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ABSTRACT 

 

SEMI-ANALYTICAL TOOL FOR OPTIMAL MANAGEMENT OF ALLUVIAL AQUIFERS 

HYDRAULICALLY CONNECTED TO STREAMS 

 

Conjunctive water resources use is becoming an important tool in water management, especially 

with the increase in demands in all life sectors, and the decrease in available water resources 

with all the evolving obstacles of climate change, growing populations in addition to the 

conflicts over water resources in some areas of the world.  

 

A groundwater/surface water conjunctive management problem of a hydraulically connected 

aquifer/stream system is addressed in this research under the prior appropriation doctrine of 

water allocation practiced in the western states of the USA including Colorado. One approach for 

applying the concept of conjunctive groundwater/surface water management is achieved by 

techniques of artificial recharge of aquifers, where water is injected and stored in aquifers when 

surface water surplus is available for that purpose and pumped in the future when there is a need. 

Within the prior allocation doctrine, groundwater users in Colorado historically started extracting 

water from the aquifers underlying their agricultural lands after surface water rights were fully 

allocated. Consequently, in a system of hydraulically connected aquifers and streams as in the 

South Platte River Basin, ground water users are junior water right holders, who are allowed to 

divert surface water only when all senior water right holders have had their full allocation. From 

this perspective, the objective of the groundwater management problem is to minimize the 

impact of artificial recharge injection and extraction operations on the stream connected to the 
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targeted aquifer, meaning, when extracting water from the aquifer, the pumped amount should be 

equal to the injected volumes, else wise the aquifer will compensate for the difference by 

depleting the stream. An important effect characterizing artificial recharge and groundwater 

pumping is the change in aquifer head levels during operations, as excessive injection might 

cause water mounds and over pumping might result in a stressed aquifer. 

 

In this study, groundwater pumping and artificial recharge effects on aquifers are simulated using 

the semi-analytical models describing the effect of an operating well in the aquifer and the 

interconnected stream. These models are derived from the formulated analytical solutions for 

aquifer drawdown and stream depletion obtained by Theis (1935) and Glover and Balmer (1945) 

 

In the first part of this research, a number of semi-analytical models are derived and 

implemented in MATLAB codes to simulate the response of both the aquifer and the stream to 

cyclically operating wells. These models can handle the cases of laterally infinite aquifers, semi-

infinite aquifers limited by a stream or an impermeable boundary, and finite aquifer comprised 

between an impermeable boundary and a stream or between two streams. In the second part of 

the research, these models are used to solve a groundwater management problem that seeks to 

minimize the absolute value of the volume of stream depletion/accretion over a given time period 

while meeting prescribed constraints on aquifer water levels, irrigation demands and injection 

water availability. This problem is tackled using linear programming algorithms, which is proven 

to be effective in providing first-hand estimations of optimal injection-extraction schemes for the 

management of systems characterized by large numbers of operating wells, within a reasonably 

small computation time. 
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CHAPTER ONE: INTRODUCTION 

 

1.1Water Availability and Demand  

The available water in the world is 97% of salt water in the oceans and 3% fresh water. 

Two-thirds of the fresh water is ice stored in the Arctic area and about 2% of the liquid fresh 

water is surface water, much of which is replenished by groundwater, which represents about 

98% of the world’s liquid fresh water (Bouwer, 2002), however, the available groundwater 

resources in some areas are deep and require deep-drilled wells and pumps. Yet demands on 

water supplies in all life sectors are increasing significantly, along with concerns for growing 

population, wars and conflicts over pastures and agricultural lands, climate change, 

environmental protection and governing laws and regulations for water allocations and use. 

 

The agriculture sector has a special importance in this problem, because of the competition 

over water particularly from the municipal and industrial sectors, which affect the efficient use of 

the available water resources, causing growing concerns on food security. 

 

All of these issues raise the need for adequate, inexpensive, unsophisticated and socially 

accepted measures from the management perspective to sustain the growing needs, examples 

include: treating water and wastewater, desalination, barrier for saltwater intrusion, and 

groundwater/surfacewater conjunctive use. 

 

The groundwater/surfacewater conjunctive use is defined as the efficient utilization of 

ground water and surface water limited resources simultaneously to meet the demands.  
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1.2 Artificial recharge 

A popular tool of groundwater/surface water conjunctive use is groundwater artificial 

recharge, which is the augmentation of a groundwater reservoir with surplus surface water for 

later use. It is achieved by infiltration via recharge ponds (surface flooding) and subsequent 

movement to aquifers, by infiltration shafts in the unsaturated zone and by placing surface water 

into the subsurface storage by direct injection to the aquifer through wells. The injection well 

approach of artificial recharge is used when suitable conditions for surface flooding and 

infiltration shafts are not available, or when the targeted aquifers are confined or located at a 

large depth. Artificial recharge may also be achieved by a combined system of the mention 

methods. Determining the suitable recharge method requires	  detailed knowledge of geological 

and hydrological features of the area. Artificial recharge also occurs through natural and 

incidental activities such as irrigation surplus and leaking in canals and water pipes 

(O'Hare,1986). 

 

Besides conservation of the surplus surface water for future use, artificial recharge is used 

for many other purposes such as: (a) water reuse through the so called “soil/aquifer treatment,” 

or geopurification that improve the quality of the injected waste water and remove the impurities 

as it infiltrates through soils to the aquifer, (b) reduce seawater intrusion by providing a hydraulic 

barrier in aquifers that are in coastal areas, where lowering water levels by pumping causes a 

reverse flow from the sea to the aquifer, and (c) replenish aquifers that are being depleted due to 

excessive supply or when the natural ground water resource  fails to provide the required demand 

(Bouwer, 2002). 
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1.2.1 Surface storage vs. subsurface storage  

Artificial recharge is preferred over surface water storage (in reservoirs) because of the 

disadvantages of the latter method, such as, the storage losses due to evaporation, the 

accumulation of sediments, development and maintenance high costs, structure failure, and risk 

of contamination of the stored stagnant water that causes of human diseases. It is important to 

note that, in addition to overcoming these disadvantages, subsurface reservoirs provide	  long-term 

storage, which will become necessary as the increasing progress in global climatic changes 

caused by the carbon dioxide and other greenhouse gases in the atmosphere (O'Hare, 1986). 

 

1.2.2 Artificial recharge system requirements 	  

On the other hand, artificial recharge might cause water quality deterioration in the aquifer, 

if the injected water is not of similar or acceptable properties, consequently, the applied water 

quality must be evaluated prior to injection. Low quality injected water might also cause 

clogging of the recharge structure surface, for these reasons, a degree of pretreatment is needed 

to meet the required standard of injected water based on the aquifer water quality and the use of 

the pumped water. Also when using the surface flooding and infiltration shafts approaches the 

unsaturated zone must be checked for pollutants. 

 

Requirements regarding the targeted aquifer must also be considered, as some aquifers has 

a limited potential for successful artificial recharge. An ideally suitable aquifer will absorb, store 

and conduct the recharged volumes of water without significant quick release, excessive build up 

or chemical degradation of that water, and with adequate economical conditions to create the 

subsurface reservoir. That requires a pre-knowledge of the aquifer characteristics, such as the 
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depth of the aquifer, the aquifer’s transmissivity, storage capacity and porosity. Knowledge of 

these properties is gained by site investigation and by modeling groundwater flow and transport. 

That is in addition to the predetermination and infiltration rates of the permeability of the surface 

flooding area soils and unsaturated zone (Central Groundwater Board Ministry of Water 

Resources, 2000). The other features and parameters to be investigated are: geological and 

hydrological boundaries; inflow and outflow to the aquifer; water resources available for 

recharge and water balance. 

 

1.2.3 Infiltration Surface Clogging  

Plugging of the pores of the infiltration structure surface (the bottoms and sides of basins 

and trenches or the well-aquifer interfaces in recharge wells), and subsequent decline in the 

hydraulic conductivity, which results in drawdown flow reduction is the main bane in artificial 

recharge of groundwater. It is caused by a number of processes, such as, the build up of the 

precipitated suspended solids, sediment and salts in the recharge water, by the microbial growth 

and accumulation of biomass layers, by the entrapped gases in the soil and geochemical 

difference between the injected water and the water existing in the aquifer (Bouwer, 2002).  

Some remedial solutions are usually used to minimize the formation of the clogging layers, but 

no terminal solution can be introduced to permanently eliminate it. In surface flooding the 

adopted solutions are: (a) reduction of suspended solids by pretreating the applied water, (b) 

drying the infiltration surface to crack the clogging layer, and (c) physical removal of the layer. 

In the case of direct injection through wells, redevelopment of the well can be performed to 

remove the clogging layer, as well as a frequent backwash.  This backwashing technique, which, 

of course, requires installation of a pump in the well, often prevents serious clogging.  
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1.3 Aquifer storage and recovery (ASR) 

ASR is a relatively new and rapidly-spreading practice. It is the same approach as direct 

injection method of artificial recharge except that when using the ASR technology, the same well 

is used for both operations, that is, setting the well to perform injection to store water in the 

aquifer during the availability times, and setting it to pump the aquifer for recovery and 

supplying seasonal peak demands. ASR is the economical form of direct AR through wells, since 

these wells are anyhow provided with pumps for backwash of the clogging layer, and it is often 

cheaper than the use of treatment plants and surface reservoirs. ASR method is developed for 

industrial, irrigational and environmental purposes, but the main purpose it is being used for so 

far is to store and provide potable water supplies, where the technique guarantees the placement 

of a specific water in the aquifer and ideally the extraction of essentially the same water, which 

remains potable and the only possibly needed treatment is chlorination.  

ASR methods are not only employed for direct use of treated water, but also used for storing 

good-quality raw water surplus supplies and pumping it to the water treatment plant when there 

is a need for that water. This advantage is particularly important in parts of Europe, Australia, 

and other countries where people prefer groundwater, yet it is being depleted during dry seasons 

and must be replenished when there is more surface flow. 

 

1.4 Rain water harvesting and subsurface reservoirs  

The surface/ground water conjunctive management is simulated by another technique 

known as the rainwater harvesting and subsurface dams. This technique is widely used in semi-

arid regions, where precipitation rates vary considerably during the year, from very high rates 

that might result in flooding during the rain season first days to negligible rates during the dry 
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season, in addition to the significant length of the dry season which causes the small surface 

reservoirs and catchment areas to dry up.   Usually in these areas water flow from the catchment 

area through seasonal paths, where it is harvested by creating dams or barriers to arrest the 

natural flow of the seasonal paths and to store water in surface reservoirs for the purpose of 

direct use during the season, as well as storing it in subsurface natural aquifers, this is done 

through introducing subsurface dames or semi-permeable walls below and across the seasonal 

river bed to raise the aquifer water levels closer to the surface and make it easier to be extracted, 

it may also serve as a divergence structure to help replenishing adjacent aquifers. There are other 

applications of the rainwater harvesting approach practiced worldwide that do not involve 

subsurface storing (Water Conservation Technical Briefs, 2009).  

 

1.5 Water laws 

One of the issues that water management and provision are subject to are the laws 

governing water use, supply and allocation in addition to the health, safety and environmental 

regulations.  

The water allocation laws constrict the diversion of surface water to that practiced after obtaining 

the legal right. In the USA there are two main practiced water allocation laws: (a) the riparian 

doctrine followed in the eastern states, and (b) the appropriation doctrine practiced in the western 

states. 

 

In the riparian doctrine, the user has the right of full allocation of the surface water adjacent 

to his owned land as long as there is no corruption on the other users rights. The appropriation 

doctrine has a rule statin that users are categorized as senior and junior right holders according to 
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the time they acquired the right (first in time first in right). The prior appropriation system is of a 

special importance when applying groundwater/surfacewater conjunctive management; as 

pumping from underground aquifers is considered a junior water right that must not affect the 

surface water availability for senior water users (Grigg, 2005). Further discussion about 

application of groundwater/surface water conjunctive management under the prior appropriation 

doctrine is presented in Chapter 3. 

 

1.6 Background of the Semi-analytical Models presented to simulate aquifer/stream systems 

Based on the Glover analytical solution (Glover and Balmer, 1954), the Stream Depletion 

Factor (SDF) presented by Jenkins (1968a, 1970) is defined as the time when stream depletion is 

equal to 28% of the volume pumped at a given location. The SDF model is a useful, widely used 

tool to calculate stream depletion volume due to a well operation in an alluvial aquifer 

hydraulically connected to a stream. In this model, the SDF is numerically calculated even for 

the mathematically non-ideal conditions that Glover solution cannot solve, such as, variable 

transmissivities and the presence of aquifer boundaries and then it is used as an input for the 

Glover equation to calculate stream depletion rate and stream depletion volume. Jenkins also 

showed that the residual effect of pumping after the operation has ceased (aquifer recovery) is 

greater than the effect during well operation. In the paper by Jenkins (1968a), user friendly charts 

of stream depletion rate and stream depletion volume along with the computations are presented 

as well. 

 

Theis (1935) and Glover and Balmer (1954) solutions were further modified by Hantush 

(1965). The modifications was added to calculate aquifer drawdown and stream depletion rate 
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and stream depletion volume due to a pumping well nearby the stream for the case of partially 

penetrating stream with a demi-pervious bed. Hantush proposed that the resistance to flow due to 

semi-perviousness and partial penetration of the stream can be simulated by introducing a semi-

pervious layer with no significant water storage capability between the aquifer and the stream. In 

Hantush (1956) paper, a comparison between an old technique proposed to solve the same 

problem, and his proposed solution was presented graphically, this old technique was suggesting 

that a solution may be reached by adding extra horizontal length to the aquifer to account for the 

flow resistance by the semi-pervious stream bed. The comparison results showed that 

disregarding the presence of the semi-pervious layer as proposed before Huntsh study, caused 

underestimated values of drawdown and overestimated values of stream depletion volumes, 

however, with the proposed approach results in fair estimates of those amounts. 

 

Hunt (1998) carried on Huntush (1965) work by considering the case of slightly penetrating 

stream with small streambed dimensions in comparison of aquifers dimensions, along with the 

clogging of the stream bed. Hunt proposed modifying streambed leakance in Huntush (1965) 

study to simulate the condition, and he obtained an expression to calculated aquifer drawdown. 

 

In this topic, Butler (2001) also suggested that the degree of stream depletion volume 

overestimation is also affected by the normalized distance from the pumping well to the stream 

as well as the stream leakance, in addition to the stream width. Wide streams have a high value 

of leakance, however, a very wide stream is not necessarily accurately simulated by a models 

based on the assumption of a fully penetrating stream. Butler (2001) discussed also the starting 

assumption of the Glover analytical solution (1954) is that the aquifer is limited by a stream in 
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one direction and has an infinite extension at the other direction; he showed that aquifer width 

must be hundreds times the stream widths for the assumption of a laterally infinite aquifer to be 

true for stream-depletion calculations. This ideal assumption makes the application of the model 

not suitable for many of the natural systems with limited lateral extension. In his study, Butler 

(2001) presented an approximation of negligible stream penetration in relation to aquifer 

thickness, which provides reasonable results for the most of natural systems (up to 85%). 

Attention should be paid to the errors that appear when applying this solution to cases of 

significant stream penetration. This approximation is sensitive as well to the cases where stream 

leakance is large, and the pumping well is close to the stream 

 

Results obtained by Theis (1935), Glover and Balmer (1954), Hantush (1965) and Hunt 

(1998) were further studied by	  Tartakovsky (2005) who obtained a solution for drawdown in 

shallow aquifer and stream depletion from a penetrating stream was obtained to simulate the 

effect of streambed leakage and aquifer leakage. The extended results show that the 

stream/aquifer hydraulic connection decides upon the maximum stream depletion rate, that is the 

maximum fraction of the pumping rate given by the stream. These results show also that stream 

depletion may support groundwater drawdown from a pumping well in leaky aquifers to only 

small extend.  The obtained solutions may be used for assessment of stream-aquifer water 

allocations.  

 

1.7 Objective and organization of the research 

In this research, we address the management problem of the conjunctive use of a 

hydraulically connected aquifer/stream system, by presenting a linear programming approach to 
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solve the problem with the assistance of models built to simulate the reaction of the 

aquifer/stream system to operation of wells. 

 

In Chapter 2, detailed illustration of the models developed to study the effect of operating 

wells (extracting and injecting), operating both continuously and cyclically, on both the aquifer 

and the stream is presented. These effects are the change in aquifers hydraulic head levels, 

examined through Theis solution (1935) and the depletion of the connected stream, represented 

by Glover and Palmer’s solution (1945). Aquifers with different boundary conditions are 

considered, such as, an aquifer with an infinite areal extraction, a semi-infinite aquifer bounded 

laterally by either a recharge boundary or a no-flow boundary and a laterally finite aquifer 

comprised between a no-flow and a recharge boundaries and comprised between two recharge 

boundaries.  

 

In Chapter 3, the aspects of the linear programming technique adopted to simulate and 

solve the groundwater/surface water conjunctive management problem is introduced, as well as a 

detailed description of the requirements and limitations (constraints) on wells operation rates, 

aquifer head levels, demand and availability of the extracted and the injected water and the 

stream depletion volume. Examples of the applications of the linear programming technique are 

discussed in chapter three as well. These examples are: Aquifer Storage and Recovery 

groundwater management problem and Aquifer Pumping and Recharge Groundwater 

management problem, they are discussed in both semi-infinite aquifers case and finite aquifers 

bounded by no-flow boundary and recharge boundary case. 
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CHAPTER TWO: AQUIFER MODELS 

 

2.1. Saturated Groundwater Flow 

2.1.1 Darcy’s Law  

The equations governing groundwater flow in saturated porous media rely on Darcy’s law, 

which is an empirical law stating that the rate of flow through a porous medium is proportional 

to the energy losses and inversely proportional to the distance between start and end points 

(Willis and Yeh 1987). This law is expressed as follows: 

 𝑄 =   𝑞 ∙ 𝐴 = −𝐾 ∙
𝑑ℎ
𝑑𝑙    ∙ 𝐴 (2.1)  

where 𝑄 is the flow rate (L3/T), 𝑞 is Darcy’s velocity (or specific discharge or Darcy’s flux) 

(L/T); which represents the volume flux or volume of discharge per unit bulk area per unit time, 

𝐴 is the cross-sectional area (L2), ℎ is the piezometric head (L), 𝐾 is the hydraulic conductivity 

(L/T) and 𝑙 is the distance (L) (McWhorter and Sunada 1995).  

The piezometric head h is an indicator of the energy per unit mass of water at any point in 

the aquifer, and is given by the following equation: 

 ℎ =   
𝑝
𝜌𝑔 + 𝑧 (2.2)  

where 𝑝 is the water pressure relative to atmospheric pressure (ML-1T-2),  𝑔 is the gravity 

acceleration (L/T2) and 𝜌 is the density of fluid (M/L3) 

Hydraulic conductivity is a hydro-geological parameter of the aquifer; which combines 

both the fluid and porous medium properties and represents the ability of the medium to conduct 
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water (McWhorter and Sunada 1995). The hydraulic conductivity is given by (Todd and Mays 

2005): 

 𝐾 =
𝑘𝜌𝑔
𝜇  (2.3)  

where 𝜇 is the dynamic viscosity (M/ L) and 𝑘 is the intrinsic permeability (L2.T). In a three 

dimensional system, the Darcy’s law is written as:   

 𝒒 =
𝑞!
𝑞!
𝑞!

= −𝑲 ∙ 𝛁ℎ =   −   
𝐾!! 𝐾!" 𝐾!"
𝐾!" 𝐾!! 𝐾!"
𝐾!" 𝐾!" 𝐾!!

.

𝜕ℎ
𝜕𝑥
𝜕ℎ
𝜕𝑦
𝜕ℎ
𝜕𝑧

 (2.4)  

where 𝒒 is the specific discharge vector, 𝛁 is the differential operator and  𝛁ℎ is the gradient 

vector of the head ℎ = (!!
!"
!+ !!

!"
!+ !!

!"
𝒌) where !, !  𝑎𝑛𝑑  𝒌 are the unit vectors in coordination 

with x ,y and z axes, such that ! =   
1
0
0
, ! =   

0
1
0
  𝑎𝑛𝑑  𝒌 =   

0
0
1

. The matrix K is the hydraulic 

conductivity tensor, which becomes a diagonal matrix   
𝐾!! 0 0
0 𝐾!! 0
0 0 𝐾!!

 when the coordinate 

axes selected for analysis are collinear with the principal directions of hydraulic conductivity 

(Willis and Yeh, 1987). 

According to its hydraulic conductivity an aquifer is homogenous if K is independent of 

position (or uniform in space). Instead, if K is dependent of position, the aquifer is said to be 

heterogeneous. An aquifer is isotropic if its hydraulic conductivity is independent of direction 

(𝐾𝑥𝑥 = 𝐾𝑦𝑦 = 𝐾𝑧𝑧). Vice versa, an aquifer is anisotropic if its hydraulic conductivity depends 
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on direction (𝐾𝑥𝑥 ≠ 𝐾𝑦𝑦 ≠ 𝐾𝑧𝑧). In condition of isotropy, the hydraulic conductivity tensor K 

is reduced to a scalar coefficient K. 

 

2.1.2 Continuity Equation 

The continuity equation represents the mass balance for a fluid in a closed system, in a 

three-dimensional form it is written as follows: 

 𝛁 𝑲  𝛁ℎ + 𝑓 =   𝑆! ∙   
𝜕ℎ
𝜕𝑡  (2.5)  

where 𝑓 is the source/sink term (forcing terms for water extraction or injection) and 𝑆! is the 

specific elastic storage (1/L) (the volume of water released from storage per unit volume of the 

aquifer per unit decline in pressure head). In the case of a diagonal hydraulic conductivity tensor, 

Equation (2.5) becomes:  

 
𝜕  
𝜕𝑥 𝐾!

𝜕ℎ
𝜕𝑥 +   

𝜕
𝜕𝑦 𝐾!

𝜕ℎ
𝜕𝑦 +   

𝜕
𝜕𝑧 𝐾!

𝜕ℎ
𝜕𝑧 + 𝑓 =   𝑆!

𝜕ℎ
𝜕𝑡  (2.6)  

Equation (2.6) applies to heterogeneous and anisotropic confined aquifers. It can be 

modified to reflect other conditions of aquifer’s hydraulic conductivities. For example, for 

homogenous and anisotropic aquifers, Equation (2.6) takes on the form:  

 𝐾!
𝜕!ℎ
𝜕𝑥! + 𝐾!

𝜕!ℎ
𝜕𝑦! + 𝐾!

𝜕!ℎ
𝜕𝑧! + 𝑓 =   𝑆!

𝜕ℎ
𝜕𝑡  (2.7)  

For homogenous and isotropic aquifers, Equation (2.6) is further simplified to the form: 

 𝐾
𝜕!ℎ
𝜕𝑥! +

𝜕!ℎ
𝜕𝑦! +

𝜕!ℎ
𝜕𝑧! + 𝑓 =   𝑆!

𝜕ℎ
𝜕𝑡  (2.8)  
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The integration of the continuity Equation (2.5) requires assigning initial and boundary 

conditions. 

The initial conditions necessitate knowing the hydraulic head in the aquifer before the 

changes made by the external influences (e.g. operating wells) applied, that is written as: 

 ℎ 𝑥,𝑦, 𝑧;0 = ℎ! 𝑥,𝑦, 𝑧 ,∀   𝑥,𝑦, 𝑧 ∈   Ω (2.9)  

where Ω is the aquifer domain.   

For boundary conditions, there are three types representing them: Dirichlet boundary, 

Neumann boundary and Cauchy boundary. As described in Willis and Yeh (1987), boundary 

conditions mathematically represent a head or a flow/flux state along the aquifer boundary.  

Dirichlet boundary conditions are used when the hydraulic head is known at any time over 

a given portion Γ! of the domain boundary: 

 ℎ 𝑥,𝑦, 𝑧; 𝑡 = ℎ! 𝑥,𝑦, 𝑧; 𝑡 ,∀ 𝑥,𝑦, 𝑧 ∈ Γ! ,∀  𝑡 > 0 (2.10)  

where ℎ! is the boundary head. 

Neumann boundary conditions are prescribed when the flow across a portion Γ! of the 

aquifer boundary is known at any time:  

 −𝑲 ∙ 𝛁ℎ ∙ 𝒏 = 𝑔! 𝑥,𝑦, 𝑧; 𝑡 ,∀ 𝑥,𝑦, 𝑧 ∈ Γ! ,∀𝑡 > 0 (2.11)  

where 𝑔! 𝑥,𝑦, 𝑧;   𝑡 : is the flow normal to the  boundary Γ! and n is the unit vector normal to the 

boundary.  

Cauchy boundary conditions consist of a linear conribution of Dirichlet and Numann 

conditions, imposed over a prescibed portion Γ! of the aquifer domain 



	  
	  

15	  

 𝛿! ∙   𝑲 ∙ 𝛁ℎ ∙ 𝒏+ 𝛿!ℎ = 𝐶 𝑥,𝑦, 𝑧; 𝑡 ,∀ 𝑥,𝑦, 𝑧 𝜖Γ!   ,∀𝑡 > 0 (2.12)  

where 𝛿! and 𝛿! are coefficients and C s the Cauchy potential function. 

Differential equations governing the flow in aquifers can be solved analytically only under 

highly simplified assumptions for the aquifer setting (e.g. Theis, 1935 and Glover and Balmer, 

1954), which limits the application of these methods to the ideal conditions tailored to enable 

using them. For the realistic complex systems, an acceptable approximate solution is preferably 

reached numerically (e.g. USGS’s MODFLOW (Harbaugh,1996)). Semi-analytical methods (e.g. 

SDF (Jenkins, 1968 and Miller et at, 2007)) may also be more efficient when the numerical 

solutions become computationally expensive.  

 

2.2 Fundamental Analytical Solutions 

2.2.1 The Theis Equation 

Theis (1935) derived the solution to the Equation (2.5) for an infinite, horizontal, constant-

thickness, homogeneous and isotropic confined aquifer under the effect of a radial unsteady flow 

due to a fully penetrating well, located at the center of the aquifer, and operating with a constant 

operation rate Q. The initial conditions under which Theis solution is solved require the initial 

head to be uniform over the aquifer domain. Boundary conditions state that the hydraulic head 

remains undisturbed and equal to the initial head h0 at infinite distance from the well during 

pumping operation. 

According to Theis assumptions, the spatial dependency on head is reduced to the 

horizontal coordinates x and y, and the vertical coordinate z is dropped given the condition of 

ideal horizontal flow. 



!
!

$)!

Figure 2.1 shows the features of the perfectly confined aquifer setting addressed by Theis 

(1935), with a fully penetrating pumping well. The dashed lines represent the position of the 

potentiometric surface initially and during pumping. 

 

Figure 2.1 the system used to derive Theis solution (1935), a confined aquifer affected by 

the operation of a pumping well 

When studying the effect of radial flow, the equations are written in terms of aquifer 

drawdown instead of hydraulic head, where the drawdown is given by: 

 ! !!!! ! ! !! ! ! !!!! !  (2.13)  

Under the conditions of radial symmetry in the aquifer around the well considered by Theis 

(1935), the differential equation governing unsteady flow in a confined aquifer may be simplified 

as follows: 

 !
!
!
!" !

!"
!" !

!!!
!!! !

!
!
!"
!" ! ! ! !

!
! !
!"
!" 

(2.14)  

In Equation (2.14), ! is the Storage coefficient or storativity (/) (the volume of water 

released from a column of a unit cross-sectional area per a unit decline in pressure head), ! is the 
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transmissivity (L2/T) (the rate at which water is transmitted through a unit width of aquifer under 

a unit hydraulic gradient) and 𝑟 is the distance between the operating well (origin of the 

Cartesian system) and the observation point (x,y). 

The initial conditions associated with equation (2.14) require the drawdown at time t=0 to 

be zero everywhere: 

 𝑠 𝑟;0 =   0  ∀  𝑟 (2.15)  

The prescribed boundary conditions require a zero drawdown at infinite distance from the 

pumping well: 

 𝑠 𝑟; 𝑡   
!→!

0 (2.16)  

Note that condition (2.16) is a Dirichlet boundary condition. In addition, the following 

Neumann condition must be imposed at the pumping well location: 

 lim
!→!

𝑟 ∙
𝜕𝑠
𝜕𝑟 =   

𝑄
2𝜋𝑇 (2.17)  

Condition (2.17) is in practice derived by applying the Darcy’s law across the lateral 

surface of a cylinder of infinitesimal radius centered on the well. 

The Theis solution is derived by introducing the following unitless variable: 

 𝑢(𝑟; 𝑡) =   
𝑆
4𝑇 ∙

𝑟!

𝑡  (2.18)  

which is known as the Boltzman variable. Using this variable the first and second derivatives of 

the drawdown s with respect to r in Equation (2.14), can be calculated using the chain rule: 

 
𝜕𝑠
𝜕𝑟 =   

𝑑𝑠
𝑑𝑢 ∙

𝜕𝑢
𝜕𝑟 =   

𝑑𝑠
𝑑𝑢 ∙

2𝑢
𝑟  (2.19)  
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 𝜕!𝑠
𝜕𝑟! =

𝜕
𝜕𝑟

𝑑𝑠
𝑑𝑢 ∙

2𝑢
𝑟 =   

𝑑𝑠
𝑑𝑢 ∙

𝜕
𝜕𝑟   

2𝑢
𝑟   +   

2𝑢
𝑟 ∙

𝜕
𝜕𝑟

𝑑𝑠
𝑑𝑢  (2.20)  

Equation (2.20) can be further developed as in the following: 

 𝜕!𝑠
𝜕𝑟! =   

𝑑𝑠
𝑑𝑢 ∙

2𝑢
𝑟!   +   

2𝑢
𝑟 ∙

𝑑!𝑠
𝑑𝑢! ∙

2𝑢
𝑟 =   

2𝑢
𝑟! ∙

𝑑𝑠
𝑑𝑢 +   

2𝑢
𝑟

!

∙
𝑑!𝑠
𝑑𝑢! (2.21)  

The derivative of s with respect to t is obtained as: 

 
𝜕𝑠
𝜕𝑡 =   

𝑑𝑠
𝑑𝑢 ∙

𝜕𝑢
𝜕𝑡 =   −   

𝑑𝑠
𝑑𝑢 ∙

𝑢
𝑡  (2.22)  

Substituting Equations (2.19), (2.21) and (2.22) into equation (2.14) gives: 

 2𝑢
𝑟

!

∙
𝑑!𝑠
𝑑𝑢!   + 2

2𝑢
𝑟! ∙

𝑑𝑠
𝑑𝑢   +   

𝑆
𝑇 ∙

𝑑𝑠
𝑑𝑢 ∙

𝑢
𝑡 = 0 (2.23)  

By dividing both sides of Equation (2.23) by !!
!

!
and rearranging its terms, the following 

Ordinary Differential Equation (ODE) is obtained:  

 𝑑!𝑠
𝑑𝑢! +

𝑑𝑠
𝑑𝑢 ∙ 1+

1
𝑢 =   0 (2.24)  

Based on Equation (2.15), the initial conditions for the ODE are:  

 𝑡 → 0, 𝑢 → +∞, 𝑠 𝑢 → +∞   = 0 (2.25)  

Based on Equations (2.16) and (2.17) the boundary conditions for the ODE (2.24) are 

respectively: 

 𝑟 → ∞, 𝑢 → +∞, 𝑠 𝑢 → +∞   = 0 (2.26)  
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lim
!→!

𝑟 ∙
𝜕𝑠
𝜕𝑟 =    lim!→!    𝑟 ∙

𝑑𝑠
𝑑𝑢 ∙

𝜕𝑢
𝜕𝑟 =    lim!→!    𝑟 ∙

𝑑𝑠
𝑑𝑢 ∙

2𝑢
𝑟 = lim

!→!
  2𝑢 ∙

𝑑𝑠
𝑑𝑢

=   
𝑄
2𝜋𝑇   ⇒ lim

!→!
  𝑢 ∙

𝑑𝑠
𝑑𝑢   =   

𝑄
4𝜋𝑇 

(2.27)  

Assuming 𝑃 = !"
!"

, the integration of the ODE (2.27) proceeds as follows: 

 

𝑑𝑃
𝑑𝑢   +

1
𝑢 + 1 ∙ 𝑃   = 0 ⇒

𝑑𝑃
𝑃   +

1
𝑢 + 1 ∙ 𝑑𝑢   = 0 

              ⇒
𝑑𝑃
𝑃 =   −   

1
𝑢 + 1 ∙ 𝑑𝑢   ⇒    ln𝑃 = −𝑢 − ln𝑢 + 𝐶     

⇒ 𝑃 = 𝑒(!!!!"!)!!   =     𝑒!
𝑒!!

𝑒!"# = 𝑒!
𝑒!!

𝑢  

(2.28)  

Introducing the constant 𝑘 =   𝑒!, Equation (2.28) becomes: 

 𝑃 =
𝑑𝑠
𝑑𝑢 =     

𝑘. 𝑒!!

𝑢  (2.29)  

Equation (2.29) can be integrated by separation of variables: 

 𝑑𝑠 =   𝑘  
𝑒!!

𝑢   𝑑𝑢     ⇒    𝑑𝑠
! !→!

! !
= 𝑘  

𝑒!!

𝑢

!

!
    𝑑𝑢 (2.30)  

From which 

 ⇒ 𝑠 ∞ − 𝑠 𝑢 =   𝑘  
𝑒!!

𝑢

!

!
    𝑑𝑢 (2.31)  

Based on condition (2.25), Equation (2.31) becomes: 

 𝑠 𝑢 =   −  𝑘  
𝑒!!

𝑢

!

!
  𝑑𝑢 (2.32)  

where the constant k can be obtained by imposing condition (2.26): 
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𝑢  
𝑑𝑠
𝑑𝑢     

!→!
    
𝑄
4𝜋𝑇 ⇒   

𝑑𝑠
𝑑𝑢 = 𝑘

𝑒!!

𝑢 !

!

= 0−    −𝑘
𝑒!!

𝑢 = 𝑘  
𝑒!!

𝑢  

⇒   𝑢  
𝑑𝑠
𝑑𝑢   = 𝑘  𝑒!!   

!→!
  𝑘 =   

𝑄
4𝜋𝑇 

(2.33)  

From Equations (2.32) and (2.33), the drawdown function is thus (Theis, 1935): 

 𝑠 𝑟; 𝑡 =   
𝑄
4𝜋𝑇 ∙

𝑒!!

𝑢

!

!
∙ 𝑑𝑢 (2.34)  

Equation (2.34) represents the drawdown distribution in time and space due to a single well 

operating at a constant rate Q in a homogenous, isotropic, horizontal, constant thickness confined 

aquifer. The exponential integral in Equation (2.34) is known as Theis well function: 

 𝑊(𝑢) =   
𝑒!!

𝑢

!

!
    𝑑𝑢 (2.35)  

Note that in Equation (2.34), drawdown is positive if Q is positive, that is, if water is 

extracted from the aquifer. In this research, we adopt an apposite sign rule so that Q is positive if 

injected and negative if extracted. Accordingly with this assumption, the Theis Equation (2.34) is 

rewritten as: 

 𝑠 𝑟; 𝑡 =
−𝑄
4𝜋𝑇 .𝑊 𝑢  (2.36)  

Figure 2.2 shows the exponential well function development with the inverse of u. 
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Figure 2.2 W(u) Vs 1/u  

Note that, in Equation (2.18) the value of u decreses with the increase of T then 

thedrawdwon at distance r from the operating well increses and the cone of depresseion extened 

further in the aquifer, this is the same as the decrease in storativity (when the aquier tends to 

yield the water storage easly), however when storativity increases and the transmissivity 

decreases, value of u increses then drawdown at the same distance r decreses and the cone of 

depression extenson shrinks within the quifer area. 

2.2.2 Application of Superposition of Solutions 

This section presents the application of Theis solution (Equation (2.35)) in conditions 

where some of its assumptions, such as the constant pumping rate or the single operating well, 

are violated. In order to remove these assumptions the principle of superposition is introduced.  

The principle of superposition of effects or solutions in physics states that the total response of a 

linear system governed by linear differential equations can be evaluated as the sum of individual, 

elementary, linear responses in space and time caused by multiple source/sink terms. Given that 

the solution of the ground water flow problem involves satisfying initial and boundary 
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conditions, to be able to apply the principle of superposition these conditions have to be linear as 

well. 

In the case of the Theis equation, the principle of superposition may be used in the 

calculation of the drawdown at a certain point in space and time due to the effect of: a) a well 

field, that is, a set of pumping wells operating simultaneously; b) a single operating well with a 

varying operation rates and; c) no-flow and recharge boundaries that render the aquifer semi-

infinite. 

a) Well field 

In this case, head drawdowns or build-ups in the aquifer occur as a response to spatially 

distributed operating wells. In the two dimensional extent of the aquifer, the drawdowns at point 

(x,y) and time t due to a well field with now number of wells, each one with an operating rate Qm 

and operation starting time 𝜏! can be calculated as: 

 𝑠 𝑥,𝑦; 𝑡 =
−𝑄!
4𝜋𝑇 ∙𝑊

𝑆
4𝑇 ∙

𝑟!!

𝑡 − 𝜏!

!"#

!!!

 (2.37)  

where 𝑟! is the distance from well m to the observation point (x,y) which is calculated by: 

 𝑟 =    𝑥 − 𝑥! ! + 𝑦 − 𝑦! ! (2.38)  

Note here that Equation (2.37) is valid for 𝑡 − 𝜏 > 0, otherwise the well function is to be 

set equal to zero. 

An application example of Equation (2.37) is given in Figure 2.3 which shows the contour 

line plot of the drawdown distribution, obtained at a time t = 120 days in an aquifer with the 

hydrogeological parameters given in Table 2.1. The wells locations, operation rates, starting time 

and operation period are listed in Table 2.2. The plot in Figure 2.3 is obtained with a Matlab 
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code that implements Equation (2.37). This Matlab code, called Finite.Drawdwon.2D.m is 

provided in Appendix A. 

 

Figure 2.3 Drawdown contour due to an operating well field of two wells located at 

(500,1000) and (1000,500), operate with a constant rate -500 m3/day and -1000 m3/day, 

respectively, the contours are plotted at a time t=120 days  

Table 2.1: Aquifer hydrogeological parameters  

T (m2/day) S (/) h0 (m) 

622.08 0.2 30 

 

Table 2.2: Operating wells data 

Well Location (x,y) 

Operation 

starting time 

(day) 

Operation 

period (day) 
Rate (m3/day) 

0.0
5

0.05

0.05

0.05

0.05
0.05

0.05

0.
05

0.1

0.1

0.
1

0.1

0.1
0.

1

0.15

0.15

0.1
50.15

0.
15

0.2

0.2
0.2

0.2

0.25

0.25

0.25

0.
25

0.3

0.3

0.3

0.35
0.3

5

0.35

0.4

0.4

0.4

0.45

0.45

0.5

0.5

x (m)

y 
(m

)
 -500

-1000
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1 (500,1000) 0 180 -500 

2 (1000,500) 60 120 -1000 

 

b) Time-varying operation rates  

Since the Theis solution does not allow for the change in operating rates, the principle of 

superposition can be used to deal with cases that violate this limitation, where the operation rate 

is treated as a time dependent function, and the drawdown is computed using the following 

“convolution” integral: 

 𝑠 𝑟; 𝑡 = −
1
4𝜋𝑇

𝜕𝑄(𝜏)
𝜕𝜏 𝑊

𝑆
4𝑇

𝑟!

𝑡 − 𝜏 .𝑑𝜏
!

!
 (2.39)  

where 𝜏 is the infinitesimal increment of well’s operation time. Again, Equation (2.39) is used if 

𝑡 > 𝜏, otherwise the well function W must be set equal to zero. A Matlab code 

infinite.Drawdwon.Time.m is developed to simulate the results of Equation (2.39). This code is 

provided in Appendix B. 

Figure 2.4a shows an example of time varying operation (extraction) rate. Figure 2.4b 

shows the corresponding drawdown profile obtained at an observation point located at a distance 

r equal to 140 m from the operating well, using the Matlab code infinite.Drawdown.Time.m. 

Aquifer parameters used in this example are given in Table 2.1. 
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(a) (b) 

Figure 2.4 Time varying rates of an extracting well in subpanel (a) and in subpanel (b) the 

resulting drawdown profile over time in an observation point located at r = 140 m from the 

operating well 

Equations (2.13), (2.37) and (2.39) can be combined together to provide a general equation 

for the hydraulic head in an aquifer subject to pumping from a well field with varying pumping 

rates:  

 ℎ 𝑥,𝑦; 𝑡 = ℎ! +
1
4𝜋𝑇

𝜕𝑄!(𝜏!)
𝜕𝜏!

𝑊
𝑆
4𝑇

𝑟!!

𝑡 − 𝜏!
.𝑑𝜏

!

!

!!!

!!!

 (2.40)  

c) Effect of recharge and no-flow boundaries 

A recharge boundary is considered as a boundary subject to a Dirichlet constant head 

condition, where the drawdown is maintained constant and equal to zero over time. Conversely, 

a no-flow boundary consists of an impervious boundary across which the groundwater cannot 

flow. The Theis Equation (2.36) can be extended to dealing with cases in which these boundaries 

are rectilinear.  
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To create a mathematically equivalent condition for either a recharge boundary or a no-

flow boundary and restore the infinite aquifer condition, an image well may be introduced to the 

system, located at a point symmetrical to the real well with respect to the boundary. In the case 

of recharge boundary, the image well performs simultaneously the opposite type of operation of 

the actual well with the same rate to keep the state of zero drawdown at the boundary. In the case 

of a no-flow boundary, the image well performs the same type of operation to create zero 

constant flux condition on the impermeable boundary line (McWhorter and Sunada, 1995). 

Figure 2.5 shows layouts for a semi-infinite aquifer with the actual and image wells for cases of a 

recharge boundary (subpanel a) and a no-flow boundary (subpanel b). Subpanels (c) and (d) 

illustrate the heads levels due to the operation of each well and the resulting combined head 

levels. 

 

 

 

 

 

 



!
!

%*!

!!!!!!!!!! !

                                    (a) 

!!!!!!!!!!! !

(b) 

(c)! (d)!

Figure 2.5 layouts of semi-infinite aquifer with a recharge boundary in subpanel (a) and 

no-flow boundary in subpanel (b). Subpanels (c) and (d) show the resulting head profiles 

due to a well operating in proximity of a no-flow and a recharge boundary, respectively 

The general drawdown equation due to a single well operating in proximity of a recharge 

boundary is thus given by the sum of the effects of the real well and the image well:  
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𝑠 𝑥,𝑦; 𝑡 = −𝑄 ∙

1
4𝜋𝑇 . W   u r!; 𝑡 − 𝜏 −W   u r!; 𝑡 − 𝜏   

=   −𝑄 ∙W!   u r!, r!, 𝜏; 𝑡  

(2.41)  

The well function for the operating well 𝑊   𝑢(𝑟!; 𝑡 − 𝜏)  and the well function for the 

image well 𝑊   𝑢(𝑟!; 𝑡 − 𝜏)   are both calculated using Equation (2.37), r1 and r2 are the distance 

of the monitoring point (x,y) from the real well and image well, respectively. 

The general drawdown equation due to a single well operating in proximity a no-flow boundary 

is the following: 

 
𝑠 𝑥,𝑦; 𝑡 = −𝑄 ∙

1
4𝜋𝑇 W   u r!; 𝑡 − 𝜏 +W   u r!; 𝑡 − 𝜏

=   −𝑄 ∙W!   u r!, r!, 𝜏; 𝑡  

(2.42)  

The drawdown distribution due to a well field operating in an aquifer delimited by either a 

recharge or a no-flow rectilinear boundary is obtained as: 

 𝑠 𝑥,𝑦; 𝑡 = −𝑄! ∙W!   𝑢 𝑟!,!, 𝑟!,!, 𝜏!; 𝑡   
!!"

!!!

 (2.43)  

where the function W!   𝑢 𝑟!,!, 𝑟!,!, 𝜏!; 𝑡  is equal to W!  (Equation (2.41)) for a recharge 

boundary, or W!  (Equation (2.42)) for a no-flow boundary. 

Figure 2.6 shows the drawdown distribution at time t = 120 days in a semi-infinite aquifer 

subject to extraction from 2 wells at (x,y) = (500,1000) and  (1000,500). In subpanel (a) a 

recharge boundary is located at x = 0 (the y-axis), where in subpanel (b) a no-flow boundary is 

present at x = 0. Aquifer parameters used in these scenarios are given in Table 2.1. Detailed 

information about the extracting wells (schedule and pumping rates) is given in Table 2.2. These 

plots are obtained using a Matlab code SI.Drawdown.2D.m which calls two different 
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subroutines; Theis.Recharge.m represents the well function in Equation (2.41) and Theis.No-

flow.m represents the well function in equation (2.42). This code is provided in Appendix C. 

 

(a) 

 

(b) 

Figure 2.6 Drawdown contours at t = 120 days caused by two extracting wells located at 

(500,1000) and (1000,500), respectively, in semi-infinite aquifer with a recharge boundary 

(subpanel a) and with a no-flow boundary (subpanel b), extraction rates are -500 m/day for 

the first operating well and -1000 m3/day for the second well 2 

In Figure 2.6 subpanel (a) note that the drawdown contours do not intersect with the 

recharge boundary; that is because, in the flow net shown in the figure, both of the drawdown 

contours and the recharge boundary are equi-potential lines. Instead in subpanel (b), with the no-

flow boundary being a flow line, the contours intersect with it at a right angle. 
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2.2.3 The Theis Solution in Unconfined Aquifers 

Unconfined aquifers differ from confined aquifers in that their upper boundary, known as 

water table, constitutes a free surface boundary at which the relative pressure is equal to zero. In 

an unconfined aquifer, the change in the water storage occurs as a response to drainage or 

recharge of the pores within the cone of depression; and, different from the confined aquifers, the 

saturated thickness changes with time. (McWhorter and Sunada, 1995) 

In unconfined aquifers, solution of the saturated ground water flow Equation (2.5) is 

difficult because of the unknown location of the water table, which would be required as a 

known boundary condition. 

 

In practice, the Theis solution can still be extended to model flow in unconfined aquifers 

under the assumption of prevalent horizontal flow (Dupuit approximation). Polubarinova-

Kochina (1962) shows that this assumption is sufficiently accurate if the aquifer drawdown is 

small compared to the initial saturated thickness of the aquifer. With this condition aquifer’s 

transmissivity and storativity can be considered constant, and the vertical velocities are neglected 

in relation to horizontal velocities within the aquifer. However, corrections should be applied to 

the Theis solution in vicinity of operating wells, where the vertical component of the pore 

velocity may be significant and the occurring drawdown is typically large. 

It is worth noting that storativity values for unconfined aquifers are practically equal to the 

apparent specific yield, Sya (the ratio of the volume of water added or removed directly from the 

saturated zone of the aquifer to the resulting change in the volume of aquifer below water). In 
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this respect, the storativity value of 0.2 given in Table 2.1 is truly appropriate for unconfined 

aquifers. 

 

2.2.4 The Glover Equation: 

Glover and Balmer’s (1954) solution was developed to compute the effects of depletion/ 

accretion due to an operating well on a stream hydraulically connected to the aquifer. In this 

situation, the stream may be seen as a recharge boundary, which provides a constant head 

boundary condition for the semi-infinite aquifer. The solution was derived based on 

approximation the proposed by Theis (1941) to evaluate stream depletion by integrating the 

Darcy’s flux (in terms of drawdown) per unit width of the stream over the entire length of the 

stream. The Glover and Balmer (1954) solution is still widely used in ground-water/surface-

water conjunctive management.  

 

The assumptions underlying the Glover model are the following: (a) the aquifer is semi-

infinite, horizontal, homogeneous and isotropic; (b) stream and aquifer are initially at 

equilibrium (the initial head h0 in aquifer is constant and the same as the stage level in the river); 

(c) aquifer transmissivity is uniform and constant over time (saturated thickness does not change 

significantly); (d) stream stage remains constant over time; (e) the stream forms a straight line 

and fully penetrates the aquifer (flow is horizontal); and (f) the stream is perfectly connected to 

the aquifer (no resistance to flow is caused by fine sediments at the streambed). 

Note a significant part of these assumptions is the same as in the Theis solution. The 

Glover model is derived for the case of a single well operating at a constant extraction rate Q and 
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starting time t = 0, located at the origin of the Cartesian system in an aquifer with transmissivity 

T and storativity S. The stream is represented by the straight line located at x = a.   

Figure 2.7 shows the layout of aquifer/stream system used to derive Glover’s model. 

 

Figure 2.7 Aquifer/stream system layout used to derive the Glover equation 

Let  𝑞! 𝑎,𝑦; 𝑡   be the Darcy’s discharge (in terms of drawdown) per unit width along the 

x direction on the generic point located on the stream line x = a: 

 𝑞!! (𝑎,𝑦; 𝑡) = 𝑇 ∙
𝜕𝑠
𝜕𝑥 (𝑎,𝑦; 𝑡) 

(2.44)  

Rewriting Equation (2.18) in the Cartesian system and using the chain rule, the partial 

derivative at the right hand side of Equation (2.44) can be expressed as: 

 
𝜕𝑠
𝜕𝑥 𝑎,𝑦; 𝑡 =

𝜕𝑠
𝜕𝑢 𝑎,𝑦; 𝑡 ∙

𝜕𝑢
𝜕𝑥 𝑎,𝑦; 𝑡  (2.45)  

where: 
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𝜕𝑠
𝜕𝑢 𝑎,𝑦; 𝑡 =

𝜕 𝑄
4𝜋𝑇 ∙

𝑒!!!

𝑢!
!!
! ∙ 𝑑𝑢!

𝜕𝑢 =
𝑄
4𝜋𝑇 ∙

𝑒!!!

𝑢!
!

!!

= −
𝑄
4𝜋𝑇 ∙

𝑒!!!

𝑢! = −
𝑄
4𝜋𝑇 ∙

𝑒!
!
!!  ∙  

(!!!!!)
!         

𝑆
4𝑇 ∙

(𝑎! + 𝑦!)
𝑡

 

(2.46)  

and 

 𝜕𝑢
𝜕𝑥 𝑎,𝑦; 𝑡   =

𝜕 𝑆
4𝑇 ∙

(𝑎! + 𝑦!)
𝑡 !!!!

𝜕𝑥 =
𝑆
4𝑇 ∙

2 ∙ 𝑎
𝑡  

(2.47)  

Substitution of Equations (2.46) and (2.47) into Equation (2.44) yields: 

 

𝑞!! 𝑎,𝑦; 𝑡 = −𝑇 ∙
𝑄
4𝜋𝑇 ∙

𝑒!
!
!!  ∙  

(!!!!!)
!         

𝑆
4𝑇 ∙

(𝑎! + 𝑦!)
𝑡

∙
𝑆
4𝑇 ∙

2 ∙ 𝑎
𝑡     

= −
𝑄
2𝜋 ∙

𝑒!
!
!!  ∙  

(!!!!!)
!         

(𝑎! + 𝑦!) ∙ 𝑎 

(2.48)  

Note that in Equation (2.48),   𝑞!!  is negative if both Q and a are positive. Indeed, 

groundwater flow will have a negative horizontal component, that is, opposite to the verse of the 

x-axis.   

The stream depletion rate can be obtained by using the method of images presented in 

section 2.2.2 (c). In practice, the stream provides a discharge per unit length equal to two times 

that given by Equation (2.48). The total stream depletion rate is thus given by: 

 𝑄! = 2 ∙ 𝑞!! 𝑎,𝑦; 𝑡 ∙ 𝑑𝑦
!!

!!
=   
𝑄
𝜋

𝑒!
!
!!  ∙  

(!!!!!)
!         

(𝑎! + 𝑦!) ∙ 𝑎 ∙ 𝑑𝑦
!!

!!
 (2.49)  
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In Equation (2.49), the negative sign of the right-hand side of Equation (2.48) is 

intentionally overlooked since the stream depletion rate is to be considered positive if the well 

withdraws water from the aquifer (Qr >0 if Q >0 and vice versa). 

To calculate the integral in Equation (2.49), the fraction Pr between the stream depletion 

rate Qr and the pumping rate Q is considered, and the parameter 𝛼 = !
!!∙!

  𝑖𝑠 substituted in (2.49): 

 𝑃! =
𝑄!
𝑄 =

1
𝜋

𝑒!!  ∙  (!!!!!)        

(𝑎! + 𝑦!) ∙ 𝑎 ∙ 𝑑𝑦
!!

!!
 (2.50)  

The integral in Equation (2.50) may be calculated by observing that: 

 

𝜕𝑃!
𝜕𝛼 =   

1
𝜋 ∙
𝜕 𝑒!!∙(!!!!!)        

(𝑎! + 𝑦!) ∙ 𝑎 ∙ 𝑑𝑦!!
!!

𝜕𝛼

=
1
𝜋 ∙

𝜕 𝑒!!  ∙  (!!!!!)        
(𝑎! + 𝑦!) ∙ 𝑎

𝜕𝛼 ∙ 𝑑𝑦
!!

!!

= −   
1
𝜋

𝑒!!  ∙(!!!!!)        

(𝑎! + 𝑦!) ∙ 𝑎 ∙ (𝑎! + 𝑦!) ∙ 𝑑𝑦
!!

!!

= −
𝑎
𝜋 𝑒!!  ∙  (!!!!!)   ∙ 𝑑𝑦

!!

!!

=   −
𝑎
𝜋    ∙ 𝑒

!!  .!!   ∙ 𝑒!!∙!! ∙ 𝑑𝑦
!!

!!
   

(2.51)  

The integral in Equation (2.51) may be solved by introducing the variable 𝑧 = 𝛼 ∙

𝑦  where 𝑑𝑧 = 𝛼 ∙ 𝑦    and using the Gauss integral 𝑒!!!!!
!! 𝑑𝑧 =    𝜋  :  

 𝑒!!  ∙  !! .𝑑𝑦
!!

!!
=

1
𝛼
∙ 𝑒!!! ∙ 𝑑𝑧

!!

!!
=

𝜋
𝛼 (2.52)  

Thus, Equation (2.51) becomes:  
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𝜕𝑃!
𝜕𝛼 = −

𝑎
𝜋 ∙   𝑒

!!  .!!   ∙ 𝑒!!  .!! ∙ 𝑑𝑦
!!

!!
= −

𝑎
𝜋 ∙ 𝑒

!!  .!!   ∙
𝜋
𝛼

= −
𝑎
𝜋 ∙ 𝛼

∙ 𝑒!!  ∙  !!   

(2.53)  

Note that the integration “in dy” has been taken care of in Equation (2.53). Equation (2.51) 

is now integrated with respect to  𝛼 to obtain Pr  Equation (2.50). To do so, the variable  𝜒 =    𝛼   

is introduced (note that  𝑑𝜒 =    !"
!. !  

): 

 

𝑃! =
𝜕𝑃!
𝜕𝛼 ∙ 𝑑𝛼 = −

𝑎
𝜋.𝛼

∙ 𝑒!!  .!! ∙ 𝑑𝛼 =

−
𝑎
𝜋

  
𝑒!!  .!!

𝛼
𝑑𝛼 = −

𝑎
𝜋

  
𝑒! !.! !  

𝜒 ∙ 2 ∙ 𝜒 ∙ 𝑑𝜒

= −
2
𝜋

  𝑒! !.! !   ∙𝑑 𝜒 ∙ 𝑎  

(2.54)  

Since the error function is defined as  erf 𝑣 =    !
!  
∙ 𝑒!!!!
! ∙ 𝑑𝑣  , Equation (2.54) may be 

rewritten as: 

 
𝑃! = −

2
𝜋

  𝑒! !.! !   ∙𝑑 𝜒 ∙ 𝑎 = −𝑒𝑟𝑓 𝜒 ∙ 𝑎 + 𝐶

= −𝑒𝑟𝑓 𝛼   ∙ 𝑎 + 𝐶 

(2.55)  

where C is a constant of integration that may be calculated from the condition:  P!(𝛼 → ∞) = 0 

(note that 𝛼 → ∞  corresponds to 𝑡 → 0). Since the error function is such that erf 𝑣 → +∞ =

   !
!  
∙    𝑒!!!"!!

! ∙ 𝑑𝑣! = !
!  
∙ !  
!
= 1, the constant C is determined as follows: 

𝑃! 𝛼 → +∞ = − lim
!→!

𝑒𝑟𝑓 𝛼  . 𝑥! + 𝐶 = −1+ 𝐶 = 0   ⇒ 𝐶 = 1 

 The function 𝑃! is thus determined to be equal to: 
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𝑃! = 1− 𝑒𝑟𝑓 𝛼   ∙ 𝑎 = 𝑒𝑟𝑓𝑐 𝛼   ∙ 𝑎 = 𝑒𝑟𝑓𝑐
𝑆

4 ∙ 𝑇 ∙ 𝑡 ∙ 𝑎

= 𝑒𝑟𝑓𝑐
𝑆
4𝑇 ∙

𝑎!

𝑡  

(2.56)  

From Equation (2.51), the stream depletion flow rate is thus:  

 𝑄! 𝑄,𝑇, 𝑆,𝑎; 𝑡 = 𝑄 ∙ 𝑒𝑟𝑓𝑐  
𝑆
4𝑇 ∙

𝑎!

𝑡  (2.57)  

Equation (2.57) constitutes the Glover model (Glover and Balmer.1954) and it can be 

integrated over time to obtain an equation for stream depletion volume (e.g. Miller et al, 2007): 

 

𝑉! 𝑄,𝑇, 𝑆,𝑎; 𝑡

= 𝑄 ∙ 𝑡

∙
𝑆
2𝑇 ∙

𝑎!

𝑡   + 1 ∙ 𝑒𝑟𝑓𝑐
𝑆
4𝑇 ∙

𝑎!

𝑡 −
𝑆
4𝑇 ∙

𝑎!

𝑡

∙
2
𝜋

∙ exp
𝑆
4𝑇 ∙

−𝑎!

𝑡  

(2.58)  

Equations (2.58) and (2.57) can be rearranged to obtain the ratio between the stream 

depletion rate and the well pumping rate starting at generic time 𝜏: 

 𝑄!"#$% 𝑇, 𝑆,𝑎, 𝜏; 𝑡 =
𝑄! 𝑄,𝑇, 𝑆,𝑎; 𝑡

𝑄 = 𝑒𝑟𝑓𝑐  
𝑆
4𝑇 ∙

𝑎!

𝑡 − 𝜏  (2.59)  

and the ratio between the stream depletion volume and the volume of groundwater pumped by 

the well: 
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𝑉!"#$% 𝑇, 𝑆,𝑎, 𝜏; 𝑡 =
𝑉! 𝑄,𝑇, 𝑆,𝑎; 𝑡
𝑄 ∙ 𝑡 − 𝜏

=
𝑆
2𝑇 .

𝑎!

𝑡 − 𝜏   + 1 . 𝑒𝑟𝑓𝑐
𝑆
4𝑇 .

𝑎!

𝑡 − 𝜏

−
𝑆
4𝑇 ∙

𝑎!

𝑡 − 𝜏 ∙
2
𝜋

∙ exp
𝑆
4𝑇 ∙

−𝑎!

𝑡 − 𝜏    

(2.60)  

A Matlab code (SI.Glover) is built to calculate and plot Equations (2.59) and (2.60) with 

time. This code is provided in Appendix E, along with instructions and examples for its use. 

Figure 2.8 shows the profiles of the stream depletion rate ratio 𝑄!"#$% 𝑇, 𝑆,𝑎; 𝑡  

(represented by the solid line) and the stream depletion volume ratio 𝑉!"#$% 𝑇, 𝑆,𝑎; 𝑡  

(represented by the dashed line) as a function of time, respectively, due to a well located 1000 m 

away from the stream, for a simulation period of ten years (3650 days)of continuous well 

operation. These profiles are obtained using the SI.Glover.m code. Aquifer properties used to 

plot this figures are presented in Table 2.1. 

 

Figure 2.8 Stream depletion rate (solid line) and stream depletion volume (dashed line) due 

to a well operating continuously for 3650 days. The well is located at 500 m from the stream 
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Note that, in Figure 2.8 the stream depletion volume function defined as the ratio between 

stream depletion volume and the actual pumped volume, tends to reach a value of 1.0 (a steady 

state) with time. 

 

2.2.5 Superposition of solutions: Stream Depletion  

Similar to the Theis solution, Equation (2.57) and (2.58) (Glover and Balmer, 1954) 

indicate that both Qr and Vr are linearly proportional to the well pumping rate Q. In practice, the 

principal of superposition of solution can be applied to the Glover model to calculate stream 

depletion rates and volumes from a generic well field with time varying pumping rates. 

The stream depletion rate due to a well field can be calculated as: 

 𝑄!,!"!#$ = 𝑄! ∙ 𝑄!"#$%(𝑇, 𝑆,𝑎!, 𝜏!; 𝑡)
!!"

!!!

 (2.61)  

Note that in Equation (2.61) the Qratio function is given by Equation (2.59) if 𝑡! > 0, or it 

is equal to zero otherwise. 

The stream depletion rate due to a single well with time varying pumping rates is calculated 

as: 

 𝑄! 𝑡 =
𝜕𝑄(𝜏)
𝜕𝜏 ∙ 𝑄!"#$%(𝑇, 𝑆,𝑎, 𝜏; 𝑡) ∙ 𝑑𝜏

!

!
 (2.62)  

The stream depletion rate due to a well field with time varying pumping rates is obtained 

combining Equation (2.61) and (2.62): 

 𝑄!,!"!#$ 𝑡 =
𝜕𝑄!(𝜏!)
𝜕𝜏!

.𝑄!"#$%(𝑇, 𝑆,𝑎!, 𝜏!; 𝑡).𝑑𝜏!
!

!

!!"

!!!

 (2.63)  
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Equations similar to (2.61), (2.62) and (2.63) can be obtained for the stream depletion 

volume: 

In the case of a well field, the stream depletion volume is given by: 

 𝑉!,!"!#$ 𝑡 = 𝑄! ∙ 𝑡 − 𝜏! ∙ 𝑉!"#$% 𝑇, 𝑆,𝑎!, 𝜏!; 𝑡
!!"

!!!

 (2.64)  

The stream depletion volume due to a single operating well with time varying pumping rate 

is obtained by: 

 𝑉! 𝑡 =
𝜕𝑄(𝜏)
𝜕𝜏 ∙ 𝑡 − 𝜏 ∙ 𝑉!"#$% 𝑇, 𝑆,𝑎, 𝜏; 𝑡

!

!
∙ 𝑑𝜏 (2.65)  

The stream depletion volume in a well field with a time varying pumping rates is calculated 

as: 

 
𝑉!,!"!#$ 𝑡 =

𝜕𝑄!(𝜏!)
𝜕𝜏!

∙ 𝑡 − 𝜏! ∙ 𝑉!"#$% 𝑇, 𝑆,𝑎!, 𝜏!; 𝑡
!

!

!!"

!!!

∙ 𝑑𝜏! 

(2.66)  

Using the stream depletion equations listed above; one can study the ratio between stream 

depletion volume during operation period and after it has been ceased. Let us consider, for 

example, the case of five operating wells in an alluvial aquifer. The aquifer is in a hydraulic 

contact with a stream located at x = 0 (the y-axis), and all wells are extracting with the same 

constant operation rate of -1000 m3/day for 180 days and are shut off afterwards. Table 2.3 

shows the distances between the operating wells and the stream, listed in the second column.  

A simulation is performed for a total time of five year (1825 days), where the wells are 

activated individually and their impact on stream (stream depletion volume) is calculated during 

pumping and after the well is shut off, as well as the ratio between them. The results are shown 



	  
	  

40	  

in Table 2.3. The third column represents the stream depletion volume during operation, the 

fourth column gives the values of stream depletion at end of simulation duration, and in the fifth 

column, the ratio between the two volumes is reported.  

Table 2.3 operating wells distances from the stream and simulation results (stream 

depletion volume during operation, stream depletion volume at the end of simulation 

duration and ratio between the two volumes) 

Well Distance a 

(m) 

Vr1 m3 (during 

operation) 

Vr2 m3 (at end of simulation 

time) 

Ration (Vr1/ 

Vr2) 

1 200 -130968.34 -171259.28 0.764737 

2 800 -45156.620 -145358.63 0.310657 

3 1200 -19784.90 -128668.62 0.153766 

4 2000 -2798.70 -97659.76 0.028658 

5 5000 -0.02852 -23039.15 1.24E-06 

 

It is interesting to note that, since the stream is the recharge source of the aquifer, it 

provides a continuous supply even after the shutting off of the extracting well. However the ratio 

between the stream depletion volume during and after well operation varies significantly, from 

0.764737 to 1.24E-06, as the distance of the well to the stream is increased, and all the pumped 

volume ends being extracted completely from the stream, that is why, one can note that in Figure 

2.8 the stream depletion volume ratio reaches a value of 1.0. The total time needed for this 



	  
	  

41	  

process to end, and the volume extracted directly from the stream during operation time depend 

largely on the distance between the operating well and the stream. 

Figure 2.9 shows the Vratio vs. time profiles for the five wells considered in the example, these 

profiles show that at larger times the ratio between the stream depletion volume and the total 

pumped water tends to be 1, which complies with the conclusion that the extracted amount of 

water ends coming completely from the stream. 

 

Figure 2.9 stream depletion volume ration Vratio vs. unitless time 𝟒𝑻
𝑺
∙ 𝒕
𝒂𝟐

 for the five wells 

used for study, each curve (with a different shape) represents a well as shown in the legend  

 

2.3 Pumping in a Finite/Bounded Aquifer 

In this work, an aquifer is considered finite if characterized by a finite areal extension due 

to the presence of two parallel boundaries in a 2-dimensional domain. The aquifer has a width 

(w) equal to the distance between the two boundaries, and the operating well is located within 

this width. This estate yields a number of image wells across the two boundaries. As mentioned 
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above in Section 2.2.2, superposition of solution provides a useful approach to apply the Theis 

and Glover equations in order to calculate the distribution of drawdown in the aquifer, and the 

impact on the stream flow due to well operations. 

In this section, we consider two configurations of bounded aquifers: a) an aquifer 

comprised between a recharge boundary and a no-flow boundary, and b) an aquifers comprised 

between two recharge boundaries. 

Figure 2.10 shows practical examples of the two configurations mentioned above. In Figure 

2.10a the alluvial aquifer is comprised between a no-flow boundary represented by a physical 

boundary, at which the aquifer terminates, and a recharge boundary represented by a stream. In 

Figure 2.10b the aquifer is bounded between an irrigation ditch and a stream, in this case, both 

boundaries constitutes recharge, constant-head boundaries.  

 

(a) 

 

(b) 

Figure 2.10 Examples of finite constant width aquifers: (a) an aquifer between a no-

flow boundary (the physical boundary) and a recharge boundary (the stream), and 

(b) an aquifer comprised between two recharge boundaries (an irrigation ditch and 

a stream)  
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2.3.1 Superposition of Solutions: Drawdown 

Let us study first the case of a finite aquifer comprised between a no-flow/physical 

boundary and a recharge boundary (a stream). Figure 2.11 shows the well layout scheme 

obtained by applying the method of images accounting for the effect of the two boundaries. 

 

Figure 2.11 Distribution of image wells with their operation type for an operating 

well at x = b, in an aquifer bounded between a physical boundary and a stream  

As shown in Figure 2.11, the real well i0 produces two images across the two boundaries, 

which are in turn going to produce further images; this process creates an infinite series of image 

wells across the two boundaries of the finite aquifer. The wells are located symmetrically with 

respect to the no-flow boundary. On one side of this boundary, the wells are grouped into 

couples ordered sequentially according to the index j (j=1, 2, 3…). Each couple is characterized 

by wells with flow rates that are opposite in sign. If j is an odd integer the first well is extracting 

and the second well is injecting, whereas if j is an even integer the first well is injecting and the 

second well is extracting. 

In Figure 2.11, the coordinates of wells in group j with the indices i=2∙j-2 and i = 2∙j-1 are 

given by:  
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 𝑥!,!∙!!!   =    2 ∙ 𝑗  –   1 ∙   𝑤 − 𝑎 (2.67)  

 𝑥!,!∙!!!   =    2 ∙ 𝑗  –   1 ∙   𝑤 + 𝑎 (2.68)  

and the coordinates of image wells with respect to the axis of symmetry are:  

 𝑥!,!!∙!!!   =   −𝑥!,!∙!!! (2.69)  

 𝑥!,!∙!!!   =   −𝑥!,!∙!!! (2.70)  

All wells have the same y coordinate, yw. With the wells layout given in Figure 2.11, the 

drawdown at a generic time t due to a single well operating continuously with a rate Q, starting 

at time 𝜏, in a bounded aquifer characterized by transmissivity T and storativity S, is thus given 

by: 

 

𝑠 𝑥,𝑦; 𝑡 = −𝑄 (−1)!!! ∙
1
4𝜋𝑇

!

!!!

∙ 𝑊 𝑢 𝑟!∙!!!; 𝑡 − 𝜏 −𝑊 𝑢 𝑟!∙!!!; 𝑡 − 𝜏

+𝑊 𝑢 𝑟!!∙!!!; 𝑡 − 𝜏 −   𝑊 𝑢 𝑟!!∙!!!; 𝑡 − 𝜏

=   −𝑄 ∙𝑊!" 𝑆,𝑇, 𝑟!∙!!!, 𝑟!∙!!!, 𝑟!!∙!!!, 𝑟!!∙!!!, 𝜏;   𝑡  

(2.71)  

Where: 𝑊!" 𝑆,𝑇, 𝑟!∙!!!, 𝑟!∙!!!, 𝑟!!∙!!!,𝑟!!∙!!!, 𝜏;   𝑡  represents an equivalent well function 

equal to the sum of the four functions of well group j and their images, forming the contribution 

to drawdown in a bounded aquifer between a no-flow boundary (N) and a recharge boundary 

(R). 𝑟!∙!!! and 𝑟!∙!!! are the distances from the operating well locations (  𝑥!,!∙!!!  ,𝑦!) and 

(  𝑥!,!∙!!!  ,𝑦!)  to the observation point (x,y). Similarly, 𝑟!!∙!!! and 𝑟!!∙!!! are the distances of 

image wells at (  𝑥!,!!!∙!!,𝑦!) and (  𝑥!,!!∙!!!,𝑦!) to observation point (x,y). All distances are 
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calculated using Equation (2.17). The well functions in Equation (2.72) are calculated using the 

Theis well function (Equation (2.35)) and they are valid only if  𝑡 − 𝜏 > 0, or equal to zero 

otherwise. Such condition is applied to all well functions introduced in this section. 

Equation (2.71) can be generalized to calculate drawdown due to a well field with constant-

rate pumping wells: 

 𝑠 𝑥, 𝑦; 𝑡 =   −𝑄!  ∙𝑊!" 𝑆,𝑇, 𝑟!,!!∙!!, 𝑟!,!∙!!!, 𝑟!,!!∙!!!, 𝑟!,!!∙!!!, 𝜏!; 𝑡
!!"

!!!

 (2.72)  

Equations (2.71) and (2.72) are implemented in a Matlab code Finite.Drawdown.2D.m 

described in Appendix F. The code is built with a subroutine Theis.NR.m that calculates the well 

function 𝑊!" 𝑆,𝑇, 𝑟!,!!∙!!, 𝑟!,!∙!!!, 𝑟!,!!∙!!!, 𝑟!,!!∙!!!, 𝜏!; 𝑡 . 

Figures 2.12a and 2.12b show the drawdown distributions obtained using 

Finite.Drawdown.2D.m, at a snap shot time equal to 120 days due to a single continuously 

extracting well obtained using Equation (2.71), and due to two-well well field obtained using 

Equation (2.72), respectively. Wells locations and extraction rates are labeled in each plot. Other 

well’s data are given with details in Table 2.2 and aquifer properties are indicated in Table 2.1. 

The no-flow boundary is located at the y-axis and the recharge boundary is at x = 2000 m (the 

aquifer width is 2000 m).  
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 (a)  (b) 

Figure 2.12 Drawdown contours in a finite aquifer bounded by a physical boundary at x = 

0 and a stream at x = 2000 m (aquifer width 2000 m), due to (a) a single continuously 

extracting well and (b) two extracting wells well field, both captures at t equals 120 days, 

wells operation details are given in Table 2.1 

Now let us look at the configuration of finite aquifers bounded between two recharge 

boundaries. Figure 2.13 presents the well layout scheme created using the method of images to 

model the presence of the two boundaries. 
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Figure 2.13 Distribution of image wells with their operation type of a an operating well at x 

= b in an aquifer bounded between an irrigation ditch and a stream 

In this case, the no-flow boundary in Figure 2.11 is substituted by a secondary constant 

head boundary, for example, an irrigation ditch. This boundary represents the symmetry axis for 

the well layout. The image wells created across the axis of symmetry will have different 

operation types (in order) than their equivalents across a no-flow boundary. This condition 

causes the two wells in well group j to have the same order of operation types for all groups j; 

that is, extraction for the first well and injection for the second. Wells coordinates are obtained 

using Equations (2.67), (2.68), (2.69) and (2.70) and all wells distances to the observation point 

(x,y) are the same as in the former case. The drawdown general equation for the configuration in 

Figure 2.13 is as follows: 
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𝑠 𝑥,𝑦; 𝑡 = −𝑄
1
4𝜋𝑇 ∙𝑊 𝑢 𝑟!∙!!!; 𝑡 − 𝜏

!

!!!

−𝑊 𝑢 𝑟!∙!!!; 𝑡 − 𝜏 −𝑊 𝑢 𝑟!!∙!!!; 𝑡 − 𝜏

+   𝑊 𝑢 𝑟!!∙!!!,; 𝑡 − 𝜏

= −𝑄 ∙𝑊!! 𝑆,𝑇, 𝑟!∙!!!, 𝑟!∙!!!, 𝑟!!∙!!!,𝑟!!∙!!!, 𝜏;   𝑡  

(2.73)  

where 𝑊!! 𝑆,𝑇, 𝑟!∙!!!, 𝑟!∙!!!, 𝑟!!∙!!!,𝑟!!∙!!!, 𝜏;   𝑡  is the sum of the four functions of well group j 

and their images forming the contribution to drawdown in a system bounded between two 

recharge boundaries (RR).  

Consequently, the drawdown due to a well field of m wells is calculated by: 

 

𝑠 𝑥,𝑦; 𝑡

= = −𝑄!

!!"

!!!

∙𝑊!! 𝑆,𝑇, 𝑟!,!∙!!!, 𝑟!,!∙!!!, 𝑟!,!!∙!!!,𝑟!,!!∙!!!, 𝜏!; 𝑡  

(2.74)  

Figure 2.14a shows the drawdown distribution due to a single continuously extracting well, 

and Figure 2.14b shows the drawdown distributions due to two extracting wells. Both 

distributions are plotted using the Matlab code Finite.Drawdown.2D.m which, in this case, calls 

a subroutine Theis.RR.m to calculate the well function 

𝑊!! 𝑆,𝑇, 𝑟!,!∙!!!, 𝑟!,!∙!!!, 𝑟!,!!∙!!!,𝑟!,!!∙!!!, 𝜏!; 𝑡 , detailed description of the code is in 

Appendix F. The labels in the figures indicate wells locations and extraction rates. Table 2.2, 

gives the detailed wells’ data, whereas aquifer properties are given in Table 2.1. The irrigation 

ditch is located on the y-axis and the stream is at x = 2000 m (the aquifer width is 2000 m). The 

snap shot time is 120 days. 
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(a) (b) 

Figure 2.14 Drawdown contours in a finite aquifer bounded by a ditch located on the y-axis 

and a stream at x = 2000 m (aquifer width), due to (a) a single continuously extracting well 

and (b) a two extracting wells well field with operation details listed in Table 2.1, the 

figures are plotted at t equals 120 days 

 

2.3.2 Superposition of solutions: Steam Depletion 

To develop stream depletion general equations for a stream being one of the two bodies 

bounding a finite aquifer, the principle of superposition of effects is applied to all image wells 

introduced to the system to simulate the presence of the two boundaries. Figure 2.15 shows the 

layout scheme for image wells of an operating well located at x = b. In this case, the no-flow 

boundary represents symmetry axis for the well layout, and it is located on the y-axis. 
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Figure 2.15 Image wells layout scheme with their operation type for a well in a finite 

aquifer bounded between a physical (no-flow) boundary on the y-axis and a recharge 

boundary located at x=w (the width of the aquifer) 

As shown in Figure 2.15, wells to the left side of the symmetry axis are grouped in couples 

named Glover groups g (g= 1, 2, 3, …). Wells in group g have a different order (operation wise) 

from one group to the next. Wells coordinates are obtained using equations similar to Equations 

(2.67), (2.68), (2.69) and (2.70). 

The total stream depletion rate can be obtained by applying superposition of solutions for 

the well system represented in Figure 2.15: 
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𝑄! 𝑄, 𝑆,𝑇,𝑤,𝑎; 𝑡       

= 𝑄

∙ 𝑄!"#$% 𝑆,𝑇,𝑤,𝑎, 𝜏; 𝑡

+ −1 !!! 𝑄!"#$% 𝑆,𝑇,𝑤, 2𝑔.𝑤
!

!!!

− 𝑎 , 𝜏; 𝑡   –𝑄!"#$% 𝑆,𝑇,𝑤, 2𝑔.𝑤 + 𝑎 , 𝜏; 𝑡

= 𝑄 ∙ 𝐵𝑁𝑄!"#$% 𝑆,𝑇,𝑤,𝑎, 𝜏;   𝑡  

(2.75)  

Analogously, the stream depletion volume is obtained as: 

 

𝑉!    𝑄, 𝑆,𝑇,𝑤,𝑎; 𝑡

= 𝑄 ∙ 𝑡 − 𝜏

∙ −1 ! ∙ 𝐶 𝑆,𝑇,𝑤,𝑎,𝑔, 𝜏; 𝑡 + −1 !
!

!!!

∙ 𝐷 𝑆,𝑇,𝑤,𝑎,𝑔, 𝜏; 𝑡

= 𝑄 ∙ 𝑡 − 𝜏 ∙ 𝐵𝑁𝑉!"#$% 𝑆,𝑇,𝑤,𝑎, 𝜏;   𝑡  

(2.76)  

In Equation (2.75) and (2.76), the term −1 !!!is added to account for the change in wells 

extraction/injection order of group g. BNQratio is the stream depletion rate ratio for a stream in a 

bounded aquifer with a no-flow boundary as the axis of symmetry, representing the sum of 

stream depletion rate function of the two well in group g. Likewise, 𝐵𝑁𝑉!"#$% 𝑆,𝑇,𝑊,𝑎, 𝜏; 𝑡  in 

Equation (2.76) is the stream depletion volume ratio, which equals the sum of stream depletion 

volume function of the two wells of group g and their images. The functions C and D in 

Equation (2.76) are calculated as: 
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 𝐶 𝑆,𝑇,𝑤,𝑎,𝑔, 𝜏; 𝑡 =   𝑉!"#$% 𝑆,𝑇,𝑤, 2𝑔.𝑤 + 𝑎 , 𝜏;   𝑡  (2.77)  

 𝐷 𝑆,𝑇,𝑤,𝑎,𝑔, 𝜏; 𝑡 = 𝑉!"#$% 𝑆,𝑇,𝑤, 2𝑤 + 2𝑔.𝑤 − 𝑎 , 𝜏; 𝑡  (2.78)  

The application of Equations (2.75) and (2.76) are simulated using a Matlab code 

Finite.Glover.m with the manual given in Appendix H.  

Figure 2.16 shows the stream depletion function profile with unit less time !!
!
. !
!!

  for 

stream depletion rate ratio (represented by the dashed line) and stream depletion volume ratio 

(represented by the solid line), due to a well pumping continuously for simulation period of 1 

year (365 days). The well is located at 500 m away from the stream in an aquifer bounded 

between a no-flow boundary and a stream, and the aquifer width is 2000 m. These profiles are 

obtained using the Matlab code Finite.Glover.m which calls the function BNRQratio.m and 

BNRVratio.m to calculate stream depletion ratios in Equations (2.75) and (2.76). Aquifer 

properties used to develop this plot are listed in Table 2.1. 

 

Figure 2.16 Stream depletion rate ratio (solid line) and stream depletion volume ratio 

(dashed line) caused by a well located at 500 m from a stream in a finite aquifer bounded 

between a no-flow boundary and a stream with a width 2000 m, the well operates 

continuously for 1 years (365 days) 
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Figure 2.17 shows the stream depletion volume functions profile with unit less time !!
!
. !
!!

  

for a well operating in a semi-infinite aquifer (dashed line) and in a finite aquifer bounded 

between a no-flow boundary and a stream (solid line) with a width 2000 m, the well is located at 

500 m from the stream in both cases and it is pumping continuously for 10 years (3650 days). 

Aquifer properties used to develop this plot are listed in Table 2.1. 

 

Figure 2.17 stream depletion volume due to a well operating continuously for 10 years 

(3650 days) located at 500 m away from a stream in as semi-infinite aquifer (dashed line) 

and a stream in a finite aquifer bounded between a no-flow boundary (solid line) and a 

stream with a width of 2000 m 

 

In Figure 2.17, the ratio between stream depletion volume and the actual pumped volume 

in a finite aquifer (solid line) reaches the steady state (when the ratio equals 1.0) faster than its 

equivalent in semi-infinite aquifer, due to the limitation on the lateral area in the former case, 

which constricts the expansion of the cone of depression within the aquifer in the direction of the 

no-flow boundary and force it to reach the stream in a less time. Stream depletion general 

equations for the case of a well field are obtained by applying the principle of superposition. The 

stream depletion rate is given by: 
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 𝑄!,!"!#$ =    𝑄! ∙ 𝐵𝑁𝑄!"#$%   𝑆,𝑇,𝑤,𝑎!, 𝜏!; 𝑡
!!"

!!!

 (2.79)  

The stream depletion volume is calculated as: 

 𝑉!,!"!#$ = 𝑄! ∙ 𝑡 − 𝜏! ∙ 𝐵𝑁𝑉!"#$%   𝑆,𝑇,𝑤,𝑎!, 𝜏!; 𝑡
!!"

!!!

 (2.80)  

In Equations (2.79) and (2.80), the functions 𝐵𝑁𝑄!"#$% and 𝐵𝑁𝑉!"#$% are equal to zero if 

𝑡 ≤ 𝜏! 

Application of super-position of effects to stream depletion due to image wells in a 

bounded aquifer between two recharge boundaries (an irrigation ditch and a stream) produces the 

well layout shown in Figure 2.18. Glover groups similar to those created for the former 

configuration Figure 2.18 are going to be used here, whereby the wells order 

(injection/extraction) does not change from one group to the other, due to the type of the 

boundary representing the axis of symmetry characterized by the irrigation ditch. 

 

Figure 2.18 Image wells layout scheme with their operation type of a well at x = b in a 

bounded aquifer between an irrigation ditch and a stream  
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Given the well layout presented in Figure 2.18, the stream depletion rate due to a single 

operating well is thus given as: 

 

𝑄! 𝑄, 𝑆,𝑇,𝑤,𝑎; 𝑡

=   𝑄

∙ 𝑄!"#$% 𝑆,𝑇,𝑤,𝑎, 𝜏; 𝑡

+ − 𝑄!"#$% 𝑆,𝑇,𝑤, 2𝑔.𝑤 − 𝑎 , 𝜏;   𝑡
!

!!!

+ 𝑄!"#$% 𝑆,𝑇,𝑤, 2𝑔.𝑤 + 𝑎 , 𝜏;   𝑡

= 𝑄 ∙ 𝐵𝑅𝑄!"#$% 𝑆,𝑇,𝑤,𝑎, 𝜏; 𝑡  

(2.81)  

Correspondingly, the volume of stream depletion is: 

 

𝑉!    𝑄, 𝑆,𝑇,𝑤,𝑎; 𝑡

= 𝑄 ∙ 𝑡 − 𝜏

∙   𝐶 𝑆,𝑇,𝑤,𝑎,𝑔, 𝜏;   𝑡 − 𝐷 𝑆,𝑇,𝑤,𝑎,𝑔, 𝜏;   𝑡
!

!!!

= 𝑄 ∙ 𝑡 − 𝜏 ∙ 𝐵𝑅𝑉!"#$% 𝑆,𝑇,𝑤,𝑎, 𝜏;   𝑡  

(2.82)  

where 𝐵𝑅𝑄!"#$% is the stream depletion ratio function, and 𝐵𝑅𝑉!"#$% is the stream depletion 

volume function, in an aquifer bounded between two recharge boundaries. Both functions are 

equal to zero if 𝑡 ≤ 𝜏. 
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Functions 𝐵𝑅𝑄!"#$% 𝑆,𝑇,𝑤,𝑎, 𝜏; 𝑡  and 𝐵𝑅𝑉!"#$% 𝑆,𝑇,𝑤,𝑎, 𝜏;   𝑡  are implanted in Matlab 

subroutines BRRQratio.m and BRRVratio.m, respectively, both subroutines are called by the 

main code Finite.Glover.m to calculate stream depletion. Code details are given in Appendix H. 

Figure 2.19 shows the stream depletion function profile with unit less time !!
!
. !
!!

  for stream 

depletion rate ratio (represented by the dashed line) and stream depletion volume ratio 

(represented by the solid line), due to a well pumping continuously for simulation period of 1 

year (365 days). The well is located at 500 m away from the stream in an aquifer bounded 

between an irrigation ditch and a stream, and the aquifer width is 2000 m. these profiles are 

obtained using the Matlab code Finite.Glover.m. Aquifer properties used to develop this plot are 

listed in Table 2.1. 

 

Figure 2.19 Stream depletion rate ratio (solid line) and stream depletion volume ratio 

(dashed line) caused by a well located at 500 m from a stream in a finite aquifer bounded 

between an irrigation ditch and a stream with a width 2000 m, the well operates 

continuously for 1 years (365 days) 

Figure 2.20 shows the stream depletion volume functions profile with unit less time !!
!
. !
!!

  

for a well operating in a semi-infinite aquifer (dashed line) and in a finite aquifer bounded 
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between a an irrigation ditch and a stream (solid line) with a width 2000 m, the well is located at 

500 m from the stream in both cases and it is pumping continuously for 10 years (3650 days). 

Aquifer properties used to develop this plot are listed in Table 2.1. 

 

Figure 2.20 stream depletion volume due to a well operating continuously for 10 years 

(3650 days) located at 500 m away from a stream in as semi-infinite aquifer (dashed line) 

and a stream in a finite aquifer bounded between an irrigation ditch (solid line) and a 

stream with a width of 2000 m 

Note that, in the bounded aquifer configuration considered here, the other recharge 

boundary (irrigation ditch) represents a supply source for the aquifer besides the stream under 

study, so the actual pumped volume will eventually equal the sum of the stream depletion 

volume from both of the boundaries, that is why a delay can be noticed between the point where 

the ration between stream depletion volume and the actual pumped volume attains the steady 

state in the case of semi-infinite aquifer and its equivalent in the current case. 
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In the case of well field, the total stream depletion rate is calculated as: 

 𝑄!,!"!#$ =    𝑄! ∙ 𝐵𝑅𝑄!"#$%   𝑆,𝑇,𝑤,𝑎!, 𝜏!; 𝑡
!!"

!!!

 (2.83)  

Likewise, stream depletion volume is obtained by: 

 𝑉!,!"!#$ = 𝑄! ∙ (𝑡 − 𝜏!) ∙ 𝐵𝑅𝑉!"#$%   𝑆,𝑇,𝑤,𝑎!, 𝜏!; 𝑡
!!"

!!!

 (2.84)  

Note that, Equations (2.81) and (2.83) are used to estimate the impact of well pumping on 

the stream, which, in Figure 2.17 is represented by the straight line x=w. the rates and volumes 

of depletion produced on the secondary recharge boundary, that is, the irrigation ditch, can be 

calculated using the same equations presented above, after changing the stream/well distance to b 

instead of a. 

Figure 2.21 shows the stream depletion volume functions profile with unit less time !!
!
. !
!!

  

for a well operating in a finite bounded between a no-flow boundary and a stream (dashed line) 

and in a finite aquifer bounded between a an irrigation ditch and a stream (solid line) with a 

width 2000 m, the well is located at 500 m from the stream in both cases and it is pumping 

continuously for 10 years (3650 days). Aquifer properties used to develop this plot are listed in 

Table 2.1. 
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Figure 2.21 The stream depletion volume functions profile with unit less time 𝟒𝑻
𝑺
. 𝒕
𝒂𝟐

  for a 

well operating in a finite aquifer bounded between a no-flow boundary and a stream (solid 

line) and in a finite aquifer bounded between a an irrigation ditch and a stream (dashed 

line) with a width 2000 m, the well is located at 500 m from the stream in both cases and it 

is pumping continuously for 10 years (3650 days). Aquifer properties used to develop this 

plot are listed in Table 2.1. 

 

2.4 Cyclical Operation of Wells 

In this section, we consider the case of a periodic operation of wells. Figure 2.22 illustrates 

the cyclic operation rate profile over time for a single well. The well operates at a constant rate Q 

over a given period ∆ton and it is shut off during a period ∆toff. The length of the full cyclic period 

∆t is given by the sum of ∆ton and ∆toff. 
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Figure 2.22 the schedule plan for a well operating cyclically until t: [3∆t + ∆ton ≤ t ≤ 4∆t]. 

The well operates with a constant rate Q, for a period ∆ton during each operating cycle, 

starting at 𝜏!  

 ∆𝑡 =   ∆𝑡!" +   ∆𝑡!"" (2.85)  

As previously mentioned, continuous operation is one of the limitations of the Theis 

solution (Equation (2.34)) and Glover solution (Equation (2.57)). The principle of superposition 

may be used to overcome this obstacle; whereby there is a variation of the pumping rate, one can 

simulate the activation of a new imaginary well, located at the same position of the real well with 

a rate equal to the change of the pumping rate and opposite sign. For example, for the cyclic 

operation depicted in Figure 2.22, at any given time t, the effect occurred on the system during 

the generic interval of time ∆𝑡!" within the operation full cycle i (i=1,2,3…) can be simulated by 

two wells: the first well starts operating continuously at time 𝜏! = 𝑖 − 1 ∙ ∆𝑡 with a rate Q, and 

the second wells starts operating continuously at time 𝜏! = 𝑖 − 1 ∙ ∆𝑡 +   ∆𝑡!" with a rate –Q.  

At the generic time t, the number of full cycles (on and off) that have been completed is given 

by: 
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 𝑛 = 𝑖𝑛𝑡  
𝑡
∆𝑡  (2.86)  

where 𝑖𝑛𝑡  (𝑥) is the integer part of the real number x. 

2.4.1 Superposition of Effects: Drawdown 

The drawdown general equation for the cyclic operation of a well is developed using the 

principle of superposition for the effects of the n couples of wells operating during n full cycles, 

plus an extra term accounting for the well operation during the current cycle. This extra 

contribution has a different expression depending if t falls within the period ∆𝑡!" or within the 

period ∆𝑡!"". In a laterally infinite aquifer the resulting drawdown is thus given by the flowing 

equation: 

 

𝑠 𝑟; 𝑡 = −𝑄 ∙𝑊! 𝑆,𝑇, 𝑟,∆𝑡,∆𝑡!", 𝜏, 𝜏; 𝑡     

= −𝑄
1
4𝜋𝑇 𝑊 𝑢(𝑟; 𝑡 − 𝜏!) −𝑊 𝑢(𝑟; 𝑡 − 𝜏𝒊)

!

!!!

+ 𝑊 𝑢(𝑟; 𝑡 − 𝜏!!!)       𝑖𝑓      n ∙ ∆𝑡   < 𝑡 ≤ n ∙ ∆𝑡 + ∆𝑡!"
𝑊 𝑢(𝑟; 𝑡 − 𝜏!!!) −𝑊 𝑢 𝑟; 𝑡 − 𝜏!!!   𝑖𝑓      n ∙ ∆𝑡 + ∆𝑡!" < 𝑡 ≤ (n+ 1) ∙ ∆𝑡  

(2.87)  

where 𝑊! 𝑆,𝑇, 𝑟,∆𝑡,∆𝑡!", 𝜏, 𝜏;   𝑡    is the overall well function, representing the accumulated 

response of the system to the operation of the wells couples during n full cycles plus an extra 

term accounting for the well operation during the most current period ∆𝑡. All the well functions 

in this section are valid only when 𝑡 − 𝜏 > 0, or otherwise they are set to quale zero. 

The drawdown general equation for a system of wells operating cyclically within the same 

period ∆𝑡 is the following: 

 𝑠 𝑥,𝑦; 𝑡 = −𝑄! ∙   𝑊! 𝑆,𝑇, 𝑟!,∆𝑡,∆𝑡!",!, 𝜏!, 𝜏!; 𝑡  
!!"

!!!

 (2.88)  
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In Equation (2.88), 𝑟! is the distance between the generic well m and the observation point 

(x,y). Each well has a generic operation starting time. Figure 2.23 shows the drawdown profiles 

over time for a ten-year long simulation total duration (t=10 years), calculated at two observation 

points located at a distance r equals 15 m (represented by the dashed line) and r equals 150 m 

(represented by the solid line). The well operates cyclically at a rate of -500 m3/day, for a period 

of 180 days in each cycle starting at time 𝜏 =0. The length of the operation cycle ∆𝑡 is 365 days 

(one year). The profiles are obtained using the Matlab code Infinite.Drawdown.Time.m 

presented in Appendix B. Aquifer properties are given in Table 2.1.  

 

Figure 2.22 Drawdown profiles over time in two observation points distant 15 m 

(s15, represented by the dashed line) and 150 m (s150, represented by the solid line) 

from a well operating cyclically starting at 𝝉 = 0 for a total simulation period of ten 

years (t=10 years), the well operates with a rate of -500 m3/day during 180 days in 

each cycle, where the cycle length ∆𝑡 is 365 days  

 Figures 2.24a and 2.24b show the drawdown spatial distribution obtained by the Matlab 

code Infinite.Drawdown.2D.m at a time t = 100 days, and t = 200 days, respectively, due to a 

well operating cyclically, for a period ∆𝑡!" = 180 days every year. The drawdown distribution 
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shown in Figure 2.23c and 2.23d are due to a two-well well field for the same times as in 

subpanel (a) and (b) respectively, these snapshots times are taken during the operation period and 

after the operation has been ceased, respectively. Wells’ locations and operation rates are labeled 

in each plot. Table 2.1 contains the aquifer properties, and Table 2.2 contains the detailed well 

field data, the operation rates and wells locations are labeled in the figures. Appendix A has the 

detailed description of the code Infinite.Drawdown.2D.m.  
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(a) (b) 

 

(c) 

 

(d) 

Figure 2.24 Drawdown contours caused by a single well operating cyclically at a rate of -

500 m3/day for ∆𝒕𝒐𝒏   = 180 days in subpanels (a) and (b), the images are taken at a snap 

shot times t =100 days (during ∆𝒕𝒐𝒏  ) and t = 200 days (during ∆𝒕𝒐𝒇𝒇  ), respectively, for a 

cycle length ∆𝑡 =365 days. In (c) and (d) the drawdowns are caused by a two-well well field 

for the same times as in (a) and (b) respectively, wells data are given in details in Table 2.2  
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In the case of semi-infinite aquifers bounded by either a recharge or a no-flow boundary, an 

equation similar to (2.87) applies, except that the well function 𝑊!  must be substituted by the 

following well function: 

 

𝑊!"# 𝑆,𝑇, 𝑟,∆𝑡,∆𝑡!", 𝜏, 𝜏; 𝑡     

=
1
4𝜋𝑇 𝑊!/! 𝑢(𝑟!, 𝑟!; 𝑡 − 𝜏!) −𝑊!/! 𝑢(𝑟!, 𝑟!; 𝑡 − 𝜏!)

!

!!!

+

𝑊!/! 𝑢(𝑟!, 𝑟!; 𝑡 − 𝜏!!!)       
𝑖𝑓      n ∙ ∆𝑡   < 𝑡 ≤ n ∙ ∆𝑡 + ∆𝑡!"

𝑊!/! 𝑢(𝑟!, 𝑟!; 𝑡 − 𝜏!!!) −𝑊!/! 𝑢 𝑟!, 𝑟!; 𝑡 − 𝜏!!!
  𝑖𝑓      n ∙ ∆𝑡 + ∆𝑡!"   < 𝑡 ≤ (n+ 1) ∙ ∆𝑡

 

(2.89)  

 

where 𝑊!"# 𝑆,𝑇, 𝑟,∆𝑡,∆𝑡!", 𝜏, 𝜏;   𝑡    is the overall well function for the group of wells simulating 

the cyclical operation in a semi-infinite aquifer with a recharge boundary 𝑊! 𝑟!, 𝑟!, 𝜏; 𝑡  

(Equation (2.41)) or with a no-flow boundary 𝑊! 𝑟!, 𝑟!, 𝜏; 𝑡  (Equation (2.42)), along with their 

equivalent well functions (𝑊! 𝑟!, 𝑟!, 𝜏; 𝑡 )  and (𝑊! 𝑟!, 𝑟!, 𝜏; 𝑡 ) included to calculate the effect 

of the second well and its image well located at 𝑟!  and  𝑟! from the observation point, 

respectively, which start operating at 𝜏!. These well functions are valid only if 𝑡 − 𝜏 > 0, 

otherwise the function is set to be equal to zero. 

Accordingly, the drawdown equation for a well field in a semi-infinite aquifer, where each 

well operates cyclically is obtained by superposition of solutions as follows:  

       𝑠 𝑥,𝑦; 𝑡 = −𝑄!.𝑊!"# 𝑆,𝑇, 𝑟!,∆𝑡,∆𝑡!",!, 𝜏!, 𝜏!; 𝑡  
!!"

!!!

   (2.90)  
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where 𝑟! is the distance between the generic well m and the observation point (x,y), 𝜏! is the 

generic operation starting time for well m and 𝜏!  is the operating starting time for the imaginary 

well m. Figure 2.25a shows the drawdown vs. time profiles over ten years plotted using the 

Matlab code (SI.Drawdown.Time) for two observation points located at distances 200 m 

(represented by the solid line) and 800 m (represented by the dashed line) from the recharge 

boundary, respectively, in a semi-infinite aquifer. The two observation points are at the same 

distance from the operating well (r= 425 m) that operates cyclically for 180 days every year (∆𝑡 

= 365) starting at time 𝜏=0, with a cyclic extraction rate of -500 m3/day. The well is located at 

500 m from the recharge boundary. Similarly, Figure 2.25b shows the drawdown profiles vs. 

time, for the same setting as in subpanels (a) in a semi-infinite aquifer is with a no-flow 

boundary. Appendix D includes the detailed description of the Matlab code 

SI.Drawdown.Time.m. 
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(a) (b) 

Figure 2.25 Drawdwon profiles in a semi-infinte aquifer with (a) a recharge boundary, 

and (b) a no-flow boundary, at two observation points located at 200 m (represented by 

the solid line) and 800 m (represented by the dashed line) from the boundary, both of 

the observation points are at 425 m from the operating well, which is located at 500 m 

from the boundary. The well starts operating at time 𝝉=0, with a cyclic extraction rate 

of -500 m3/day and operation period of 180 days during each cycle, with a cycle length of 

(365 days). 

Figure 2.26 shows the drawdwon distributions obtained by applying the Matlab code 

SI.Drawdwon.2D.m at time t = 200 days (during operation period ∆𝑡!""), caused by an 

extracting well field of two wells, in a semi-infinite aquifer with (a) a recharge boundary at x=0 

(the y-axis), and (b) a no-flow boundary at the y-axis. The aquifer properties are given in Table 

2.1, and in Table 2.2, the extraction rates and operation sechedule of the well field are listed. 

Figure 2.6 illustrates the drawdwon distributions for the same setting as in Figure 2.26a and 

2.26b at a snap shot t=100 days (during operation period ∆𝑡!"), both figures are obtained using 

Matlab code SI.Drawdwon.2D.m presented in Appendix C. 
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(a) 

             

  (b) 

Figure 2.26 Drawdown contours occuring during the cyclic extraction ∆𝒕𝒐𝒇𝒇 period (t=200 

days), due to a two-well well field in (a) in a semi-infinite aquifer with a recharge boundary 

(b) in a semi-infinite aquifer with a no-flow boundary. Well fild data are listed in details in 

table 2.2. 

 

2.4.2 Superposition of Effects: Stream depletion 

Equations similar to those derived in section 2.4.1 can be obtained to assess the impact on 

stream depletion flow of cyclic well pumping in an aquifer hydraulically connected to a stream. 

Similar to Equation (2.87), the stream depletion rate Qr and the stream depletion volume Vr  are 

given by the two following equations: 

 𝑄! 𝑄, 𝑆,𝑇,𝑎; 𝑡 = 𝑄.𝑄!,!"#$% 𝑆,𝑇,𝑎,∆𝑡,∆𝑡!", 𝜏, 𝜏; 𝑡  (2.91)  

 𝑉! 𝑄, 𝑆,𝑇,𝑎; 𝑡 = 𝑄.𝑉!,!"#$% 𝑆,𝑇,𝑎,∆𝑡,∆𝑡!", 𝜏, 𝜏; 𝑡  (2.92)  

where: 
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𝑄!,!"#$% 𝑆,𝑇,𝑎,∆𝑡,∆𝑡!", 𝜏, 𝜏; 𝑡

= 𝑄!"#$% 𝑆,𝑇,𝑎; 𝑡 − 𝜏! − 𝑄!"#$% 𝑄, 𝑆,𝑇,𝑎; 𝑡 − 𝜏!

!

!!!

+   

𝑄!"#$% 𝑆,𝑇,𝑎; 𝑡 − 𝜏!!!
𝑖𝑓      n ∙ ∆𝑡   < 𝑡 ≤ n ∙ ∆𝑡 + ∆𝑡!"

𝑄!"#$% 𝑆,𝑇,𝑎; 𝑡 − 𝜏!!! − 𝑄!"#$% 𝑄, 𝑆,𝑇,𝑎; 𝑡 − 𝜏!!!
𝑖𝑓      n ∙ ∆𝑡 + ∆𝑡!"   < 𝑡 ≤ n+ 1 ∙ ∆𝑡

   

(2.93)  

and 

 

𝑉!,!"#$% 𝑆,𝑇, 𝑎,∆𝑡,∆𝑡!", 𝜏, 𝜏; 𝑡

= (𝑡 − 𝜏!) ∙ 𝑉!"#$% 𝑆,𝑇, 𝑎; 𝑡 − 𝜏! − 𝑡 − 𝜏! ∙ 𝑉!"#$% 𝑄, 𝑆,𝑇, 𝑎; 𝑡 − 𝜏!

!

!!!

+   

(𝑡 − 𝜏!!!).𝑉!"#$% 𝑆,𝑇, 𝑎; 𝑡 − 𝜏!!!
𝑖𝑓      n ∙ ∆𝑡   < 𝑡 ≤ n ∙ ∆𝑡 + ∆𝑡!"

(𝑡 − 𝜏!!!) ∙ 𝑉!"#$% 𝑆,𝑇, 𝑎; 𝑡 − 𝜏!!! − 𝑡 − 𝜏!!!    ∙ 𝑉!"#$% 𝑄, 𝑆,𝑇, 𝑎; 𝑡 − 𝜏!!!
𝑖𝑓      n ∙ ∆𝑡 + ∆𝑡!"   < 𝑡 ≤ n + 1 ∙ ∆𝑡

   

(2.94)  

Equations (2.91) and (2.92) can be generalized to calculate stream depletion due to a 

cyclically operating well filed as following: 

 𝑄!,!"!#$ 𝑡 = 𝑄!.𝑄!𝑟𝑎𝑡𝑖𝑜 𝑆,𝑇,𝑎!,∆𝑡,∆𝑡!",!, 𝜏!, 𝜏!; 𝑡
!!"

!!!

 (2.95)  

 𝑉!,!"!#$ 𝑡 = 𝑄!.𝑉!𝑟𝑎𝑡𝑖𝑜 𝑆,𝑇,𝑎!,∆𝑡,∆𝑡!",!, 𝜏!, 𝜏!; 𝑡
!!"

!!!

 (2.96)  

Note that, all the stream depletion function ratios and stream depletion volume ratios 

mention above are equal to zero if 𝑡 ≤ 𝜏. 

Figure 2.27 shows the stream depletion volume profile with time for ten years long 

simulation obtained using SI.Glover.m a Matlab code given in appendix E, due to a cyclical 

operation of a well located at 500 m from the stream, obtained by using the Matlab code 
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SI.Glover.m. The well is extracting cyclically with a rate of -500 m3/day for a period of 180 days 

during each cycle (∆𝑡=365) starting at time 𝜏= 0.  Aquifer properties are listed in Table 2.1. 

	  

Figure 2.27 The stream depletion volume profile with time for ten years long simulation, 

due to a cyclical operation of a well located at 500 m from the stream. The well is extracting 

cyclically with a rate of -500 m3/day for a period of 180 days during each cycle (∆𝒕=365) 

starting at time 𝝉= 0 

 

2.5 Cyclic Operation in a Finite Aquifer  

This case addresses two limitations of the Theis and Glover solutions, that is, the condition 

of infinite areal extension of the aquifer and the condition of continuous constant-rate operation 

of the well. Once more, superposition of solutions is the approach used to remove these 

hypotheses. The response of the system is thus obtained by assuming the presence of two groups 

of wells: the first group represents image wells that simulate the presence of the aquifer 

boundaries, and the second group represents the imaginary wells that simulate the cyclic well 

operation. 
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2.5.1 Superposition of Effects: Drawdown 

In a constant width finite aquifer characterized by one of the two configurations presented 

in Figure 2.11 and 2.13, the drawdown at a generic point (x,y) caused by a cyclically operating 

well with an operation schedule such as that graphed in Figure 2.21 is given by: 

 

𝑠 𝑥, 𝑦; 𝑡 = −𝑄 ∙𝑊!" 𝑆,𝑇, 𝑟!∙!!!, 𝑟!∙!!!, 𝑟!!∙!!!, 𝑟!!∙!!!,∆𝑡,∆𝑡!", 𝜏, 𝜏; 𝑡   

= −𝑄  .
1
4𝜋𝑇

!

!!!

∙ 𝑊! 𝑆,𝑇, 𝑟!∙!!!, 𝑟!∙!!!, 𝑟!!∙!!!, 𝑟!!∙!!!; 𝑡 − 𝜏! −𝑊! 𝑆,𝑇, 𝑟!!!!, 𝑟!!!!, 𝑟!!!!!, 𝑟!!!!!; 𝑡 − 𝜏!

!

!!!

+

𝑊! 𝑆,𝑇, 𝑟!!!!, 𝑟!!!!, 𝑟!!!!!, 𝑟!!!!!; 𝑡 − 𝜏!!!

!

!!!
𝐼𝑓      n ∙ ∆𝑡   < 𝑡 ≤ n ∙ ∆𝑡 + ∆𝑡!"

𝑊! 𝑆,𝑇, 𝑟!!!!, 𝑟!!!!, 𝑟!!!!!, 𝑟!!!!!; 𝑡 − 𝜏!!! −𝑊! 𝑆,𝑇, 𝑟!!!!, 𝑟!!!!, 𝑟!!!!!, 𝑟!!!!!; 𝑡 − 𝜏!!!

!

!!!
𝐼𝑓      n ∙ ∆𝑡 + ∆𝑡!"   < 𝑡 ≤ n + 1 ∙ ∆𝑡

 

(2.97)  

where 𝑊!" 𝑆,𝑇, 𝑟!∙!!!, 𝑟!∙!!!, 𝑟!!∙!!!, 𝑟!!∙!!!,∆𝑡,∆𝑡!", 𝜏, 𝜏;   𝑡  is the overall well function for a 

cyclically operating well in a finite aquifer. In Equation (2.97) this function is calculated based 

on 𝑊! 𝑆,𝑇, 𝑟!!∙!!, 𝑟!∙!!!, 𝑟!!∙!!!, 𝑟!!∙!!!, 𝜏;   𝑡 , which equals 

𝑊!" 𝑆,𝑇, 𝑟!∙!!!, 𝑟!∙!!!, 𝑟!!∙!!!,𝑟!!∙!!!, 𝜏;   𝑡  (Equation (2.71)) for an aquifer comprised between a 

no-flow boundary and a recharge boundary, or 

𝑊!! 𝑆,𝑇, 𝑟!∙!!!, 𝑟!∙!!!, 𝑟!!∙!!!,𝑟!!∙!!!, 𝜏;   𝑡 (Equation (2.73)) for an aquifer comprised between 

two recharge boundaries. 

Equation (2.97) can be generalized to calculate drawdown due to a cyclically operating 

well field of m wells in a finite aquifer, resulting in the following equation: 
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𝑠 𝑥, 𝑦; 𝑡

= −𝑄!𝑊!" 𝑆,𝑇, 𝑟!,!!∙!!, 𝑟!,!∙!!!, 𝑟!,!!∙!!!, 𝑟!,!!∙!!!,∆𝑡,∆𝑡!",!, 𝜏!, 𝜏!; 𝑡   
!!"

!!!

 
(2.98)  

Figure 2.28a shows the drawdown profiles with time for ten years long simulation, due to a 

cyclically operating well located at 1000 m from the no-flow boundary in an aquifer bounded 

between a no-flow boundary and a stream with a width 2000 m. The well is extracting at a 

constant rate of -1000 m3/day for a period of 180 days every year starting at a time 𝜏= 0, the 

cycle length ∆𝑡 is 365 days. The profiles are obtained in two observation points located at 500 m 

(represented by the solid line) and 1700 m (represented by the dashed line) from the no-flow 

boundary, and both of these observation points are at 707 m and 990 m away from the operating 

well, respectively. The aquifer parameters are given in Table 2.1. Figure 2.28b shows the same 

setting as in subpanel (a) for a finite aquifer comprised between irrigation ditch and a stream 

with 2000 m distance between them. Both figures are obtained using Matlab code 

Finite.Drawdown.Time.m introduced in Appendix G.  
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(a) 

 

(b) 

Figure 2.28 Drawdwon profiles due to a well operating cyclically in a finite aquifer with a 

constant width of 2000 m bounded between (a) a no-flow and a recharge boundary, and 

(b) an irrigation ditch and a stream. The profiles are obtained at two observation points 

located at 500 m (represented by the dashed line) and 1700 m (represented by the solid 

line) from the no-flow boundary in subpanel (a) and the irrigation ditch in subpanel (b). 

The operating well has a cyclic extraction rate of -1000 m3/day and operation period of 

180 days during each cycle (∆𝒕 =365 days) starting at a time 𝜏= 0. The observation points 

are at distances from the operating well r= 707 and r= 990,respectively, and the well is at 

1000 m away from the symmetry axis in each of the two plots 

Figure 2.29 shows the drawdown distributions at a snap shot time equal to 200 days (during 

the operation off time ∆𝑡!"" for ∆𝑡=365 days) due to a cyclically extracting well filed obtained 

using Equation (2.98), in a finite aquifer with a constant width of 2000 m bounded between (a) a 

no-flow boundary located at the y-axis and a stream, and (b) an irrigation ditch located at the y-

axis and a stream. Wells locations and extraction rates are labeled in each plot. Other well’s data 

are given with details in Table 2.2 and aquifer properties are indicated in Table 2.1. Drawdown 

distributions during operation time ∆𝑡!" are shown in Figures 2.12 and 2.14 for the same finite 
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aquifer configurations as in Figure 2.29a and 2.29b, respectively, all figures are obtained using 

the Matlab code Finite.Drawdown.2D.m presented in Appendix F. 

(a) (b) 

Figure 2.29 Drawdown contours in a constant width finite aquifer (w=2000 m) bounded 

between a no-flow boundary (located at the y-axis) and a stream, and an irrigation ditch 

(located at the y-axis) and a stream in  subpanels (a) and (b), respevtively. Drawdwon 

distributions are shown during the cyclic extraction period of ∆𝒕𝒐𝒇𝒇 (snap shot time is 200 

days) due to an extarctig well field of two wells with the operation detailes listed in Table 

2.2, operation rates and wells locations are labeled in each plot  

 

2.5.2 Superposition of Solutions: Stream depletion 

Based on superposition of effects, the depletion rate from a stream constituting a boundary 

for a finite-width aquifer caused by a cyclically operating well may be expressed as: 

 𝑄𝑟 = 𝑄.𝑄!",!"#$%   𝑆,𝑇,𝑤,𝑎,∆𝑡!",∆𝑡, 𝜏; 𝑡  (2.99)  

where 𝑄!",!"#$%   𝑆,𝑇,𝑤,𝑎,∆𝑡!",∆𝑡, 𝜏;   𝑡  is the accumulated sum of stream depletion rate ratio 

functions for a cyclically operating well. The function is calculated for a stream hydraulically 

connected to an aquifer bounded between the stream and another boundary of either no-flow type 
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or recharge type. This function is calculated as:  

 

𝑄!",!"#$%   𝑆,𝑇,𝑤, 𝑎,∆𝑡!",∆𝑡, 𝜏, 𝜏; 𝑡

=    𝐵𝑄!"#$% 𝑆,𝑇,𝑤, 𝑎; 𝑡 − 𝜏! − 𝐵𝑄!"#$% 𝑆,𝑇,𝑤, 𝑎; 𝑡 − 𝜏!

!

!!!

+   

𝐵𝑄!"#$% 𝑆,𝑇,𝑤, 𝑎; 𝑡 − 𝜏!!!
𝑖𝑓      n ∙ ∆𝑡   < 𝑡 ≤ n ∙ ∆𝑡 + ∆𝑡!"

𝐵𝑄!"#$% 𝑆,𝑇,𝑤, 𝑎; 𝑡 − 𝜏!!! − 𝐵𝑄!"#$% 𝑆,𝑇,𝑤, 𝑎; 𝑡 − 𝜏!!!
𝑖𝑓      n ∙ ∆𝑡 + ∆𝑡!"   < 𝑡 ≤ n + 1 ∙ ∆𝑡

   

(2.100)  

The function 𝐵𝑄!"#$% in Equation (2.100) is given by Equation (2.75) if the aquifer is 

limited, in addition to the stream, by a no-flow boundary, or by Equation (2.81) if the aquifer is 

limited by another constant head boundary. Similar to the stream depletion rate (Equation 

(2.99)), the stream depletion volume is obtained as: 

 𝑉𝑟 = 𝑄.𝑉!",!"#$%   𝑆,𝑇,𝑤,𝑎,∆𝑡!",∆𝑡, 𝜏, 𝜏; 𝑡  (2.101)  

where 𝑉!",!"#$%   𝑆,𝑇,𝑤,𝑎,∆𝑡!",∆𝑡, 𝜏, 𝜏; 𝑡  is the overall stream depletion volume ratio function 

representing the response to a well operating cyclically in a finite aquifer, bounded between the 

stream and another boundary of either no-flow type (Equation(2.76)) or recharge type 

(Equation(2.82)). This function is: 

 

𝑉!",!"#$%   𝑆,𝑇,𝑤, 𝑎,∆𝑡!",∆𝑡, 𝜏, 𝜏; 𝑡

=    (𝑡 − 𝜏!) ∙ 𝐵𝑉!"#$% 𝑆,𝑇,𝑤, 𝑎; 𝑡 − 𝜏! − (𝑡 − 𝜏!) ∙ 𝐵𝑉!"#$% 𝑆,𝑇,𝑤, 𝑎; 𝑡 − 𝜏!

!

!!!

+   

(𝑡 − 𝜏!!!) ∙ 𝐵𝑉!"#$% 𝑆,𝑇,𝑤, 𝑎; 𝑡 − 𝜏!!!
𝑖𝑓      n ∙ ∆𝑡   < 𝑡 ≤ n ∙ ∆𝑡 + ∆𝑡!"

𝑡 − 𝜏!!! ∙ 𝐵𝑉!"#$% 𝑆,𝑇,𝑤, 𝑎; 𝑡 − 𝜏!!! − 𝑡 − 𝜏!!! ∙ 𝐵𝑉!"#$% 𝑆,𝑇,𝑤, 𝑎; 𝑡 − 𝜏!!!
𝑖𝑓      n ∙ ∆𝑡 + ∆𝑡!"   < 𝑡 ≤ n + 1 ∙ ∆𝑡

   

(2.102)  

Figure 2.30 shows the stream depletion volume obtained using Matlab code 

Finite.Glover.m introduced in Appendix H. for a well operating cyclically in a constant-width 

finite aquifer (w=2000 m) bounded between the steam under study and a no flow boundary 

(represented by the dashed line), and a finite aquifer bounded between the stream and another 
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recharge boundary (represented by the solid line). The operating well is located at 1000 m from 

the stream and it is extracting with a rate -1000 m3/day for 180 days operation period for a cycle 

length (∆𝑡) equal to 365 days, over ten years simulation period, starting at time 𝜏=0.  

 

Figure 2.30 The stream depletion volume obtained for a well operating cyclically in a 

constant-width finite aquifer (w=2000 m) bounded between the steam under study and a 

no flow boundary (represented by the dashed line), and a finite aquifer bounded between 

the stream and another recharge boundary (represented by the solid line). The operating 

well is located at 1000 m from the stream and it is extracting with a rate -1000 m3/day for 

180 days operation period for a cycle length (∆𝒕) equal to 365 days, over ten years 

simulation period, starting at time 𝝉=0.  
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CHAPTER THREE: GROUNDWATER MANAGEMENT 

 

3.1 Groundwater Management  

The conjunctive management of water deals with the coordinated combined consumptive 

use of surface water and ground water resources, in order to efficiently meet the demands during 

times of water deficiency as well as availability. It is subject to laws regulating the water use; 

such as the prior appropriation system (also known as the priority doctrine) widely practiced in 

the western US. 

 

The phrase “first in time, first in right” describes the doctrine of prior appropriation, 

according to which, water users with earlier appropriation decrees or “senior right holders” have 

a superior right in full water allocation before “junior right holders”, who can get water supply 

only if that does not impact its availability for senior users. According to prior appropriation law, 

well water users are junior right holders; since historically they were granted use rights much 

later than when surface water use rights were fully allocated. Therefore, the water conjunctive 

management becomes a complex task when applied to a hydraulically connected stream/aquifer 

system under the prior appropriation system. Consequently, groundwater can be pumped from 

the aquifer for junior use (e.g. irrigation) under the condition of maintaining the minimal effect 

on the senior rights of the surface water (Grigg, 2005) 

 

An example of the application of such a system is the non-tributary and not non-tributary 

aquifers within the South-Platte river basins in northern Colorado. Pumping of these aquifers is 

permitted for overlaying landowners at a rate of 1% a year to avoid affecting the connected 



	  
	  

78	  

surface water up until 100 years; otherwise, groundwater pumping is allowed provided that the 

stream is recharged with an amount of water equivalent to that extracted (Colorado Foundation 

for Water Education, 2003). 

 

3.1.1. Optimization of Groundwater Use  

This chapter addresses the groundwater management problem of an agricultural land 

irrigated by extracting water from the underlying aquifer, which is hydraulically connected to a 

stream. Given the fact that the stream will be compensating for the volume extracted from the 

aquifer, pumping groundwater is a junior act, which potentially affects the senior water right on 

the surface water, thus, the management goal is to minimize the impact of water pumping on 

stream flows while satisfying the required irrigation needs. Withdrawing water from aquifer 

storage, not only affects the stream but also the hydraulic head levels in the aquifer. If the aquifer 

is over pumped it may not recover properly and will eventually fall short of providing required 

quantity of water, adding another constraint on the desired objective. Satisfying these conditions 

while meeting water demand is possible by replacing the extracted amount of groundwater back 

to the aquifer to keep heads levels slightly unchanged and to replenish the stream. This process is 

done through: (a) aquifer storage and recovery (ASR); where each operating well is provided 

with a pump able to extract water during periods of water need for irrigation and inject water 

when surface water is available for storage, or through (b) aquifer pumping and artificial 

recharge (APR), where, after being pumped, the aquifer is recharged with surface water at 

prescribed locations.  

 This management problem can be formulated in mathematical language, as an 

optimization problem with an objective that requires minimizing the total depletion/accretion of 
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the stream caused by both pumping (extraction) and recharge (injection) with constraints to 

represent requirements of the irrigation demand, the available water to inject in the aquifer, 

maximum and minimum allowed aquifer head levels, and maximum and minimum values of 

well operation rates established by well capacities. 

 

Before proceeding to the description of the optimization problem setting, we have to 

distinguish the two groundwater management problem formulations to be considered: (a) aquifer 

storage and recovery (single well operation), and (b) aquifer pumping and recharge (dual well 

operation). 

(a) For aquifer storage and recovery (ASR) the wells are operating in an operation mode, in 

which they are set to perform one operation type during a certain period of time 

(extraction during growing season), and then reverse it for the rest of simulation cycle 

(injection during off season). Given this assumption, operating wells have a cyclic 

operation schedule similar to that presented in Figure 3.1. Each operating well extracts 

with a rate QE during ∆𝑡! starting at 𝜏!, and injects for a period of ∆𝑡! with a rate QI 

starting at 𝜏!. As in Chapter 2, ∆𝑡 =   ∆𝑡! +   ∆𝑡! is the length of the single operation 

cycle. 
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Figure (3.1) Schedule plan for aquifer storage and recovery 

(b) Aquifer pumping and recharge (APR): in this formulation, there are two different 

operation groups. These groups consist of pumping wells and injection wells or generic 

recharge facilities. The two groups may be operating during generic periods, which may 

or may not be overlapping. That is why it is described as a dual well formulation. Figure 

(3.2) shows an example of the schedule plan for two cyclically operating wells. The first 

well extracts with a rate QE starting at 𝜏! for a period ∆𝑡!, whereas the second well 

injects starting from 𝜏! up until ∆𝑡! with a rate QI. Both wells are shut off during the part 

of the operation cycle ∆𝑡 outside of the operation season. 
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Figure (3.2) Schedule plan for aquifer pumping and recharge 

 

3.1.2 Linear Optimization Approach 

The linear semi-analytical models presented in Chapter 2 for assessing the stream 

depletion/accretion and the aquifer drawdown can be applied to simulate the ground water 

management problem presented above, and solve it using linear programming techniques. In this 

case the “independent” decision variables of the problem consist of the pumping rates, Q, at a 

number of prescribed well locations. The solution of a linear optimization problem requires 

expressing the objective function and the constraints 

 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒   𝒄!𝑸  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡  𝑡𝑜  𝑨𝑸 ≤ 𝒃 

 

Where 𝑸 represents the decision variable (operation rate) vector, 𝒄  𝑎𝑛𝑑  𝒃 are vectors of 

known coefficients and 𝑨 is a matrix of known coefficients.   

In this section, we present the formulation of the groundwater management problem under study 

into a linear optimization problem. 

Objective Function: Equation (2.93) which estimates the effect on stream flow due to a 
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cyclically operating well, in an aquifer hydraulically connected to such a stream, can be applied 

to estimate the stream depletion volume, Vr(ex) or the stream accretion volume Vr(in) over a given 

time horizon t:  

 
𝑉! =   

𝑉! !"       𝑖𝑓𝑄 = 𝑄!   < 0  
𝑉!(!")    𝑖𝑓𝑄 = 𝑄!   > 0  (3.1)  

that is: 

 𝑉!,!"!#$

=   
𝑉!,!"#$"%&'( = 𝑄!   𝑉!"#$%& 𝑆,𝑇,𝑎,∆𝑡! ,∆𝑡; 𝑡         𝑖𝑓  𝑄 = 𝑄! < 0
𝑉!,!""#$%&'( = 𝑄!   𝑉!"#$%& 𝑆,𝑇,𝑎,∆𝑡! ,∆𝑡; 𝑡         𝑖𝑓  𝑄     = 𝑄!   > 0 

(3.2)  

When planning the use of ground water with prior appropriation rule, the optimization 

objective may be to minimize the sum of the effects on the stream, so eventually there will be a 

minimum injection volume loss to the stream and a minimum extraction volume from it, this 

objective can be expressed in terms of minimizing the absolute value of the total volume of 

stream depletion, 𝑉!,!"!#$, over the investigated time horizon  

 
𝑀𝑖𝑛   𝑉!,!"!#$ = 𝑀𝑖𝑛   𝑄! .𝑉!𝑟𝑎𝑡𝑖𝑜 𝑆,𝑇,𝑎!,∆𝑡!,! ,∆𝑡; 𝑡

!!

!!!

+ 𝑄! .𝑉!𝑟𝑎𝑡𝑖𝑜 𝑆,𝑇,𝑎!,∆𝑡!,! ,∆𝑡; 𝑡
!!!!!

!!!!!!

 

(3.3)  

Where 𝑄! well injection or extraction rate (negative for 1 ≤ 𝑗 ≤ 𝑛!, positive for 

𝑛! + 1 ≤ 𝑗 ≤ 𝑛! + 𝑛!, 𝑛!is the number of extracting wells and 𝑛! is the number of injecting 

wells. Solving the optimization problem (3.4) would yield an ideal answer 𝑉!"#"$% equal to zero, 

which means that well operation has no net impact on stream flow. This formulation of the 

optimization problem has a complication brought up by introducing an absolute value operator in 
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the objective function, which causes a loss of linearity such that the optimization problem cannot 

be tackled using a linear optimization method. This problem, however, can be solved by 

substituting the original objective function (3.4) with another objective function 𝑉! equal exactly 

to the absolute function of 𝑉!,!"!#$: 

 𝑀𝑖𝑛   𝑉!,!"!#$ =     𝑀𝑖𝑛  𝑉! (3.4)  

and adding the two following constraints: 

 𝑉!,!"!#$ ≤   𝑉! (3.5)  

 −𝑉!,!"!#$ ≤   𝑉! (3.6)  

These constraints have the effect of forcing 𝑉! to equal to 𝑉! upon being minimized, so that 

the objective function (3.5) is equivalent to the original objective function (3.4). Note that in this 

formulation 𝑉! acts as both objective function and additional decision variable. Since this 

problem statement does not contain the absolute value operator, it can be solved using linear 

programming.  

The vector of decision variables for a generic system made up by 𝑛! extraction wells and 

𝑛𝐼 injection wells can be thus expressed as: 

 𝑸 =    𝑄!,𝑄!,… ,𝑄!!;   𝑄!!!!,𝑄!!!!,… ,𝑄!!!!!;𝑉!
⊺
 (3.7)  

where 𝑄!,… ,𝑄!! are extraction rate values (negative) and 𝑄!!!!,… ,𝑄!!!!! are injection rate 

values (positive). The objective function (3.5) can thus be rewritten in vector product notation as: 

 𝑀𝑖𝑛   I!!!!!!! ∙ 𝑄    (3.8)  

where I!!!!!!! is 1 by (𝑛! + 𝑛! + 1) row vector, whose coefficients are equal to zero except the 

last one, corresponding to 𝑉!, which equals 1. 
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Linear Inequality Constraints: the objective function is to be optimized under a number 

of constraints on: (a) operation rates; (b) hydraulic head values at prescribed control points; and 

(c) irrigation demand and recharge availability 

(a) Operation rate constraints are prescribed based upon minimum (maximum extraction) 

and maximum (maximum injection) flow rate values. For each generic pumping well j 

(j=1, 2,…, nE), the flow rate must be such that  

 𝑄!"#$,!   ≤ 𝑄!   ≤     0   (3.9)  

where 𝑄!"#$,!   (< 0) represents the maximum extraction rate at which the well can be operated. 

Similarly for each injection unit, which may be either an injection well or a recharge facility, the 

injection rate 𝑄! j (j= nE +1, nE+2,…, nE+nI) must be such that: 

 0 ≤ 𝑄!   ≤   𝑄!!"#,!    (3.10)  

where 𝑄!"#$,!   (> 0) is the maximum injection rate at which the well or recharge unit can be 

operated using matrix-vector notation the constraints (3.9) and (3.10) may be rewritten as 

follows: 
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𝑨𝑳 ∙ 𝑸

=

1 0 … 0 0 0 … 0 0
−1 0 … 0 0 0 … 0 0
0 1 … 0 0 0 … 0 0
0 −1 … 0 0 0 … 0 0
⋮ ⋮ … ⋮ ⋮ ⋮ … 0 0
0 0 ⋯ 1 0 0 0 0 0
0 0 ⋯ −1 0 0 0 0 0
0 0 … 0 1 0 … 0 0
0 0 … 0 −1 0 … 0 0
0 0 … 0 0 1 … 0 0
0 0 … 0 0 −1 … 0 0
⋮ ⋮ … 0 ⋮ ⋮ … ⋮ ⋮
0 0 … 0 0 0 … 1 0
0 0 … 0 0 0 … −1 0

∙

𝑄!
𝑄!
⋮

𝑄!"
𝑄!"!!
𝑄!"!!
⋮

𝑄!"!!"
𝑉!

≤   

0
−𝑄!!,!"#

0
−𝑄!!,!"#

⋮
0

−𝑄!,!",!"#
−𝑄!,!"!!,!"#

0
−𝑄!,!"!!,!"#

0
⋮

−𝑄!,!"!!",!"#
0

= 𝒃𝑳 

(3.11)  

 

where the matrix 𝑨𝑳 has a size 2 ∙ 𝑛! + 𝑛! × 𝑛! + 𝑛! + 1  and the vector 𝒃𝑳 has a size 

𝑛! + 𝑛! + 1 ×1. 

(b) Hydraulic head constraints require that maximum and minimum allowable heads are 

checked at a number nmw of prescribed control points in the aquifer where monitoring 

wells are located. At the generic monitoring well m (m=1, 2, …., nmw) the hydraulic head 

at a given time tm can be calculated as: 
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 ℎ 𝑥!,𝑦!; 𝑡! = ℎ!

+ 𝑄! ∙𝑊!"# 𝑆,𝑇, 𝑟!,! ,∆𝑡,∆𝑡!,! , 𝜏! , 𝜏!; 𝑡!  
!!"

!!!

+ 𝑄! ∙𝑊!"# 𝑆,𝑇, 𝑟! ,∆𝑡,∆𝑡!,!𝜏! , 𝜏!; 𝑡!  
!!"

!!!!"!!

 

(3.9)  

where the coefficients WCSI are calculated using Equation (2.90) and will be denoted as 

𝛽!,!. Constraints on the head are thus expressed as: 

 
ℎ! − ℎ!"# ≤ 𝛽!,! ∙ 𝑄!

!"

!!!

+    𝛽!,! ∙ 𝑄!

!"!!!

!"!!

≤ ℎ!"# − ℎ! 
(3.10)  

where ℎ!"#  and ℎ!"# are the minimum and maximum hydraulic head allowed, respectively. 

Using matrix-vector notation, hydraulic head constraints at the nmw monitoring wells can be 

indicated as 

 

𝑨𝑯 ∙ 𝑸 =

𝛽!! 𝛽!" … 𝛽!,!" 𝛽!,!"!! 𝛽!,!"!! … 𝛽!,!"!!" 0
−𝛽!! −𝛽!" … −𝛽!,!" −𝛽!,!"!! −𝛽!,!"!! … −𝛽!,!"!!" 0
⋮ ⋮ … ⋮ ⋮ ⋮ … ⋮ ⋮

𝛽!"#,! 𝛽!"#,! ⋯ 𝛽!"#,!" 𝛽!"#,!"!! 𝛽!"#,!"!! ⋯ 𝛽!"#,!"!!" 0
−𝛽!"#,! −𝛽!"#,! ⋯ −𝛽!"#,!" −𝛽!"#,!"!! −𝛽!"#,!!!! ⋯ −𝛽!"#,!"!!" 0

∙

𝑄!
𝑄!
⋮

𝑄!"
𝑄!"!!
𝑄!"!!
⋮

𝑄!"!!"
𝑉!

≤   

ℎ!"# − ℎ!
ℎ! − ℎ!"#

⋮
ℎ!"# − ℎ!
ℎ! − ℎ!"#

= 𝒃𝑯 

(3.14)  

where 𝑨𝑯 is a 2 ∙ 𝑛!"× 𝑛! + 𝑛! + 1  matrix and 𝒃𝑯 is a column vector of size 2 ∙ 𝑛!"×1. It is 

worth noting that the index m identifies a control point where the head value is checked at a 

given time. If at the same monitoring well, heads must be checked at a different time, then an 
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additional constraint is to be added. 

(c) Irrigation Demand and recharge availability constraints require that during the pumping season 

the total sum of the (negative) extraction rates is less than or equal to the total (negative) demand 

rate 𝑄!"#$%!, thus: 

 𝑄!

!!"

!!!

  ≤ 𝑄!"#$%!   ≤ 0 (3.13)  

And during the period in which surface water is made available for aquifer recharge, the 

total sum of injection well rates is less than or equal to total available recharge rate 𝑄!"!#$!%$&: 

 𝑄!

!!"!!!"

!!!!"!!

  ≤ 𝑄!"!#$!%$& (3.14)  

Following the matrix-vector notation, the irrigation demand and recharge availability 

constraints can be expressed as follows:  

 
𝑨𝑫𝑨 ∙ 𝑸 = 1 1 … 1 0 0 … 0 0

1 0 … 0 1 1 … 1 0 ∙

𝑄!
𝑄!
⋮

𝑄!"
𝑄!"!!
𝑄!"!!
⋮

𝑄!"!!"
𝑉!

≤    𝑄!"#𝑄!"!
= 𝒃𝑫𝑨 

(3.15)  

 

where 𝑨𝑫𝑨 is a 2× 𝑛! + 𝑛! + 1  matrix and 𝒃𝑫𝑨 is a column vector of size 2×1. 

Two additional inequalities are necessary to prescribe the constraints (3.6) and (3.7) 

introduced in order to remove the absolute value from the objective function (3.4), inequalities 

(3.6) and (3.7) can thus be rewritten, respectively, as: 
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𝑄! ∙ 𝑉!𝑟𝑎𝑡𝑖𝑜 𝑆,𝑇,𝑎! ,∆𝑡!,! ,∆𝑡, 𝜏! , 𝜏!; 𝑡
!!

!!!

+ 𝑄! ∙ 𝑉!𝑟𝑎𝑡𝑖𝑜 𝑆,𝑇,𝑎! ,∆𝑡!,! ,∆𝑡, 𝜏! , 𝜏!; 𝑡
!!!!"

!!!"!!

≤ 𝑉! 

(3.15)  

and 

 

 

 

− 𝑄! ∙ 𝑉!𝑟𝑎𝑡𝑖𝑜 𝑆,𝑇,𝑎! ,∆𝑡!,! ,∆𝑡, 𝜏! , 𝜏!; 𝑡
!!

!!!

− 𝑄! ∙ 𝑉!𝑟𝑎𝑡𝑖𝑜 𝑆,𝑇,𝑎! ,∆𝑡!,! ,∆𝑡, 𝜏! , 𝜏!; 𝑡
!!!!"

!!!"!!

≤ 𝑉! 

(3.16)  

where the coefficients  𝑉!,!"#$% are calculated using Equation (2.95) and are indicated as 𝛼! in the 

following. Using matrix-vector notation, the two constraints (3.6) and (3.7) can thus be rewritten 

as: 

 

𝑨𝑶𝑭 ∙ 𝑸 = 𝛼! 𝛼! … 𝛼!" 𝛼!"!! 𝛼!"!! … 𝛼!"!!" −1
−𝛼! −𝛼! … −𝛼!" −𝛼!"!! −𝛼!"!! … −𝛼!"!!" −1

∙

𝑄!
𝑄!
⋮

𝑄!"
𝑄!"!!
𝑄!"!!
⋮

𝑄!"!!"
𝑉!

≤    00 = 𝝓 

(3.20)  

where the matrix 𝑨𝑶𝑭 has a size 2× 𝑛! + 𝑛! + 1  matrix, and the zero vector 𝝓 has a size 2×1. 

The linear optimization problem into which the groundwater management is formulated 

can thus be structured as: 
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𝑚𝑖𝑛   𝐈!!!!!!! ∙ 𝑸  

subject to  

𝑨 ∙ 𝑸 ≤ 𝒃 

where 𝑨 ≡ 𝑨𝑳  𝑨𝑯  𝑨𝑫𝑹  𝑨𝑶𝑭 !, and 𝒃 ≡ 𝒃𝑳  𝒃𝑯  𝒃𝑫𝑹  𝝓 !  the size of matrix A is  2 ∙ 𝑛! + 𝑛! +

𝑛!" + 2+ 2 × 𝑛! + 𝑛! + 1 , and the size of b is 2 ∙ 𝑛! + 𝑛! + 𝑛!" + 2+ 2 ×1. 

A similar linear optimization setting can be formulated to minimize stream 

depletion/accretion from a stream that represents a boundary in a finite aquifer bounded between 

the stream under study and another boundary of either type (a no-flow boundary or a recharge 

boundary) using the equations presented in Chapter 2 Section 2.5 to estimate stream depletion 

volume Vr and drawdown s due to a cyclically operating (extracting or injecting) well. 

 

In the following, we are going to discuss the application of the linear optimization problem 

described above in semi-infinite aquifers as well as finite aquifers comprised between a no-flow 

boundary and a stream. The examples considered here are simulations of both of the 

management settings of (APR) and (ASR). Despite the fact that, the semi-analytical models 

presented in Chapter two and used here in the linear programming setting of the management 

problem, are devolved for only the case of operating wells (extraction and injection), and in the 

case of APR the recharge is achieved by surface infiltration using ponds, these codes can be used 

to provide an acceptable results in this case as well. Molden et al (1984) have proposed an 

approach to calculate recharge volumes due to surface infiltration. Such approximation may be 

used to improve the results of the developed semi-analytical models codes.   
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3.2 Groundwater management problem setting 

Let us consider the 8-km by 6-km stretch of an alluvial aquifer limited by a stream located 

at the y-axis shown in Figure 3.3. Aquifer properties are listed in table 3.1 

 

Figure 3.3 the candidate wells and recharge ponds locations in a semi-infinite aquifer limited by a 

stream located at the y-axis (x=0) 

 

Table 3.1 Aquifer properties 

h0 (m) K (m/day) S (/) 

30 86.4 0.2 

 

 The management problem requires providing water for irrigation extracted from the 

aquifer during the growing season, for consumptive use of 1 m per the total duration of 
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irrigation, to irrigate a cultivated area of 0.3 of the total area of the aquifer, and recharge the 

aquifer with an equivalent amount of surface water to offset potential stream over pumping. This 

consumptive use is representative of corn crop type. 

 

Table 3.2 shows the operation details of the extracting and injecting wells, demand and 

availability in cubic meters per year and in cubic meters per day for both APR and ASR 

problems. 

 

Table 3.2 Extraction and injection details used in the management problem 

Operation Operation period 
Demand/Availability 

(m3/year) 

Demand/Availability 

(m3/day) 

Pumping 
APR 120 days (March 

15–July 15) 
1.2×107 100000 

ASR 

Recharge 
APR 180 days (October 

01-March 01) 
1.2×107 ≈ 70000 

ASR 

 

The conjunctive management aim is to determine the spatial distribution of extraction and 

injection wells that achieves the objective of the management problem of minimizing the 

absolute value of the stream depletion volume over the 10 years operation period. Constraints 

described in the previous section are imposed on the demand and water availability for recharge 

as shown in table 3.2, for the maximum operation rates of pumping wells and recharge ponds, 

and aquifer’s head levels at monitoring locations during both operations durations over the 

simulation period (for three considered scenarios), the imposed constraints are as follows: 
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Table 3.3 Optimization problem constraints  

Constraint Minimum Maximum 

Operation 

rate (m3/day) 

Pumping -5000 0 

Recharge 0 5000 

Hydraulic 

Head (m) 

Scenario 1 29 31 

Scenario 2 29.5 30.5 

Scenario 3 25 31 

 

For the third scenario, the constraint on recharge water availability is different than the 

other two scenarios, as the available recharge water volume is set to be 85% of the irrigation 

demand. In the ASR groundwater management problem, all the candidate operation facilities are 

used as pumping wells during growing season, and all of them reverse the operation to recharge 

(direct injection wells) outside of the season.  

 

3.2.1 Results in semi-infinite aquifers 

A Matlab code SI_Opt.m is built to calculate the optimal operation rates based on the 

constraints and operation plan of APR and ASR. This code uses the Matlab linear optimization 

solver linprog. Detailed description of the code is presented in Appendix I. In Table 3.4 lists the 

results of the APR case for the three considered scenarios. Column one shows the cumulative 

recharge rate in cubic meters per day, column two shows the cumulative extraction rate in cubic 

meters per day and in column three listed the net cumulative stream depletion volume 𝑉! in cubic 
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meters per day at the end of simulation period.  

Table 3.4 APR case results for a semi-infinite aquifer 

Scenario Recharge (m3/day) Extraction (m3/day) 

Net Cumulative 

Stream Depletion 

Volume 𝑉! (m3/day) 

1)  29 ≤ ℎ ≤ 31 6.65×104 -1.0×105 1.34×10-8 

2)  29.5 ≤ ℎ ≤ 30.5 6.99×104 -9.98×104 6.694×10-9 

3)  25 ≤ ℎ ≤ 31 5.27×104 -1.004×105 2.547×10-9 

 

Figure 3.4 shows the optimal wells and recharge ponds distribution for the first scenario of 

the APR along with the operation rates. 
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Figure 3.4 active wells and recharge ponds and their operation rates shown above each marker, this 

layout is for the first scenario of APR. The presented aquifer is limited by a stream located at x=0 

Note that all candidate wells are active during the operation period and they operate with 

the rates noted above each marker in Figure 3.4. As shown in Table 3.4, this operation plan 

results in a net volume of stream depletion of almost a zero m3/day at the end of simulation 

period, and all irrigation demand is met. Water volume lost to the stream is minimal, with 

recharge amounts almost as the same as the pumped demands. Note that to meet the objective of 

minimum stream depletion volume, extracting wells rates increase away from the stream and 

recharge ponds rates increase towards it. 

 

Figure 3.5 shows the optimal distribution of operating facilities (pumping wells and 

recharge ponds) for the second scenario of the APR case. 
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Figure 3.5 active wells and recharge ponds and their operation rates shown above each marker, this 

layout is for the second scenario of APR. The presented aquifer is limited by a stream located at 

x=0 

Note the change in the optimal layout as not all the wells are activated this time. The 

irrigation demand is met with the available recharge volume causing almost a zero stream 

depletion volume even with the small allowed range of aquifer head changes. In contrary to the 

case in the first scenario, and in order to meet the head constraint of this scenario, high capacity 

wells are located closer to the stream to guarantee obtaining the demand volume. As well, high 

capacity recharge ponds are activated closer to the high extraction rates away from the stream to 

balance drawdown. 

Figure 3.6 shows the drawdown distribution in APR second scenario, at two head checks 

times: a) 2020 days (the end of extraction period in the fifth operation cycle); and b) 2280 days 
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(the end of injection period in the sixth operation cycle). 

 

(a) 

 

(b) 

Figure 3.6 resulting drawdwon contours at two head check times 2020 days and 2280 days 

in (a) and (b), respectively, for the APR second scenario.  

Note in Figure 3.6a, the high drawdown values around locations of high capacity wells 

closer to the stream, in the upper and lower parts of the middle part of the aquifer, and at the far 

end of it from the stream. On the other hand note the build-up values closer to the stream and in 

the middle of the aquifer in Figure 3.6b. These build up values are responsible of replenishing 

the stream and smoothing head changes caused by extraction.  

 

Figure 3.7 shows the optimal distribution of operation rates (pumping recharge) for the 

third scenario of APR. 

 

0

0
.1

0.1

0.1 0.1
0.1

0
.2

0
.2

0.2 0.2
0.2

0.3

0
.3

0
.3

0.3 0.3 0.3

0.3
0.4

0
.4

0
.4

0.4 0.4
0.4

0.4
0.4

0.4

0.4

0.5

0
.5

0.5

0
.5

0.5

0.5 0.5
0.5

0.5

0.5
0.5

0.5

0.5
0
.5

0.5

0.
5

0.6
0.6

0.6

0.60
.6

0.6
0.6

0.6
0.60

.6

0.6

0.
6

0
.6

0.6

0.6

0
.7

0
.7

0.7

0.70.7

0
.7

0.7

0.7

0.7
0
.8

0
.8

0.8

0.8

0.9

0
.9

x (m)

y
 (

m
)

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

7000

8000

-0.6

-0
.6

-0
.6

-0
.6

-0
.6

-0
.6

-0
.6

-0.6

-0
.5

-0.5

-0.5

-0
.5

-0
.5

-0
.5

-0
.5

-0
.5

-0.5

-0
.5

-0.5

-0
.4

-0
.4

-0
.4

-0.4

-0.4

-0
.4

-0
.4

-0.4

-0
.4

-0
.4

-0
.3

-0
.3

-0.3 -0.3

-0
.3

-0
.3

-0.3

-0
.2

-0
.2

-0.2 -0.2

-0
.2

-0
.2

-0
.2

-0
.1

-0
.1

-0.1

-0.1

-0.1

-0.1

0

0

0

0

x (m)

y
 (

m
)

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

7000

8000



	  
	  

97	  

 

Figure 3.7 active wells and recharge ponds and their operation rates shown above each marker, this 

layout is for the third scenario of APR. The presented aquifer is limited by a stream located at x=0 

Again, all demands are met in this scenario with cumulative stream depletion volume at the 

end of the 10 years period equal to zero even though recharge capacity is 85% of groundwater 

demand and it wasn’t fully consumed, because in this case, demands can be met directly from the 

aquifer storage during irrigation season, since a much loose range of head change is allowed 

here.   

Table 3.5 shows the results of the three considered scenarios in ASR. The listed results are 

the cumulative recharge rate in cubic meters per day, the cumulative extraction rate in cubic 

meters per day and the net cumulative stream depletion volume at the end of the 10 years 

simulation period in cubic meters per day.  
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Table 3.5 ASR results in semi-infinite aquifer case 

Scenario Recharge (m3/day) Extraction (m3/day) 

Net Cumulative 

Stream Depletion 

Volume 𝑉! (m3/day) 

1)  29 ≤ ℎ ≤ 31 6.9×104 -1.09×105 6.57×10-9 

2)  29.5 ≤ ℎ ≤ 30.5 6.99×104 -1.05×105 5.91×10-9 

3)  25 ≤ ℎ ≤ 31 5.9×104 -1.02×105 2.74×10-9 

Figure 3.8a and 3.8b illustrate the optimal results of ASR scenario 1 for pumping and 

recharge rates respectively. 

 

(a) 

 

(b) 

Figure 3.8 optimal rates of pumping and recharge of senario 1 in the semi-infinte alluvial 

aquifer under study in subpanel (a) and subpanel (b), respectively. The aquifre is  limited 

by stream  located at the y-axis  
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It is interesting to note that in Figure 3.8, the pumping wells optimal rates values decline 

towards the stream to meet the objective of minimum stream depletion, the maximum pumping 

rate is even less than the half of the maximum capacity of wells. On the other hand the optimal 

recharge rates increase closer to the stream with a maximum recharge rate less than a 1000 

m3/day. As listed in Table 3.5, the irrigation demand is met in this scenario with the same 

amount of available recharge water, and no stream depletion or accretion occurred at the end of 

simulation period. 

 

Figure 3.9a and 3.9b illustrate the optimal results of the ASR scenario 2 for pumping and 

recharge rates, respectively. 

 

(a) 

 

(b) 

Figure 3.9 optimal rates of pumping and recharge of senario 2 in the semi-infinte alluvial 

aquifer under study in subpanel (a) and subpanel (b), respectively. The aquifre is  limited 

by stream  located at the y-axis 
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In this scenario, about 27% of the total number of pumping wells (25 out of 90 operating 

wells) is activated, with 18 of them pumping with their maximum capacities. Despite of the 

presence of these high capacity wells closer to the stream, no stream depletion volume noticed at 

the end of the 10 years simulation period, because, during the operation period of the recharge 

ponds, 11 out of 18 operating recharge ponds operate with the maximum capacity and 9 of them 

are located at the stream reach. This noticed difference in wells distribution between the first and 

second scenarios, happened to ensure meeting the strict constraint in aquifer heads. As listed in 

Table 3.5 the demands are met with the available recharge water.   

Figures 2.10a and 2.10b show the drawdown distribution in the second scenario of ASR, at 

the two head check times 2020 days and 2280, respectively. 

 

(a) 
 

(b) 

Figure 3.10 resulting drawdwon distributions at two head check times 2020 days and 2280 

days in (a) and (b), respectively, for the ASR second senario 

Even though the high capacity wells are located in the stream reach, the drawdown values 

are small closer to it in Figure 3.10a, because of the fact of the stream being a recharge 
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high capacity well and less impact of stream supply. In Figure 3.10b, high build up values are 

noticed about the middle of the aquifer due to the combined effect of the high capacity recharge 

ponds and the presence of the stream. Figure 3.11a and 3.11b illustrate the optimal results of the 

ASR scenario 3 for pumping and recharge rates, respectively. 

 

(a) 

 

(b) 

Figure 3.11 optimal rates of pumping and recharge of senario 3 in the semi-infinte alluvial 

aquifer under study in subpanel (a) and subpanel (b), respectively. The aquifre is  limited 

by stream  located at the y-axis  

One can note the resemblance between the first and the third scenarios in terms of the 

operating wells distribution and the number of active wells and recharge ponds, as the stretched 

range of change in aquifer heads allowed in this scenario, the demands are met without depleting 

the stream even with less available recharge water. 
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3.2.2 Results in finite aquifer comprised between a no-flow boundary and a recharge boundary 

The Matlab code BNF_Opt.m is developed for the case of a finite aquifer comprised 

between a physical boundary and a stream to calculate optimal operation rates applying the linear 

optimization approach presented in the previous section and using the linear optimization solver 

Linprog of Matlab. Details and manual of the code are given in Appendix J.  

 

The same aquifer setting presented to study the semi-infinite aquifer case is going to be 

used to evaluate stream depletion and operation rates in finite aquifer case, as well as the APR 

and ASR operation plans and constraints. In the 8-km by 6-km stretch of the alluvial aquifer 

under study, the no-flow boundary is located at the y-axis (x=0) and the stream is located at x=6 

km. Table 3.6 shows the results of the three scenarios of APR. These results are the cumulative 

recharge rate in cubic meters per day, the cumulative extraction rate in cubic meters per day and 

the cumulative stream depletion volume at the end of simulation period in cubic meters, 

respectively.   

 

  Table 3.6 finite aquifer (no-flow/recharge case) APR results 

Scenario Recharge (m3/day) Extraction (m3/day) 

Net Cumulative 

Stream Depletion 

Volume 𝑉! (m3/day) 

1)  29 ≤ ℎ ≤ 31 6.999×104 -9.99×104 5.2×10-9 

2)  29.5 ≤ ℎ ≤ 30.5 6.817 ×104 -1.000 ×105 5.824×106 

3)  25 ≤ ℎ ≤ 31 5.932 ×104 -1.031 ×105 1.863×10-9 
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For scenario 1, all pumping wells and recharge ponds are activated resulting in a net stream 

depletion volume at the end of the 10 years simulation period equal to zero as listed in Table 3.6, 

meaning that, aquifer storage is extracted to provide irrigation demand with an equal amount to 

the aquifer recharge.  

 

In scenario 2, the irrigation demands are perfectly met with the available recharged 

amounts and the stream is depleted with about 5.9×106 m3/day at the end of simulation period as 

shown in Table 3.6. With the strict limitation on aquifer head levels at monitoring wells the 

results show that the need to minimize aquifer’s level change is as effecting as the need of 

minimizing stream depletion volumes. 

 

Recalling that in scenario 3 there is no strict constraint on the head levels, where (25 < t < 

31 m) but the recharge capacity is changed to 85% of the irrigation demand, the demands are met 

with less conservative extraction from the aquifer to an adequate extend to not deplete the stream 

even with less available recharge amounts, results are shown in Table 3.6.  

 

Figure 3.12 shows the optimal rates results and the active wells and recharge ponds for 

scenario 1 of APR 
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Figure 3.12 active wells and recharge ponds and their operation rates shown above each marker, 

this layout is for the first scenario of APR. The presented aquifer is limited by a stream located at 

x=0 

 

Again, one can notice that the extraction rates are low in proximity of the stream to achieve 

the optimization objective. With the presence of the no-flow boundary, the optimal result tend to 

locate wells with low pumping rates  in proximity of the no-flow boundary to meet the heads 

constraints.  

 

Figure 3.13 displays the optimal wells/recharge ponds layout with rates above markers for 

scenario 2 of APR 

0 1000 2000 3000 4000 5000 6000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

-1222

-1865

-1681

-1626

-1678

-1921

-1208

-4059

-3382

-3174

-3867

-3018

-3272

-3345

-3832

-3198

-2554

-3696

-3517

-3042

-3800

-1974

-1755

-1650

-1047

-1256

-1385

-1977

-3706

-4152

-4165

-2708

-3651

-4147

-3689

 -728

-1083

 -100

-1069

 -714

 687

1546

 749

1545

1436

 713

2077

 241

2195

 735

 703

1984

2815

 784

 848

 249

 665

 359

 661

 645

 675

 658

 354

 696

2183

2086

1955

1941

 235

2326

2476

1992

2026

2842

 852

 854

3056

2153

2153

2616

 889

2809

3445

 512

3015

 890

2670

x (m)

y
 (

m
)

 

 
Extraction well
Injection well
Monitoring well



	  
	  

105	  

 

Figure 3.13 active wells and recharge ponds and their operation rates shown above each marker, 

this layout is for the second scenario of APR. The presented aquifer is limited by a stream located 

at x=0 

 

Note that in Figure 3.13, some high capacity wells are located in proximity of the stream 

indicating that, these wells are responsible for stream depletion. The recharge ponds depicted at 

the same figure in proximity of the no-flow boundary are set to smooth the drawdown in that 

area since it retains the maximum values. Figure 2.14 shows the drawdown distribution in the second 

scenario of APR, at two head check times at 2020 days (the end of extraction period in the fifth operation 

cycle) and 2280 days (the end of injection period in the sixth operation cycle) in (a) and (b), respectively. 
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(a) 

 

(b) 

Figure 3.14 drawdown contours in APR second scenario, at two head check times: 

(a) 2020 days, and (b) 2280 days. 

 

In Figure 3.14a, note the high drawdown values in proximity of then no-flow boundary and 

the operating wells, while low extraction occurs closer to the stream. In Figure 3.14b, there are a 

couple of build-up high values closer to the stream and to the no-flow boundary, and in the 

middle of the aquifer, these values are minimal. 

    

Figure 3.15 shows the active wells and recharge ponds along with the optimal rates results 

for scenario 3 of APR. 
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Figure 3.15 active wells and recharge ponds and their operation rates shown above each marker, 

this layout is for the second scenario of APR. The presented aquifer is limited by a stream located 

at x=0 

Note, in Figure 3.15 a typical distribution of pumping wells with low rates closer to the 

stream that increases away from it to achieve the objective of minimum stream depletion, and 

recharge ponds that operates with high capacities in proximity of the stream to augment its flows. 

In this scenario, the demands are met with the extracted volumes from the aquifer since the head 

constrain is less conservative, in addition to the recharge availability which is 85% of the 

demands, even though, no stream depletion noticed at the end of simulation period.  

Table 3.7 shows the ASR groundwater management case results for a finite aquifer 

pounded between a no-flow boundary and a stream. 
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Table 3.7 ASR results 

Scenario Recharge (m3/day) Extraction (m3/day) 

Net Cumulative 

Stream Depletion 

Volume 𝑉! (m3/day) 

1)  29 ≤ ℎ ≤ 31 6.9×104 -1.0×105 2.9×10-9 

2)  29.5 ≤ ℎ ≤ 30.5 6.3×104 -9.9×104 1.3×10-9 

3)  25 ≤ ℎ ≤ 31 5.8×104 -1.1×105 1.07×10-9 

 

Again, the ASR case is a typical illustration of achieving the demands while applying 

constraints. The demands in the three scenarios are met with no significant stream depletion as 

shown in table 3.7 even with less recharge availability and strict head levels constraints. The 

pumping wells is distributed in way that minimizes the stream depletion and recharge pond are 

distributed in way that helps replenishing the stream and balance the drawdown in the aquifer. 

Figure 3.16 shows the active wells and recharge ponds along with the optimal rates results for 

scenario 1 of ASR 
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(a) 

 

(b) 

Figure 3.16 optimal layout of pumping wells in (a) and recharge ponds in (b) for ASR 

scenario one  

 

Figure 3.17 shows the active wells and recharge ponds along with the optimal rates results 

for scenario 2 of ASR 
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(a) 

 

(b) 

Figure 3.17 optimal layout of pumping wells in (a) and recharge ponds in (b) for ASR 

scenario two. 

Figure 3.18 shows the active wells and recharge ponds along with the optimal rates results 

for scenario 3 of ASR 
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(a) 

 

(b) 

Figure 3.18 optimal layout of pumping wells in (a) and recharge ponds in (b) for ASR 

scenario three 

Figure 3.19 shows the profiles of total stream depletion rate and the total cumulative stream 

depletion volume with time in APR Scenarios 1, 2, and 3, in (a)\and (b) respectively, and in 

subpanel (c) and (d) the profiles are for ASR case 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.19 the time series of the total stream depletion rate and the total cumulative stream 

depletion volume in APR Scenarios 1, 2, and 3, in (a)\and (b) respectively, and in subpanel (c) 

and (d) the profiles are for ASR case 

Note, in Figure 3.19b, even though the stream depletion volume at the end of the 10 years 

simulation period is zero, the stream is being depleted for almost the entire duration of scenario 

one. On the other hand, the stream is being replenished for the entire simulation duration in 

scenario 3, but in scenario 2 it is depleted during wells operation and at the end of simulation 

time. For the case of ASR, the profiles are almost the same for the three scenarios, but the 
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depletion is almost zero at the end of simulation. The doubled number of operating 

wells/recharge ponds in this case, causes the increase in recharge volumes in all of the three 

scenarios.  
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APPENDIX A 
 

 
Matlab code: Infinite.Drawdown.2D 
 
This code calculates and plots the spatial distribution of head at a specified time tfin for a number 
of wells operating cyclically or continuously in an aquifer with an infinite areal extension.  
 
The input file Aquifer.Parms includes simulation time parameters and aquifer parameters: 
 

• time parameters 
• final simulation time tfin; 
• cyclical time step of simulation Δt=Δton+Δtoff (e.g., 1 year) 

 
• the aquifer parameters  

• initial hydraulic head (aquifer's saturated thickness) h0 
• hydraulic conductivity K; 
• storativity S. 

 
The input file Grid.parms includes wells data: 
 

• grid lower left corner abscissa (xmin) 
• grid lower left corner ordinate (ymin) 
• grid upper right corner abscissa (xmax) 
• grid upper right corner ordinate (ymax) 
• n. of gridblocks along x (nx) 

n. of gridblocks along y (ny) 
 
The input file Wells.dat includes wells data: 
  

• total number of operating wells nw 
 

• for each operating well, each of the following lines provide: 
• the pumping rate (Qw); 
• the time at which well operation starts (tst), 
• the total operation period (Δton) 
• well location xw and yw. 

 
  
 
Examples: 
 

Aquifer.Parms 
 

100. or 200.	   365.	   30.	   622.08	   0.2	  
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tfin (day)	   Δt=Δton+Δtoff (day)	   b(m)	   K (m/day)	   S (/)	  

 
Grid.Parms 
 

0.	   0.	   2000.	   2000.	   20	   20	  

xmin (m)	   ymin (m)	   xmin (m)	   ymin (m)	   nx	   ny	  

 
 
  Wells.dat 
 

Description:	   2 wells operating cyclically	  

2 (nw)	  

-500.	   0.	   180.	   500.	   1000.	  

-1000.	   60.	   120.	   1000.	   500.	  

Qw (m3/day)	   tst (day)	   Δton (day)	   xw (m)	   yw (m)	  

 
 
Infinite.Drawdown.2D 
 
clc 
clear all 
% Reading Data  
% 1- General Data  
fid1 = fopen ('parameters.txt','r'); 
Temp = fscanf(fid1,'%f %f %f %f %f',[1,5]); 
tfin = Temp(1); % Final Time of Simulation (Days) 
delt = Temp(2); % Cycle Time = One Year (days)  
ho   = Temp(3); % Aquifer Initial Heard (M) 
K    = Temp(4); % Hydraulic Conductivity (M^2/day) 
Sy   = Temp(5); % Aquifer Specific Yeild (/) 
T    = K*ho;    % Transmissivity 
fclose(fid1); 
%  
% 2- Wells Data 
fid2 = fopen ('wells.txt','r'); 
Temp = fscanf(fid2,'%f',[1,1]); 
now   = Temp(1);% Wells Number 
for m = 1:now 
Temp    = fscanf(fid2,'%f %f %f %f %f',[1,5]); 
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Qw(m)   = Temp(1); % Well Pumping Rate 
tst(m)  = Temp(2); % Pumping Start Time 
dton(m) = Temp(3); % Pumping Period 
xw(m)   = Temp(4); % Well Location X Coordinate 
yw(m)   = Temp(5); % Well Location Y Coordinate 
end 
fclose(fid2); 
% 
% 3- Reading Grid Data 
fid3 = fopen ('Aqui_Param.txt','r'); 
Temp = fscanf(fid3,'%f %f %f %f %f %f',[1,6]); 
xmin = Temp(1); % Minimum Value of X in the Grid 
ymin = Temp(2); % Minimum Value of Y in the Grid 
xmax = Temp(3); % Maximim Value of X in the Grid 
ymax = Temp(4); % Maximum Value of Y in the Grid 
nx   = Temp(5); % Number of X Divisions 
ny   = Temp(6); % Number of Y Divisions 
fclose(fid3); 
% %  
% Creating the Grid % 
nxx = nx+1; 
nyy = ny+1; 
dx = (xmax-xmin)/nx; 
dy = (ymax-ymin)/ny; 
for i= 1:nyy 
    for j= 1:nxx 
        x(i,j)= xmin+ dx*(j-1); 
    end 
end 
%  
for j= 1:nxx 
    for i= 1:nyy 
        y(i,j)= ymin+dy*(i-1); 
    end 
end 
%  
% Computing Drawdown Distribution for number of operating wells 
 fid3 = fopen('results.txt','w'); 
 s_sum = zeros(nyy,nxx);% Initial Drawdown 
 for i= 1:nyy; 
     for j= 1:nxx; 
         for m =1:now 
             t = tfin-tst(m); 
             if t>0 
                 s_sum(i,j)=s_sum(i,j)-
Qw(m)*RC_fun(t,delt,dton(m),Sy,T,x(i,j),y(i,j),xw(m),yw(m)); 
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                 % CYC_THEIS calculates the drawdown for one operating well and its image 
and imaginary wells 
             end 
         end 
         temp = [x(j), y(i), s_sum(i,j)]; 
         fprintf(fid3,'%15.6E %15.6E %15.6E\n',temp); 
         fwrite(fid3,temp); 
     end 
 end 
fclose(fid3); 
% %      
str1 = num2str(Qw'); 
cell1 = cellstr(str1); 
% Figure 
figure; 
contour(x,y,s_sum); 
[C,h] = contour(x,y,s_sum); 
clabel(C,h); 
% title('Drawdown M, Snapshot Time 400 days'); 
xlabel('x (m)'); 
ylabel('y (m)'); 
axis square; 
hold on 
scatter(xw,yw,50,'r+') 
text(xw+20,yw+50,cell1,'BackgroundColor',[1 1 0],'FontSize',10); 
legend('Drawdown','Operating wells') 
 
RC_fun: 
function [RC] = RC_fun(t,delt,dton,Sy,T,xm,ym,xw,yw) 
% Initial value 
RC=0.; 
% Time parameters 
frac= t/delt; 
int_t=fix(frac); 
rest_t=t-int_t*delt; 
n = int_t; 
% Distance to wells 
r=sqrt((xm-xw)^2+(ym-yw)^2); 
for i=1:n 
    t1=t-(i-1)*delt; 
    t2=t1-dton; 
    u_O=(Sy/(4*T))*(r^2/t1); % Operating Well 
  % Well Function 
    wu_O=expint(u_O); 
    uim_O=(Sy/(4*T))*(r^2/t2); % Imaginary Operating Well 
    % Well Function 
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    wuim_O=expint(uim_O); 
   % Total Well Function 
    RC=RC+(wu_O-wuim_O)/(4*pi()*T); 
end 
%  
if rest_t > 0 && rest_t <= dton 
    % Stream Constant Head and infinite Aquifer Effects 
    u_O=(Sy/(4*T))*(r^2/rest_t); % Operating Well 
    % Well Function 
    wu_O=expint(u_O); 
    RC=RC+wu_O/(4*pi()*T);   
end 
if  rest_t > dton 
    t1=rest_t; 
    t2=t1-dton; 
    % Stream Constant Head and infinite Aquifer Effects 
    u_O=(Sy/(4*T))*(r^2/t1); % Operating Well 
    % Well Function 
    wu_O=expint(u_O); 
    % Imaginary Compensation Wells 
   uim_O=(Sy/(4*T))*(r^2/t2); % Imaginary Well 
    % Well Function 
    wuim_O=expint(uim_O); 
    RC=RC+(wu_O-wuim_O)/(4*pi()*T); 
end 
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APPENDIX B 
 

 
Matlab code: Infinite.Drawdown.Time 
 
This code calculates and plots the head time series for t (0,tfin) for a number of wells operating 
cyclically or continuously in an aquifer with an infinite areal extrension. 
 
 
The input file Aquifer.Parms includes simulation time parameters and aquifer parameters: 
 

• time parameters 
• final simulation time tfin; 
• cyclical time step of simulation Δt=Δton+Δtoff (e.g., 1 year) 

 
• the aquifer parameters  

• initial hydraulic head (aquifer's saturated thickness) h0 
• hydraulic conductivity K; 
• storativity S. 

  
The input file Monitoring.Wells.dat includes monitoring well data. 

 
• total number of monitoring wells nmw 

 
• for each monitoring well, each of the following lines provides well location coordinates 

xw and yw. 
 
The input file Wells.dat includes wells data: 
  

• total number of operating wells nw 
 

• for each operating well, each of the following lines provide: 
• the pumping rate (Qw); 
• the time at which well operation starts (tst), 
• the total operation period (Δton) 
• well location xw and yw. 
•   

 
Examples: 
 

Aquifer.Parms 
 

730.	   365.	   30.	   622.08	   0.2	  

tfin (day)	   Δt=Δton+Δtoff (day)	   b(m)	   K (m/day)	   S (/)	  
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  Wells.dat 
 

Description:	   2 wells operating cyclically	  

2 (nw)	  

-500.	   0.	   180.	   500.	   1000.	  

-1000.	   60.	   120.	   1000.	   500.	  

Qw (m3/day)	   tst (day)	   Δton (day)	   xw (m)	   yw (m)	  

 
   MonitoringWells.dat 
 

Description:	   2 Monitoring wells 	  

2 (nm)	  

490.	   990.	  

900.	   400.	  

xw (m)	   yw (m)	  
 
Infinite.Drawdown.Time 
 
clc 
clear all 
% Reading Data Files  
% 1- Parameters File 
fid1 = fopen ('parameters.txt','r'); 
Temp = fscanf(fid1,'%f %f %f %f %f',[1,5]); 
tfin = Temp(1); % Final Time of Simulation (Days) 
delt = Temp(2); % Cycle Time = One Year (days)  
ho   = Temp(3); % Aquifer Initial Heard (M) 
K    = Temp(4); % Hydraulic Conductivity (M/day) 
Sy   = Temp(5); % Aquifer Specific Yeild (/) 
fclose(fid1); 
%  
% 2- Wells Data file 
fid2 = fopen ('wells.txt','r'); 
Temp    = fscanf(fid2,'%f',[1,1]); 
now= Temp(1); % Well Pumping Rate 
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 for m=1:now  
    Temp    = fscanf(fid2,'%f %f %f %f %f',[1,5]); 
    Qw(m)   = Temp(1); % Well Pumping Rate 
    tst(m)  = Temp(2); % Pumping Start Time 
    dton(m) = Temp(3); % Pumping Period 
    xw(m)   = Temp(4); % Well Location X Coordinate 
    yw(m)   = Temp(5); % Well Location Y Coordinate 
 end 
fclose(fid2); 
%  
% 3- Monitoring Wells data file 
fid3 = fopen ('Mon_Wells.txt','r'); 
Temp = fscanf(fid3,'%f',[1,1]); 
nmw   = Temp(1);% Monitoring Wells Number 
for mm = 1:nmw 
    Temp   = fscanf(fid3,'%f %f',[1,2]); 
    xm(mm) = Temp(1); 
    ym(mm) = Temp(2); 
end 
fclose(fid3); 
% %  
% Calculations 
% 1- General  
T = K*ho; 
to = 0.; 
dt = 1; 
t = to:dt:tfin; % time matrix 
nt = length(t);  % number of time steps(/) 
index = (tfin/365)-1; 
% 2- Computing Drawdown Distribution for number of operating wells 
 fid4 = fopen('results(t).txt','w'); 
 s_sum = zeros(nt,nmw);% Initial Drawdown 
 for i= 1:nt 
     for mm = 1:nmw 
         for m= 1:now 
             tt = t(i)-tst(m); 
             if (tt>=0.) 
                 s_sum(i,mm)=s_sum(i,mm)-
Qw(m)*RC_fun(tt,delt,dton(m),Sy,T,xm(mm),ym(mm),xw(m),yw(m)); 
             end 
             temp = [t(i), s_sum(i,mm)]; 
             fprintf(fid4,'%15.6E %15.6E\n',temp); 
             fwrite(fid4,temp); 
         end 
     end 
 end 
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 fclose(fid4); 
 q= zeros(nt,1); 
fid5 = fopen ('Q.txt','r'); 
Temp = fscanf(fid5,'%f',[1,1]); 
n= Temp(1); 
 for i=1:n 
     Temp = fscanf(fid5,'%f',[1,1]); 
     q(i,1)= -Temp(1); 
 end 
fclose(fid5);      
%  
[s_MAX, iMAX] = max(s_sum); 
[s_MIN, iMIN] = min(s_sum); 
[q_max, iqMAX] = max(q); 
[q_min, iqMIN] = min(q); 
% Fiqures 
figure 
plot(t,s_sum(:,1),'-.r','LineWidth',1.5) 
xlabel('Time (day)'); 
ylabel('Drawdown (m)'); 
% xlim ([0 tfin]); 
% ylim ([s_MIN-0.5 s_MAX+0.5]); 
hold on 
plot(t,s_sum(:,2),'LineWidth',2.5) 
legend('s15','s150') 
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APPENDIX C 
 

 
Matlab code: SI.Drawdown.2D 
 
This code calculates and plots the spatial distribution of head at a specified time tfin for a number 
of wells operating cyclically or continuously in a semi-infinite aquifer limited by either a stream 
boundary or a no-flow boundary. The boundary is represented by the y=ys straight line at x=0 
 
The input file Aquifer.Parms includes simulation time parameters and aquifer parameters: 
 

• time parameters 
• final simulation time tfin; 
• cyclical time step of simulation Δt=Δton+Δtoff (e.g., 1 year) 

 
• the aquifer parameters  

• initial hydraulic head (aquifer's saturated thickness) h0 
• hydraulic conductivity K; 
• storativity S. 

 
The input file Grid.parms includes wells data: 
 

• grid lower left corner abscissa (xmin) 
• grid lower left corner ordinate (ymin) 
• grid upper right corner abscissa (xmax) 
• grid upper right corner ordinate (ymax) 
• n. of gridblocks along x (nx) 

n. of gridblocks along y (ny) 
 
The input file Wells.dat includes wells data: 
  

• total number of operating wells nw 
 

• for each operating well, each of the following lines provide: 
• the pumping rate (Qw); 
• the time at which well operation starts (tst), 
• the total operation period (Δton) 
• well location xw and yw. 

 
  
 
Examples: 
 

Aquifer.Parms 
 

100. or 200.	   365.	   30.	   622.08	   0.2	  
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tfin (day)	   Δt=Δton+Δtoff (day)	   b(m)	   K (m/day)	   S (/)	  

 
Grid.Parms 
 

0.	   0.	   2000.	   2000.	   20	   20	  

xmin (m)	   ymin (m)	   xmin (m)	   ymin (m)	   nx	   ny	  

 
  Wells.dat 
 

Description:	   2 wells operating cyclically	  

2 (nw)	  

-500.	   0.	   180.	   500.	   1000.	  

-1000.	   60.	   120.	   1000.	   500.	  

Qw (m3/day)	   tst (day)	   Δton (day)	   xw (m)	   yw (m)	  

 
SI.Drawdown.2D 
 
% Reading Data  
% 1- General Data  
fid1 = fopen ('Aquifer.Parms','r'); 
Temp = fscanf(fid1,'%f %f %f %f %f',[1,6]); 
tfin = Temp(1); % Final Time of Simulation (day) 
delt = Temp(2); % Cycle time step of simulation (day)  
ho   = Temp(3); % Aquifer Initial Head (saturated thickness)(m) 
K    = Temp(4); % Hydraulic Conductivity (m^2/day) 
Sy   = Temp(5); % Storativity (/) 
ys   = Temp(6); % stream location (m) 
T    = K*ho;    % Transmissivity (m^2/day) 
fclose(fid1); 
% 2- Reading Grid Data 
fid2 = fopen ('Grid.parms','r'); 
Temp = fscanf(fid2,'%f %f %f %f %f %f',[1,6]); 
xmin = Temp(1); % Minimum Value of X in the Grid 
ymin = Temp(2); % Minimum Value of Y in the Grid 
xmax = Temp(3); % Maximim Value of X in the Grid 
ymax = Temp(4); % Maximum Value of Y in the Grid 
nx   = Temp(5); % Number of X Divisions 
ny   = Temp(6); % Number of Y Divisions 
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fclose(fid2); 
%  
% 3- Wells Data 
fid3 = fopen ('Wells.dat','r'); 
Temp = fscanf(fid3,'%f',[1,1]); 
now   = Temp(1);% Wells Number 
for m = 1:now 
Temp    = fscanf(fid3,'%f %f %f %f %f',[1,5]); 
Qw(m)   = Temp(1); % Well Pumping Rate 
tst(m)  = Temp(2); % Pumping Start Time 
dton(m) = Temp(3); % Pumping Period 
xw(m)   = Temp(4); % Well Location X Coordinate 
yw(m)   = Temp(5); % Well Location Y Coordinate 
end 
fclose(fid3); 
% 
% Creating the Grid % 
nxx = nx+1; 
nyy = ny+1; 
dx = (xmax-xmin)/nx; 
dy = (ymax-ymin)/ny; 
for j= 1:nxx 
    for i= 1:nyy 
        x(i,j)= xmin+dx*(j-1); 
        y(i,j)= ymin+dy*(i-1); 
    end 
end 
%  
% Computing Drawdown Distribution for number of operating wells 
 ssum_rech   = zeros(nyy,nxx);% Initial Drawdown 
 ssum_noflow = zeros(nyy,nxx);% Initial Drawdown 
 for j= 1:nxx; 
     for i= 1:nyy; 
         for m =1:now; 
             t = tfin-tst(m); 
             if t>0 
ssum_rech(i,j)=ssum_rech(i,j)+CYC_THEIS_RECHARGE(t,delt,Sy,T,ys,x(i,j),y(i,j),dton(
m),xw(m),yw(m),Qw(m));              
ssum_noflow(i,j)=ssum_noflow(i,j)+CYC_THEIS_NOFLOW(t,delt,Sy,T,ys,x(i,j),y(i,j),dton
(m),xw(m),yw(m),Qw(m)); 
             end 
         end 
     end 
 end 
fid4 = fopen('results.recharge.dat','w'); 
fid5 = fopen('results.noflow.dat','w'); 
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for j= 1:nxx; 
    for i= 1:nyy; 
        temp = [x(i,j), y(i,j), ssum_rech(i,j)]; 
        fprintf(fid4,'%15.6E %15.6E %15.6E\n',temp); 
        % 
        temp = [x(i,j), y(i,j), ssum_noflow(i,j)]; 
        fprintf(fid5,'%15.6E %15.6E %15.6E\n',temp); 
    end 
end 
fclose(fid4); 
fclose(fid5); 
% %      
str1 = num2str(Qw'); 
cell1 = cellstr(str1); 
% Figure 
figure; 
contour(x,y,ssum_rech); 
[C,h] = contour(x,y,ssum_rech); 
clabel(C,h); 
title('Drawdown (m) @ ??? days'); 
xlabel('x (m)'); 
ylabel('y (m)'); 
hold on 
scatter(xw,yw,50,'r+') 
text(xw+20,yw+50,cell1,'BackgroundColor',[1 1 0],'FontSize',10); 
legend('Drawdown','Operating wells') 
figure; 
contour(x,y,ssum_noflow); 
[C,h] = contour(x,y,ssum_noflow); 
clabel(C,h); 
title('Drawdown (m) @ ??? days'); 
xlabel('x (m)'); 
ylabel('y (m)'); 
hold on 
scatter(xw,yw,50,'r+') 
text(xw+20,yw+50,cell1,'BackgroundColor',[1 1 0],'FontSize',10); 
legend('Drawdown','Operating wells') 
 
CYC_THEIS_NOFLOW 
 
function [dh] = CYC_THEIS_NOFLOW(t,delt,Sy,T,ys,xm,ym,dton,xw,yw,Qw) 
dh=0.; 
frac= t/delt; 
int_t=fix(frac); 
rest_t=t-int_t*delt; 
n = int_t+1; 
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% Distance to wells 
r1=sqrt((xm-xw)^2+(ym-yw)^2); 
r2=sqrt((xm-xw)^2+(2*ys-ym-yw)^2); 
for i=1:n-1 
    t1=t-(i-1)*delt; 
    t2=t1-dton; 
    % No-Flow Boundary Effect 
    u1_O=Sy/(4*T)*(r1^2/t1); % Operating Well 
    u1_I=Sy/(4*T)*(r2^2/t1); % Image Well 
    % Well Function 
    wu1_O=expint(u1_O); 
    wu1_I=expint(u1_I); 
    % Imaginary Compensation Wells 
    u2_O=Sy/(4*T)*(r1^2/t2); % Imaginary Operating Well 
    u2_I=Sy/(4*T)*(r2^2/t2); % Imaginary Image Well 
    % Well Function 
    wu2_O=expint(u2_O); 
    wu2_I=expint(u2_I); 
   % Total Well Function 
    wu1 = wu1_O+wu1_I; 
    wu2 = wu2_O+wu2_I; 
    % Drawdown 
    dh=dh+(Qw/(4*pi()*T))*(wu1-wu2); 
end 
%  
if rest_t > 0 && rest_t <= dton 
    % No-Flow Boundary Effect 
    u1_O=Sy/(4*T)*(r1^2/rest_t); % Operating Well 
    u1_I=Sy/(4*T)*(r2^2/rest_t); % Image Well 
    % Well Function 
    wu1_O=expint(u1_O); 
    wu1_I=expint(u1_I); 
    % Total Well Function 
    wu1 = wu1_O+wu1_I; 
    % Drawdown     
    dh=dh+(Qw/(4*pi()*T))*wu1;   
end 
if rest_t>0 && rest_t > dton 
    t1=rest_t; 
    t2=t1-dton; 
    % No-Flow Boundary Effect 
    u1_O=Sy/(4*T)*(r1^2/t1); % Operating Well 
    u1_I=Sy/(4*T)*(r2^2/t1); % Image Well 
    % Well Function 
    wu1_O=expint(u1_O); 
    wu1_I=expint(u1_I); 
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    % Imaginary Compensation Wells 
    u2_O=Sy/(4*T)*(r1^2/t2); % Imaginary Well 
    u2_I=Sy/(4*T)*(r2^2/t2); % Imaginary Image Well 
    % Well Function 
    wu2_O=expint(u2_O); 
    wu2_I=expint(u2_I); 
    % Total Well Function 
    wu1 = wu1_O+wu1_I; 
    wu2 = wu2_O+wu2_I; 
    % Drawdown    
    dh=dh+(Qw/(4*pi()*T))*(wu1-wu2); 
end 
 
CYC_THEIS_RECHARGE 
 
function [dh] = CYC_THEIS_RECHARGE(t,delt,Sy,T,ys,xm,ym,dton,xw,yw,Qw) 
dh=0.; 
frac= t/delt; 
int_t=fix(frac); 
rest_t=t-int_t*delt; 
n = int_t+1; 
% Distance to wells 
r1=sqrt((xm-xw)^2+(ym-yw)^2); 
r2=sqrt((xm-xw)^2+(2*ys-ym-yw)^2);  
for i=1:n-1 
    t1=t-(i-1)*delt; 
    t2=t1-dton; 
    % Constant Head Boundary Effects 
    u1_O=(Sy/(4*T))*(r1^2/t1); % Operating Well 
    u1_I=(Sy/(4*T))*(r2^2/t1); % Image Well 
    % Well Function 
    wu1_O=expint(u1_O); 
    wu1_I=expint(u1_I); 
    % Imaginary Compensation Wells 
    u2_O=Sy/(4*T)*(r1^2/t2); % Imaginary Operating Well 
    u2_I=Sy/(4*T)*(r2^2/t2); % Imaginary Image Well 
    % Well Function 
    wu2_O=expint(u2_O); 
    wu2_I=expint(u2_I); 
   % Total Well Function 
    wu1 = wu1_O-wu1_I; 
    wu2 = wu2_O-wu2_I; 
   % Drawdown 
    dh=dh+(Qw/(4*pi()*T))*(wu1-wu2); 
end 
%  
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if rest_t > 0 && rest_t <= dton 
    % Constant Head Boundary Effects 
    u1_O=(Sy/(4*T))*(r1^2/rest_t); % Operating Well 
    u1_I=(Sy/(4*T))*(r2^2/rest_t); % Image Well 
    % Well Function 
    wu1_O=expint(u1_O); 
    wu1_I=expint(u1_I); 
    % Total Well Function 
    wu1 = wu1_O-wu1_I; 
   % Drawdown     
    dh=dh+(Qw/(4*pi()*T))*wu1;   
end 
if rest_t>0 && rest_t > dton 
    t1=rest_t; 
    t2=t1-dton; 
    % Constant Head Boundary Effects 
    u1_O=(Sy/(4*T))*(r1^2/t1); % Operating Well 
    u1_I=(Sy/(4*T))*(r2^2/t1); % Image Well 
    % Well Function 
    wu1_O=expint(u1_O); 
    wu1_I=expint(u1_I); 
    % Imaginary Compensation Wells 
    u2_O=(Sy/(4*T))*(r1^2/t2); % Imaginary Well 
    u2_I=(Sy/(4*T))*(r2^2/t2); % Imaginary Image Well 
    % Well Function 
    wu2_O=expint(u2_O); 
    wu2_I=expint(u2_I); 
    % Total Well Function 
    wu1 = wu1_O-wu1_I; 
    wu2 = wu2_O-wu2_I; 
   % Drawdown    
    dh=dh+(Qw/(4*pi()*T))*(wu1-wu2); 
end 
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APPENDIX D 
 

 
Matlab code: SI.Drawdown.Time 
 
This code calculates and plots the head time series for t (0,tfin) for a number of wells operating 
cyclically or continuously in a semi-infinite aquifer limited by either a stream boundary or a no-
flow boundary. The boundary is represented by the y axis (x=0). 
 
 
The input file Aquifer.Parms includes simulation time parameters and aquifer parameters: 
 

• time parameters 
• final simulation time tfin; 
• cyclical time step of simulation Δt=Δton+Δtoff (e.g., 1 year) 

 
• the aquifer parameters  

• initial hydraulic head (aquifer's saturated thickness) h0 
• hydraulic conductivity K; 
• storativity S. 

  
The input file Monitoring.Wells.dat includes monitoring well data. 

 
• total number of monitoring wells nmw 

 
• for each monitoring well, each of the following lines provides well location coordinates 

xw and yw. 
 
The input file Wells.dat includes wells data: 
  

• total number of operating wells nw 
 

• for each operating well, each of the following lines provide: 
• the pumping rate (Qw); 
• the time at which well operation starts (tst), 
• the total operation period (Δton) 
• well location xw and yw. 
•   

 
Examples: 
 

Aquifer.Parms 
 

3650.	   365.	   30.	   622.08	   0.2	  
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tfin (day)	   Δt=Δton+Δtoff (day)	   b(m)	   K (m/day)	   S (/)	  

 
  Wells.dat 
 

Description:	   2 wells operating cyclically	  

2 (nw)	  

-500.	   0.	   180.	   500.	   1000.	  

-1000.	   60.	   120.	   1000.	   500.	  

Qw (m3/day)	   tst (day)	   Δton (day)	   xw (m)	   yw (m)	  

 
MonitoringWells.dat 
 

Description:	   2 Monitoring wells 	  

2 (nm)	  

200.	   200.	  

800.	   800.	  

xw (m)	   yw (m)	  
 
SI.Drawdown.Time 
 
clc 
clear all 
% Reading Data Files  
% 1- Parameters File 
fid1 = fopen ('Aquifer.Parms','r'); 
Temp = fscanf(fid1,'%f %f %f %f %f',[1,5]); 
tfin = Temp(1); % Final Time of Simulation (day) 
delt = Temp(2); % Cycle time step of simulation (day)  
ho   = Temp(3); % Aquifer Initial Head (saturated thickness)(m) 
K    = Temp(4); % Hydraulic Conductivity (m/day) 
Sy   = Temp(5); % Aquifer Storativity (/) 
fclose(fid1); 
%  
% 2- Monitoring Wells data file 
fid2 = fopen ('Monitoring.Wells.dat','r'); 
Temp = fscanf(fid2,'%f',[1,1]); 
nmw   = Temp(1);% Monitoring Wells Number 
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for m = 1:nmw 
    Temp  = fscanf(fid2,'%f %f',[1,2]); 
    xm(m) = Temp(1); 
    ym(m) = Temp(2); 
end 
fclose(fid2); 
% 3- Wells Data file 
fid3 = fopen ('Wells.dat','r'); 
Temp = fscanf(fid3,'%f',[1,1]); 
nw   = Temp(1);% Wells Number 
for w = 1:nw 
    Temp    = fscanf(fid3,'%f %f %f %f %f',[1,5]); 
    Qw(w)   = Temp(1); % Well Pumping Rate 
    tst(w)  = Temp(2); % Pumping Start Time 
    dton(w) = Temp(3); % Pumping Period 
    xw(w)   = Temp(4); % Well Location X Coordinate 
    yw(w)   = Temp(5); % Well Location Y Coordinate 
end 
fclose(fid3); 
%  
% Calculations 
% 1- General  
T = K*ho; 
to = 0; 
dt = 1.; 
t = to:dt:tfin; % time matrix 
nt = length(t);  % number of time steps(/) 
% 
% 2- Computing Drawdown Distribution for number of operating wells 
% Initialize Drawdown Arrays  
H_sum = zeros(nt,nmw); 
HN_sum = zeros(nt,nmw); 
HR_sum = zeros(nt,nmw); 
 for i= 1:nt 
     for j = 1:nmw 
         H_sum(i,j) = ho; 
         HN_sum(i,j) = ho; 
         HR_sum(i,j) = ho; 
         for w = 1:nw 
             dt = t(i)-tst(w); 
             if (dt>=0.) 
                 H_sum(i,j)  = H_sum(i,j) 
+CYC_THEIS(dt,delt,Sy,T,xm(j),ym(j),dton(w),xw(w),yw(w),Qw(w)); 
                 HN_sum(i,j) = 
HN_sum(i,j)+CYC_THEIS_NOFLOW(dt,delt,Sy,T,xm(j),ym(j),dton(w),xw(w),yw(w),Qw(
w)); 
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                 HR_sum(i,j) = 
HR_sum(i,j)+CYC_THEIS_RECHARGE(dt,delt,Sy,T,xm(j),ym(j),dton(w),xw(w),yw(w),Q
w(w)); 
             end 
         end 
     end 
 end 
 fid4 = fopen('Drawdown.VS.Time.dat','w'); 
 fid5 = fopen('Drawdown.VS.Time.NoFlow.dat','w'); 
 fid6 = fopen('Drawdown.VS.Time.Recharge.dat','w'); 
 for i= 1:nt 
     for j = 1:nmw 
         temp = [t(i), H_sum(i,j)]; 
         fprintf(fid4,'%15.6E %15.6E\n',temp); 
         temp = [t(i), HN_sum(i,j)]; 
         fprintf(fid5,'%15.6E %15.6E\n',temp); 
         temp = [t(i), HR_sum(i,j)]; 
         fprintf(fid6,'%15.6E %15.6E\n',temp); 
     end 
 end 
 fclose(fid4); 
 fclose(fid5); 
 fclose(fid6); 
 % 
[H_MAX, iMAX] = max(H_sum); 
[H_MIN, iMIN] = min(H_sum); 
[HN_MAX, iNMAX] = max(HN_sum); 
[HN_MIN, iNMIN] = min(HN_sum); 
[HR_MAX, iRMAX] = max(HR_sum); 
[HR_MIN, iRMIN] = min(HR_sum); 
% Fiqures 
figure 
plot(t,H_sum(:,1),'-r',t,ho,'.-b') 
title('Head at monitoring well location (???,???) Vs Time'); 
xlabel('Time (day)'); 
ylabel('Head (m)'); 
xlim ([0 tfin]); 
ylim ([H_MIN-0.01 H_MAX+0.01]); 
legend('H,') 
figure 
plot(t,HN_sum(:,1),'-r',t,ho,'.-b') 
title('Head at monitoring well location (Noflow) (???,???) Vs Time'); 
xlabel('Time (day)'); 
ylabel('Head (m)'); 
xlim ([0 tfin]); 
ylim ([HN_MIN-0.01 HN_MAX+0.01]); 
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legend('H,') 
figure 
plot(t,HR_sum(:,1),'-r',t,ho,'.-b') 
title('Head at monitoring well location (Recharge) (???,???) Vs Time'); 
xlabel('Time (day)'); 
ylabel('Head (m)'); 
xlim ([0 tfin]); 
ylim ([HR_MIN-0.01 HR_MAX+0.01]); 
legend('H,') 
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APPENDIX E 
 
 
Matlab code: SI.Glover 
 
This code calculates and plots the stream depletion rate, Qr, and stream depletion volume, Vr, vs 
Time, t, produced by a generic number of pumping wells operating either continuously or 
cyclically in a semi-infinite aquifer bounded by a recharge (stream) boundary. The stream is 
located on the y axis of the reference system (x=0).  
 
The input file Data.txt includes simulation time parameters and aquifer parameters:  
 

• time parameters 
• final simulation time tfin; 
• cyclical time step of simulation Δt=Δton+Δtoff (e.g., 1 year) 

 
• the aquifer parameters  

• aquifer's saturated thickness b; 
• hydraulic conductivity K; 
• storativity S. 

 
The input file Wells.txt includes wells data: 
 

• total number of operating wells nw 
 

• for each operating well, each of the following lines provide: 
• the pumping rate (Qw); 
• the time at which well operation starts (tst), 
• the total operation period (Δton) 
• well location xw then yw. 
•   

 
Examples: 
 

Data.txt 
3650.	   365.	   30.	   622.08	   0.2	  

tfin (day)	   Δt=Δton+Δtoff (day)	   b(m)	   K (m/day)	   S (/)	  

 
 Wells.dat 
 

Description:	   2 wells operating cyclically	  

2 (nw)	  
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-500.	   0.	   180.	   500.	   1000.	  

-1000.	   60.	   120.	   1000.	   500.	  

Qw (m3/day)	   tst (day)	   Δton (day)	   xw (m)	   yw (m)	  

 
   MonitoringWells.dat 
 

Description:	   2 Monitoring wells 	  

2 (nm)	  

500.	   500.	  

1700.	   1700.	  

xw (m)	   yw (m)	  
 
SI.Glover 
 
% Reading Data Files 
% 1 - General Data 
fid1 = fopen ('Data.txt','r'); 
Temp = fscanf(fid1,'%f %f %f %f %f',[1,5]); 
tfin = Temp(1); 
% tfin = Final Time of Simulation (days) 
delt = Temp(2); 
% delt = dton+dtoff (e.g., 365 days) 
h = Temp(3); 
% h = Thickness of the Aquifer (m) 
K = Temp(4); 
% K = Hydraulic Conductivity (m/day) 
Sy = Temp(5); 
% Sy = Storativity (/) 
fclose(fid1); 
% 
% 2 - Operating Wells Data 
fid2 = fopen ('wells.txt','r'); 
Temp = fscanf( fid2,'%f',[1,1]); 
now = Temp(1); 
for iw = 1:now 
    Temp = fscanf(fid2,'%f %f %f %f %f',[1,5]); 
    Qw(iw)  = Temp(1); 
    tst(iw) = Temp(2); 
    dton(iw)= Temp(3); 
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    xw(iw)  = Temp(4); 
    yw(iw)  = Temp(5); 
end 
fclose(fid2); 
% 
% Calculations 
% 1 - General calculations 
T = K*h; 
to = 0.; 
dt = 5.; 
t = to:dt:tfin; % time matrix 
nt = length(t); % number of time steps(/) 
% 
% 2 - Operation off period for operating wells 
for iw = 1:now 
    dtoff(iw)=delt-dton(iw); 
end 
% 
% 3 - Calculating Qr (stream depletion rate)and Vr (stream depletion volume) 
Qr_sum = zeros(nt,1); 
Vr_sum = zeros(nt,1); 
for i= 1:nt 
    for iw= 1:now 
        tt = t(i)-tst(iw); 
        if tt>0. 
            Qr_sum(i)=Qr_sum(i)+rate_sol(tt,dton(iw),delt,Qw(iw),T,Sy,xw(iw)); 
            Vr_sum(i)=Vr_sum(i)+vol_sol(tt,delt,dton(iw),Qw(iw),T,Sy,xw(iw)); 
        end 
    end 
end 
% 
Qr_MAX = max(Qr_sum); 
if Qr_MAX>=0. 
    Qr_MAX=Qr_MAX+100.; 
else 
    Qr_MAX=0; 
end 
Qr_MIN = min(Qr_sum); 
if Qr_MIN<=0. 
    Qr_MIN=Qr_MIN-100.; 
else 
    Qr_MIN=0; 
end 
Vr_MAX = max(Vr_sum); 
Vr_MIN = min(Vr_sum); 
% Fiqures 
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figure 
plot(t,Qr_sum,'-r') 
%title('Total Stream Depletion Rate Vs Time'); 
xlabel('Time (day)'); 
ylabel('Total Qr (m^3/day)'); 
xlim ([0 tfin+1]); 
ylim ([Qr_MIN Qr_MAX]); 
%legend('Qr') 
% 
figure 
plot(t,Vr_sum) 
%title('Total Stream Depletion Volume Vs Time'); 
xlabel('Time (day)'); 
ylabel('Total Vr (m^3)'); 
xlim ([0 tfin+1]); 
ylim ([0 Vr_MAX+1000]); 
%legend('Vr') 
% 
% Output Results 
fid3 = fopen('Time.Qr.Vr.dat','w'); 
for i= 1:nt 
    temp = [t(i),Qr_sum(i),Vr_sum(i)]; 
    fprintf(fid3,'%15.6E %15.6E %15.6E\n',temp); 
end 
 
Qratio: 
function QR = Qratio (T,Sy,y,t) 
u = (Sy*y^2)/(4*T*t); 
QR = erfc(sqrt(u)); 
 
rate_sol: 
function [Qr] = rate_sol(t,dton,delt,Q,T,Sy,xw) 
% Calculating Qr (stream depletion rate) 
Qr = 0.; 
frac=t/delt; 
int_t=fix(frac); 
rest_t=t-int_t*delt; 
n = int_t+1; 
for i=1:n-1 
    t1=t-(i-1)*delt; 
    t2=t1-dton; 
    Qr =Qr+Q*(Qratio(T,Sy,xw,t1)-Qratio(T,Sy,xw,t2)); 
end 
if rest_t >0 && rest_t <= dton 
    Qr =Qr+Q*Qratio(T,Sy,xw,rest_t); 
end 
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if rest_t > dton 
    Qr =Qr+Q*(Qratio(T,Sy,xw,rest_t)-Qratio(T,Sy,xw,rest_t-dton)); 
end 
 
Vratio: 
function VR = Vratio(T,S,y,t) 
u = (S*y^2)/(4*T*t); 
p = (S*y^2)/(2*T*t); 
VR = (1+p)*erfc(sqrt(u))- (sqrt(u)*2/sqrt(pi()))*(exp(-u)); 
 
vol_sol: 
function [Vr] = vol_sol(t,delt,dton,Q,T,Sy,xw) 
% Calculating Vr (depletion volume) 
Vr = 0.; 
frac=(t)/delt; 
int_t=fix(frac); 
rest_t=t-int_t*delt; 
n = int_t+1; 
for i=1:n-1 
    t1=t-(i-1)*delt; 
    t2=t1-dton; 
    Vr =Vr+Q*(t1* Vratio(T,Sy,xw,t1)-t2*Vratio(T,Sy,xw,t2)); 
end 
if rest_t >0 && rest_t <= dton 
    Vr=Vr+Q*rest_t*Vratio(T,Sy,xw,rest_t); 
end 
if rest_t > dton 
    t1=rest_t; 
    t2=t1-dton; 
    Vr=Vr+Q*(t1*Vratio(T,Sy,xw,t1)-t2*Vratio(T,Sy,xw,t2)); 
end 
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APPENDIX F 
 

 
Matlab code: Finite.Drawdown.2D 
 
This code calculates and plots the spatial distribution of head at a specified time tfin for a number 
of wells operating cyclically or continuously in a finite aquifer comprised between either a no-
flow boundary and a stream or by two recharge boundaries  
 
The input file Aquifer.Parms includes simulation time parameters and aquifer parameters: 
 

• time parameters 
• final simulation time tfin; 
• cyclical time step of simulation Δt=Δton+Δtoff (e.g., 1 year) 

 
• the aquifer parameters  

• initial hydraulic head (aquifer's saturated thickness) h0 
• hydraulic conductivity K; 
• storativity S. 
• location of the no-flow or recharge boundary 
• location of the stream 

 
 
The input file Grid.parms includes wells data: 
 

• grid lower left corner abscissa (xmin) 
• grid lower left corner ordinate (ymin) 
• grid upper right corner abscissa (xmax) 
• grid upper right corner ordinate (ymax) 
• n. of gridblocks along x (nx) 

n. of gridblocks along y (ny) 
 
The input file Wells.dat includes wells data: 
  

• total number of operating wells nw 
 

• for each operating well, each of the following lines provide: 
• the pumping rate (Qw); 
• the time at which well operation starts (tst), 
• the total operation period (Δton) 
• well location xw and yw. 

 
  
Examples: 
 

Aquifer.Parms 
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100. or 200.	   365.	   30.	   622.08	   0.2	  

tfin (day)	   Δt=Δton+Δtoff (day)	   b(m)	   K (m/day)	   S (/)	  

 
Grid.Parms 
 

0.	   0.	   2000.	   2000.	   20	   20	  

xmin (m)	   ymin (m)	   xmin (m)	   ymin (m)	   nx	   ny	  

              Wells.dat 
 

Description:	   2 wells operating cyclically	  

2 (nw)	  

-500.	   0.	   180.	   500.	   1000.	  

-1000.	   60.	   120.	   1000.	   500.	  

Qw (m3/day)	   tst (day)	   Δton (day)	   xw (m)	   yw (m)	  

 
Finite.Drawdown.2D 
 
clc 
clear all 
% Reading Data File 
% 1-Aquifer Parameter 
fid1 = fopen ('Aqui_Param.txt','r'); 
Temp = fscanf(fid1,'%f %f %f %f %f',[1,5]); 
ho          = Temp(1); % Aquifer Thickness (M) 
K          = Temp(2); % Hydraulic Conductivity (M^2/day) 
Sy         = Temp(3); % Apparent Specific Yeild (/) 
x_boundary = Temp(4); % Stream Location (M) 
x_stream   = Temp(5); % Boundary Location (M) 
fclose(fid1); 
%  
% 2-Wells Data file 
fid2 = fopen ('Wells.txt','r'); 
Temp = fscanf( fid2,'%f',[1,3]); 
tfin = Temp(1); % Final Time of Simulation (Days) 
delt = Temp(2); % Cycle Time = One Year (days)  
now = Temp(3);   % Wells Number 
for m = 1:now 
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Temp = fscanf( fid2,'%f %f %f %f',[1,5]); 
Qw(m)   = Temp(1);  % Well Pumping Rate (M^3/Day) 
tst(m)  = Temp(2);  % Well Location X Coordinate 
dton(m) = Temp(3);  % Well Location Y Coordinate 
xw(m)   = Temp(4);  % Well Operation Starting Time  (Days) 
yw(m)   = Temp(5);  % Pumping Period (Days) 
end 
fclose(fid2); 
%  
% 3-Grid Data file 
fid3 = fopen ('Grid_Data.txt','r'); 
Temp = fscanf(fid3,'%f %f %f %f %f %f',[1,6]); 
xmin = Temp(1); % Minimum Value of X in the Grid 
ymin = Temp(2); % Minimum Value of Y in the Grid 
xmax = Temp(3); % Maximim Value of X in the Grid 
ymax = Temp(4); % Maximum Value of Y in the Grid 
nx = Temp(5);   % Number of X Divisions 
ny = Temp(6);   % Number of Y Divisions 
fclose(fid3); 
%   
% Creating the Grid  
nxx = nx+1; 
nyy = ny+1; 
dx  = (xmax-xmin)/nx; 
dy  = (ymax-ymin)/ny; 
%  
for i= 1:nyy 
    for  j= 1:nxx 
        x(i,j)= xmin+ dx*(j-1); 
    end 
end 
%  
for  j= 1:nxx 
    for i= 1:nyy 
      y(i,j)= ymin+dy*(i-1); 
    end 
end 
%  
% Calculations 
% 1-General 
w = x_stream - x_boundary; % Aquifer Width (M)  
T = K*ho; % Transmissivity 
% 2-Computing Drawdown Distribution for a number Operating Wells 
 fid4 = fopen('results(RECH).txt','w'); 
 ssum_rech = zeros(nyy,nxx);% Initial Drawdown  
 fid5 = fopen('results(NOFLOW).txt','w'); 
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 ssum_noflow = zeros(nyy,nxx);% Initial Drawdown  
 for i= 1:nyy; 
     for j= 1:nxx; 
         for m =1:now 
             a = x_stream -xw(m); 
             t = tfin-tst(m); 
             if t>0 
                ssum_noflow(i,j)=ssum_noflow(i,j)-
Qw(m)*BRC_NOFLOW(t,delt,dton(m),Sy,T,w,a,yw(m),x(i,j),y(i,j)); 
                 ssum_rech(i,j)  =ssum_rech(i,j)-
Qw(m)*BRC_RECH(t,delt,dton(m),Sy,T,w,a,yw(m),x(i,j),y(i,j)); 
                 % B_CYC_THEIS calculates the drawdown for a number of cyclically operating 
well 
                 % and all of their image and imaginary wells for a Bounded Aquifer 
             end 
         end 
         temp = [x(i,j), y(i,j), ssum_rech(i,j)]; 
         fprintf(fid4,'%15.6E %15.6E %15.6E\n',temp); 
         temp = [x(i,j), y(i,j), ssum_noflow(i,j)]; 
         fprintf(fid5,'%15.6E %15.6E %15.6E\n',temp); 
     end 
 end 
fclose(fid4); 
fclose(fid5); 
% %   
str1 = num2str(Qw'); 
cell1 = cellstr(str1); 
% Figure 
figure; 
contour(x,y,ssum_noflow); 
[C,h] = contour(x,y,ssum_noflow); 
clabel(C,h); 
% title('Drawdown in a Bounded aquifer Between a Recharge and a No-flow Boundaries 
M'); 
xlabel('x (m)'); 
ylabel('y (m)'); 
axis square; 
hold on 
scatter(xw,yw,50,'r+') 
text(xw+20,yw+50,cell1,'BackgroundColor',[1 1 0],'FontSize',10); 
legend('Drawdown (NoFlow)','Operating wells') 
figure; 
contour(x,y,ssum_rech); 
[C,h] = contour(x,y,ssum_rech); 
clabel(C,h); 
% title('Drawdown in a Bounded Aquifer Between Two Recharge Boundaries M'); 
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xlabel('x (m)'); 
ylabel('y (m)'); 
axis square; 
hold on 
scatter(xw,yw,50,'r+') 
text(xw+20,yw+50,cell1,'BackgroundColor',[1 1 0],'FontSize',10); 
legend('Drawdown (Recharge)  ','Operating wells') 
 
BRC_NOFLOW 
 
function [BRC] = BRC_NOFLOW(t,delt,dton,Sy,T,w,a,yw,x,y) 
BRC=0.; % Initial Drawdown in a Bounded Aquifer 
TOL=1.e-9; % Tolerance value at which the loop stops 
DELTA=1.0; % Starting value of DELTA 
% Loop over the number of Wells Groups 
j=1; % (While) Loop Counter 
while abs(DELTA)>= TOL && j<=30 
    sign = (-1)^(j+1); 
    coff = 1/(4*pi()*T); 
    DELTA = sign*coff* Four_Wells(t,delt,dton,Sy,T,w,a,yw,x,y,j); 
    BRC = BRC+DELTA; 
    j=j+1; 
end 
%  
function [W_Fun]= Four_Wells(t,delt,dton,Sy,T,w,a,yw,x,y,j) 
  W_Fun= 0.;  
% Wells x Coordinate      
xw1 = (2*j-1)*w-a; 
xw2 = (2*j-1)*w+a; 
% %  
% Wells Distance From Observation Well 
r1= sqrt((x-xw1)^2+(y-yw)^2); 
r2= sqrt((x-xw2)^2+(y-yw)^2); 
% Image Wells 
rI1= sqrt((x+xw1)^2+(y-yw)^2); 
rI2= sqrt((x+xw2)^2+(y-yw)^2); 
%  
% Cycle Effect 
frac =t/delt; 
int_t =fix(frac);  
rest_t =t-int_t*delt; 
n =int_t+1; % Number of complete Operation Cycles 
% Loop over the number of Operation Cycles 
for i=1:n-1 
    % For a Number of Complete Cycles 
    t1=t-(i-1)*delt; 
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    t2=t1-dton; 
    % Stream Constant Head and infinite Aquifer Effects 
    u1=(Sy/(4*T))*(r1^2/t1); 
    u2=(Sy/(4*T))*(r2^2/t1); 
    % Image Wells 
    uI1=(Sy/(4*T))*(rI1^2/t1); 
    uI2=(Sy/(4*T))*(rI2^2/t1); 
    % Well Function 
    wu1=expint(u1); 
    wu2=expint(u2); 
    % Image Well Function 
    wuI1=expint(uI1); 
    wuI2=expint(uI2); 
    % Operating And Image Wells 
    wo = wu1-wu2+wuI1-wuI2;  
    % Imaginary Compensation Wells (for the continuous pumping) 
    u1_im=(Sy/(4*T))*(r1^2/t2); 
    u2_im=(Sy/(4*T))*(r2^2/t2); 
    % Image Wells 
    uI1_im=(Sy/(4*T))*(rI1^2/t2); 
    uI2_im=(Sy/(4*T))*(rI2^2/t2); 
    % Well Function 
    wu1_I=expint(u1_im); 
    wu2_I=expint(u2_im); 
    % Image Well Function 
    wuI1_im=expint(uI1_im); 
    wuI2_im=expint(uI2_im); 
    % Imaginary And Image Wells 
    wim = wu1_I-wu2_I+wuI1_im-wuI2_im; 
    % Total Well Function 
    W_Fun =W_Fun+(wo-wim); 
end 
% 
if rest_t>0 && rest_t <= dton % During Operation Time 
    % Stream Constant Head and Infinite Aquifer Effects 
    u1=(Sy/(4*T))*(r1^2/rest_t); 
    u2=(Sy/(4*T))*(r2^2/rest_t); 
    % Image Wells 
    uI1=(Sy/(4*T))*(rI1^2/rest_t); 
    uI2=(Sy/(4*T))*(rI2^2/rest_t); 
    % Well Function 
    wu1=expint(u1); 
    wu2=expint(u2); 
    % Image Well Function 
    wuI1=expint(uI1); 
    wuI2=expint(uI2); 
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    % Operating And Image Wells 
    W_Fun = W_Fun+(wu1-wu2+wuI1-wuI2);  
end    
if rest_t > dton  % During time when operation stops     
    t1=rest_t; 
    t2=t1-dton; 
    % Stream Constant Head and infinite Aquifer Effects 
    u1=(Sy/(4*T))*(r1^2/t1); 
    u2=(Sy/(4*T))*(r2^2/t1); 
    % Image Wells 
    uI1=(Sy/(4*T))*(rI1^2/t1); 
    uI2=(Sy/(4*T))*(rI2^2/t1); 
    % Well Function 
    wu1=expint(u1); 
    wu2=expint(u2); 
    % Image Well Function 
    wuI1=expint(uI1); 
    wuI2=expint(uI2); 
    % Operating And Image Wells 
    wo = wu1-wu2+wuI1-wuI2;  
    % Imaginary Compensation Wells (for continous pumping) 
    u1_im=(Sy/(4*T))*(r1^2/t2); 
    u2_I=(Sy/(4*T))*(r2^2/t2); 
    % Image Wells 
    uI1_im=(Sy/(4*T))*(rI1^2/t2); 
    uI2_im=(Sy/(4*T))*(rI2^2/t2); 
    % Well Function 
    wu1_I=expint(u1_im); 
    wu2_I=expint(u2_I); 
    % Image Well Function 
    wuI1_im=expint(uI1_im); 
    wuI2_im=expint(uI2_im); 
    % Imaginary And Image Wells 
    wim = wu1_I-wu2_I+wuI1_im-wuI2_im; 
    % Total Well Function 
    W_Fun =W_Fun+(wo-wim); 
end 
 
BRC_RECH 
 
function [Bs] = BRC_RECH(t,delt,dton,Sy,T,w,a,yw,x,y) 
Bs=0.; % Initial Drawdown in a Bounded Aquifer 
TOL=1.e-9; % Tolerance value at which the loop stops 
DELTA=1.0; % Starting value of DELTA 
% Loop over the number of Wells Groups 
j=1; % (While) Loop Counter 
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while abs(DELTA)>= TOL && j<=30 
    coff = 1/(4*pi()*T); 
    DELTA = coff* Four_Wells(t,delt,dton,Sy,T,w,a,yw,x,y,j); 
    Bs = Bs+DELTA; 
    j=j+1; 
end 
%  
function [W_Fun]= Four_Wells(t,delt,dton,Sy,T,w,a,yw,x,y,j) 
  W_Fun= 0.;  
% Wells x Coordinate      
xw1 = (2*j-1)*w-a; 
xw2 = (2*j-1)*w+a; 
% %  
% Wells Distance From Observation Well 
r1= sqrt((x-xw1)^2+(y-yw)^2); 
r2= sqrt((x-xw2)^2+(y-yw)^2); 
% Image Wells 
rI1= sqrt((x+xw1)^2+(y-yw)^2); 
rI2= sqrt((x+xw2)^2+(y-yw)^2); 
% Cycle Effect 
frac =t/delt; 
int_t =fix(frac);  
rest_t =t-int_t*delt; 
n =int_t+1; % Number of complete Operation Cycles 
% Loop over the number of Operation Cycles 
for i=1:n-1 
    % For a Number of Complete Cycles 
    t1=t-(i-1)*delt; 
    t2=t1-dton; 
    % Stream Constant Head and infinite Aquifer Effects 
    u1=(Sy/(4*T))*(r1^2/t1); 
    u2=(Sy/(4*T))*(r2^2/t1); 
    % Image Wells 
    uI1=(Sy/(4*T))*(rI1^2/t1); 
    uI2=(Sy/(4*T))*(rI2^2/t1); 
    % Well Function 
    wu1=expint(u1); 
    wu2=expint(u2); 
    % Image Well Function 
    wuI1=expint(uI1); 
    wuI2=expint(uI2); 
    % Operating And Image Wells 
    wo = wu1-wu2-wuI1+wuI2;  
    % Imaginary Compensation Wells (for the continuous pumping) 
    u1_im=(Sy/(4*T))*(r1^2/t2); 
    u2_im=(Sy/(4*T))*(r2^2/t2); 
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    % Image Wells 
    uI1_im=(Sy/(4*T))*(rI1^2/t2); 
    uI2_im=(Sy/(4*T))*(rI2^2/t2); 
    % Well Function 
    wu1_im=expint(u1_im); 
    wu2_im=expint(u2_im); 
    % Image Well Function 
    wuI1_im=expint(uI1_im); 
    wuI2_im=expint(uI2_im); 
    % Imaginary And Image Wells 
    wim = wu1_im-wu2_im-wuI1_im+wuI2_im; 
    % Total Well Function 
    W_Fun =W_Fun+(wo-wim); 
end 
% 
if rest_t>0 && rest_t <= dton % During Operation Time 
    % Stream Constant Head and Infinite Aquifer Effects 
    u1=(Sy/(4*T))*(r1^2/rest_t); 
    u2=(Sy/(4*T))*(r2^2/rest_t); 
    % Image Wells 
    uI1=(Sy/(4*T))*(rI1^2/rest_t); 
    uI2=(Sy/(4*T))*(rI2^2/rest_t); 
    % Well Function 
    wu1=expint(u1); 
    wu2=expint(u2); 
    % Image Well Function 
    wuI1=expint(uI1); 
    wuI2=expint(uI2); 
    % Operating And Image Wells 
    W_Fun = W_Fun+(wu1-wu2-wuI1+wuI2);  
end    
if rest_t > dton  % During time when operation stops     
    t1=rest_t; 
    t2=t1-dton; 
    % Stream Constant Head and infinite Aquifer Effects 
    u1=(Sy/(4*T))*(r1^2/t1); 
    u2=(Sy/(4*T))*(r2^2/t1); 
    % Image Wells 
    uI1=(Sy/(4*T))*(rI1^2/t1); 
    uI2=(Sy/(4*T))*(rI2^2/t1); 
    % Well Function 
    wu1=expint(u1); 
    wu2=expint(u2); 
    % Image Well Function 
    wuI1=expint(uI1); 
    wuI2=expint(uI2); 
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    % Operating And Image Wells 
    wo = wu1-wu2-wuI1+wuI2;  
    % Imaginary Compensation Wells (for continous pumping) 
    u1_im=(Sy/(4*T))*(r1^2/t2); 
    u2_im=(Sy/(4*T))*(r2^2/t2); 
    % Image Wells 
    uI1_im=(Sy/(4*T))*(rI1^2/t2); 
    uI2_im=(Sy/(4*T))*(rI2^2/t2); 
    % Well Function 
    wu1_im=expint(u1_im); 
    wu2_im=expint(u2_im); 
    % Image Well Function 
    wuI1_im=expint(uI1_im); 
    wuI2_im=expint(uI2_im); 
    % Imaginary And Image Wells 
    wim = wu1_im-wu2_im-wuI1_im+wuI2_im; 
    % Total Well Function 
    W_Fun =W_Fun+(wo-wim); 
end 
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APPENDIX G 
 

 
Matlab code: Finite.Drawdown.Time 
 
This code calculates and plots the head time series for t (0,tfin) for a number of wells operating 
cyclically or continuously in a finite aquifer comprised between either a no-flow boundary and a 
stream or by two recharge boundaries 
 
The input file Aquifer.Parms includes simulation time parameters and aquifer parameters: 
 

• time parameters 
• final simulation time tfin; 
• cyclical time step of simulation Δt=Δton+Δtoff (e.g., 1 year) 

 
• the aquifer parameters  

• initial hydraulic head (aquifer's saturated thickness) h0 
• hydraulic conductivity K; 
• storativity S. 
• location of the no-flow or recharge boundary 
• location of the stream 

  
The input file Monitoring.Wells.dat includes monitoring well data. 

 
• total number of monitoring wells nmw 

 
• for each monitoring well, each of the following lines provides well location coordinates 

xw and yw. 
 
The input file Wells.dat includes wells data: 
  

• total number of operating wells nw 
 

• for each operating well, each of the following lines provide: 
• the pumping rate (Qw); 
• the time at which well operation starts (tst), 
• the total operation period (Δton) 
• well location xw and yw. 
•   

 
Examples: 
 

Aquifer.Parms 
 

100. or 200	   365.	   30.	   622.04	   0.2	  
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tfin (day)	   Δt=Δton+Δtoff (day)	   b(m)	   K (m/day)	   S (/)	  

 
           Grid.Parms 

 
0.	   0.	   2000.	   2000.	   20	   20	  

xmin (m)	   ymin (m)	   xmin (m)	   ymin (m)	   nx	   ny	  

             Wells.dat 
 

Description:	   2 wells operating cyclically	  

2 (nw)	  

-500.	   0.	   180.	   500.	   1000.	  

-1000.	   60.	   120.	   1000.	   500.	  

Qw (m3/day)	   tst (day)	   Δton (day)	   xw (m)	   yw (m)	  

 
Finite.Drawdown.Time 
 
clc 
clear all 
% Reading Data Files  
% 1- Parameters File 
fid1 = fopen ('Aqui_Param.txt','r'); 
Temp = fscanf(fid1,'%f %f %f %f %f',[1,5]); 
ho         = Temp(1); % Aquifer Initial Heard (M) 
K          = Temp(2); % Hydraulic Conductivity (M/day) 
Sy         = Temp(3); % Apparent Specific Yeild (/) 
x_boundary = Temp(4); % Stream Location (M) 
x_stream   = Temp(5); % Boundary Location (M) 
fclose(fid1); 
%  
% 2- Wells Data file 
fid2 = fopen ('Wells.txt','r'); 
Temp = fscanf( fid2,'%f',[1,3]); 
tfin = Temp(1); % Final Time of Simulation (Days) 
delt = Temp(2); % Cycle Time = One Year (days)  
now = Temp(3);   % Wells Number 
for m = 1:now 
    Temp    = fscanf(fid2,'%f %f %f %f %f',[1,5]); 
    Qw(m)   = Temp(1); % Well Pumping Rate 
    tst(m)  = Temp(2); % Pumping Start Time 
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    dton(m) = Temp(3); % Pumping Period 
    xw(m)   = Temp(4); % Well Location X Coordinate 
    yw(m)   = Temp(5); % Well Location Y Coordinate 
end 
fclose(fid2); 
%  
% 3- Monitoring Wells data file 
fid3 = fopen ('Mon_Wells.txt','r'); 
Temp = fscanf(fid3,'%f',[1,1]); 
nmw   = Temp(1);% Monitoring Wells Number 
for mm = 1:nmw 
    Temp   = fscanf(fid3,'%f %f',[1,2]); 
    xm(mm) = Temp(1); 
    ym(mm) = Temp(2); 
end 
fclose(fid3); 
% %  
% Calculations 
% 1- General  
w = x_stream - x_boundary; % Aquifer width 
T = K*ho; 
to = 0.01; 
dt = 1; 
t = to:dt:tfin; % time matrix 
nt = length(t);  % number of time steps(/) 
% 2- Computing Drawdown Distribution for number of operating wells 
 fid4 = fopen('results(Nt).txt','w'); 
 fid5 = fopen('results(Rt).txt','w'); 
 % Initial Drawdown 
 BHN_sum = zeros(nt,nmw); 
 BHR_sum = zeros(nt,nmw); 
 for i= 1:nt 
     for j = 1:nmw 
%          BHN_sum(i,j) = ho; 
%          BHR_sum(i,j) = ho; 
         for m = 1:now 
             a = x_stream -xw(m); 
             tt = t(i)-tst(m); 
             if (tt>=0.) 
                 BHN_sum(i,j) = BHN_sum(i,j)-
Qw(m)*BRC_NOFLOW(tt,delt,dton(m),Sy,T,w,a,yw(m),xm(j),ym(j)); 
                 BHR_sum(i,j) = BHR_sum(i,j)-
Qw(m)*BRC_RECH(tt,delt,dton(m),Sy,T,w,a,yw(m),xm(j),ym(j)); 
             end 
         temp = [t(i), xm(j),ym(j), BHN_sum(i,j)]; 
        fprintf(fid4,'%15.6E %15.6E %15.6E %15.6E\n',temp); 
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         temp = [t(i), xm(j),ym(j), BHR_sum(i,j)]; 
         fprintf(fid5,'%15.6E %15.6E %15.6E %15.6E\n',temp); 
         end 
     end 
 end 
 fclose(fid4); 
 fclose(fid5); 
% 
[HN_MAX, iNMAX] = max(BHN_sum); 
[HN_MIN, iNMIN] = min(BHN_sum); 
% Fiqures 
figure 
plot(t,BHN_sum(:,1),'-.r') 
% title('Head at monitoring well location during the simulation time Vs Time'); 
xlabel('Time (day)'); 
ylabel('Drawdown (N) (m)'); 
% xlim ([0 tfin+10]); 
ylim ([0 0.3]); 
hold on 
plot(t,BHN_sum(:,2),'-b') 
legend('HN500','HN1700') 
[HR_MAX, iRMAX] = max(BHR_sum); 
[HR_MIN, iRMIN] = min(BHR_sum); 
% Fiqures 
figure 
plot(t,BHR_sum(:,1),'-.r') 
% title('Head at monitoring well location during the simulation time Vs Time'); 
xlabel('Time (day)'); 
ylabel('Drawdown (R) (m)'); 
% xlim ([0 tfin+10]); 
ylim ([0 0.3]); 
hold on 
plot(t,BHR_sum(:,2),'-b') 
legend('HR500','HR1700') 
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APPENDIX H 
 
 
Matlab code: Finite.Glover 
 
This code calculates and plots the stream depletion rate, Qr, and stream depletion volume, Vr, vs. 
Time t for a number of operating wells operating either cyclically or continuously in a bounded 
aquifer comprised between a recharge stream and another boundary, which can be either 
constant-head or impermeable. The stream is parallel to on the x axis at y=ystream. The second 
boundary is located at y=yboundary< ystream. 
 
The input file Data.txt includes simulation time parameters and aquifer parameters:  
 

• time parameters 
• final simulation time tfin; 
• cyclical time step of simulation Δt=Δton+Δtoff (e.g., 1 year) 

 
• the aquifer parameters  

• aquifer's saturated thickness b; 
• hydraulic conductivity K; 
• storativity S; 
• aquifer boundary coordinates yboundary and ystream. 

 
The input file Wells.txt includes wells data: 
 

• total number of operating wells nw 
 

• for each operating well, each of the following lines provide: 
• the pumping rate (Qw); 
• the time at which well operation starts (tst), 
• the total operation period (Δton) 
• well location xw and yw. 
•   

 
Examples: 
 

Data.txt 
3650.	   365.	   30.	   622.04	   0.2	   0.	   2000.	  

tfin (day)	   Δt=Δton+Δtoff (day)	   b(m)	   K (m/day)	   S (/)	   yboundary	   yboundary	  

 
 Wells.dat 
 

Description:	   2 wells operating cyclically	  
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2 (nw)	  

-500.	   0.	   180.	   500.	   1000.	  

-1000.	   60.	   120.	   1000.	   500.	  

Qw (m3/day)	   tst (day)	   Δton (day)	   xw (m)	   yw (m)	  

 
   MonitoringWells.dat 
 

Description:	   2 Monitoring wells 	  

2 (nm)	  

490.	   990.	  

990.	   490.	  

xw (m)	   yw (m)	  
 
Finite.Glover 
 
% Reading  data  
% 1 - General data  
fid1 = fopen ('Data.txt','r'); 
Temp = fscanf(fid1,'%f %f %f %f %f %f %f',[1,7]); 
% tfin = Final Time of Simulation (day) 
tfin = Temp(1); 
% delt = dton+dtoff [e.g. 365](day) 
delt = Temp(2); 
%  b = Thickness of the Aquifer (m) 
b = Temp(3); 
%  K = Hydraulic Conductivity (m/Day) 
K = Temp(4); 
%  Sy = storativity (/) 
Sy = Temp(5); 
% Boundary Location (m) 
y_boundary = Temp(6);  
% Stream Location (m) 
y_stream = Temp(7);  
fclose(fid1); 
%  
% 2 - Well Field data 
fid2 = fopen ('Wells.dat','r'); 
Temp = fscanf( fid2,'%f',[1,1]); 
now = Temp(1); 
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for ow = 1:now 
    Temp = fscanf(fid2,'%f %f %f %f %f',[1,5]); 
    Qw(ow)  = Temp(1); 
    tst(ow) = Temp(2); 
    dton(ow)= Temp(3); 
    xw(ow)  = Temp(4); 
    yw(ow)  = Temp(5) ; 
end 
fclose(fid2); 
%  
% General calculations 
T = K*b; 
to = 0; 
w = y_stream-y_boundary; 
index = (tfin/delt)-1; 
dt = 1; 
t = to:dt:tfin; % time matrix 
nt = length(t);  % number of time steps(/) 
%  
% Off time for operating wells 
for ow = 1:now 
    dtoff(ow) = delt-dton(ow); 
end 
%  
% Calculating stream depletion rate (Qr)and stream depletion volume (Vr) 
Qr_Nsum = zeros(nt,1); 
Vr_Nsum = zeros(nt,1); 
Qr_Rsum = zeros(nt,1); 
Vr_Rsum = zeros(nt,1); 
% 
for i= 1:nt 
    for iw= 1:now 
        a = y_stream -yw(iw); 
        if (t(i)-tst(iw)>=0.) 
            % 
            Qr_Nsum(i)=Qr_Nsum(i)+ BNrate_sol_CYC(t(i)-
tst(iw),dton(iw),delt,Qw(iw),T,Sy,a,w); 
            Vr_Nsum(i)=Vr_Nsum(i)+ BNvol_sol_CYC(t(i)-
tst(iw),delt,dton(iw),Qw(iw),T,Sy,a,w); 
            % 
            Qr_Rsum(i,1)=Qr_Rsum(i)+ BRrate_sol_CYC(t(i)-
tst(iw),dton(iw),delt,Qw(iw),T,Sy,a,w); 
            Vr_Rsum(i,1)=Vr_Rsum(i)+ BRvol_sol_CYC(t(i)-
tst(iw),delt,dton(iw),Qw(iw),T,Sy,a,w); 
            % 
        end 
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    end 
end 
%  
Qr_NMAX = max(Qr_Nsum); 
Qr_NMIN = min(Qr_Nsum); 
if Qr_NMAX>0. 
    Qr_NMAX=Qr_NMAX+100.; 
else 
    Qr_NMAX=0; 
end 
if Qr_NMIN<0. 
    Qr_NMIN=Qr_NMIN-100.; 
else 
    Qr_NMIN=0; 
end 
Vr_NMAX = max(Vr_Nsum); 
Vr_NMIN = min(Vr_Nsum); 
% 
% Fiqures 
figure 
plot(t,Qr_Nsum,'-r') 
title('Total Stream Depletion Rate (No-Flow) Vs Time'); 
xlabel('Time (day)'); 
ylabel('Total Q_r (m^3/days)'); 
xlim ([0 tfin]); 
ylim ([Qr_NMIN Qr_NMAX]); 
%legend('Qr') 
%  
figure 
plot(t,Vr_Nsum) 
title('Total Stream Depletion Volume (No-flow) Vs Time'); 
xlabel('Time (day)'); 
ylabel('Total V_r (m^3)'); 
xlim ([0 tfin]); 
ylim ([Vr_NMIN Vr_NMAX]); 
%legend('Vr') 
%  
Qr_RMAX = max(Qr_Rsum); 
Qr_RMIN = min(Qr_Rsum); 
if Qr_RMAX>0. 
    Qr_RMAX=Qr_RMAX+100.; 
else 
    Qr_RMAX=0; 
end 
if Qr_RMIN<0. 
    Qr_RMIN=Qr_RMIN-100.; 
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else 
    Qr_RMIN=0.; 
end 
Vr_RMAX = max(Vr_Rsum); 
Vr_RMIN = min(Vr_Rsum); 
% Fiqures 
figure 
plot(t,Qr_Rsum,'-r') 
title('Total Stream Depletion Rate (Recharge) Vs Time'); 
xlabel('Time (day)'); 
ylabel('Total Q_r (m^3/days)'); 
xlim ([0 tfin]); 
ylim ([Qr_RMIN Qr_RMAX]); 
%legend('Qr') 
%  
figure 
plot(t,Vr_Rsum) 
title('Total Stream Depletion Volume (Recharge) Vs Time'); 
xlabel('Time (day)'); 
ylabel('Total V_r (m^3)'); 
xlim ([0 tfin]); 
ylim ([Vr_RMIN Vr_RMAX]); 
%legend('Vr') 
% 
% Output Results 
fid3 = fopen('Time.Qr.Vr.dat','w'); 
for i= 1:nt 
    temp = [t(i),Qr_Nsum(i),Vr_Nsum(i),Qr_Rsum(i),Vr_Rsum(i)]; 
    fprintf(fid3,'%15.6E %15.6E %15.6E %15.6E %15.6E\n',temp); 
end 
 
 
 
 
BRQRatio 
 
function BQRR=BRQRatio(T,S,a,w,t) 
BQRR = erfc(sqrt(S/4/T*a^2/t))+FQRatio(T,S,a,w,t); 
function FQR=FQRatio(T,S,a,w,t) 
TOL=1.e-9; i=1; DELTA=1.0; FQR=0; 
while abs(DELTA) >=TOL && i<=50 
    DELTA=A(T,S,a,w,t,i); 
    FQR=FQR+DELTA; 
    i=i+1; 
end 
function Ai=A(T,S,a,w,t,i) 
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Ai=-erfc(sqrt(S/4/T*(2*w*i-a)^2/t))+erfc(sqrt(S/4/T*(2*w*i+a)^2/t)); 
 
BRrate_sol_CYC: 
 
function [Qr] = BRrate_sol_CYC(t,dton,delt,Q,T,S,a,w) 
% Calculating Qr (stream depletion rate) 
Qr = 0.; 
frac= t/delt; 
int_t=fix(frac); 
rest_t=t-int_t*delt; 
n = int_t+1; 
for i=1:n-1 
    t1=t-(i-1)*delt; 
    t2=t1-dton; 
    Qr =Qr+Q*(BRQRatio(T,S,a,w,t1)-BRQRatio(T,S,a,w,t2));    
end 
if rest_t>0 && rest_t <= dton 
    Qr =Qr+Q*BRQRatio(T,S,a,w,rest_t) ; 
end 
if  rest_t>0 && rest_t > dton 
    t1=rest_t; 
    t2=t1-dton; 
    Qr =Qr+Q*(BRQRatio(T,S,a,w,t1)-BRQRatio(T,S,a,w,t2)); 
end 
 
BNQRatio 
 
function BQRR=BNQRatio(T,S,a,w,t) 
BQRR = erfc(sqrt(S/4/T*a^2/t))+FQRatio(T,S,a,w,t); 
function FQR=FQRatio(T,S,a,w,t) 
TOL=1.e-9; i=1; DELTA=1.0; FQR=0; 
while abs(DELTA) >=TOL && i<=30 
    DELTA=(-1)^(i+1)*A(T,S,a,w,t,i); 
    FQR=FQR+DELTA; 
    i=i+1; 
end 
function Ai=A(T,S,a,w,t,i) 
Ai=erfc(sqrt(S/4/T*(2*w*i-a)^2/t))-erfc(sqrt(S/4/T*(2*w*i+a)^2/t)); 
 
BNrate_sol_CYC: 
 
function [Qr] = BNrate_sol_CYC(t,dton,delt,Q,T,S,a,w) 
% Calculating Qr (stream depletion rate) 
Qr = 0.; 
frac= t/delt; 



	  
	  

162	  

int_t=fix(frac); 
rest_t=t-int_t*delt; 
n = int_t+1; 
for i=1:n-1 
    t1=t-(i-1)*delt; 
    t2=t1-dton; 
    Qr =Qr+Q*(BNQRatio(T,S,a,w,t1)-BNQRatio(T,S,a,w,t2)); 
end 
if rest_t>0 && rest_t <= dton 
    Qr =Qr+Q*BNQRatio(T,S,a,w,rest_t) ; 
end 
if  rest_t>0 && rest_t > dton 
    t1=rest_t; 
    t2=t1-dton; 
    Qr =Qr+Q*(BNQRatio(T,S,a,w,t1)-BNQRatio(T,S,a,w,t2)); 
end 
BRVRatio 
function BGVR=BRVRatio(T,S,a,w,t) 
TOL=1.e-9; i=0; DELTA=1.0; BGVR=0; 
while abs(DELTA) >=TOL && i<=30 
    DELTA=C(T,S,a,w,t,i)-D(T,S,a,w,t,i); 
    BGVR=BGVR+DELTA; 
    i=i+1; 
end 
function Ci=C(T,S,a,w,t,i) 
Ci=(1+S/2/T*(2*w*i+a)^2/t)*erfc(sqrt(S/4/T*(2*w*i+a)^2/t))-
2/sqrt(pi())*sqrt(S/4/T*(2*w*i+a)^2/t)*exp(-S/4/T*(2*w*i+a)^2/t); 
function Di=D(T,S,a,w,t,i) 
Di=(1+S/2/T*(2*w*(i+1)-a)^2/t)*erfc(sqrt(S/4/T*(2*w*(i+1)-a)^2/t))-
2/sqrt(pi())*sqrt(S/4/T*(2*w*(i+1)-a)^2/t)*exp(-S/4/T*(2*w*(i+1)-a)^2/t); 
 
BRvol_sol_CYC 
 
function [Vr] = BRvol_sol_CYC(t,delt,dton,Q,T,S,a,w) 
% Calculating Vr (depletion volume) 
Vr = 0.; 
frac=t/delt; 
int_t=fix(frac); 
rest_t=t-int_t*delt; 
n = int_t+1; 
for i=1:n-1 
    t1=t-(i-1)*delt; 
    t2=t1-dton; 
    Vr =Vr+Q*(t1*BRVRatio(T,S,a,w,t1)-t2*BRVRatio(T,S,a,w,t2)); 
end 
if rest_t>0 && rest_t <= dton 
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    Vr=Vr+Q*rest_t*BRVRatio(T,S,a,w,rest_t); 
end 
if rest_t>0 && rest_t > dton 
    t1=rest_t; 
    t2=t1-dton; 
    Vr=Vr+Q*(t1*BRVRatio(T,S,a,w,t1)-t2*BRVRatio(T,S,a,w,t2)); 
end 
 
BNVRatio 
 
function BGVR=BNVRatio(T,S,a,w,t) 
TOL=1.e-9; i=0; DELTA=1.0; BGVR=0; 
while abs(DELTA) >=TOL && i<=30 
    DELTA=(-1)^i*(C(T,S,a,w,t,i)+D(T,S,a,w,t,i)); 
    BGVR=BGVR+DELTA; 
    i=i+1; 
end 
function Ci=C(T,S,a,w,t,i) 
Ci=(1+S/2/T*(2*w*i+a)^2/t)*erfc(sqrt(S/4/T*(2*w*i+a)^2/t))-
2/sqrt(pi())*sqrt(S/4/T*(2*w*i+a)^2/t)*exp(-S/4/T*(2*w*i+a)^2/t); 
function Di=D(T,S,a,w,t,i) 
Di=(1+S/2/T*(2*w*(i+1)-a)^2/t)*erfc(sqrt(S/4/T*(2*w*(i+1)-a)^2/t))-
2/sqrt(pi())*sqrt(S/4/T*(2*w*(i+1)-a)^2/t)*exp(-S/4/T*(2*w*(i+1)-a)^2/t); 
 
BNvol_sol_CYC 
 
function [Vr] = BNvol_sol_CYC(t,delt,dton,Q,T,S,a,w) 
% Calculating Vr (depletion volume) 
Vr = 0.; 
frac=t/delt; 
int_t=fix(frac); 
rest_t=t-int_t*delt; 
n = int_t+1; 
for i=1:n-1 
    t1=t-(i-1)*delt; 
    t2=t1-dton; 
    Vr =Vr+Q*(t1*BNVRatio(T,S,a,w,t1)-t2*BNVRatio(T,S,a,w,t2)); 
end 
if rest_t>0 && rest_t <= dton 
    Vr=Vr+Q*rest_t*BNVRatio(T,S,a,w,rest_t); 
end 
if rest_t > dton 
    t1=rest_t; 
    t2=t1-dton; 
    Vr=Vr+Q*(t1*BNVRatio(T,S,a,w,t1)-t2*BNVRatio(T,S,a,w,t2)); 
End 
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APPENDIX I 
 

 
Matlab code: SI_OPT 
 
This code optimizes the absolute value of the stream depletion volume over a given time window 
(0, tfin) due to a number of operating wells at given locations in a semi-infinite aquifer limited by 
the stream under study. Wells can be activated either cyclically or continuously. The pumping 
rate is the decision variable so that the algorithm chooses whether a well is used for injection 
(Q>0) or extraction (Q<0) in the case of Aquifer Pumping and Recharge, or all the wells are 
chosen for injection during a period of time, then all of them are chosen for extraction during 
another period of time for the case of Aquifer Storage and Recovery (no overlap between 
operation periods) 
 

Constraints are imposed such that each well is characterized by a minimum (Qmin 0) and a 

maximum pumping rate (Qmax 0). 
 
Constraints on maximum and minimum drawdown are imposed at a number of monitoring wells 
nmw. 
 
 
All the other required parameters are read from (Param.txt) it contains: hydraulic conductivity of 
the aquifer, Storativity, finial time of simulation, delta time, initial heads level in the aquifer, 
maximum allowable heads, minimum allowable heads, available daily rate for injection, 
Irrigation demands daily rate, location of the boundary and location of the stream. 
 
 
The input file Aquifer.Parms.dat includes simulation time parameters and aquifer parameters: 
 

• the aquifer parameters  
• hydraulic conductivity K; 
• storativity S. 

• time parameters 
• final simulation time tfin; 
• cyclical time step of simulation Δt=Δton+Δtoff (e.g., 1 year) 

• hydraulic parameters and constraints 
• initial hydraulic head (saturated thickness) h0 
• maximum hydraulic head (saturated thickness) hmax 
• minimum hydraulic head (saturated thickness) hmin 
• available injection rate (>0) Qrech 
• irrigation demand rate (<0) Qdem 
• stream boundary location (ystream > 0) 

 
The input file Operation.Wells.data includes pumping well data: 
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• total number of operating wells nw 
 

• for each operating well, each of the following lines provide: 
• well location xw and yw. 
• the time at which well operation starts  tst 
• the operation period Δton 
• maximum extraction rate Qw,min (<0) 
• maximum injection rate Qw,max (>0) 

 
The input file Monitoring.Wells.data includes monitoring well data: 

 
• total number of monitoring wells nmw 

 
• for each operating well, each of the following lines provide: 

• well location xmw and ymw. 
• number of hydraulic head checks nt,ch 
• times at which  heads checks are performed 

 
Examples: 
 

Aquifer.Parms 
 

3740. 	   365.	   30.	   86.4	   0.2	  

tfin (day)	   Δt=Δton+Δtoff (day)	   b(m)	   K (m/day)	   S (/)	  

 
Grid.Parms 
 

0.	   0.	   6000.	   8000.	   60	   80	  

xmin (m)	   ymin (m)	   xmin (m)	   ymin (m)	   nx	   ny	  

  Wells.dat 
 

Description:	   2 wells operating cyclically (APR)	  

2 (nw)	  

-5000.	   0.	   75.	   140.	   1000.	   1000.	  

0.	   +5000	   270.	   180.	   1000.	   3000.	  

Qmin (m3/day)	   Qmin (m3/day)	   tst (day)	   Δton (day)	   xw (m)	   yw (m)	  

 
Wells.dat 
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Description:	   2 wells operating cyclically (ASR)	  

2 (nw)	  

-5000.	   0.	   75.	   140.	   1000.	   1000.	  

0.	   +5000	   255.	   180.	   1000.	   3000.	  

Qmin (m3/day)	   Qmin (m3/day)	   tst (day)	   Δton (day)	   xw (m)	   yw (m)	  

 
SI_OPT 
 
clear 
clc 
% Reading Data  
% 1- Simulation and Aquifer Parameters 
fid1 = fopen ('Aquifer.Parms.dat','r'); 
Temp = fscanf(fid1,'%f %f %f %f %f %f %f %f %f %f',[1,10]); 
% Hydraulic Conductivity (m/day) 
K =Temp(1); 
% Storativity (/) 
S = Temp(2); 
% Simulation Time Horizon (day) 
tfin = Temp(3); 
% Cycle simulation time  (e.g. 365 days) 
delt = Temp(4);  
% Aquifer Initial Head (saturated thickness)(m) 
ho = Temp(5); 
% Aquifer Maximum Head (m) - constraint 
hmax = Temp(6); 
% Aquifer Minimum Head (m) - constraint 
hmin = Temp(7); 
% Available water for Injection (>0) (m^3/day) 
Q_ava = Temp(8); 
% Irrigation Extraction Demand (<0) (m^3/day) 
Q_dem = Temp(9); 
% No-Flow Boundary Location (m) 
x_stream = Temp(10); 
fclose(fid1); 
%  
% 2- Operating Wells 
% fid2 = fopen ('BAPR_Operation.Wells.dat','r'); 
fid2 = fopen ('BASR_Operation.Wells.dat','r'); 
Temp = fscanf (fid2 ,'%f',[1,2]); 
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new = Temp(1); % Number of Extraction Wells 
niw = Temp(2); % Number of Injection Wells 
now=new+niw; 
now 
% 
xw = zeros(now); 
yw = zeros(now); 
tst = zeros(now); 
dt = zeros(now); 
Qw_min = zeros(now); 
Qw_max = zeros(now) 
% 
for j = 1:new 
    Temp = fscanf( fid2,'%f %f %f %f %f %f %f',[1,7]); 
    xw(j)     = Temp(2); 
    yw(j)     = Temp(3); 
    tst(j)    = Temp(4); % Operation starting time (day) 
    dt(j)     = Temp(5); % Operation Period (day) 
    Qw_min(j) = Temp(6); % Minimum extraction rate (m^3/day) 
    Qw_max(j) = Temp(7); % Maximum extraction rate (m^3/day) 
    if (Qw_max(j)>0.) 
      disp('Warning: extraction rate may be positive.') 
    end 
end 
for j = new+1:now 
    Temp = fscanf( fid2,'%f %f %f %f %f %f %f',[1,7]); 
    xw(j)     = Temp(2); 
    yw(j)     = Temp(3); 
    tst(j)    = Temp(4); % Operation starting time (day) 
    dt(j)     = Temp(5); % Operation Period (day) 
    Qw_min(j) = Temp(6); % Minimum injection rate (m^3/day) 
    Qw_max(j) = Temp(7); % Maximum injection rate (m^3/day) 
    if (Qw_min(j)<0.) 
        disp('Warning: injection rate may be negative.') 
    end 
end 
fclose(fid2); 
%  
% 3- Monitoring Wells 
fid3 = fopen ('Monitoring.Wells.dat','r'); 
Temp = fscanf( fid3,'%f',[1,1]); 
nmw = Temp(1); % Number of Monitoring Wells 
% 
xm = zeros(nmw); 
ym = zeros(nmw); 
ntch = zeros(nmw); 
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tch= zeros(nmw,10); 
% 
for mw = 1:nmw % mw = monitoring wells 
    Temp     = fscanf( fid3,'%f %f %f',[1,3]); 
    xm(mw)   = Temp(2); 
    ym(mw)   = Temp(3); 
    Temp     = fscanf( fid3,'%f',[1,1]); 
    % Number of Head Check Times 
    ntch(mw)   = Temp(1); 
    % Read in Head Check Times 
    for ich=1:ntch(mw) 
        tch(mw,ich)= fscanf( fid3,'%f',[1,1]); 
    end 
end 
fclose(fid3); 
%  
% Start Calculations 
%  
T  = K*ho; 
h1 = hmax-ho; % Maximum Allowed Head Increase (m) 
h2 = ho-hmin; % Maximum Allowed Head Decrease (m) 
%  
% Calculate Cumulative number of head check times 
cntch=0; 
for i= 1:nmw 
  cntch = cntch + ntch(i); 
end 
%  
% Assembling Linear Optimization Problem Coefficients 
% 
% Inequatilty matrix A allocation 
% The total number of rows of this matrix is given by the sum of: 
% -> 2*now (at each candidate well, the pumping rate must be below the maximum and 
above the minimum, 
%           which requires two inequalities per well) 
% -> 2*cntch (at each monitoring well, the head must be below the maximum and above 
the minimum 
%             at each prescribed check time, which requires two inequalities per well per check 
time) 
% -> 2 (at any time, the sum of extraction rates (<0) must be below Q_dem (<0),  
%                and the sum of injection rates (>0) must be below Q_ava) 
% -> 2 (extra inequalities for objective function modification accounting 
%       for the module of the volume of stream depletion, Vr') 
nrow = 2*now + 2*cntch + 2 + 2; 
%sprintf('N. of Constraint Inequalities: %d',nrow) 
% The total number of columns of this matrix is given by the total number of 
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% candidate operating wells plus one (for Vr') 
now 
ncol = now + 1; 
sprintf('N. of Decision Variables: %d',ncol) 
% Allocate matrix A 
A  = zeros(nrow,ncol); 
% Allocate Inequality RHS Vector: the total number of rows of this vector 
% is the same as in Matrix A:nrow = 2*now + 2*cntch + 2 + 2; 
b  = zeros(nrow,1); 
% 
% Calculate and assemble matrix A and RHS Vector b coefficients  
irow=0; 
for j = 1:now 
    % set coefficients for two pumping rate constraints at each candidate well 
    irow=irow+2; 
    A(irow-1,j) = +1.; 
    A(irow,j)   = -1.; 
    % pumping rate constraints at each candidate well 
    b(irow-1)   = +Qw_max(j); 
    b(irow)     = -Qw_min(j); 
end 
% 
for i=1:nmw 
    % set coefficients for two hydraulic head constraints at each monitoring 
    % well at each check time 
    for ich = 1:ntch(i) 
        irow=irow+2; 
        for j = 1:now 
            % calculate unit response coefficient for operating well j 
            % obtained using BRC_CYC(a Theis derived solution for a well 
            % operating cyclically in a bounded aquifer) 
            if (tch(i,ich)>tst(j)) 
                A(irow-1,j) = RC_SI(S,T,xw(j),yw(j),delt,dt(j),tch(i,ich)-tst(j),xm(i),ym(i)); 
                A(irow ,j)  = -A(irow-1,j); 
            end 
            % hydraulic head constraints at each monitoring well at each check time 
            b(irow-1) = h1; 
            b(irow)   = h2; 
        end 
    end 
end 
% 
% set coefficients for sum of extraction rates to be below Q_dem <0; 
irow=irow+1; 
for j = 1:new 
    A(irow,j) = +1.; 
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end 
b(irow) = Q_dem; 
% set coefficients for sum of injection rates to be below Q_ava >0; 
irow=irow+1; 
for j = new+1:now 
    A(irow,j) = +1.; 
end 
b(irow) = Q_ava; 
% 
% Set up inequality coefficients for objective function modification 
% accounting for the module of the volume of stream depletion, Vr') 
irow=irow+2; 
for j = 1:now 
    if ((tfin-tst(j))>0.) 
        A(irow-1,j) = vol_solver(tfin-tst(j),delt,dt(j),T,S,xw(j)); 
        A(irow  ,j) = -A(irow-1,j); 
    end 
end 
% set up Vr' cofficients  
A(irow-1,ncol) = -1; 
A(irow,ncol)   = -1; 
% Constraints for objective function modification accounting for the module 
% of the volume of stream depletion, Vr', are equal to zero. 
b(irow-1)      = 0.; 
b(irow)        = 0.; 
% 
% Matrix of Linear Objective Function Cofficients 
f = zeros(ncol,1);  
f(ncol) = 1; % for Vr' column 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Solution of the formulated Linear Optimization Problem 
% 
options = optimset('LargeScale','off','Simplex','on'); 
[Qw,fval,exitflag,output,lambda] = linprog(f,A,b,[],[]); 
% 
disp('Exit Condition:') 
if (exitflag==1) 
    exitflag 
    disp('optimum is found') 
else 
    exitflag 
    disp('optimum is NOT found: check linprog help') 
end 
%disp('Optimal Pumping Rate Set:') 
%Qw 
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fprintf('Objective Function Value at Optimum: Minimum Stream Volume Depletion') 
sprintf('fval= %f',fval) 
% 
%output 
%lambda 
% Calculated Aquifer Recharge and Extraction Cumulative Rates, 
% Stream Recharge Volume over the simulated period and 
% Reduce Optimal Solution by eliminating non active wells 
naow=0; 
naew=0; 
naiw=0 
Q_extract=0.; 
Q_recharge=0.; 
Vr=0.; 
Qlim=100.; 
for i=1:now 
    Vr=Vr+A(nrow-1,i)*Qw(i); 
    if (abs(Qw(i))>Qlim) 
        naow=naow+1; 
        if (Qw(i)<0.) 
            naew=naew+1; 
            Q_extract=Q_extract+Qw(i); 
        end 
        if (Qw(i)>0.) 
            naiw=naiw+1; 
            Q_recharge=Q_recharge+Qw(i); 
        end 
    end 
end 
% Output File 
% fid4 = fopen('SIAPR.results_S1.dat','w'); 
% fid4 = fopen('SIAPR.results_S2.dat','w'); 
% fid4 = fopen('SIAPR.results_S3.dat','w'); 
fid4 = fopen('SIASR.results_S1.dat','w'); 
% fid4 = fopen('SIASR.results_S2.dat','w'); 
% fid4 = fopen('SIASR.results_S3.dat','w'); 
 
temp = [naow,naew,naiw]; 
fprintf(fid4,'%d %d %d \n',temp); 
fid5 = fopen('optimal.scheme.dat','w'); 
for i=1: now 
    %      temp = [Qw(i),xw(i),yw(i),tst(i),dt(i),Qw_min(i),Qw_max(i)]; 
    %      fprintf(fid4,'%15.6E %15.6E %15.6E %15.6E %15.6E %15.6E %15.6E\n',temp); 
    if (abs(Qw(i))>Qlim) 
        temp = [Qw(i),tst(i),dt(i),xw(i),yw(i)]; 
        fprintf(fid4,'%15.6E %15.6E %15.6E %15.6E %15.6E\n',temp); 
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        temp = [xw(i),yw(i),Qw(i)]; 
        fprintf(fid5,'%15.6E %15.6E %15.6E\n',temp); 
    end 
end 
fprintf(fid4,'Net Cumulative Stream Recharge Volume (Vr_prime) (m^3/day)= %15.3E 
\n',fval) 
fprintf(fid4,'Cumulative Stream Recharge Volume (Vr) (m^3)= %15.3E \n',Vr) 
fprintf(fid4,'Cumulative Extraction Rate (m^3/day) = %15.3E \n',Q_extract) 
fprintf(fid4,'Cumulative Recharge Rate (m^3/day) = %15.3E \n',Q_recharge) 
fclose(fid4); 
fclose(fid5); 
% 
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APPENDIX J 
 

 
Matlab code: BNFR_OPT 
 
This code optimizes the absolute value of the stream depletion volume over a given time window 
(0, tfin) due to a number of operating wells at given locations in a finite aquifer bounded between 
a no-flow boundary and the stream under study. Wells can be activated either cyclically or 
continuously. The pumping rate is the decision variable so that the algorithm chooses whether a 
well is used for injection (Q>0) or extraction (Q<0) in the case of Aquifer Pumping and 
Recharge, or all the wells are chosen for injection during a period of time, then all of them are 
chosen for extraction during another period of time for the case of Aquifer Storage and Recovery 
(no overlap between operation periods) 
 

Constraints are imposed such that each well is characterized by a minimum (Qmin 0) and a 

maximum pumping rate (Qmax 0). 
 
Constraints on maximum and minimum drawdown are imposed at a number of monitoring wells 
nmw. 
 
 
All the other required parameters are read from (Param.txt) it contains: hydraulic conductivity of 
the aquifer, Storativity, finial time of simulation, delta time, initial heads level in the aquifer, 
maximum allowable heads, minimum allowable heads, available daily rate for injection, 
Irrigation demands daily rate, location of the boundary and location of the stream. 
 
 
The input file Aquifer.Parms.dat includes simulation time parameters and aquifer parameters: 
 

• the aquifer parameters  
• hydraulic conductivity K; 
• storativity S. 

• time parameters 
• final simulation time tfin; 
• cyclical time step of simulation Δt=Δton+Δtoff (e.g., 1 year) 

• hydraulic parameters and constraints 
• initial hydraulic head (saturated thickness) h0 
• maximum hydraulic head (saturated thickness) hmax 
• minimum hydraulic head (saturated thickness) hmin 
• available injection rate (>0) Qrech 
• irrigation demand rate (<0) Qdem 
• no-flow Boundary Location yno-flow 
• stream boundary location ystream (> yno-flow) 

 
The input file Operation.Wells.data includes pumping well data: 
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• total number of operating wells nw 

 
• for each operating well, each of the following lines provide: 

• well location xw and yw. 
• the time at which well operation starts  tst 
• the operation period Δton 
• maximum extraction rate Qw,min (<0) 
• maximum injection rate Qw,max (>0) 

 
The input file Monitoring.Wells.data includes monitoring well data: 

 
• total number of monitoring wells nmw 

 
• for each operating well, each of the following lines provide: 

• well location xmw and ymw. 
• number of hydraulic head checks nt,ch 
• times at which  heads checks are performed 

 
Examples: 
 

Aquifer.Parms 
 

3740. 	   365.	   30.	   86.4	   0.2	  

tfin (day)	   Δt=Δton+Δtoff (day)	   b(m)	   K (m/day)	   S (/)	  

 
Grid.Parms 
 

0.	   0.	   6000.	   8000.	   60	   80	  

xmin (m)	   ymin (m)	   xmin (m)	   ymin (m)	   nx	   ny	  

  Wells.dat 
 

Description:	   2 wells operating cyclically (APR)	  

2 (nw)	  

-5000.	   0.	   75.	   140.	   1000.	   1000.	  

0.	   +5000	   270.	   180.	   1000.	   3000.	  

Qmin (m3/day)	   Qmin (m3/day)	   tst (day)	   Δton (day)	   xw (m)	   yw (m)	  

Wells.dat 
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Description:	   2 wells operating cyclically (ASR)	  

2 (nw)	  

-5000.	   0.	   75.	   140.	   1000.	   1000.	  

0.	   +5000	   255.	   180.	   1000.	   3000.	  

Qmin (m3/day)	   Qmin (m3/day)	   tst (day)	   Δton (day)	   xw (m)	   yw (m)	  

 
BNFR_OPT 
 
clear 
clc 
% Reading Data  
% 1- Simulation and Aquifer Parameters 
fid1 = fopen ('Aquifer.Parms.dat','r'); 
Temp = fscanf(fid1,'%f %f %f %f %f %f %f %f %f %f %f',[1,11]); 
% Hydraulic Conductivity (m/day) 
K =Temp(1); 
% Storativity (/) 
S = Temp(2); 
% Simulation Time Horizon (day) 
tfin = Temp(3); 
% Cycle simulation time  (e.g. 365 days) 
delt = Temp(4);  
% Aquifer Initial Head (saturated thickness)(m) 
ho = Temp(5); 
% Aquifer Maximum Head (m) - constraint 
hmax = Temp(6); 
% Aquifer Minimum Head (m) - constraint 
hmin = Temp(7); 
% Available water for Injection (>0) (m^3/day) 
Q_ava = Temp(8); 
% Irrigation Extraction Demand (<0) (m^3/day) 
Q_dem = Temp(9); 
% No-Flow Boundary Location (m) 
x_boundary = Temp(10); 
% Stream Boundary Location (M) 
x_stream = Temp(11); 
fclose(fid1); 
%  
% 2- Operating Wells 
% fid2 = fopen ('BAPR_Operation.Wells.dat','r'); 
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fid2 = fopen ('BASR_Operation.Wells.dat','r'); 
Temp = fscanf (fid2 ,'%f',[1,2]); 
new = Temp(1); % Number of Extraction Wells 
niw = Temp(2); % Number of Injection Wells 
now=new+niw; 
now 
% 
xw = zeros(now); 
yw = zeros(now); 
tst = zeros(now); 
dt = zeros(now); 
Qw_min = zeros(now); 
Qw_max = zeros(now); 
% 
for j = 1:new 
    Temp = fscanf( fid2,'%f %f %f %f %f %f %f',[1,7]); 
    xw(j)     = Temp(2); 
    yw(j)     = Temp(3); 
    tst(j)    = Temp(4); % Operation starting time (day) 
    dt(j)     = Temp(5); % Operation Period (day) 
    Qw_min(j) = Temp(6); % Minimum extraction rate (m^3/day) 
    Qw_max(j) = Temp(7); % Maximum extraction rate (m^3/day) 
    if (Qw_max(j)>0.) 
      disp('Warning: extraction rate may be positive.') 
    end 
end 
for j = new+1:now 
    Temp = fscanf( fid2,'%f %f %f %f %f %f %f',[1,7]); 
    xw(j)     = Temp(2); 
    yw(j)     = Temp(3); 
    tst(j)    = Temp(4); % Operation starting time (day) 
    dt(j)     = Temp(5); % Operation Period (day) 
    Qw_min(j) = Temp(6); % Minimum injection rate (m^3/day) 
    Qw_max(j) = Temp(7); % Maximum injection rate (m^3/day) 
    if (Qw_min(j)<0.) 
        disp('Warning: injection rate may be negative.') 
    end 
end 
fclose(fid2); 
%  
% 3- Monitoring Wells 
fid3 = fopen ('Monitoring.Wells.dat','r'); 
Temp = fscanf( fid3,'%f',[1,1]); 
nmw = Temp(1); % Number of Monitoring Wells 
% 
xm = zeros(nmw); 
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ym = zeros(nmw); 
ntch = zeros(nmw); 
tch= zeros(nmw,10); 
% 
for mw = 1:nmw % mw = monitoring wells 
    Temp     = fscanf( fid3,'%f %f %f',[1,3]); 
    xm(mw)   = Temp(2); 
    ym(mw)   = Temp(3); 
    Temp     = fscanf( fid3,'%f',[1,1]); 
    % Number of Head Check Times 
    ntch(mw)   = Temp(1); 
    % Read in Head Check Times 
    for ich=1:ntch(mw) 
        tch(mw,ich)= fscanf( fid3,'%f',[1,1]); 
    end 
end 
fclose(fid3); 
%  
% Start Calculations 
%  
T  = K*ho; 
h1 = hmax-ho; % Maximum Allowed Head Increase (m) 
h2 = ho-hmin; % Maximum Allowed Head Decrease (m) 
w = x_stream-x_boundary; % Aquifer Width (m)  
%  
% Calculate Cumulative number of head check times 
cntch=0; 
for i= 1:nmw 
  cntch = cntch + ntch(i); 
end 
%  
% Assembling Linear Optimization Problem Coefficients 
% 
% Inequatilty matrix A allocation 
% The total number of rows of this matrix is given by the sum of: 
% -> 2*now (at each candidate well, the pumping rate must be below the maximum and 
above the minimum, 
%           which requires two inequalities per well) 
% -> 2*cntch (at each monitoring well, the head must be below the maximum and above 
the minimum 
%             at each prescribed check time, which requires two inequalities per well per check 
time) 
% -> 2 (at any time, the sum of extraction rates (<0) must be below Q_dem (<0),  
%                and the sum of injection rates (>0) must be below Q_ava) 
% -> 2 (extra inequalities for objective function modification accounting 
%       for the module of the volume of stream depletion, Vr') 
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nrow = 2*now + 2*cntch + 2 + 2; 
%sprintf('N. of Constraint Inequalities: %d',nrow) 
% The total number of columns of this matrix is given by the total number of 
% candidate operating wells plus one (for Vr') 
now 
ncol = now + 1; 
sprintf('N. of Decision Variables: %d',ncol) 
% Allocate matrix A 
A  = zeros(nrow,ncol); 
% Allocate Inequality RHS Vector: the total number of rows of this vector 
% is the same as in Matrix A:nrow = 2*now + 2*cntch + 2 + 2; 
b  = zeros(nrow,1); 
% 
% Calculate and assemble matrix A and RHS Vector b coefficients  
irow=0; 
for j = 1:now 
    % set coefficients for two pumping rate constraints at each candidate well 
    irow=irow+2; 
    A(irow-1,j) = +1.; 
    A(irow,j)   = -1.; 
    % pumping rate constraints at each candidate well 
    b(irow-1)   = +Qw_max(j); 
    b(irow)     = -Qw_min(j); 
end 
% 
for i=1:nmw 
    % set coefficients for two hydraulic head constraints at each monitoring 
    % well at each check time 
    for ich = 1:ntch(i) 
        irow=irow+2; 
        for j = 1:now 
            % calculate unit response coefficient for operating well j 
            % obtained using BRC_CYC(a Theis derived solution for a well 
            % operating cyclically in a bounded aquifer) 
            if (tch(i,ich)>tst(j)) 
                aw=x_stream-xw(j); 
                am=x_stream-xm(i); 
                A(irow-1,j) = BRC_NOFLOW(S,T,w,yw(j),aw,delt,dt(j),tch(i,ich)-tst(j),ym(i),am); 
                A(irow ,j)  = -A(irow-1,j); 
            end 
            % hydraulic head constraints at each monitoring well at each check time 
            b(irow-1) = h1; 
            b(irow)   = h2; 
        end 
    end 
end 
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% 
% set coefficients for sum of extraction rates to be below Q_dem <0; 
irow=irow+1; 
for j = 1:new 
    A(irow,j) = +1.; 
end 
b(irow) = Q_dem; 
% set coefficients for sum of injection rates to be below Q_ava >0; 
irow=irow+1; 
for j = new+1:now 
    A(irow,j) = +1.; 
end 
b(irow) = Q_ava; 
% 
% Set up inequality coefficients for objective function modification 
% accounting for the module of the volume of stream depletion, Vr') 
irow=irow+2; 
for j = 1:now 
    if ((tfin-tst(j))>0.) 
        A(irow-1,j) = BNvol_sol_CYC(tfin-tst(j),delt,dt(j),T,S,x_stream -xw(j),w); 
        A(irow  ,j) = -A(irow-1,j); 
    end 
end 
% set up Vr' cofficients  
A(irow-1,ncol) = -1; 
A(irow,ncol)   = -1; 
% Constraints for objective function modification accounting for the module 
% of the volume of stream depletion, Vr', are equal to zero. 
b(irow-1)      = 0.; 
b(irow)        = 0.; 
% 
% Matrix of Linear Objective Function Cofficients 
f = zeros(ncol,1);  
f(ncol) = 1; % for Vr' column 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Solution of the formulated Linear Optimization Problem 
% 
options = optimset('LargeScale','off','Simplex','on'); 
[Qw,fval,exitflag,output,lambda] = linprog(f,A,b,[],[]); 
% 
disp('Exit Condition:') 
if (exitflag==1) 
    exitflag 
    disp('optimum is found') 
else 
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    exitflag 
    disp('optimum is NOT found: check linprog help') 
end 
%disp('Optimal Pumping Rate Set:') 
%Qw 
fprintf('Objective Function Value at Optimum: Minimum Stream Volume Depletion') 
sprintf('fval= %f',fval) 
% 
%output 
%lambda 
% Calculated Aquifer Recharge and Extraction Cumulative Rates, 
% Stream Recharge Volume over the simulated period and 
% Reduce Optimal Solution by eliminating non active wells 
naow=0; 
naew=0; 
naiw=0; 
Q_extract=0.; 
Q_recharge=0.; 
Vr=0.; 
Qlim=100.; 
for i=1:now 
    Vr=Vr+A(nrow-1,i)*Qw(i); 
    if (abs(Qw(i))>Qlim) 
        naow=naow+1; 
        if (Qw(i)<0.) 
            naew=naew+1; 
            Q_extract=Q_extract+Qw(i); 
        end 
        if (Qw(i)>0.) 
            naiw=naiw+1; 
            Q_recharge=Q_recharge+Qw(i); 
        end 
    end 
end 
% Output File 
% fid4 = fopen('BAPR.results_S1.dat','w'); 
% fid4 = fopen('BAPR.results_S2.dat','w'); 
% fid4 = fopen('BAPR.results_S3.dat','w'); 
% fid4 = fopen('BASR.results_S1.dat','w'); 
% fid4 = fopen('BASR.results_S2.dat','w'); 
fid4 = fopen('BASR.results_S3.dat','w'); 
temp = [naow,naew,naiw]; 
fprintf(fid4,'%d %d %d \n',temp); 
fid5 = fopen('optimal.scheme.dat','w'); 
for i=1: now 
    %      temp = [Qw(i),xw(i),yw(i),tst(i),dt(i),Qw_min(i),Qw_max(i)]; 
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    %      fprintf(fid4,'%15.6E %15.6E %15.6E %15.6E %15.6E %15.6E %15.6E\n',temp); 
    if (abs(Qw(i))>Qlim) 
        temp = [Qw(i),tst(i),dt(i),xw(i),yw(i)]; 
        fprintf(fid4,'%15.6E %15.6E %15.6E %15.6E %15.6E\n',temp); 
        temp = [xw(i),yw(i),Qw(i)]; 
        fprintf(fid5,'%15.6E %15.6E %15.6E\n',temp); 
    end 
end 
fprintf(fid4,'Net Cumulative Stream Recharge Volume (Vr_prime) (m^3/day)= %15.3E 
\n',fval) 
fprintf(fid4,'Cumulative Stream Recharge Volume (Vr) (m^3)= %15.3E \n',Vr) 
fprintf(fid4,'Cumulative Extraction Rate (m^3/day) = %15.3E \n',Q_extract) 
fprintf(fid4,'Cumulative Recharge Rate (m^3/day) = %15.3E \n',Q_recharge) 
fclose(fid4); 
fclose(fid5); 
% 
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APPENDIX  K  
  

  
Matlab  code:  BRR_OPT  
  
This  code  optimizes  the  absolute  value  of  the  stream  depletion  volume  over  a  given  time  
window  (0,  tfin)  due  to  a  number  of  operating  wells  at  given  locations  in  a  finite  aquifer  bounded  
between  a  recharge  boundary  and  the  stream  under  study.  Wells  can  be  activated  either  
cyclically  or  continuously.  The  pumping  rate  is  the  decision  variable  so  that  the  algorithm  
chooses  whether  a  well  is  used  for  injection  (Q>0)  or  extraction  (Q<0)  ) in the case of Aquifer 
Pumping and Recharge, or all the wells are chosen for injection during a period of time, then all 
of them are chosen for extraction during another period of time for the case of Aquifer Storage 
and Recovery (no overlap between operation periods) 
  
	  

Constraints  are  imposed  such  that  each  well  is  characterized  by  a  minimum  (Qmin 0)  and  a  

maximum  pumping  rate  (Qmax   0).  
  
Constraints  on  maximum  and  minimum  drawdown  are  imposed  at  a  number  of  monitoring  
wells  nmw.	  
	  
	  
All	  the	  other	  required	  parameters	  are	  read	  from	  (Param.txt)	  it	  contains:	  
hydraulic	  conductivity	  of	  the	  aquifer,	  Storativity,	  finial	  time	  of	  simulation,	  
delta	  time,	  initial	  heads	  level	  in	  the	  aquifer,	  maximum	  allowable	  heads,	  minimum	  
allowable	  heads,	  available	  daily	  rate	  for	  injection,	  Irrigation	  demands	  daily	  
rate,	  location	  of	  the	  boundary	  and	  location	  of	  the	  stream.  
  
  
The  input  file  Aquifer.Parms.dat  includes  simulation  time  parameters  and  aquifer  parameters:  
  

• the  aquifer  parameters    
• hydraulic  conductivity  K;  
• storativity  S.  

• time  parameters  
• final  simulation  time  tfin;  
• cyclical  time  step  of  simulation  Δt=Δton+Δtoff  (e.g.,  1  year)  

• hydraulic  parameters  and  constraints  
• initial  hydraulic  head  (saturated  thickness)  h0  
• maximum  hydraulic  head  (saturated  thickness)  hmax  
• minimum  hydraulic  head  (saturated  thickness)  hmin  
• available  injection  rate  (>0)  Qrech  
• irrigation  demand  rate  (<0)  Qdem  
• recharge  Boundary  Location  yno-‐‑flow  
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• stream  boundary  location  ystream  (>  yno-‐‑flow)  
  
The  input  file  Operation.Wells.data  includes  pumping  well  data:  

  
• total  number  of  operating  wells  nw  

  
• for  each  operating  well,  each  of  the  following  lines  provide:  

• well  location  xw  and  yw.  
• the  time  at  which  well  operation  starts    tst  
• the  operation  period  Δton  
• maximum  extraction  rate  Qw,min  (<0)  
• maximum  injection  rate  Qw,max  (>0)  

  
The  input  file  Monitoring.Wells.data  includes  monitoring  well  data:  

  
• total  number  of  monitoring  wells  nmw  

  
• for  each  operating  well,  each  of  the  following  lines  provide:  

• well  location  xmw  and  ymw.  
• number  of  hydraulic  head  checks  nt,ch  
• times  at  which    heads  checks  are  performed  

  
Examples:  
  
Examples: 
 

Aquifer.Parms 
 

3740. 	   365.	   30.	   86.4	   0.2	  

tfin (day)	   Δt=Δton+Δtoff (day)	   b(m)	   K (m/day)	   S (/)	  

 
Grid.Parms 
 

0.	   0.	   6000.	   8000.	   60	   80	  

xmin (m)	   ymin (m)	   xmin (m)	   ymin (m)	   nx	   ny	  

 
 
 
 
 
  Wells.dat 
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Description:	   2 wells operating cyclically (APR)	  

2 (nw)	  

-5000.	   0.	   75.	   140.	   1000.	   1000.	  

0.	   +5000	   270.	   180.	   1000.	   3000.	  

Qmin (m3/day)	   Qmin (m3/day)	   tst (day)	   Δton (day)	   xw (m)	   yw (m)	  

         
            Wells.dat 
 

Description:	   2 wells operating cyclically (ASR)	  

2 (nw)	  

-5000.	   0.	   75.	   140.	   1000.	   1000.	  

0.	   +5000	   255.	   180.	   1000.	   3000.	  

Qmin (m3/day)	   Qmin (m3/day)	   tst (day)	   Δton (day)	   xw (m)	   yw (m)	  

 
BRR_OPT 
 
clear 
clc 
% Reading Data  
% 1- Simulation and Aquifer Parameters 
fid1 = fopen ('Aquifer.Parms.dat','r'); 
Temp = fscanf(fid1,'%f %f %f %f %f %f %f %f %f %f %f',[1,11]); 
% Hydraulic Conductivity (m/day) 
K =Temp(1); 
% Storativity (/) 
S = Temp(2); 
% Simulation Time Horizon (day) 
tfin = Temp(3); 
% Cycle simulation time  (e.g. 365 days) 
delt = Temp(4);  
% Aquifer Initial Head (saturated thickness)(m) 
ho = Temp(5); 
% Aquifer Maximum Head (m) - constraint 
hmax = Temp(6); 
% Aquifer Minimum Head (m) - constraint 
hmin = Temp(7); 
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% Available water for Injection (>0) (m^3/day) 
Q_ava = Temp(8); 
% Irrigation Extraction Demand (<0) (m^3/day) 
Q_dem = Temp(9); 
% No-Flow Boundary Location (m) 
x_boundary = Temp(10); 
% Stream Boundary Location (M) 
x_stream = Temp(11); 
fclose(fid1); 
%  
% 2- Operating Wells 
% fid2 = fopen ('BAPR_Operation.Wells.dat','r'); 
fid2 = fopen ('BASR_Operation.Wells.dat','r'); 
Temp = fscanf (fid2 ,'%f',[1,2]); 
new = Temp(1); % Number of Extraction Wells 
niw = Temp(2); % Number of Injection Wells 
now=new+niw; 
now 
% 
xw = zeros(now); 
yw = zeros(now); 
tst = zeros(now); 
dt = zeros(now); 
Qw_min = zeros(now); 
Qw_max = zeros(now); 
% 
for j = 1:new 
    Temp = fscanf( fid2,'%f %f %f %f %f %f %f',[1,7]); 
    xw(j)     = Temp(2); 
    yw(j)     = Temp(3); 
    tst(j)    = Temp(4); % Operation starting time (day) 
    dt(j)     = Temp(5); % Operation Period (day) 
    Qw_min(j) = Temp(6); % Minimum extraction rate (m^3/day) 
    Qw_max(j) = Temp(7); % Maximum extraction rate (m^3/day) 
    if (Qw_max(j)>0.) 
      disp('Warning: extraction rate may be positive.') 
    end 
end 
for j = new+1:now 
    Temp = fscanf( fid2,'%f %f %f %f %f %f %f',[1,7]); 
    xw(j)     = Temp(2); 
    yw(j)     = Temp(3); 
    tst(j)    = Temp(4); % Operation starting time (day) 
    dt(j)     = Temp(5); % Operation Period (day) 
    Qw_min(j) = Temp(6); % Minimum injection rate (m^3/day) 
    Qw_max(j) = Temp(7); % Maximum injection rate (m^3/day) 
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    if (Qw_min(j)<0.) 
        disp('Warning: injection rate may be negative.') 
    end 
end 
fclose(fid2); 
%  
% 3- Monitoring Wells 
fid3 = fopen ('Monitoring.Wells.dat','r'); 
Temp = fscanf( fid3,'%f',[1,1]); 
nmw = Temp(1); % Number of Monitoring Wells 
% 
xm = zeros(nmw); 
ym = zeros(nmw); 
ntch = zeros(nmw); 
tch= zeros(nmw,10); 
% 
for mw = 1:nmw % mw = monitoring wells 
    Temp     = fscanf( fid3,'%f %f %f',[1,3]); 
    xm(mw)   = Temp(2); 
    ym(mw)   = Temp(3); 
    Temp     = fscanf( fid3,'%f',[1,1]); 
    % Number of Head Check Times 
    ntch(mw)   = Temp(1); 
    % Read in Head Check Times 
    for ich=1:ntch(mw) 
        tch(mw,ich)= fscanf( fid3,'%f',[1,1]); 
    end 
end 
fclose(fid3); 
%  
% Start Calculations 
%  
T  = K*ho; 
h1 = hmax-ho; % Maximum Allowed Head Increase (m) 
h2 = ho-hmin; % Maximum Allowed Head Decrease (m) 
w = x_stream-x_boundary; % Aquifer Width (m)  
%  
% Calculate Cumulative number of head check times 
cntch=0; 
for i= 1:nmw 
  cntch = cntch + ntch(i); 
end 
%  
% Assembling Linear Optimization Problem Coefficients 
% 
% Inequatilty matrix A allocation 
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% The total number of rows of this matrix is given by the sum of: 
% -> 2*now (at each candidate well, the pumping rate must be below the maximum and 
above the minimum, 
%           which requires two inequalities per well) 
% -> 2*cntch (at each monitoring well, the head must be below the maximum and above 
the minimum 
%             at each prescribed check time, which requires two inequalities per well per check 
time) 
% -> 2 (at any time, the sum of extraction rates (<0) must be below Q_dem (<0),  
%                and the sum of injection rates (>0) must be below Q_ava) 
% -> 2 (extra inequalities for objective function modification accounting 
%       for the module of the volume of stream depletion, Vr') 
nrow = 2*now + 2*cntch + 2 + 2; 
%sprintf('N. of Constraint Inequalities: %d',nrow) 
% The total number of columns of this matrix is given by the total number of 
% candidate operating wells plus one (for Vr') 
now 
ncol = now + 1; 
sprintf('N. of Decision Variables: %d',ncol) 
% Allocate matrix A 
A  = zeros(nrow,ncol); 
% Allocate Inequality RHS Vector: the total number of rows of this vector 
% is the same as in Matrix A:nrow = 2*now + 2*cntch + 2 + 2; 
b  = zeros(nrow,1); 
% 
% Calculate and assemble matrix A and RHS Vector b coefficients  
irow=0; 
for j = 1:now 
    % set coefficients for two pumping rate constraints at each candidate well 
    irow=irow+2; 
    A(irow-1,j) = +1.; 
    A(irow,j)   = -1.; 
    % pumping rate constraints at each candidate well 
    b(irow-1)   = +Qw_max(j); 
    b(irow)     = -Qw_min(j); 
end 
% 
for i=1:nmw 
    % set coefficients for two hydraulic head constraints at each monitoring 
    % well at each check time 
    for ich = 1:ntch(i) 
        irow=irow+2; 
        for j = 1:now 
            % calculate unit response coefficient for operating well j 
            % obtained using BRC_CYC(a Theis derived solution for a well 
            % operating cyclically in a bounded aquifer) 
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            if (tch(i,ich)>tst(j)) 
                aw=x_stream-xw(j); 
                am=x_stream-xm(i); 
                A(irow-1,j) = BRC_RR(S,T,w,yw(j),aw,delt,dt(j),tch(i,ich)-tst(j),ym(i),am); 
                A(irow ,j)  = -A(irow-1,j); 
            end 
            % hydraulic head constraints at each monitoring well at each check time 
            b(irow-1) = h1; 
            b(irow)   = h2; 
        end 
    end 
end 
% 
% set coefficients for sum of extraction rates to be below Q_dem <0; 
irow=irow+1; 
for j = 1:new 
    A(irow,j) = +1.; 
end 
b(irow) = Q_dem; 
% set coefficients for sum of injection rates to be below Q_ava >0; 
irow=irow+1; 
for j = new+1:now 
    A(irow,j) = +1.; 
end 
b(irow) = Q_ava; 
% 
% Set up inequality coefficients for objective function modification 
% accounting for the module of the volume of stream depletion, Vr') 
irow=irow+2; 
for j = 1:now 
    if ((tfin-tst(j))>0.) 
        A(irow-1,j) = BRvol_sol_CYC(tfin-tst(j),delt,dt(j),T,S,x_stream -xw(j),w); 
        A(irow  ,j) = -A(irow-1,j); 
    end 
end 
% set up Vr' cofficients  
A(irow-1,ncol) = -1; 
A(irow,ncol)   = -1; 
% Constraints for objective function modification accounting for the module 
% of the volume of stream depletion, Vr', are equal to zero. 
b(irow-1)      = 0.; 
b(irow)        = 0.; 
% 
% Matrix of Linear Objective Function Cofficients 
f = zeros(ncol,1);  
f(ncol) = 1; % for Vr' column 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Solution of the formulated Linear Optimization Problem 
% 
options = optimset('LargeScale','off','Simplex','on'); 
[Qw,fval,exitflag,output,lambda] = linprog(f,A,b,[],[]); 
% 
disp('Exit Condition:') 
if (exitflag==1) 
    exitflag 
    disp('optimum is found') 
else 
    exitflag 
    disp('optimum is NOT found: check linprog help') 
end 
%disp('Optimal Pumping Rate Set:') 
%Qw 
fprintf('Objective Function Value at Optimum: Minimum Stream Volume Depletion') 
sprintf('fval= %f',fval) 
% 
%output 
%lambda 
% Calculated Aquifer Recharge and Extraction Cumulative Rates, 
% Stream Recharge Volume over the simulated period and 
% Reduce Optimal Solution by eliminating non active wells 
naow=0; 
naew=0; 
naiw=0; 
Q_extract=0.; 
Q_recharge=0.; 
Vr=0.; 
Qlim=100.; 
for i=1:now 
    Vr=Vr+A(nrow-1,i)*Qw(i); 
    if (abs(Qw(i))>Qlim) 
        naow=naow+1; 
        if (Qw(i)<0.) 
            naew=naew+1; 
            Q_extract=Q_extract+Qw(i); 
        end 
        if (Qw(i)>0.) 
            naiw=naiw+1; 
            Q_recharge=Q_recharge+Qw(i); 
        end 
    end 
end 
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% Output File 
% fid4 = fopen('BAPR.results_S1.dat','w'); 
% fid4 = fopen('BAPR.results_S2.dat','w'); 
% fid4 = fopen('BAPR.results_S3.dat','w'); 
% fid4 = fopen('BASR.results_S1.dat','w'); 
% fid4 = fopen('BASR.results_S2.dat','w'); 
fid4 = fopen('BASR.results_S3.dat','w'); 
temp = [naow,naew,naiw]; 
fprintf(fid4,'%d %d %d \n',temp); 
% fid5 = fopen('optimal.scheme.dat','w'); 
for i=1: now 
    %      temp = [Qw(i),xw(i),yw(i),tst(i),dt(i),Qw_min(i),Qw_max(i)]; 
    %      fprintf(fid4,'%15.6E %15.6E %15.6E %15.6E %15.6E %15.6E %15.6E\n',temp); 
    if (abs(Qw(i))>Qlim) 
        temp = [Qw(i),tst(i),dt(i),xw(i),yw(i)]; 
        fprintf(fid4,'%15.6E %15.6E %15.6E %15.6E %15.6E\n',temp); 
%         temp = [xw(i),yw(i),Qw(i)]; 
%         fprintf(fid5,'%15.6E %15.6E %15.6E\n',temp); 
    end 
end 
fprintf(fid4,'Net Cumulative Stream Recharge Volume (Vr_prime) (m^3/day)= %15.3E 
\n',fval) 
fprintf(fid4,'Cumulative Stream Recharge Volume (Vr) (m^3)= %15.3E \n',Vr) 
fprintf(fid4,'Cumulative Extraction Rate (m^3/day) = %15.3E \n',Q_extract) 
fprintf(fid4,'Cumulative Recharge Rate (m^3/day) = %15.3E \n',Q_recharge) 
fclose(fid4); 
% fclose(fid5); 
 
%  
 




