Warner College of Natural Resources Budget Office, as well as the efforts of budget and contracting personnel with the NPS and USGS-BRD. Many others offered tangible support for my research and graduate program; in particular my supervisor at Bandelier National Monument, John Mack, and my family who had to go back to school with me.

Table of Contents

Chapter I
Environmental controls of "old" or persistent woodland: A study proposal
Abstract 2
Introduction 3
Study Overview and Objectives 14
Literature Cited 18
Figures 21
Chapter II
Southwestern U.S. Juniper and Piñon-Juniper Savanna and Woodland Communities: Ecological History and Natural Range of Variability
Abstract 23
Introduction 23
Distribution 24
Ecology 28
Disturbance 30
Water 32
Grazing 35
Summary 37
Literature Cited 40
Appendices (Supplemental Figures) 43
Chapter III
Mapping "old" versus "young" piñon-juniper stands with a predictive topo-climatic model in north-central New Mexico, USA
Abstract 55
Introduction. 56
Methods. 62
Results 70
Discussion 73
Literature Cited 80
Tables 85
Figures 92
Appendices 97
Chapter IV
Regional scale modeling of southwestern U.S. piñon-juniper woodlands: predictive mapping of "old" versus "young" stands in the Four-Corner states
Abstract 101
Introduction 102
Methods 106
Results 116
Discussion. 124
Literature Cited 133
Tables 135
Figures 140
Appendices (Supplemental Figures) 146
Chapter VSynopsis of Dissertation Research and Ecological Implications of Regional ScaleModels: Interpreting Patterns and Process in Southwestern U.S. Piñon-Juniper Systems
Synopsis of Work 162
Key Findings 164
System Dynamics and Ecological Patterns 165
Management Implications 170
Conclusion 171
Literature Cited 173
Appendices
Appendix A (Regional Core Data) 175
Appendix B (Computational Overview of Metric Development) 180
Appendix C (Regional Extensive Plot Data) 182

Chapter I

Environmental controls of "old" or persistent woodland:
A study proposal

Abstract

Piñon-juniper woodlands are widely distributed on millions of acres across the southwestern U.S. Recent, historical changes in woodland occurrence and stand density have been variously interpreted as continued adjustment to Holocene climate, recovery from harvest (historic and pre-historic), succession after fire, drought, insect, and/ or disease induced mortality events, or response to grazing practices, altered fire regimes, elevated temperatures and CO_{2} levels. The broad ecological amplitude of southwestern piñon-juniper woodland tree species is demonstrated by the wide range of sites on which these trees can grow. Conversely, these species are extremely sensitive to fire disturbance and easily killed; drought, insect, and disease mortality can also have large effects on woodland stand dynamics, structure, and local distribution patterns. I suggest that while ecological amplitude and regional climate set broad limits on potential woodland species distribution, environmental factors and associated disturbance regimes formerly constrained the local extent and expression of woodland species occurrence on the landscape. If competitive interactions with understory, and disturbances like periodic surface fire, formerly restricted woodlands to a more limited range of sites (i.e., through competition with grasses and shrubs or fire avoidance) one could expect to detect meaningful relationships between "old" or persistent woodland stands (i.e., pre-dating Euro-American settlement) and suites of environmental site parameters. Field delineation of "old" or persistent stands could be accomplished using a set of semiquantitative and qualitative characters found to be diagnostic for assignment of a preversus post-settlement stand-age. Relating the occurrence of sampled pre- versus postsettlement stands to potential environmental controls through spatial modeling could

provide a viable approach for predictive mapping and of "old" versus "young" woodlands that would in turn facilitate appropriate and targeted management actions.

Introduction

Piñon and juniper dominated woodlands occupy millions of acres throughout the western United States (West, 1999), and are thought to have expanded several fold since 1850 (Miller and Wigand, 1994; Swetnam et. al., 1999; Tausch, 1999a ; Miller and Tausch, $2001 ;)$. Research and management efforts have primarily addressed this recent, post-Euro-American settlement expansion pattern of woodlands into degraded rangelands and upland forests understories. Often ignored, or poorly recognized however, are the "old" or persistent pre-settlement stands (in various stages of successional development), which in some areas are thought to account for only a few percent of the total acreage (Waicher et. al, 2001), but which in other locations may be much more common than previously thought (Eisenhart, 2004.). These pre-settlement status piñon and juniper woodlands, typically exceeding 150 years in age, are often thought to be restricted to low productivity sites where shallow soils and natural topographic barriers may combine to provide fire-safe conditions (Miller and Tausch, 2001). Old growth woodlands often create structurally complex and biologically diverse habitat supporting many unique organisms; individual trees can live several hundred to more than a thousand years, with juniper snags and logs often persisting for several hundred years (Floyd et. al., 2003). Yet, because these "old" or persistent growth communities are poorly understood, undervalued, and not easily distinguished from stands of more recent origin, they are increasingly at risk of being "restored" or burned over. Unrecognized, these old growth
woodlands can be inadvertently harmed by management actions (i.e., restoration, rangeland improvement, and fuel mitigation efforts) designed for post- Euro-American settlement woodlands (Eisenhart, 2004); conversely, crown fire is much more likely to occur in old growth stands contiguous with post-Euro-American settlement woodlands occupying more productive sites (Waicher et. al., 2001; Romme et. al. 2003).

Much of the confusion about the nature of woodlands can be attributed to overly simplistic classification methods utilizing extant tree overstory as the primary determinate of community type, regardless of age-structure, understory composition, or site history. Thus often lumped together with woodland, are former pine savanna, grassand shrub- land communities only recently (i.e. <150 years) characterized by a significant piñon and/or juniper overstory component (Tausch, 1999a). Key to discerning "old" or persistent woodland types from former pine savanna, grass- and shrublands, may be the soils and corresponding understory communities, inherent site productivity, topographic setting, and fire history (Tausch, 1999a). Shallow soils and broken topography are often thought to support "old" or persistent woodland where fire disturbance is infrequent owing to low site productivity and discontinuous fine fuels (Miller and Tausch, 2001). Conversely, deeper, more productive soils, and unbroken topography are thought to favor fire dependent pine savanna, grass- and shrub- land communities where fine fuel continuity allows more regular fire disturbance and culling of fire sensitive woodland species (Brackley, 1987). Romme et. al. (2003) presented general criteria for discerning three putative types of woodland in western North America in order to stimulate critical review of woodland system dynamics and classification.

Southwestern piñon-juniper woodlands are dynamic systems, some very "old", although in various stages of development or recovery, and many others of apparently recent origin. Individuals and stands can often persist hundreds and thousands of years respectively, yet be consumed by crown fire in a single afternoon and require 50 to 100 years or more to re-establish dominance. In other settings, where piñon and/or juniper have recently colonized more productive sites, the woodland type is best characterized as invasive. Paleo-vegetation reconstructions, based largely on pollen and macro-fossil evidence (Betancourt, 1987), document changing patterns of woodland distribution (i.e., northward and to higher elevations) and composition in response to prevailing regional climate (Neilson, 1987) and episodic weather events which facilitate pulsed establishment and mortality (Miller and Wigand, 1994; Swetnam et. al., 1999; Tausch, 1999a). Long-term records document a tidal advance and retreat of woodlands, coming and going repeatedly as climatic conditions fluctuate; the current dynamics of southwestern woodlands could be viewed as merely the latest response of this system to prevailing climate (Betancourt, 1987; Neilson, 1987; Swetnam et. al., 1999). Woodland species distributions, landscape patterns, and stand structures can be interpreted as the cumulative result of episodic establishment and mortality events under prevailing climatic conditions (Mitchell, 1976; Betancourt, 1987; Eisenhart, 2004). Although many morphological and ecophysiological traits represented within conifer species and populations are assumed to be conservative over Holocene time periods, their relative expression and representation in extant populations is likely a unique outcome influenced by factors such as sorting to meet changing conditions, shifting ranges, founder effects,
and stochastic processes (Neilson, 1987). Across much of the southwest a relative expansion of woodlands was likely ongoing prior to European settlement (Miller and Wigand, 1994; Swetnam et. al, 1999; Tausch, 1999a); intensive historic land-use activities (e.g., grazing), beginning in the mid-late 1800 's, are thought to have altered natural dynamics (e.g., loss of fire regime) in grass and shrub dominated systems and opened up additional sites for woodland colonization essentially unavailable during previous prehistoric expansions (Brackley, 1987). With sustained grazing pressure and in the absence of fire disturbance, these tree species have wide ecological amplitudes and can aggressively colonize adjacent communities (Brackley, 1987; Tausch, 1999a; Miller and Tausch, 2001). Southwestern woodlands thus include "old" or persistent stands of considerable age, structural and biological diversity, as well as stands of more recent origin which have often displaced or suppressed the community formerly occupying the site.

Colorado piñon is typically shorter lived, and less drought/ insect and disease tolerant than either juniper species, but is more productive with faster growth rates during wet periods and in more mesic (e.g., higher elevation) settings (Chambers et. al., 1999; Nowak et. al, 1999; Martens et. al., 2001). One-seed and Utah juniper in contrast, are longer lived and relatively resistant to drought, insect, and disease, but less productive than piñon during wet periods or in more mesic settings. One-seed juniper, with extensive shallow roots which harvest water from canopy interspaces, may compete more directly with herbaceous cover for available moisture than either Utah juniper or piñon; reported foliar uptake of moisture by one-seed juniper (Breshears et. al., 2008) may also enhance
this species apparent resistance to drought. Alternatively, some woodland trees may be able to reallocate harvested surface water to deep root storage where transpirational losses would be reduced (West, personal communication.).

Current distributional patterns of the three woodland species appear to be constrained in part by the relative positions of summer and winter potential air mass temperature boundaries related to seasonal migration of the Bermuda High (Neilson, 1987, 2003; Castro et. al., 2001) which strongly influences regional precipitation patterns and which Mitchell (1976) uses to define broad western climatic regions. For example, J. monosperma appears to be more dependent on a summer dominated moisture pattern (i.e., climate region VI, south and east of the summer monsoonal boundary) and less cold tolerant than J. osteosperma, which occurs mostly in areas north and west of the summer monsoonal boundary (i.e., climate region V). Pinus edulis and J. osteosperma are both distributed south of the winter polar front, but J. osteosperma is reported to occur elevationally above, as well as below, piñon (Neilson, 1987). Presumed differences in root system architecture between the two junipers, and relative dependence on deep versus shallow sources of water, may be reflected by their distributional patterns (and differential establishment and mortality) relative to seasonality of moisture.

Establishment patterns for woodland species are often episodic and associated with favorable climatic patterns (e.g., for establishment) and suitable microsites (e.g., shrub nurse plants) assuming seed availability; piñon masts infrequently at intervals of several years and seed are heavily predated and short lived in the soil seed bank, while juniper
produces a more consistent seed crop with longer viability (Chambers et. al., 1999). Mature individuals of either tree species can serve as nurse plants for seedlings of one or both species, forming distinct multi-aged patches. Persistence patterns for woodland species may be related, in part, to site conditions that promote deep infiltration and enhance subsoil water availability. While shallow soil sites may not provide sufficient water storage to support well developed herbaceous cover, fractured substrates underlying these soils may provide deep water storage accessible only by woody plants (McAuliffe, 2003). Piñon can attain dominance at higher, more mesic sites or during prolonged wet periods (except for localized fungal disease outbreaks), but juniper is usually favored at lower and drier sites and through drought periods which make piñon susceptible to insect mortality (Pieper and Lymbery, 1987). I suggest establishment of woodland onto deep soil sites during relatively moist periods, and in absence of fire disturbance, may proceed to closed canopy woodland (and eventual suppression of the understory community) given adequate subsoil water availability; however, sustained drought which limits deep soil water recharge at earlier stages of woodland establishment, and competitive interactions with herbaceous understory for growing season moisture, could result in widespread tree mortality.

Prolonged and severe drought episodes, insect and disease outbreaks, and fire, appear to be the primary disturbances thought to limit maximum age. My observations of burned woodlands suggest both piñon and juniper are extremely susceptible to fire and heat damage, and are usually killed outright, as opposed to merely scarred, by even moderate fire behavior. Given this fire intolerance and the several hundred years required for trees
to attain site dominance, it seems unlikely woodland would normally persist on sites where extant understory vegetation could potentially support fire return intervals of less than 50 to 100 years (in absence of grazing or fire suppression). Long-term avoidance of lethal fire effects can be afforded by fire-safe settings (i.e., on sites which generally support only sparse or patchy surface fuels and/ or in topographic settings limiting fire spread from adjacent areas); protection from ground fire also may be afforded to individuals or woodland patches by compact litter mats and competitive suppression of adjacent understory cover. I suggest that sites with shallow, rocky soils and which are often labeled unproductive because insufficient and/ or irregular water availability (within rooting depths of herbaceous plants) support only sparse understory cover, may sometimes be relatively productive from a deep rooted tree perspective where the underlying, fractured rock substrate captures and stores a source of ground water accessible only to woody plants. Similarly, deep, but coarse and well drained, soils may be unproductive for understory cover (where water drains or perches below effective understory rooting depths), but may support good tree growth if water is perched and available within effective tree rooting depths). Soils or substrates that effectively inhibit deep water filtration and storage, through soil texture, presence of argillic horizons or impermeable layers at shallow depths, may favor herbaceous cover and show increased resistance to woody plant establishment even under sustained grazing pressure (McAuliffe, 2003). Alternatively, Walker et. al., (1981) describe overgrazed savanna systems where dispersed infiltration into grass dominated sites becomes progressively more focused, as decreasing herbaceous cover allows rain drop splash to seal surface soil pores and enhance runoff from intercanopy spaces; this runoff is then captured by canopy
patches whose litter mounds and root profiles may facilitate rapid infiltration to depth. I suggest canopy interception may also focus water inputs around the dripline of trees and thus potentially enhance deep infiltration of even relatively small precipitation events.

Seasonality of moisture (and temperature) regime patterns across an apparent southeast to northwest moisture gradient in the southwestern U.S. (mediated by climatic zone boundaries and locally amplified by elevational and orographic effects) can also influence site and corresponding vegetative cover potential (Neilson, 1987, 2003). Portions of the southwestern U.S. experience a summer monsoonal pattern that is driven by seasonal shifts of atmospheric pressure and wind patterns, a consequence of the annual westward migration of the Bermuda High, whose clockwise circulation acts to draw moisture into parts of Arizona and New Mexico off the Gulf of Mexico and from the Gulf of California (Castro et. al., 2001). In arid and semi-arid portions of the southwestern U.S. the variability of monsoonal precipitation can sometimes exceed the summer mean, and this variance can drive episodic patterns of plant establishment and mortality (Castro et. al., 2001). Neilson (2003) speculates that the mid-Holocene (i.e. thermal maximum) monsoonal pattern likely extended further northward and may have supported rapid northward expansion of some plant species dependent on summer moisture for establishment. However, there is little evidence to suggest that either monsoonal intensity or extent have changed enough during the last several hundred years to account for observed changes in woodland systems since settlement.

Sites within Mitchells' (1976) climate zone V (Figure 1.1) are often dominated by cool
season moisture patterns (i.e., with extended late summer to spring elevated plateau moisture patterns which may favor deeper rooted, perennial or woody species, whose dominance could promote longer fire return intervals), while other locations have somewhat more uniform distributions; with either pattern there is often a relative trough in the late May-June time period. Sites within Mitchells' (1976) climate zone VI (Figure 1.1), by contrast, are often strongly dominated by a warm season dominated moisture pattern (i.e., with a distinct summer peak and a depressed plateau moisture pattern the rest of the year) which may favor shallow rooted herbaceous cover and shorter fire return intervals; at locations near the summer monsoon boundary, precipitation patterns may be bimodal with elements of both the cool season moisture and summer peak patterns and a notable, but narrow trough from late May to June. In zone V locations, increasing moisture patterns after the late-May-June trough is best interpreted as a return to normal cooler season moisture levels. Thus, while sites within Mitchells' (1976) climate zones V and VI (Figure 1.1) may both experience low moisture conditions during the late May to June period when temperatures are rising (creating relative moisture deficits at most locations), areas within zone V may be buffered by recent cool season moisture inputs, while in zone VI, the same period may culminate an extended low moisture pattern beginning the previous fall. In addition, most of the summer peak moisture in Mitchells' (1976) climate zone VI (Figure 1.1) arrives in the form of convective thunderstorms with significant levels of lightning strikes (and potential for ignitions), while cool season moisture patterns have both lower levels of summer lightning (and perhaps lower potentials for ignition of fuels with residual winter moisture).

Finally, one might expect interactions between topographic position (and effects on soil properties such as texture and infiltration depth) and the dominant precipitation pattern to influence woody plant distribution (Walker et. al., 1981). For example, in areas dominated by a winter precipitation pattern, infiltration to depth may be sufficient across a wide range of topographic positions and promote woody plant dominance across a variety of landscape settings; conversely, as summer dominated precipitation patterns become increasingly important, associated losses due to evapo-transpiration would increase, and topographic effects (which mediate deeper infiltration and retention of deep soil moisture) would become increasingly influential in determining where woody plants could occur. These same interactions, and effects on soil moisture, could promote the occurrence of grass dominated communities (and increased surface fire potential) across a broader range of landscape positions in areas with summer dominated precipitation patterns.

My observations of a scarcity of fire evidence in many "younger" woodlands of apparently recent, post-settlement origin suggests they may have developed since the last fire disturbance in formerly non-woodland vegetation types, perhaps mediated by the indirect effects of historic grazing. Conversely, recovery of a woodland stand after harvest, or from a crown fire, drought/ insect mortality event would usually provide some evidence of the previous stand. In addition, infrequent observations of fire scarred piñon or juniper in many "older" or persistent growth woodlands suggests surface fire may be an uncommon disturbance event in these systems (Baker and Shinneman, 2004), particularly in light of the often sparse herbaceous fuels and compact needle litter; when
scars can be found they often appear to be associated with crown fire patch margins or interfaces with high fire frequency (i.e., grassland or ponderosa pine) communities. Where fire evidence (i.e., charred wood, stumps and snags) is present, it usually suggests an infrequent, high severity, crown fire of variable pattern and patch size as the predominant regime (Fuchs, 2002; Romme et. al., 2003; Baker and Shimmeman, 2004). With reduced herbaceous competition and in the absence of fire disturbance (i.e., direct and indirect effects of historic grazing pressure), piñon and juniper can successfully colonize a wide range of sites as illustrated by establishment patterns during the last century (Tausch, 1999a; Miller and Tausch, 2001).

Fire, drought, insect, and disease disturbances, and competitive interactions with grass and shrub understories (as mediated by one or more environmental site factors) are thought to have formerly limited potential woodland occurrence within the distributional bounds imposed by regional climate. These same processes control stand dynamics, including episodic establishment and mortality, and thus influence stand structure, as well as persistence of woodland on a particular site. While drought, insect, and disease disturbance processes continue to operate, as evidenced by recent widespread piñon mortality (Breshears et. al., 2005), surface fire disturbance and / or competitive interactions with grass and shrub understories (in areas formerly dominated by grass- and shrub-land systems) were likely interrupted by historic grazing practices. The latter direct and indirect effects of historic grazing are thought to been important drivers of recent woodland expansion into adjacent non-woodland communities (and thickening of formerly more open stands) within the context of favorable regional climate patterns for
tree establishment. General vegetation patterns developed during the historic period should reflect a combination of climatic and historic influences, while patterns established earlier may be attributed primarily to climatic effects (with assumption that pre-historic landuse effects were more localized). If "old" or persistent growth woodland, and the range of environmental site factors which support this old growth, can be adequately circumscribed, then delineation of "younger" woodlands of more recent origin (i.e., post-Euro-American settlement) which occupy a range of site conditions previously unavailable for woodland colonization, may also be possible.

Study Overview and Objectives

The regional scope of the study was defined by the ranges of Colorado piñon pine (Pinus edulis), and several associated species of non-sprouting juniper (One-seed, Juniperus monosperma; Utah, J. osteosperma, and Rocky Mountain, J. scopulorum) representing Southern Rocky Mountain and Colorado Plateau savanna and woodland types as recently mapped by the Southwest Regional Gap Analysis Project (SWReGAP; Lowry et. al., 2005) within the Four Corners states (i.e., Arizona, Colorado, New Mexico, and Utah) of the southwestern U.S. Intensive sampling was conducted within three National Park Service units (Bandelier National Monument, Mesa Verde National Park, and Colorado National Monument) along an apparent southeast to northwest moisture seasonality gradient. The intensive plot data were used to inform identification of qualitative and semi-quantitative criteria and development of a diagnostic key for distinguishing "old" or persistent piñon-juniper individuals and stands from "younger" woodlands of more recent origin.

Subsequently I extensively sampled across the Four Corners states to provide adequate data for regional scale predictive modeling efforts. Extensive sampling was initially focused within the north-central New Mexico area and then expanded across the entire regional area. Field samples were assigned a pre- versus post-settlement status using the diagnostic key and individual points were associated with environmental metrics within a GIS. The compiled dataset was exported to statistical software for model development using both global, parametric and local, non-parametric procedures. Predictive modeling and mapping was first conducted within the north-central New Mexico area using a simple logistic model to predict a binary ("old" versus "young") response. I then validated a more sophisticated piece-wise linear regression approach in the north-central New Mexico area before using this approach to model the larger regional dataset.

The specific objectives of this study were to: 1) identify meaningful and consistent qualitative and semi-quantitative criteria for recognition and delineation of "old" or persistent (>150 years age) piñon and juniper individuals and stands from "younger" woodlands of more recent, post-settlement origin and develop a diagnostic key; 2) assess the relative importance of (and availability of spatial coverage for) potential environmental (i.e., topographic, climatic, edaphic) factors relevant to woodland distribution and stand-age; and 3) predictively model and map the distribution of "old" versus "young" stands across the range of Pinus edulis and associated junipers (Juniperus monosperma, J. osteosperma, J. scopulorum) within the Four Corners states (i.e., Arizona, Colorado, New Mexico, and Utah) of the southwestern U.S. An overview of
southwestern U.S. woodland ecological history and natural range of variation is presented in Chapter 2 (Jacobs, 2008) along with maps showing the distribution of component piñon and juniper species.

An initial task was to identify and validate qualitative and semi-quantitative criteria for recognition of "old" or persistent woodlands, distinguishing these from "younger" woodlands of more recent origin which have only established in the last one-hundred and fifty years (i.e., or since initiation of historic landuse activities) and use these criteria in development of a diagnostic key. Development of a diagnostic key was primarily in support of planned regional scale modeling efforts. I report on this effort in Chapter 3 (Jacobs et. al., 2008) including presentation of a diagnostic key for delineating "older" pre-settlement woodlands from "younger" stands of post-settlement origin. Stand densities in many woodlands are dominated by younger age-classes; this can be variously interpreted as either a response to historic landuse, or normal demographic and successional dynamics reflective of episodic patterns of establishment and mortality. More intensive evaluations (i.e., outside the scope of the present study) of individual woodlands with "old" or persistent growth components would be required to assess whether these stands have also been influenced by post-Euro-American settlement (e.g., thickened), or if they represent natural woodland structures largely unaffected by historic changes.

The second task was to relate the occurrence of "old" or persistent (i.e., pre-dating the effects of Euro-American settlement) woodland stands to one or more environmental site
factors (e.g., climate, landform, elevation, slope, aspect, soils, etc.) for which regional spatial data were available. My initial work on this task was at the scale of a northcentral New Mexico study area and is reported in Chapter 3 and I expanded this effort to encompass the regional extent of the Four Corners states in Chapter 4. A large component of this task involves the development and evaluation of secondary metrics with potential ecological relevance. For example indices of effective moisture were derived from seasonal measures of precipitation and potential evaporation, and categorical variables were created from continuous parameters to highlight potential ecological relevant thresholds in measures such as depositional environment.

The final task was to predictively model and map pre- versus post-settlement aged woodland stands within the Four Corners state study area. First I needed to create a dataset for predictive modeling by associating the GPS location of each sampled stand (assigned an "old" versus "young" status using the diagnostic key) with the spatial coverage of potential explanatory variables developed within a GIS. The compiled dataset was exported to statistical software and used for model development (using both global, parametric and local, non-parametric procedures). Selected model parameters were implemented within a GIS (using SWReGAP woodland coverage as an analysis mask) and used to realize map products showing probability of "old" versus "young" woodland. Predictive modeling and mapping efforts were initially conducted within a north-central New Mexico study area (Chapter 3, Jacobs et al, 2008) and then expanded to the larger Four Corners states regional extent (Chapter 4).

Literature Cited

Baker, W.L. and D.J. Shinneman. 2004. Fire and restoration of pinyon-juniper woodlands in the western United States: a review. Forest Ecology and Management 189:1-21.

Betancourt, J.L. 1987. Paleoecology of pinyon-juniper woodlands. In: Everett, R.L. ed. Proceedings--pinyon-juniper conference. USDA, Forest Service, GTR-INT-215, p. 129139.

Brackley, G.K. 1987. SCS inventory and classification procedures. In: Everett, R.L. ed. Proceedings--pinyon-juniper conference. USDA, Forest Service, GTR INT-215, p. 231-235.

Breshears, D.D., N.S. Cobb, P.M. Rich, K.P. Price, C.D. Allen, R.G. Balice, W.H. Romme, J.H. Kastens, M.L. Floyd, J.Belnap, J.J. Anderson, O.B. Myers, and C.W. Meyer. 2005. Regional vegetation die-off in response to global-change-type drought. Proceedings National Academy of Sciences 102:15144-15148.

Breshears, D.D., N.G. McDowell, K.L. Goddard, K.E. Dayem, S.N. Martens, C.W. Meyer, and K.M. Brown. 2008. Foliar absorption of intercepted rainfall improves woody plant water status most during drought. Ecology 89:41-47.

Castro, C.L., T.B. McKee, and R.A. Pielke Sr. 2001. The relationship of the North American monsoon to tropical and North Pacific sea surface temperatures as revealed by observational analysis. Journal of Climate 14:4449-4473.

Chambers, J.C., E.W. Schupp, and S.B. Wall. 1999. Seed dispersal and seedling establishment of pinyon and juniper species within the pinyon-juniper woodland. In: Monsen, S.B. et. al., eds. Proceedings: ecology and management of pinyon-juniper communities within the interior west. USDA, Forest Service, GTR-RMRS-P-9, p. 29-34.

Comer, P.J., D. Faber-Langendoen, R. Evans, S. Gawler, C. Josse, G. Kittel, S. Menard, S. Pyne, M. Reid, K. Schulz, K. Snow, and J. Teague. 2003. Ecological systems of the United States: A working classification of U.S. terrestrial systems. Nature Serve, Arlington, Virginia, USA.

Eisenhart, K.S. 2004. Historic range of variability and stand development in piñon-juniper woodlands of western Colorado. Ph.D. dissertation, University of Colorado, Boulder, CO, USA.

Floyd, M.L., M. Colyer, D.D. Hanna, and W.H. Romme. 2003. Gnarly old trees: canopy characteristics of old-growth pinyon-juniper woodlands. Chapter 2. In: Floyd, M.L., eds. Ancient pinyon-juniper woodlands. University Press of Colorado, Boulder, CO, USA, p. 11-29.

Gottfried, G.J., T.J. Swetnam, C.D. Allen, J.L. Betancourt, and A.L. Chung-MacCoubrey. 1995. Piñon-Juniper Woodlands. Chapter 6. In: Finch, D.M. and Tainter, J.A., eds. Ecology, diversity and sustainability of the middle Rio Grande basin. USDA, Forest Service, GTR-RM-268, p. 95-132.

Jacobs, B.F. 2008. Southwestern U.S. Juniper and Piñon-Juniper Savanna and Woodland Communities: Ecological History and Natural Range of Variability. In: G. Gottfried, J. Shaw, and P.L. Ford, comps. Ecology, Management, and Restoration of Pinyon-Juniper and Ponderosa Pine Ecosystems: Combined Proceedings of the 2005 St. George, Utah and 2006 Albuquerque, New Mexico Workshops. RMRS-P-51, Fort Collins, CO.

Jacobs, B.F., W.H. Romme, and C.D. Allen. 2008. Mapping "old" versus "young" piñonjuniper stands with a predictive topo-climatic model in north-central New Mexico, USA. Ecological Applications 18:1627-1641.

Little, E.L., Jr., 1971. Atlas of United States trees, conifers and important hardwoods: Volume 1. USDA, Forest Service, Misc. Pub. 1146.

Lowry, J.H., R.D. Ramsey, K. Boykin, D. Bradford, P. Comer, S. Falzarano, W. Kepner, J. Kirby, L. Langs, J. Prior-Magee, G. Manis, L. O'Brien, K. Pohs, W. Rieth, T. Sajwaj, S. Schrader, K.A. Thomas, D. Schrupp, K. Schulz, B. Thompson, C. Wallace, C. Velasquez, E. Waller, and B. Wolk. 2005. Southwest regional gap analysis project: final report on land cover mapping methods. RS / GIS Laboratory, College of Natural Resources, Utah State University, Logan, UT, USA.

Martens, S.N., D.D Breshears, and F.J. Barnes. 2001. Development of species dominance along an elevational gradient: population dynamics of Pinus edulis and Juniperus monosperma. International Journal Plant Sciences 162:777-783.

McAuliffe, J.R. 2003. The interface between precipitation and vegetation. Chapter 2. In: Weltzin, J.F. and McPherson, G.R. eds. Changing precipitation regimes and terrestrial ecosystems. University of Arizona Press, Tucson, AZ, USA, p. 9-27.

Miller, R.F. and R.J. Tausch. 2001. The role of fire in juniper and pinyon woodlands: a descriptive analysis. In: Galley et. al., eds. Proceedings of the invasive species workshop. Tall Timbers Research Station, Misc. Pub. No. 11. Tallahassee. FL, USA, p. 15-30.

Miller, R.F. and P.E. Wigand. 1994. Holocene changes in semiarid pinyon-juniper woodlands. BioScience 44:465-474.

Mitchell, V.L. 1976. The regionalization of climate in the western United States. Journal Applied Meteorology 15:920-927.

Neilson, R.P. 1987. On the interface between current ecological studies and the paleobotany of pinyon-juniper woodlands. In: Everett, R.L. ed. Proceedings--pinyon-juniper conference. USDA, Forest Service, GTR-INT-215. 93-98.

Neilson, R.P. 2003. The importance of precipitation seasonality in controlling vegetation distribution. Chapter 4. In: Weltzin, J.F. and McPherson, G.R. eds. Changing precipitation regimes and terrestrial ecosystems. Univ. of AZ Press, Tucson, AZ, USA, p. 47-71.

Novak, R.S., Moore, D.J., and Tausch, R.J. 1999. Ecophysiological patterns of pinyon and juniper. In: Monsen, S.B. et. al., eds. Proceedings: ecology and management of pinyonjuniper communities within the interior west. USDA, Forest Service, GTR-RMRS-P-9, p. 12-19.

Pieper, R.D. and G.A. Lymbery. 1987. Influence of topographic features on pinyon-juniper vegetation in south-central New Mexico. In: Everett, R.L. ed. Proceedings--pinyon-juniper conference. USDA, Forest Service, GTR-INT-215, p. 53-57.

Romme, W.H., M.L. Floyd, and D.D. Hanna. 2003. Ancient piñon-juniper forests of Mesa Verde and the West: a cautionary note for forest restoration programs. In: Omi, P. and Joyce, L.A., eds. Fire, Fuel Treatments, and Ecological Restoration: Conference Proceedings. USDA, Forest Service, RMRS-P-29, p. 335-350.

Swetnam, T.W., C.D. Allen, and J.L. Betancourt. 1999. Applied historical ecology: using the past to manage for the future. Ecological Applications 9:1189-1206.

Tausch, R.J. 1999a. Historic pinyon and juniper woodland development. In: Monsen, S.B. et. al., eds. Proceedings: ecology and management of pinyon-juniper communities within the interior west. USDA, Forest Service, GTR-RMRS-P-9, p. 12-19.

Tausch, R.J. 1999b. Transitions and thresholds: influences and implications for management in pinyon and juniper woodlands. In: Monsen, S.B. et. al., eds. Proceedings: ecology and management of pinyon-juniper communities within the interior west. USDA, Forest Service, GTR-RMRS-P-9, p. 361-365.

Waichler, W.S., R.F. Miller, and P.S. Doescher. 2001. Community characteristics of oldgrowth western juniper woodlands. Journal Range Management. 54:518-527.

Walker, B.H., D. Ludwig, C.S. Holling, and R.M. Peterman. 1981. Stability of semi-arid savanna grazing systems. Ecology. 69:473-498.

West, N.E. 1999. Distribution, composition, and classification of current juniper-pinyon woodlands and savannas across western North America. In: Monsen, S.B. et. al., eds. Proceedings: ecology and management of pinyon-juniper communities within the interior west. USDA, Forest Service, GTR-RMRS-P-9, p. 20-23.

Figures
Figure 1.1 Mitchells (1976) climate zones for the western U.S. with each zone representing distinct seasonal precipitation and temperature patterns that can strongly influence potential vegetation and species distributions.

Chapter II

Southwestern U.S. Juniper and Piñon-Juniper Savanna and Woodland Communities: Ecological History and Natural Range of Variability

Abstract

Juniper and piñon-juniper savanna and woodland communities collectively represent a widespread and diverse vegetation type that occupies foothill and mesa landforms at middle elevations in semi-arid portions of the American Southwest. Ecological understanding and proper management of these juniper and piñon types requires local knowledge of component species, site history and potential, set within a regional floristic and climatic context. The wide distribution and broad ecological amplitude of this vegetation type across a six-state area of the southwestern U.S. is best appreciated as the sum of the individual ranges of the component piñon and juniper species, and their environmental tolerances. Key environmental controls of juniper and piñon occurrence, stand age-structure, and composition, include the interaction of climate, topography, soils, and disturbance processes, in combination with biotic interactions, and over various spatial and temporal scales.

Introduction

Juniper and piñon-juniper (piñon-juniper) savanna and woodland in the American Southwest have often been viewed by researchers and land managers as an ecological unit which can be understood and managed as a single, if variable, entity. The consequences of this approach include confusing and contradictory research findings, ongoing controversy, inappropriate management, and potentially undesirable outcomes. In reality, the piñon-juniper type is a simplistic grouping of many different species distributed across diverse climatic and topographic settings, each species with a unique history and range of environmental tolerances. While ecological amplitude of the
component species and regional climate set broad limits on potential woodland distributional limits, smaller scale competitive and disturbance factors may ultimately constrain the extent and expression of species occurrence on local landscapes. Recent, historical changes in woodland occurrence and stand density have been variously interpreted as continued adjustment to Holocene climate, recovery from harvest (historic and pre-historic), succession after fire, drought, insect, and/ or disease induced mortality events, or response to grazing practices, altered fire regimes, elevated temperatures and CO_{2} levels (Betancourt, 1987; Neilson, 1987; Betancourt et. al., 1993; Tausch, 1999b; Miller and Tausch, 2001; Baker and Shinneman, 2004; Eisenhart 2004; Floyd et. al., 2004; Shinneman, 2006). The following sections provide an overview of the distribution, ecology, environmental controls, disturbance regimes, and historical land use impacts relevant to an understanding of extant southwestern U.S. woodlands.

Distribution

Juniper and piñon-juniper savanna and woodlands collectively constitute one of the most widespread vegetation types in the American Southwest (Lowry et. al., 2005). These plant communities typically occupy foothill, mesa, and mountain slope positions, at middle elevations within a semi-arid climatic zone and between desert grass- and shrub-lands and upland coniferous forests. Within the American Southwest, defined here by New Mexico (NM), Arizona (AZ), Utah (UT), Colorado (CO), Nevada (NV), and eastern California (e. CA), there are five common species of juniper, Utah (Juniperus osteosperma), one-seed (J. monosperma), Rocky Mountain (J. scopulorum), alligatorbark (J. deppeana), and western juniper, (J. occidentalis), and two of piñon, Colorado
(Pinus edulis), and single-leaf (P. monophylla), which alone and in various assemblages, account for the majority of extant piñon-juniper types. An overview of component piñon and juniper species and their respective distributions was obtained by referencing distribution maps originally prepared by Little (1971), subsequently digitized by the USGS, with taxonomy and nomenclature following Flora North America (Flora of North America Editorial Committee, eds., 1993+). See Appendix 2.1: Supplemental Figures.

Colorado piñon has a distribution centered on the four-corner state area of UT, CO, NM and $A Z$, while the closely related single-leaf piñon is found to the west in NV, se. CA and sw. UT (Little, 1971). Piñon typically dominates the upper, or more mesic, end of the woodland zone (although Utah and Rocky Mountain junipers may exhibit greater cold tolerance), while Utah and one-seed junipers gain importance at the lower, or more xeric end. Of the common junipers, Rocky Mountain is the most mesophytic species with a range extending north to BC , Canada, while Alligator-bark juniper, also more mesic than Utah or one-seed junipers, gains importance in warmer areas to the south with a range extending into Mexico (Chambers et. al., 1999; Nowak et. al, 1999; Martens et. al., 2001). Western juniper is both drought and cold tolerant, and its range, unlike the other four junipers considered, is not closely associated with any of the piñon species (Miller et. al., 2005). Within the four-corner state area, one-seed and alligator-bark junipers predominate in locations under the seasonal influence of the Arizona summer monsoon, as defined by Mitchell's climate zone VI (Figure 1.1, Mitchell, 1976), with alligator-bark juniper more common in s. NM and east-central AZ, while one-seed juniper dominates woodlands in the rest of NM. Utah juniper, conversely, is more common in winter
moisture areas, defined by Mitchell's climate zone V, (Figure 1.1, Mitchell, 1976) north and west of the monsoon boundary, and is the most widespread juniper in the American Southwest, forming associations with both Colorado and Single-leaf piñon. The ranges of Colorado piñon and Rocky Mountain juniper both span the monsoonal boundary, although piñon distribution is bounded to the north by the position of the winter polar front as defined by the northern boundary of Mitchell's climate zone V (Figure 1.1,); the distributional pattern of these two species may be less influenced by seasonal monsoonal influences because my analysis of climate data suggests annual moisture patterns often become more uniform with increasing elevation in the southwestern U.S.

Looking around a six-state area representing the American Southwest, and noting piñon and juniper species whose ranges bound the American Southwest (Little, 1971), one finds California piñon (Pinus quadrifolia), Mexican piñon (P. cembroides) and rose-berry juniper (Juniperus coahuilensis, sensu \sim J. erythrocarpa) just entering the Four Corners States area, but with ranges mostly to the south in Mexico, western juniper, (J. occidentalis) occurring in e. CA and nV , but with a range extending northwest to OR (WA) and ID, and red-berry juniper (J. pinchotii), Ashe juniper (J. ashei) and eastern redcedar, (J. virginiana) to the east in TX and OK.

While each of these piñon-juniper species is distinctive enough to be afforded specific taxonomic status, and even retain integrity as a distinct taxon in the paleo-record, modern distributions are relatively recent (Betancourt, 1987) and extant populations representing recognized taxa likely represent or express only a portion of the underlying genetic
diversity present; further, many or most of the piñon and juniper species are reported to have some level of gene flow between related species (Flora of North America Editorial Committee, 1993+), which presents additional opportunities from both ecological and evolutionary perspectives. For example, western juniper reportedly hybridizes with Utah juniper, Utah with one-seed, one-seed with Alligator, red-berry with rose-berry, and Rocky Mountain with eastern red-cedar (J. scopulorum is sometimes classified as a variety of J. virginiana); the sprouting ability of red-berry and rose-berry junipers, and small, single-seeded cone features, may suggest relationships between these taxa and J. deppeana and J. monosperma. Pinus edulis can reportedly hybridize with P. monophylla ($\sim P$. edulis var. fallax) and P. cembroides $(\sim$. remota), while P. quadrifolia was formerly recognized as a variety of P. cembroides.

From an evolutionary perspective, closely related piñon taxa which maintain capacity for genetic exchange, and whose shifting ranges both maintain intermittent contact while promoting expression of discrete entities, might be more productively viewed as components of larger meta-populations. Long-lived perennials like piñon and juniper, which have potential maximum lifespans easily exceeding 500 years (Betancourt, 1987) are potentially buffered against shorter-term fluctuations in climate, requiring only occasional favorable windows for successful establishment. In contrast, climatic requirements for persistence of mature piñon-juniper individuals are often minimal. Long-lived, wind pollinated, out-crossing, perennials might be expected to maintain high levels of genetic diversity in a population, while also being a conservative force mitigating rapid shifts in allele frequency.

Ecology

Southwestern piñon-juniper types viewed collectively span an impressive range of environmental settings and present challenges to traditional ways of categorizing vegetation assemblages and interpreting ecological processes. Piñon dominated stands with multi-layered and nearly closed canopies, can occur at the moist, upper elevation end of the woodland zone, while at the interface with desert grasslands, it is common to observe open stands of juniper interspersed with grasses, forbs, and shrubs. In between these extremes, and depending on a variety of local site conditions and histories, and within the context of regional biogeography, one can delineate a great variety of juniper and piñon-juniper types in association with various shrub, grass, and forb understories. Recent vegetation mapping efforts as part of the Southwest Regional Gap Analysis Project, SWReGAP (Lowry et. al., 2005) with a five-state area (four-corner state area plus NV) of the American Southwest, and following community classifications prepared by NatureServe (Comer et. al., 2004), circumscribe four major piñon-juniper categories, primarily as groupings of the major piñon and/or juniper species: Great Basin (P. monophylla and J. osteosperma), Colorado Plateau (P. edulis and J. osteosperma), Southern Rocky Mountain (P. edulis and J. monosperma), and Madrean (P. edulis, P. cembroides, J. deppeana, J. monosperma, J. coahuilensis, and J. pinchotii). These four major groupings are further sub-divided on basis of structure and composition (i.e., piñon-juniper woodland versus juniper savanna) with additional community assemblages noted as having a juniper and/ or piñon component. Finer grained community and habitat typing in juniper and piñon-juniper types have typically subdivided major tree overstory
groupings by dominant shrub-grass-forb understory. Understory composition can be an important indicator of site history and site potential, particularly when the tree overstory is of relatively recent origin; Tausch (1999) suggests understory composition can be key to understanding the potential of particular piñon-juniper sites, providing insight on available soil and water resources, and presumably this information would be critical to management at local scales.

Climate, modified by local topographic and soil factors, provides fundamental control over potential woodland species distributions (; while disturbance regimes and stochastic (establishment and mortality) events can help to shape actual occurrence patterns (Betancourt et. al., 1993). A range of potential vegetation types is possible for most locations, and extant woodland vegetation may or may not represent a balanced or optimal state from natural or human perspectives. Extant woodland communities then should be viewed as the cumulative outcome of multiple interacting factors, and over shorter temporal and smaller spatial scales there appear to be repeating patterns and a sense of dynamic stasis; however, paleo-vegetation reconstructions reinforce the idea that species assemblages are neither prescribed nor static at longer or larger scales (Betancourt et. al., 1993). Still, ecological concepts such as succession and restoration are still meaningful and useful within the limited spatial and temporal scales that land managers (and researchers) typically operate. More problematic is how to integrate rare, episodic, and/ or extreme events into an ecological understanding and short term, local management of vegetation systems, especially when these low frequency events have large and long term consequences on community structure, composition and function.

Disturbance

Spatial pattern and structure of woodland vegetation are generally thought to be controlled by disturbance processes and episodic events, like fire (Baker and Shinneman, 2004), wet and dry climatic patterns (Betancourt et. al., 1993), and insect or disease outbreaks (Breshears et. al., 2005), however, interpreting the relative importance of these potential factors in a particular woodland setting can be challenging. This is especially the case when the extant woodland vegetation, reflects influences of earlier disturbances or events which occurred within the context of a former non-woodland vegetation assemblage. For example, fire disturbance is possible or likely given suitable fuel structures within the context of a particular vegetation assemblage. The vegetation assemblage and fuel structure present on a site is in turn depend on climate, topographic, and soil factors. Fire disturbance may be strongly associated with a particular vegetation assemblage to the extent one can recognize recurring burn patterns (intensity and frequency) and/ or infer meaningful relationships between vegetation composition, structure, and life history. For example, southwestern ponderosa pine, tall grass prairie, or northern Rocky Mountain lodgepole pine communities can be somewhat easily assigned to fire regime categories, and there are often meaningful synergies which exist between these vegetation types, life history attributes of dominant species, and recurring fire disturbance.

In contrast, Baker and Shinneman (2004) review a number of fire history studies and note that evidence to substantiate spreading surface fire behavior in piñon-juniper woodlands
is generally lacking; fire scars on living trees are usually infrequent, and often found at what could be interpreted as ecotonal boundaries (such as rocky outcrops, or an interface with Ponderosa Pine savanna) or woodland burn patch edges. Thus, although fire histories have been reconstructed for selected piñon-juniper sites where abundant fire evidence is available, this fire evidence may be reflective of historic upper and lower ecotonal boundaries where woodlands abutted high fire frequency forest and grassland systems, or locations where fine scale woodland mosaics (superimposed on topo-edaphic patterns) formerly intermingled with fire prone, non-woodland types, than of the general piñon-juniper type in a larger sense. The historical role of surface fire disturbance in maintaining stand structure and composition in pre-settlement piñon-juniper types then, is problematic; for example, most of the piñon and juniper species are fire sensitive and easily killed by even moderate fire intensity and the species as a group generally lack life history attributes that can be easily associated with recurrent fire disturbance (although several juniper species can resprout after burning, and one can infer possible mechanisms, such as dense litter mats or suppressed herbaceous, for mitigating fire mortality and scarring).

Observations by the author at numerous field locations in the Four Corners States area, in connection with an effort to model occurrence of pre-settlement woodlands relative to topo-climatic factors, suggest fire disturbance in pre-settlement Colorado Plateau and Southern Rocky Mountain piñon-juniper types was at best uneven, perhaps more opportunistic than inevitable, largely dependent on local site conditions, and not obviously essential to maintenance of "normal" system structure and function; rather
historic evidence of fire, when present, often suggests a patchy crown fire behavior, with charred stumps, logs, and snags, as might be expected with the discontinuous fuel structure (surface and crown) associated with this vegetation type (Muldavin et. al., 2003).

Water

Water is a major limiting resource in semi-arid systems, and it is reasonable to infer that extant piñon-juniper types are largely responsive to and shaped by (spatial and temporal) variability in available soil moisture. For example, Johnsen (1960) provides data to support the widely observed inverse relationship between increasing density of overstory in piñon-juniper types and decreasing understory cover (interpreted as a response to limited soil water); conversely, I have observed that mechanical thinning, fire treatment, and drought-insect induced mortality of overstory, will often yield increases in understory cover. Available soil moisture then is an important, perhaps central, environmental control in piñon-juniper systems (McAuliffe, 2003) affecting where they can occur, which species can be present, influencing stand structure by mediating episodic establishment and mortality (Martens et. al., 2001), and potential for fire or droughtinsect disturbance. Light in contrast probably is limiting only to understory plants with the development and closure of mature tree canopy; however, it is unclear to what extent light rather than moisture or soil properties associated with litter mounds is really limiting and notable that I have observed mesic grasses (e.g. Oryzopsis micrantha, littleseed rice grass) to occur primarily on litter mounds under the shade of live tree canopies in the piñon-juniper woodlands of north-central New Mexico. Eisenhart (2004) proposes
density dependent regulation of stand density in P. edulis - J. osteosperma types (i.e., self-thinning) and periodic drought-insect mortality as viable mechanisms for maintenance of stand structure in piñon-juniper types, particularly in the absence of any fire evidence. Savanna structure in low end juniper dominated types could also be interpreted as a density dependent response to limited soil moisture, particularly on shallow substrates where trees are primarily accessing deeper water stored in fractured bedrock. Site productivity and potential in semi-arid settings is largely a function of (spatial and temporal availability of) soil moisture (McAuliffe, 2003) which is controlled by the interactions of climate, topography, and soil.

Different growth forms and species employ a variety of strategies for extracting available soil moisture. A site may be productive for deep rooted trees, if available water is mostly at depth, either due to a deep, well drained soil or a shallow soil with fractured bedrock; conversely, a site may be productive for shallow rooted, herbaceous species, if available water is primarily in upper $0-30 \mathrm{~cm}$ due to fine textured soils, high clay or organic content, or presence of shallow argillic (i.e., water perching) horizons (McAuliffe, 2003). Some, or most, sites can support a mixture of both shallow and deeper rooted species, and many species (including piñon and juniper) have dimorphic root morphologies and flexible strategies which allow them to opportunistically (and temporally) harvest water from both shallow and deep sources, as well as from wide horizontal extents encompassing adjacent intercanopy locations (McAuliffe, 2003). Thus, even with a uniform climate context, extant vegetation and site potential can be strongly influenced by local topographic setting and soil properties.

For example, at Bandelier National Monument, NM, pumice soils can strongly influence local vegetation patterns and associated disturbance processes though enhanced water capture and storage. Julius (1999) documented differences in piñon-juniper age-class and density, as well as in composition and cover of associated understory, across three soil types within a 100 acre study area at Bandelier. Woodlands on pumice soils, with an argillic horizon, had both the lowest tree densities and youngest age-class, relative to pumice and non-pumice soils, without an argillic horizon; non-pumice, non-argillic soils had the highest densities and oldest age-class, while pumice, non-argillic soils were intermediate for both density and age-class. In addition, pumice argillic soils supported the highest understory cover, with a composition dominated by grasses, (such as Schizachyrium scoparium), while non-argillic, pumice soils had forb dominated understories, and non-pumice, non-argillic soils were characterized by only sparse understory cover (Julius, 1999).

Germination and successful establishment are critical life stages for all plants, but in semi-arid woodlands, proper timing is especially important. Successful establishment of piñon and juniper individuals is enhanced by sufficient moisture during the time period between germination and establishment of a secondary root system, below the average depth of the herbaceous rooting zone (Chambers et. al., 1999); Johnsen $(1960,1962)$ reported that seedlings of J. monosperma were very vulnerable while in direct competition for water with shallow and fibrous rooted herbaceous species, and could only successfully establish during years when soil water was effectively not a limiting
resource. As noted by Neilson (2003), the effective window for successful tree establishment may have been enhanced by the reduction of herbaceous competition through sustained grazing.

Grazing

Considerable attention has been focused on the presumed effects of historic grazing, both in altering the structure and composition of pre-settlement piñon-juniper types (i.e., infill and thickening), as well as in promoting tree encroachment into formerly non-woodland (including forest, shrub- and grass- land) communities. Schlesinger and Pilmanis (1998) report the effects of long-term, sustained grazing in semi-arid systems, particularly during drought episodes, can include reduced herbaceous cover, vigor, and (above and below ground) biomass, increased runoff and sediment transport, and initiation and facilitation of "desertification" processes (i.e. the re-allocation of limited nutrient and water resources to shrub and tree "islands"). Alternatively, simultaneous reduction of understory competition and associated interruption of surface fire regimes, during favorable climatic intervals, would appear to be plausible effects of historic grazing in facilitating piñon-juniper encroachment into non-woodland areas (Johnsen, 1960, 1962; Tausch, 1999). Both of these mechanisms, acting in concert, are likely important factors mediating recent "invasion" of western rangelands (cool and warm season respectively), by western juniper in OR (Miller et. al., 2005) and one-seed juniper in AZ and NM (Johnsen, 1960, 1962). However, within extant, pre-settlement, savanna and woodland communities (where evidence to support a role for recurrent surface fire in maintaining stand structure is absent), it may be reasonable to conclude that historic grazing effects
alone would have been sufficient to alter the competitive environment and facilitate establishment of tree seedlings, by reducing herbaceous competition for water, focusing runoff and enhancing deeper infiltration through reduction of effective ground cover. Recent attention has also been given to the idea of CO_{2} facilitated enhancement of tree growth presumably through increased water use efficiency, but this proposed effect could might be largely offset by increased evaporative demand and thermal stress from warmer temperatures associated with increased levels of CO_{2} (Breshears et. al., 2005).

It has also been noted that grazing effects can be extremely variable across different soil types within the same climatic zone, suggesting some sites and soils are more tolerant of grazing, while conversely, other sites and soils are more susceptible to desertification (i.e., shrub and tree encroachment). McAuliffe (2003) notes grazed soil types, with shallow argillic horizons, are much more resistant to woody plant encroachment than sites which promote deeper infiltration. As Nielson (2003) suggests, recent and widespread encroachment of woody plants into many western rangelands (and thickening of savanna types) is probably best interpreted as a synergistic interaction of climate and grazing, on susceptible soil sites, and where woody plant populations are proximate.

In some areas of the American Southwest, particularly on portions of the Colorado Plateau characterized by winter moisture patterns, the paradigm of a pervasive and ongoing, grazing induced, western woodland invasion is overstated, or at best misapplied. For example, Floyd et al (2003) report extant stand densities at Mesa Verde National Park, CO are generally within the range of historical variability, while Eisenhart
(2004) suggests that reports of "thickened" woodlands in west-central CO woodlands may actually be normal stages in stand development prior to onset of density dependent thinning as trees mature.

Summary

Interpreting regional patterns of pre- versus post- settlement woodland occurrence in relation to climatic, topographic, and edaphic variables, can be complicated by associated changes in both woodland species assemblages and geomorphic settings. Seasonality of moisture however, appears to be a central determinant of woodland pattern in both areas, but perhaps for different reasons. In winter moisture dominated areas, woodlands might be expected to occupy a wider range of landform settings, since moisture is available both at greater depth and during the early spring season, promoting woody dominance, while limiting herbaceous competition, production of fine fuels, and potential for surface fire. Conversely, in summer moisture dominated areas, shallow moisture could be expected to enhance herbaceous cover, fine fuel production, and the potential for surface fire, effectively restricting woody vegetation to coarser textured soil settings where moisture can infiltrate to depth (on steep slopes, and fractured rocky substrates) or locations where grass production is otherwise limited (thus reducing potential for surface fire). In areas with especially strong monsoonal patterns, even discontinuous topographic settings with adequate soils might be expected to have relatively high potentials for surface fire (in absence of grazing) given both enhanced herbaceous cover and an increased incidence of lightning ignition.

Whatever the mechanisms (such as, favorable climatic patterns, grazing effects on herbaceous competition and fire disturbance) responsible for the initial establishment of woodland species onto a new site, persistence of the tree component can be enhanced by positive feedback on local environmental conditions; for example, suppression of herbaceous vegetation by maturing piñon and juniper overstory, and associated reductions in intercanopy cover, changes in soil texture and runoff which promote deeper infiltration, and reduced potential for surface fire, tend to reinforce conditions favorable to woody plant establishment and persistence. One can think of these woodland influences on local site conditions in terms of moisture and fire shadow effects, which in the absence of a disturbance, allow woodland to establish into, persist on, and eventually dominate a wide range of settings.

From a landscape perspective, infilling and thickening of patchy, pre-settlement woodland mosaic patterns by post-settlement woodland, was likely facilitated by regional, synchronous and/ or synergistic, effects of climate and grazing. Some reports of woodland thickening may also be a function of the relative spatial and temporal perspective in sampling or observation. As woodland patches expand and merge, ground fuels become limiting while canopy fuel structure becomes more continuous across larger areas; under this scenario, the probability of fire spread from a point ignition can be expected to change, along with the potential frequency, nature, and extent of fire events. Discerning patterns of recent woodland expansion from longer term migrational dynamics, may be possible by comparing the range of environmental settings associated with pre- versus post- settlement stands. For example, while relatively few new northerly
locations appear to have been successfully colonized in response to migrational dynamics of piñon pine during the last 1000 years (Jackson et al, 2005), the extent of woodland occurrence across its range has apparently increased several fold since 1850 (West, 1999). Management of the piñon-juniper type then should be informed by an ecological knowledge of site potential and vegetation dynamics, and consistent with sustainable and appropriate management practices which attempt to balance our understanding of the system with stated societal needs and desires.

Literature Cited

Baker, W.L. and D.J. Shinneman. 2004. Fire and restoration of pinyon-juniper woodlands in the western United States: a review. Forest Ecology and Management 189:1-21.

Betancourt, J.L. 1987. Paleoecology of pinyon-juniper woodlands. In: Everett, R.L. ed. Proceedings--pinyon-juniper conference. USDA, Forest Service, GTR-INT-215, p. 129139.

Betancourt, J.L., E.A. Pierrson, K.A. Rylander, J.A. Fairchild-Parks, and J.S. Dean. 1993. Influence of history and climate on New Mexico pinyon-juniper woodlands. In: Aldon, E.F. and D.W. Shaw, eds., Managing pinyon-juniper ecosystems for sustainability and social needs. USDA, Forest Service, GTR-RM-236, p. 42-62.

Breshears, D.D., N.S. Cobb, P.M. Rich, K.P. Price, C.D. Allen, R.G. Balice, W.H. Romme, J.H. Kastens, M.L. Floyd, J.Belnap, J.J. Anderson, O.B. Myers, and C.W. Meyer. 2005. Regional vegetation die-off in response to global-change-type drought. Proceedings National Academy of Sciences 102:15144-15148.

Chambers, J.C., E.W. Schupp, and S.B. Wall. 1999. Seed dispersal and seedling establishment of pinyon and juniper species within the pinyon-juniper woodland. In: Monsen, S.B. et. al., eds. Proceedings: ecology and management of pinyon-juniper communities within the interior west. USDA, Forest Service, GTR-RMRS-P-9, p. 29-34.

Comer, P.J., D. Faber-Langendoen, R. Evans, S. Gawler, C. Josse, G. Kittel, S. Menard, S. Pyne, M. Reid, K. Schulz, K. Snow, and J. Teague. 2004. Landcover descriptions for southwest regional gap analysis project. Nature Serve, Arlington, VA, USA.

Eisenhart, K.S. 2004. Historic range of variability and stand development in piñon-juniper woodlands of western Colorado. Ph.D. dissertation, University of Colorado, Boulder, CO, USA.

Flora of North America Editorial Committee, eds. 1993+. Flora of North America North of Mexico. 7+ vols. New York and Oxford.

Floyd, M.L., D.D. Hanna, and W.H. Romme. 2004. Historical and recent fire regimes in piñon-juniper woodlands on Mesa Verde, Colorado, USA. Forest Ecology and Management 198:269-289.

Fuchs, E. H. 2002. Historic increases in woody vegetation in Lincoln County, New Mexico. VanGuard Printing Company, Albuquerque, NM, USA.

Jackson, S.T., J.L.Betancourt, M.E. Lyford, S.T. Gray, and K.A. Rylander. 2005. A 40,000year woodrat-midden record of vegetational and biogeographical dynamics in north-eastern Utah, USA. Journal Biogeography 32:1085-1106.

Johnsen, T.N. 1960. Factors affecting one-seed juniper invasion of Arizona grasslands. Unpublished Dissertation. Duke University, Durham, NC, USA.

Johnsen ,T.N., 1962. One-seed juniper invasion of northern Arizona grasslands. Ecological Monographs. 32:187-207.

Julius, C. 1999. A comparison of vegetation structure on three different soils at Bandelier National Monument, New Mexico. Unpublished thesis. Rheinischen Friedrich-Wilhelms University, Bonn, Germany.

Little, E.L., Jr., 1971. Atlas of United States trees, conifers and important hardwoods: Volume 1. USDA, Forest Service, Misc. Pub. 1146. Washington, DC.

Lowry, J.H., R.D. Ramsey, K. Boykin, D. Bradford, P. Comer, S. Falzarano, W. Kepner, J. Kirby, L. Langs, J. Prior-Magee, G. Manis, L. O'Brien, K. Pohs, W. Rieth, T. Sajwaj, S. Schrader, K.A. Thomas, D. Schrupp, K. Schulz, B. Thompson, C. Wallace, C. Velasquez, E. Waller, and B. Wolk. 2005. Southwest regional gap analysis project: final report on land cover mapping methods. RS / GIS Laboratory, College of Natural Resources, Utah State University, Logan, UT, USA.

Martens, S.N., D.D Breshears, and F.J. Barnes. 2001. Development of species dominance along an elevational gradient: population dynamics of Pinus edulis and Juniperus monosperma. International Journal Plant Sciences 162:777-783.

McAuliffe, J.R. 2003. The interface between precipitation and vegetation. Chapter 2. In: Weltzin, J.F. and McPherson, G.R. eds. Changing precipitation regimes and terrestrial ecosystems. University of Arizona Press, Tucson, AZ, USA, p. 9-27.

Miller, R.F., J.D. Bates, T.J. Svejcar, F.B. Pierson, L.E. Eddleman. 2005. Biology, ecology, and management of western juniper. Tech. Bull.152, Agricultural Experiment Station, Oregon State University Corvallis, OR, USA.

Miller, R.F. and R.J. Tausch. 2001. The role of fire in juniper and pinyon woodlands: a descriptive analysis. In: Galley et. al., eds. Proceedings of the invasive species workshop. Tall Timbers Research Station, Misc. Pub. No. 11. Tallahassee. FL, USA, p. 15-30.

Mitchell, V.L. 1976. The regionalization of climate in the western United States. Journal Applied Meteorology 15:920-927.

Muldavin, E., C. Baisan, T. Swetnam, L. DeLay, and K. Morino. 2003. Woodland fire history studies in the Oscura and northern San Andres Mountains, White Sands Missile Range, New Mexico. Unpublished Final Draft Report, New Mexico Natural Heritage Program, University of New Mexico, Albuquerque, NM.

Neilson, R.P. 1987. On the interface between current ecological studies and the paleobotany of pinyon-juniper woodlands. In: Everett, R.L. ed. Proceedings--pinyon-juniper conference. USDA, Forest Service, GTR-INT-215. 93-98.

Neilson, R.P. 2003. The importance of precipitation seasonality in controlling vegetation distribution. Chapter 4. In: Weltzin, J.F. and McPherson, G.R. eds. Changing precipitation regimes and terrestrial ecosystems. Univ. of AZ Press, Tucson, AZ, USA, p. 47-71.

Novak, R.S., Moore, D.J., and Tausch, R.J. 1999. Ecophysiological patterns of pinyon and juniper. In: Monsen, S.B. et. al., eds. Proceedings: ecology and management of pinyonjuniper communities within the interior west. USDA, Forest Service, GTR-RMRS-P-9, p. 12-19.

Schlesinger, W.H. and A.M. Pilmanis. 1998. Plant-soil interactions in deserts. Biogeochemistry 42:169-187

Shinneman, D.J. 2006. Determining restoration needs for piñon-juniper woodlands and adjacent semi-arid ecosystems on the Uncompahgre Plateau, Western Colorado. Unpublished Dissertation. University of WY, Laramie, WY, USA.

Tausch, R.J. 1999a. Historic pinyon and juniper woodland development. In: Monsen, S.B. et. al., eds. Proceedings: ecology and management of pinyon-juniper communities within the interior west. USDA, Forest Service, GTR-RMRS-P-9, p. 12-19.

Tausch, R.J. 1999b. Transitions and thresholds: influences and implications for management in pinyon and juniper woodlands. In: Monsen, S.B. et. al., eds. Proceedings: ecology and management of pinyon-juniper communities within the interior west. USDA, Forest Service, GTR-RMRS-P-9, p. 361-365.

West, N.E. 1999. Distribution, composition, and classification of current juniper-pinyon woodlands and savannas across western North America. In: Monsen, S.B. et. al., eds. Proceedings: ecology and management of pinyon-juniper communities within the interior west. USDA, Forest Service, GTR-RMRS-P-9, p. 20-23.

Appendices

Appendix 2.1: Supplemental Figures

Figure 2.1. Distribution of southwestern U.S. piñon-juniper woodland communities in a five state area (i.e., Arizona, Colorado, New Mexico, Utah, and Nevada) delineated and mapped by Southwest Regional Gap Analysis Project (SWReGAP); Lowry et. al., 2005

Figure 2.2a. Distribution of four common piñon species in the southwestern U.S. and adjacent Mexico using species distribution maps developed by Little (1971), digitized by the USGS and posted online (http://esp.cr.usgs.gov/data/atlas/little/)

Figure 2.2b. Distribution of four common piñon species in the southwestern U.S.

Figure 2.3a. Range of Pinus edulis (Colorado piñon) in the southwestern U.S. overlay on SWReGAP woodland community coverage

Figure 2.3b. Range of Pinus monophylla (single-leaf piñon) in the southwestern U.S. overlay on SWReGAP woodland community coverage

Figure 2.4a. Distribution of nine common juniper species in the southwestern U.S. and adjacent Mexico using species distribution maps developed by Little (1971), digitized by the USGS and posted online (http://esp.cr.usgs.gov/data/atlas/little/)

Figure 2.4b. Distribution of four common juniper species in the southwestern U.S.
Figure 2.5a. Range of Juniperus monosperma (one-seed juniper) in the southwestern U.S. overlay on SWReGAP woodland community coverage

Figure 2.5b. Range of Juniperus deppeana (alligator-bark juniper) in the southwestern U.S. overlay on SWReGAP woodland community coverage

Figure 2.5c. Range of Juniperus osteosperma (Utah juniper) in the southwestern U.S. overlay on SWReGAP woodland community coverage

- 44 -
Distribution of four
common piñon
species in the
southwestern US and
adjacent Mexico
from Little (1971) Many of the piñon species
can reportedly hybridize
with related species at
areas of contact Figure 2.2a

-51

Chapter III

Mapping "old" versus "young" piñon-juniper stands with a predictive topo-climatic model in north-central New Mexico, USA

Abstract

Southwestern U.S. piñon pine and juniper woodlands are often represented as an expanding and even invasive vegetation type, a legacy of historic grazing and culpable in the degradation of western rangelands. A long standing emphasis on forage production, in combination with recent hazard fuel concerns, has prompted a new era of woodland management with stated restoration objectives. Yet, the extent and dynamics of piñonjuniper communities pre-dating intensive Euro-American settlement activities are poorly known or understood, while the intrinsic ecological, aesthetic, and economic values of old-growth woodlands are often overlooked. Historical changes in piñon-juniper include two related, but poorly differentiated, processes: recent tree expansion into grass or shrub dominated (i.e., non-woodland) vegetation and thickening or infilling of savanna or mosaic woodlands pre-dating settlement. My work addresses the expansion pattern, modeling the occurrence of "older" savanna and woodland stands extant prior to 1850 , in contrast to "younger" piñon-juniper growth of more recent, post-settlement origin. I present qualitative criteria in the form of a diagnostic key for distinguishing "older", pre-Euro-American settlement piñon-juniper from "younger" (post-1850) stands, and report results of predictive modeling and mapping efforts within a north-central New Mexico study area. Selected models suggest a primary role for soil moisture in the current distribution of "old" versus "young" piñon-juniper stands. Pre-settlement era woodlands are shown to occupy a discrete ecological space, defined by the interaction of effective (seasonal) moisture with landform setting and fine-scale (soil-water) depositional patterns. "Older" stands are generally found at higher elevations or on skeletal soils in upland settings, while "younger" stands (often dominated by one-seed juniper, Juniperus

monosperma) are most common at lower elevations or in productive, depositional settings. Modeling at broad regional scales can enhance a general understanding of piñon-juniper ecology, while predictive mapping of local areas has potential to provide products useful for land management. Areas of the southwestern U.S. with strong monsoonal (summer moisture) patterns appear to have been the most susceptible to historical woodland expansion, but even here the great majority of extant piñon-juniper has pre-settlement origins (although widely thickened and infilled historically) and oldgrowth structure is not uncommon in appropriate upland settings.

Introduction

Piñon-juniper savanna and woodland communities collectively constitute one of the most widespread vegetation types within the Four Corners states of Arizona, Colorado, New Mexico, and Utah in the American Southwest (Figure 3.1). Within this four-state region piñon-juniper types represented by Colorado piñon (Pinus edulis) and one of the three commonly associated non-sprouting juniper species (one-seed, Juniperus monosperma, Utah, J. osteosperma, and Rocky Mountain, J. scopulorum) cover ca. 14.5 million ha (Lowry et. al., 2005). Recent attention has focused on presumed historical changes in piñon-juniper distribution and dynamics, particularly tree invasion of former grass and shrub communities, and associated effects on habitat, forage, soil, water resources (Everett, 1987; Miller and Wigand, 1994; Monsen and Stevens, 1999; Miller and Tausch, 2001). There is widespread interest in restoring degraded western rangelands, often through removal of the tree or shrub components, but managers proposing large-scale woodland restoration often face serious challenges, in part because field distinction
between piñon-juniper stands of relatively recent origin and those with older trees that pre-date intensive Euro-American settlement activities (ca. 1850) can be problematic (Romme et. al., 2003). Selected qualitative features of individual trees and stands can be reliably associated with general categories of stand age or development, such as oldgrowth (Kaufmann et. al., 1992; Miller et. al., 1999; Waichler et. al., 2001; Floyd et. al., 2003) or successional status (Miller et. al., 2005), allowing these features to be used as a proxy to infer a pre- versus post-Euro-American settlement stand age. Using this general approach, I present criteria in the form of a diagnostic key for consistent field recognition of "older", pre-settlement piñon-juniper types, as distinguished from "younger" stands (i.e., post-1850 origin) and demonstrate a predictive approach for modeling and mapping of pre- versus post-settlement aged woodlands (P. edulis and J. monosperma $/ J$. scopulorum) in a north-central New Mexico study area.

Southwestern piñon-juniper types span an impressive range of environmental settings, occurring on foothill, mesa, and mountain slope positions at middle elevations within a semi-arid climatic zone, between lower elevation desert grass and shrub communities and higher elevation ponderosa pine and mixed coniferous forests (Pieper and Lymbery, 1987; West, 1999). However, despite the apparently broad ecological amplitude and wide distribution of piñon-juniper types across diverse climatic and topographic settings, each component species has a unique life history and range of environmental tolerances (Neilson, 1987; Ronco, 1987; Chambers et. al., 1999). Colorado piñon and Rocky Mountain juniper are often dominant within the more mesic, or upper elevation (and northerly) portions of the woodland zone (Pieper and Lymbery, 1987; Martens et. al.,
2001) sometimes forming multi-layered stands with nearly closed canopies. At lower elevations or more xeric interfaces of woodlands with grass and shrub dominated communities, it is common to observe open savanna-like stands of one-seed or Utah junipers (and even piñon in some locations) with grass, forb, and / or shrub understories (Pieper and Lymbery, 1987; West, 1999). Utah juniper however, being both cold and drought tolerant also occurs at both higher elevations and latitudes than piñon (Neilson, 1987). The elevation limits (upper and lower) of woodland distribution are likely reinforced by disturbance regimes (e.g., fire) and competitive interactions associated with ponderosa pine and grass- or shrub-land systems (Neilson, 1987; Gottfried et. al., 1995). Between these extremes a great variety of juniper and piñon-juniper types can be recognized as associations with various understories (Ronco, 1987; Gottfried et. al., 1995), depending on local site conditions and histories, and within the regional biogeography of individual species distributions (West and Van Pelt, 1987). While discrete piñon-juniper types can be delineated, savanna and woodland structures may alternatively be viewed as points along a continuum from open, non-woodland to closed canopy forest, with observed structure and individual species composition strongly influenced by the temporal and spatial scale of measurement, underlying topo-edaphic controls, species pool, and site history (Neilson, 1987; Martens et. al., 2001).

Drought, insects, disease, and fire are commonly recognized natural disturbances in piñon-juniper types, but interpreting the relative importance of these in controlling the spatial pattern of vegetation can be challenging (Baker and Shinneman, 2004; Breshears et. al., 2005). Competitive interactions, both between and among growth forms, are also
thought to have been important mechanisms historically in maintaining grass-tree ecotones and internal stand structure (Johnsen, 1960, 1962; Eisenhart, 2004). The role of infrequent or extreme events can be especially difficult to integrate into local and typically short-term land management contexts. Establishment and mortality of woodland may result from pulsed disturbance or climatic events (Betancourt et. al., 1993;

Chambers et. al., 1999; Swetnam et. al., 1999; Breshears et. al., 2005; Shinneman, 2006), while long-term persistence on newly colonized sites can be enhanced by positive feedbacks (i.e., desertification) of established vegetation on soil moisture and nutrient patterns (Walker et. al., 1981; West and Van Pelt, 1987; Schlesinger and Pilmanis, 1998; Breshears and Barnes, 1999) or through suppression of understory vegetation and associated potential for surface fire (Brackley, 1987; Miller and Tausch, 2001). Observed patterns in the occurrence and composition of woodlands are related to both local topoedaphic conditions (Chambers et. al., 1999) as well as the regional climatic context. For example, coarse, shallow soils may lack sufficient soil moisture to support welldeveloped herbaceous cover, yet the fractured substrates underlying these sites can allow rapid infiltration and provide abundant deep water accessible primarily to woody plants (McAuliffe, 2003). At regional scales, seasonality of precipitation (i.e., summer versus winter dominance) can strongly influence water availability at depth and thus potential vegetation, given the large intra-annual differences in evaporative demand (Mitchell, 1976; Neilson, 1987).

Reconstructed stand age structures, paleoecological evidence, and visual comparisons of current conditions with historic photos suggest piñon-juniper has become more abundant
at many locations since Euro-American settlement, ca. 1850 (e.g., Miller and Wigand, 1994; Tausch, 1999a; Miller and Tausch, 2001; Fuchs, 2002). Observed or reconstructed changes in southwestern piñon-juniper since settlement have been variously interpreted as (1) ongoing migrational adjustment to Holocene climate (2) natural demographic response (i.e., pulsed establishment) to fluctuating weather patterns (3) stages in normal stand development (4) recovery from harvest (historic or pre-historic) (5) succession after fire, drought, insect or disease induced mortality events (6) response to grazing practices including altered competitive interactions, soil properties, hydrologic patterns, and fire regimes (7) or accelerated growth as a result of elevated temperatures and CO_{2} levels associated with recent anthropogenic climate changes (Betancourt, 1987; Neilson, 1987; Betancourt et. al., 1993; Tausch, 1999b; Miller and Tausch, 2001; Baker and Shinneman, 2004; Eisenhart 2004; Floyd et. al., 2004; Shinneman, 2006). The relative importance of these mechanisms and processes likely differs from place to place, with both synchronous and synergistic interactions across multiple spatial and temporal scales (Neilson, 1987, 2003; Wagner and Fortin, 2005).

Historical changes in piñon-juniper include two distinct, but often poorly differentiated, processes: tree expansion into non-woodland areas (e.g., shrublands and grasslands) and thickening or infilling of piñon-juniper savanna and mosaic woodland communities extant prior to intensive Euro-American settlement (ca.1850). While expansion and infilling both involve new tree establishment, they often occur in different, albeit sometimes adjacent, edaphic and landform settings. The scale of observation or sampling approach, therefore, can determine whether results from different studies are comparable,
particularly in regard to how fine-scale topographic patterns and associated vegetation mosaics are interpreted (Johnsen, 1960; Pieper and Lymbery, 1987; Wilcox and Breshears, 1994; Weisberg et. al., 2007). Although the underlying mechanisms driving expansion versus infilling may differ in some basic ways, both processes are thought to have been enhanced historically by intensive landuse and relaxation of competitive and disturbance constraints (Chambers et. al., 1999).

Predictive vegetation modeling has recently gained attention both as a practical tool for land managers and for its potential to inform ecological research through an integrated method of inquiry. A variety of statistical and geospatial methods have been used successfully to predict and map discrete vegetation patterns from spatially explicit environmental variables (Franklin, 1995; Jensen et. al., 2001; Wagner and Fortin, 2005) with a recent emphasis on modeling species bio-climatic envelopes to infer potential for climate induced range shifts (Araujo and Guisan, 2006; Latimer et. al., 2006). I applied these predictive modeling methods to model and map "older", pre-settlement versus "younger", post-settlement piñon-juniper in a monsoonal, north-central New Mexico study area. My approach implicitly tests the idea that "older", pre-settlement age piñonjuniper woodlands occupy an ecological space distinct from "younger", post-settlement stands. I sampled across "old" versus "young" stands, associate these sites with relevant topo-climatic metrics, and developed predictive relationships between woodland standage and environmental variables.

Methods

Overview

I used an intensive, plot-based sampling approach to characterize southwestern U.S. piñon-juniper types, represented by Colorado piñon pine and several associated species of non-sprouting juniper (one-seed, Utah, and Rocky Mountain) in three National Park Service units (Bandelier National Monument, Mesa Verde National Park, and Colorado National Monument) representing a southeast to northwest, moisture seasonality gradient across the Four Corners states (Figures 3.1, 3.2). The intensive plot data (Appendix 4.3a) were used to inform development of a diagnostic key (Table 2.1) distinguishing "older", pre-settlement woodlands (>150 years) from "younger", post-settlement stands of more recent origin. Intensive plot data (Appendix 4.3a) were also used for exploratory analysis to provide insight into regional-scale woodland patterns. Subsequently, I identified a focal study area in north-central New Mexico representing the southeastern (monsoonal) end of the regional moisture gradient initially sampled, where summer seasonal precipitation averages half or more of the annual total (Figure 3.2) and woodlands are mapped as southern Rocky Mountain types (P. edulis and J. monosperma / J. scopulorum) by the Southwest Regional Gap Analysis Project (SWReGAP); Lowry et. al., 2005, (Figure 3.1). The study area was centered on Bandelier, a well researched landscape and protected from wood harvest and livestock grazing since 1932. Within the focal study area I then conducted extensive sampling in support of planned modeling efforts. Each point was assigned a pre- versus post-settlement stand age (i.e., "young" or "old") using the diagnostic key. Subsequently, all sample points were associated with potentially relevant topo-climatic metrics and the compiled dataset used for modeling.

Models were fit using stepwise logistic regression and evaluated using several standard measures of accuracy. Selected models for the north-central New Mexico study area were mapped within a geographic information system (GIS).

Intensive Field Sampling and Development of Diagnostic Key

Intensively sampled plots were circular, 50 m in diameter (0.2 ha) and with a single 25 m radial transect. Plots were established within homogeneous settings in which piñonjuniper was the dominant overstory and exceeded 5% canopy cover. Plot centers were anchored to the upslope drip-line of the oldest piñon and / or juniper individuals apparent within a local search area. A radial transect was established down slope from the plot center and aligned with site aspect. Within a designated quarter-plot section, a complete tree census (including dead individuals) was conducted: diameters were taken approximately 30 cm above ground surface (i.e., at core height); for multi-stemmed individuals (e.g., one-seed juniper) I measured the basal diameter of the largest primary stem. Qualitative features (e.g., crown shape, amount of dead wood in living canopy, lichen growth on dead wood or axe-cut limbs, trunk cavities, large exposed roots, burned wood) were noted for each sampled tree. At the full plot (i.e., stand) level I also noted additional qualitative features, including presence of stumps, down-wood, or snags, and other evidence of historic cutting or fire disturbance. At 5-m intervals along the radial line transect I recorded overstory canopy cover by species, and understory vegetation and ground cover by form, within a $0.5-\mathrm{m}$ quadrat; soil depths ($<50 \mathrm{~cm}$) were also sampled at each 5-m interval. Intersections of large down-wood ($>6 \mathrm{~cm}$) were tabulated along the entire transect. Maximum soil depth was obtained at plot center using a ($21 / 4$-inch) auger;
a representative soil sample was obtained at a depth of 0 to 10 cm . Cores (and associated diameters) were obtained (at 30 cm above base) from the largest 5 to 10 piñon trees within the full plot. Cores were mounted, sanded, ring-counted, and subsequently crossdated to validate ring-count estimates. Although juniper may represent the oldest trees in some stands (Shinneman, 2006), they are problematic to core and many species (e.g., one-seed and Utah junipers) cannot be dated precisely (Peter M. Brown, pers. comm.).

Quantitative stand age estimates were calculated as the average (ring-count) age of the three largest piñon (and three largest juniper when these data were available). In constructing the diagnostic key I selected qualitative characters that were easily recognizable and consistently present in trees and stands with quantitative age estimates of 150 years or more. Diameter thresholds (for distinguishing stands of pre- versus postsettlement age) were developed as an additional component of the diagnostic key, using regressions of ring-count on diameter from Pinus edulis and Juniperus monosperma. Sample data for regression analysis were obtained from nine woodland plots (stratified across three topo-edaphic settings representing shallow to deep soils) established as part of an earlier study within Bandelier National Monument (Julius, 1999) and supplemented with six intensive plots sampled as part of the current project. Piñon tree diameters were measured near core height (i.e., 30 cm) and juniper stem diameters were measured near their base. Since diameter was being associated with ring-count at sample height, no standard adjustment (in ring-count for sample height above ground) was deemed necessary for developing regressions. I used a no-intercept linear regression model for predicting ring-count from diameter since both parameters can be expected to equal zero
at time zero (Eisenhauer, 2003).

Reliability of the diagnostic key for use in north-central New Mexico was assessed using data from the fifteen plots sampled within Bandelier National Monument (Appendix 3.1). The plots at Bandelier provided a suitable test of the qualitative diagnostic criteria approach because the park supports a mosaic of "older" and "younger" stands that span the settlement threshold period (ca. 1850), and visual distinction between pre- versus post-settlement age stands sometimes can be difficult. In addition, nine of the fifteen plots at Bandelier had ring-count data available for one-seed juniper from an earlier study (Julius, 1999), and this allowed for a more robust estimate of quantitative stand age. For each plot, I compared the stand age assigned using the qualitative diagnostic criteria, with a quantitative stand age based on the average ring-counts of the three largest trees.

Extensive Field Sampling for Predictive Modeling

Extensive field sampling was focused initially within Bandelier and subsequently extended onto the surrounding Carson and Santa Fe National Forests, as well as along accessible public right-of-ways, to acquire a more wide-ranging sample of woodlands from the north-central New Mexico study area. Using existing trails and roads as transects, I selected routes which sampled across the range of topographic and elevation settings where woodland occurred. Sampling was stratified across four general landforms: (1) valleys, including swales and drainage bottoms, (2) mesas and ridges, (3) upland terraces, and (4) steeper slopes and cliffs. These landform categories were readily discernible in the field, provided an ecologically relevant approach for dispersion of
points across local landscapes, and were available as spatial coverage within a GIS (Lowry et. al., 2005). Along each transect, I sampled successive landform strata as they were encountered; this approach distributed sampling effort across the different strata in proportion to their availability.

For each sample point I established a $50-\mathrm{m}$ circular plot within which I collected the following information: geographic coordinates and elevation; apparent landform and (soil-water) depositional context; diameter near base of trunk or largest stem of the three largest individuals per species (including snags, stumps, and logs), qualitative old-growth characteristics of sampled trees; and qualitative features of the stand including successional status or signs of obvious landuse or historical disturbance. Assignment of piñon-juniper type, pre- versus post-settlement stand age, landform, and depositional setting initially were made onsite. Field assignments were subsequently reviewed to ensure consistent application of diagnostic key criteria and correspondence of sampled field points with GIS landform coverage.

Development of GIS Datasets for Modeling

A variety of geospatial datasets, including elevation, climate (temperature and precipitation), vegetation cover, landform, geology, and soils, were acquired to provide baseline GIS data for the Four Corners states. Geospatial climate variables were procured from Climate Source Inc., a vendor of 2-km resolution climate products developed by the Parameter-elevation Regressions on Independent Slopes Model (PRISM) group at Oregon State University, and seamless 30-m resolution digital elevation model (DEM)
coverage was purchased from USGS-EROS. Vegetation and landform coverages ($30-\mathrm{m}$ resolution) were obtained from SWReGAP (Comer et. al., 2003; Comer et. al., 2004; Lowry et. al., 2005). Different spatial references and resolutions necessitated some standardization to create compatible datasets for analysis (Latimer et. al., 2006); all data were projected to Albers Equal Area Conic, NAD83.

Surface analysis of $30-\mathrm{m}$ DEM's was used to create slope (in degrees), hillshade (an index of slope-aspect relative to a fixed sun position), and flow accumulation (cumulative number of cells flowing into a reference cell) datasets using standard utilities in ArcGIS 9.1 (ESRI, 2005). Precipitation and temperature values were available as 30 -year (19611990) monthly means from PRISM at 2-km resolution; these data were then used to calculate annual and seasonal means. Mean annual precipitation (MAP) was calculated by averaging the 30-year monthly means. Seasonal (summer and winter) precipitation represents growing or dormant season moisture (mean monthly values) summed for the June-September and October-May periods respectively. A seasonal moisture index (MONSOON) represents growing season (June-September) precipitation as a percentage of MAP. Metrics of effective (summer and winter) moisture (ESP and EWP) were developed by adjusting (i.e. dividing) seasonal precipitation values with seasonal estimates of potential evapo-transpiration (PET). Seasonal indices of PET (winter and summer) were calculated as the product of $\log _{n}$ (hillshade) for summer or winter solstice solar parameters (1300 hours) and mean maximum or minimum monthly temperatures respectively (method adapted from Penman, 1948). Landform coverage originally developed by SWReGAP (Lowry et. al., 2005) was generalized to four categories (from
ten) delineated using slope and flow accumulation thresholds. This yielded a class variable (LANDFORM) with four levels: 1 = alluvial slope positions, swales, and valley bottoms, $2=$ upland mesas and ridges, $3=$ upland terraces, $4=$ steeper slope positions, shoulders, and cliffs (Table 3.2). Relative runoff accumulation and soil depositional patterns were compiled using LANDFORM specific, flow accumulation thresholds, to generate a class variable (FLOW) with two levels: $0=$ losing soil-water settings; $1=$ gaining soil-water settings (Table 3.2). Computational details and code for development of metrics within a GIS are presented in Appendix B.

Predictive Modeling and Map Realization

Statistical modeling was performed in SAS 9.1 (SAS, 2005) using a binary logistic procedure (where "old" = event and "young" = nonevent) and stepwise model selection with default thresholds (P -values) for entry $(P<0.2$) and retention $(P<0.1)$ of individual explanatory variables. Topographic and climate data, including secondarily derived metrics, were used as potential explanatory variables of stand age. Secondary metrics were developed (as detailed above) by combining precipitation and temperature with DEM derived surfaces (e.g., hillshade) to create variables with potential ecological relevance (e.g., ESP, EWP, PET). Topo-climatic data associated with each sample point ($n=210$) were extracted using the spatial analyst sample utility in ArcGIS 9.1 (ESRI, 2005) and the data imported to SAS for model development (Appendix 4.3b). A potential set of some twenty topo-climatic predictors, including both discrete and continuous data versions of some variables, were provided to the logistic program for initial selection. Prior probabilities were not specified and defaulted to the observed ratio of "old:young"
in each dataset. Table 3.2 presents a frequency distribution (\%) of samples across the two class variables used in modeling: LANDFORM (four levels) and FLOW (two levels), for the full $(n=210)$ and split training $(n=146) /$ test $(n=64)$ datasets.

Modeling runs were conducted using both the full dataset ($n=210$ sample points) and a split training / test dataset $(n=146 / n=64)$ partitioned using a simple rule. Alternative models developed using the full and training datasets were evaluated using several standard measures of accuracy, including leave-one-out (LOO), cross-validated probability (XP), classification table outputs (i.e., total correct, sensitivity, specificity, false positive / negative) across a limited range (i.e., 0.40 to 0.60) of probability cutoffs (Table 3.3). Comparable models with fewer and / or more easily interpretable predictors were given preference. For the split dataset modeling effort, the test dataset was scored using the model independently fit with the training data. LOO XP, receiver operating characteristic (ROC), area under curve (AUC) values (LOO XP ROC AUC) also were calculated for full, training, and test models. ROC AUC values represent a plot of LOO XP sensitivity * specificity measures across all probability levels, providing a single integrated measure of model predictive accuracy.

Spatial analysis of logistic model outputs in ArcGIS (throughout the north-central New Mexico study area) involved calculation of predicted probabilities using SWReGAP woodland coverage as an analysis mask to represent occurrence of southern Rocky Mountain piñon-juniper. Intercept and partial slope regression parameters were used to calculate individual cell probabilities of class membership (i.e., "young" or "old") using
the raster calculator utility. Cell probabilities were then grouped into two or more response classes (e.g., "young" <0.5 or "old" ≥ 0.5) and color coded for map visualization.

Results

Diagnostic Key

A diagnostic key (Table 3.1) was developed to facilitate rapid field assignment of piñonjuniper type, and is used here to distinguish "older", pre-Euro-American settlement woodlands (>150 years) from "younger" stands of more recent (post-1850) origin. Tree diameter thresholds presented in the key (Table 3.1) are based on diameter to age (ringcount) regressions, using a zero-intercept model and developed with samples from Bandelier National Monument: Colorado piñon age $=5.49$ * diameter $(P<0.0001, n=$ 204) and one-seed juniper age $=6.65 *$ diameter $(P<0.0001, n=398)$; Appendix 3.1. Pvalues are provided in lieu of r-square values which cannot be used to evaluate zerointercept models (Eisenhauer, 2003). Diameter thresholds are intended to provide a preversus post-settlement (ca. 1850) approximation of stand age for Colorado piñon (30 cm) and one-seed juniper (25 cm) in upland settings of north-central New Mexico with moderate soil depths (15 to 35 cm). My diameter-age estimates are comparable to those in published reports of piñon and juniper growth rates in New Mexico (Howell, 1940). The key provides minimum densities of old trees below which detection of individuals >150 years could be considered incidental to the site under consideration. Although the key delineates woodland and savanna types, my experience in the field tells us that these stand structures can intergrade or occur in mosaic patterns reflecting variable site
histories along complex environmental gradients.

Reliability of the diagnostic key for delineating pre- versus post-settlement stands in the north-central New Mexico study area was assessed using data from fifteen (0.1 ha) intensively sampled plots within Bandelier National Monument. Using the key, 13 of 15 of stands were correctly assigned to a pre- versus post-settlement age, based on stand age computed from average ring-counts of the three largest sampled piñon (and juniper in nine plots) trees in each stand (Appendix 3.1). The key performed well when used to delineate "older" (>175 years) from "younger" (<125 years) stands. Stands of median age (i.e., 150 years ± 25 years) were sometimes problematic given the nature of criteria used, particularly when assessing "young" stands (with large diameter trees) in productive settings or "old" stands (with small diameter trees) on poor sites. Plot BAND12 was misclassified as "young", but ring-counts of the three largest piñon averaged 150 years, suggesting a marginally "old" stand with slower-growing piñon. Plot BAND15 was misclassified as being "old", although the ring-count data suggested a marginally "young" stand with several large ($>30-\mathrm{cm}$ stems), fast-growing junipers averaging <135 ring years.

Predictive Modeling and Mapping

The full model correctly classified 89.5% of observations (0.45 probability cutoff) using four predictors: effective winter moisture (EWP, $P<0.0001$), flow accumulation (FLOW, $P<0.0001$), landform (LANDFORM, $P<0.0015$) and elevation (DEM, $P<$ 0.0014); 93.2% of pre-settlement stands (136 of 146) and 81.3% of post-settlement stands
(52 of 64) were correctly classified (Tables 3.2, 3.3). The leave-one-out, cross-validated probability, receiver operator characteristic, area under curve (LOO XP ROC AUC) value for the full model was $c=0.932$. Comparable classification results were obtained for the split, training ($n=146$) / test $(n=64)$ dataset (0.60 probability cutoff) using the same four predictors; total correct for the training dataset was 89.0%, with an LOO XP ROC AUC value of $c=0.938$. The test data scored using the model fit independently with the training dataset correctly classified 90.6% of all observations: 93.3% of presettlement stands (42 of 45) and 84.2\% of post-settlement stands (16 of 19). LOO XP ROC AUC value for the scored test data was $c=0.913$.

Map realizations of the full model were generated in ArcGIS at various spatial extents, including the north-central New Mexico study area (Figure 3.3a) and the Tsankawi subunit of Bandelier National Monument (Figure 3.3b). Within the north-central New Mexico study area, SWReGAP coverage indicates that P. edulis / J. monosperma types occupy $28 \%(820,955 \mathrm{ha})$ of land area. My model results suggest that less than a third (29\%) of this extant piñon-juniper cover is post-settlement in origin. I noted during field work, however, that SWReGAP coverage often classified sites with scattered "young" piñon-juniper stands (<50 years) as non-woodland types, so using this coverage as an analysis mask for map realization likely underestimates total acreage of post-settlement woodland in the north-central New Mexico area. The majority of these "younger", postsettlement stands occur either below critical EWP thresholds in lower elevation valley and terrace landform settings or in strongly depositional areas within an upland landform context. An equally important result is the corollary finding that $>70 \%$ of extant piñon-
juniper was savanna or woodland prior to 1850 . Although widely thickened or infilled, these "older" stands should not be misinterpreted as part of the post-settlement expansion of piñon-juniper into non-woodland (e.g., grass and shrub) vegetation types.

Discussion

A diagnostic key (Table 3.1), using a combination of semi-quantitative and qualitative features, was developed to facilitate rapid field distinction of piñon-juniper type and preversus post-settlement stand age. I used the key only to assign sampled stands to "old" versus "young" categories in preparation for logistic modeling within the north-central New Mexico study area, although the key provides for finer classification of piñonjuniper types. Notably the key does not distinguish historically thickened or infilled savanna and mosaic woodland structures, where tree cover was sparse or patchy prior to 1850 , from woodlands where tree density and cover has been relatively high or continuous since before settlement. For my purposes, both of these structures would be classified as pre-settlement if they contained old or persistent piñon-juniper features.

Use of the diagnostic key outside of the north-central New Mexico area, or within selected landform and climatic settings, may require local calibration of the semiquantitative (e.g., diameter thresholds) criteria. Piñon cores collected from intensively sampled plots across the Four Corners states (data not presented) indicate that differences in seasonal moisture patterns and landform setting may strongly influence relative growth rates. For example, growth rates of one-seed juniper at Bandelier are nearly twice those reported for Wupatki National Monument, Arizona (Hassler, 2006), where MAP is about
half of that reported for Bandelier and summer moisture averages only 45-50\% of MAP. Across areas having comparable ranges of MAP, a $30-\mathrm{cm}$ diameter piñon in the Bandelier area (where summer precipitation averages 50 to 55% of the annual total) might be expected to range between 150-180 years old, whereas in winter moisture dominated portions of the Colorado Plateau (MONSOON <0.5) a similar piñon would generally exceed 200 years, and in strongly monsoonal portions of southern New Mexico $($ MONSOON $>0.55)$ the same diameter trees would often be less than 150 years old (Figure 3.2). Within local areas, growth rates were observed to be greater on depositional versus immediately adjacent non-depositional settings (Appendix 3.1), whereas nearby upland settings with exposed bedrock and little capacity for subsurface water storage often supported surprisingly old, but relatively small diameter, trees.

I predictively modeled and mapped the occurrence of pre- versus post-settlement woodlands within a 2.9 -million ha study area comprising a north-central New Mexico extent. Sampled stands were classified as "old" versus "young" using the diagnostic key and each sample point was associated with potential topo-climatic predictors in a GIS. The resulting dataset was used for logistic modeling, and the selected models were implemented within a GIS to realize predictive map products. This approach allowed us to evaluate the relative importance of individual explanatory variables, and generate map outputs for use by land managers. The topo-climatic metrics selected (i.e., FLOW, LANDFORM, EWP, DEM) were both spatially explicit and ecologically relevant. My model and map realizations highlight environmental settings inherently favorable to the growth and long-term persistence of piñon-juniper savanna and woodland versus
locations that would have formerly supported non-woodland (e.g., grass and shrub) vegetation types (Figure 3.3b). Nonetheless, woodland vegetation is dynamic and positive feedbacks can effectively mitigate environmental or disturbance constraints on potential distribution. Once established, woodland can persist even in strongly depositional settings if tree cover effectively usurps resources, suppresses understory cover and potential for surface fire, or alters hydrologic and soil properties (West and Van Pelt, 1987; Schlesinger and Pilmanis, 1998; Breshears and Barnes, 1999).

Within the north-central New Mexico study area, woodland expansion appears largely attributable to establishment of one-seed juniper into historically degraded grasslands in depositional valley and terrace settings under monsoonal influence. Although many valley locations in north-central New Mexico experienced domestic grazing pressures as early as the 1600 s , the influence of intensive Euro-American settlement beginning ca. 1850 was likely the overriding historic influence on age-structure of extant woodland vegetation. Across the Four Corners states my intensive plot work suggests that seasonal patterns of moisture and occurrence of different juniper species (Figures 3.1, 3.2) may influence the relative susceptibility of southwestern U.S. landscapes to historic woodland expansion. For example, one-seed juniper (Little, 1971) is associated with a summer monsoonal influence (Mitchell, 1976; Neilson, 1987, 2003; Figure 3.2) and this species has life history attributes that relate successful seedling establishment to adequate growing season moisture (Johnsen 1960, 1962; Chambers et. al., 1999). In contrast, Utah juniper (Little, 1971) occurs primarily in weakly bimodal and winter moisture dominated areas to the northwest (Figure 3.2). Rocky Mountain juniper gains importance northward
and eventually replaces one-seed juniper as the common associate of piñon in portions of south-central Colorado where early spring moisture becomes an important component of the annual total (Woodin and Lindsey, 1954). Among closely related piñon species there is also an apparent relationship between needle number and seasonality of moisture. The range of Colorado piñon with two-needles encompasses areas influenced by both summer and winter moisture. Its one-needle relative, Pinus monophylla, located to the west is exclusively under the influence of winter moisture, and its three-needle relative, Pinus cembroides, found to the south is under the influence of strong summer monsoon moisture patterns (Neilson, 1987).

Along a northwest-to-southeast moisture seasonality gradient (within woodlands of the Four Corners states) I casually observed a dramatic increase in the frequency of "younger", post-settlement stands in locations roughly corresponding to the distributional limits of one-seed juniper (Little, 1971) and a shift to summer monsoonal moisture patterns (Figure 3.2). These "younger", usually one-seed juniper dominated, stands are typically found in low gradient valley and terrace landform settings (including gentle slopes and rolling hills). Chambers et al (1999) suggest that tree establishment into grasslands may be facilitated by adequate growing season moisture, which can mitigate the need for favorable micro-sites otherwise provided by woody nurse plants in winter moisture areas. Although arid grasslands are susceptible to desertification processes (Walker et. al., 1981; Schlesinger and Pilmanis, 1998), McAuliffe (2003) found that sites with shallow argillic horizons (which inhibit infiltration and deep water storage) can apparently resist woody plant establishment even under sustained grazing pressure.

Colorado piñon, along with Rocky Mountain and Utah juniper, while present in many post-settlement stands, are more commonly observed as components of expansive woodlands colonizing higher elevation, depositional settings occupied by grass and sage types (Weisberg et. al., 2007), as well as infilling ponderosa pine understories on adjacent toeslopes.

On the Colorado Plateau (northwest of north-central New Mexico), where seasonal moisture patterns are weakly bimodal or winter-dominated, the occurrence of "young", post-settlement woodlands becomes correspondingly less frequent. In this bio-climatic zone, landform and (soil-water) depositional patterns increasingly delineate woodland from non-woodland areas across relatively sharp ecotonal boundaries. Notably, woodland expansion into grassland vegetation appears much less extensive outside the range of one-seed juniper (for example in the areas where Utah juniper is dominant). However, environmental constraints of woodland distribution and age structure can also be variously reinforced, amplified, or muted by associated disturbance processes (e.g., fire) and competitive interactions (Neilson, 1987). My intensively sampled plot data from the Colorado Plateau (not presented here) suggest that this area supports an abundance of "older", pre-settlement aged woodlands, and these observations are consistent with recent findings by Eisenhart (2004), Floyd et. al., (2004; 2008), Hassler (2006), and Shinneman (2006). Although I found a relationship between summer monsoonal patterns, one-seed juniper distribution, and susceptibility of landscapes in the Four Corners states to historic woodland expansion, further west in the winter-spring moisture influenced Great Basin region, western juniper (Juniperus occidentalis) also has expanded dramatically since

1860 into sagebrush steppe communities (Miller et. al., 2007).

In summary, I developed a diagnostic key to distinguish between "older", pre-settlement and "younger" post-settlement piñon-juniper woodlands in the southwestern U.S. I assigned a pre- versus post-settlement age (ca. 1850) to sampled stands using this key. Topo-climatic metrics associated with sampled points were extracted and compiled within a GIS, and the resulting dataset was used for predictive modeling and mapping of pre- versus post-settlement ("old" versus "young") stands of piñon-juniper within a north-central New Mexico study area. My modeling results suggest that "older" stands occupy an ecological space largely distinct from the settings where "younger" woodlands are commonly found, allowing us to use the associated environmental parameters to predict these occurrence patterns. Map realization of selected models highlights that landscape patterns of "older" pre- versus "younger" post-settlement woodland are likely structured by gradients of effective moisture and (soil-water) depositional environment (Pieper and Lymbery, 1987; Wilcox and Breshears, 1994). My field observations reinforce the idea that woodlands growing under winter-dominated or weakly bimodal moisture regimes have a fundamentally different character than those strongly influenced by summer monsoonal patterns. These findings contribute to a basic understanding of piñon-juniper ecosystems and can help inform appropriate management. Historic woodland expansion in north-central New Mexico is largely attributable to establishment of one-seed juniper into degraded rangeland settings under a summer monsoonal influence, and ecological restoration of grasslands and savanna structures in these locations appears generally warranted. In contrast, proposals for restoration of woodland
sites on the Colorado Plateau should be reviewed more cautiously given my findings and reported prevalence of "older" pre-settlement woodlands in locations with bimodal or winter moisture patterns (Romme et. al., 2003).

Literature Cited

Araujo, M.B., and A. Guisan. 2006. Five (or so) challenges for species distribution modeling. Journal Biogeography 33:1677-1688.

Baker, W.L. and D.J. Shinneman. 2004. Fire and restoration of pinyon-juniper woodlands in the western United States: a review. Forest Ecology and Management 189:1-21.

Betancourt, J.L. 1987. Paleoecology of pinyon-juniper woodlands. In: Everett, R.L. ed. Proceedings--pinyon-juniper conference. USDA, Forest Service, GTR-INT-215, p. 129139.

Betancourt, J.L., E.A. Pierrson, K.A. Rylander, J.A. Fairchild-Parks, and J.S. Dean. 1993. Influence of history and climate on New Mexico pinyon-juniper woodlands. In: Aldon, E.F. and D.W. Shaw, eds., Managing pinyon-juniper ecosystems for sustainability and social needs. USDA, Forest Service, GTR-RM-236, p. 42-62.

Brackley, G.K. 1987. SCS inventory and classification procedures. In: Everett, R.L. ed. Proceedings--pinyon-juniper conference. USDA, Forest Service, GTR INT-215, p. 231-235.

Breshears, D.D., N.S. Cobb, P.M. Rich, K.P. Price, C.D. Allen, R.G. Balice, W.H. Romme, J.H. Kastens, M.L. Floyd, J.Belnap, J.J. Anderson, O.B. Myers, and C.W. Meyer. 2005. Regional vegetation die-off in response to global-change-type drought. Proceedings National Academy of Sciences 102:15144-15148.

Breshears, D.D. and F.J. Barnes. 1999. Interrelationships between plant functional types and soil moisture heterogeneity for semiarid landscapes within the grassland / forest continuum: a unified conceptual model. Landscape Ecology 14: 465-478.

Chambers, J.C., E.W. Schupp, and S.B. Wall. 1999. Seed dispersal and seedling establishment of pinyon and juniper species within the pinyon-juniper woodland. In: Monsen, S.B. and R. Stevens, eds. Proceedings: ecology and management of pinyon-juniper communities within the interior west. USDA, Forest Service, GTR-RMRS-P-9, p. 29-34.

Comer, P.J., D. Faber-Langendoen, R. Evans, S. Gawler, C. Josse, G. Kittel, S. Menard, S. Pyne, M. Reid, K. Schulz, K. Snow, and J. Teague. 2003. Ecological systems of the United States: A working classification of U.S. terrestrial systems. Nature Serve, Arlington, Virginia, USA.

Comer, P.J., D. Faber-Langendoen, R. Evans, S. Gawler, C. Josse, G. Kittel, S. Menard, S. Pyne, M. Reid, K. Schulz, K. Snow, and J. Teague. 2004. Landcover descriptions for southwest regional gap analysis project. Nature Serve, Arlington, VA, USA.

Eisenhart, K.S. 2004. Historic range of variability and stand development in piñon-juniper woodlands of western Colorado. Ph.D. dissertation, University of Colorado, Boulder, CO, USA.

Eisenhauer, J.G. 2003. Regression through the Origin. Teaching Statistics 25:76-80.
Environmental Systems Research Institute Inc. 2005. ArcGIS 9.1 software. Redlands, CA, USA.

Everett, R.L. ed. 1987. Proceedings--pinyon-juniper conference. USDA, Forest Service, GTR-INT-215.

Floyd, M.L., M. Colyer, D.D. Hanna, and W.H. Romme. 2003. Gnarly old trees: canopy characteristics of old-growth pinyon-juniper woodlands. Chapter 2. In: Floyd, M.L., eds. Ancient pinyon-juniper woodlands. University Press of Colorado, Boulder, CO, USA, p. 11-29.

Floyd, M.L., D.D. Hanna, and W.H. Romme. 2004. Historical and recent fire regimes in piñon-juniper woodlands on Mesa Verde, Colorado, USA. Forest Ecology and Management 198:269-289.

Floyd, M.L, W.H. Romme, D.D. Hanna, M. Winterowd, D. Hanna, and J. Spence. 2008. Fire history of piñon-juniper woodlands on Navajo Point, Glen Canyon National Recreation Area. Natural Areas Journal. 28:26-36.

Franklin, J. 1995. Predictive vegetation mapping: geographic modeling of biospatial patterns in relation to environmental gradients. Progress Physical Geography. 19:474-499.

Fuchs, E. H. 2002. Historic increases in woody vegetation in Lincoln County, New Mexico. VanGuard Printing Company, Albuquerque, NM, USA.

Gottfried, G.J., T.J. Swetnam, C.D. Allen, J.L. Betancourt, and A.L. Chung-MacCoubrey. 1995. Piñon-Juniper Woodlands. Chapter 6. In: Finch, D.M. and Tainter, J.A., eds. Ecology, diversity and sustainability of the middle Rio Grande basin. USDA, Forest Service, GTR-RM-268, p. 95-132.

Hassler, F.C. 2006. Dynamics of juniper invaded grasslands and old-growth woodlands at Wupatki National Monument, northern Arizona, USA. M.S.thesis, Northern Arizona University, Flagstaff, AZ, USA.

Howell, J.J. 1940. Pinyon and juniper: a preliminary study of volume, growth, and yield. USDA, SCS, Reg. 8. Bull. 71. FS 12. In: Barger, R.L., and P.F. Ffolliott. 1972. Physical characteristics and utilization of major woodland tree species in Arizona. USDA, Forest Service, RM-83.

Jensen, M.E., J.P. Dibenedetto, J.A. Barber, C. Montagne, and P.S. Bourgeron. 2001. Spatial modeling of rangeland potential vegetation environments. Journal Range Management 54:528-536.

Johnsen, T.N. 1960. Factors affecting one-seed juniper invasion of Arizona grasslands. Unpublished Dissertation. Duke University, Durham, NC, USA.

Johnsen ,T.N., 1962. One-seed juniper invasion of northern Arizona grasslands. Ecological Monographs. 32:187-207.

Julius, C. 1999. A comparison of vegetation structure on three different soils at Bandelier National Monument, New Mexico. Unpublished thesis. Rheinischen Friedrich-Wilhelms University, Bonn, Germany.

Kaufmann, M.R., W.H. Moir, and R.L. Bassett. 1992. Old-growth forests in the Southwest and Rocky Mountain regions: Proceedings of a workshop. USDA, Forest Service, GTR-RM-213.

Latimer, A.M., S. Wu, A.E. Gelfand, and J.A. Silander. 2006. Building statistical models to analyze species distributions. Ecological Applications 16:33-50.

Little, E.L., Jr., 1971. Atlas of United States trees, conifers and important hardwoods: Volume 1. USDA, Forest Service, Misc. Pub. 1146.

Lowry, J.H., R.D. Ramsey, K. Boykin, D. Bradford, P. Comer, S. Falzarano, W. Kepner, J. Kirby, L. Langs, J. Prior-Magee, G. Manis, L. O'Brien, K. Pohs, W. Rieth, T. Sajwaj, S. Schrader, K.A. Thomas, D. Schrupp, K. Schulz, B. Thompson, C. Wallace, C. Velasquez, E. Waller, and B. Wolk. 2005. Southwest regional gap analysis project: final report on land cover mapping methods. RS / GIS Laboratory, College of Natural Resources, Utah State University, Logan, UT, USA.

Martens, S.N., D.D Breshears, and F.J. Barnes. 2001. Development of species dominance along an elevational gradient: population dynamics of Pinus edulis and Juniperus monosperma. International Journal Plant Sciences 162:777-783.

McAuliffe, J.R. 2003. The interface between precipitation and vegetation. Chapter 2. In: Weltzin, J.F. and McPherson, G.R. eds. Changing precipitation regimes and terrestrial ecosystems. University of Arizona Press, Tucson, AZ, USA, p. 9-27.

Miller, R.F., J.D. Bates, T.J. Svejcar, F.B. Pierson, L.E. Eddleman. 2005. Biology, ecology, and management of western juniper. Tech. Bull.152, Agricultural Experiment Station, Oregon State University Corvallis, OR, USA.

Miller, R.F. and R.J. Tausch. 2001. The role of fire in juniper and pinyon woodlands: a descriptive analysis. In: Galley et. al., eds. Proceedings of the invasive species workshop. Tall Timbers Research Station, Misc. Pub. No. 11. Tallahassee. FL, USA, p. 15-30.

Miller, R.F., R.J. Tausch, E.D. McArthur, D.D. Johnson, and S.C. Sanderson. 2008. Age structure and expansion of piñon-juniper woodlands: a regional perspective in the Intermountain West. USDA, Forest Service, RMRS-RP-69.

Miller, R.F., R. Tausch, and W. Waichler. 1999. Old-growth juniper and pinyon woodlands. In: Monsen, S.B. and R. Stevens, eds. Proceedings: ecology and management of pinyonjuniper communities within the interior west. USDA, Forest Service, GTR-RMRS-P-9, p. 375-384.

Miller, R.F. and P.E. Wigand. 1994. Holocene changes in semiarid pinyon-juniper woodlands. BioScience 44:465-474.

Mitchell, V.L. 1976. The regionalization of climate in the western United States. Journal Applied Meteorology 15:920-927.

Monsen, S.B. and R. Stevens., eds. 1999. Proceedings: ecology and management of pinyonjuniper communities within the interior west. USDA, Forest Service, GTR-RMRS-P-9.

Neilson, R.P. 1987. On the interface between current ecological studies and the paleobotany of pinyon-juniper woodlands. In: Everett, R.L. ed. Proceedings--pinyon-juniper conference. USDA, Forest Service, GTR-INT-215. 93-98.

Neilson, R.P. 2003. The importance of precipitation seasonality in controlling vegetation distribution. Chapter 4. In: Weltzin, J.F. and McPherson, G.R. eds. Changing precipitation regimes and terrestrial ecosystems. Univ. of AZ Press, Tucson, AZ, USA, p. 47-71.

Penman, H.L. 1948. Natural evaporation from open water, bare soil, and grass. Proceedings Royal Society, London, UK. A 193:120-145.

Pieper, R.D. and G.A. Lymbery. 1987. Influence of topographic features on pinyon-juniper vegetation in south-central New Mexico. In: Everett, R.L. ed. Proceedings--pinyon-juniper conference. USDA, Forest Service, GTR-INT-215, p. 53-57.

Romme, W.H., M.L. Floyd, and D.D. Hanna. 2003. Ancient piñon-juniper forests of Mesa Verde and the West: a cautionary note for forest restoration programs. In: Omi, P. and Joyce, L.A., eds. Fire, Fuel Treatments, and Ecological Restoration: Conference Proceedings. USDA, Forest Service, RMRS-P-29, p. 335-350.

Ronco, F. 1987. Stand structure and function of pinyon-juniper woodlands. In: Everett, R.L. ed. Proceedings--pinyon-juniper conference. USDA, Forest Service, GTR-INT-215, p. 1422.

SAS Institute Inc. 2005. SAS 9.1 software. Cary, NC, USA.
Schlesinger, W.H. and A.M. Pilmanis. 1998. Plant-soil interactions in deserts. Biogeochemistry 42:169-187

Shinneman, D.J. 2006. Determining restoration needs for piñon-juniper woodlands and adjacent semi-arid ecosystems on the Uncompahgre Plateau, Western Colorado. Unpublished Dissertation. University of WY, Laramie, WY, USA.

Swetnam, T.W., C.D. Allen, and J.L. Betancourt. 1999. Applied historical ecology: using the past to manage for the future. Ecological Applications 9:1189-1206.

Tausch, R.J. 1999a. Historic pinyon and juniper woodland development. In: Monsen, S.B. et. al., eds. Proceedings: ecology and management of pinyon-juniper communities within the interior west. USDA, Forest Service, GTR-RMRS-P-9, p. 12-19.

Tausch, R.J. 1999b. Transitions and thresholds: influences and implications for management in pinyon and juniper woodlands. In: Monsen, S.B. et. al., eds. Proceedings: ecology and management of pinyon-juniper communities within the interior west. USDA, Forest Service, GTR-RMRS-P-9, p. 361-365.

Wagner, H.H., and M.J. Fortin. 2005. Spatial analysis of landscapes: concepts and statistics. Ecology 86:1975-1987.

Waichler, W.S., R.F. Miller, and P.S. Doescher. 2001. Community characteristics of oldgrowth western juniper woodlands. Journal Range Management. 54:518-527.

Walker, B.H., D. Ludwig, C.S. Holling, and R.M. Peterman. 1981. Stability of semi-arid savanna grazing systems. Ecology. 69:473-498.

Weisberg, P.J., E. Lingua, and R.B. Pillai. 2007. Spatial patterns of pinyon-juniper woodland expansion in central Nevada. Rangeland Ecology Management. 60:115-124.

West, N.E. 1999. Distribution, composition, and classification of current juniper-pinyon woodlands and savannas across western North America. In: Monsen, S.B. and R. Stevens, eds. Proceedings: ecology and management of pinyon-juniper communities within the interior west. USDA, Forest Service, GTR-RMRS-P-9, p. 20-23.

West, N.E. and N.S. Van Pelt. 1987. Successional patterns in pinyon-juniper woodlands. In: Everett, R.L. ed. Proceedings--pinyon-juniper conference. USDA, Forest Service, GTR-INT-215, p. 43-52.

Wilcox, B.P. and D.D. Breshears. 1994. Hydrology and ecology of piñon-juniper woodlands: conceptual framework and field studies. In: Shaw, D.W, E.F. Aldon, and C. LoSapio, eds. Desired future conditions for piñon-juniper ecosystems. USDA, Forest Service, GTR-RM258, p. 109-119.

Woodin, H.E. and A.A. Lindsey. 1954. Juniper-pinyon east of the Continental Divide, as analyzed by the Line-Strip method. Ecology 35:473-489.

Table 3.1. Diagnostic criteria and artificial key for delineation of southwestern U.S. piñon-juniper, savanna and woodland communities (Pinus edulis, Juniperus osteosperma, J. monosperma, and J. scopulorum), in the Four Corners states (Arizona, Colorado, New Mexico, and Utah)

KEY TO GROUPS

1a. Mature piñon (live or dead) well represented 2
1b. Mature piñon few or absent 3
2a. Mature juniper few or absent
Group I
(Piñon Dominated)
2b. Mature juniper (live or dead) well represented
Group II (Piñon-Juniper Co-Dominant)

3a. Mature juniper (live or dead) well represented
(Juniper-Dominated) Group III
3b. Mature juniper few or absent Group IV
(Successional Piñon and / or Juniper)

INDIVIDUAL GROUP KEYS

Group I: Piñon Dominated, Woodland or Savanna

Canopy closure usually $\geq 25 \%$ (20 to $80+\%$); juniper, if present, mostly younger

A. Old-growth trees present Old-growth Piñon Dominated, Woodland or

Savanna

Individual old trees (≥ 5 trees / ha on average), live or dead, average diameter (of largest 3 trees) for piñon near base $\geq 30 \mathrm{~cm} *$; AND with two or more of following old-growth characteristics: truncate crown formed by terminals with short, often gnarled, internodes; attached dead wood in canopy, often polished and with well developed lichen growth; basal trunks with exposed polished wood or well developed cavities; individual old tree(s) form the center of an established patch of mature and / or suppressed trees; large girth roots with exposed polished wood, and widely trailing on shallow substrates; stands with large diameter down-wood (comparable in girth to standing old trees), polished, bleached, and with well developed lichen growth; signs of historic woodcutting evidenced by large girth, axe-cut, limbs and trunks, with cuts covered by lichen growth; historic fire evidence, when present, suggestive of patchy crown fire (fire sculpted snags, burned out stumps, and down-wood from which the charcoal may have worn off) and / or surface fire with occasional scarring at grass and forest ecotones

Group II: Piñon and Juniper Woodland

Canopy closure usually $\geq 20 \%$ (15 to $60+\%$); mature piñon and juniper present

A. Old-growth trees of both species present Old-growth Piñon-Juniper

Woodland

Individual old trees (≥ 3 old trees / ha on average, piñon and / or juniper), live or dead, average diameter (of largest 3 trees) near base for piñon $\geq 30 \mathrm{~cm}$ * and / or juniper $\geq 25 \mathrm{~cm}^{*}$; AND with two or more of following old-growth characteristics: truncate crown formed by terminals with short, often gnarled, internodes; attached dead wood in canopy, often polished and with well developed lichen growth; basal trunks with exposed polished wood or well developed cavities; individual old tree(s) form the center of an established patch of mature and / or suppressed trees; large girth roots with exposed polished wood, and widely trailing on shallow substrates; stands with large diameter down-wood (comparable in girth to standing old trees), polished, bleached, and with well developed lichen growth; signs of historic woodcutting evidenced by large girth, axe-cut, limbs and trunks, with cuts covered by lichen growth; historic fire evidence, when present, suggestive of patchy crown fire (fire sculpted snags, burned out stumps, and down-wood from which the charcoal may have worn off)
B. Old-growth trees absent

Group IV

Old trees generally absent, peripheral (in different topographic settings along margins of site under consideration) or present only as large diameter, remnant (sometimes burnt) snags, stumps, or down-wood (evidence of past disturbance)

Group III: Juniper Savanna

Canopy closure usually $\leq 15 \%$ (5 to $30+\%$); piñon, if present, mostly younger

A. Old-growth trees present

Old-growth Juniper

Savanna

Individual old trees (≥ 1 old tree / ha on average), live or dead, average diameter (of largest 3 trees) for juniper near base $\geq 25 \mathrm{~cm}^{*}$; AND with two or more of following old-growth characteristics: truncate crown formed by terminals with short, often gnarled, internodes; attached dead wood in canopy, often polished and with well developed lichen growth; basal trunks with exposed polished wood or well developed cavities; individual old tree(s) form the center of an established patch of mature and / or suppressed trees; large girth roots with exposed polished wood, and widely trailing on shallow substrates; stands with large diameter downwood (comparable in girth to standing old trees), polished, bleached, and with well developed lichen growth; signs of historic woodcutting evidenced by large girth, axe-cut, limbs and trunks, with cuts covered by lichen growth; historic fire
evidence, when present, suggestive of surface fire (occasional scarring) with torching of individual trees (fire sculpted snags, burned out stumps, and downwood from which the charcoal may have worn off)
B. Old-growth trees absent

Group IV

Old trees generally absent, peripheral (in different topographic settings along margins of site under consideration) or present only as large diameter, remnant (sometimes burnt) snags, stumps, or down-wood (evidence of past disturbance)

Group IV: Successional Piñon / Juniper Woodland or Savanna Canopy closure $\geq 5 \% * *$ (5 to $80+\%$); average diameter (of largest 3 living trees) near base for piñon $\leq 30 \mathrm{~cm} *$ and / or juniper $\leq 25 \mathrm{~cm}$ *

A. Evidence of prior woodland community apparent Woodland

Recovering

Sites with evidence of long-term woodland occupation, but subjected to prior disturbance, e.g., fire, drought, harvest, and / or insect / disease induced mortality and lacking extant old-growth. Evidence of disturbance to former old-growth woodland is based on remnant (e.g., fire, drought, insect, or disease killed, cut, chained, burned, or mechanically harvested) large girth, (piñon and / or juniper) snags, stumps, trunks, or down-wood (average diameter of 3 largest down-wood remnants of piñon $\geq 30 \mathrm{~cm}^{*}$ and / or juniper $\geq 25 \mathrm{~cm}^{*}$); large diameter down-wood (piñon or juniper) is often bleached, polished, or decomposed, and with well developed lichen growth

B. Lacking above evidence of prior woodland community Expanding Woodland

Sites without evidence of a prior woodland community and apparently expanding into non-woodland vegetation, usually onto deeper soils or productive settings capable of supporting robust understory growth, as indicated by presence of suppressed or remnant understory components typical of adjacent grass-land, shrub-land, and / or pine savanna communities. These expanding woodland sites may include scattered living or dead -standing or fallen- ponderosa pine and other non-woodland conifer tree species, but are lacking large diameter (piñon and / or juniper) snags, stumps, or down-wood

[^0]Table 3.2. Number of samples across landform (LANDFORM) strata and depositional environment (FLOW), within a north-central New Mexico study area. Relative percent of "young" versus "old" samples in each dataset, and of total samples in the split training and test datasets are noted. See Development of GIS Datasets
for Modeling in Methods section for additional explanation of LANDFORM and FLOW parameters.
Nan

Dataset
sample size (\%)
Full
$64(30.5)$
$146(69.5)$
$N=210$
Training
$45(30.8)$
$101(69.2)$
$N=146(69.5)$
Test
$19(29.7)$
$45(70.3)$
$N=64(30.5)$
Table 3.3. Leave-one-out (LOO), cross-validated probability (XP), classification results ("old" $=$ event) for the full dataset model, n
(ROC), area under curve (AUC) value (LOO XP ROC AUC) for the full model of $c=0.932$. Comparable results were obtained for the split, training $(n=146)$ and test $(n=64)$ dataset, with a 0.60 prob. cutoff. The test data were scored using the model fit independently with the training dataset. I report LOO XP ROC AUC values for the training data of $c=0.938$, and scored test data of $c=0.913$. Prior probabilities for the full and training models reflect the sampled ratios of "old" to "young" in each dataset (see Table 3.2).

Figures

Figure 3.1. Generalized distribution of Colorado Plateau and southern Rocky Mountain piñon-juniper savanna and woodland types within the Four Corners states: piñon-juniper covers ca. 14.5 million ha or $\sim 13 \%$ of the total land area (modified from data provided by SWReGAP). Three National Park Service units (Bandelier National Monument, Mesa Verde National Park, and Colorado National Monument) were sampled intensively to inform selection of qualitative criteria and development of the diagnostic key, and to provide data for exploratory modeling. Extensive sampling and modeling efforts were conducted within the north-central New Mexico study area where SWReGAP-mapped piñon-juniper represents southern Rocky Mountain (PIED-JUMO-JUSC) savanna and woodland types. Pinus edulis = PIED; Juniperus monosperma = JUMO; Juniperus scopulorum $=$ JUSC; Juniperus osteosperma $=$ JUOS

Figure 3.2. Index of growing season moisture (MONSOON) is calculated as the JuneSeptember percent of mean annual precipitation (MAP) across the Four Corners states. I highlight the casual association of one-seed (JUMO) and Utah (JUOS) juniper ranges (Little, 1971) with MONSOON. Extensive sampling (and predictive modeling and mapping efforts) were conducted within (and for) the north-central New Mexico study area where one-seed juniper woodlands (as delineated by Little, 1971) occur primarily within areas receiving half or more of MAP during the (June-September) growing season (MONSOON $\geq 50 \%$); the range of Colorado piñon (not shown) within the north-central New Mexico study area coincides with the mapped distribution for one-seed juniper (Little, 1971). Pinus edulis = PIED; Juniperus monosperma $=$ JUMO; Juniperus osteosperma $=\mathrm{JUOS}$

Figure 3.3a. Predictive map of "old" versus "young" (percent probability "old") piñonjuniper stands within the 2.9 million-ha north-central New Mexico study area. Figure 3.3 b is a close-up of the Tsankawi Unit (see inset), a disjunct part of Bandelier National Monument

Figure 3.3b. Predictive map of "old" versus "young" (percent probability "old") piñonjuniper stands within the (336 ha) Tsankawi Unit, Bandelier National Monument, New Mexico. Green with scattered tree overlay -delineated using high resolution soil coverage- highlights inferred areas of historically thickened savanna structure in marginal depositional settings, and indicates where mechanical thinning of the younger tree component might be considered an appropriate restoration treatment. Light gray denotes areas mapped as non-woodland vegetation. Map resolution of predicted pre- versus postsettlement woodland cover is 30 m , but an appropriate scale (e.g., minimum map unit) for field application in this location would be ~ 1 ha

Appendices

Appendix 3.1. A table presenting stand level data for fifteen intensive plots sampled within Bandelier National Monument, New Mexico, USA. This table represents an excel spreadsheet with embedded formula which assign a woodland type and pre- vs. postsettlement stand age by applying the diagnostic key criteria to stand level data.

SITE		11		p2	3		n-3		P-3		4	11	i2	(i2		9.13		90-		
Conservat	ve pre	themen	thres				30.0	165.8									25.0	167.3		
BAND1	39.5	2100	28.5	210.0	28.0	174.0	32.0	176.8	198.0	y	48.0		28.5		23.0		31.8	212.7		y
BAND2	27.5	1820	27.5	154.0	28.0	168.0	27.7	153.0	161.3	n	30.0		27.0		23.5		26.8	179.5		y
BAND3	39.0	185.0	40.0	180.0	42.5	210.0	40.5	223.5	191.7	y	45.0		22.5		20.5		29.3	196.1		y
BAND4	38.5	173.0	37.5	196.0	34.0	160.0	36.7	202.5	176.3	y	54.0		28.5		28.0		36.8	246.0		y
BANDS	35.5	220.0	32.0	210.0	32.0	220.0	33.2	183.2	216.7	y	30.0		22.0		15.0		23.7	458.4		y
BAND6	38.0	150.0	30.0	180.0	36.0	160.0	34.7	191.5	163.3	y	38.0		35.0		320		35.0	233.8		y
BAND7	27.5	154.0	28.0	188.0	44.5	153.0	33.3	184.2	158.3	y	29.5	201.0	35.0	169.0	38.5	241.0	34.3	229.3	203.7	y
EAND8	36.0	2000	33.0	174.0	30.5	157.0	32.8	181.4	177.0	y	29.0	240.0	29.0	173.0	32.0	242.0	30.0	200.5	218.3	y
BAND9	37.0	207.0	32.0	202.0	32.0	200.0	33.7	186.0	203.0	y	27.0	145.0	25.0	184.0	23.0	153.0	25.0	167.3	160.7	n
BAND10	28.0	185.0	22.0	113.0	18.0	68.0	22.7	125.5	122.0	n	31.0	223.0	29.0	125.0	25.0		28.3	188.4	174.0	y
BAND11	35.0	154.0	31.5	135.0	29.0	142.0	31.8	175.9	147.0	y	33.0	167.0	27.5	213.0	25.0	124.0	28.5	190.5	168.0	y
BAND12	30.0	184.0	27.0	111.0	26.0	175.0	27.7	153.0	150.0	n	29.0	157.0	27.0	156.0	25.0	104.0	27.0	180.5	139.0	n
BAND13	25.0	41.0	12.0	42.0	9.0	52.0	15.3	85.3	45.0	n	25.0	86.0	25.0	90.0	24.0	89.0	24.7	185.1	88.3	n
BAND14	23.0	77.0	20.5	77.0	18.5	76.0	20.7	114.6	76.7	n	23.0	91.0	23.0	83.0	24.5	125.0	23.5	157.3	103.0	n
BAND15	35.0	107.0	18.0	83.0	24.0	78.0	26.0	143.9	89.3	n	39.0	161.0	38.0	108.0	33.0	133.0	36.7	244.9	134.0	y

Appendix 3.1 (continued)

Chapter IV

Regional scale modeling of southwestern U.S. piñon-juniper woodlands:

 predictive mapping of "old" versus "young" stands in the Four-Corner states
Abstract

Differing interpretations of post-Euro-American settlement dynamics in southwestern U.S piñon-juniper woodlands have generated considerable controversy, particularly in regards to the appropriateness of management efforts intended to improve watershed, wildlife, and range conditions, or mitigate impending wildfire hazards. I employ a modeling approach to inform this debate, by associating (pre- versus post-settlement) piñon-juniper stand-age with topographic, edaphic, and climatic factors relevant to woodland occurrence. Predictive modeling and mapping of "old" versus "young" piñonjuniper stand-age was conducted in southwestern U.S woodlands characterized by Pinus edulis and three associated junipers (Juniperus osteosperma, J. monosperma, J. scopulorum) within the Four Corners states (i.e., Arizona, Colorado, New Mexico, and Utah). Extensive samples collected across the four state region provided inputs for spatial modeling with each field point assigned an "old" versus "young" stand-age using a diagnostic field key previously developed (Table 3.1, Chapter 3). Sample points were associated with a suite of relevant topographic, edaphic, and climatic variables within a GIS, and the compiled regional dataset was used for model development. Selected models were implemented within a GIS and probabilities of "old" (versus "young") stands calculated for extant, Southern Rocky Mountain (SRM) and Colorado Plateau (CP), woodland communities recently mapped by the Southwest Regional Gap Analysis Project (SWReGAP). Map products depict color coded probabilities of stand-age and provide a visual means for assessing the relative magnitude and extent of woodland

expansion patterns across the Four Corners states. Models and map realizations developed using piece-wise linear regression procedures and the regional dataset were generally consistent with the results of previous modeling efforts using logistic regression and a more localized dataset (Chapter 3), when compared within the same north-central New Mexico extent. The regional models continue to predict a prevalence of "young", post-settlement expansion stands in productive, depositional settings, but also highlight an apparent relationship of expansion stands with summer seasonal (i.e. monsoonal) moisture patterns and the range of one-seed juniper. Modeling at more heterogeneous regional scales, with a greater variety of woodland types, and topographic, edaphic, and climatic settings, required the use of non-parametric procedures and more complicated, somewhat less interpretable, models in order to obtain acceptable levels of predictive accuracy. My model and map products can inform an understanding of woodland system dynamics by highlighting potential environmental controls of historic expansion (versus old or persistent) stands, while focusing management efforts on appropriate sites where treatments are most likely to achieve desired objectives.

Introduction

Southwestern US piñon-juniper woodlands are poorly understood and often underappreciated ecological systems which present significant challenges to both researchers and managers (Gottfried et. al., 1995; Tausch, 1999). Colorado piñon pine (Pinus edulis) and several associated species of non-sprouting juniper (One-seed, Juniperus
monosperma; Utah, J. osteosperma, and Rocky Mountain, J. scopulorum) are broadly distributed across the Four Corners states (i.e., Arizona, Colorado, New Mexico, and Utah) of the American southwest. The distributions of individual piñon and juniper species were mapped by Little (1971) and community level coverage of woodland types in the Four Corners states was developed by the Southwest Regional Gap Analysis Project (SWReGAP; Comer et. al., 2003, 2004; Lowry et. al., 2005). Differing interpretations of post-Euro-American settlement dynamics in these woodlands, particularly in the aftermath of widespread and sometimes indiscriminate type conversion of woodlands for forage production during the last century, has sparked considerable controversy and sometimes limited even appropriate management efforts designed to improve watershed, wildlife, and range conditions, or mitigate impending wildfire hazards. Old growth stands now embedded within homogenized woodland landscapes composed mostly of "younger" post-settlement stands are increasingly vulnerable to both crown fire and indiscriminate "restoration" (Romme et. al., 2003). A more complete discussion of woodland distribution, ecology, and disturbance dynamics within southwestern U.S. is provided in Chapters 2 and 3. Here I employ a modeling approach to characterize the relationship of woodland stand age with environmental setting by associating (pre- versus post-settlement) piñon-juniper stand-age with topographic, edaphic, and climatic factors considered relevant to woodland occurrence. Selected models can be used to generate predictive maps of presumed stand-age (i.e. young versus old) based on these relationships. The model and map products can increase an understanding of woodland systems by highlighting potential environmental controls of
historic expansion stand dynamics while focusing management efforts on appropriate sites where treatments are most likely to achieve desired objectives.

Increasing application of geospatial analysis, including predictive modeling techniques, to address ecological questions has been facilitated by enhancement of PC based (statistical and GIS) software, and availability of high resolution spatial datasets, allowing even field oriented biologists with little prior modeling experience to utilize these powerful tools (Franklin, 1995; Guisan and Zimmermann, 2000). However the complex interactions of (biotic and physical) process and structure, across different spatial and temporal scales, may not always be amenable to standard linear (i.e. parametric) models (Wagner and Fortin, 2005). This chapter represents an extension of earlier modeling efforts (Chapter 3) where I employed logistic regression procedures and which were conducted within a more localized and homogeneous north-central New Mexico extent. For regional scale efforts I elected to use a piece-wise linear (i.e. nonparametric) approach, Multivariate Adaptive Regression Splines (MARS) developed by Friedman (1991), to predictively model relationships between environmental factors and distribution of "old" (i.e., pre-settlement) woodlands versus "younger" stands of more recent (i.e., post-settlement origin) in a large and diverse regional study area defined by the range of Pinus edulis and associated juniper species within the Four Corners states of the southwestern U.S. Predictive models were developed using a regional database where sampled stands are assigned a pre- versus post-settlement age using a diagnostic key previously developed (Table 3.1, Chapter 3) and associated with a suite of environmental
parameters within a GIS. Map realizations of selected models present the predicted probability of "old" woodland using the SWReGAP woodland coverage as an analysis mask.

Several authors note that a sound ecological understanding of the system being modeled is as critical to credible model outputs as the particular statistical approach employed (Austin et. al., 2000; Wagner and Fortin, 2005), however, there are often real limitations to traditional parametric techniques in modeling natural systems across large spatial extents where threshold effects are likely. The logistic regression method previously used for modeling within a north-central New Mexico extent in Chapter 3 was easily implemented, parameters were interpretable ecologically, and predictive accuracy was high even with a relatively small training dataset. However, logistic procedures and global models could be expected to have less utility at larger regional extents where there is greater range and variability in environmental controls and even changes in the dominant woodland tree species. One approach would be to model a series of smaller, homogenous extents defined by woodland type and/ or ranges of important environmental parameters. For example, model extents could be constrained by the range of Southern Rocky Mountain (SRM) versus Colorado Plateau (CP) woodlands (as mapped by SWReGAP, or limited to areas having summer (versus winter) dominated moisture patterns. However, there are only a limited number of discrete extents which could be defined in this way, and while these may increase accuracy (by reducing variability) they can also limit the scope and applications of the resulting models. In
addition, there will likely always be additional confounding (known and measured, or unknown and/ or unmeasured) factors present within these smaller extents. In addition, interactions between explanatory variables may exhibit threshold or non-linear relationships and these effects may occur at any spatial scale. Given my previous experience with logistic modeling within the north-central New Mexico extent, and the apparent relationship of seasonal precipitation patterns to the ranges of one-seed and Utah juniper, I anticipated that global parametric modeling approaches would be insufficient to adequately model woodland patterns at regional scales. However the logistic approach is a still a useful starting point even for regional scale modeling because it can provide a useful baseline for subsequent modeling efforts as well as highlighting potentially important predictor variables. After a review of non-parametric modeling options, I elected to employ a piece-wise linear regression approach (i.e., MARS) that could accommodate local or asymmetric relationships among and between predictor and response variables (Muñoz, and Felicísimo, 2004). In particular, Leatherwick et al (2005) report that since MARS allows interactions between variables to be fit locally within specified sub-ranges of the variables, this method can effectively capture complex, nonlinear patterns while preserving model interpretability. Finally MARS model outputs can be easily implemented within a GIS for map realization.

Methods

I follow general methods detailed in Chapter 3 and only highlight notable additions or changes to those procedures. In particular, given the large geographic extent of my study
area, extensive sampling was necessarily more dispersed and sampling was predominantly conducted along public right-of-ways across a variety of public and private, state, federal, and tribal ownerships. In addition, at selected locations (where accessibility was constrained by either landownership or slope position) I had to evaluate stands remotely, assigning stand-age and topographic setting to projected geographic points where I was confident of both stand-age status and could readily identify the associated landform. I calibrated my diagnostic key (Table 3.1, Chapter 3) for use in different climatic zones, primarily by adjusting estimates for pre- versus post-settlement aged tree diameter thresholds on the basis of regional core data from piñon (Appendix A); some qualitative criteria such as lichen growth on dead wood were not reliable old growth indicators in strongly monsoonal areas. Additional potential environmental predictors were identified, developed and / or evaluated, while others previously used were modified or dropped. I also added variables for which I had only coarse scale coverage not suitable for modeling within smaller extents. Perhaps the most significant change in my regional scale efforts was the use of a non-parametric modeling technique which allowed for inclusion of more local and non-linear effects. In addition I elected to use the entire regional dataset for model development, using leave-one-out ($n-1$) crossvalidation (LOOCV), since my previous experience (Chapter 3) suggested LOOCV evaluation procedures can provide results comparable to the traditional split training / test dataset approach and allows all sample points to inform the final model. The outputs from the non-parametric model were subsequently refit using a logistic procedure and implemented within a GIS to realize map products as before.

To support modeling efforts I developed a regional dataset with 1129 observations (Appendix C) representing individual woodland stands (represented by Pinus edulis and three associated junipers (Juniperus osteosperma, J. monosperma, J. scopulorum) and mapped by SWReGAP as Southern Rocky Mountain (SRM) and Colorado Plateau (CP) savanna and woodland types) from across the Four Corners States (Figure 4.1) and assigned an "old" or "young" stand-age using the diagnostic key criteria. The distribution of "old" vs. "young" stands relative to potentially important environmental factors such as landform, depositional setting, and soil-geologic substrate are provided in Tables 4.1a,b. Intensive plot samples from three National Park Service units and extensive samples collected previously for modeling within the north-central New Mexico extent are included in the regional dataset.

The compiled regional dataset (Appendix C) samples a geographic extent encompassing the range of Pinus edulis within the Four Corners states (Figure 4.1) and includes the extensive dataset ($n=210$) developed for the north-central New Mexico study area. Fieldwork was conducted over the course of four field seasons from 2004 to 2007, but the majority of extensive samples for regional modeling were collected during the final two field seasons (2006-2007). Fieldwork during the initial two seasons (2004-2005) emphasized collection of intensive samples from woodlands within three southwestern U.S. national park units (Colorado National Monument, Mesa Verde National Park, and Bandelier National Monument) along a presumed seasonal moisture gradient. These
intensive data were used to facilitate development of a diagnostic key for assignment of pre- versus post-settlement stand-ages to extensive regional sample points collected subsequently. My use of the diagnostic key and qualitative criteria was calibrated for different climatic regions primarily through collection and dating of piñon tree cores from selected intensive and extensive sample locations. While the regional core data (Appendix A) were too limited to support development of diameter to age regressions for any specific locale, they were adequate to inform calibration of my diagnostic key at a sub-regional scale. For example, cores from the strongly monsoonal Lincoln County, NM area suggested extremely rapid rates of tree growth, while trees sampled in winter moisture dominated areas of northwestern CO, central AZ, and southeastern UT often displayed relatively slow growth. The effects of depositional environment on apparent tree age were most pronounced in areas with median monsoonal patterns such as northcentral NM. In bimodal and winter moisture areas depositional environments increasingly supported non-woodland (shrub and grass dominated) vegetation across abrupt ecotonal boundaries at lower elevations; however depositional settings in winter moisture areas can also support old growth woodland in some higher elevation, mesic settings.

General procedures for development of the explanatory variable spatial coverage are detailed in Chapter 3 and I discuss only notable differences in methods used for modeling at the regional extent. For regional scale modeling I developed a potential set of 25 explanatory variables for which I was able to procure or develop suitable spatial datasets. I used higher resolution PRISM climate data (400 m grid resolution) which recently
became available for modeling the regional extent, as compared with the $2-\mathrm{km}$ grid resolution PRISM climate data originally used for the north-central New Mexico study area in Chapter 3. In addition, a geologic-soils substrate coverage (SWSUBS) compiled from NRCS data by SWReGAP which was too coarse for use with the north-central New Mexico extent was found to be a useful explanatory variable at larger regional scales. I continued to use HILLSHADE (an index of slope-aspect relative to a fixed sun position) as a proxy for solar radiation in my current modeling efforts, although the most recent version of ArcGIS 9.2 (ESRI, 2005) now includes a utility for calculating insolation. However, I found development of an insolation dataset for the regional extent to be too computationally and time intensive, although it would be potentially useful to evaluate the statistical relationship of HILLSHADE to solar radiation. I added metrics of aspect, (ASPECT), curvature (CURVATURE) and plan profile (PRO_FILE) to the potential suite of predictors, including a categorical version of profile (PROFILE) where $1=$ concave profiles with values <0, and $0=$ convex profiles with values ≥ 0. ASPECT was a categorical metric (with 9 classes) condensed from a continuous (0 to 360 degree) aspect coverage. I also developed and evaluated various metrics of surface roughness or topographic breaks (calculated as the standard deviation and / or maximum range of elevation, slope, and/ or aspect values within the surrounding eight cell neighborhood) to be used a proxy for fine fuel continuity and fire propagation potential and therefore delineate fire safe sites. However, relatively poor performance of the surface roughness metrics during model selection (i.e. in their ability to explain a significant portion of variance) led me to drop these parameters during the evaluation stage. To facilitate
computational development of spatial coverage (and subsequent spatial analysis) within A GIS, the Four Corners state (regional) extent was functionally broken down into ten sub-extents as defined by the base DEM 30-m resolution digital elevation data (each subextent spans two degrees of latitude and six degrees longitude). For calculation of HILLSHADE I used the center point of each DEM area to estimate solar parameters, and the summer or winter solstice (@) 1300 hours) to represent HILLSHADE $_{\text {(maximum) }}$ and HILLSHADE (minimum), respectively.

Inherent positional error associated with GIS coverage and GPS locations required some post-processing of sample points. Prior to modeling, I verified that landform (FORM) and depositional environment (FLOW) coverage associated with each sample's GPS location corresponded to what had been observed in the field. To account for positional discrepancy an individual sample point was moved into the appropriate landform and/ or flow settings when it was immediately adjacent (i.e. $<100 \mathrm{~m}$ linear distance) to the recorded GPS location. Stand-age assignments made in the field were subsequently reviewed for consistent application of diagnostic criteria on basis of field data, associated notes, and photos. Values from each of the 25 data layers were extracted with the sample utility in ArcGIS 9.1 (ESRI, 2005) using the coordinates of 1129 sample points and subsequently exported to a excel spreadsheet.

A standard logistic program (SAS, 2005) was initially used to model the regional dataset using the same basic approach as detailed in Chapter 3 and a comparable set of potential
predictor variables. Logistic modeling and development of a global parametric model provided useful benchmarks for both predictive model accuracy and relative importance of explanatory variables at regional extents. Subsequently I employed a local, nonparametric approach to develop a regional model using a piece-wise linear regression procedure (i.e., MARS). I used the version of MARS developed and licensed by Salford Systems, San Diego, CA. When modeling a binomial response, MARS outputs need to be refit using a generalized linear model in order to constrain the range of values to those appropriate for a binomial response (Friedman, 1991); MARS outputs were refit using the SAS 9.1 (SAS, 2005) logistic procedure to impose a 0 to 1 probability range.

In order to gain confidence and expertise with the piece-wise linear approach and MARS software, I initially developed MARS models within the north-central New Mexico extent using the same dataset developed for logistic modeling in Chapter 3. My earlier logistic modeling efforts provided a sound foundation for understanding how MARS handled the same data and whether MARS outputs were equivalent or superior at detecting and predicting relevant landscape patterns with the available data. An untransformed MARS model is nearly equivalent to a linear model since each predictor can have only a single (global) slope. Allowing transformation of variables effectively enables MARS to partition individual variables into two or more segments or base functions (encompassing a discrete range of values for that variable), and assign each a different (local) slope. With the addition of interactions between and among variables (and variable segments or base functions) MARS can essentially model local effects
between discrete ranges of one or more variables. This is a very powerful and intuitive approach to modeling ecological systems where non-linear and threshold interactions between important environment factors are likely the norm and one could expect a flexible non-parametric model to be somewhat better at capturing these underlying complexities. Leatherwick et al $(2005 ; 2006)$ provide an excellent overview of the piecewise linear modeling approach including a tangible regional scale application of MARS using an R-code version of the software. The creation of base functions by MARS extends the development of potential explanatory metrics by partitioning out local effects and interactions while a subsequent pruning phase allows the final model to retain only the most important base function predictors.

Within MARS one can set various modeling parameters including: pool of available predictors (and whether continuous or categorical in nature), allowance for transformation of variables, permitting interactions between variables (and setting maximum levels), specification of allowable numbers of base functions, minimum number of observations between knots, speed and accuracy of modeling, and degrees of freedom charged per base function. In my modeling efforts I started with default program settings and those most comparable to a general linear model, then successively altered one or model parameters to assess its effect on the model building process. I initially built simple models directly comparable to logistic models using the smaller dataset from the north-central New Mexico extent and then progressed to more complex models by first allowing transformations and then successively higher orders of
interaction. Allowing higher levels of interaction required increasingly higher numbers of base functions, although final model selection involves a pruning process (best-models option) or the modeler can also manually select a lower performance model from a full range of model outputs (all-models option). I generally used the all-models option and selected models that combined the lowest number of base functions with the highest performance; this selection was facilitated by a line graph plotting number of base functions by model performance which highlighted the relative cost-benefit relationship.

Within SAS, MARS base functions are calculated from the raw predictor variables using the code output from the MARS modeling run and the logistic procedure implements the MARS model. In addition to having the individual probabilities adjusted for a binary response, the SAS logistic procedure also allows for the easy computation of leave-oneout, cross-validated (LOOCV) individual probabilities, and cross-validated area-under-the-curve (AUC) receiver operator characteristics (ROC) values for robust evaluation of model performance as described in Chapter 3.

MARS model outputs were refit using the logistic procedure in SAS 9.1 (SAS, 2005) which provided options for generating a range of model diagnostics including classification tables, and supports calculation of LOOCV individual probabilities and AUC ROC values for robust model evaluation. Given my prior experience (Chapter 3) showing comparable model performance based on LOOCV probabilities and LOO AUC ROC values for the full versus a split training / test dataset, I elected to use the entire
regional dataset (minus one point at a time) using the LOOCV approach to conduct and evaluate my regional modeling efforts. Logistic model parameter outputs (intercept and partial slopes for each basis function) were then used to implement the MARS model within ArcGIS 9.1 (ESRI, 2005) using the raster calculator utility. When implementing a MARS model in a GIS, a new raster corresponding to each basis function needs to be calculated; since some basis functions may represent second or third order interactions of explanatory variables and there is no requirement that all of interacting variables be retained as primary effects in the final model, the number of new rasters which need to be generated can exceed the number of basis functions. Degrees of freedom ($d f$) reported for MARS models refit using the logistic procedure are equivalent to the number of base functions included in the final model; the number of explanatory variables used (not including classes of categorical variables) is typically the same or fewer. Models with higher order interactions generally have a number of component base functions (i.e., which contributed to the development of the retained base functions) excluded from the final model. Computationally, implementation of complex MARS models within a GIS can be very intensive using a standard windows based computer platform, especially with large numbers of predictors and across broad spatial extents. Given limitations in computational resources, I elected to constrain implementation and map realization to MARS models with 16 or fewer base functions, although the basic procedure would be the same for implementing models of any complexity. Implementation of the final model including development of map products was accomplished at the sub-extent (i.e., individual DEM areas) scale with the final map products for the entire region
subsequently stitched together. The display of regional scale map products within a GIS (using nearest neighbor re-sampling) with component outputs compiled from the individual DEM sub-extents can result in a systematic shift of ca. 15-30m which is enough to bump individual points sitting close to edges, across mapped probability boundaries. A comparable issue addressed earlier is the inherent error in both the GPS locations (of sampled points) and or mismatch with associated environmental coverage in a GIS, both which can create problems for the correct classification of individual points. While these effects do not impact the mapped probability patterns, they make it appear that the mapped probability for selected points differs from the actual values calculated during modeling. Another potential source of predictive model error is the mismatch between the scale of field observations (i.e., of stand-age relative to local topo-edaphic patterns) and the resolution of available coverage for environmental variables within a GIS. For example, using coarse resolution DEM coverage, a fine scale rocky mosaic interspersed with depositional settings (which could in turn support a mosaic of "old" and "young") would not incorporate fine scale topographic influences or predict a mosaic of "old" and "young". However, higher resolution coverage is not always better since the most appropriate scales for modeling can vary by predictor or for interactions among different predictors.

Results

A series of MARS models of increasing accuracy and complexity were generated using the dataset $(n=210)$ previously prepared for logistic modeling in Chapter 3 within the
north-central New Mexico extent in (Table 4.2). A baseline MARS model was developed for direct comparison to the full logistic model by initially restricting model development to the same four predictor variables (FLOW, FORM, EWP, DEM) used previously and not allowing explanatory variables to be transformed (i.e., maintaining a global model) or interact. This baseline, untransformed MARS model (BASE MARS) provided comparable results to the full logistic model, using all 4 explanatory variables and with a LOO AUC ROC value of $c=0.938(d f=4)$; at a probability cutoff of 0.50 the model correctly assigned 90.0% of samples with a sensitivity of 93.8% and a specificity of 81.3%. The full logistic model (Full) had a LOO AUC ROC value of $c=0.932(d f=6)$ and correctly assigned 89.5% of samples at a 0.45 probability cutoff with a sensitivity of 93.2% and a specificity of 81.3%. A low-range MARS model (MARS LR) was developed by limiting potential explanatory variables to the same four used by the full logistic model, but now allowing both transformations and interactions. The MARS LR model showed a slightly improved performance over the BASE MARS model with a LOO AUC ROC value of $c=0.948(d f=3)$; at a probability cutoff of 0.44 the model correctly assigned 90.5% of samples with a sensitivity of 92.5% and a specificity of 85.9\%. Additional MARS modeling was conducted using a dataset with 12 potential predictors, representing the core set of explanatory variables previously used for logistic modeling of the north-central New Mexico extent in Chapter 3. A mid-range MARS model (MARS MR) using 9 explanatory variables provided a LOO AUC ROC value of c $=0.976(d f=8)$; at a probability cutoff of 0.62 the model correctly assigned 93.8% of samples with a sensitivity of 93.8% and specificity of 93.8%. A high-range MARS model
(MARS HR) generated to explore the upper limits of measured predictive success using the available explanatory variables, although likely at the expense of being over fit. The MARS HR model used 10 explanatory variables and provided a LOO AUC ROC values of $c=0.984(d f=12)$; at a probability cutoff of 0.50 the model correctly assigned 96.2% of samples with a sensitivity of 97.9% and a specificity of 92.2%.

A range of alternative regional models was developed using the entire regional dataset (n $=1129$) and beginning with a baseline (global parametric) logistic model and followed by a series of piece-wise linear (local, non-parametric) models with increasing accuracy, but typically at the expense of additional variables and complexity (Table 4.3a). The baseline logistic model (BASE LOGISTIC) used 13 explanatory variables and provided a LOO AUC ROC value of $c=0.876(d f=24)$; at a probability cutoff of 0.64 the model correctly assigned 80.8% of samples with a sensitivity of 81.0% and specificity of 80.3%. Similar to the logistic model developed for the north-central New Mexico area, the regional model selected metrics of landform (FORM), depositional environment (FLOW and PROFILE), elevation (DEM), seasonal precipitation (MONSOON, MAPS, MAPW), and seasonal temperature / sun exposure (TMEANS, TMEANW, HILLSHADE) as important explanatory variables for predicting "old" versus "young" stands, but also included soil-geologic substrate (a coarse resolution predictor which was not suitable for use within the smaller north-central New Mexico extent). A logistic (global) model was developed to provide a baseline for subsequent development of MARS (local) models (Table 4.3a) using the piece-wise linear regression procedure; the logistic model used 13
explanatory variables and provided a LOO AUC ROC of $c=0.876(d f=24)$; at a probability cutoff of 0.64 the model correctly assigned 80.8% of samples with a sensitivity of 81.0% and a specificity of 80.3%.

A low-end MARS model (MARS 001) using 5 explanatory variables provided a LOO AUC ROC value of $c=0.870(d f=5)$; at a probability cutoff of 0.66 the model correctly assigned 80.2% of samples with a sensitivity of 79.9% and specificity of 80.8% (Table 4.3a). An enhanced low-end MARS model (MARS 002) using 8 explanatory variables provided a LOO AUC ROC value of $c=0.886(d f=8)$; at a probability cutoff of 0.58 the model correctly assigned 84.2% of samples with a sensitivity of 86.4% and specificity of 80.3\%. A slightly more complex MARS model (MARS 003) using 8 explanatory variables and one additional base function provided a LOO AUC ROC value of $c=0.894$ $(d f=9)$; at a probability cutoff of 0.64 the model correctly assigned 84.2% of samples with a sensitivity of 86.4% and specificity of 80.3%. A mid-range MARS model (MARS 004) using 11 explanatory variables provided a LOO AUC ROC value of $c=0.903(d f=$ 12); at a probability cutoff of 0.58 the model correctly assigned 85.7% of samples with a sensitivity of 88.6% and specificity of 80.3%. An alternative mid-range MARS model (MARS REGION) selected for subsequent map realization used 12 explanatory variables provided a LOO AUC ROC value of $c=0.900(d f=13)$; at a probability cutoff of 0.60 the model correctly assigned 84.9% of samples with a sensitivity of 86.7% and specificity of 81.6%. A high-end MARS model (MARS 005) using 13 explanatory variables provided a LOO AUC ROC value of $c=0.919(d f=16)$; at a probability cutoff of 0.60
the model correctly assigned 85.9% of samples with a sensitivity of 88.1% and specificity of 82.1%. A max-end MARS model (MARS 006) generated primarily to illustrate the practical upper limits of measured predictive success using the available explanatory variables for this extent used 17 explanatory variables and provided a LOO AUC ROC of $c=0.932(d f=29)$; at a probability cutoff of 0.60 the model correctly assigned 86.7% of samples with a sensitivity of 88.2% and specificity of 84.0%.

Additional indicators of model performance were provided by comparison of P-values for individual model parameters (i.e., base functions) in the SAS logistic output (i.e., maximum likelihood estimates). Individual parameters for the selected regional model ($d f$ $=13)$ and models with fewer degrees of freedom had P -values within the range of $P<$ 0.0001, while individual parameters of all higher end regional models $(d f=14$ and higher) began to exceed that range and indicated inclusion of less significant terms in final models. Although more complex models often have higher measures of accuracy, implementation of these models in a GIS may sometimes produce uneven results when mapped across regional landscapes, and this is one of the rationales for giving preference to models with fewer and only highly significant terms. In addition, where models had generally comparable performance, I preferred those which were more either easily interpreted or that included the range of explanatory variables thought to be most influential (and ecologically relevant) based on prior logistic modeling efforts.

After a review of alternative regional models, including relative complexity and
performance, and consistency of map realizations with previous logistic model outputs for the north-central New Mexico extent, I selected one of the mid-range models (MARS REGION) for implementation within a GIS to produce map products for the Four Corner states (Figure 4.2). In addition to standard measures of model performance, visual map inspections along with evaluations of how individual sample points were scored by alternative models, proved to be an intuitive approach for interpreting model outcomes for known areas at local scales. I visually reviewed the regional distribution of misclassified points for the mid-range model relative to geographic location and woodland types. Subsequently, I calculated measures of spatial autocorrelation and spatial clustering for misclassified points within a GIS.

Misclassified points (including both false positive "young" misclassified as "old" and false negative "old" classified as "young") were found to be uniformly distributed across the entire region based on both visual examination (Figure 4.4) and spatial autocorrelation (Moran Value) / clustering diagnostics (General G value) where the z values are a measure of each measures significance. A Moran value near zero (Moran I value $=0.04, \mathrm{z}=1.0$ standard deviations) suggests that misclassified points are not spatially correlated (i.e. neither clustered nor dispersed). A general G index close to zero (General G index $=0, \mathrm{z}=0.9$ standard deviations) indicates no apparent clustering of misclassified points. From the perspective of woodland types, I found the false positive rate to be slightly higher (and specificity lower) for CP (versus SRM) woodland areas (Table 4.3b, Figure 4.1).

MARS REGION model map realizations for the north-central New Mexico (Figure 4.3a) and Bandelier National Monument, Tsankawi Unit (Figure 4.3b) extents are provided for higher resolution of detail. Comparison of the MARS REGION map output with several alternative MARS models for the same extents (BASE MARS and MARS 002) are presented in Figures 4.3b,c and 4.4b,c (Appendix 4.1), respectively, as well as to the full logistic model (FULL) developed in Chapter 3 (Figure 3.3a,b). I also present MARS REGION model map realizations for selected NPS units within the Four Corners states to provide examples of how a single regional model is implemented across a variety of topographic-edaphic-climatic settings (Figures 4.5a-h, Appendix 4.1).

Although woodland type (CP versus SRM) was a potential predictor, it was only included in a few of the more complicated MARS models. My point by point evaluation of the selected mid-range model (MARS REGION) suggested I might be able to improve predictive performance by splitting the regional dataset using woodland type and modeling each area separately. As noted earlier, this approach can improve accuracy but at the expense of limiting a model's scope and applicability. This effort yielded a slightly improved model (MARS SRM) for the SRM woodland area dataset $(n=552)$. The MARS SRM model used 11 explanatory variables and provided a LOO AUC ROC value of $c=0.931(d f=14)$; at a probability cutoff of 0.65 the model correctly assigned 87.1% of samples with a sensitivity of 87.1% and specificity of 87.6%. In contrast, the regional model (MARS REGION) continued to provide the best predictive outcomes for the CP
woodland area dataset ($n=577$); a specificity of 81.6% suggests misclassification of "young" stands in CP woodland areas was a weak spot for the regional model. Results of SRM versus CP woodland area modeling, with SRM woodland area outcomes shown for both the MARS REGION-SRM and MARS SRM models, and estimated performance for a hybrid model (MARS HYBRID) that combines MARS SRM model outcomes with regional model results for CP area (MARS REGION-CP) in comparison to MARS REGION are presented in Table 4.3b. Map implementation of the MARS SRM model for the north-central New Mexico and Tsankawi Unit extents are presented in Figures 4.3d and 4.4 d , respectively.

My results suggest areas of the southwestern U.S. with strong monsoonal (summer moisture) patterns were the most susceptible to historical woodland expansion. However, even in these locations many stands have pre-settlement origins and old-growth structure is not uncommon in appropriate upland settings. Observed woodland expansion is largely attributable to establishment of one-seed juniper into historically degraded grasslands in depositional valley and terrace settings. These results need to be interpreted in light of how I delineate "old" from "young" stands because although thickening and infill processes are apparently widespread most of these woodlands would necessarily have pre-settlement origins and be classified as "old". Where seasonal moisture patterns are weakly bimodal or winter-dominated, the occurrence of "young", post-settlement woodlands becomes correspondingly less frequent. In this bio-climatic zone, landform and (soil-water) depositional patterns increasingly delineate "old" or persistent woodland

Abstract

from non-woodland vegetation across relatively sharp ecotonal boundaries. "Younger", post-settlement woodlands appear to occupy a distinct ecological space from "older" or persistent woodlands and this result suggests historic grazing and associated effects (e.g. reduced herbaceous competition and fire effects) played a major role in facilitating historic woodland changes (i.e. expansion), as opposed to a natural demographic or migrational interpretation.

Discussion

Explanatory Predictors

A core group of explanatory predictors was selected by all of the alternative models, with simple, low-range models composed primarily of the core predictors, and more complex, mid-range models distinguished by the addition of one or more predictors to the core group. There was also a core group of base functions that was largely analogous to the core predictor group with the base functions representing discrete ranges of (and/ or interactions between) core variables. The methods section provides a more complete description of how explanatory variables used in regional modeling were developed. The core group of predictors and in general order of importance included: (1) FLOW (a categorical metric representing soil-water accumulation with two levels: $0=$ nondepositional or losing, and $1=$ depositional or gaining; (2) EPW (an index of effective winter moisture); (3) FORM (a categorical metric representing general landforms with six classes: $1=$ valley, $2=$ swale, $3=$ mesa, $4=$ terrace, $5=$ slope, and $6=$ cliff; and (4)

EPS (an index of effective summer moisture). Predictors selected to enhance the core group included: (5) DEM (30-m digital elevation model); (6) SWSUBS (a categorical metric representing general soil-geology types with 10 classes, not including water and unknown; (7) HILLSHADE $_{(\mathrm{x} \text { and m) }}$ (a surface metric calculated from DEM to represent relative insolation for $\operatorname{summer}_{(\mathrm{x})}$ and winter $_{(\mathrm{m})}$ seasons); (8) TMEAN $_{(\mathrm{x} \text { and } \mathrm{m})}$ (mean monthly temperatures for the June to September ${ }_{(\mathrm{x})}$ and ${\text { October to } \mathrm{May}_{(\mathrm{m})} \text { time periods; }}$ (9) $\operatorname{SLOPE}_{(30 \mathrm{~m} \text { and } 180 \mathrm{~m})}$ (a surface metric calculated from DEM representing slope perpendicular to contour in degrees was calculated at two scales using 30 m and 180 m DEM's); and (10) MAP (mean annual precipitation), MAPS (mean summer precipitation), MAPW (mean winter precipitation). Two additional metrics: (10) ASPECT (a categorical version of aspect in degrees calculated from DEM with 9 classes); and (11) MONSOON (a relative index of growing season moisture) were only included in the more complicated regional models (as well as by a model developed for the SRM woodland extent) because they were likely collinear with other effects like HILLSHADE, MAPS, and MAPW.

Jensen et al. (2001) suggest environmental variables considered for inclusion in a predictive vegetation model should be tested at various spatial scales, with the resolution of the mapped response ideally several times coarser than the variables used to predict it. The relative importance of individual explanatory variables, and the respective resolution of these data, can influence the minimum scale at which predicted responses can be meaningfully interpreted. Thus, minimum map units of predicted vegetation response
may need to be determined post-modeling, in combination with the resolution or scale of important predictors. Predictive modeling efforts are often limited by the available data and its resolution; however a sound ecological understanding of the system being modeled and appropriate matching of data and resolutions to the process or pattern of interest will generally enhance model performance and interpretability. Initial evaluation of available datasets and resolutions for representation and predictive modeling of ecosystem patterns and processes is best accomplished within small spatial extents within the larger area of interest. This approach also allows for construction and evaluation of potential proxies to represent poorly delineated spatial features and / or unmeasured parameters which might be important predictors, for example where these parameters influence soil-water accumulation or constrain propagation of a disturbance process.

Map Implementation

Implementation of selected MARS models in a GIS and generation of map products provided for visual inspection of model predictions at landscape scales. In addition to measures of model performance, it is instructive to evaluate map realizations to assess how the model predictions are implemented at landscape scales both in known or well sampled areas and in less known or poorly sampled settings. I initially evaluated my alternative regional model map outputs for the well sampled and previously modeled north-central New Mexico extent, and compared predicted patterns to those generated using the smaller north-central New Mexico dataset (using both logistic and MARS models). This provided us with a well known landscape context within which I could
critique and interpret alternative regional scale map predictions, ultimately selecting a few to implement across the entire regional extent. Each model attempts to provide a best fit of the training points to a predictive relationship given the various constraints imposed during model development, and each can be expected have varying levels of success as measured by model performance and inferred from visual map assessments. However, quantitative measures of model performance are not always a reliable indicator of how well map predictions will track actual landscape patterns, and I attribute this discrepancy to a combination of factors. Over fitting or increasing local model performance at the expense of global relationships can reduce the accuracy of map outputs when models are extrapolated beyond the range of conditions used to train the model (amplifying poorly characterized effects through the modeling and mapping process) or where the training dataset does not adequately represent the spatial extent and variability of modeled landscape settings. While even the best models can only represent a partial truth, even relatively simple and low performance models may provide useful insights. My low end models highlight the selection of core explanatory variables by all models, which are enhanced by additional variables and interactions in the increasingly complex and more accurate higher end models. However my mid to low-end models appear to provide the most realistic landscape scale patterns, to the degree that they correspond with my knowledge of woodland age structures within selected map areas.

While field validation of map products was beyond the scope of this study, visualization of map products color coded response class (i.e. "old versus "young") groupings to match
probability cutoffs found to maximize model performance and thus allowed for cursory assessment of map predictions across various extents. As MARS models become more complex in an attempt to fit a model to the data, they can degrade or swamp signals from the more basic environment controls important in the distribution of "old" versus "young" woodland. At some point then the models are over-fit and the idiosyncratic signals generated by fitting rare outliers or poorly sampled settings generate a model which has higher predictive performance, but produces map products which appear to deviate in notable ways from observed patterns. For example a mid- to high-range ($d f=$ 16) regional MARS model appears to erroneously over predict "young" woodland on north facing aspects with the north-central New Mexico area, an effect which is contrary to observed patterns (usually north aspects will support "older" woodland relative to south aspects) and given the complexity of the model, it is hard to interpret the source of this mapping artifact. In another instance, the model developed for the SRM woodland area $(d f=14)$ combines aspect with selected substrates, and predicts an increased probability of "young" woodland on east facing aspects with the likelihood increasing below $^{\text {slopes }_{(180)}}$ of 3.5 degrees; whether this is a real effect or artifact of the model would require field validation of predicted points. Preliminary efforts to split the regional dataset into training and test components as an alternative modeling approach to address some of these issues did not produce materially better results, and to the degree that sample size was a limiting factor in constructing a fully adequate model, supported my decision to employ the entire dataset in model development. Given this experience I have tended to be conservative in my selection of the best or optimal model, preferring the
lower end models with fewer and more basic explanatory variables despite lower measures of accuracy, and to place a greater reliance on visual inspection of map outputs in evaluating actual model performance. Given that the MARS outputs generated for the north-central New Mexico extent (using the smaller dataset originally created for logistic modeling of that extent) was comparable or better than the logistic model, my experience at the regional scale may be largely a sampling problem that could be remedied by enhanced sample numbers or targeted at under sampled environmental settings. However, I was able to improve results somewhat by modeling separately within the SRM woodland extent, while retaining the regional model outputs for CP woodland areas; this hybrid model provides a somewhat improved version of the final map product.

As noted in Chapter 3, the SWReGAP coverage generally mapped lower density, and often "younger" (<50 years) woodland, as non-woodland types. For example, in one portion of Wupaki National Monument shown (by SWReGAP) to have only a light scattering of woodland, I observed an expansive distribution of "younger" one-seed juniper, with scattered "older" stands, although this difference in part reflects my use of a lower threshold (i.e., 5% canopy cover) for delineating woodland from grass or shrub dominated types. SWReGAP also incorrectly mapped some lower elevation ponderosa pine or mixed conifer as woodland, and vice versa, while I observed some non-tree (i.e., grass and shrub) vegetation classified as woodland. Therefore, in some locations my estimated acreage of "younger", post-settlement aged woodland (using SWReGAP coverage as an analysis mask) may be under represented and conversely the acreage of
"older" woodland may be sometimes be over represented. Alternatively, in some locations (i.e., Colorado National Monument and Mesa Verde National Park in Colorado) the predictive maps show young woodland along secondary drainages in upland settings; in my experience these settings are mostly narrow non-woodland (shrub dominated) drainages or swales embedded in older growth woodlands and thus in this instance the analysis mask is highlighting settings with a potential (although often unrealized) to support young woodland. One option available for National Park Service units is to use the vegetation maps being developed for these units as a higher resolution analysis mask. In spite of these limitations, I found the SWReGAP vegetation coverage, along with the ancillary landform and soil-geologic substrate layers developed the same group, to be extremely valuable geospatial datasets and essential tools for conducting regional scale research within the southwestern U.S.

Conclusion

Regional scale modeling and predictive mapping results suggests there is an abundance of pre-settlement status woodland on the Colorado Plateau, where precipitation patterns are either winter dominated or lack strong seasonality. Conversely, occurrence of postsettlement status woodland is predicted to become increasingly frequent in rangeland areas of New Mexico and east-central Arizona, where they occupy lower gradient basin and valley landform settings, adjacent slopes and rolling hills, in locations characterized by summer precipitation patterns. The great majority of locations predicted to have "young" expansion stands occur in areas under monsoonal influence and within
distributional limits of one-seed juniper. Pre-settlement woodland within the monsoonal one-seed juniper area becomes increasingly restricted to a narrower range of upland settings, including steeper gradient landforms, with shallow rocky substrate, and/ or isolated or broken topographic settings, presumably reflecting locations which promote deeper water infiltration and/ or limit fire effects.

I utilize predictive modeling and mapping techniques to improve understanding and enhance management of southwestern U.S. piñon-juniper systems. In particular, the development of predictive maps depicting the probability of "old" or persistent woodland occurrence versus those locations more likely to support "younger" post-settlement stands could benefit land management efforts to restore former grass and shrub communities historically displaced by expanding tree cover. My regional scale models highlight environmental factors that were likely important controls of pre-settlement piñon-juniper woodland distribution and map products express these relationships as landscape patterns. Standard measures of model performance however need to be balanced with field reviews of how well mapped stand-age probabilities reproduce observed patterns. In well sampled areas map realizations can be used to visually evaluate model assumptions at landscape scales, including choice and weighting of individual predictors, adequacy of the training sample, and whether standard measures of predictive model accuracy are consistently reliable indicators of real world performance. Additional sampling of problematic locations, combined with the identification or acquisition of additional (and higher resolution) environmental control coverage, will likely improve
future model and map outputs. Regional models might also be improved by incorporating additional environmental factors of enhanced resolution, or factors currently unmeasured and otherwise unavailable in geospatial format. Even so, dynamic and diverse systems like piñon-juniper will defy modeling and mapping efforts beyond a certain level of accuracy and pushing predictive approaches beyond intrinsic limits could be self defeating. Regional map products should be used primarily to infer landscape patterns and environmental controls of woodland stand-age that can inform local perspectives and interpretations rather than as an absolute predictor for any particular hectare. My work highlights the potential of predictive modeling methods for researchers and land managers of piñon-juniper systems, but also suggests there are practical limits to this approach and its predictive products.

Literature Cited

Leathwick, J.R., J. Elith, and T. Hastie. 2006. Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modeling of species distributions. Ecological Modeling 199:188-196.

Leathwick, J.R., D. Rowe, J. Richardson, J. Elith, and T. Hastie. 2005. Using multivariate adaptive regression splines to predict the distributions of New Zealands's freshwater diadromous fish. Freshwater Biology 50:2034-2052.

Austin, M.P., E.M. Cawsey, B.L. Baker, M.M. Yialeoglou, D.L. Grice, and S.V. Briggs. 2000. Predicted vegetation cover in the Central Lachlan Region. Final report of the Natural Heritage Trust Project AA 1368.97. CSIRO Wildlife and Ecology, Canberra, Australia.

Comer, P.J., D. Faber-Langendoen, R. Evans, S. Gawler, C. Josse, G. Kittel, S. Menard, S. Pyne, M. Reid, K. Schulz, K. Snow, and J. Teague. 2003. Ecological systems of the United States: A working classification of U.S. terrestrial systems. Nature Serve, Arlington, Virginia, USA.

Comer, P.J., D. Faber-Langendoen, R. Evans, S. Gawler, C. Josse, G. Kittel, S. Menard, S. Pyne, M. Reid, K. Schulz, K. Snow, and J. Teague. 2004. Landcover descriptions for southwest regional gap analysis project. Nature Serve, Arlington, VA, USA.

Environmental Systems Research Institute Inc. 2005. ArcGIS 9.1 software. Redlands, CA, USA.

Franklin, J. 1995. Predictive vegetation mapping: geographic modeling of biospatial patterns in relation to environmental gradients. Progress Physical Geography. 19:474-499.

Friedman, J.H. 1991. Multivariate adaptive regression splines. Annals of Statistics 19:1-67.
Gottfried, G.J., T.J. Swetnam, C.D. Allen, J.L. Betancourt, and A.L. Chung-MacCoubrey. 1995. Piñon-Juniper Woodlands. Chapter 6. In: Finch, D.M. and Tainter, J.A., eds. Ecology, diversity and sustainability of the middle Rio Grande basin. USDA, Forest Service, GTR-RM-268, p. 95-132.

Guisan, A. and N.E. Zimmermann. 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135:147-186.

Jensen, M.E., J.P. Dibenedetto, J.A. Barber, C. Montagne, and P.S. Bourgeron. 2001. Spatial modeling of rangeland potential vegetation environments. Journal Range Management 54:528-536.

Little, E.L., Jr., 1971. Atlas of United States trees, conifers and important hardwoods: Volume 1. USDA, Forest Service, Misc. Pub. 1146.

Lowry, J.H., R.D. Ramsey, K. Boykin, D. Bradford, P. Comer, S. Falzarano, W. Kepner, J. Kirby, L. Langs, J. Prior-Magee, G. Manis, L. O’Brien, K. Pohs, W. Rieth, T. Sajwaj, S. Schrader, K.A. Thomas, D. Schrupp, K. Schulz, B. Thompson, C. Wallace, C. Velasquez, E. Waller, and B. Wolk. 2005. Southwest regional gap analysis project: final report on land cover mapping methods. RS / GIS Laboratory, College of Natural Resources, Utah State University, Logan, UT, USA.

Muñoz, J. and A.M. Felicísimo. 2004. Comparison of statistical methods commonly used in predictive modeling. Journal Vegetation Science 15:285-292.

Romme, W.H., M.L. Floyd, and D.D. Hanna. 2003. Ancient piñon-juniper forests of Mesa Verde and the West: a cautionary note for forest restoration programs. In: Omi, P. and Joyce, L.A., eds. Fire, Fuel Treatments, and Ecological Restoration: Conference Proceedings. USDA, Forest Service, RMRS-P-29, p. 335-350.

SAS Institute Inc. 2005. SAS 9.1 software. Cary, NC, USA.
Tausch, R.J. 1999. Transitions and thresholds: influences and implications for management in pinyon and juniper woodlands. In: Monsen, S.B. et. al., eds. Proceedings: ecology and management of pinyon-juniper communities within the interior west. USDA, Forest Service, GTR-RMRS-P-9, p. 361-365.

Wagner, H.H., and M.J. Fortin. 2005. Spatial analysis of landscapes: concepts and statistics. Ecology 86:1975-1987.
Table 4.1a. Frequency of sampled "old" versus "young" piñon-juniper woodland stands by landform (LANDFORM)
strata and depositional (FLOW) environment (losing versus gaining soil-water) within the Four Corners states.

Dataset / sample totals (\%)	Stand Age	LANDFORM (\#)				FLOW	
		Valley (1)	Mesa (2)	Terrace (3)	Slope (4)	0 (Losing)	1 (Gaining)
sample size							
Regional		Number of samples				Number of samples	
407 (36.0\%)	Young	47	114	214	32	216	191
722 (64.0\%)	Old	8	316	160	238	673	49
$n=1129$	Sub-Totals	55	430	374	270	889	240

Table 4.1b. Frequency of sampled "old" versus "young" piñon-juniper woodland stands by soil-geologic substrate.

Dataset / sample totals (\%) sample size	$\begin{aligned} & \text { Stand } \\ & \text { Age } \end{aligned}$	Soil-Geologic Substrate (Unit \#)									
		1	2	3	4	5	6	7	8	9	10
Regional											
407 (36.0\%)	Young	30	27	1	10	28	10	90	59	46	106
722 (64.0\%)	Old	44	54	6	11	143	17	95	78	80	194
$n=1129$		74	81	7	21	171	27	185	137	126	300

Table 4.2. Comparative performance of regional models developed for the north-central New Mexico extent; reported values are leave-one-out (LOO), cross-validated probability (XP), classification results ("old" = event) and LOO XP receiver operator characteristic (ROC), area under curve (AUC) values (c).

Table 4.3a. Comparative performance of regional models developed for the regional extent; reported values are leave-one-out (LOO), cross-validated probability (XP), classification results ("old" = event) and LOO XP receiver operator characteristic (ROC), area under curve (AUC) values (c).

Model		Observed		Correct		Incorrect		Percentages				
(prob. cutoff) ROC $c=$ value (df=degrees freedom)	Sample Size (n)	Old	Young	Old	Young	Old	Young	Total	Sensitivity (Old)	Specificity (Young)	False Positive	False Negative
$\begin{aligned} & \text { BASE LOGISTIC (} 0.64 \text {) } \\ & c=0.876 \quad(d f=24) \end{aligned}$	1129	722	407	585	327	80	137	80.8	81.0	80.3	12.0	29.5
$\begin{aligned} & \text { MARS } 001(0.66) \\ & c=0.870 \quad(d f=5) \end{aligned}$	1129	722	407	577	329	78	145	80.2	79.9	80.8	11.9	30.6
$\begin{aligned} & \text { MARS } 002(0.58) \\ & c=0.886 \quad(d f=8) \end{aligned}$	1129	722	407	624	327	80	98	84.2	86.4	80.3	11.4	23.1
$\begin{aligned} & \text { MARS } 003(0.64) \\ & c=0.894(d f=9) \end{aligned}$	1129	722	407	605	326	81	117	82.5	83.8	80.1	11.8	26.4
$\begin{aligned} & \text { MARS } 004(0.58) \\ & c=0.903(d f=12) \end{aligned}$	1129	722	407	640	327	80	82	85.7	88.6	80.3	11.1	20.0
$\begin{aligned} & \text { MARS REGION }(0.60) \\ & c=0.900(d f=13) \end{aligned}$	1129	722	407	626	332	75	96	84.9	86.7	81.6	10.7	22.4
$\begin{aligned} & \text { MARS } 005(0.60) \\ & c=0.919 \quad(d f=16) \end{aligned}$	1129	722	407	636	334	73	86	85.9	88.1	82.1	10.3	20.5
MARS 006 (0.60)												
$c=0.932(d f=29)$	1129	722	407	637	342	65	85	86.7	88.2	84.0	9.3	19.9

Table 4.3b. Comparative performance of sub-regional models developed for Southern Rocky Mountain and Colorado Plateau
woodland extents; reported values are leave-one-out (LOO), cross-validated probability (XP), classification results ("old" = event) and LOO XP receiver operator characteristic (ROC), area under curve (AUC) values (c).

Figures

Figure 4.1. Regional sample locations in relation to a generalized distribution of Colorado Plateau and southern Rocky Mountain piñon-juniper savanna and woodland communities recently mapped by SWReGAP within the Four Corners states.

Figure 4.2. Predictive map of "old" versus "young" (percent probability "old") piñonjuniper stands using the MARS REGION model for the Four Corners states.

Figure 4.3a. Predictive map of "old" versus "young" (percent probability "old") piñonjuniper stands using the MARS REGION model for the 2.9 million-ha north-central New Mexico study area. Figure 4.3 b is a close-up of Tsankawi Unit (see inset), Bandelier National Monument.

Figure 4.3b. Predictive map of "old" versus "young" (percent probability "old") piñonjuniper stands using the MARS REGION model for the (336 ha) Tsankawi Unit, Bandelier National Monument, New Mexico.

Figure 4.4. Misclassified points (including both false positive "young" misclassified as "old" and false negative "old" classified as "young") were found to be uniformly distributed on the basis of both visual examination (Figure 4.4) and spatial autocorrelation (Moran Value) / clustering diagnostics (General G value) where the z values are a measure of each measure's significance. A Moran value near zero (Moran I value $=0.04, z=1.0$ standard deviations) suggests that misclassified points are not spatially correlated (i.e. neither clustered nor dispersed). A general G index close to zero (General G index $=0, z=0.9$ standard deviations) indicates no apparent clustering of misclassified points.

Appendices

Appendix 4.1: Supplemental Figures (map realizations for selected NPS areas)
Figure 4.3b. Implementation of the BASE MARS model for a north-central New Mexico extent

Figure 4.3c. Implementation of the MARS 002 model for a north-central New Mexico extent

Figure 4.3d. Implementation of the MARS SRM model for a north-central New Mexico extent

Figure 4.4b. Implementation of the BASE MARS model for the Tsankawi Unit, Bandelier National Monument, New Mexico

Figure 4.4c. Implementation of the MARS 002 model for the Tsankawi Unit, Bandelier National Monument, New Mexico

Figure 4.4d. Implementation of the MARS SRM model for the Tsankawi Unit, Bandelier National Monument, New Mexico

Figure 4.5a. Implementation of the MARS REGION model for Colorado National Monument, Colorado and vicinity

Figure 4.5b. Implementation of the MARS REGION model for Mesa Verde National Park, Colorado and vicinity

Figure 4.5c. Implementation of the MARS REGION model for Canyon de Chelly National Monument, Arizona and vicinity

Figure 4.5d. Implementation of the MARS REGION model for Flagstaff, Arizona area parks (Wupaki, Sunset Crater, and Walnut Canyon National Monuments) and vicinity

Figure 4.5e. Implementation of the MARS REGION model for Natural Bridges National Monument, Utah and vicinity

Figure 4.5f. Implementation of the MARS REGION model for El Morro National Monument, New Mexico and vicinity

Figure 4.5g. Implementation of the MARS REGION model for Capulin Volcano National Monument, New Mexico and vicinity

Figure 4.5h. Implementation of the MARS REGION model for Salinas Pueblo Mission National Monument, New Mexico and vicinity

Chapter V

Synopsis of Dissertation Research and

Ecological Implications of Regional Scale Models:

Interpreting Patterns and Process in Southwestern U.S. Piñon-Juniper Systems

Synopsis of Work

A prospectus of the current study is outlined in Chapter One and was based largely on the original proposal for doctoral research developed in 2004. In Chapter Two, I present an overview of the current distribution of southwestern U.S. (i.e. Pinus edulis-Juniperus osteospermal J. monospermal J. scopulorum) woodland types and component species along with a discussion of landscape patterns, stand structures, and disturbance regimes commonly observed in extant communities. This chapter was developed initially for an invited presentation to the Society of American Foresters who conducted a workshop on piñon-juniper in 2006; subsequently I submitted a revised version for publication in the workshop proceedings (Jacobs, 2008). Chapter Two also discusses important ecological controls of current and past woodland distribution, in particular seasonal precipitation patterns, soil moisture, drought, insect, and fire induced mortality, as well as the potential direct and indirect effects of historic landuse (e.g. harvest and grazing). Extant woodland distributions and assumed environmental controls are used as a basis for interpreting observed and perceived changes in southwestern U.S. woodlands since Euro-American settlement (ca. 1850).

Historic changes in woodlands can be alternatively viewed as 1) natural stand demographics/ dynamics including: recovery from fire/ drought/ insect disturbances and ongoing Holocene climate induced migration versus 2) an anthropogenic facilitated response to historic grazing including: reductions in understory competition and/ or fire disturbance, and recovery from (pre-) historic harvest. The central question addressed by my study is whether pre- and post- settlement woodlands occupy the same ecological
space (supporting a natural demographic or climatic migration interpretation).
Alternatively, do "younger" post-settlement stands tend to occur in a discrete and separate range of habitats (i.e. from "older" woodlands), suggesting a relaxation of presettlement competitive and disturbance constraints which allowed woodland to colonize previously unavailable locations.

My research program first evaluated whether "older" pre-settlement woodlands could be reliably distinguished from "younger" post-settlement woodlands (ca. 1850) using a set of semi-quantitative and qualitative criteria as a prerequisite for planned modeling efforts. Using the intensive plot dataset I developed a diagnostic key to facilitate assignment of an "old" versus "young" stand-age to sampled stands. The key was tested using intensive plot data from Bandelier National Monument and then used to assign stand-age to sampled extensive stands within a north-central New Mexico study area. Subsequently, tree-age data collected from selected regional extensive plots was used to calibrate the key for use across the larger Four Corners states study area.

Sampling and modeling efforts were conducted initially within the north-central New Mexico study area and then extended across the larger regional extent. Sampled plots were assigned a pre- versus post-settlement stand-age and each sample point was associated with a suite of potential topographic, climatic, and edaphic parameters with a GIS. Modeling employed both parametric (i.e. logistic regression) and non-parametric (i.e. multivariate adaptive regression splines) techniques and was implemented at several extents ranging from north-central New Mexico to the entire Four Corners states. Chapter

Three (Jacobs et. al., 2008) presents the results of modeling efforts at the north-central New Mexico extent and using parametric methods only and was published in the October 2008 issue of Ecological Applications. Chapter Four includes results of modeling across multiple extents including north-central New Mexico, the respective ranges of one-seed versus Utah Juniper, and the entire Four Corners states region, and using both parametric and non-parametric techniques.

Key Findings

My findings suggest portions of the southwestern U.S. with strong monsoonal (summer moisture) patterns have been the most susceptible to historical woodland expansion. However, even here many stands still have pre-settlement origins and old-growth structure is not uncommon in appropriate upland settings. Observed patterns of woodland expansion can be largely attributed to establishment of one-seed juniper into historically degraded grasslands in depositional valley and terrace settings. Where seasonal moisture patterns are weakly bimodal or winter-dominated, the occurrence of "young", postsettlement woodlands becomes correspondingly less frequent. "Younger", postsettlement woodlands appear to occupy a distinct ecological space from "older" or persistent woodlands and this result suggests historic grazing practices and associated effects (e.g. reduced herbaceous competition and fire effects) likely played a major role in facilitating observed historic woodland changes (e.g.. expansion).

System Dynamics and Ecological Patterns

The current study is relevant to an understanding of how savanna-like structures (including ecotonal boundaries between tree and grass-shrub dominated patches) are created and maintained. In the case of southwestern U.S. woodland systems there appear to be several important factors regulating both internal stand structure and ecotonal boundaries. These include precipitation (both amount and seasonality) which in our area is strongly correlated with elevation such that structurally woodlands are commonly observed to range from open savanna-like structures at lower and more xeric settings to closed forest at the upper, mesic end. Soils are closely associated with topographic setting and often define the potential productivity of a site, as well influencing the possible vegetation types and structures which can occur. The available species pool and the unique morphologies and life histories of component species will create dynamic feedbacks that influence potential disturbance patterns. From a mechanistic standpoint, a one-seed juniper expansion into grasslands was likely facilitated by grazing which reduced herbaceous competition and disturbed soils, while potentially mitigating lethal fire effects. A comparable Utah juniper expansion pattern in contrast would have had to occur primarily into surrounding shrublands where grazing effects may have acted to increase shrub cover and enhance understory competitive interactions (i.e. with tree seedlings), while also increasing fire return intervals. Finally there is the temporal and spatial scale of vegetation and disturbance dynamics, which at any particular reference point may suggest stability while longer term or larger scale patterns often reveal the opposite; that is an ecotone or savanna structure may exist more as an intermediate phase in an ongoing dynamic process than as a static reality.

Woodland vegetation is dynamic and positive feedbacks can sometimes mitigate environmental or disturbance constraints. For example, once established woodland vegetation can persist even in strongly depositional settings, if trees effectively suppress understory cover and potential for surface fire or alter hydrologic and soil properties (Schlesinger and Pilmanis, 1998; West and Van Pelt, 1987). I suggest that if woodland can successfully establish onto deep soil sites during relatively moist periods, it may (in the absence of subsequent drought, insect, or fire related mortality) proceed to a closed canopy woodland and suppression of understory vegetation. Alternatively, prolonged droughts which limit deep water recharge during early stages of woodland establishment, or where woodlands have colonized settings with argillic horizons that inhibit infiltration and development of deep root systems, may intensify competitive interactions with established shrub and herbaceous cover (and result in tree mortality). Enhanced growing season moisture may also affect the qualitative appearance (of individual trees and stands), effectively shortening average lifespan, while enhancing decomposition rates and growth of lichens; cumulatively this can present a misleading picture of advanced age in some strongly monsoonal areas. My regional core samples (Appendix A) suggest rapid growth rates during early years in monsoonal climates (perhaps corresponding to favorable establishment windows) versus more uniform growth rates throughout the life of a tree in winter moisture areas. However, suppressed individuals growing under mature nurse trees can be expected to exhibit slow growth rates until released, even under monsoonal influence.

Within their distributional ranges, the local occurrence of piñon and juniper species is commonly interpreted to be a function of favorable edaphic and topographic settings, which provide both sufficient moisture (for establishment and long-term persistence), and protection from surface fire or competitive effects (mediated by understory components). Relaxation of these local controls on occurrence (e.g., fire disturbance and understory competition) through historic grazing practices during the last 150 years is thought to have facilitated expansion of piñon-juniper woodland elements into former grass and shrub dominated communities (Miller and Tausch, 2001). Many piñon-juniper woodlands have also become denser, but the proximal causes (e.g., interruption of surface fire and/ or reduction of understory competitive effects by domestic grazing pressure) typically offered for changes in stand structure are generally unsubstantiated. Moreover, convincing evidence for surface fire disturbance in many piñon-juniper woodlands is often lacking or anecdotal (Baker and Shinneman, 2004). However, surface fire was an important disturbance process in many adjacent grass, shrub, and pine savanna communities, and in this role effectively reinforced woodland boundaries. While some shrub communities likely had longer fire return intervals, these still would have been too short, and the associated fires too severe, for persistence of woodland (Baker, personal communication).

Properly interpreting the ecological role of fire as a disturbance process in southwestern woodlands then is a potentially important component of our understanding and management of these systems. Fire evidence is generally in the form of burned juniper (and occasionally piñon) stumps, logs, and snags (Gottfried et. al., 1995; Baker and

Shinneman, 2004; Floyd et. al., 2004, 2008). Piñon pine, Utah, one-seed, and Rocky Mountain juniper are extremely sensitive to fire effects, seldom scarring, and often killed by even moderate fire behavior. There are a number of possible factors (i.e., from thin bark, or susceptibility to disease after injury, flammability of the foliage, and inability to recover from loss of canopy) that might account for the sensitivity of these species to fire, but the net result of fire disturbance in most instances appears to be high mortality of all age and size classes within burned areas. Individuals that survive fire events may often have simply avoided lethal fire effects (by some combination of chance, discontinuous or insufficient fuels). Juniper remains (charred or not) can persist on most sites for hundreds of years, while piñon usually degrades much more rapidly (Kearns et. al., 2005). Fire scars, recorded by piñon and/ or juniper trees that survived a fire event are infrequent, and woodland trees recording multiple fire events are apparently rare (Baker and Shinneman, 2004). Even when present, scarred trees may sometimes be incidental to the predominant fire pattern, for example located at ecotones with high fire frequency systems like Ponderosa savanna, or reflective an extremely fine grained and patchy crown fire type behavior (Floyd et. al., 2008). However, the physical record available to interpret past fire events in woodlands might be misleading; low intensity surface fire might not scar or kill larger individuals and thus would leave little or no evidence, while more intense fires which scar surviving trees, or create patches and openings with burnt snags and stumps, and initiate pulsed recruitment of recognizable post-fire cohorts, would appear to be the only mode of fire disturbance.

Successional patterns following crown fire in woodland systems, where herbaceous and / or shrub stages are progressively re-colonized by woodland tree species can vary greatly depending on the nature of the fire (size and intensity which affect survivorship and seed source), climatic patterns, and understory response. Re-establishment of woodland onto burned sites can range from several decades to several hundred years or more, with type conversion to non-woodland in extreme cases (Floyd et. al., 2004). An extended grass-forb-shrub successional phase may be typical of some productive sites where a robust understory effectively limits woodland recruitment through some combination of competitive exclusion and frequent fire. Given this general pattern of lethal fire effects, climatic extremes (wet and dry) and associated bark beetle or disease induced mortality events, along with inter- and intra-specific competitive effects, thus may be more important than previously thought in controlling woodland stand structure (Eisenhart, 2004) through the combined effects of pulsed recruitment, self-thinning, and differential mortality.

Many pre-settlement aged woodland communities, lacking any apparent fire disturbance or for which the return intervals are so long that evidence of the last fire is not discernable, are then apparently structured by the cumulative effects of differential establishment and mortality patterns related to site conditions, time since last disturbance, drought, insect, disease and intra-/inter- competition. An absence of fire is relative to the time period a site has been occupied by woodland; for example, many expansive postsettlement aged woodlands are thought to have developed as a consequence of historic grazing practices, which simultaneously reduced herbaceous competition and surface
fuels (across a range of grass, shrub, and pine savanna types), promoting tree establishment while minimizing potential for fire effects lethal to woody plants. There are also many examples of "older", pre-settlement aged woodlands, with little to no fire evidence, that apparently do not require periodic fire disturbance to maintain structural or compositional integrity. Fire disturbance then occurred in some pre-settlement woodland systems, affecting structural and compositional attributes of these communities by creating a matrix of fine scale patches or larger openings and associated successional patterns. In many other pre-settlement status woodlands however, the apparent absence of, or long time interval between, fire disturbance events appears to pose no particular ecological crisis.

Management Implications

Woodland communities and their associated disturbance regimes, successional patterns, and suites of linked biotic organisms are a tangible ecological entity that researchers can study, the public can appreciate, and agencies can manage. My research highlights the underlying environmental controls which tend to promote occurrence and persistence of one or more woodland tree species in particular topo-edaphic-climatic settings, but climatic conditions and associated vegetation assemblages are, have been, and always will be a dynamic and (albeit slowly) moving target. Recent paleo-vegetation findings have highlighted the transient and even unique nature of modern plant assemblages relative to those recorded during prior interglacial periods (Betancourt, 1987). The dilemma for land managers is setting appropriate desired future conditions or target communities given this context and the overlay of historic and recent landuse effects. I
believe a flexible ecological framework is an essential perspective today given the problematic nature of reconstructing vegetation structure or system process at sufficient levels of resolution or determining whether these would in any event are still relevant for current or future management. Certainly a full understanding of a plant community can only benefit management, but I increasingly believe this information is most useful not for recreating past conditions, but for appreciating the alternative potentials of individual species and sites. A renewed emphasis should be placed on maintaining functionality of ecological systems (and services), within the general context of historical (structural and compositional) reference conditions. Moreover, I believe many disturbance patterns often associated with woodland systems should be strictly viewed as intrinsic or recurring properties linked to particular sites or plant communities, but as emergent phenomenon with a dynamic nature that are opportunistic in occurrence. What this means for management of woodland communities is the application of a more flexible approach, incorporating the ideas of site potential and potential natural vegetation, to enhance desired future condition targets based initially on historical reference conditions and thus facilitate appropriate treatments and successful outcomes.

Conclusion

This study provides a much needed regional context for interpreting pattern and process in southwestern U.S. piñon-juniper systems. The broad diversity of woodlands systems within the southwestern U.S. is highlighted while differentiating among the unique component species, ecological controls, woodland types, stand structures, landscape patterns, and disturbance regimes across a range of climate settings. I outline a clear
distinction between "young" expansion stands (i.e. those invading formerly nonwoodland vegetation types) versus infill or thickening processes within pre-existing woodland stands. My model and predictive map results illustrate that the majority of woodland expansion in the southwestern U.S. is spatially correlated with both the distribution of one-seed juniper and the summer monsoonal pattern. Conversely, my work predicts a predominance of "older" woodland in winter moisture dominated areas and by inference suggests that historic changes reported for those areas are perhaps driven more by thickening/ infill of pre-existing woodland-shrub mosaics as well as by natural demographics of stand development following recovery from (harvest, drought, insect, and/ or fire) disturbances. Ecotonal boundaries between "older" woodland, "younger" expansion stands, and grass or shrub-lands often appear blurred within monsoonal areas highlighting recent establishment dynamics. In contrast, winter moisture locations typically have well defined woodland ecotones (typically with shrublands) and "young" expansion stands are not commonly observed in productive valley and terrace settings.

Literature Cited

Baker, W.L. and D.J. Shinneman. 2004. Fire and restoration of pinyon-juniper woodlands in the western United States: a review. Forest Ecology and Management 189:1-21.

Betancourt, J.L. 1987. Paleoecology of pinyon-juniper woodlands. In: Everett, R.L. ed. Proceedings--pinyon-juniper conference. USDA, Forest Service, GTR-INT-215, p. 129139.

Eisenhart, K.S. 2004. Historic range of variability and stand development in piñon-juniper woodlands of western Colorado. Ph.D. dissertation, University of Colorado, Boulder, CO, USA.

Floyd, M.L., D.D. Hanna, and W.H. Romme. 2004. Historical and recent fire regimes in piñon-juniper woodlands on Mesa Verde, Colorado, USA. Forest Ecology and Management 198:269-289.

Floyd, M.L, W.H. Romme, D.D. Hanna, M. Winterowd, D. Hanna, and J. Spence. 2008. Fire history of piñon-juniper woodlands on Navajo Point, Glen Canyon National Recreation Area. Natural Areas Journal. 28:26-36.

Gottfried, G.J., T.J. Swetnam, C.D. Allen, J.L. Betancourt, and A.L. Chung-MacCoubrey. 1995. Piñon-Juniper Woodlands. Chapter 6. In: Finch, D.M. and Tainter, J.A., eds. Ecology, diversity and sustainability of the middle Rio Grande basin. USDA, Forest Service, GTR-RM-268, p. 95-132.

Jacobs, B.F. 2008. Southwestern U.S. Juniper and Piñon-Juniper Savanna and Woodland Communities: Ecological History and Natural Range of Variability. In: G. Gottfried, J. Shaw, and P.L. Ford, comps. Ecology, Management, and Restoration of Pinyon-Juniper and Ponderosa Pine Ecosystems: Combined Proceedings of the 2005 St. George, Utah and 2006 Albuquerque, New Mexico Workshops. RMRS-P-51, Fort Collins, CO.

Jacobs, B.F., W.H. Romme, and C.D. Allen. 2008. Mapping "old" versus "young" piñonjuniper stands with a predictive topo-climatic model in north-central New Mexico, USA. Ecological Applications 18:1627-1641.

Kearns, H. S. J., W.R. Jacobi, and D.W. Johnson. 2005. Persistence of pinyon pine snags and logs in Southwestern Colorado. Western Journal of Applied Forestry 20:247-252.

Miller, R.F. and R.J. Tausch. 2001. The role of fire in juniper and pinyon woodlands: a descriptive analysis. In: Galley et. al., eds. Proceedings of the invasive species workshop. Tall Timbers Research Station, Misc. Pub. No. 11. Tallahassee. FL, USA, p. 15-30.

Schlesinger, W.H. and A.M. Pilmanis. 1998. Plant-soil interactions in deserts.
Biogeochemistry 42:169-187
West, N.E. and N.S. Van Pelt. 1987. Successional patterns in pinyon-juniper woodlands. In: Everett, R.L. ed. Proceedings--pinyon-juniper conference. USDA, Forest Service, GTR-INT-215, p. 43-52.

Appendices

Regional Datasets and Computation Details of Metric Development

Appendix A. Regional core data used to calibrate diagnostic key

```
Key to Row Headers:
p\#_ = piñon core \# (sequential for each named site)
\(\mathrm{p} \#\) _dia \(=\) measured piñon tree diameter at core height ( \(\sim 30 \mathrm{~cm}\) above base)
p\#_ring = ring count of piñon core
\(\mathrm{p} \#\) _xdate \(=\) cross-dated pith date (unadjusted for height above ground)
\(\mathrm{p} \#\) _age \(=\) cross-dated tree age (calculated as sample date minus pith date)
na \(=\) unable to cross-date
```

Spreadsheet Notes: An excel spreadsheet with the cross-dates for regional piñon samples (including the $3+$ oldest trees cored from the intensive plot stands) which were ring-counted and cross-dated. Ring counts were generally conservative and underestimated actual age, with the discrepancy increasing with tree age. At Bandelier, ring-counts underestimated cross-dated ages by an average 34 years (and regression developed using ring counts similarly under estimate cross-dated age by an average of 35 years). However, ring-counts for younger trees (<150 years) are generally within 15 years or less of the cross-dated age. Cross-dating was an attempt to validate correlations of ring-count with diameter and used to provide an estimate of a pre- versus post-settlement stand age (in combination with the qualitative criteria). Based on these data, trees classified as "old" on the basis of ring-counts were almost never found to be younger on the basis of cross-dating. As noted the discrepancy with younger, post-settlement trees (i.e. such as in Lincoln County and at Mesa Verde) was incrementally smaller, and was generally insufficient to warrant switching stand age assignments based on ring-counts (i.e. most stands assigned "young" on basis of ring-counts were still young using cross-dated ages).

p1_dia	p1_ring	p1_xdate	p1_age	p2_dia	p2_ring	p2_xdate	p2_age	p3_dia	p3_ring	p3_xdate	p3_age	p4_dia	p4_ring	p4_xdate	p4_age
41	310	1680	325	48	380		na	53.5	460		na	46	380	1602	403
38.5	255	1734	271	40	200	1785	220	47	520		na	30	170	1810	195
28	170	1820	185	23	280		na	29	300	1660	345	33	250		na
37	315		na	52	390	1580	425	29	170	1825	180	29.5	165	1825	180
50	270	1710	295	43	285	1698	307	48	360	1645	360	49	235	1762	243
71.5	368	1610	395				na				na				na
31.5	295		na	40	380		na	24.5	190	1780	225				na
47	300	1693	312				na				na				na
43	250	1743	262	40	350	1620	385	56	252	1715	290				na

Appendix B. Computation details of metric development including selected raster calculator code for implementation within a GIS

Computational Overview of Metric Development

Topographic Metrics

1) procure gridded Digital Elevation Model (DEM) for study area from USGS-EROS
2) project to Albers Equal Area Conic, NAD 83
3) calculate [slope] (in degrees) using standard ArcGIS utility
4) calculate seasonal (summer and winter) hillshade values using standard ArcGIS utility (using sun altitude-angle parameters for June 21 and December 21 at 1300 hours at specified locations)
5) calculate flow direction and flow accumulation using standard ArcGIS utility

Climate Metrics

1) procure gridded climate data study area from PRISM (or Climate Source)
2) project to Albers Equal Area Conic, NAD 83
3) calculate index of seasonal moisture
(June to September and October to May totals as percent of annual)
4) calculate absolute index of seasonal temperature (adding a constant to ensure only positive values) (June to September and October to May averages divided by annual mean)
5) calculate summer precipitation (June to September total)
6) calculate winter precipitation: (October to May total)

SWReGAP Metrics

1) procure land cover, land form, soil-geology, and ancillary datasets from SWReGAP
2) reclass land cover and retain woodland coverage
3) reclass woodland coverage to create a generic woodland analysis mask
4) convert soil-geology coverage from shape file to raster

Topo-climatic Metrics

1) calculate seasonal indices of potential evapo-transpiration (pet) where: natural log of (summer or winter) seasonal hillshade (plus a small constant to reduce influence of low values) is multiplied times corresponding (winter or summer) absolute seasonal temperature
2) reclass flow accumulation to [FLOW] (using flow accumulation thresholds by land form)
3) calculate index of effective summer moisture (summer precipitation / summer pet)
4) calculate index of effective winter moisture (winter precipitation/winter pet)
5) reclass land form to $[F O R M]$ using slope and flow accumulation thresholds

Selected Raster Calculator Code

Metric Development

Code for calculating Form and Flow Metrics

$[$ FORM\#\#] $=$ con $(([$ form_6] $==1) \&([$ slope\#\# $]<=1), 1, \operatorname{con}(([$ form_6] $==1|2| 5) \&([$ slope\#\#] $<3) \&$ ([flowacc\#\#] <4), 4, con $(([$ form_6] $==1|2| 5) \&([$ slope\#\#] $>=3) \&([$ slope\#\#] $<10) \&([$ flowacc\#\#] $<$ $4), 3$, con $(([$ slope $\# \#]<3) \&([$ form_6] $=2 \mid[$ form_6] $=5), 1$, con $(([$ slope $\# \#]<3) \&([$ form 6$]==3 \mid$ $[$ form_6] >5), 4, con $([$ slope\#\#] >= 3$) \&([$ slope $\# \#]<10) \&([$ form_6] $==1 \mid[$ form_6] $==5), 2$, $\operatorname{con}(([$ slope\#\#] $>=3) \&([$ slope $\# \#]<10) \&([$ form_6] $==4 \mid[$ form_ $\overline{6}]>5), 3, \operatorname{con}(([$ slope\#\#] $>=10) \&$ ([slope\#\#] < 35), 5, con([slope\#\#] $>=35,6,[$ form_6]))))))))))
$[F L O W \# \#]=\operatorname{con}([$ form $\# \#]==1,1, \operatorname{con}([$ form $\# \#]==2,1, \operatorname{con}(([$ form $\# \#]==3) \&([$ flowacc $\# \#]>=6), 1$, $\operatorname{con}(([$ form $\# \#]=4) \&([$ flowacc $\# \#]>=4), 1, \operatorname{con}(([$ form $\# \#]==5) \&([$ flowacc $\# \#]>25), 1, \operatorname{con}(([$ form $\# \#]$ $==6) \&([$ flowacc\#\#] $>50), 1,0))))))$

Implementing Logistic Model

Code for Implementing Logistic Procedure for north-central New Mexico Model
$[P R O B \# \#]=\operatorname{con}([$ form\#\# $]==3,(-29.4817+0.0681+(63.0920 *[$ ewp\#\#] $)+(0.00891 *[$ dem\#\#] $)+$ $\operatorname{con}([$ flow\#\#] $=1,-2.9618,2.9618)), \operatorname{con}([$ form\#\#] $=4,(-29.4817+(-1.2266)+(63.0920 *[$ ewp\#\#] $)+$ $(0.00891 *[\operatorname{dem} \# \#])+\operatorname{con}([$ flow\#\#] $==1,-2.9618,2.9618)), \operatorname{con}([$ form \#\#] $=1,(-29.4817+(-0.9161)+$ $(63.0920 *[\operatorname{ewp} \# \#])+(0.00891 *[$ dem\#\#] $)+\operatorname{con}([$ flow\#\#] $==1,-2.9618,2.9618)), \operatorname{con}([$ form $\# \#]=5,(-$ $29.4817+2.0746+(63.0920 *[\operatorname{ewp} \# \#])+(0.00891 *[\operatorname{dem} \# \#])+\operatorname{con}([$ flow\#\# $]==1,-2.9618,2.9618))))))$
$[P R E D \# \#]=\exp ([\operatorname{prob} \# \#]) /(1+\exp ([\operatorname{prob} \# \#]))$

Implementing MARS Model

Code for Calculating Base Functions [BF\#\#] from discrete ranges of metrics

```
[BF1] = con([flow61] == 0, 1,0)
[BF4] = max(((2.30374-[ep61w])*[BF1]),0)
[BF5] = con([form61] == 1 | 2|4,1,0)
[BF7] = max(([ep61s] - 0.95113),0)
[BF8] = max((0.95113-[ep61s]),0)
[BF11] = max(([hillsh61x] -241.00000),0)
[BF20] = max((([slope_180]-1.78770) *[BF4]), 0)
[BF24] = max((([dem61]-1837.89502) *[BF4]), 0)
[BF26] = max((([tmean_w] - 67.68750)* [BF11]),0)
[BF31] = max(((9.71694-[slope61]) * [BF1]),0)
[BF32] = con([swsubs] ==2 2 3|5,1,0)*[BF31]
[BF36] = max((([ppt14_400]-373.00000) *[BF31]),0)
[BF38] = max((([ep61s] - 0.78044) *[BF31]),0)
[BF73] = max(((2075.54004-[dem61])*[BF7]), 0)
[BF74] = max((([tmean_s] - 197.37500) * [BF73]),0)
[BF75] = max(((197.37500-[tmean_s]) * [BF73]),0)
[BF77] = max(((6.63575 - [ppt14_400]) *[BF73]),0)
```


Code Implementing MARS Procedure for Regional Model

```
[PROB_Region##] = (-1.1658) +(3.5408*[BF1]) +(-7.1398*[BF4]) +(-1.5029*[BF5])+(4.4180*
[BF8]) + (0.4113 * [BF20]) + (0.0269 * [BF24]) + (0.0509 * [BF26]) + (0.2574 * [BF32]) + (0.00638 *
[BF36]) +(-0.8111*[BF38]) + (-0.00492*[BF74]) + (-0.00284*[BF75]) + (0.000505 * [BF77])
[PRED_Region##]= exp([prob_region##]])/ (1+\operatorname{exp}([prob_region##]]))
```


Key to Row Headers:

AGE $=$ field assigned stand age using diagnostic key
PROB = leave-one-out, cross-validated, predicted individual probability of "old"
$\mathrm{X}=\mathrm{x}$ coordinate (Albers Equal Area Conic, NAD83)
$\mathrm{Y}=\mathrm{y}$ coordinate (Albers Equal Area Conic, NAD83)
DEM $=30 \mathrm{~m}$ cell value from digital elevation model
WOOD = SWReGAP woodland type ($1=$ SRM; $2=\mathrm{CP}$)
FLOW = categorized flow accumulation ($0=$ non-depositional, $1=$ depositional)
TMEANS = mean summer temperature (June-September monthly mean)
TMEANW = mean winter temperature (October-May monthly mean)
SWSUBS = soil-geology type (see Table 4.1b for details)
SLOPE180 $=$ slope in degrees calculated from a 180 m DEM
SLOPE $=$ slope in degrees calculated from a 30 m DEM
HILLM = winter hillshade (calculated for 1300 hours on December 21)
HILLX = summer hillshade (calculated for 1300 hours on June 21)
ASPECT $=$ aspect represented by 9 classes including $0=$ flat (i.e. no aspect)
MONSOON $=$ June-September precipitation/ mean annual total
EPS = effective summer moisture
EPW = effective winter moisture
MAP = mean annual precipitation
MAPS $=$ mean summer precipitation (June-September)
MAPW = mean winter precipitation (October-May)
PETS $=$ summer index of potential evapo-transpiration
PETW = winter index of potential evapo-transpiration
FLOWACC = flow accumulation
CURVE = curvature (based on 30 m DEM)
PROFILE = plan profile (based on 30m DEM)
PROCAT $=$ categorized profile ($0=$ profile $<0 ; 1=$ profile ≥ 0)
See: Chapter 3 methods and Appendix B for metric computational details
皆

劵

 $\hat{8}$
8
8
\qquad

 $\stackrel{m}{\infty}$
$\stackrel{\infty}{\infty}$
\vdots
$\stackrel{n}{n}$
$\stackrel{n}{n}$

n
$\stackrel{n}{n}$
$\underset{\sim}{n}$

品
品

SLOPE

漡

SITE

w

苞

$000000-000-000-0-0-00000000000-00000$
完

∞
0
0
0
0

1
0
0
0
0

 8
8
8

 $\begin{array}{lll}-928397.43 & 1452827.51 & 1752.51\end{array}$ $\begin{array}{llll}-928234.80 & 1454518.22 & 1755.49\end{array}$ $\stackrel{\infty}{\infty}$ $\begin{array}{llll}-929940.38 & 1457527.70 & 2092.56\end{array}$

 $-922210.21 \quad 1454464.11 \quad 1686.75$
 $\begin{array}{llll}-922537.47 & 1455266.30 & 1696.39\end{array}$

 $\begin{array}{lll}-922064.51 & 1456010.27 & 1757.26\end{array}$ | -921606.68 | 1457523.60 | 1861.67 |
| :--- | :--- | :--- | :--- | $\begin{array}{lll}-921944.21 & 1456353.05 & 1748.05\end{array}$

 $\begin{array}{llll}-905939.54 & 1473263.99 & 1679.40\end{array}$

 -973308.50 1494678.30

 긍 긍 킁 믕 3 $\frac{7}{6} 0$ 3 픙 믕 \square 3
\qquad

易

$\hat{8}$
8
8

n
$\stackrel{1}{6}$
$\stackrel{1}{6}$

苞

들

$\underset{i}{2}$

$\hat{8}$
8
8

品

芳

-

O
品

SITE

Site
Lincoln319
Lincoln319a
Lincoln319b
LincoIn320a
Lincoln320b
Lincoln320c
Lincoln320d
Lincoln321
Lincoln321a
Lincoln321b
Lincoln321c
Lincoln321d
Lincoln322
Lincoln322a
Lincoln323a
Lincoln323b
Lincoln324
Lincoln324a
Lincoln324b
Lincoln324c
Lincoln324d
Lincoln325
Lincoln325a
Lincoln325b
Lincoln326a
Lincoln326b
Lincoln326c
Lincoln326d
Lincoln326e
Lincoln326f
Lincoln326g
Lincoln327a
Lincoln327b
Lincoln327d
Lincoln327e

 $\hat{6}$
0
8

6
6
6
6

曾

\section*{} | Site |
| :--- |
| Lincoln340b |
| Lincoln340c |
| Lincoln341a |
| Lincoln341b |
| Lincoln342 |
| Lincoln342a |
| Lincoln342b |
| Lincoln342c |
| Lincoln342d |
| Lincoln343 |
| Lincoln343a |
| Lincoln343b |
| Lincoln344a |
| Lincoln344b |
| Lincoln344c |
| Lincoln344d |
| Lincoln345 |
| Lincoln345a |
| Lincoln345b |
| Lincoln345c |
| Lincoln346 |
| Lincoln346a |
| Lincoln346b |
| Lincoln346c |
| Lincoln347 |
| Lincoln347a |
| Lincoln347b |
| Lincoln347c |
| Lincoln347d |
| Lincoln347e |
| Lincoln348a |
| Lincoln348b |
| Lincoln348c |
| Lincoln348d |
| Lincoln348e |
| Lincoln348f |

葡
 \sum_{i}

$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$

SITE

Manzano221b Manzano221c Manzano221d Manzano221e Manzano222 N Manzano222b Manzano222c Manzano222d McCoy皆 mevel さ O meve5 율 ） meve8 $\sum_{i}^{\infty} \sum_{i}^{\infty}$ $\sum_{=}^{0}$ \sum_{i}^{0} neNM01d neNM01e \sum_{i}^{4} \sum_{0}^{e} $\stackrel{=}{\bar{E}}$ \sum_{i}^{N} \sum_{i}^{N} 슬 \sum_{i}^{∞} $\stackrel{N}{i}$ \sum_{i}^{0} \sum_{i}^{N} neNM03d

易

易

SITE
neNM12b
neNM13
neNM13a
neNM13b
neNM14
neNM14a
neNM15
neNM16
neNM17
neNM17a
neNM17b
neNM18a
neNM19
neNM19a
neNM20
neNM20a
neNM21
neNM21a
neNM22a
neNM23a
neNM24
neNM24a
neNM24b
neNM25
neNM25a
neNM25b
neNM25c
neNM25d
neNM26a
neNM26b
neNM27a
neNM27b
neNM28a
neNM28b
neNM28c
neNM29a

合

$\hat{\delta}$
$\stackrel{\circ}{8}$

\sum_{i}

SITE
NM_AZ371b
NM_AZ371c
NM_AZ372
NM_AZ372a
NM_AZ372b
NM_AZ373
NM_AZ373a
NM_AZ373b
NM_AZ373c
NM_AZ373d
NM_AZ374
NM_AZ374a
NM_AZ374b
NM_AZ374c
NM_AZ374d
NM_AZ375
NM_AZ375a
NM_AZ375b
NM_AZ376
NM_AZ376a
NM_AZ376b
NM_AZ377
NM_AZ377a
NM_AZ377b
NM_AZ378
NM_AZ378a
NM_AZ378b
NM_AZ379
NM_AZ379a
NM_AZ379b
NM_AZ379c
NM_AZ380
NM_AZ380a
NM_AZ381
NM_AZ381a
NM_AZ382

易

SITE
NM_AZ405a
NM_AZ406
NM_AZ406a
NM_AZ407
NM_AZ407a
NM_AZ407b
NM_AZ408
NM_AZ409a
NM_AZ410
NM_AZ411
NM_AZ412
NM_AZ413a
NM_AZ413b
NM_AZ414
NM_AZ415
NM_AZ415a
NM_AZ416
NM_AZ416a
NM_AZ417a
NM_AZ418a
NM_AZ418b
NM_AZ419
NM_AZ420
NM_AZ421
NM_AZ422
NM_AZ422a
NM_AZ423
NM_AZ423a
NM_AZ424
NM_AZ425
NM_AZ425a
NM_AZ426a
NM_AZ427
NM_AZ427a
NM_AZ428
NM_AZ428a
NB

芴

\star

 8
8
3

SITE

 8
8
8浯 8

$\stackrel{3}{4}$
$\stackrel{y}{n}$

\pm	
∞	
$\underset{\sim}{\infty}$	$\stackrel{N}{n}$
$\underset{\sim}{n}$	

 N | Co |
| :--- |
| 0 |
| 0 |
| 0 | 스수N永 윷 $\stackrel{\sim}{\sim}$

 \bar{o}
$\stackrel{\infty}{\mathrm{~N}}$

 둑

 $\stackrel{\sim}{\infty}$
∞
∞
∞
∞
∞ 1861926.87
1782046.10
 \bar{N}
N
N
O

 \pm
I
İ
$\underset{\sim}{n}$ n
n
n
n
n

 N $\stackrel{\sim}{2}$ $\stackrel{\circ}{\stackrel{\circ}{*}}$

-3
∞

 8
$\underset{\sim}{8}$
$\stackrel{y}{n}$
$\underset{\sim}{n}$

 wood

突

 0
0
0
0

PROB	\mathbf{X}	\mathbf{Y}	DEM
0.89	-1216239.36	1701320.52	2025.26
0.90	-1216727.88	1701053.64	2012.66
0.97	-1216827.13	1701092.65	2008.70
0.58	-1223621.91	1706177.73	1844.58
0.92	-1223183.59	1706155.82	1853.57
0.98	-1223859.96	1706055.16	1926.18
0.98	-1224419.57	1705886.07	2082.06
0.41	-1231316.08	1717082.82	1673.05
0.56	-1231469.92	1717086.32	1671.76
0.43	-1231931.46	1715757.66	1651.57
0.63	-1231802.09	1715866.05	1657.44
0.99	-1231176.22	1716159.75	1639.39
0.97	-1231242.65	1716065.35	1665.28
0.74	-1231330.06	1716019.89	1667.03
0.72	-1234407.13	1716533.83	1627.60
0.98	-1234309.99	1716474.06	1636.25
0.99	-1234466.91	1716384.39	1665.50
0.73	-1233899.02	1716645.92	1623.65
0.40	-1233981.22	1716593.61	1625.99
0.46	-1233293.78	1717916.19	1636.57
0.47	-1233435.75	1717856.41	1635.14
0.89	-1234377.24	1716959.75	1604.85
0.75	-1234474.38	1716870.08	1602.97
0.88	-1233630.03	1717348.30	1617.89
0.76	-1233786.94	1717318.41	1605.77
0.92	-1238757.37	1722604.07	1488.32
0.96	-1238787.91	1722447.84	1505.90
0.53	-1238763.68	1722676.35	1485.47
0.49	-1238870.14	1722668.90	1487.08
0.81	-1238864.64	1722610.17	1490.06
0.64	-1242337.73	1729785.68	1453.49
0.96	-1242116.85	1729845.92	1448.62
0.70	-1320814.04	1805227.31	1868.83
0.73	-1320850.93	1805166.71	1869.75
0.91	-1320484.69	1805480.25	1891.01
0.98	-1327460.20	1798773.54	2109.30

家

 wood

of
0
0

0
0^{0}
0

잉 웅 잉 | O |
| :--- |
| $\underset{\alpha}{\alpha}$ |

PROCAT
1

 ※ֻ至

SITE

PROCAT

K F foo

是

 HILL

 HILL18

SITE

PROCAT

SITE
CACH_ELMA229
CACH_ELMA230
CACH_ELMA230a
CACH_ELMA231
CACH_ELMA231a
CACH_ELMA232
CACH_ELMA232a
CACH_ELMA233
CACH_ELMA233a
CACH_ELMA234
CACH_ELMA234a
CACH_ELMA234b
CACH_ELMA235a
CACH_ELMA235b
CACH_ELMA236
CACH_ELMA236a
CACH_ELMA237
CACH_ELMA237a
CACH_ELMA238
CACH_ELMA238a
CACH_ELMA238b
CACH_ELMA239a
CACH_ELMA239b
CACH_ELMA239c
CACH_ELMA239d
CACH_ELMA240
CACH_ELMA243
CACH_ELMA240a
CACH_ELMA242
CACH_ELMA241
CACH_ELMA241a
CACH_ELMA241b
CACH_ELMA241c
CACH_ELMA241d
CACHA

 $\underset{\sim}{\infty} \underset{\sim}{\infty} 畐

皆

0
3

言

 E

SITE

Chupaderos 130
Chupaderos130a
Chupaderos131A

Jemez157
上

是

\section*{| Site |
| :--- |
| Jemez158 |
| Lincoln306a |
| Lincoln307 |
| Lincoln307a |
| Lincoln308a |
| Lincoln308b |
| Lincoln309a |
| Lincoln309b |
| Lincoln309c |
| Lincoln310 |
| Lincoln310a |
| Lincoln310b |
| Lincoln311 |
| Lincoln311a |
| Lincoln311b |
| Lincoln312 |
| Lincoln312a |
| Lincoln312b |
| Lincoln312c |
| Lincoln313 |
| Lincoln313a |
| Lincoln313b |
| Lincoln314 |
| Lincoln315 |
| Lincoln315a |
| Lincoln315b |
| Lincoln316 |
| Lincoln316a |
| Lincoln316b |
| Lincoln317 |
| Lincoln317a |
| Lincoln317b |
| Lincoln317c |
| Lincoln318 |
| Lincoln318a |
| Lincoln318b |}

搨

氐

道

PROCAT

0
0
0
0
0
0
0
0
2

曾
PROCAT
0

E 2 2

 클
PROCAT

PROCAT

 n ois O

PROCAT

0
0
0
0
旨

SITE

풀

SITE
nw_NM179a
nw_NM179b
nw_NM180
nw_NM180a
nw_NM181
nw_NM182
nw_NM182a
nw_NM182b
nw_NM183
nw_NM184
nw_NM184a
nw_NM185
nw_NM185a
nw_NM186
nw_NM186a
nw_NM187
nw_NM188
nw_NM188a
nw_NM188b
nw_NM189
nw_NM189a
nw_NM190
nw_NM190a
nw_NM191
nw_NM192
nw_NM192a
nw_NM193
nw_NM194
nw_NM194a
nw_NM195
nw_NM196
nw_NM196a
Owl47
Ow147a
Owl47b
Pecos1

PRCAT

骨

0
0
0
2
2
2
菏

PROCAT
1

白

ASPECT

E

后

曷

[^1]PROCAT

 N

PROCAT

ASPECT

E 2 2

志
 ミ

HLL 180	mllm	milx	aspect	MONSOON	EPS	EPW	MAP	MAPS	MAPW	PETS	PETW	flowacc	Curve	PROFILE	procat
176	132	246	4	0.38	0.47	1.62	222	85	137	182.01	84.46	1.10	-0.09	0.08	1
163	149	252	3	0.39	0.48	1.59	224	88	136	181.82	85.78	0.00	0.42	-0.03	0
176	157	245	5	0.31	0.37	1.71	232	71	161	191.87	94.18	0.00	0.96	-0.22	0
176	131	245	4	0.36	0.86	3.68	362	131	231	151.62	62.85	0.00	-0.03	0.03	1
175	121	243	3	0.37	0.63	2.43	277	103	174	162.96	71.46	1.79	-0.02	0.01	1
174	136	247	4	0.38	0.52	1.84	239	91	148	174.62	80.59	1.61	0.09	-0.03	0
174	129	244	4	0.37	0.52	1.90	243	91	152	173.75	79.80	0.00	0.04	0.00	0
157	111	240	2	0.38	0.55	2.05	250	94	156	172.00	76.08	0.69	-0.23	0.05	1
178	127	241	6	0.37	0.55	2.02	249	93	156	169.86	77.33	3.50	-0.01	-0.01	0
173	127	242	6	0.35	0.60	2.36	279	99	180	165.45	76.39	3.04	-0.20	0.10	1
178	122	243	6	0.33	0.85	4.39	361	119	242	140.52	55.13	1.10	0.22	-0.16	0
176	122	242	4	0.32	0.56	2.68	316	100	216	177.76	80.51	0.69	0.01	0.00	1
176	122	242		0.32	0.56	2.68	316	100	216	177.76	80.51	1.61	0.00	0.00	0

[^0]: * diameter thresholds for Pinus edulis and Juniperus monosperma in upland settings with moderate soil depth (i.e., 15 to $35-\mathrm{cm}$ deep) in north-central New Mexico; (add 2 to 5 cm for mesic, depositional soil sites (i.e., $>35 \mathrm{~cm}$ deep) and subtract 2 to 5 cm for dry sites with shallow, skeletal soils (i.e., $<15 \mathrm{~cm}$ deep) with exposed bedrock). For single stem trunks, measure diameter just above base (ca. 30 cm or core height), and for multibranched trees (e.g., one-seed juniper), measure diameter of largest stem just above junction
 $* *$ minimum tree canopy cover $\geq 5 \%$ to be considered here as a piñon-juniper type

[^1]: SITE
 皆
 N
 $\stackrel{\stackrel{N}{2}}{\stackrel{\rightharpoonup}{6}}$

 Utah019 Utah019a Utah019b
 Utah019c

 皆 둘 훈
 解

 会 N烒 N

