Data Summary of NOAA's Hurricane Inner-core Radial Leg Flight Penetrations 1957-1967, and 1969

By
William M. Gray and Dennis J. Shea

Department of Atmospheric Science
Colorado State University
Fort Collins, Colorado

October 1976

Department of Atmospheric Science

DATA SUMMARY OF NOAA'S
HURRICANE TNNER-CORE RADTAL I, IEG FLIGHT PENETRATIONS 1957-1967, 1969

by

William M. Gray
Dennis J. Shea ${ }^{1}$

Department of Atmospheric Science
Colorado State University
Fort Collins, Colorado
October, 1976
$1_{\text {Present Affiliation: National Center of Atmospheric }}$

ABSTRACT

Observational information from approximately 100 aircraft flight missions (533 radial legs) flown into and out of twenty-two hurricanes on forty-one storm days over a twelve year period (1957-1967, 1969) by aircraft of the NOAA's Research Flight Facility is presented for general reference of those who have a need or interest in inner hurricane information. Most flight missions were made between the 900 and 500 mb levels. 41 missions are available in the upper troposphere. A list of previous research papers on this flight information is also given.

The following hurricane and tropical cyclone National Oceanic and Atmospheric Administration (NOAA) aircraft inner core (center to radius of $100-120 \mathrm{~km}$) gathered meteorological data listings have been compiled for general reference information of those who have a need or interest in inner hurricane information. Many millions of dollars has been expended by NOAA in the gathering and processing of this special meteorological data. This information ought to be made available to the meteorological community as a whole.

This data set represents most of the processed inner core National Hurricane Research Laboratory (RFF) radial leg flight missions into tropical cyclones during the decade of 1957 to 1966. Some additional data for hurricane Beulah (1967) and Debbie (1969) is also included. The other approximately twothirds of the RFF tropical cyclone flights data during this period have not yet been processed or are unavailable in final processed form. Some of this latter unprocessed information is of less or marginal quality. This data set is the best and most reliable of the flight information.

Data is portrayed along individual radial flight legs in $2 \frac{1}{2}$ nautical mile (n.mi.) intervals from 5 to $50 \mathrm{n} . \mathrm{mi}$. radius. Typically, 4 to 6 radial legs were generally flown at one level into and out of a tropical cyclone during a $4-8$ hour period. These radial legs are separately listed and have been vortex averaged for each flight mission.

History. The National Hurricane Research Project (NHRP) was established in the middle 1950's at the instigation of Congress following the devastating flooding caused by hurricane Carol in the Connecticut Valley in 1954. Dr. Robert Simpson (recent Director of the National Hurricanc Conter) was the driving force behind the initial organization and functioning of the NHRP as it was then called ${ }^{1}$. The first flights were

[^0]accomplished in late 1956. Except for the year 1959 (during the change over from Air Force to civilian aircraft) an almost continuous monitoring of the hurricane by the Weather Bureau's (now NOAA's) Research F1ight Facility (RFF) was accomplished in the decade from 1956 through 1966. From 1966-67 onward the interest of NOAA has steadily shifted to hurricane modification and the typical radial or cloverleaf flight patterns have been modified.

Character of Flight Missions. From 1957 through 1966 the majority of flight missions were flown into the hurricane eye and out again. This was repeated at individual f1ight levels four to six times with a rather even balance between the storm quadrants. Figures la-h show several typical flight patterns. Most of these flights in and out of the hurricane occurred at inner radii of less than 100 nautical miles (n.mi.). Voluminous data is available from the center to the $50-60 \mathrm{n} . \mathrm{mi}$. radius. Beyond this radius the quantity of flight data drops off. A small sample of individual radial legs ${ }^{2}$ from two different layers (900 to 700 mb and 700 to 500 mb) have been superimposed to illustrate this (See Figs. 2 and 3).

The data has been gathered by prop aircraft (B-50's from 1956 through 1958, and DC-6's from 1960 to the present). This has restricted operations to below the 500 mb level. Also, due to safety restrictions on low level flight missions most of the data was taken above 900 mb . In this tropospheric range from 500 to 900 mb there have been approximately $700-800$ radial legs flown. Of these, the processed reliable data at this time comes to 492 radial legs.

Upper tropospheric sampling was accomplished between the 180 and 260 mb levels by $\mathrm{B}-47$ aircraft in 1957 and 1958 and by a B-57 after 1960. The number of $B-57$ flights has not been large
${ }^{2}$ A radial leg is the portion of the plane's flight pattern during which the plane was flying directly into or out of the storm cneter. For example, the flight pattern shown in Fig. la has six radial legs.

Fig. 1a. Cleo 18 Aug. 1958, 560 mb .

Fig. 1b. Daisy 27 Aug. 1958, 620 mb .

Figs. la-h. Typical flight patterns.
because of range and instrumental difficulties. For this reason there are only 11 evaluated upper level missions (41 radial legs). Combining upper and lower levels there are 533 radial legs.

Winds and Pressure. The perfection of the Doppler navigation instrument in the mid-1950's and the simultaneous measurement of pressure and absolute altitude (possible over water where terrain features do not interfere) have allowed accurate wind and D-value ${ }^{3}$ measurements down to the cumulus scales of motion.
${ }^{3}$ The D-value is the difference between the absolute altitude and the pressure altitude.

Fig. 1c. Helene 26 Sept. 1958, 250 mb .

Fig. 1d. Carla 10 Sept. 1961, 600 mb .

Fig. 1e. Ella 19 Oct. 1962, 900 mb .

Fig. 1f. Hi1da 10 Oct. 1964, 500 mb .

Fig. 1g. Betsy 3 Sept. 1965, 500 mb .

Fig. Ih. Inez 27 Oct. 1966, 750 mb .

Fig. 2. Small sample of superimposed individual radial legs for the $900-700 \mathrm{mb}$ layer.

Doppler wind measurements are much more reliable in high wind conditions where the noise to signal ratio is much smaller than in weak wind conditions. The general validity of these Doppler determined winds has been demonstrated on many occassions when navigation arrors after many hours of flight proved to be but a few nautical miles.

Temperature. The vortex temperature measurements have shown a very strong reliability. It is possible to obtain an inde-

Fig. 3. Same as Fig. 2 except for the $700-500 \mathrm{mb}$ layer.
pendent check on the observed inward radial temperature gradients by measurement of the pressure level thickness changes when simultaneous double level missions were flown. When compared the hydrostatically calculated temperature gradients and the directly measured temperature gradients proved to he filite close.

Processing of Data. Only in the last few years has this complete set of processed and checked flight data become
available. The data reducing, cross checking, navigation corrections, hydrostatic consistency checks, etc., that had to be made have required a rather lengthy and painstaking evaluation procedure. This large data sample is now available for close scrutiny

II. DATA COLLECTION AND ACCURACY

Discussions of the instruments and aircraft used to obtain the meteorological data of this study have been made by Hilleary and Christensen (1957), Hawkins, et al. (1962), Gray (1962, 1965a, 1965b, 1966, 1967), Gentry (1964), Reber and Friedman (1964) and Friedman et al. (1969a, 1969b). For detailed descriptions of the instruments and the character of the data collected the reader is referred to these reports.

After a flight into a storm has been completed, the raw data is composited with respect to the moving storm center by computer. This data is processed and the computer prints out the plane's distance from the storm center, the actual tangential wind (VAT), the actual radial wind (VAR), the relative tangential wind (VRT), the relative radial wind (VRR), and the D-value (D) and the adjusted temperature (TADJ) at that radius. The actual winds include the effects of storm motion whereas the relative winds have had the storm motion subtracted from the data. The adjusted temperature is the observed temperature adjusted to a constant pressure surface using typical hurricane lapse rates.

This data summary does not include humidity measurements. Nevertheless, an estimate of the effect a virtual temperature correction would have on observed temperatures and temperature gradients has been made and discussed in papers by Shea and Gray (1973), and a larger project report by Shea (1972). This data is unique in that simultaneous wind, temperature and pressure measurements are available down to the cumulus scale. Over land, where terrain features obscure D-value measurements, this is not
possible. The simultaneous pressure and wind measurements
allow examination of radial wind and pressure balances. Where double level flights were made, an examination of the vertical wind shears and cylindrical thermal wind balances can be made.

Data Errors. In general, the final processed data is quite reliable. Two non-instrument factors can contribute to errors in the wind resports, however. These are (1) positioning of the aircraft relative to the storm center and (2) water motion under the airciaft.

The positioning of the aircraft is quite important. Hawkins and Rubsam (on.cit.) have discussed the sensitivity of the radial winds to the aircraft's position to the storm center. They note that even small changes in position can result iu significant changes in the radial winds. Thus, along individual radial legs the radial winds are bewinds. Thus, along individual radial legs the radial $\frac{\text { winds }}{}$ are benot reliable and should not be used in a qualitative sense. If center positioning and other errors are random, however, a large radial wind data sample should be generally reliable.

The AN/APN-82 Doppler Navigation system was used to deterine the motion of the aircraft relative to the ocean. The wind speed is obtained from the vector difference between the true irspeed and the aircraft motion relative to the ocean. Because the aircraft measurements were made over the ocean which moves under wind stress, the Doppler winds have been suspected of underestimating the true wind speeds by $5-10$ percent [Grocott (1963), Gray (1967)] and upwards to 20% by Black et al. (1967). The observational evidence of the listed research papers by Gray and Shea support the former estimates of only $6-7 \%$ water motion.

Temperatures are measured with a vortex thermometer which requires no dynamic correction. Comparison of the observed vnrtex temperature gradients with those calculated from flight -value thickness gradients (using the hydrostatic equation) show a strikingly close similarity. For this reason the radial temperature gradients and D-value gradients are felt to be quite accurate (See report by Shea, 1972).

Data Available. All the fully processed and checked reconnaissance data from the hurricane flights of 1957 to 1969 has been gathered. Table 1 lists the twenty-two hurricanes, the forty-one storm days, the number of radial legs (total-533), the pressure levels at which the data was collected, the maximum actual winds at flight levels, the central pressures, etc., for the storms used in this study. Hurricane Hannah's data of 1959 was obtained by Air Force research planes.

Besides the information listed in Table 1 several other types of information are portrayed. These include time interval during which the data was obtained, the ground track of the ajrcraft, the octant in which the aircraft was flying both with respect to (w.r.t.) geographic north and w.r.t. storm motion, and whether the plane was flying towards or away from the storm center. This allowed investigation of the data to see if individual parameters exhibited any systematic differences between data gathered by inward penetration as opposed to outward penetration of the eye wall. Results showed that there are no systematic differences. A sample listing of this information for an individual radial leg is listed before the data information.

Although the wind, pressure, and temperature data were recorded every few hundred meters, it was decided that the very small scale data fluctuations should be smoothed out. This was accomplished by printing out information from five to fifty nautical miles (n.mi.) from the storm center using a 2.5 n.mi.overlapping smoothing interval. This interval was felt to offer enough horizontal resolution for most purposes.

Contained in the data sample are twenty-two days on which simultaneous multilevel flights were made. In order to be very representative, each flight level was required to have at least four approximately equally spaced radial legs and the data at each level had tobe taken within a reasonable time interval of each other i.e., 5-6 hours. This greatly reduces the number of usable double level flights. These double level flights are listed in Table 2. Examination of these flights can be used as
a check of the vertical wind shears and the degree of cylindrical thermal wind balance, and other features requiring knowledge of the vertical wind shear.

Distribution of Data. Higure 4 shows the manner in which the data is distributed in the vertical. The number of radial legs at each level and the pressure level which the data best represents is indicated. Using this information a five level mean asymmetric storm can be constructed. Figure 5 shows the distribution of radial legs by octant. Several of the octants contained only a few radial legs. In order to increase the amount of data in each octant it was decided that the individual octant data at each level should be combined with the data in each adjacent octant. For example, in Fig. 5 the four radial legs in octant 1 of the 1500^{\prime} to 5000^{\prime} data would be combined with the radial leg data in octants 2 and 8 making a total of 22 octant radial legs. The data in octant 2 would be combined with the data in octants 1 and 3 , etc. This overlapping tech-nique will slightly underestimate the degree of asymmetry in the mean asymmetric storm, but should make the data more representative. This overlapping average of the data represents the smoothed data set.

Check on the Radial Temperature Gradients. The temperature and D-value data used in this report are considered to be quite reliable in the statistical average. In order to check this assertion, area weighted radial vortex temperature gradients were compared with temperature gradients calculated from flight D-value thickness gradients through use of the hydrostatic equation, thus

RMW + 30 n. mi.
$\Delta T_{\text {cal }}=\int^{\text {RMW }+30 \text { n. mi. }} \frac{\partial T}{\partial r} d r=\frac{g}{R} \ln \frac{P_{1}}{P_{2}} \Delta D_{\text {obs }}$
and

TABLE 1
Storms, dates, levels, etc., used in this study. The letters following the inner radar eye are: A - approximate, WD - well defined, P - poor.

Intensity change means D (Deepening), S (Steady), and $F(F i l l i n g)$.

Storm No.	Date	Lat.	Motion Dir/Spd (Kts)	Intensity Change	$\begin{gathered} \text { Central } \\ \text { Press. } \\ \text { (mb) } \end{gathered}$	Max. Wind (Kts)	(Rad of Max. Winds) r. mi.	Inner Radar Eye Radius n. mi.	Approx. Flight Level (mb)	No. of Radial Legs	Level No.	Page No.
1-Carrie	15 Sept 57	30	310/11	S	963	80	(22)	--	610	6	1	1
						84	(22)	--	525	4	2	3
						54	(35)	--	240	2	3	5
	Sept 57	35	65/8	S	978	84	(32)	25A	680	6	4	7
						42	(47)	25A	240	6	5	9
2-Cleo	Aug. 58	33	15/13	S	972	86	(22)	17	800	6	1	11
						82	(22)	17	560	6	2	13
						49	(50)	17	240	5	3	15
3-Daisy	27 Aug. 58	29	25/5	D	942	109	(10)	6	620	6	1	17
					943	69	(10)	6	250	4	2	19
		33	$0 / 17$	F	950	101	(20)	--	620	6	3	21
4-Helene	25 Sept 58	29	335/6	D	982	76	(27)	15	800	6	1	23
	26 Sept 58	30	315/9	D	948	99	(25)	9	800	8	2	25
						97	(20	9	800	1	3	28
						119	(15)	9	560	5	4	30
						81	(12)	9	250	4	5	32
5-Hannah	01 Oct. 59	31	335/11	S	959	95	(20)	--	700	4	1	34
	02 Oct. 59	34	75/8	S	959	96	(22)	--	700	4	2	36
	04 Oct. 59	37	85/10	S	955	108	(30)	--	700	6	3	38
6-Donna	04 Sept 60	17	290/15	S	952	120	(12)	--	600	2	1	40
	07 Sept 60	22	270/9	S	935	129	(22)	10-13WD	760	4	2	42
						128	(15)	13WD	620	4	3	44
	09 Sept 60	23	305/10	S	930	131	(15)	--	800	2	4	46
7-Anna	21 July 61	13	280/16	S	983	98	(12)	--	700	y	1	48
8-Carla	08 Sept 61	23	300/6	D	964	98	(32)	31WD	850	4	1	51
						96	(35)	31WD	700	4	2	53
	09 Sept 61	24	310/8	D	948	109	(22)	21WD	850		3	55
						111	(17)	21WD	850	4	4	57
						94	(22)	22WD	700	4	5	59
					(con	inued)						

Storm No.	Date	Lat.	Motion Dir/Spd (Kts)	Intensity Change	Central Press. (mb)	Max. Wind (K.ts)	(Rad of Max. Winds)	Inner Radar Eye Radius	Approx. Flight Level (mb)	No. of Radial Legs	Leve1 No.	Page No.
9-Esther	10 Sept 61	27	300/8	S	940	96	(20)	20A	600	6	6	61
	11 Sept 61	28	340/6	S	940	102	(15)	--	600	4	7	63
	16 Sept 61	23	295/13	D	935	128	(12)	10A	800	8	1	65
						109	(12)	10A	470	9	2	68
						106	(12)	10A	470	5	3	71
	17 Sept 61	24	300/10	S	940	112	(10)	--	800	5	4	73
						108	(10)	--	800	2	5	75
						108	(10)	--	800	3	6	77
10-E11a	10 Oct. 62	31	65/8	D	966	102	(30)	30	900	8	1	79
						89	(40)	30	600	8	2	82
11-Beulah	23 Aug. 63	21	340/8	D	962	82	(17)	13	800	5	1	85
	24 Aug. 63	24	350/7	F	961	100	(25)	13A	800	10	2	87
						108	(20)	13A	520	13	3	90
12-Flora	03 Oct. 63	17	330/9	D	936	135	(8)	8-9	700	14	1	94
						122	(10)	8	650	12	2	98
	10 Oct. 63	28	50/25	S	970	117	(42)	25	700	12	3	101
						101	(50)	25	650	15	4	104
13-C1eo	23 Aug. 64	17	275/12		--	133	(7)	--	700	13	1	108
					--	126	(7)	-	550	16	2	112
14-Dora	05 Sept 64	24	320/10	D	966	98	(27)	8-15	700	7	1	116
					960	95	(25)	18	600	6	2	119
	07 Sept 64	28	285/10	S	963	75	(25)	14	700	6	3	121
					960	89	(50)	14	700	8	4	123
					960	88	(25)	14	650	16	5	126
	08 Sept 64	29	285/12	S	963	88	(35)	17P	700	4	6	130
					962	82	(40)	14	650	2	7	132
	09 Sept 64		280/10	S	965	82	(42)	25A	860	5	8	134
						80	(35)	25A	700	6	9	136
						69	(30)	25A	600	2	10	138
15-G1adys	17 Sept 64	24	300/9	S	954	111	(12)	13	900	6	1	140
					950	102	(15)	13	700	4	2	142
					945	107	(15)	13	700	2	3	144
			300/10		945	105	(15)	13	560	4	4	146

Storm No.	Date	Lat.	Motion Dir/Spd (Kts)	Intensity Change	$\begin{gathered} \text { Central } \\ \text { Press. } \\ \text { (mb) } \end{gathered}$	Max. Wind (Kts)	(Rad of Max. Winds)	Inner Radar Eye Radius	Approx. Flight level (mb)	No. of Radial Legs	Level No.	Page No .
16-Hilda	01 Oct. 64	24	310/5	D	950	110	(12)	10	900	4	1	148
					947	109	(12)	7-9	750	5	2	150
					950	90	(15)	7	650	4	3	152
						90	(12)	9	500	7	4	154
		24	310/5			47	(15)	9	180	2	5	157
	02 oct. 64	26	0/5	F	956	103	(20)	9	900	4	6	159
						89	(35)	9	700	2	7	159
						93	(40)	9	650	4	8	163
						50	(27)	9	200	2	9	165
17-Isbell	14 Oct. 64	24	35/11	S	970	108	(10)	13	850	6	1	167
						102	(12)	13	700	7	2	169
						87	(20)	13	570	1	3	177
18-Betsy	03 Sept 65	25	315/10	S	952	98	(22)	13-28	750	6	1	174
						100	(25)	10-15	650	6	2	176
						91	(17)	10	500	6	3	178
						56	(37)	10	200	4	4	180
	05 Sept 65	29	180/3	F	973	93	(37)	28	900	2	5	182
					968	75	(40)	10	800	2	6	184
		25				72	(37)	10	650	2	7	186
		29			970	57	(22)	10	500	4	8	188
						47	(42)	10	200	4	9	190
19-Inez	27 Sept 66	16	275/10	D	962	108	(5)	5	750	6	1	192
						104	(7)	5	650	6	2	194
					971	74	(12)	5	500	6	3	196
					962	46	(25)	5	200	4	4	198
20-Inez	28 Sept 66	17	275/12	D	934	142	(5)	4	950	6	1	200
					928	150	(7)	7	750	6	2	202
					934	126	(7)	4	650	6	3	204
			275/14		930			7	500	5	4	206
					934	67	(15)	7	200	4	5	208
21-Beulah	18 Sept 67	22	295/11	D	967	78	(12)	7	950	4	1	210
						80	(20)	7	850	4	2	21.2
22-Debbie	18 Aug. 69	24	300/1	S	971	93	(22)	--	650	4	1	214
	20 Aug 69	25	305/11	S	950	99	(22)	--	650	4	2	216
					954	99	(12)	--	650	4	3	218

TABLE 2
Storms, dates and flight levels for the 20 storm days on which multilevel flight missions were made.

Fig. 4. Disiribution of radial leg data in the vertical.
The number in paremihesis is the number of radial legs between the pressure layers indicated. The center of these layers are indicated.

Fig. 5. Distribution of radial legs by octant. The number without brackets represents the raw number of radial legs in each octant for each level. The number with brackets represents the overlapping average where radial legs in the surrounding two octants has been included.
where $\Delta T_{c a l}$ is the calculated radial temperature gradient
$\Delta D_{\text {obs }}$ is the observed radial thickness gradient between P_{1}, P_{2} is the upper and lower pressure levels
$\mathrm{g} \quad$ is the acceleration of gravity
$R \quad$ is the gas constant
$\Delta T_{\text {obs }}$ is the mean observed radial temperature gradient
ΔT upper $i s$ the observed radial temperature gradient in the upper upper pressure level
ΔT lower $i s$ the observed radial temperature gradient in the lower pressure level.

The calculations were performed on all the double level flights which occurred exclusively in the lower half of the troposphere. The composited results are shown in Fig. 6. It is obvious that, in the mean, the calculated and observed radial temperature gradients are quite close. For more discussion see the paper of Shea (1972).

IN-OUT Stratification. A few researchers (e.g., Colon, 1964) have asked how individual parameters (temperature, D-values radial winds) might vary as data is gathered by inward (IN) plane penetration as opposed to outward (OUT) plane penetration of the inner core area. In order to investigate this, each radial leg was classified as to whether the plane was flying IN or OUT. In this statistical average no systematic differences are noted in any of the parameter profiles. The temperature and D-value gradients for the IN and OUT legs are remarkably similar. The

Fig. 6. Composited observed and calculatcd temperature gradients Temperature increases were measured from $30 \mathrm{n} . \mathrm{mi}$. outside the Radius of Maximum Winds (RMW) to 10 n.mi. inside the $\overline{\mathrm{R} M W}$.
radial wind profiles differ but not in any consistent fashion.
All radial leg data has been plotted out and inspected for consistency. Any unrepresentative appearing data has been
disregarded. In general, only a small portion of the data had to be rejected. Much of this radial leg plotting of data was accomplished by NOAA personnel in Miami. See the report by Shea (1972) for more discussion of this flight data.

Inner-Core Variability. There is a very large variability in the inner-core maximum wind speeds and central pressures. The relationship between high maximum wind speed, small eye wall radius and low central pressure is only statistical. A very wide spread exists in individual cases.

Figure 7 presents information on the variation of the Radius of Maximum Wind (RMW) with latitude for the lower tropospheric datā, i.e. $\overline{500}-900 \mathrm{mb}$ flight legs. Although there is large variability at individual latitudes, there is a pronounced shift in tendency toward larger RMW's at high latitudes. Weakening storms are typically accompanied by a widening of the eye.

In order to determine if a correlation exists between the Radius of Maximum Winds (RMW) and the maximum winds, Figs. 8 and 9 were prepared. Again at both levels we note large variability. Nonetheless, a definite pattern exists with higher wind speeds occurring at radii closer to the storm center.. In intense storms the low level inflow penetrates closer to the center. Angular momentum considerations would require higher wind speeds.

Figure 10 shows the number of occurrences and frequency of the RMW's for all radial legs in the lower half of the troposphere. The mean maximum wind for each radii is shown at the top of each radii band. In most instances, the radius of maximum wind is inside 30 n . mi. As noted above, the highest wind speeds occur at radii close to the storm center.

Figure 11 presents a scatter diagram of maximum wind speed versus central pressure. As expected in the statistical average surface pressure is inversely correlated with wind speed. There is, however, a large variability in maximum winds for various central pressures. Central pressure gives only a rough approximation to storm intensity. Figure 12 illustrates some of the variations of radial tangential wind profiles.

Fig. 7. Variation of the Radius of Maximum Wind (RMW) with latitude for all lower tropospheric data. The best fit curve is indicated by the heavy line.

Fig. 8. Variation of maximum wind with RMW for lower tropospheric data. The best fit curve is indicated by the heavy line.

1ig. 9. Same as Fig. 8 except to uppe. tropospheric data.

Fig. 10. Frequency distribution of the occurcence of the maximum wind at various radii. The mean maximum wind (in kts) at each radii is indicated at the top of parh radif hand.

Fig. 11. Variation of the maximum wind Variation of the maximum wind
with central pressure for all lower tropospheric data. The best fit curve is indicated by the heavy line.

Fig. 12. Sample of observed tangential wind profiles.

Discussion. A number of conclusions are emerging from these research missions:

1) although the general structure and dynamics of the typical hurricane can be well specified by the flight data, large differences (in motion, radius of maximum winds, eye wall convection, asymmetry, etc.) exist between the separate storms. The individual hurricane at separate time intervals typically has a complicated structure and dynamic character which is often substantially different from the mean hurricane circulation.
2) the hurricane flight data, overall, appears to be of high quality. The observational quality cannot, however, be well judged by those who have worked only with some portions of data. Because the strucuture of each storm can be so different from the average, one must work with many of the storms and make many instrumental and dynamical consistency checks, etc. before the data's limitations can be ascertained.
3) there appears to be much more meaningful research which can be accomplished with this hurricane flight data.

The following bibliography lists most of the research papers and reports which have been accomplished with the hurricane aircraft winds, heights, and temperature data. Also, included are the reports which discuss the aircraft instrumentation.

BIBLIOGRAPHY

Black, P. G., J. J. O'Bxien and B. M. Lewis, 1967: Occan motion beneath a hurricane and its influence on the operation of Airborne Doppler Radar. 40 pp . (unpublished manuscript).

Carlson, T. N. and R. C. Sheets, 1971: Comparison of draft scale vertical velocities computed from gust probe and conventional data collected by a DC-6 aircraft. NOAA Tech. Rept. ERL NHRL-91, 39 pp .

Colón, J. A., 1963: On the evolution of the wind field during the life cycle of tropical cyclones. National Hurricane Res. Proj. Rept. No. 65, 36 pp . (available from NOAA Weather Bureau, Miami office).
_., 1964: On the structure of hurricane Helene (1958). National Hurricane Res. Proj. Rept. No. $72,56 \mathrm{pp}$. (available from NOAA Weather Bureau, Miami office).
___ and Staff, NHRP, 1961: On the structure of hurricane Daisy (1958). National Hurricane Res. Proj. Rept. No. 48, 102 pp . (available from NOAA Weather Bureau, Miami office)

Friedman, H. A., F. S. Cicirelli and W. J. Freedman, 1969: The ESSA Research Flight Facility: Facilities for airborne atmospheric research. ESSA Technical Rept. ERL 126-RFF1 89 pp .
, M. R. Ahrens and H. W. Davis, 1969b: The ESSA Research Fiight Facility: Data processing procedures. ESSA Technical Rept. ERL 132-RFF2, (U.S. Government Printing Office, Washington, DC), 67 pp.

Gentry, R. C., 1964: A study of hurricane rainbands. National Hurricane Res. Proj. Rept. No. 69, 85 pp. (available from NOAA Weather Bureau, Miami office).
, T. Fujita and R. C. Sheets, 1970: Aircraft, spacecraft, satellite and radar observations of hurricane Gladys. J. of App1.Meteor., 9, 837-850.

Gray, W. M., 1962: On the balance of forces and radial accelerations in hurricanes. Quart. J. Roy. Meteor. Soc. $88,430-$
458 .
, 1965a: Calculations of cumulus vertical draft ve1ocities in hurricanes from aircraft observations. J. App1. Meteor., 4, 463-474.

BTBLIOGRAPHY (cont'd)
iray. W. M., 1965b: On the scales of motion and internal st:ess characieristics of the hurricane. National Hurricane Res. Lab. kept. No. 73, 121 pp. (available from NOAA Weather Bureau, Miami office).
\qquad , 1966: On the scales of motion and internal stress characteristics of the hurricane. J. Atmos. Sci. 23, 278288.
, 1967: The mutual variation of wind, shear and baroclinicity in the cumulus convective atmosphere of the hurricane. Mon. Wea. Rev., 95, 55-73.
and D. J. Shea, 1973: The hurricane's inner core Region II: Thermal stability and dynamic characteristics. J. Atmos. Sci., 30, 1565-1576.

Grocott, D. F., 1963: Doppler correction for surface movement. J. of Instrument Navigation, 16, 57-63.

Hawkins, H. F., 1962: Vertical wind profiles in hurricanes. National Hurricane Res. Proj. Rept. No. 55, 16 pp. (available from NOAA Weather Bureau, Miami office).
, F. E. Christensen, S. C. Pearce, and Staff NHRP, 1962: Inventory, use and availability of National Hurricane Research Project data gathered by aircraft. National Hurricane Res. Proj. Rept. No. 52, 24 pp. (available from NOAA Weather Bureau, Miami office).
and D. T. Rubsam, 1968a: Hurricane Hilda, 1964. I: Genesis, as revealed by satellite photographs, conventional and aircratt data. Mon. Wea. Kev., 96, 428-452.
\qquad , 1968b: Hurricane Hilda, 1964 II: Structure and budgets of the hurricane on October 1, 1964 Mon. Wea. Rev., 96, 617-636.

Hawkins, H. F and D. T. Rubsam, 1968c: Hurricane Hilda, 1964. III: Degradation of the hurricane. Mon. Wea. Rev., 96, 701-707.

Hawkins, H. F. and S. M. Imbembo, 1976: The structure of a small intense hurricane - Inez 1966. Mon. Wea. Rev., 104, 418442.

Hilleary, D. T. and F. E. Christensen, 1957: Instrumentation of the National Hurricane Research Project Aircraft. National Hurricane Res. Proj. Rept. No. 11, 61 pp. (available from NOAA Weather Bureau, Miami office).

LaSeur, N. E. and H. F. Hawkins, 1963: An analysis of hurricane Cleo (1958) based on data from research reconnaissance aircraft. Mon. Wea. Rev., 91, 694-709.

Miller, B. I., 1962: On the momentum and energy balance of hurricane Helene (1958), National Hurricane Res. Proj. Rept. No. 53, 19 pp. (available from NOAA Weather Bureau, Miami office).
, 1963: On the filling of tropical cyclones over land. National Hurricane Res. Proj. Rept. No. 66, 82 pp. (available from NOAA Weather Bureau, Miami office).

Reber, C. and H. Friedman, 1964: Manual of meteorological instrumentation and data processing of the research flight facility. U.S. Weather Bureau (available from Miami, FL).

Rieh1, H., 1963: Some relations between wind and thermal structure of steady-state hurricanes. J. Atmos. Sci., 20, 276-287.
and J. S. Malkus, 1961: Some aspects of hurricane Daisy, 1958. Tellus, 13, 181-213.

Shea, D. J., 1972: The structure and dynamics of the hurricane's inner core region. Atmos. Sci. Paper No. 182, Colo. State Univ., 134 pp .
and W. M. Gray, 1973: The hurricane's inner core region. I: Symmetric and asymmetric structure. J. Atmos. Sci., 30, 1544-1564.

Sheets, R. C., 1967a: On the structure of hurricane Janice (1958). National Hurricane Res. Lab. Rept. No. $76,38 \mathrm{pp}$. (available from NOAA Weather Bureau, Miami office).
, 1967b: On the structure of hurricane E11a (1962). National Hurricane Res. Lab. Rept. No. 77,33 pp. (available from NOAA Weather Bureau, Miami office).
, 1968: On the structure of hurricane Dora (1964). National Hurricane Res. Lab. Rept. No. 83, 64 pp. (available from NOAA Weather Bureau, Miami office).
\qquad , 1972: Some statistical characteristics of the hurricane eye and minimum sea-level pressure. Project Stormfury Annual Report (1971), Appendix I.
, 1973a: Analysis of stormfury data using the variational optimization approach. NOAA Tech. Rept. ERL 264-WMPO $1,93 \mathrm{pp}$. (availabe from Boulder, CO).
, 1973b: Analysis of hurricane Debbie modification results using the variational optimization approach. Mon. Wea. Rev., 101, 663-684.
, 1973c: Anglysis of hurricane data using the variational optimization approach with a dynamic constraint. J. App1. Meteor., 12, 963-975.

Staff, National Hurricane Research Project, 1958: Details of circulation in the high energy core of hurricane Carrie. National Hurricane Res. Proj. Rept. No. $24,15 \mathrm{pp}$. (available from NGAA Weather Bureau, Miami office).

ACKNOWLEDGEMENTS

This research represents part of a continuing research effort by the senior author with the RFF hurricane flight data which started in 1958 when he spent his first summer in Florida as a graduate student under Professor Herbert Riehl.

The senior author has been appreciative of the open access to the NOAA Miami Hurricane data files which have been rendered him over the years and by the cooperation and friendliness of so many of the Hurricane Research Personnel. He particularly is grateful to the help rendered him by the Research Project's past and present directors, Robert H. Simpson, R. Cecil Gentry, Harry F. Hawkins, and Noel E. LaSeur. He has also profited from many discussions over flight data with Banner I. Miller and Robert C. Sheets. The author gratefully acknowledges the many years of dedicated flight data processing by many of the Miami staff particularly by Samuel Pearce and Rita Sherrill.
Special thanks are to be given to Peggy Hermann, Barbara Brumit, and Larry Kovacic who offered considerable assistance in the data processing and presentation at Colorado State University.

One must not forget the dedicated flight crews who flew into these storms to gather this data. The senior author would like to acknowledge the assistance he has received from many of them, particularly Howard Friedman and Howard Mason. The senior author has also been appreciative of the encouragement given him over the years for research on this flight data by Robert and Joanne Simpson.

This research has been supported by NSF and NOAA Research Grants to the senior author over the last decade.

Figure 14 shows a sample radial leg data printout. The code explanations are:

STORM
DATE
2LVL
PLVL
TIME TNTERVAL
I-0

LAT - LONG
DIR
SPD
TH
QN
QSTM

ARL
ID
RDR EYE RADIUS

CENT PRES
VATX
RMW
VRTX
RADIUS
VAT
VRT
VRT
DRRALUES
D-VAL
TADJ

- name of the storm
- date on which the data was obtained (yr./ mo./ day)
- plane's pressure altitude (feet)
- plane's pressure altitude (mb)
- time interval over which the data was taken in GMT
- denotes whether the plane was flying (I) toward the center or out (0) from the center of the storm.
- latitude and longitude of the storm center
- storm direction in degrees
- storm speed (knots)
- plane's true heading (approximate) in degrees
- octant of the storm in which the plane was flying w.r.t. geographic north
- octant of the storm in which the plane was flying w.r.t. storm motion. 1-plane is in front octant; 3-plane is in the octant which is at a right angle to storm motion, etc., (See Fig. 13 .
- azimuth angle of the radial leg (approximate) relative to the direction true north
- arbitrary identification number assigned to each radial leg
- inner radar eye radius (n.mi.); the letter following the number indicate whether the radar eye radius is approximate (A), well defined (WD), poorly defined (P)
- storm's approximate central pressure (mb)
- maximum actual tangential wind
- radius at which the maximum winds occur
- maximum relative tangential wind
- distance from storm center (n.mi.)
- actual tangential velocity (knots)
- actual radial velocity (knots)
- relative tangential velocity (knots)
- relative radial velocity (knots)
- D-values (feet)
- adjusted temperature (no virtual temperature correction)

Unsmoothed Weighted Vortex Averages. This consists of all the available individual radial legs of one flight level averaged together. Individual flight legs have been weighted by the distance between surrounding legs. Closely spaced flight legs carry less weight and widely spaced radial legs more weight. The weighting is directly related to the radial spacing.

VAT 2 - area weighted average of the square of the individual tangential winds along each leg.

Smoothed Vortex Average. Overlapping average of the individual radial leg data where each radial leg is averaged together with the radial legs on either side of it, (as discussed and shown in Fig. 5).

Yig.13. Code numbers which indicate the octant which the nlane was flying. The arrow indicates storm motion.

STORM	date	zLVI. PLVL	$\underset{\text { INYERVAL }}{\text { TIME }}$	1-0	lat	Long	${ }_{\text {DIR }}^{\text {STOR }}$		TH	an	QSTM	ARL	10	$\begin{aligned} & \text { RDR EYE } \\ & \text { RADIUS } \end{aligned}$	CENT. PRES	vatx	RHW	VRTX
inez	660928	8090763	2216-2235	1	17	66	275	12	350	s	7	170	214	7	928	144	7.5	131
			radius		vat	var		vRt	vRR		D-val	ues	tad					
			5.0		116	-6		104	-6		-1790		16.0					
			7.5 10.0		144 124	-3 -4		131	-6		-1330 -900							
			12.5		107	-8		94	-10		-670		13.4					
			15.0		105	1		92	-1		-490		13.0					
			17.5 20.0		92 83	2		79	-1		-370		12.8 12.7					
			22.5		84	5		71	2	2			12.7					
			25.0		79	0		66	-3	3	-150		12.6					
			27.5		75	1		63	-2		-110		12.2					
			30.0 32.5		68	-1		55 53 5	-4		-70		11.7					
			32.5 35.0		67 58	5 -1		$\begin{array}{r}53 \\ 45 \\ \hline\end{array}$	$\stackrel{2}{-3}$	2	-20		11.8					
			37.5		62	0		49	-3	3	40		11.7					
			40.0		62	1		49	-2	2	40		11.7					
			42.5		65 58	4		52 45	1		90		11.9					
			45		58 55	${ }^{6}$		45 42 4	3	${ }^{3}$	100 130		11.8 11.6					
			50.0		56	14		43	10		140		11.5					

Fig. 14. Sample data printout for an individual leg.

34.11 .5	¢	vas	vit	vrr	d-values	tans	radius	vat	var	VRT	var	n-valuts	[ADJ
\%.	79	กว	339	39	999	99% -	5.0	19	-11	23	-11.	-4.0	7.7
\because	14	-17	18	99.7	994	8.0	7.5	2 n	-12	29	-12	-410	9.0
10.6	P	-19	22	-in	-4.40	8. ${ }^{\text {\% }}$	10.0	33	-10	3	-10	-410	7.4
$1 \cdot 5$	4	-19	$3{ }_{4}^{34}$	-13 -14	-410 -350	7.0	17.5 15.0 18.0	40	- ${ }^{-8}$	42	-10	-370	7.5
\cdots	P)	-19	60	-16	-280	5.6	17.5	55	-12	54	-12	-3130	7.0
2,	?	-14,	68	-14	-230	3.7	20.0	72	-14	73	-4	-330	$5 \cdot 3$
$\cdots \cdot 9$	\%	-14	68	-14	-190	2.7	27.5	78	-7 -10	78	-7	-210	3.4
25	T0	-12	6,	-12	- 30	2.4	27.0	74	-9	75	-9	-130	2.9
30	14	-7	60	-7	10	2.4	30.0	71	-h	72	-7	-r.0	2.4
12.,	?	-6	61	-6	79	2.5	32.5,	$\stackrel{17}{ }$	-7	75	-9 -0	30 30	2.7
$3 \cdot .3$	35	-4	${ }_{6} 3$	-5	120		35.0 37.5	66 6.4	-9	67 63	-8	880	2.5
37.4	719	-7	6, 64	-6	180	1.1	\%0.0	¢2	-9	60	-8	120	3.0
4.5	74	-4	b1	-4	220	1.9	42.5	72	10	72	7	150	3.9
4.6	71	-5	59	-5	250	1.2	45.0	75	11	75	11	170	$3 \cdot 3$
47.9	${ }^{3}$	\rightarrow	R 2	-3	300	1.2	47.5 50.0	74	2	71	2	250	1.2
50.3	77	-7.	65	-8	300	1.2							

afolus vit var vrt vrr o-values tadj radius vat var vrt vrr b-values tade

ranius	vat	var	VRT	vRr	n-7alijes	[40.
5.0	6	0	5	0	-410	7.4
7.5	15	-1	: 4	-1	-390	1.3
10.0	24	-	21	0	- 378	7.0
12.5	34	1	32	1	-340	\bigcirc
15.0	40	*	38	?	-310	1.4
17.5	46	9	4 ?	9	-270	.98
20.0	12	4	68	4	-200	2.9
27.6	74	3	70	3	-140	2.2
2-0.	70	4	65	*	-90	$2 \cdot 3$
27.5	6s	5	61	4	-50	2.7
10.0	65	6	59	6	-10	2.7
32.5	65	7	¢0	7	30	1.7
35.0	60	${ }^{8}$	52	7	60	1.4
$\underline{17.5}$	55	2	50	?	110	2.6
40.0	60	5	55	5	150	2.0
42.5	A.	10	56	9	190	1.5
45.0	69	13	51	13	210	1.2
4.7 .5	72	13	6.5	14	250	. 4
50.0	69	0	64	11	230	-2

smcothed vortex averages							
pasius	vat	var	vrt	vre	o-values	rads	varz
5.0	16	6	10	5	-206	1.3	376
7.9	24	4	17	,	-189	1.1	686
10.0	26	-4	23	-4	-216	1.2	773
12.5	32	-2	26	-2	-193	1.2	1073
15.0	40	-1	32	-1	-162	-9	1772
17.5	44	0	44	-0	-125	-4	2292
20.0	3"	-i	-1	-i	-77	-. 2	4670
22.	6.11 67	-2 -2	$\xrightarrow{69}$	-2	$\begin{array}{r}-24 \\ \hline 27\end{array}$	-.8 -1.2	5001 4707
37.9,	${ }_{6}{ }^{1}$	-0	67	-0	73	-1.3	4.352
3 c .0	63	1	65	1	118	-1.0	4163
32.5	62	1	64	1		-. 7	3499
34.6	${ }^{6}$	1	63	1	195	-. 7	3813
37.9	34	2	61	2	233	-. 8	3600
40.0	58	3	61	3	270	-. 9	3.534
42.5	56	15	63	15	299	. 2	3285
45.5	54	19	6 ?	19	324	--1	3103
47.	57	21	64	? 2	352 374	-. -.4	3303 354
sr.a	59	21	or	22	374	-. 4	3543

 unsmgothed weighted vortex averages

surcthed vortex averages

asmus	vat	var	vRr	vrr	d-values	taju	vatz
s.e	999	999	979	999	999	999.0	999
7.5	99\%	979	วงา	999	999	997.0	997
10.0	999	79	9	999	999	999.0	979
12.5	90%	99า	จงจ	999	я99	999.0	999
150	999	999	999	999	999	999.0	999
17.6	17	4	13	4	999	-33.9	326
23.0	21	5	17	6	999	-33.9	486
? $? \cdot 1$	25	7	21	7	999	-34.0	716
25.0	30	8	26	8	999	-34.5	1021
27.5	34	,	31	9	999	-35.1	1336
35.0	37	8	34	8	999	-35.5	1584
32.6	40	7	37	7	999	-36.1	1795
35.0	41	6	39	6	999	-36.5	1892
37.5	42	6	40	6	999	-36.8	1945
40.0	42	5	40	5	999	-37.2	1934
42.5	42	5	40	5	999	-37.6	1901
45.0	42	5	40	5	999	-37.9	1880
48.5	42	6	40	7	999	-38.0	1854
5 c \%	42	0	40	${ }^{8}$	997	-39.1	1826

i
b.

SPD/ DIR / HOG NOTH/STM/ANGLE/EYERAD/ PRFS/ACTUAL/RFL IMAX WN/

[^1]

ranius	vat	var	VRT	vRr	d-values	tadj	ratius	vat	var	vRT	vRr	a-values	tads	yadius	vat	var	vRi	vrr	d-values	tans
5.0	979	997	997	999	999	\%99.0	5.0	6	-10	10	997	-40	10.9	5.0	999	999	499	999	999	499.0
7.5	9n	797	999	937	999	999.0	7.5	8	-11	9	-6	-40	10.9	7.5	979	999	909	999	999	१99.0
10.0	6	-9	13	-11	-10	10.3	10.0	10	-11	-	-6	-40	16.4	10.0	999	999	999	999	999	979.0
12.5	5	-1	16	-2	0	10.6	17.5	14	-12	14	-7	- 20	10.1	12.5	22	0	13	1	0	10.4
$1 \% .0$	9	0	20	0	10	10.7	15.0	33	-12	22	999	-10	11.0	15.0	27	-2	15	-2	10	11.2
17.5	15	1	26	1	20	10.7	17.5	38	-10	27	2	0	20.4	17.5	31	-4	22	-4	$4{ }^{10}$	11.1
2 O .0	20	1	32	1	30	10.6	20.0	41	-9	30	1	20	9.6	20.0	37	0	28	-1	50	11.2
27.5	33		37	2	70	10.6	22.5	$4{ }_{4}^{4}$	-10	32	0	50	8.9	22.5	39	1	31	1	70	11.0
25.0 2.5	33 46	$\xrightarrow{-7}$	43 57	${ }_{-3}^{2}$	90 120	4.2 8.8	25.0 27.5	43 72	-9	42 60	1	100	8.4 8.6	25.8	43	?	36	2	100	9.9
30.0	19	-6	46	-7	150	8.6	370	$8{ }^{72}$	-7	70	1	1100	8.6 8.0	27.5 30.0	${ }_{6}^{56}$	$?$	48 58	?	130 170 100	8.9
37.5	38	-3	46	-3	220	9.6	32.5	8.4	-9	73	0	250	7.2	32.5	63	0	61	-1	230	8.2
35.0	st	3	77	4	280	7.0	35.0	84	-7	12	-2	320	6.3	35.0	70	4	64		2 Co	9.0
37.5	nt	5	79	4	320	6.2	37.5	93	-7	72	1	350	6.3	37.5	73	6	68	7	330	h. 1
40.0	66	5	77	4	360	6.4	40.0	93	-9	72	1	390	6.8	40.0	72	0	67	0	370	7.0
42.5	6.	5	73	3	400	5.8	42.5	84	-10	73	2	48.0	5.6	47.5	69	-5	65	-5	400	1.5
45.0	59	5	70	4	420	5.6	45.0	30	-13	69	6	420	5.7	45.0	67	-4	62	-4	430	7.8
47.5	5	${ }_{7}$	66	5	460	5.6	47.5	78	-11	66	6 5	450	5.7	47.5	65	-2	61	-2	410	7.7
30.0	53	7	64	6	490	6.0	50.0	76	-10	6.5	5	480	6.4	50.0	64	-1	60	-1	500	8.1

CARQIE / $570917 / 11000 / 696 / 1649-1707 / 1$
$/ 8165 / 180 / 5 / 6 / 180 / 254 / 978 /$

racius vat var vrt vrr ij-valufs tadj

999.0
10.9
10.9
11.0
11.3
11.6
11.0
16.2
1.4
8.5
8.1
9.0
7.2
16.1
6.4
6.2
6.0
6.0
radius
5.0
7.5
10.0
12.5
15.0
17.5
20.0
22.3
25.0
27.5
30.0
32.5
35.0
37.5
40.0
42.5
45.0
47.5
50.0

VAR	VRT
-10	11
-6	15
-6	18
-7	20
3	23
7	29
1	38
0	42
1	50
1	67
1	90
0	80
-1	78
1	78
1	75
2	70
6	68
5	67

 , a, $05 / 20 n / N / 2,20 / 25 a / 978 / 30143 / 45.0$

ravius	var	var	var	VRR	d-values	tadj
5.9	9.9	499	999	999	999	999.0
7.9	n)	ว7า	399	997	999	999.0
10.0	39.	999	499	999	999	999.0
17.3	ร9\%	วา7	999	999	299	99% -
15.0	$9 \% 9$	999	949	999	999	999.0
12.5	14	-?	$2 ?$	-2	999	-35.3
20.0	14	-2	2.4	-2.	959	-35.5
22.5	13	-1	25	-1	999	-35.6
$<{ }^{\text {cis }}$	14	1	27	1	999	-35.6
27.5	16	3	29	3	949	-35.8
30.0	19	4	31	3	$9 ¢ 9$	-35.8
37.5	21	4	33	4	999	-35.9
35.6	23	s	35	4	999	-36.0
31.5	25	4	38	4	997	-36.2
40.0	26	3	39	3	997	-36.5
47.5	23	1	41	1	999	-37.5
44.0	30	-1	43	-1	999	-77.5
47.5	21	-3	4.	-3	979	-33.1
50.0	27	-5	40	-5	979	-35.3

 $10,65,140,5 \mathrm{se} / 5 / 1451251 / 1978 / 331145 / 5000$

2atilis	vait	vik	vat	VRr	o-values	tadj
5.0	2	-1	$1 ?$	-2	999	-34.3
7.5	5	-1	18	0	999	-34.4
12.0	7	-	19	0	$9 ¢ 9$	-35.5
12.5	10	0	22	0	999	-34.7
15.0	12	\bigcirc	24	0	999	-34.7
17.5	14	1	26	1	959	-34.7
$\bigcirc 0.0$	16	1	28	1	989	-34.8
י7.5	18	2	30	2	999	-35.2
\cdots	$?$	3	33	3	999	-35.3
ग.',	23	5	34	4	$9 ¢ 9$	-35.8
30.0	23	7	36	6	999	-35.6
2.5	25	7	37	6	989	-35.8
ヶ.0	27	7	39	7	$9 ¢ 9$	-36.1
17.5	29	h	40	6	997	-36.3
40.0	30	6	42	6	979	-37.2
42.5	31	t	43	5	999	-37.6
45.0	32	5	44	5	959	-38.0
47.5	$3 ?$	4	44	3	999	-39.2
sc. 0	33	2	45	2	999	-38.3

1 //carri

- Carrie (57n917/35000/240/1801-1816/n/35/641.23

radius	vat	var	vrt	vrr	o-values	tanj	ratius	vat	VAR	VRT	vre	b-values	tand
5.0	999	999	979	999	993	997.0	5.0	7	-3	-5	-3	989	-34.3
7.5	999	999	999	999	999	997.0	7.5	9	-2	-2	-3	999	-34.4
10.0	12	-4	9	-3	$9 \% 9$	-35.1	10.0	12	-2	1	-2	999	-3h.5
12.5	16	0	17	-1	999	-33.9	12.5	16	-2	4	-2	999	-34.7
15.0	18	?	8	2	999	-34.5	15.0	18	-1	6	-2	999	-34.7
17.5	20	2	8	2	999	-34.5	17.5	19	-1	7	-2	999	-34.7
20.0	22	3	10	3	997	-34.6	20.0	21	-1	8	-1	979	-34.8
27.5	24	3	12	3	997	-34.6	22.5	22	-1	10	-1	$9 ¢ 9$	-35.2
25.0	$2{ }^{2}$	3	17	3	997	-34.0	25.0	23	-1	11	-1	999	-35.3
27.5	23	3	16	3	997	-33.7	27.5	25	-1	12	-1	9 99	-35.3
30.0	30	2	17	2	999	-34.1	30.0	26	-1	13	-1	997	-35.6
32.5	32	,	19	2	993	-34.1	32.5	27	-1	14	-1	997	-35.8
35.0	35	2	22	$?$	999	-34.3	35.0	28	-1	16	-1	999	-35.1
37.5	37	3	24	3	990	-34.6	37.5	29	-2	17	-1	999	-76.3
40.0	38	6	24	5	999	-34.9	40.0	31	-1	18	-1	999	-37.2
42.5	40		26	A	999	-35.2	42.5	32	0	20	-1	99%	-37.6
45.0	41	11	28	11	999	-35.5	45.0	34		22	-1	999	-38.0
47.5 50.0	42	$1 \begin{aligned} & 14 \\ & 18\end{aligned}$	29 29	18	599	-35.7 -75.7	47.5	36 7	-1	23	-1	ๆэ9	-39.2

radius	vat	var	vRT	VRR	o-valufs	tanj	ramius	vat	var	vrt	VRR	d-values	1901
5.0	999	99\%	999	999	999	999.0	5.0	999	939	999	999	999	999.0
7.5	999	997	999	999	959	999.0	7.5	979	999	979	997	999	973.0
1 c .0	999	997	999	499	¢99	999.0	10.0	6	-8	16	-8	999	-34.4
12.5	949	999	999	997	979	999.0	12.5	5	-8	16	-	997	-34.9
15.0	979	999	999	999	993	993.0	15.0	4	-7	5	-7	999	-36.9
17.5	14	-2	13	-1	994	-34.7	17.5	4	-6	17	-7	959	-35.1
20.0	16	-2	11	-2	999	-34.3	20.0	5	-5	18	-6	494	-34.0
22.5	17	-2	11	-2	999	-34.2	22.5	6	-4	5	-5	999	-36.0
25.0	19	-3	12	-3	994	-34.1	25.0	7	-4	6	-4	999	-36.0
27.5	22	-	13	-7	$9 \mathrm{Mi4}$	-34.2	21.5	8	-2	7	-3	999	-35.3
30.0	22	-3	13	-4	999	-34.2	30.0	10	\bigcirc	10	-1	999	-35.1
32.5	75	-4	16	-4	979	-34.4	37.5	12	2	13	1	999	-35.5
35.0	28	-4	18	-4	949	-34.5	35.0	15	3	27	2	999	-35.2
37.5	30	-3	20	-4	999	-34.6	37.5	17	4	31	4	999	-35.6
40.0	32	-1	22	-1	929	-34.9	40.0	20		32	4	999	-36.1
42.5	33	2	23	1	$9 ¢ 9$	-35.1	42.5	21	3	34	3	979	-36.5
45.0	35	5	24	4	999	-35.3	45.0	22	3	35	3	999	-36.5
47.5	35	${ }^{8}$	24	7	979	- 35.4	47.5	238	3	24	4	999	-37.1
50.0	36	10	25	10	999	-35.5	50.0	25	3	38	3	999	-34.0

10.

STODM TOUF OCTANT AZMTH IM QDR CENT MAX WTNOS RADTIS SPD/ DIR / HDG /NOTH/STM/ANGLF/EYERAN/ PRFS/ACTUAL/RFL /MAX WD/

LEVEL 1

rapius	vat	var	vRT	VRR	d-values	TADJ	radius	vat	VAR	vrt	vRr	D-values	tand	radius	vat	VAR	vRT	vRr	o-values	tam.
	19	7	5	0	-770	18.0	5.0	979	799	979	979	977	999.0	5.0	,	3	15	-3	-8co	18.8
7.5	24	8	12	-1	-770	$1 \mathrm{H}$.	7.3	25	-13	26	${ }^{2}$	-770	17.5	7.5	9	?	21	-8 -5	-300 -790	17.2 19.6
10.1	29	9	18	-1	-760	18.8	10.0	31	-3	26	11	-790 -790	17.6 17.7	10.0 12.5	14 75	1	28 40	-5 -2	-790 -770	19.6 19.0
12.5	13	10	27	-	-750	19.0	12.5 15.0		-1	42	11	-790	17.4	15.9	36		51	-1	-720	17.8
15.0	5	a	59	-3	-730	18.4 17.4	14.0 17.5	79	-6	64	${ }_{6}$	-750	16.5	17.5	46	1	61	0	-640	16.8
17.5	1,0	${ }_{28}^{14}$	50 65	14	-680	16.6	20.0	90	-7	76	4	-670	15.6	20.0	54	7	70	7	-570	16.2
2n.0)	76	$\stackrel{17}{17}$	77	5	-550	15.6	22.5	82	-8	72	3	-570	15.7	22.5	50	7	65	-1	-510	16.0
2h.0	${ }^{4} 4$	17	75	4	-470	15.6	25.0	${ }^{17}$	-6	70	5	-530	14.4	25.0	54	-2	69	-	-450 -410	15.9 15.8 10.8
27.5	77	1\%	69	?	-430	15.4	27.	74	-	67	${ }^{10}$	-4.40	15.6	27.5 30.0	$4{ }_{4}$	-11	${ }_{6}^{69}$	-9	- 370	15.6
33.0	74	15	65	$?$	-4c0	15.2	32.0 32.5	71	-1	64 61	13	-400	15.4	32.5	44	-14	59	-12	-330	15.4
32.5	74	14	65 65	3	-390 -330	15.2	35.0	68	- 2	58	10	-360	15.2	35.0	47	-16	62	-14	-300	15.4
37.5	10	16	62	4	-300	15.4	37.5	67	-?	58	?	-330	15.3	37.5	43	$-1 / 4$ -14	58	-11	-210	15.6 15.8
40.0	71	16	62	4	-270	15.4	40.0	67	-3	57	10^{4}	-300 -270	15.7 15.2	40.0 42.5	41	-14	57 56	-11 -12	- 290	15.0 10.0
42.5 45.0 4.5	70	17 16	61 61	$\begin{array}{r}-1 \\ \hline 1\end{array}$	-250	15.2	45.0	${ }_{68} 68$	-	59	12	- 240	15.2	45.0	43	-17	58	-15	-200	15.6
47.0	6.8	20	60	7	-200	15.1	47.5	65	-3	56	$\stackrel{9}{9}$	-210	15.4	47.5	42	-25	57	-22	-170	15.2
4 n .0	73	18	64	5	-180	15.0	50.0	66	-5	57	7	-190	15.6	50.0	997	99	94	997	997	999.0

131

ractus	vat	var	VRT	VRR	d-values	tanj	rabtus	vat	var	VRT	vrr	n-values	tanj	radius	- vat	var	VRT	VRR	d-values	iAns
${ }_{5} .0$	17	\mathfrak{l}	4	8	-800	17.6	5.0	-3	2	11	-3	-790	18.2	5.0	999	997	909	999	999	999.0
7.5	19	1	6	9	-800	18.2	7.5	1	3	15	-2	-770	18.4.	7.5	7	-14	20	-7	-780	14.0
10.0	23	2	11	10	-780	18.6	10.0		3	18	-1	-770	13.6	10.0	11	-6	26 35	-3	-710 -750	19.6
12.5	36	1	23	10	-770	18.0	12.5	12	1	27	-1	-710	17.0	12.5	34	-	49		-730	19.4 18.2
14.9	56	-2	44	7	-740	17.2	15.0	20	${ }^{0}$	35	-1	-760	17.0	15.0 17.5	34 45	0	49 59 59	-2	-730 -700	19.2 17.4
1.7 .5	76	0	64	9	-760	16.7	17.5	38	-7	53 50 50	-15	-660	16.8	20.0	43	-3	57	-9	-610	17.0
20.0	94	-1	73	9	-630	16.0	27.0	44	-11	85	-9	-600	16.2	22.5	43	4	57	-3	-550	16.8
22.5	$\stackrel{\square}{\square}$	-1	70	10	-560	15.2	22.5	50	-12	65	-10	-550	15.8	25.0	43	11	56	4	-480	16.4
27, 2	76	\cdots	65	13	-4,60	14.8	27.5	48	-13	63	-11	-4.0	15.7	27.5	4 2	11	55	3	-410	$11^{1.1}$
30.0	74	2	63	12	-410	14.8	30.0	43	-13	58	-10	- 30	15.7	30.0	45	9	57 55	-	-320 -340	15.8 16.3
22.5	71	1	60	11	-360	14.8	32.5	41	-10	${ }_{5}^{56}$	- -6	-370	15.7 16.0	32.5 35.0	43	11	55 55	-2	-340	15.0
35.0	71	0	60	10	-320	14. ${ }^{14}$	35.0 37.5	$4{ }_{4}^{40}$	-11	55 53	-6	- 270	16.0	37.5	42	12	53	1	- 260	15.4
37.5	51)	1	57 56	11	-290 -270	14.8 14.8	47.0	37	-12	52	-8	-270	15.7	40.0	39	11	49	\bigcirc	-220	15.2
4.2 .5	6\%	5	$5{ }_{5}$	13	-240	14.8	42.5	35	-13	50	-9	-260	15.4	42.5	37	12	47	2	-200	15.3
45.0	6.3	7	55	15	-220	15.2	43.0	38	-14	52 53 5	-10	-250 -220	15.2 15.2	45.0 47.5	38	16	45	4	-140	15.4
47.3	$7{ }^{1}$	${ }_{-3}$	58	${ }_{5}^{11}$	-200	15.4 999.0	47.5 50.0	38 8	-10	53	-6	-? ${ }^{\text {co }}$	15.1	50.0	34	17	43	5	-130	15.5

/CLEC / 500913 / $15600 / 577 / 1920-1945 / 1 / 33 / 56 / 583$							/ 15	90	1	270	---1	1	-32	115	75	117	315	----	1 54	/25.0
	vat	var	vRT	vRk	o-values	tadj	kallus	vat	var	VRT	VRR	d-values	ings	radius	vat	VAR	VRT	vrr	d-values	tanJ
5.0	26	4	16	7	-100	5.0	5.0	3	- 6	15	-3	-50	5.4	5.0	5	5	11	-7	-po	5.2
1.3	27	1	17	5	-160	5.4	7.5	5	-5	17	-1	-60	5.5	7.5	6	5	14	-6	-80	5.1
10.0 1.5	34 38	-1	24 27	5	-160 -70	5.4 4.6	10.0 12.5	7	-3 -7	19 24	- ${ }_{-}$	-50	5.3	10.0	10 15	7	17	-6	- -80	5.1
14.0	4.3	-1	37	4	-30	3.2	15.0	10	-7	23	-2	-40	4.7	12.5 15.0	15 24	${ }_{9}$	239	-5	-70	4.4
:7.3	61	-?	52	4	30	2.2	17.5	22	-3	35	2	-	3.0	17.5	42	7	56	-5	70	2.2
20.0	63	3	53	9	0	1.4	27.0	39	-?	54	3	40	2.0	20.0	45	6	53	-6	110	1.9
27.5 25.0	\%	-3	51 51	3	130 160	$\stackrel{.}{ } \cdot 1$	22.5 25.0	39 39	-1	53	5	RO	1.8	22.5 25.0	48 54 54	6	56	-6	140	1.6
27. ${ }^{\text {\% }}$	0	-i	53	$\frac{4}{5}$	200	-. 8	25.0	49	-1 -3	568	4	130 160	1.2 .6	25.0 21.5	54	7	62 56	-6	170 200	1.3 1.2
30.0	61	-3	51	3	240	-. 5	30.0	41	-6	55	-2	200	$\square 3$	30.0	48		53	-6	230	1.0
37.5	50	-1	50	5	200	-. 5	32.5	43	-5	58	-1	230	0.0	32.5	43 4 4	${ }^{\circ}$	49	-4	270	1.1
39.6 37.5	62 80	4	52 50	?	310 330 350	-.5 -.4	35.0 37.5	43 41	- ${ }^{-1}$	58 55	2	290	- ?	35.0	43	11	49	-1	290	1.2
47.5	80	$\stackrel{2}{1}$	50	8	330 350	-. 4	37.5 40.0	41 40	-1 -3	55 54	1	290 330	.3	37.5 40.0	43 43 4	${ }_{8}^{12}$	51 48	-1 -5	320 340	1.5 1.2
42.5	6.4	${ }_{8}$	58	13	380	-. 6	42.5	42	-4	58	\%	360	0.0	42.5	42	10	50	- -3	440	1.0
45.0	65	10	55	15	4 CO	-. 7	45.0	41	-3	55	2	380	-. 2	45.0	43	10	47	-3	376.	.7
47.3	63	12	58 59	17	430	-. ${ }^{\text {a }}$	47.5	37.	-3	54	?	410	-. 5	47.5	43	${ }^{8}$	47	-6	390	1.1
50.0	67	14	59	19	460	-.8	50.0	38	-5	53	0	430	-. 8	50.0	42	10	49	-3	400	. 9

smiothfo vortex averages							
rantus	vat	var	vRT	vrr	n-values	tanj	vatr
5.0	16	2	15	-0	-74	5.2	403
7.5	20	2	19	1	-60	5.2	583
12.0	24	2	24	1	-47	5.1	804
12.5	29	2	29	1	-25	4.7	1083
15.0	37	3	37	2	2	3.9	1734
17.5	50	3	51	3	33	3.0	2892
20.0	58	2	53	2	66	2.0	3697
22.5	57	2	59	1	108	1.4	37.35
25.0	59	1	58	1	14.4	.9	3575
21.5	57	0	57	0	178	. 6	3478
30.0	51	0	57	-0	212	. 5	34,50
32.5	56	2	54	0	247	. 4	3346
35.0	55	4	51	1	278	. 5	3251
37.5	55	2	53	1	307	. 5	3196
42.0	54	2	34	1	340	. 5	3152
42.5	54	3	55	2	370	. 3	3129
45.6	54	3	54	3	386	. 2	3081
47.5	53	3	54	3	404	. 0	3047
50.0	53	4	53	3	416	-. 1	3002

LEVEL 3

kadius	vat	var	VRT	vRR	d-values	indj	radius	va	var	VRT	VRr	n-values	taoj
5.0 7.5	10	-12	3	0	999	999.0	5.0	-9	-12	9	-9		
10.0	14	-13	4	-2	1810	-34.6	7.5	-16	-5	10	-9	10.00	-31.5
12.5	17	-11	7	-1	1910	- -3.14	10.0	-15	1		-7	isco	-34.6
15.0	23	-9	12	0	1 sco	-34.4	12.5	-12	5	5	-3	1810	-34.7
17.5	27	- -1	17	3	1800	-34.3	17.5	-7 -2	12	10	3	18.10	-34.8
20.0 22.5	29 13	-	18	7	18 CO	-34.2	20.0	-2	12 9	14	-1	1870 1810	-3.98 -35.0
25.0	31	3	25	12	18 co	-34.2	22.5 85.0	15		20	-4	1790	-35.2
27.5	$\begin{array}{r}38 \\ 3 \\ \hline 18\end{array}$	11	31	20	1890	-34.1	27.5	215	\%	25	-6	1790	-35.3
30.0	39	15	35	25	1810	-34.0	30.5	$\begin{array}{r}23 \\ 32 \\ \hline\end{array}$	${ }_{10}^{8}$	33 30	-3	1790	-35.6
32.5	37	10	34	21	1970	-34.2	32.5	33	1	39 40	-2	1790	-36.2
35.0 37.5	$\begin{array}{r}36 \\ 35 \\ \hline\end{array}$	-	$\begin{array}{r}30 \\ \hline\end{array}$	13	1830	-34.8	35.0	39 29	3	40 39	-8 -4	1810	-76.9 -37.2
40.0	36	-1	33	10	1840 1850	-35.6 -36.0	37.5	29	5	39	-7	1850	-37.2
42.5 45.0	49	- 5	39 42 4	-7	1860	-36.5	42.5	29 32	5 8	39 39	-7 -4	1860	-37.7
47.5	47	-6	41	-7	1870 1890	-37.0 -37.4	45.0	29	${ }^{\text {a }}$	38	-4	1 ¢0n	-3n.0
50.0	47	-5	38	8	1890	-37.6	47.5 50.0	27 27	$\stackrel{7}{8}$	36 35	-6 -5	1870	$-3 n .0$ -34.

2aisus	vat	var	VRT	vrr	d-values	tadj	radius	vat	var	vrt	VRR	d-valufs	TADJ
5.0	977	997	1	999	999	999.0							
7.5	-12	\bigcirc	2	-2	959	997.0	7.5	-10	-11	-3 -3	-3	1700	-34.8
10.0	15	0	4	2	999	999.0	10.0	-14	-11	-	-2	1700 1700	-34.3
12.5	21	?	7	5	979	999.0	12.5	-16	-10	-4	-1	1700 1690	-34.8
15.0	22	1	8		999	-34.3	15.0	-16	-9	-6	0	1690 1690	-34.7
. 17.5	24	0	9	4	999	-34.5	17.5	-10	-6	5	5	1700	-35.0
20.0	72	0	10	4	999	-34.4	20.0	-4	-6	7	5	1720	- 35.0
27.5	28	,	15	6	999	-34.1	22.5	-1	-10	9	2	1750	
2h.0	17	\%	21	12	979	-33.9	25.0	-3	-9	10	5	1770	- 35.2
30.0	${ }_{4} 3$	4	22	9	999	-34.4	27.5	,	-4	13	7	1790	-35.4
37.5	34	- ${ }^{\text {a }}$	25 22	$\stackrel{8}{4}$	999 999	-35.0 -34.9	30.0 32.5	11	-1	18	11	1860	-35.5
35.0	29	-4	15	1	999	-35.0	35.0	13	-2		12	1820 1840	
37.5	25	-	11	-2	999	-35.2	37.5	9	-7	23	10	1840 1820	-36.1
41.0	23	-5	15	0	999	-35.7	40.0	11	-7	20	5	1810	-36.4
42.5	37	0	23	5	999	-36.4	42.5	12	-7	23	5	1810	-37.0
47.5	$4{ }_{48}$	-2	30 32	4	999	-37.0	45.0 47.5	21 25	-5	$\begin{array}{r}28 \\ 3 \\ \hline\end{array}$	7	1810	-37.4
56.0	49	,	33	7	999	-37.7	47.5 50.0	25 23	-6 -3	33 32	6	1820 1830	-37.6

smgothen vortex avernges							
sacilis	vat	var	vkt	ver	o-values	tanj	vatz
						-34.5	B6
5.5	-2	-1	4	-0	1762	-34.5 -3.5 -3.6	157 157 227
110.0	0	-0	4	0	1763 1763 1763	-34.6	227 283 17
$15 . \mathrm{c}$	5	3		4	1763	-34.6	317
17.5	${ }_{1}^{3}$	4	10	4	1769 174 174	-34.7	316 318
20.6	11	"	12	4	${ }^{1774}$	-34.8	307
24.6 27.5	${ }_{23}^{18}$	5	19 24	7	1789 1797	-34.9 -35.1	517 777
30.0	27	8	28	8	1809	-35.3	9,699
38.5	${ }_{27}^{28}$:	29	${ }_{2}^{5}$	1825 1839	-35.7 -36.0	954 856 89
37.3	20	-0	27	0	1848	-36.4	¢988
40.0	27 30	-0	280		1895 1885	-36.7	+882
45.0 47.5	${ }^{32}$	${ }_{0}^{1}$	333	-	$1 \begin{aligned} & 1870 \\ & 1877\end{aligned}$	-37.3 -37.5	1113 1219
8 Cc 0	${ }_{33}$	1	33	1	1879	-37.6	1237

LEVEL 2

Rautils	vir	VAR	VRt	vRr	d-values	tads	radius	vat	var	vRt	VRR	d-values	TADJ
5.0	13	-6	14	-14	99	-30.3	5.0	4	-7	5	1	1420	-32.0
7.5	45	0	47	-8	999	-32.5	7.5	26	5	28	13	1470	-32.7
10.0	6.9	21	71	13	999	-33.1	10.0	53	19	55	26	1520	-33.6
12.5	57	21	59	13	999	-33.7	12.5	51	20	54	27	1620	-34.2
$15 . ?$	55	14	57	${ }^{8}$	939	-34.3	15.0	47	14	52	22	1860	-35.0
11.5	31	14	53	6	999	-34.9	17.5	44	12	53	19	999	-36.7
2 cos	43	10	46	2	999	-35.7	20.0	45	6	49	13	999	-37.2
22.5	43	${ }^{6}$	45	-2	999	-36.7	22.5	38	4	42	10	997	-37.?
25.0	42	4	45	-4	999	-36.8	25.0	32	?	37	4	994	-36.7
27.3	36	3	37	-5	999	-37.?	27.5	26	2	31	9	$99 \cdot$	-37.2
3%	36	4	39	-4	999	-37.2	30.0	26	1	31	B	999	-37.5
32.5	31	-3	33	5	999	-37.\%	32.5	25	0	30	7	997	-38.1
35.0	31	5	33	- -4	999	-37.5	35.0	25	0	30	$?$	999	-30.0
37.3	31	4	33	-4	999	-37.7	37.5	24	-1	29	5	997	-3p.1
43.5	30	3	33	-4	999	-37.9	40.0	22	-2	27	4	999	-39.0
42.5	33 32	4	36 34	-4	999 999	-38.0 -38.0	42.5 45.0	17 15	-4	22	3	999	-33.1
47.5	32	\%	35	0	999	-3H.1	47.5	1.7	-3	22	;	999	-38.2 -38.3
50.0	3	10	34	2	999	-3n.1	50.0	17	-4.	22	2	999	-30.4
13125	1601	514	1601	1	, 58 /	$55 / 12.5$							
zantus	vat	var	vrt	vre	d-values	tanj	radius	vat	var	VRT	var	n-values	tanj
4.9	97	937	499	999	999	999.0	5.0	399	979	999	9.99	999	. 999.0
1.5	949	94\%	999	999	$9 ¢ 9$	999.0	7.5	779	999	979	999	997	-979.0
10.9	999	99%	979	994	959	999.0	10.0	999	999	999	999	994	994.0
15.0	${ }_{5} 5$	\%	45	14	999 999	-34.5 -35.0	12.5 15.0	4.7	-13	57 54	-7 -7	999	-34.5 -36.3
17.5	47	2	42	3	999	-35.9	17.5	39	-7	46	-4	999	-35.5
2,.0	45	-?	40	3	994	-36.2	20.0	39	-5	46	-2	994	-36.7
$2 ? .9$	43	-5	37	0	999	-36.7	22.5	42	-6	50	-4	997	-33.0
25.0	40	-2	34	3	999	-36.9	25.0	37	-3	44	-1	997	-33.0
27.5	37	1	31	6	979	-37.1	27.5	34	-3	42	-1	999	-39.0
37.9 3.5	30 32	1	24	7	999	-37.5	30.0	317	-2	39	-1	499	-39.0
32.3 35.0	32 30 30	1	226	6 5	979 499	-37.6 -37.7	37.5 35.0	27 27	-1	35 30	-	999 999	-37.9
37.5	37	-1	21	5	999	-37.7	37.5	15	-	23	-	999	- 77.8
41.0	25	-4	19	1	999	-37.7	40.0	15	-1	23	-2	999	-31.9
42.5	24	-5	18	0	999	-37.8	42.5	10	-3	1 A	-4	999	-37.8
4	$2 ?$	-5	16	1	999	-37.9 -37.9	45.0 47.5	. 11	-1	19	-2	999	-38.0
53.0	20	-1	14	4	999	-38.0	50.0	14	4	22	3	999	-30.9

q.apius	vat	var	VRT	var	o-values	tanj	ramius	vat	var	vRI	VRR	o-valufs	[ADJ	andius	vat	var	VRT	VRR	o-values	tan
5.0	22	-5	36	-17	-380	12.5	5.0	51	6	31	14	-450	11.2	5.0	35	-5	49	8	-420	15.3
7.3	35	5	45	-9	-350	9.7	7.5	71	-1	51	10	-360	11.0	7.5	46 45	-4	59 55	?	-350 -290	15.?
10.0	68	-7	78	-23	-260	8.5	10.0	n7 38	-5	68	5	-270 -180	11.08 0.4	12.5	$4{ }^{49} 8$	-2	55	18	-240 -240	12.8
12.5 15.0 1.5	67 67	-6	73	-17	-170	7.4	15.0	no	-3	81	5	-90	0.7	15.0	67	1	73	18	-180	11.3
17.5	67	-1	73	-16	0	6.3	17.5	101	-10	82	2	-20	9.4	17.5	57	-4	64	13	-130	11.7
20.0	65	3	71	-14	50	5.8	20.0	102	-5	83	9	60	8.0	20.0	¢00	- $\begin{aligned} & -22 \\ & -20\end{aligned}$	64	-4	-40	H. ${ }^{\text {a }}$
22.5	\%	5	70 67	-17 -11	90 150	4.8	22.5 25.0	100	-1	81 77	12	2 l	7.0	25.0	50	-16	54	2	80	ก.1
2\%.0	${ }_{5}{ }^{\text {a }}$	4	67 65	-14	2 Co	4.2	27.5	95	-4	76	9	260	6.9	27.5	4.4	-15	47	$?$	130	$7 \cdot 1$
30.0	55	0	62	-17	230	4.3	30.0	94	-9	75	4	2 20	6.4	30.0	46	-15	49	3	190 230	7.3
32.5	51	,	57	-10	250	3.8	32.5	30	-5	71 68	${ }_{17}$	310 310	6.2 6.0	32.5	$4{ }_{4}^{46}$	-19	49	2	240	3.7
35	53	?	60 56	-17 -14	230 320	3.5	33.0	885	-	66	14	350	5.1	37.5	4	-17	45	1	2 20	5.3
40.0	50	7	57	-11	360	3.5	40.0	80	1	62	14	330	4.7	40.0	45	-18	46	1	290	4.7
42.5	45		54	-13	400	3.4	42.5	76	1	57	13	4 CO	4.4	42.5 450	47	-21 -25	48	-3	310	5.2
459.0	997	908	$\begin{array}{r}59 \\ \hline 99\end{array}$	-12 999	440 999	3.0 999.0	45.0 47.5	72 72	-4	59	7	440	3.3	47.5	46	-24	46	-6	360	5.5
31.0	939	949	999	999	999	994.0	50.0	70	-6	51	7	450	4.2	50.0	45	-21	44	-3	380	4.6

2a\%ius	vat	var	vRt	var	d-values	TADJ	ramius	vat	var	VRT	vRR	d-values	TADJ	radius	vat	var	vRT	vRR	d-values	tand
5.0	44	'10	25	7	-470	9.2	5.0	24	-14	39	1	-420	15.7	$5.0{ }^{\circ}$	27	-3.	4.4	10	$-4>0$	14.8
7.5	73	21	52	13	-390	8.4	7.5	53	-24	61	-3	-340	13.7	7.5	46	$\stackrel{9}{5}$	64	20	-340 -280	13.0
1.0	75	23	54	15	-300	7.0	10.0	65	-20	70	1	-240	11.0	10.0	${ }_{5}^{60}$	5		11	-290	13.9 13.4
17.5	76	20	55	13	-240	6.7	12.5	65	-21	68	1	-170	17.4	12.5	53	-4	${ }_{84}$	1	-2c0	13.4
13.0	${ }^{1}$	26	71	18	-140	6.6	15.0	${ }^{6}$	-34	71	-13	- ${ }^{\text {20 }}$	10.5	15.0	66	-4	84	6	-1c0	4.7
17.5	98	${ }^{18}$	6.7	11	-90	5.9	17.5	12	-30	72 60	-8	20 70	9.8 R.9	17.3 20.0	St 57 5	-1	80 76	12	-40	9.0 7.5
23.9	97	13	66	5	-30	5.2	20.0	68	-27 -28	69 65	-6	130	8.7	27.5	53	4	72	14	1 co	7.0
22.5	\because	13	81	6	50 .160	4.5	22.5 25.0	65 65	-	65	-4	220	7.4	25.0	53	3	72	13	160	6.6
25.0 $\gg 0$	77	180	56 53	10	160 +260	3.0	27.5	$\times 9$	-26	67	-5	260	6.4	27.5	50	1	69	11	200	6.3
30.0	75	8	54	O	220	3.7	30.0	72	-21	70	5	300	5.0	30.0	46	-6	65	7	230	5.7
32.5	71	\bigcirc	50	$\frac{1}{4}$	290 330	3.6	32.5	68 62	-17 -19	64 58 58	5 2	340 370	4.8 4.4	32.5 35.0	40	- -5	59 59	${ }_{5}^{2}$	280 300	6.1
35.9	71 67	12	45	4	330 370	3.6	37.5	${ }_{5}^{62}$	-19 -21	53	0	340	4.2	37.5	37	-6	56	3	320	5.9
	${ }_{6} 9$	1	42	-5	390	3.7	40.0	56	-17	51	4	420	1.1	40.0	35	-5	54	5	330	4.5
42.5	54	5	43	-4	410	3.4	47.5	57	-14	51	7	450 450	5.1	45.3 4.0	38	-6	53 57	4	340	4.1
9	${ }^{13}$		42	-2	440 460	3.0 2.9	45.0	55	-12 -13	48	7	450 470	3.7	47.5	32	-9	51	1	400	4.2
	61 56	12	35	2	480	2.8	50.0	4.	-18	42	2	500	3.0	50.0	30	-9	48	2	420	4.1

Smodthed vartex averages

radius	vat	var	ver	VRR	d-values	tadj	vatz
5.0	38	0	42	3	-399	12.6	1720
7.3	52	1	55	4	-344	11.8	3035
10.0	63	-0	6.5	2	-271	10.9	4234
12.5	67	-1	69	1	-190	10.1	4794
15.0	72	-2	74.	0	-105	8.9	5517
17.5	72	-3	73	0	-35	8.1	5539
70.0	71	-2	7	0	31	7.2	5328
22.5	¢8	-1	$6{ }^{6}$	1	94	6.5	4976
25.0	66	-0	66	1	157	6.0	4630
27.5	6	-2	64	0	204	5.6	4394
3 c .0	62	-4,	6,2	-1	240	5.3	414.9
3\%.	59	-4	59	-1	274	5.1	3745
35.0	57	-3	57	-0	306	4.8	3549
37.h	55	-2	55	-0	334	4.5	3268
42.0	53	-2	53	-0	360	4.2	3045
47.5	51	-2	52	-0	385	4.1	2896
43.0	51	-3	51	-0	408	3.9	2768
47.5	51	-3	45	2	429	3.8	2832
$5 \mathrm{c} . \mathrm{c}$	49	-3	44	2	443	3.7	2.623

HFLEVE/52092h/6400/811/1826-1842/0/30/76/232//HELENE/580926/6400/811/1756-1804/0/30/76/234/

prantus	vat	var	VRT	VRR	d-values	tad J	radius	vat	var	VRT	VRR	o-values	1405
5.0	909	799	999	999	999	977.0	5.0	979	999	999	999		
7.5	971	799	999	999	999	999.0	7.5	979	909	499	999	999	997.0
10.0 12.5	799	999 789	999	999 999	999	999.0	10.0	999	999	979	979	999	$\xrightarrow{\text { ¢9\%. }} 9$
15.0	394	999	999	999	999	999.0	12.5 15.0	479 970	999	999	999	999	999.0
17.5	379	790	999	999	999	999.0	17.5	972	979	499	4979	999 990	979.0
20.0	979	799	999	999	999	999.0	20.0	499	979	997	999	999	99.0
22.5		997	797 75	999 1	999 -430	999.0 14.3	22.5 25.0	999	999	997	999	999	999.0
27.5	66	-3	75	1	-400	14.4	27.5	87	19	92 87	- ${ }^{3}$	-430 -370	15.5
3 C .0 3.5 0.5	6.4 68	-1	73	1	: $=370$	14.4	37.0	83	9	96 98	-2	-370 -320	14.9 14.8 18.8
32.5 35.0	62 68	3	72	4	-350 -330	14.9	32.5	80	10	82	-20	-320	14.8 15.1
37.5	6	6	70	$\stackrel{7}{1}$	-330 -300	15.9 15.1	35.0 37.5	75	11	77	-	-25c	15.2
40.0	53	6	73	6	-250	15.1	40.0	70	7	73	-2	-230 -170	15.0
42.5	63	5	73	5	-220	14.2	42.5	69	1	74	-7	-170	14.1
47.5	63 56	?	71 66	5	-190 -190	14.9 14.0	45.0 47.5	71	$1{ }^{4}$	75	-5	-150	15.1
50.0	54	5	63	5	-190	14.3	50.0	70	10	77	0	-120 -110	14.8

panius	vat	\checkmark AR	VRT	vrr	o-values	tad J	radius	var	var	vR ${ }^{\text {r }}$	VRR	D-values	TAD
5.0	¢99	997	999	999	999	999.0	5.0	999	999				
7.5	7	799	999	999	999	994.0	7.5	999	997	999	999		999.0
10.0	999	799	979	997	999	997.0	10.0	999	999	999	999	999.	999.0
17.5	79%	249	979	999	999	999.0	12.5	999	999	499	999	974	999.0 994.0
15.0	999	499	999	999	999	999.0	15.0	979	499	994	999	999	999.0
17.5	973	779	979	999	999	994.0	17.5	993	949	999	999	999	979.0
20.0	99% 9.9	79.1	999 999	997 999	999	999.0 999.0	20.0 22.5	979	999	999	999	999	39\%.0
25.0	75	-3	85	-5	-470	99.0	22.5 25.0	88	999	999	499	959	99.7.0
27.5	74	-3	82	-5	-430	14.7	27.5	74	4	77	- 5	-300 -200	15.5
33.0	69	-3	90	-7	-360	14.7	30.0	70	2	67	-5	-290 -220	15.0 15.9
32.5	6.9	-2	76	-7	-280	13.3	32.5	66		63	-6	-190	15.3
35.0	$\stackrel{8}{68}$?	76	-4	-260	15.2	35.0	62	2	59	-7	-150	15.4
37.5	${ }_{6}^{69}$	-5	78	-6	-320	14.8	37.5	60	3	55	- 8	-110	15.1
47.5	6	3	72	-2	-240	14.7	40.0	59	4	54	-5	-70	15.0
45.0	H1		68	-3	-200	14.6 14.9	45.0	58 60	3	52 58 58	-5	-40	15.1
47.5	60	6	67	-1	-170	13.9	47.5	61	2		-7		15.0 14.5
50.0	59	1	85	0	-110	14.0	50.0	60	${ }_{1}^{2}$	55 54	-8	30 30	14.5 14.7

smcothed virtex averages

2antus	vat	VAR	VRT	vRr	d-values	tads	vat2
5.0	¢9,	999	999	999	999	999.0	ч99
7.5	947	999	979	999	999	999.0	999
10.11	49%	¢า9	499	999	999	999.0	999
12.5	779	799	999	999	999	999.0	499
15.0	599	979	9.99	999	999	999.0	999
17.5	3n*	-79	9ッ9	999	999	999.0	997
20.0	999	999	999	999	999	999.0	999
27.3	797	799	9.99	999	999	999.0	999
35.6	9	\bigcirc	0^{2}	1	-382	15.5	6675
27.5	73	-	80	1	-346	15.3	6314
36.0	70	0	77	1	-300	15.3	5894
32.6	72	1	74		-257	15.3	5383
3 h .6	70	2	71	3	-227	15.4	4958
37.9	67	2	67	4	-200	15.2	4658
40.8	66	3	61	4	-164	15.1	4406
42.5	64	3	66	4	-133	14.9	4177.
45.6	63	4	65	4	-109	14.8	4040
47.5	6 6	4	63	4	-85	14.7	3832
5 C .0	61	4	62	4	-68	14.7	3759

STORM

STORM 4

LEVEL 4 SPD/ DIR / HDG /NOTH/STM/ANGIE/EYERAM/ PRFS/ACTUAL/REL MMAX WD/

zarius	vat	var	vrt	vRr	D-values	tadj	radius	vat	var	VRT	vrr	d-values	IADJ	ratius	vat	var	vRt	vRr	d-valuf	tans
5.0	${ }^{0}$	7	7	0	-910	10.2	5.0	18												
7.5	12	-?	25	-1	-9n0	2.0	7.5	27	13	21	13	-830	10.2 9.8	5.0 7.5	13	5	10.	-2	-890	9.0
10.0 12.5 70.0	50 30	13	55 88	0	-840	1.4	10.0	4.5	12	41	12	-190	9.8	7.5 10.0	${ }_{28}^{13}$	3	15 30	0	-870	7.5
12.5	310	13	${ }^{88}$	6	-750	$\cdot 4$	12.5	92	12	77	8	-720	t.0	12.5	55	10	53	${ }_{7}$	-810 -720	5.4
17.5	100	11	96	6 2	-620 -420	$\stackrel{1}{2}$	15.0	101	-2	91	-	-6.0	4.?	15.0	RO	17	79	11	-720 -600	3.9 3.0
22.0	102	17	97	7	-270	. 4	17.5 20.0	109	-4	91	-4	-460	3.2	17.5	107	24	98	15	-480	1.0
P:. 5	27	13	97	7	-170	. 4	22.5	96	-6	89	-4	-320	2.4 2.2	20.0 22.5	98 82	13	85.	4	-350	0.0
2%	30	7	80	3	-30	. 2	25.0	96	-9	87	-8	-70	1.9	25.0	82 98 98	15 16	85 78	7	-250	$\cdot 2$
$\stackrel{3}{3} \cdot 6$	$\stackrel{8}{9}$	7	76 76	$\stackrel{2}{0}$	90 190	0.0 .6	27.5 30.0	72	-1	84 83 8	-3	- 30	1.4	27.5	75	18	78	7	-180 -70	$\cdot{ }_{-}$
37.5	3		74	-2	260	1.1	37.5	90	-2	-83	-2	170	1.5	30.0	67	14	69	s	20	c.0
35.0	94	1	76	-4	320	2.2	35.0	85	-2	78	-2	370	1.5	32.9 35.0	72	12	68	5	40	-. 2
37.5	习习	0	80	-5	380	3.2	37.5	an	-10	во	-5	270	96	35.0 37.5	${ }_{68}$	11	68	2	170	-..
42.0	9\%9	-1	77	994	3.80	5.8	40.0	54	-2	77	-3	330	1.0	40.0	718	11	68	2	240	-. 0
4,	-	9	¢09 ${ }^{69}$	999	390 999	999.?	42.4 45.0	77	$\stackrel{2}{4}$	69	0	370	1.0	42.5	${ }_{6}$	19	68 64	10	290 350	-1.0
47.5	\%9\%	99	989	999	999	999.0	47.5	61	4	58	3	+470	${ }_{-6}$	45.0	5 5	8	58	7	390	. 2
50.0	c)	977	779	999	999	999.0	50.0	64	-	56	6	410	$\therefore 1$	50.0	5	-6	55	-11	410	0.0

/

23:1us	vat	V18	VRT	ver	d-values	TADJ	ramius	vat	var	vRt	vRR	D-values	tanj
¢. 0	19	4	10	-4	999	9.4	5.0	4	3	12	-1	994	21.9
7.3	27	-3	17	-4	-8co	9.6	7.5	15	6	20	-1	-8.40	1 c .2
12.0	46	-4	38	-4	-720	9.4	10.0	71	12	36	4	-740	9.3
12.5	82	6	13	5	-700	7.6	12.5	62	14	66	7	-720	7.4
15.0	117	I	111	5	-580	4.6	15.0	a3	17	82	11	-640	5.6
17.5 29.0	115 114 149	$\begin{array}{r}-1 \\ \hline\end{array}$	107 107	$?$	-440 -340	2.3	17.5	87	13	89	8	-5.50	3.2
22.5	106	-3	94	-1	-340 -260	2.2	20.0	89	10	92	6	-450	. 2
25.9	97	-3	91	-1	-130	1.4	22.5	89 88 8.4	4	81	4	-350	0.0
27.5	\cdots	-	33	-4	-160	. 4	21.9	13	4	${ }_{8} 8$	-3	-260 -160	84
33.0	96	\rightarrow	85	-1	-10	. 1	30.0	71	2	77	-4	-80	\bigcirc
32.5 36.0	31	-7	80	-6	я	. 3	32.5	70	0	76	-4	10	-. 5
35.0 37.5	$\stackrel{\circ}{2}$	-6	77	-5	180	. 6	35.0	72	7	во	0	100	-. 4
45.0	87	-10	77	-9	260	. 7	37.5	71	-2	78	-7	180	-. 6
42.5	73	-16	81	-11	370	1.0	40.0	$\begin{array}{r}67 \\ 59 \\ \hline 72\end{array}$	-10	73	-16	270	-. 7
43.0	999	4	999	0	979	999.0	45.0	72	-10	73	-12	$\begin{array}{r}370 \\ 370 \\ \hline\end{array}$	--7
47.5	949	979	999	999	999	994.0	47.5	66	-9	74	-5	40.0	-1.3
32.0	999	493	990	999	999	999.0	50.0	59	16	75	22	4 CO	

STORM 4

	GTODA / DATE /FEET , ARFGB. , IMTEPVAL /OUT/ LAT/LOAG/ IO,												
	$\begin{aligned} & \text { STODM } \\ & \text { SPO/ DI } \end{aligned}$			$\begin{aligned} & \text { TRUE } \\ & \text { HDG } \end{aligned}$	$\begin{aligned} & \text { OCTANT } \\ & \text { OTH/STM. } \end{aligned}$	$\begin{aligned} & \text { IMR RD } \\ & \text { YERA } \end{aligned}$		MAX WYMn CTUAL/RE			$\begin{aligned} & \text { RADTUS } \\ & M A X \text { WOI } \\ & =-2= \end{aligned}$		
78, 315	3001	1	251	-	181	72122.	1315	2101	15	210 /		1441	55 1 ?
ralius	vat	VAR	vRT	VRR	1)-values	tadj	ragitus	vat	var	v2t	vra	o-values	tanj
5.0	37	-2	3	1	1520	-31.3	5.0	9	-7	13	-7 -7	1560 1570	-31.4 -31.2
7.5	9	0	5	1	1550 1500 1500	-31.2 -31.1	7.5 10.0	10 14 18	-7 -8	20	-8	1600	-31.2
10.0	$? 7$	$\frac{1}{2}$	$1{ }^{7}$	1	550 1630	-31.0	12.5	21	-7	30	-6	1670	-36.9
12.0	911	2	23	5	1670	-31.2	15.0	37	-1	38	0	1640	-30.9 -31.0
17.5	76	15	43	15	1690	-31.8	17.5 20.0	34 27	0	43 38	2	18.70	-31.0
$2 \mathrm{c} . \mathrm{C}$	72	17	63 72	16 8 8	1770 1750	-32.6 -3.8	20.0 22.5	37	h	45	${ }_{8}$	${ }_{1720^{\circ}}$	-31.7
22.5 23.0	75	8	72 69	3	1780	-35.0	25.0	43	14	53	17	1750	-21.6
25.0 27.5	74	-1	69 60	-1	18 co	-35.8	27.5	44	11	54 55	11	17×0 18.0 1800	-33.1 -33.9
30.0	74	-5	62	-5	1320	-36.2	30.0 32.5	44 40	$\stackrel{1}{0}$	55 50	2	1870	-3.3.9
32.5	12	-3	64 60	-3 5	1940 1870	-36.7 -37.0	32.5 35.0	37	-	47	-1	1240	-34.0
36.0 37.5	6	\cdots	6, 3	13	1890	-37.5	37.5	37	-2	48	-2	1850	-34.7
4 ran	¢ 3	17	63	17	1930	-37.3	$4{ }_{4}$	37	-1	48	2		-31.0 -35.2
42.5	${ }_{5} 1$	20	62 60 60	17	1340 1970	-37.8 -37.8	42.5 45.0	37 35 3	${ }_{5}^{2}$	45	${ }_{5}$	1910	-15.4
45.0	1.3	? 3	60 58	19 20	1980	-37.8	47.5	36	799	44	997	1 1890	995
510	6,	25	58	25	1990	-37.9	50.0	973	999	43	779	1950	997.0

MIT:
 /9/315/100/W/7/240/9 /949/67/59/22.5

ractus	var	var	vRT	vrr	o-values	tanj	Rantus	vat	var	VkT	ver	n-values	IAİJ
	?	-	11	10	14.60	-30.5	5.0	7	-6	15	-15	959	-30.?
7.5	16	-5	15	¢	1470	-30.4	1.3		-7	13	-10	997	-35.0
11.0	? 0	-?	19	10	1460	-30.4	10.0	18	-3	10 23	-	9	-30.0
17.5	27	1	21	14	1490	-30.7	15.0	35	5	33	-1	$9 \% 9$	-31.2
15.0	27	2	25	18		-30.7	17.5	52	12	47	0	97	-3!.6
17.5	97	3	71	22	1500	-31.3	20.0	60	13	52	3	949	-32.4
20.0	76	11				-32.1	27.5	67	5	59	6	977	-32.4
27.5	74	11	6	3	1540	-33.2	25.0	64	7	56	12	997	-34.0
25.0	71	-7	63	-	1540	-34.4	27.5	56	23	53	16	9 9\%	-34.6
27.5	${ }^{6}$	-3	5		1580	-34.3	30.0	58	29	52	16	94.	-3\%.7
30.5	64	-3	57	-	1600		32.5	5.5	28	47	16	ววา	-35.4
32.5	61	-17	53	-7	1620	-36.2	35.0	54	29	46	17	959	-35.6
35.0	n5	-17	55	-5	1670	-36.7	37.5	53	30	44	18	999	-35.8
37.5	65	-14	55	-5	1670	-30.3	¢0.0	50	29	40	11	$9 ¢ 8$	-36.0)
47.0	65	-4	56	3	1720	-36.8	42.5	45	24	37	14	$9 ¢ 9$	-36.2
42.5	6,4	-1	56	3			45.0	45	24	38	13	799	-36.4
45.0	61	-5	53	\%	1810	-37.2	47.5	45	23	39	12	949	-70.5
47.5	54	-2	47	7	2840	-36.9.	50.0	43	22	36	11	979	-36.7

racius vaibhootheo wightio vortex averages

smodimed vortfex averages

Stirm date llve plvi infavil i-0 lat long oir spo

 unsmoothid welghted vortex averages

qapius	var	var	VRT	vRr	d-values	tanj	vati
5.0	1 ?	${ }^{\circ}$	6	0	- ${ }^{\text {S }} 0$	12.3	173
7.5.	19	3	17	-0	-841	11.7	477
10.0	24	1	22	1	-191	11.4	677
$12 . \%$	33	-	32	-2	-761	11.1	1200
15.0	48	3	48	${ }_{1}$.	-725	10.6	2405
17.5	62	4	64	i°	-695	10.0	3993
28.0	71	-0	71	-4	-580	9.4	5391
22.5	63	3	6.9	1	-513	9.1	4940
29.0	65	3	65	1	-4,56	${ }^{8.8}$	4398
30.0	64	1	63	-1	-345	${ }_{8.1}$	4276
32.5	65	1	34	-0	-302	8.0	4409
35.0	${ }^{6}$	4	86	-2	-262	8.0	4094
37.5	62	0	84	-1	-225	7.9	3942
40.0	61	0	61	-1	-197	7.6	3748
42.5	58	-6	65	-1	-161	7.3	3389
45.0 47.5	53	-7	64 67	-8	-165	7.2	3478
5 c 0	54	-7	60	$-_{-8}$	-100	7.5	2980

smoothed virtex averages

aneius	vat	var	vrt	Vrr	o-values	tad.	vat2
5.0	14	5	10	0	-847	12.1	259
7.5	19	3	17	0	-827	11.7	448
in.u	25	1	24	0	-793	11.4	750
12.5	35	1	34	-0	-760	11.1	1389
15.0	48	3	48	0	-726	10.6	2548
17.5	61	3	62	-0	-674	10.0	3981
20.0	68	1	68	-0	-587	9.5	4926
22.3	68	3	67	1	-517	9.1	4799
25.0	65	3	65	1	-4,58	9.8	4.54
27.5	64	1	64	-0	-401	8.4	4302
30.0	64	1	64	-0	-348	8.1	4316
32.9	65	1	65	-0	-304	8.0	4,373
35.0	63	3	65	-2	-268	8.0	4061
37.5	(2)	0	64	-1	-227	7.9	3924
40.6	${ }_{6}$	-0	n?	-1	-195	7.6	3821
42.5	58	-5	65	-2	-167	7.4	3403
15.9	¢9	-7.	65	-8	-159	7.2	3522
47.5	5 H	-7	64	-8	-124	7.3	3470
50.0	55	-7	61	-8	-108	7.5	3150

														10/ 25 / 255 / 4 / $5 / 255$,	$0 / 105 / 95 / 73.5$	
raptus	vat	var	VRT	vRr	d-values	tadj	radius	vat	var	VRT	VRr	d-values	1ans	Rabius	vat	var	vri	VRr.	n-values	[A11]
5.0	*	-: 5	30	-1	-780	12.2	5.0	999	999	399	999	999	9970	5.0	27	${ }^{\top}$	${ }^{3}$	3	-780	11.4
1.5	$?$	-15	31	-13	-770	13.8	7.5	999	999	999	999	499	994.0	7.3	36	-3	19	7	-770	12.2
10.0	1	-6	30	-10	-740	14.4	10.0	977	939	997	999	979	797.0	10.0	37	-7	25	6	-750	12.2
12.5	17	2	23	-7	-730 -710	13.8	12.5	41 54	20	28	4	-610 -6.00	10.7	12.5	45	-12 -14	33 42	${ }_{2}$.740 -700	12.2
19.0	26	1\%	40 58	-3 2	-710 -690	11.3 10.4	15.0 17.5	54. 6.4.	$1{ }_{18}^{18}$	31 40	$1{ }^{8}$	$-6,00$ -560	10.5 4.7	15.0 17.5	53 76	-14 -17	42 65	2 -3	-760 -610	13.1 13.1
$1 \times .5$	59	is	80	4	-670	9.0	20.0	13.	19	51	14	-530	\% 0	20.0	100	-18	70	-2	-590	13.2
23.9	74	20	79	2	-600	8.6	22.5	79	19	55	17	-500	4.3	22.5	105	-17	95	4	-490	10,
25.6	\bigcirc	13	87	0	-650	8.4	25.0	90	21	68	20	-4.50	9.1	25.0	9	-16	87	2	-440	11.0
27.5	0	16	90	2	- 500	8.2	27.5	104	23	82	23	-1.60	P. 5	27.5	93	-19	82	0	-390	9.5
30.0	8.3	19	89	0	-4c0	7.7	30.0	103	19	88	20	-310	7.6	30.0	84	-21	79	- 2	-340	\% 0
32.7	${ }^{2} 3$	21	39	2	-290	7.1	32.5 35.0	101	15	${ }_{71}^{81}$	17	-250	7.0	32.5	$3 ?$	-18 -15 -15	76	1	-371 -200	9.2
35.0	9	27	86	0	-270	6.6	35.0	96	11	78	15		6.8	35.0	719	-15	73	3	-260	7.5
37.3	70 74 0	17	96 90	-1	-230 -210	6.3 5.7	37.5 40.0	9.9 9	${ }_{4}^{6}$	71 63	11	-120 -100	6.6 6.7	37.5 40.0	18 75	-12	71	8	-240 -100	7.3
$4 r .0$ 4% 4.0	1.4 30	18	90 96	-	-210 -180	5.7 5.7	40.0		4	63 57	9	-100 -70 -20	6.7 6.9	40.0 42.5	75 73	-11 -9	69 66	${ }_{9}^{8}$	-100 -120	6.9 6.9
41.0	$?$	17	98	-1	-150	6.0	45.0	76	0	58	7	-70	6.6	45.0	70	-7	63	-11	-80	6.9
47.5	\bigcirc	16	86	-1	-120	6.2	47.5	76	1	57	7	-40	6.3	47.5	66	-6	59	-12	-40	7.3
\%(\%	78	17	84	0	-90	5.9	50.0	75	0	57	7	-20	6.0	50.0	65	-5	57	13	-10	7.1

karlus vat var - vrt vrr devalues

radius	vat	var	VRT
5.0	17	-29	20
7.5	? 9	-29	16
10.0	34	-5	25
12.5	47	-5	31
15.0	9.7	-3	40
17.5	69	-3	50
20.0	79	0	63
22.5	95	5	79
25.0	103	6	90
27.5	107		35
30.0	97	0	85
32.5	93	-1	83
35.0	90	-2	78
37.5	97	-s	74
40.0	93	-11	71
42.5	93	-	83
45.0	79	-11	66
47.5	77	-11	66

VRT	vRR	d-values	TADJ
20	-16	-740	12.2
16	-11	-740	12.0
25	6	-730	11.6
31	6	-7c0	11.6
40	3	-670	11.5
50	A	-630	11.8
63	11	-5.50	11.4
79	16	-520	10.4
90	17	-460	9.4
95	17	-4.0	8.8
85	13	-330	9.3
${ }^{2}$	14	-300	7.9
7 P	13	-340	7.3
74	10	-190	4.8
11	5	-140	6.7
59	5	100	7.0
66	5	-80	7.4
66	6	-50	7.6
63	7	-20	7.5

RADIUS
5.0
7.5
10.0
12.5
15.0
17.5
20.0
22.5
25.0
27.5
30.0
32.5
37.0
37.5
40.0
42.5
45.0
47.5
 979
999
999
999
-13
-14
-12
-12
-14
-16
-14
-9
-5
-3
-2
1
1
1
0
2
 999
994
997
990
-750
720
720
660
620
6800
580
-490
-440
460
-360
350
-290
260
230 993. 993.0
999.0

IDCNNA /600004/13800/618/2030-2044/1/17/59/322/

radius vat var vrt vrr d-values taoj

5.0	24	18	15	7	-470	12.0
7.5	36	26	24	19	-390	8.3
10.0	33	17	70	11	-300	7.3
12.5	120	21	107	17	-220	5.9
15.0	115	20	101	16	-20	5.6
17.5	105	30	92	25	210	5.1
20.0	? 6	13	73	8	300	4.2
22.5	99	1	76	-5	310	4.0
25.0	87	21	75	15	340	3.3
27.5	79	27	67	21	430	2.3
30.0	69	23	57	16	440	2.0
32.5	71	12	59	5	470	1.3
35.0	68	-3	46	-11	530	1.8
37.5	53	-9	42	-16	540	1.3
40.0	45	-3	33	-17	570	1.3
42.5	54	-7	42	-15	580	1.3
45.0	55	-4	43	-12	600	1.2
47.5	56	2	44	-6	630	1.1
50.0	51	9	39	1	640	. 7

JOONNA /600004/13800/618/2046-2101/0/17/59/323/ $11512901799, x / 9,1210,195211181128 / 12.5$

radius	vat	vas	vRt	vrr	d-values	TADJ
5.0	6	8	19	5	-480	14.3
7.5	51	-21	64	-20	-320	12.3
10.0	67	-14	80	-11	$\rightarrow 30$	11.2
12.5	118	-3	128	-1	-150	9.4
15.0	90	-3	101	3	-50	9.4
17.5	110	-13	122	-7	50	6.6
20.0	112	-6	123	0	60	4.3
22.5	83	-12	95	-6	170	3.9
25.0	84	-9	95	-3	250	3.7
27.5	68	-7	80	-1	270	3.4
37.0	59	6	71	12	350	3.3
32.5	60	-3	72	3	430	3.0
35.0	55	0	66	-6	460	3.6
37.5	40	-5	52	1	480	3.3
40.0	51	-6	62	0	500	3.4
42.5	49	-4	60	2	520	3.3
45.0	48	2	60	8	570	3.2
47.5	42	2	53	7	570	3.2
50.0	42	3	53	8	590	2.8

/0г: /-1/70/135/5E/6/130/10W0/935/129/135/22.5/9/270/135/Nw/2/300/13/1935/150/145/15.0

pastus	vat	var	vrt	VRR	d-values	radj	ragius	vat	var	VPT ${ }^{\text {t }}$	VRP,	d-valufs	incs
4.0	ราง	979	979	$9 \%{ }^{\text {¢ }}$	999	999.0	5.0	37%	จาา	090	990	997	797.0
7.5	994	99.	999	999	999	999.0	7.5	37	-16	40	-5	-1360	17.4
10.0	39	-R	47	-7	-1480	21.0	10.0	47	-14	47	-3	-126.0	17.7
12.5	63	-1	70	2	-1300	20.5	12.5	49	-9	46	3	-1220	17.4
15.0	83	4	9	8	-1190	17.5	15.0	150	-19	145	-13	-950	16.9
11.5	96	25	102	30	-1000	17.2	17.5	119	-15	113	-5	-aco	15.9
2 c .0	114	9	120	15	-920	16.7	20.0	114	0	107	,	-590	13.5
22.5	$1 ? 9$	-17	135	-11	-650	16.0	22.5	$11 ?$	10	104	18	-520	15.3
25.0	121	-17	106	-12	-590	15.4	25.0	39	7	91	14	-430	15.2
27.5	13	-13	98	-7	-520	14.5	27.5	87	${ }^{3}$	79	10	-350	15.1
37.8	97	-14	92	-9	-420	14.1	30.0	86	14	77	21	- 250	15.0
32.5	79	\rightarrow	84	-3	-350	14.0	32.5	85	16	77	23	- 170	13.0
35.0	37	-6	92	0	-310	14.1	35.0	84	5	76	12	-290	14.6
37.5	P3	-18	$8{ }^{88}$	-12	-300	14.0	37.5	93	T	84	14	-180	14.4
40.0	17	-17	76	-13	-260	14.6	47.0	94	7	76	14	-140	11.9
42.5	34	-15	${ }_{88}$	-10	-210	13.6	42.5	79	-3	71	4	-60	13.7
45.0	92	-24	86	-19	-160	12.6	45.0	74	-3	65	3	-20	13.6
47.5	9.	-17	88	-11	-130	12.5	47.5	73	2	65	8	0	13.0
37.0	84	-17	R8	-11	-120	12.6	50.0	71	O	65	6	30	13.3

0¢w:	C60707	$\bigcirc \mathrm{Oco}$	ts	9-1	1	22	11	270	9	305	NF	50	325	inko	935	${ }^{87}$	17.5	
onden		aran	${ }_{760}$		1	22	71	270 270	?		${ }_{\text {Sk }}^{\text {SF }}$	130 205	${ }_{\text {32, }}^{326}$	10	${ }_{9} 935$	129	. 5	1315
Don:1	6core7	32:0	tso	1655-1712	0	22	71	270	,	135	Nin	300	327	13	935	150	15.0	114

smabthid viortex averages

ranius	vat	var	vat	vRe	d-values	tadj	vat2
5.0	19	3	20	$?$	-1183	15.8	544
7.5	27	1	30	0	-1168	15.6	978
10.0	5.2	-1	51	-1	-1132	14.8	3175
12.5	77	-0	75	-0	-1038	13.5	6543
13.0	44	1	93	2	-899	12.2	2556
17.5	95	-6	75	-6	-728	11.1	9296
20.0	97	-5	97	-6	-567	10.0	9550
? ${ }^{\text {¢ }}$	95	-3	95	-3	-425	9.3	9107
25.0	9	-0	42	-0	-343	8.7	8465
27.5;	89	1	99	0	-275	8.1	8007
3 CO	8.4	1	84	0	-211	7.7	7123
32.5 .	81	1	81	0	-142	7.6	6672
33.0	80	-0	30	-0	-89	7.6	6545
37.5	76	-6	77	-8	-57	7.6	5857
4 c .0	73	-5	74	-7	4	7.7	5431
42.5	69	-7	69	-8	40	7.5	4807
45.9	06	-7	67	-9	71	7.3	4411
47.5	65	-6	66	-8	100	7.1	4278
5 c .0	63	-6	64	-8	120	6.9	$4 \mathrm{C73}$

STORM, DATE, DEPFS ALT

STORM TRUE OCTANT AZMTH TN RDR CFNT MAX UIUOS RADIUS SPO/ OIR, HDG /NOTH/STM/ANGLE/EYERAD/ DPES/ACTUAL/REL IMAX WN/

$$
\begin{aligned}
& \text { HDG /NOTH/STM/ANGLE/EYERAD/ DRES/ACTUAL/REL } / M \Delta X \text { WN/ }
\end{aligned}
$$

ПOVNA $/ 60090 / 6400 / 811 / 1641-1706 / 0 / 23 / 79 / 332$						
radius	vat	var	vRT	VRR	0-values	tanj
5.0	36	7	28	7	-1640	17.3
7.5 10.0	75	-7 -8	44 67	-11 -10	-1560 -1730	19.2
12.5	112	1	105	-1	-1240	16.7
15.0	131	-11	124	-14	-1110	16.7 16.0
17.5	127	-3	119	-1	-880	15.5
20.0	112	${ }^{3}$	105	0	-750	15.1
22.5 25.0	104 9	-1	97	-1	-680	14.7
27.5	97	0 2	92 92	-1	-570	14.4
30.0	74	-1	87	-1	-4c0	15.0
32.5 35.0	89	- ${ }^{2}$	82	2	-340	14.6
35.0 37.5	89 89 89	-5	88	-5	-330 -310	13.5
40.0	89	-1	79	-4	-310	13.5 13.4
42.5	ก9	2	82	2	-190	13.2
45.0	${ }^{80}$	$?$	73	-2	-150	13.6
47.5	75	7	68	-	-120	13.1
50.0	78	10	71	11	-90	12.8

storm
ocinna 600790
3 Cc 909
flve plvi interval t-o lat long dir spo $\begin{array}{lllllllllllll}0.06 C \\ 8411 & 1641-1796 & n & 23 & 79 & 305 & 10 & 20 & N & 2 & 20 & 332 \\ 911 & 1074-1623 & 1 & 23 & 79 & 305 & 10 & 65 & \mathrm{SH} & 7 & 220 & 333\end{array}$ $\begin{array}{cc}\text { RDR EYE } \\ \text { RADIUS } & \text { CFNT. } \\ \text { PRES }\end{array}$ RNES VATX RMW vitx unismothfo meichtag vortex averages

racius	vat	var	ver	vre	o-vatues	rand	Yat2
5.9	33	0	33	2	-1640	18.1	1128
7.5	52	-11	52	-10	-1515	18.9	2704
19.0	75	-7	75	-7	-1400	17.2	5625
12.5	101	-0	102	-1	-1260	16.6	10412
15.1	118	-4	118	-6	-1120	16.0	14093
17.5	112	-1	112	0	-930	15.5	12769
20.0	101	,	102	3	-790	15.1	10412
27.3	44	4	25	3	-630	14.6	9020
25.0	89	5	90	4	-565	14.4	8021
27.9	80	5	96	4	-485	14.6	7565
3 c .8	81	4	82	3	-400	14.7	6798
32.5	76	4	76	3	-350	14.6	5745
35.0	72	0	72	-1	-325	14.1	5473
37.5	71	0	10	-2	-285	13.9	5365
$40 . \mathrm{c}$	70	0	¢9	-2	-250	13.8	5312
42.5	63	-	69	-0	-200	13.6	5065
45.0	60	1	61.	-1	-160	13.6	$40 \% 0$
47.5	33	4	58	3	-125	13.6	3653
5 c .0	59	5	60	4	-100	13.4	3882

smothed vortex averages

Ractis	vat	var	VRT	vRr	d-values	tadj	vatz
s.c	39	-3	39	-1	-1598	18.4	1653
7.5	5\%	-8	54	-7	-1507	18.3	3171
1 c . 0	76	-5	76	-5	-1391	17.3	620 -
12.5	9.	-2	100	-3	-1257	16.6	10281
15.0	$1: 1$	-3	112	-4	-1106	16.0	12809
17.5	10.8	0	107	-0	-939	15.5	12189
20.0	10 i	3	102	2	-787	15.1	16508
27.5	94	4	95	3	-653	14.7	914 ?
75.0	89	5	9	4	-567	14.5	9187
21.5	85	5	86	3	-494	14.6	7528
30.0	81	4	31	3	-408	14.7	6767
32.5	70	3	76	2	-358	14.5	6032
35.0	72	0	72	-0	-323	14.1	5585
37.3	71	0	70	-1	-285	14.0	5407
4 c .0	70	0	69	-1	-246	13.8	5274
42.5	6	0	n6	-1	-201	13.7	4861
45.13	61	1	61	-0	-161	13.6	4148
47.5	53	3	59	${ }^{2}$	-127	13.6	3834
$5 \mathrm{c} . \mathrm{c}$	54	4	59	3	-109	13.5	3866

STORM / DATE / FEET / MB. / TNTERVAL /OUT/LAT/LONG/ID/
STOPM TRIIE DCTANT AZMTH TA RDR CENT MAX WINDG RADIUS SPD' DIR / HOG /NOTH/CTM/ANGLE/EYERAN/ PRES/ACTUAL/REL IMAX WD/

														116/280/335/4\%1			335	,9831 79, 65 / 10.0		
inflas	vat	vas	VRT	ver	d-values	TADJ	radius	vat	Vne	vet	var	o-values	mand	radius	vat	var	vrt	VRR	d-values	tanj
5.10	,	4	19	-5	-350	15.2	5.0	${ }^{38}$	15	38	-1	-540	15.7	5.0	5π	-4	42			
7.5 10	31 36	7 -15	${ }_{51}^{3 / 4}$	- ${ }^{1}$	-310 -250	15.7	7.5	$5{ }^{5}$	22	55	5	-440	13.5	7.5	77	-4 0	42 57	7	-330 -250	15.0 11.2
12.5	36 4	-15 -13	5	-20 -16	-250 -120	15.8 15.2	10.0	63 70	15 27	65 67	-1	-320 -210	11.6	10.0	79	21	55	13	-230	10.0
15.0	$4{ }^{4}$	-17	58	-16	-130	14.3	15.0	66	26	67	9	- -10	10.0	12.5 15.0	79 79	28 20	65	20	-180	9.9
17.5	40	-15	55	-20	-80	13.4	17.5	6,3	23	65	12	$4{ }^{5}$	9.5	17.5	69	21	5	12	-120 -20	8.9
37.0 27.5	$4{ }^{4} 4$	-17	57	-24 -17	-40	12.4	20.0	52	$2{ }^{29}$	54	11	10	8.6	20.0	63	20	49	11	40	8.3 8.2
25.0	?	-9	57	-15	20	10.8	25.0	39	23	54 42	3	50 60	日. 28 0.5	22.3 25.0	63 68	29 31	49	19	\bigcirc	2. 3
27.5	41	-4	54	-17	40	10.3	27.5	30	19	42	2	9	8.7	27.5	¢2 54	37	48	22 28	${ }^{90}$	8.1
37.0	37 37	-4	53	-12 -14	60	9.7	30.0	39	20	42	${ }^{3}$	120	4.5	30.0	55	35	41	26	150	7.5
37.5 34.0	35	-6	57 47	-14	80 100	7.6 4.0	32.5 35.0	40 37	12	41 31	-1	150 150 150	3.2	37.5	53	27	39	19	180	7.5
37.5	31	-3	43	-12	120	8.4	37.5	314	11	34	-5	150	7.3	35.0 37.5	54 55	25 16	39	16	170	7.7
40.9	33	- ${ }^{-5}$	38	-15	140	8.4	40.0	34	12	34	-4	180	7.5	40.0	58	17	4.4	8	200	7.1
42.5	27	-61	41	-14	150 170	8.5 8.5	42.5 45.0	34	14	35	- 3	180	7.6	42.5	57	22	43	13	210	7.2
47.5	29	- 4	32	-13	170	8.5 8.4	45.0	39 34	12	41 34	-5 -11	190 210	7.8 3.5	45.0	19 49	18	34	9	220	7.3
50.0	20	-6	34	-13	180	\%. 4	50.0	29	3	27	-13	270	8.7		45	14	31	5	$\begin{aligned} & 230 \\ & 240 \end{aligned}$	68.8
n16 1290	20,	*11	2601	,	1-491	57 /20.	, 280	901	W 1	801	-	159	3115.0							
parius	vat	v ¢	vit	vRe	o-values	[ADJ	radius	var	var	VRT	vrr	d-valufs	100]							
5.0	26	979	999	999	999	999.0	5.0	993	999	999	990	779	999.0							
7.5	35	3	51	-5	-370	18.8	7.5	13	7	57	16	-450	13.7							
117.0	39 30 30	4	51	-7	-320 -250	17.0	10.0	55	4	72	0	-340	14.6							
17.5 $i 5.5$	30 4. 4	4	47 51	-9 -11	-250 -190	13.5 10.8	12.5 15.0	59 59	-6	77	-15 -20	-330 -300	14.7							
17.5	$4{ }^{\circ}$	A	53	-7	-110	3.7	17.5	46	-6	56	-19	-180	10.6							
23.01	4.	13	57	2	-40	4.2	<0.0	52	0	59	-15	-160	9.9							
22.5 23.0	4.4	19 11	50 43	-5	30 70	8.8 8.5	22.5 25.0	42	30	47	-7 14	-120 -10 -100	${ }^{\wedge}$							
- 3	41	-14.	43	-2	30	8.3	27.5	59	33	48	18	-10	4. 3 8.3							
3 mo	40	9	$4 ?$	-8	110	8.2	30.0	43	30	40	15	90	8.1							
? 3	37 17	12	39 34	-4	130 150	$\stackrel{9}{8.0}$	37.9 35.0	45	29	3.5	16	100	1.4							
37.3	33	17	34	-4	160	8.2	37.5	45	24	33	12	160	7.5							
48.0	32	18	34	2	160	8.2	40.0	$4{ }^{46}$	19	33	9	140	7.2							
17.5 4.0	39 35 30	17	31	$\frac{1}{3}$	170 190	8.3 8.4	47.5 45.0	$\xrightarrow{977}$	799 999	939 797	979	979	979.0							
47.3	34	10	38	- ${ }^{\text {a }}$	210	8.6	47.5	539	999	949	999	999	999.0							
50.0	24	?	28	-7	210	8.7	50.0	999	979	999	999	999	997.0							

	STORM / DATE / FEET, MLB. , TNTERVAL /OUT/ IAT/LONG/ ID /												
	STORM			$\begin{aligned} & \text { TRUE } \\ & \text { HDG } \end{aligned}$	$\begin{aligned} & \text { CTANT } \\ & \text { TH/STM } \end{aligned}$	AZMTH IM ROR CFNT MAX WTNDG RADIUS ANGLE/EYERAD/ PRFS/ACTUAL/RFI /MAX WD/							
Ralius	vat	var	vRt	vRr	d-values	tanj	raidus	vat	var	VRT	vrr	d-values	tanj
5.0	997	ทา9	999	999	979	999.0	5.0	8	999	499	999	999	999.0
7.5 16.0	577	779 979	999 999	999 999	999 997	999.0 999.0	7.5 10.0	10^{3}	979 999	999 999	997 999	799 999	999.0 997.0
12.0	979	วา9	999	989	499	999.0	12.5	14	499	26	999	999	999.0
15.0	17	-3	979	3	-1160	$19: 0$	15.0	18	1	28	0	-11c0	19.4
17.5	29	-9	28	-1	-1150	20.3	17.5	21	-?	28	-3	-1000	19.7
26.0	41	-22	38	-14	-1110	18.4	20.0	26	4	32	?	-1030	19.0
22.5	48	-29	44	-22	-1060	18.3	22.5	36	5	45	2	-1000	18.4
27.0	6.6	-24	46	-16 -4	-1030	18.4	25.0	44	4	52	3	-910 -930	14.3 18.3
27.5 30.6	$\stackrel{9}{28}$	-13 -13	80 90	-7	-990 -950	18.4 18.3	27.5 30.0	49 56	${ }^{6}$	60 65	3	-930 -970	18.3 19.2
32.5	98	-? 1	94	-14	-940	18.2	32.5	57	10	66	7	-R60	10.0
35.0	ค8	-22	04	-16	-980	17.9	35.0	61	11	68	9	-810	17.7
37.5	98	-25	94	-18	-770	17.2	37.3	62	10	68		-730	17.6
47.3	75	-27	93	-22.	-760	16.7	40.0	61	8	65	4	-720	17.6
47.5	30	-2n	88	-19	-690	17.2	42.5	63	12	69	ค	-680	17.6
45.0 47.5	87	-26 -25	83 84	-19 -18	-670 -630	17.0 16.6	45.0 47.5	63 63	12	67	${ }^{\text {a }}$	-670	17.7
50.0	$\bigcirc 4$	-16	77	-11	-570	16.8	50.0	60	9	67	5	-610	17.5
/6/300/305/SE/6/145/32W0/964/83/88/32.5/6/300/295/ VW/1/295/32w0/964/91/91/35.0													
qaitus	vat	var	vat	vfr	d-values	tad	raotus	vat	var	vrt	var	d-valufs	inds
5.0	0	-1	ч9\%	-2	-1250	18.8	5.0	6	2	990	-3	-1240	19.7
1.5	2	-88	999	-5	-1240 -1230	18.6	7.5	${ }^{8}$	4	997 14	-3	-1210 -1197 -1190	14.1
12.5	14	- -1	20	-4	-1220	19.2	12.5	16	-1	17	-7	-1130	19.3
15.0	18	-3	22	2	-1210	19.3	15.0	22	0	22	-6	-1190	14.3
17.5	24	-?	27	3	-1200	19.6	17.5	26	-1	26	-7	-110,	19.8
20.0	30	-2	35	3	-1180	20.0	20.0	${ }^{28}$	-2	28	-8	-1150	19.6
12.5	34	0	38	5	- 1150	20.0	22.5	33 45 4	-3	28	-9 -10	-1140 -1130 -1180	20.3
27.9	57	-7	68	-2		18.8	27.5	62	-	6.5	2	-1070	13.5,
3 cos	73	-11	74	-6	-1030	18.8	3 n .0	79	32	78	25	-1050	19.3
32.3	8.3	-20	88	-15	-970	18.2	32.5	89	13	88	7	-930	17. ${ }^{\text {a }}$
29.0	92		37 81	-11	-430 -880	1 A .0	35.0	9 Ci		9 y		-930 $-8 R 0$	17.1
17.7 40.0	79 78	-11	81 82	-7 -3	-880	17.9 17.9	37.5 40.0	88 82 88	. ${ }^{7}$	8.5 83	-	-880 -780	17.1
47.5	3 n	-15	86	-11	-740	17.7	42.5	75	7	74	1	-760	17.1
15.6	77	-20	83	-15	-730	17.1	45.0	75	7	74	1	-750	17.1
47.5 50.0	73 70	-20 -17	77 73	-15 -13	-710 -660	17.1 17.1	417.5 50.0	74	9	74 73	1	-670 -660	17.2 17.2

 $16 / 300 / 340 / \mathrm{SE} / 6 / 150 / 32 \mathrm{WD} / 964 / 76 / 83 / 40.0 / 6 / 300 / 350 / 1 / 2 / 350 / 32 \mathrm{WD} / 964 / 96 / 89 / 35.0$

STORM / DATE / FEET / MB. / TNTERVAI

STORN TRUE OCTANT AZMTH IN ROP CFNT MAX WTNDG RADIUS SPD/ OIR / HOG/NOTH/STM/ANGLE/EYERAD/ PRFS/ACTUAL/REL /MAX WD/

CSRLA / 010907 / $4780 / 859 / 2316-2337 / 0 / 24 / 91 / 486 / / C A R L A / 610704 / 4790 / 859 / 1036-1905 / 0 / 24 / 91 / 489 /$

Qa=tus	vat	var	Vrt	vRr	n-valijes	tanj	hadius	vat	var	VRt	vRo	o-valurs	taps
5.0	27	-2	6	5	-: 555	21.8	5.0	6	-5	13	-12	-1720	22.5
7.5	37	5	10	10	-1520	22.5	7.5	10	2	16	-3	-1720	22.5
10.0	30	7	15	10	-1500	22.4	10.0	13	- 7	20	-8	-1700	21.9
12.5	29	5	21	8	-1480	21.7	12.5	21	-6	30	-10	-1680	21.9
15.6	41	-1	33		-1450	21.4	15.0	42	-7	46	-11	-1640	21.8
17.5	${ }^{611}$	-2	52	0	-1450	21.5	17.5	51	-5	58	-9	-16,30	21.7
$2 \mathrm{c} . \mathrm{C}$	0	6	77	8	-1370	21.3	20.0	64	11	61	7	-1590	21.5
22.5	103	-9	91	-7	-1290	20.9	22.5	80	18	${ }^{17}$	14	-1510	21.3
$25 . ?$	97	-7	99	-5	-1210	20.3	25.0	94	9	47	5	-15co	20.0
27.5	47	-4	95	-1	-1120	20.2	27.5	$\bigcirc 5$	15	93	11	-1450	20.5
37.0	87	-4	81	-2	-1040	20.2	30.0	83	13	月9	9	-1230	20.4
32.5	99	-1	78	1	-980	20.2	32.5	75	5	83	1	-1130	2 C .4
35.0	29	-3	77	-1	-930	$20 . ?$	35.0	70	2	80	-3	- 1080	20.5
37.5	94	-i	75	-	-960	20.1	31.5	69	5	80	1	-1030	20.3
46.0	84	-4	74	-	-870	20.0	40.0	75	-4	95	-8	-990	19.7
42.5	85	-4	72	-3	-840	20.1	42.5	71	-3	${ }^{\text {an }}$	-7	-980	19.5
45.0	99	$\begin{array}{r}-8 \\ \hline\end{array}$	73	-1	-770 -750	20.0 19.9	45.0	74 68	-6	78 75	-10	-920	19.4
50.0	84	-2	74	0	-730	19.9	50.0	6.7	-2	74	-6	-860	

stoz	date	くVLP	Plve	$1{ }^{\text {int }}$	a	:-0	Lat	long	cir	${ }_{\text {SPD }}^{\text {RM }}$	TH	¢N	QSTM	ARL	110	$\underset{\text { ROR EVE }}{\text { RAD }}$			R.YH	yrix
carla	6i0909	4700	95\%	231	2337	1		91	310	8	20	N	3	20	486	20w	948	107	22.5	
${ }_{\text {casla }}$	610309	4783	-5 5	181	R4,	1	24	91	3i0	8	215	VE	3	45	487	27 Wm	948	103	22.5	105 91
	615900	4730	Ch\%	183		c	24	91	310	${ }^{8}$	225	SH	7	225	488	22 WD	948		25.9	84
cavla	0.040%	4780	P. 54	225	316	I	74	91	310	${ }_{8}$	70	H	8	250	489	20w0	948	85		93
		rafius		unswoctheid heighten vortex averages																
				vat	var		vet	vRz	R	d-values			tadj	vatz						
		9.0		15	0		12		-1				22.1	329						
		10.0		24 28	4		$\begin{array}{r}21 \\ 27 \\ \hline 18\end{array}$			${ }_{-1699}$			22.1	${ }^{674}$						
		12.5		32	0		33		-	-1613-1582			22.1							
		15.0		44	-1		43		2	-			21.9		12					
		17.5		59	-0		60		1	-1513			21.9							
		2 cc ¢		74	5		74			-1463			21.6	64						
		27.5		89			90		2	-1388 -1328			21.2	83						
		25.0		89	-0		${ }^{1}$		2				20.9	82						
		27.5		97	0		83			-1328-1248			20.6							
		3 c .0		83	4		${ }_{93}$		3	-1248			20.4	¢9						
		37.5		80	1		80		0	-1068			20.4	65						
		35.0		77			${ }_{8}^{8 .}$		0				20.3	¢						
		37.5		76	1		77	-		-1010			20.2	59						
		46.0		78	-0		77	-		-965-925			19.9	62						
		430		76	-		76 74	-		-925			19.8	59						
		41.5		75	-2		73	-		-853			19.7	5						
		Sc.0		71	-1		72	-2		-830			19.7	52						

 uns yocthei heighten vortex averages
sucothed yortex averages

:antus	vat	var	ver	vrr	d-values	tadj	vat2
5.0	13	1	15	0	-1648	22.1	444
7.5	24	3	? 1	2	-1634	22.1	675
19.0	28	3	27	1	-1611	22.1	901
12.5	34	0	34	-0	-1579	22.0	1282
15.6	45	-0	45	-1	-1544	22.0	2225
17.5	60	1	60	-0	-1508	21.9	3988
20.0	77	4	75	2	-1455	21.6	6309
27.5	96	2	86	1	-1390	21.2	7807
25.0	83	0	89	-0	-1323	20.9	8026
27.5	86	1	87	0	-1237	20.6	7682
3 c .0	${ }^{8}$	3	83	1	-1140	20.4	7057
$32 \cdot 3$	PO	1	8 8?	0	-1071	20.4	6580
35.0	78	1	8 ?	-0	-1014	20.3	6162
37.5	77	0	18	-0	-967	20.1	60 n 2
40.6	77	0	77	-1	-930	19.9	6111
47.3	76	-0	76	-2	-898	19.8	5912
45.0	75	-2	14	-4	-858	19.8	5804
47.5	74	-2	73	-3	-830	19.7	5689
51.6	72	-1	72	-3	-809	19.7	5419

Stcue	cate	RLVL PLVL	$\begin{aligned} & \text { TINE } \\ & \text { WTELVAL } \end{aligned}$		1-0	lat	Lovg	$\begin{gathered} \text { STOPM } \\ \text { CIR SPO } \end{gathered}$		TH	Qv	QSTM	ARL	10	ROR EYE ranius	CENT. PRES	vatx	8 PWH	VRTX
cisia	st0909	4700 95,	2110-2127		0	24	91	310	\bigcirc	15	N	3	15	5512	21 wD	949	111	17.5	104
carla	-1070.1	47.00 457	222,-2240		0	24	91	310	8	100	E	5	100	513	21 L	948	98	20.0	95
carla	6199%	4170 -59	222,-2240		1	24	91	310	8	. 60	SW	8	240	514	21 \%	948	86	17.5 22.5	93
canla	610904	4740859	$2052-2103$$2211-2726$		1	24	91	310	8	140	NiN	1	315	5 515	21 Ho	948	ioi	17.5	100
			unsmcimed weighted vortex averages																
		racius	vat	var		vit	vR	RR		values		tadj		vatz					
-		¢.0	7			${ }^{7}$		2		1997		22.8		122					
			15323	32.2		15		1		1973		22.1		351					
		12.6				32		1		1935		22.4		1143					
		12.5	60 -1			60				1899		22.2		3728					
		15.17				8		1		1812		22.0		6827					
		17.5	32 92 2			? 2		3		1724		21.8		9780					
		2c. 0	$\begin{array}{ll}92 & \\ 92 & -2\end{array}$			92		-3		1611		21.5		8642					
		22.5	$90-3$			90	-	4		1540		21.3		8251					
		23.0	$\begin{array}{ll}70 \\ 84 & -3 \\ 84\end{array}$			94	-1			1455		21.2		1195					
		27.9	$\begin{array}{ll}84 & -9 \\ 83 & -10\end{array}$			82	-1			1362		20.8		6948					
		3 C .6	$\begin{array}{ll}03 & -10 \\ 73 & -12\end{array}$			78	-1			1248		20.7		6243					
		32.5	$\begin{array}{ll}78 & -12 \\ 74 & -8\end{array}$			74	-			1230		21.1		605					
		34.0	$\begin{array}{lr}74 & -8 \\ 72 & -10\end{array}$			71	-1			1194		21.0		5311					
		37.5	$\begin{array}{ll}72 \\ 68 & -10 \\ -9\end{array}$			68	-1			1179		21.0		$48 \mathrm{B6}$					
		4 C .0	$\begin{array}{ll}68 & -9 \\ 68 & -2\end{array}$			65		4		1120		20.9		4384					
		47.5	$\begin{array}{ll}63 & -2 \\ 63 & -4\end{array}$			64		7		1101		20.8		32.9					
		45.0	64 -2			64		4		1087		20.6		4279					
		47.5	6.7 -2			67		5		1050		20.6		4681					
		$5 \mathrm{c} . \mathrm{c}$	$\begin{array}{ll}67 & -2 \\ 60\end{array}$			67		3		1034		20.6		4001					

SMOOTHED VORTEX averages

asolus	vat	var	vri	vre	d-values	tanj	vat2
5.0	9	0	9	1	-1989	22.8	198
7.9	18	-1	18	-0	-1968	22.7	511
1 c .6	35	-1	36	-0	-1931	22.4	1631
17.3	59	-0	59	0	-1880	22.2	3977
15.0	79	2	79	1	-1807	22.0	6603
17.5	89	1	89		-1717	21.8	8201
20.0	91	-1	91	-2	-1620	21.6	8434
$2 ? .5$	R9	-4	97	-5	-1539	21.3	8018
2.6	85	-8	95	-9	-1452	21.1	7309
? 7.5	月2	-10	¢2	-11	-1368	20.9	6862
3 c .9	73	-11	73	-11	-1298	? 0.8	6238
37.5	74	-9	74	-10	-1238	21.0	5690
34.9	72	-10	11	-11	-1201	21.0	5300
37.5	69	-9	67	-10	-1178	21.0	4975
4 c .0	4.5	-3.	35	-6	-1124	20.9	4438
42.5	63	-3	64	-6	-1103	20.8	4343
45.0	65	-2	65	-5	-1084	20.7	4395
47.	66	-2	60	-4	-1059	20.6	4590
5 c .0	60	-2	66	-4	-1043	20.6	4597

2arius	vit	var	VRT	vRr	D-values	TADJ	Ramilis	vat	var	vRt	ver	d-valufs	IADJ	ratios	vat	var	vRT	var	o-values	1ADJ
$\square .7$	15	5	10	4	-1270	13.1	5.0	23	0	20	4	-12n0	13.4	5.0	4	$1{ }^{1}$	7	-1	-1200	13.5
7.5	22	11	15	10	-1250	12.6	7.5	28	-3	25	2	-1270	17.8	7.5	$1{ }^{7}$	11	12	?	-1190 -1190	12.8 11.8
10.0	30	7	21	5	-1240	12.0	10.0	38 48	-3	33 4,5	3 0	-1250 -1180	11.9 14.7	10.0	189	10	24 3	5	- -1190	11.9
12.5	40 59	$\stackrel{7}{5}$	29 53	4	-1230 -1190	10.4 8.6	12.5 15.0	47 55	-6	4,5 56	?	-180 -1190	19.7 9.7	12.5 15.0	51	7	57	3	-1150	$0 \cdot 1$
17.0 17.5	59 0 0	115	53 73	10	- -1170	8.6 7.6	17.5	80	-3	79	4	-1050	9.4	17.5	12	11	17	7	-1040	8.4
20.5	94	6	97	4	-1000	6.7	20.0	94	-6	72	ก	-п70	7.4	20.0	33	11	89	6	-930	7.6
72.5	\bigcirc	5	80	3	-830	6.2	22.5	93	-8	$9 ?$	-1	-910	6.5	22.5	83	12	89	7	-840	6.6
八.0	90	4	77	3	-780	5.8	25.0	85	-12	${ }^{33}$	-6	-850	5.9	25.0	78	10	${ }_{8}{ }_{8}$	5	-760	
27.5	93	6	74	4	-710	5.6	27.5	90	-14	79	-7	- 860	5.6	27.5 30.0	77	4	${ }_{78}^{82}$	-1	-760 -640	3.2
3 r .5	ro	R	71	7	-670	6.0	30.0	78	-14	76	-9	-750	5.2 5.2	30.0 32.5	74 6.3	4	78 74	-1	-640 -610	5.2 5.5
37.5	${ }^{7}$	日	70	6	-620	6.1	32.5	76	-12	72	-5		5.2	32.5 35.0 7.5	6.7	6	72	0	- 530	5.5
?,.0	77	12	67	11	- 570	6.0	35.0	75 72	-12	71	-5	-630 -570	5.1	37.5	65	10	69	4	-4,90	5.6
31.9	74	11	65	10	-530	6.0	37.5 40.0 4.5	72	-11	68	-6	-510	5.1	40.0	63	10	67	4	-450	5.4
42.0	70	11 9	62 58	10	-5c0	5.7 5.2	40.0	${ }_{68}$	-17 -12	86	-5	-500	5.6	42.5	58	7	65	1	-570	5.3
450	67	?	57	7	-430	5.3	45.0	65	-12	66	-5	-430	5.7	45.0	$5{ }^{51}$	7	65	1	-370	5.4
47.5	67	11	59	10	-410	5.6	47.5	68	-17	66	-10	-4c0	5.5	47.5	60	${ }^{7}$	65	1	-360 -360	5.5
50.0	67	7	60	5	-410	5.9	50.0	63	-16	66	-9	-390	5.4	51.0	61	10	65	4	-360	3.7

an:iss vat var vrt vir o-values tadju
5.0
7.5
17.0
12.5
15.0
2.5
20.5
22.5
24.0
27.4
37.6
32.5
15.6
37.5
20.5
49.5
45.6
47.3
30.0

VAR
-7
-6
-5
-6
-7
-7
-7
-7
-4
-14
-14
-19
-18
-15
-15
-13
-10
-12
-10

Radius	vat	var	ver	vrr	d-values	140 J	radius	vat	var	VRT	vRr	d-values	[41) 3
5.0	13	-8	20	-5	-1200	13.0	5.0	18	12	9	6	-1290	13.4
7.5	13	-	20	-5	-1270	12.7	7.5	23	11	15	4	-1270	13.0
10.0	14	-7	27	-5	-1250	12.4	10.0	27	9	22	2	-1250	12.6
12.5	22	-7	29	-5	-1250	11.8	12.5	36	ค	30	2	-1230	12.2
15.0	50	-7	59	-5	-1220	10.4	15.0	60	${ }_{5}$	53.	-1	-1190	10.6
17.5	во	-?	87	0	-1160	8.6	17.5	88	5	78	-2	-1120	9.6
20.0	94	1	73	3	-1090	$7 . ?$	20.0	9s	-2	87	-9	-1020	7.0
22.5	79	4	96	6	- 770	0.5	22.5	90	-11	8.4	-17	-960	6.2
25.0	75	1	83	3	-9c0	$5 \cdot 3$	25.0	30	-4	78 79	-10 -9	-870 -760	6.0 5.7
27.5	70	-2	77	${ }^{\circ}$	-830 -750	3.4 5.5	27.5 30.0	87	-1	75	-8	-760 -670	5.7 6.0
30.0 32.0	65 63	-1 -2	73	1	-750 -700	5.5	30.0 32.5	69 68	-1	69 67	-88	-670 -670	6.0
35.0	60	-2	68	0	-6,70	5.6	35.0	65	-4	65	-10	-600	5.9
37.5	59	-5	66	-3	-630	5.2	37.5	65	-3	t3	-3	-570	5.7
40.0	57	-6	t5	-5	-597	5.0	40.0	58	-3	\% 0	-9	-510	5.5
42.5	55	-6	64	-4	-550	5.2	42.5	${ }_{6} 6$	0	60	-7	-500	5.8
45.0	$5{ }_{5} 5$	-6 -7		-5	-5co	5.9	45.0 47.5	67	3	60 59	-4	-460 -420	5.5 5.5
47.5	57	-7 -5	63	-6	-490 $-4,70$	6. 6.3	47.5 50.0	61 58	${ }_{3}^{1}$	57 57	- -4	-420	5.5

Sicre	date	ztvL	PLVL	$\begin{aligned} & \text { THE } \\ & \text { MTESVAL } \end{aligned}$		1-0	Lat	long		$\begin{aligned} & \text { STORM } \\ & \text { OIR SPD } \end{aligned}$		TH	CN	QSTM	ARL	10	$\begin{aligned} & \text { ROR fyF } \\ & \text { RADIUE } \end{aligned}$	$\underset{\text { PESES }}{\substack{\text { CENT }}}$	vatx	R NH	vetx			
carla	- 60.010	1anco	615	204		1	27	94		300	8	215	NE	3	40	C 494		940	94	20.0	87			
caria	610910	13, ${ }^{\text {a }}$	618	133)02	0	27	94		300	8	102	ε	5	102	2445	204	940	95	20.0	89			
carla	016910	1 scc	${ }^{1}$?	215		1	27	94		300	8	304	SE	5	120	- 4.0	20 a	940	74	20.0	92			
carla	616915	13060	${ }^{618}$	210		n	27	94		300	8	215	SW	7	215	5497	20 A	940	84	20.0	93			
carla	610910	luben	818	1315		1	27	94		300	B	100	w	8	270	498	$20 \wedge$	940	83	20.0	89			
carla	6.0 .310	13900	618	221		1	27	94		300	8	312	Nw	1	312	2499	20 A	940	96	20.0	87			
-		rantig		uns\%octheo whighted vortex averages																				
				vat	var		VRT	vRR		o-values			tadj		vatz									
		5.0		15			13			1	-1258		13.2		268									
1.51.6				${ }_{26}^{17}$			1724				-1245			13.5		425								
					-1231						12.1		790											
		12.5					35	1		33		1 1		-1209			12.5		1341					
		19.0		3	-0		55		-1178					9.7		3083								
		17.5		30	3		79		${ }_{3}$		-1095			8.3		6478								
		2 c c		90	0		89		30		-100n			7.2		8292								
		22.5		37	-0		85		-		-900			6.4		7618								
		29.9		81	-1		80		-0		-822			5.9		6778								
		27.5		78	-2		77		-2			-822		5.6		6190								
		3 c .6		74	-1		74		-2		-698			5.6		5626								
		32.5		72	-1		71				$\begin{aligned} & -653 \\ & -606 \end{aligned}$			5.7		5371								
		35.0		70	-1		69		-1					5.5		5057								
		37.5		68	-1		67				$\begin{aligned} & -606 \\ & -562 \end{aligned}$			5.4		4722								
		40.6		65	-1		65		-1		-514			5.3		4392								
		42.5		${ }_{6}$	-1		63		-1		-501			5.4		4181								
		43.0		63	-0		63		-1		-442			5.6		4143								
		47.5		6,4	-2		63				-442			5.8		4205								
		5 c .0		04	-1		62		-1		-402			5.9		4163								

smcothfo virtex averages

ramius	- vat	var	VRT	VRr	d-values	tads	vatz
5.0	16	1	15	2	-1253	13.3	320
1.5	20	2	13	2	-1243	13.1	430
10.0	27		25	1	-1228	12.5	853
12.5	38	0	36	1	-1206	11.8	1655
15.0	37	0	56	1	-1164	9.9	3575
17.5	77	1	75	2	-1099	8.4	6206
20.0	86	0	85	0	-997	7.3	7602
22.5	\%	-0	8.4	-0	-905	6.5	7392
25.0	81	-1	80	-1	-829	6.0	6759
27.5	73	-2	77	-2	-762	5.7	6191
ic.i	75	-1	7	-2	-703	5.5	5703
37.5	72	-1	71	-1	-654	5.6	5376
35.0	70	-1	69	-1	-607	5.5	5053
37.5	$\bullet 8$	-1	67	-1	-561	5.4	4722
4. C ¢	65	-1	${ }_{6} 5$	-1	-523	5.4	4422
42.5	64	-1	64	-1	-492	5.4	4232
45.0	64	-1	63	-1	-447	5.6	4181
47.5	64	-1	${ }^{63}$	-2	-4.19	5.9	41 ng
r.c. 1	64	-1	6 ?	-1	-408	5.9	4172

level 7

26.01.35	vat	van	Vit	var	d-values	tanj	radius	vat	var	vat	VRR	d-valufs	ind
9.0	27	2	19	-1	-1190	10.6	5.0	16	-4	21	$?$	-1240	11.3
7.5	45	4	36	0	-1190	9.4	7.5	31	-3	37	3	-1190	11.2
10.0	${ }^{59}$	5	47	0	-1150	8.1	10.0	49	-6	57	-1	-1170	16.6
12.5	\bigcirc	5	78	1	-1030	7.0	12.5	70	-5	79	0	-1040	. .2
15.0	103	11	96	7	-970	6.2	15.0	77	-5	${ }^{83}$	0	-970	9.2
17.5	97	10	92	6	-900	5.8	17.5	77	-11	32	-6	-890	7.2
22.0	93	13	R9	9	-770	5.7	20.0	81	-13	96	-8	-330	6.0
27.5	06	17	93	13	-690	5.6	22.5	74	-12	во	-9	-790	6.0
25.0	${ }^{2} 7$	15	81	11	-670	5.8	25.0	70	-15	77	-11	-760	6.4
27.5	92	13	78	9	-hco	5.8	27.5	65	-17	72	-13	-710	6.6
16.0	93	12	77	9	-580	5.4	30.0	63	-14	72	-9	-650	6.3
32.9	95	10	an	6	-520	4.9	32.5	62	-13	70	-9	-600	3.1
$3 \cdot 6$	95	?	80	5	-510	4.8	35.0	59	-11	67	-7	-590	5.7
37.5	90	10	75	6	-470	4.7	37.5	60	-11	66	-7	-510	5.6
40.0	\%	?	71	5	-4.00	4.8	40.0	59	-10	66	-6	$-4,0$	5.3
47.5	75	7	70	5	-430	5.1	42.5	59	-12	65	-7	$-4,30$	0.3
45.0	93	10	76	7	-410	4.9	45.0	55	-1\%	63	-10	-410	5.6
47.5	83	17	75	8	-390	4.5	47.5	54	-14	60	-10	-380	b. 1
50.0	80	11	76	7	-360	4.6	50.0	54	-15	61	-11	-360	6.2

ratus	var	var	vit	vrr	d-values	tadj	radius	vat	var	vrt	ver	d-values	IAOJ
5.0	19	-14	17	-8	-1260	11.0	5.0	20	-15	25	-8	-i290	11.6
7.5	49	-17	47	-9	- 1210	10.7	7.5	32	7	35	5	-12?0	11.2
19.9 12,	53	-15	58	-8	-1070	10.0	10.0	44	5	48	1	-1190	7.6
12.5	7	-9	75	0	-1000	3.5	12.5	66	4	71	0	-1090	7.1
$15.1 i$	11	-i	84	7	-820	7.4	13.0	73	9	83	3	-2070	0.7
17.5	as	-18	05	-11	-780	6.4	17.5	79	17	¢ 4	12	-8ro	6.4
20.0	P\%	$-2 ?$	$\stackrel{9}{3}$	-14	-730	5.7	20.0	74	14	81	9	-740	5.9
22.9	71	-18	79	-10	-640	5.7	22.5	70	14	77	8	-670	3.6
	77	-15	78	-7	-570	5.7	25.0	n6	15	77	?	-6.20	5.4
27.9	19	-11	17	-4	-520	5.8	27.5	65	15	76	9	-h10	5.5
37.0	75	-12	75	-4	-480	5.6	30.0 32.5	63	15	73	9	-570	5.5
12.5 35.0	75	-10	73	-3	-420	5.2	32.5	64	16	70	10	-540	5.7
37.3	72	-7 -7	72	-2	-410 -390	5.2 5.0	35.0 37.5	65	16 16	69 08	10	-48 C -470	S. ${ }^{5}$
$4 \cdot 0$	73	-5	5	$?$	-370	5.0	40.0	50	15	66	10	-480 -460	5.5 3.2
42.5	69	-4	66	4	-300	5.0	42.5	59	14	64	7	-450	5.7
45.0	6n	-4	63	4	-230	4.6	45.0	58	14	63	8	-430	5.2
47.3	65	-3	62	'	-280	4.2	47.5	58	14	63	8	-420	5.0
brec	65			S		4.3	50.0	55	14	63	7	-390	4.9

stcre	date	ztvi		$\begin{aligned} & \text { TiNE } \\ & \text { INERYAL } \end{aligned}$	I-0			${ }_{\text {Stion }}^{\text {Sti }}$		¢H	ov	astm	art	10	RDR EME		vatx	${ }^{\mu}{ }^{\text {m }}$	rix
		${ }^{138 \mathrm{c}} \mathrm{C}$	6i3		$!$	${ }_{78}^{28}$	46	340 340	8	210 130	NF	${ }_{5}^{2}$	$\begin{array}{r} 30 \\ 130 \end{array}$	501	-	940 940	${ }_{91}^{02}$	${ }_{0}^{0}$	96
ca	610	13 sco	${ }_{619}$	225	1	29	95	34.3	6	207	SH	6	207	502	-	940	${ }_{1}$. 0	n,
	61091	co	い 8	1470-1150		28	9	340	-	125	NW		295	503	ก	940	9	5	R4

 (13,

qarius	vat	var	VRT	RR	d-values	tanj	radius	vat	var	vRt	VRR	o-valufs	tadJ
5.0	20	12	30	-1	999	999.0	5.0	11	-2	17	- ${ }^{5}$	977	979.0
7.5	as	,	76	-3	999	999.0	7.5	60	-4	66 99	-5	999 -1665	993.0 21.0
10.0	99	13	109	0	999	18.5	10.0	33	$-{ }^{-8}$	$\stackrel{9}{9}$	-5 -12	-1570	21.0
12.5	87	15	97	2	-2010	19.4	12.5	83 77	-4	93	-9	-1710	$1{ }_{1} .6$
15.0	8.5	12	95	0	-1850	18.3	15.0	71	-4	77	-13	- 1230	17.9
17.5	92	10	92	-2	-1150	16.9	20.0	79	-7	94	-13	-1130	17.9
$2^{\text {n. }} 0$	72		8 c	-4	-1550		22.5	72	-7	7 \%	-13	-1500	16.5
22.5	70		80	-4	- 1445	17.1	25.0	69	-4	15	-10	-1030	16.4
24.0	1,5	10	75	-7	-14450	16.7	27.5	55	-9	71	-15	-950	10.4
27.9	71	6	91	-7 -10	- -1230	16.7	37.0	62	-5	6 \%	-11	-800	16.2
37.5	73	3	93	-10 -14		16.2	32.5	61	-3	67	-10	- 860	15.5
32.5	75	-1	85	-14	-1150	16.5	33.0	61	2	67	5	-170	15.4
35.9	72		${ }^{8} 2$	- -5			37.5	61	12	67	5	-160	15.5
37.5	65	,	75	-5	-1040	11.4	40.0	75	23	81	16	-6,90	11.0
40.0	69	\%	78	-7	- -180	17.1	42.5	74	20	80	13	-650	14.8
4.95	65	6	75				45.0	75	29	01	13	-540	15.4
43.0	63	12	73	-1	-920	16.7	47.5	76	23	76	16	-580	$1 \mathrm{H.4}$
47.5	63	11	73	-2	-920	16.6		74		80	12	-360	17.2
50.0	6.3	16	73	3	-890	15.4	50.0	74	1.				

racius	vat	VAR	VRT	vRr	o-values	140J
5.0	42	11	1.5	2	999	999.0
7.5	65	7	68	$?$	999	
10.0	105	-1	208	-7	99.9	994.0
12.)	100	0	107	-7	-1490	19.0
15.0	74		97	-5	-17no	17.9
17.5	84	-5	97	-11	-120,	17.6
20.0	79	-7	A	-15	-1110	16.2
22.5	RO	-10	88	-18	- 1120	16.4
25.0	79	-9	87	-19	-750	16.3
27.5	76	- -5	78	-16	-850	$1 \mathrm{it.a}$
37.0 32.5	75 75	-5 -3	78	-12	-800	16.4
35.0	78	7	81	-2	-760	10.4
37.5	77	4	98	-6	-710	16.3
40.0	76	9	79	0	-660	11.0
42.5	74	5	77	-3	-6.20 -570	15.7 15.9
45.0 47.5	71	3	74	-3	-530	16.4
	7	7	70	-1	-5c0	16.7

	StOPR		Date		PRES ALT		$\begin{aligned} & \text { TTME } \\ & \text { UTERV } \end{aligned}$	$\begin{gathered} \text { TM } \\ \text { gOUT/ } \end{gathered}$		T/LONG/ TD /			
	STORA			$\begin{aligned} & \text { TRUE } \\ & \text { HOG } \end{aligned}$	OCTANT AZMTH TN ROD CENT MAX WYNOS DADTUS TH/STA/ANGLE/EYERAD/ PRES/ACTUAL/REL/MAK WD/								
1131	: 1	12	7	$\cdots 1$	11001	$87 / 12.5$	$3 / 245$	70	1	20	ก1	¢ ī̃i	$\therefore 15.0$
2notus	vat	var	VPT	vRr	d-values	tad	radius	vat	var	vrt	VRK	o-values	tanj
$5: 0$	20	-6	15	4	999	-1.3	5.0	27	5	18	-7	-50	-2.8
1.3	47	-8	35 15	-3	-120 10	-1.2	7.5 10.0	46 80	17	39 76	-10	-60	-3.3
10.6	97 100	-1	87	-2	250	-1.6	12.5	103	26	93	13	160	-3.8
15.0	79	0	85	-3	330	-3.9	15.0	156	29	102	15	320	-5,6
1.5	33	-5	79	-9	440	-5.7	17.5	93	16	93	\%	4,40	-i. ${ }^{\text {a }}$
?n.n	97	-?	75	-7	530	-6.4	20.0	89	8 5	77	-4	630 600	-6.7
22.5	\bigcirc	0	67	-6	610 660	-7.0	22.5 25.0	888	?	77	-4	${ }_{6} 90$	-7.0
25.0	30	-4	68 65	-5	660 740	-7.3	27.5	83	-3	71	-8	730	-7.4
3 O .0	75	-5	61	-12	770	-7.7	30.0	77	-7	62	-12	790	-7.4
$3{ }^{3}$	¢19\%	9 9\%	63	499	994	-7.8	32.5 35	72	-11	60 58	-17	¢130	-6. ${ }^{-1}$
34.8	(17n	779	979	999\%	999 999	997.0	37.5	69	-11	57	-17	840	-6.6
37.5	con	99\%	999	999	999	999.0	40.0	71	-2	54	-9	$\bigcirc 60$	-7.0
42.5	379	993	999	999	499	999.0	42.5	AO	- ${ }^{6}$	77	-2	950 460	-7.4
45.6	9 y	29\%	9n7	997	979	999.0	47.0	99	-2	86	-	970	-3.4
47	999	9\%	979	999	999	999.0	50.0	97	997	86	999	950	-8.7

LEVEL 2

warius	vat	var	vRt	VRR	d－values	tad	radius	var	Var	VRT	VRr	d－values	tads	katius	vat	var	vRT	vRR	d－values	T40，
5.9	31	－9	15	－4	－30	－1．0	5.0	28	494	799	999	999	999.0	5.0						
7.5 16.0	50 90	－11	40 81	－8，	80 200	-1.3 -2.2	7.5 10.0	40 64	15	50 73	3	997 160	-3.3 -4.0	5.0 7.5	31 51	-11 -11	15 35	－	999	-1.1 -1.2
11.5	10 m	-13	94	－11	380	-3.8	12.5	87	30	87	15	260	－4．3	10.0	83	0	76	0	50	-1.7
15.9		－？	94	－19	430	－4．6	15.0	A7	32	85	18	410	-5.1	12.5	108	8	$9 / 4$ 9	3	240 380	－3．5
17．3	10？	－10	87	－7	490	－5．2	17.5	83	35	81	20	510	-5.7	17.5	108 103	$1{ }^{8}$	98	4	380 420	-4.2 -6.0
$2 \% .0$	91	1	7%	？	590	－5．4	20.0	79	31	76	17	590	－5．9	20.0	97	1	92	－4	55	-6.0 -6.2
27．5	85	5	70	4	660	－5．7	22.5 25.0	77	30 20 8	74	15	640 6，	-6.2 -6.1	27.5	88	5	75	－1	550 650	-6.2 -6.5
27.0 27.5	？2	-5 -5	62 65 65	－4	700	-6.5 -6.6	25.0 27.5	74 64	29 29 29	70 64	15	730	－h．1 $-h .0$	25.0	83	10	70	3	710	－6．9
37.5	78	－4	65	－4	780	－6．6	37.5	65	26	64 58	$1{ }_{1 i}^{19}$	760	-6.3	27.5	77	5	68	－1	750	－7．？
37．＇	77	－4	62	－3	8,00	－7．0	32.5	65	26	61	11	780	－6．5	30.0 32.5	78 78	5	68 64	－2	790 810	－7．5
34.0	76	－2	60	－？	830	－7．0	35.0	63	26	59	12	A10	－6．6	35.0	16	6	64	－1	88.	－7．57
37.5	73	$?$	58	$?$	840	－7．2	37.5	60	15	56	1	¢4，	－6．5	37．9	74	7	62	－1	ค9\％	－7．2
45.9	172	$\stackrel{2}{7}$	$5{ }_{50}^{58}$	1	860 930	-7.1 -7.0	40.0 12.5	${ }_{6}^{64}$	18 20	68 58	4	920 900	-6.5 -6.5	40.0	74	5	60	－2	9 90	－7．1
45.6	79	16	60	16	940	－6．9	45.0	58	19	48	5	970	－6．3	42.5 45.0	79 84	15 22	75	${ }^{8}$	970 970	－6．${ }^{\text {Pr }}$
47.5	17	10	62	10	950	－7．2	47.5	${ }_{68} 8$	22	64	${ }^{\text {A }}$	${ }^{470}$	－6．5	47.5	83	20	74 69	15	$\begin{array}{r}1020 \\ \hline 10\end{array}$	-7.1 -7.2
40.3	$6)$	$1 ?$	54	12	960	－7．5	50.0	73	25	72	11	10 en	－6．6	50.0	79	19	65	11	1010	－7．3

／rspurs／，1001\％／20500／477／1635－1655／1／23／60／185／／ESTHER／610916／20500／477／1940－1949／1／183／60／187／1

kablus	vat	vas	vrit	var	n－values	tadj	radius	vat	var	VRt	vrk	o－values	tads
\because	10	－1	26	－2	50	－2．9	5.0	26	12	10	－1	998	997.0
7.5	71	－3	50	－3	\％0	－3．4	7.5	52	5	50	－1	－40	-2.3
$1 \because 0$	55	4	66	4	210	－4．4	10.0	83	－1	85	－5	40	－4．0
12.5	71	11	96	11	300	－5．3	12.5	104	－16	99	-19	190	－4．2
14.9	74	13	94	13	400	－6．0	15.0	95	-11	75	－13	350	－5．4
17.9	70	16	85	18	50.0	－6．6	17.5	92	-14	67	－15	470	－5．9
25.0	62	4	76	7	600	－6．9	20.0	87	－8	67	－11	560	－6．4
17.5	が	0	75	5	680	－7．2	27.5	80	－7	64	-11	630	－7．9
25.0	10	1	75	7	790	－7．2	25.0	no	－10	68	－13	650	－7．4
27.5	56	－	11	－3	830	－7．5	27.5	79	－3	63	－7	690	－7．4
3， 6	55	－4	68	3	8 fo	－7．7	30.0	76	－3	64	－7	750	－7．4
32.5	5	－6	68	－1	¢90	－7．8	32.5	97）	析	59	-3	997	－7．6
37.2	51	0	68	8	730	－8．0	35.0	9．19	979	999	993	997	999.0
37．3	51	－2	63	－5	950	－8．2	37.5	539	999	999	999	494	494.0
40.6	56	，	75	9	960	－7．9	40.0	วา9	979	7า9	999	999	999.0
47.5	51	2	65	9	1000	－7．6	42.5	999	999	999	999	999	999.0
4%	43	－5	58	2	1020	－7．7	45.0	979	979	979	999	999	999.0
47.5	46	－3	60	3	1030	－8．1	47.5	949	499	999	999	499	994.0
46．0	47	－4	so	，	1030	－8．3	50.0	997	970	999	499	979	999.0

STORM
GEVEL

 GPI/ DIR/ URG, ANOTH/CTM/ANGLE/FYERAD/ PRFS/ACTUAL/REL/MAX WD/

partus	var	var	vet	VRr	d-values	tads	radius	vat	var	yrt	vRr	d-values	tads	pantus	vat	VAR	VRT	VRR	o-values	IADJ
9.0	61	-1!	55	-9	999	19.2	5.0	34	-9	37	-1	939	20.4	5.0	44	-6	40	-7	-2200	14.1
7.9		-3	8.7	-3	-1900	18.7	7.5	73	-2	72	8	-2120	14.2	7.5	34	0	77	0	-2010	19.6
15.0	$1: 2$	1 l	100	5	-1660	17.5	10.0	36.	-9	104	-5	-1830	17.6	10.0	94	1	90	-2	-1720	17.4
17.5	105	-9	95	-9	-1510	16.0	17.5	85	-11	93	-n.	-1530	16.6	12.5	90	7	83	3	-1470	16.7
15.0	25 95	-1	86	-3	-1780	15.8	15.0	72	-5	${ }_{7} 8$	-2	-1380	16.4	15.0	92	5	73	1	-1310	16.5
17.5	85	-5	77	-6	-1290	16.6	17.5	66	-3	78	1	-1260	16.0	17.5	71	6	66	1	-1210	17.0
20.5	\%\%	-3	75	-5 -3	-1200 -1120 -180	16.9 16.6	20.0 22.5	64 63	2	75	6	-1160	16.6	20.0	72	8	64	3	-1130	17.0
is.c	91	!	80	-1	-1060	10.5	25.0	63 59	$\stackrel{2}{4}$	71	8	-1070	16.0	22.5	72	${ }^{6}$	65	1	-1080	16.3
27.5	93	i	74	-1	-9\%	16.4	27.5	60	0	71	2	-9¢0	16.0	27.5	71	3	6	-3	-1040	15.7
20.0	94	-i	80	-3	-920	16.0	3 c .0	64	-1	76	0	- 810	1 O .1	30.0	91	6	72	1	-9150	16.0 16.3
32.5	75	1	92	0	-880	16.2	32.5	70	-3	81	-2	-800	15.9	37.5	78	9	75	3	-890	16.1
35.0	93	-1	84	0	-820	16.0	35.0	72	-?	81	2	-760	15.3	35.0	97	11	77	5	-790	15.9
37.5	3	5	85	1	-790	15.6	37.5	70	4	82	5	-690	15.2	37.5	83	15	999	10	9 99	15.6
41.0	2	4	85	2	-730	15.3	40.0	73	-5	85	-4	-6,30	14.3	40.0	ควา	999	979	799	979	999.0
42.5	1.3	6	83	4	-7c0	15.4	42.5	75	-6	83	-4	-610	14.8	42.5	399	999	999	49.9	999	999.0
45.0	3.	10	83	7	-6,50	15.6	45.0	60	-6	8 c	-4	-560	14.7	45.0	99%	997	979	939	999	999.0
47.3	33	15	34	12	-570	15.4	47.5	68	-3	79	-3	-430	14.2	47.5	999	490	999	999	999	999.0
b10.6	n)	0	9.5	-?	-540	15.2	50.0	71	-10	\% 2	-9	-4.0.0	13.8	50.0	979	999	399	999	999	979.0

9.0	60
?.1)	!
1.0	99
12.5	77
15.0	73
17.9	is
20.0	63
2?.5	${ }_{6}$
\because	72
27.5	76
?. ${ }^{1}$	74
32.5	74
35.0	74
37.5	76
47.0	75
4.5	77
$45 . ?$	79
47.5	77

STORM 9
LEUEL 4

$$
\begin{aligned}
& \text { IESTHER / } 610917 \text { / } 6400 / 811 / 1648-1712 / 1124 / 65 / 2021
\end{aligned}
$$

radius	vat	var	VRT	vRr	d-values	1anJ
5.0	29	-6	45	-11	-2240	19.8
7.5	73	ค	73	0	-2110	18.8
10.0	38	18	92	9	-1830	17.8
12.5	92	14	85	5	-1570	17.4
15.0	75	11	77	2	-1400	17.3
17.5	73	12	72	3	-1300	18.0
20.0	66	15	67	5	-1230	17.2
22.5	62	10	66	1	-1140	16.2
25.0	67	7	70	3	-1070	16.7
27.5	78	я	78	2	-1010	$16 . \mathrm{h}$
31.17	90	10	78	0	-930	16.?
32.5	77	6	76	-3	-890	15.9
35.0	74	4	74	-5	-780	16.4
37.5	71	4	72	-6	-740	16.9
40.0	65	3	69	-7	-7c0	16.8
42.5	68	2	67	-7	-6,70	16.4
45.0	65	2	65	-8	-620	15.8
47.5	66	5	65	-5	-590	15.3
50.0	61	10	64	0	-570	15.3

panius	urismocthfo meighten vortex averages						
	vat	var	vri	vrr	d-values	tanj	vatz
5.6	$3{ }^{3}$	-6	44	-5	-2215	19.6	1572
7.9	79	2	74		-2065	18.9	6192
10.0	93	9	95	6	-1810	17.3	9704
12.9	92	7	99	3	-1575	17.0	8564
15.0	$8{ }^{\circ}$	7	81	2	-1420	17.3	7517
1 \% ${ }^{\text {a }}$	80	11	76	2	-1315	17.7	6536
$2 \cdot .6$	76	7	77	1	-1225	17.3	5876
22.5	74	5	72	0	-1135	16.5	5706
27.0	80	5	76	2	-1060	16.3	6662
27.6	34	6	80	2	-1005	16.3	7092
30.0	86		91	0	-925	16.0	1432
37.5	$8 \cdot 9$	7	P?	2	-870	15.8	9166
35.0	84	8	80	3	-795	15.8	1250
37.5	R_{1}	3	78	3	-740	16.0	6752
40.19	83	14	80	9	-700	16.0	7213
42.5	84		19	3	-660	15.5	7312
43.0	82	7	17	1	-610	14.9	7013
47.3	91	${ }^{8}$	76	3	-575	14.8	6882
50.0	74	11	73	5	-545	15.0	5645

smcotmen vortex averages

STORM 9

5

4:0us	vit	var	VRT	vrr	n-values	tad
5.0	20	-5	27	1	-2390	999.0
7.5	? 1	-?	73	3	-2100	19.2
:1.0	'5	-21	102	-17	-1960	18.0
12.5	85	-75	99	- 32	-1840	17.2
1\%.9	7	-20	90	-17	-1570	16.6
17.5	71	-17	94	-14	-1430	17.1
20.0	69	-15.	19	-17 ?	-1360	17.3
22.5	(1)	-15	80	-12	-1210	16.9
2:00	72	-16	82	-13	-1219	16.6
27.5	75	-15	92	-11	-1150	16.6
3 SO	7	-15	85	-12	-1080	16.6
32.5	$?$	-19	09	-16	-990	16.2
35.0	7	-27	89	-20	-710	15.3
37.5	74	-19	85	-15	-920	15.8
40.0	70	-17	82	-1/2	-380	15.7
42.5	72	-15	81	-12	-850	15.4
	74	-15	85	-11	-770	15.0
47.5	76	-16	86	-12	-740	14.5
20.0	. 74	-15	85	-12	-700	14.2

radius	vai	vis	vet	ver	n-values	tanj
5.0	45	0	42	-6.	-2:300	19.4
7.5	90	4	79	-3.	-2130	17.9
10.0	103	7	194	$\frac{1}{1}$	-1800	17.9
12.5	ค9	9	95	2	-1500	16.9
15.0	87	11	78	4	-1410	16.5
17.5	81	15	73	$\stackrel{8}{9}$	-1340	16.7
20.0	72	12	70	5	-1290	16.2
22.5	75	14	73	7	-1230	16.3
25.0	89	17	83	5	-1150	15.0
27.5	93	19	87	12	-1090	15.3
30.0	${ }^{39}$	19	83	13	-1090	15.?
32.5	86	19	82.	13	-950	15.6
35.0	88	16	${ }^{\text {R1 }}$	9	-1900	16.0
37.5	85	14	78	7	- P 40	17.8
40.6	${ }^{\text {ct }}$	16	76	9	-790	17.0
42.5	${ }^{80}$	18	75	12	-730	16.5
45.0	78	15	72	9	-690	15.8
47.5	76.	15	71	8	-660	15.3
50.0	75°	18	76	12	-590	15.0

2.n) ${ }^{\text {a }}$	vat	var	vrt	vRr	o-values	tadj
5.0	36	-2	46	-i2	-2240	17.6
7.5	33	3	84	-6	-2090	19.4
10.0	109	is	101	6	-1840	18.2
12.5	16	1	93	4	-1630	17.0
15.0	94	11	83	2	-1440	16.8
11.5	20	11	74	2	-1350	16.4
20.0	$\stackrel{9}{9}$	15	72	6	-1260	17.3
22.5	79	$1 /$	70	6	-1170	16.6
23.0	91	15	76	6	-1100	16.4
$\cdots \cdot .5$	\bigcirc	$2 \cdot$	92	16	-1030	16.1
いい	97	3 n	85	22	-2020	15.3
32.5	8 ?	24	83	16	-870	15.5
35.0	$8!$	$22-$	78	14	-830	15.4
37.5	in	20	14	12	-770	15.4
$4 \mathrm{n} . \mathrm{i}$	75	21	73	15	-730	15.3
4.25	77	29	73	21	-710	15.3
43.0	72	31	74	23	-670	15.2
47.3	32	37	79	29	-610	15.1
$5 \mathrm{n} . \mathrm{c}$	94	31	81	23	-560	15.1

 level 1

STORM TRUE OCTANT AZMTH TN RDH CEMT MAX WINDS RADTUS GPI/ חIR / HDG /NOTH/STM/ANGLE/EYERAD/ DPES/ACTUAL/REL /MAX WD/

swogtheo vortex averages

rashis	vat	var	vrt	vre	d-values	tadj	vat?
$5 . \%$	3	-3	12	-1	-660	7.6	97
7.9	3	-1	7	-1	-610	7.4	111
10.0	9	-3	7	-1	-599	7.5	126
12.5	13	-2	12	-0	-600	7.6	237
15.0	15	-1	15	0	-599	7.6	329
$17 \cdot 3$	18	-3	17	-0	-590	7.3	433
2 co	21	-4	20	-2	-585	5.3	586
22.5	27	-7	25	-4	-5.54	5.1	837
2%	32	-7	30	-4	-529	4.7	1110
27.5	36	-7	35	-4	-505	4.0	1368
$3 \mathrm{c} . \mathrm{c}$	39	-6	40	-3	-478	3.7	1610
32.5	45	-6	45	-3	-450	3.6	2257
$35.0{ }^{-}$	50	-6	56	-3	-42?	3.4	3319
37.5	60	-10	59	-7	-397	3.1	3922
-c.e	62	-13	61	-10	-352	2.8	4088
42.5	${ }^{3}$	-i5	62	-:2	-327	2.4	4216
45.0	62	-14	62	-11	-304	1.9	4121
47.5	60	-12	61	-10	-276	1.6	3865
$5 \mathrm{C}, \mathrm{\%}$	60	-11	60	-9	-258	1.5	3746

PRES AIT
 TtME
 IN
 STOPM / DATF, /FFFT, Ma., TATFDVAL /OUT/LAT/LONG! TD, / STORM I STORM TRUE OCTANT ATMTH TN PNR CENT MAX WYNDS RADTUS LEVEL 1
 LEVEL 1

 SPD/ DIR/ HOG/NOTH/STM/ANGLE/EYERAO/ PRES/ACTUAL/REL /MAX WD/---

atrius	vat	vas	VRt	vRR	d-values	tadj	madius	V.AT	var	VRT	vrr	1)-values	TADJ	ranius	vat	VAR	VRT	VRR	d-values	tanj
9.9	15	310	19	9 999	-910	18.2	5.0	999	997	999	999	999	16.4	5.0	25	999	20	999	-860	17.4
7.5	77	479	31	999	-890	17.9	7.5	999	949	999	999	999	1 N .4	7.5	30	999	25	999	-820	17.1
15.0	44	999	48	999	-820	16.9	10.0	994	10	999	999	-640	16.1	10.0	46	999	41	999	-720	16.8
12.5 15.0	59 67	799 799	62 71	999 997	-740 -600	16.4 15.5	12.5	990	7	999	999	-650	15.1	12.5	$5{ }_{5} 5$	999	49	997	-660	16.4
17.5	77	¢ 79	76	ด9า	-660 $-5 \% 0$	16.5 14.9	15.0 17.5	65 65	-6	73 73	499 997	-630 -600	14.9 14.9	15.0	57	997	52	999	-590	16.3
25.0	72	939	76	999	-5.50	14.7	20.0	72	3	30	997	-550	14.4	17.5 20.0	61 56	979	$5{ }^{56}$	999 999	-510 -450	15.3 15.1
22.5	71	วา	75	997	-460	14.6	22.5	71	-11	79	999	-490	14.4	22.5	55	979	50	997	-390	14.3
23.7	03	970	72	997	-410	14.2	25.0	70	-13	78	999	-450	14.5	25.0	54	909	49	999	-330	14.2
21.5	\$5	717	70	999	-350	14.0	27.5	70	-18	78	999	-3n0	14.8	27.5	54	999	49	999	-290	14.1
30.0	55	+99\%	69	999	- 310	13.5	30.0	70	-9 -5	78	999	-350	14.9	30.0	54	999 999	49	799	-250	13.8
32.5	ns	129\%	70	993	-280	13.4	32.5	70	-5	78	979	- 310	14.5	32.5	52	999	4	999	-220	13.2
35.0 37.5	64	4978	68 66	994 499	-240 -220	13.1 13.0	35.0 37.5	70 69	-2	78	949	- 280	14.0	35.0	53	997	48	997	-2c0	12.7
40.0	80		64	999	-220	12.6	37.5 40.0	69	- -1	77	9997	-250 -220	13.6 13.4	37.5 40.0	54 56 56	999 999	49 51	999 999	-180 -150	12.5
42.5	5.3	คา	+2.	9คง	-170	12.6	42.5	63	-3	76	999	-190	13.0	42.5	57	999	52	999	-140	13.1
45.9	55	774	59	999	-140	12.7	45.0	66	1	74	949	-170	13.0	45.0	57	979	52	999	-130	12.8
47.5 50.0	53 51	799	57 58	999 999	-110 -90	12.9	47.5 50.0	64	?	72 60	979	-140 -130	12.8	47.5	55	979	50	999	-130	12.8
					-90	13.1	50.0	61	6	69	997	-130	13.1	50.0	52	999	47		-120	12.6

/REULAH/630923/E40 / 811/2030-2045/0/21/59/421//8EULAH/630923/6400/811/2105-2130/0/21/59/423/

ratios	var	var	VRT	VRR	n-values	inoj	ranius	vat	var	VRT	var	d-values	tadj
5.0	17	799	21	99.4	-9co	17.4	5.0	16	999	9	949	-910	19.4
7.5	? ${ }^{\text {a }}$	497	33	9.99	-880	17.1	7.5	26	98	19	499	-880	17.5
10.0	42	970	46	9 9	-870	16.8	10.0	17	499	30	999	-8.40	19.6
17.5	63	จวา	67	997	-8co	16.4	12.5	43	999	36	199	-74n	19.6
: 1.0	71	4.7	75	999	-740	16.3	15.0	47	499	40	993	-670	13.9
1\%	8.2	190	86	909	-h20	15.3	17.5	58	397	51	499	-570	14.2
23.6	90	797	94	959	-540	15.1	20.0	59	73	52	993	-490	17.5
$\therefore 2.5$	75	4.7	82	999	-470	14.3	22.5	57	999	50	499	-440	16.5
25.0	73	494	82	949	-410	14.2	25.0	54	999	47	99	-410	15.9
27.5	76	2x	no	499	-370	14.1	27.5	52	999	45	949	-370	15.1
31.0	${ }^{1 / 4}$	บฯง	13	499	-320	13.9	30.0	51	979	44	397	-340	14.7
32.5	71	479	75	999	-280	13.2	32.5	48	999	41	999	-300	14.4
3 Tr 0	76	+37	74	999	-240	12.7	35.0	47	97	40	999	-270	14.2
3.5	68	-	72	999	-210	12.5	37.5	40	999	39	994	-230	14.0
41.0	so	379	70	990	-170	12.8	40.0	44	990	37	497	-210	13.9
42.5	6.3	99.9	67	999	-180	13.1	42.5	999.	999	990	997	-190	11.7
45.0	6 9?	499	66	999	-170	12.8	45.0	999	999	999	999	-170	13.6
47.5	0	9:97	67	999	-140	12.9	47.5	999	ч99	999	999	-150	13.8
50.0	6.4	999	68	999	-120	12.6	50.0	999	999	999	999	-140	14.0

stcre	pate	てLV	PvL			1-0	lat	เovg	${ }_{\text {Stor }}^{\text {Stor }}$	SPo	${ }^{1} 1$	on	astm	ARL	10	ROR FYE			${ }_{R} N_{N}$	vRTx			
biclar	620923	8400	${ }_{11}$	2045		!	21																
	630923 630292	+4500	R:1	$\xrightarrow{2030} 1920$	2045	-	21	5	340		35	NE	${ }_{2}^{2}$	35	421	14309 1300	${ }_{962}^{967}$	872	17.5	76 84			
bevint	630929		я11	2105	2130		21				250	¢	+	100			${ }^{762}$	72	20.0	${ }^{20}$			
bellat	63023	0.40 c	ヵ,	2010	2030	1	21	59	340	${ }_{8}$	170	W	i	320	${ }_{424}^{42}$	${ }_{13}^{13}$	962	${ }_{61}^{59}$	20.0	[520			
				insmortheo weighten vortex averages																			
		qastus		Vat	var		VRt	vRr	o-values			tad		vatr									
		${ }_{7}^{5.7}$		17	979 979 989		15	999		-897			17.8		$3 ?$								
		10.0		${ }_{40}$	10		- 38	$\stackrel{999}{999}$		-758-704													
		12.5		St	\%		50	999					17.3	${ }_{28}^{189}$	90								
		15.0		${ }_{5}^{58}$	-6		58	999		-704-649-649			16.5	35									
		17.5		54	-4		64	999	-54,-514-510				16.0	422									
		$\stackrel{2 r .0}{2}$		65	- ${ }^{3}$		\%	979				-510 -450 -450				15.6	4.42						
		237.3		${ }^{64}$	-11 -13			797 998								15.0	422						
		27.5		${ }_{61}^{68}$			62 61 68	${ }_{999} 99$	-406 -758				14.8 14.6	${ }_{4}^{40}$									
		xaso		61	-9		61	999	- 358 -320				14.3	381									
		38		$\stackrel{59}{59}$	-5 -2		$\stackrel{51}{59}$	$\xrightarrow{999}$	-320-283-253				14.0	${ }^{366}$									
		$3 \cdot 5$			-9			999	-253-223				${ }_{13.3}$	346									
		4.0		57	-4		57	979	-223-197				13.3	342									
		42.5 4.0		62 60	-3		64 68 6	999	-177-159				13.2	3872									
		457.5		${ }_{59}$	1			¢99					$\xrightarrow{13.1}$	3725 352 20									
		¢..		56	6		58	999	-138-125				13.2	324									

 level 2

/4FULAH/630924/6400/811/1700-1720/1/24/59/450//BEULAH/630824/6400/811/1345-1408/0/24/59/445/

aatius	vat	var	ver	Vre	D-values	TADJ	rablus	vat	VAR	vR ${ }^{\text {r }}$	VRr	o-values	tadJ	radius	vat	var	VRt	VRR	d-values	TADJ
5.0	15	16	4	18	-970	18.2	5.0			34	9	-990	20.1	5.0	18	-3				
7.5	27	$: 5$	21	16	-910	18.0	7.5	45	10	50	14	-1000	20.1	7:5	31	-3 5	37	9	-480 -950	21.4
10.3 12.5	3, 3	$\begin{array}{r}13 \\ 8 \\ \hline\end{array}$	39	14	-950	17.6	10.0	48	-5	48	-1	- -980	14.9	10.0	49	7	56	11	-970	24.8
$\begin{aligned} & 12.5 \\ & 15.0 \end{aligned}$	8	8	46 51	8	-960 -340	16.1	12.5	49	-3	40	3	-840	19.5	12.5	58	9	65	13	-900	23.7
17.5	73	1	85	1	-340 -770	16.7 16.5	15.0 17.5	55	-19 -8	54	-5	- 760	18.8	25.0	62	4	67	7	-830	22.4
20.0	P4	7	81	10	-710	16.0	20.0	74.	-88	73	-2 -4	-700 -640	10.2 17.6	17.5 20.0	64 70	10 -2	68	13	-760	21.4
22.5	91		87	7	-640	15.4	22.5	72	-8	73	-2	-520	17.3	22.5	70	-2	76 76	- 1	-710 -630	20.6
25.0	91	4	87	5	-550	14.9	25.0	73	-8	72	-3	-510	17.2	25.0	68	-9	76 69	-3	-630 -550	19.4
27.5 310.0	98	-6	91	-6	-4\%0	14.3	27.5	72	-13	70	-9	-4,90	16.6	27.5	65	-10	66	-9	-490	18.5 17.8
32.5		-10	82	-7 -9	-440 -390	14.2 14.3	30.0 32.5	67 68	-24 -19	67 64	-19 -14	-440 -390	17.0 17.2	30.0 32.5	62 60	-11	66	-8	-450	17.8
15.0	94	-9	83	-7	-250	14.3	35.0	9n9	999	999	999	$\bigcirc 99$		32.5 35.0	60 58	-10	63 59	-8	-400	17.0
37.5	$?$	-3	75	-3	-230	14.3	37.5	¢99	999	999	999	999	999.0	35.0 37.5	58 55 5	-9	59 60	-7 -3	-350 -320	16.4
40.6	$7{ }^{7}$	-7	73	-6	-290	14.1	47.0	499	479	999	999	929	999.0	40.0	50	-4	55	-7 -2	-290	15.9 15.3 1.9
42.5 4.0	76	-24 -20 -20	70	-23 -18	-260	13.7	42.5	999	999	999	999	999	999.0	42.5	47	-5	48	-3	-250	15.3 14.8
47.5	73	-10	6\%	-18	-220 -180	13.4 13.3	45.0 47.5	997 999	799	997 999	999 999	999	999.0	45.0	979 909	999	979	999	979	597.0
57.6	$7 ?$	-13	A3	-16	-150	13.4	50.0	979	979	999	999	999	999.0	50.0	999	1999	999	999	999 999	999.0 499.0

parius	vat	var	VRT	ver	d-values	tadj	radius	vat	vas	VRT	VRR	D-values	tans	rautus	vat	va	VRT	VRR	d-values	TAOJ
5.0	13	3	8	4	-1000	18.8	5.0	39	23	35	30	-960	19.5	5.0	6	-10	2	-11		
7.5	19	9	13	3	-1030	17.2	7.5	4.7	26	42	31	-9co	19.5	7.5	11	-6	12	-11	-1070 -1050	18.4
13.0	32	7	27	7	-1020	17.8	10.0	5	11	42	15	-960	19.5	10.0	19	-6	12 24	-7	-1050 -1010	12.3
\cdots	47	-3 -5	42 56	-4	-980 -880	17.8	12.5	${ }_{5} 5$	1	54	6	-720	20.3	12.5	2.9	-10	24 3	-11	- -970	17.5
11.5	75	4	71	?	-780	17.2	15.0	58	-4	62 69	8	-640	2 c .5	15.0	45	-6	47	-7	-950	19.6
20.0	33	3	83	2	-720	16.4	20.0	62	-17	63	-12	-550 $-5 c 0$	17.9	17.5 20.0	72	1	74	?	-920	19.3
22.5	91		86	0	-660	16.1	22.5	62	-16	65	-11	- 450	16.9	22.5	12	-3	77	-4	-870	17.8 15.9
37.5	${ }_{72}$	-8	89 89	-68	-590 -490	15.4 15.2	25.0	61	-17	60	-15	-400	15.9	25.0	71	a	78	4	-660	15.4
32.0	0.9	-3	8%	-5	-450	14.8	27.5 30.0	60 59 5	-20 -18	58 60	-16 -14	-310 -340	15.0	27.5 30.0	${ }_{6} 6$	11	75	9	-560	15.1
32.5 35.0 37.5	3 87	-6	87	-3	-390	14.7	32.5	59	-18	57	-14 -16	-340 -300	15.6 16.3	332.5	62 60	110	66 84	10	-470 -420	14.9 14.6
35.0 37.5	37 8.4	-8	97 79	-10	-330	14.4	35.0	52	\cdots	5	-i3	-290	10.0́	35.0	60	10	05	10	- 310	14.4
4 C .0	PO	-8,	76	-10	-210	14.3	37.5	51	-31	50	-18	-260	16.4	37.5	57	11	59	8	-340	14.4
42.5	75	-5	70	-7	-130	13.9	42.5	49	-22 -21	47	-18	-740 -220	16.1 15.8	40.0 42.5	54 52 52	13	54	12	-300	14.3
45.0	80	-?	75	-4	-1.90	13.4	45.0	46	-19	45	-16	-200	15.5	45.0	52	17	5	16	-260	14.1 14.0
47.5 50.0	95 98	- ${ }^{\frac{1}{2}}$	$\stackrel{8}{77}$	-1	-180	13.8	47.5	44	-19	44	-15	-100	15.1	47.5	51	17	54	18	-200	14.1
							50.0	43	-16	46	-12	-150	14.9	50.0	49	18	51	17	-170	14.2

STORM 11
level

LEUEA 3

SOR TRUE OTTANT ATMTH TN POR PDES ACTUAL OFI MAX WD

LEVEL 3

THEMLAH / 630324 / 18280/320/1015-1040 i i i 24 ; 59 i 459

kastus	vat	var	VRT	vRr	D-values	radj	radius	vat	var	VRT	yrr	d-valufs	iand	ratius	vat	var	VRT	vrr	d-values	tad
		-7		-2	leo	4.0	5.0	${ }^{8}$	999	999	999	90	999.0	5.0	11	16.	5	16	50	4.5
4	5	-6,	52	-4	190	4.7	7.5	11	949	${ }_{7}$	17	$\begin{array}{r}120 \\ 170 \\ \hline\end{array}$	4.1 5.7	7.5	18	10	19	7	50	4.1
10.0	50	3	52	4	190	4.8	10.0	20	${ }_{-3}$	$5{ }^{7}$	-3	170 150	5.7	10.0	36	-3	38	-4	50	3.4
17.5	51	-11 -12	52 35	-7	270 300	3.8 2.0	15.0	38	- 5	54	7	270	3.9	12.5	57 71	-7	62 76	-8 -9	70	2. 2.4
15.9 17.5	52 57	-12	35 50	- $\begin{array}{r}-8 \\ -24\end{array}$	300 320	2.0 .2	17.5	41	3	61	2	270	3.2	15.0	96	-8	76 96	-9	110	2.0.
26.0	${ }_{56}$	-33	56	-29	350	-. 3	27.0	41	- ${ }_{-1}^{1}$	55	-14	310 350	2.3 2.0	20.0	108	?	109	-6	150	6.4
22.5	55	-25	54	-23	480	-. 5	22.5 25.0	${ }_{5}^{4} 4$	-10	38	-7	390	3.10	22.5	72	${ }_{6}^{8}$	86	9	$\begin{array}{r}210 \\ 280 \\ \hline\end{array}$	3.6
25.0	55 45	-25	57 4 18	-23 -21	480 530	--.8	27.0 27.5	81	-17	47	-13	340	2.0	27.5	70	10	70	\%	300	2.4
83	45 50	-26 -30	16 51 51	-25 -25	530	-1.6	30.0	58	-25	46	-21	450	$\stackrel{.}{ }$	30.0	67	10	74	0	320	1.4
32.5	53	-31	55	-23	550	-2.2	32.5 35.0	54	-28 -18	54 48	-17 -14	48.8 520	\because	32.5	65	${ }^{2}$	70	1	370	-. 2
35.6	48	-27	51	-22 -25 -72	550 550 550	-2.9 -3.3	37.5	45	-10	41	-6	570	.4	35.0 37.5	62 60	$\stackrel{4}{9}$	68 67	4	440 470	-.8 -1.5
17.5 40.0	47	-30 -27	4.4	\bigcirc	550	-3.4	40.0	40	-17	41	-13	bco	-1	40.0	55	8	65	7	500	-2.8
42.5	43	-24	44	-20	570	-3.5	42.5	33	-22	40	-17 -15	690	--.4	42.5	5 ?	7	56	5	570	-3.6
45.0	42	-17	45	-14	670	-3.7	45.0	4	-19 -24	37 4	-15 -19	${ }_{6} 90$	-1.5	45.0	52	11	${ }_{5}^{55}$	10	540 590 580	-4.0 -4.2
47.5	43	-14	43 39	-15 -22	610 8.20	-3.4 -3.0	47.5 50.0	42 4 4	-23	40	-16	620	-2.0	47.5 50.0	52 52	10	58	4	590 570	-4.3

7					

Raidus	Y4T	y.is	vat	VRR	d-values	TAD J	ramius	vat	var	vR t	VRR	d-values	tanj
5.0	12	-7	15	-4	250	3.6	5.0	1	-10	7	-	160	-1.0
P. 5	$3{ }^{3}$	-1	35	1	310	3.4	7.5	11	-7	17	-3	180 210	-1.1
10.e	${ }^{7}$	-10	46	-9	320	3.4	10.0	10 4 4	-4	54	-8	210	-1.1
12.5	32	-6	58	-6	310	4.0	12.5	49	-3	73	-1	290	. ${ }^{\text {¢ }}$
:5.3	$3{ }^{3}$	-1	6,5 73	${ }^{8}$	460 460	4.9 5.5	17.5	49 63	1	75	5	320	3.0
17.5 -2.0	4.4	-6	54	-5	570	6.3	20.0	60	3	64	5	350	10
22.5	50	-13	49	-11	660	5.3	22.9	57	17	83	24	$\begin{array}{r}350 \\ 300 \\ \hline\end{array}$	3.7 3.0
25.0	51	-5	52	-14	670	5.3	25.0 27.5	50 40	11	44	${ }^{14}$	450	2.2
27.5	${ }^{4} 4$	6	55	8 5	670 700	4.3	38.0	18	:	33		4.90	$1 \cdot 7$
37.0 32.9	4.4	$?$	4	-1	710	2,	32.5	37	-1	46	-	520	1.6
34.3	43	-5	$4{ }^{2}$	-3	780	2.1	35.0	42	-3	52 54 54	-	5540	$\stackrel{.8}{9}$
17.7	vy	199	999	999	999	999.0	37.5 40.0	$4{ }_{4}^{48}$	-7	54	-5	570	. 1
47.0	479	499	777	997	999	999.0	40.0	47	-3	49	1	590	.1
42.5	937 020	399 409	799 909	999	999	999.0	45.0	44	-8	45	-5	610	0.0
470	¢99	929	399	999	949	999.0	47.5	44	-8	49	-6	640	. 2
5.0	ตาง	770	199	999	999	999.0	50.0	43	-5	50	-3	610	-. 5

STORM 12
Lever 1
STORM, DATE, FEET, MLR, TNTEPVAL /OUT/IAT/ONG/ IN,

STOPM TRUE OCTANT ATMTH TN RDR CENT MAX WTNOC RAOTUS

anotus	vat	var	vkt	VRQ	o-values	tanj	raidus	vat	var	vRT	vRr	o-values	tanj
	57	-5	41	3	999	12.6	5.0	46	-7	39	1	-1370	14.0
7.5	79	-20	41	-12	-1100	11.7	7.5	120	-14	120	-6	-12c0	12.4
12.0	103	-3!	96	-23	-850	10.7	10.0	119	-14	118	-6	- -4.60	14.5
12.5	35	-26	97	-18	-570	9.7	12.5	110	-17	10.3	-29	- 2000	13.8
15.01	89	- 26	85 80	-19 -15	-250	9.3	17.5	88.	-29	90	-21	-150	n.0
17.5 20.6	92	-22	74	-14	-8.0	9.3	20.0	80	-22	78	-14	-70	3.2
22.5	78	-21	79	-13	-10	8.4	22.5	\bigcirc	-21	73	-13	-30	9.0
25.0	75	-70	72	-12 -15	50	6.9	25.0 27.5	78	-19	17	-10	so	6.8
37.5 30.6	72 4.7	-22	688 6	-12	$1 \geqslant 0$	8.7	30.0	75	-18	73	-10	110	6.9
32,	64	-13	62	-6	160	6.7	32.5	69	-20	70	-12	140	8.9
34.0	6 \%	-13	62	-5	999	6.7	35.0 370.0	67	-17	64 63	-6	220	h. 6
47.5	+80	-59	$\begin{array}{r}59 \\ \hline 999\end{array}$	$9_{99}{ }^{2}$	999 999	999.0	47.5	6,1	-17	60	-9	9 9\%	$99^{\text {9. }} 0$
40.5	9\%o	9 9\%	909	999	999	999.0	42.5	58	997	54	999	999	999.0
45.0	909	977	909	999	999	999.0	45.0	979	997	999	997	999	999.0
47.5	909	399	799	999	999	999.0	47.5 50.0	979	99.9	999	999	999	999.0
31.0	37	479	999										

 /7/330/290/SE/4/125/8/1936/120/125/10.0

qarius	vat	var	VR T	VRr	d-values.	tanj	ranius	vat	var	vrt	vre	d-values	tad
		-11	30	-3	-1490	13.9	5.0	36	-1	40	-4	-1260	13.7
5.0	107	-10	110	-2	-1200	12.6	7.5	73	-6	P0	-4	- 1150	12.6
12.0	120	-19	125	-11	-850	11.2	10.0	73	15	78	11		11.4
12.5	109	$\rightarrow 0$	102	-13	-530	9.9	12.5	90	30	95	26	-650	12.6
15.0	98	-14	97	-9	-350	9.2	15.0	${ }_{85}^{93}$	30 25	99 90	26 21	-4,0	8.8
17.5	9	-18	85	-11	-230	9.0	17.5	78	25	82	20	-180	9.0
23.0	75	-12	72	-4	-140	9.2	20.0 27.5	78	27	84	22	-110	8.3
22.5	74 73	997 797	999 909	9999	-80	7.7	25.0	68	29	74	24	-40	4.2
27.5	73	9าว	999	999	0	8.0	27.5	65	23	${ }^{68}$	17	10	
33.0	72	-	70	${ }^{2}$	50	7.4	37.0 32.5	64 64	20	73 72	14	90	$\xrightarrow{8.0}$
32.5	12	-4	75	3	100	7.2	32.5 35.0		24	67	18	130	7.R
3i.a	0	\cdots	55	-9	140	7.8	37.0 37.5	53	13	60	8	1 to	7.3
37.5		-17 -9	61 56	-2	999	999.0	40.0	46	11	51	5	250	7.0
42.5	749	999	999	999	999	999.0	42.5	40	10	44	4	230	7.9
45.0	979	397	997	979	999	999.0	45.0	40	1	45 43	${ }^{\text {a }}$	270	6.8
47.5	9898	990	999 999	997 999	999 999	9999.0	50	41	1	42	3	280	6.9

STORM TOUE OCTANT NTMTH TN PND CENT MAX WTNDS．RADIUS

sarius	vait	var	vrt	var	o－values	taju	ralifus	var	var	VRT	VRR	o－values	tanj	ractus	vat	var	VRT	ver	o－values	ramj
¢．\％	24	－5	36	－6	-1630	13.4	5.0	20	2	40	1	－1400	997.0	5.0	40	4	50	－1	－1290	15.6
7.5	rio	12	55	10	－1400	12.8	7.5	3	949	55	999	－1180	12.0	7．3	70	1.6	80	10	－1120	14.3
13.0	102	29	114	26	－1050	11.0	10.0	50	979	62	999	－250	10.4	10.0	91	คว	93.	999	－ 8 ¢0	11.0
12.3	$9 ?$	35	100	3	－130	9.5	12.5	75	999	90	999	－610	9.3	12.5	103	993	108	999	－6ro	10.2
15.0	25	40	91	30	－5．30	9.6	15.0	80	1.4	94	38	－400	\％． 3	15.0	95	999	103	999	－390	9.7
17.3	72	3 i	92	26	－410	9.9	17.5	74	38	8 B	32	－280	9.2	17.5	8	$2{ }^{2 n}$	90	13	－240	9.6
21.3	${ }^{55}$	？	72	24	－310	10.6	20.0	67	47	14	40	-190	8.6	20.0	97	24	70	18	－150	9.6
$2 \cdot .5$	5	${ }^{28}$	62	27	－210	10.9	22.5	91	40	82	34	－110	7.7	22.5	90	27	B8	20	－ 80	B．${ }^{\text {a }}$
25.0	47	21	54	16	-150	10.1	25.0	69	36	68	30	－70	7.2	25.0	77	19	76	12	－20	r． 2
17.5	57	31	57	25	－90	9.4	27.5	60	44	65	37	－40	7.3	27.5	70	19	76	11	10	8.1
350	53	30	60	23	－40	9.9	30.0	67	46	72	40	0	7.1	30.0	65	18	69	11	Ro	7.8
32.5	81	33 16	71	27	10	8.2	32.5	67	38	69	32	40	7.4	32.5	57	17	68	10	120	7.7
35.0	${ }_{5} 5$	$1 /$	63	$\stackrel{7}{7}$	60	7.6	35.0	61	23	70	26	70	7.7	35.0	56	10	60	3	150	7.4
	45	11	55	5	90	7.1	37.5	57	$3{ }^{39}$	64	32	110	7.3	37.5	47	A	53	1	180	7.2
$40 . ?$	41	？	45	2	130	6.9	40.0	39	34	45	27	160	6.7	40.0	47	B	50	1	200	7.2
$4 ? .5$	5.3	4	48	-1	150	7.1	42.5	45	16	42	10	180	6.7	42.5	48	7	47	0	210	7.0
45.8	io	4	42	－3	170	7.1	45.0	40	18	42	11	1 lb	6.9	45.0	46	7	50	0	240	$0 \cdot 9$
47.5		？	35	-7	220	6.7	47.5	37	11	46	5	200	7.1	47.5	45	8	48	1	260	6.9
2：10	29	？	35	－5	210	6.4	50.0	37	9	40	3	220	7.0	50.0	42	6	46	－1	280	6.8

20：105	vat	var	vit	vre	o－values	TADJ	radius	vat	var	vet	VRR	d－values	［ADJ	kanius	vat	var	VRT	vrr	d－values	ianj
9.9	it	1	40	-3	－1390	13.2	5.0	41	1	50	－3	－17co	11.4							
$\because \cdot 3$	73	17	10	13	－-1180	11.2	7.5	${ }^{6} 5$		77	-3	－ 1190	13.6	3.0 7.5		${ }_{12}^{8}$	78	7	-1260 -1140	13.5 13.0 13.0
1： 12	36	－${ }^{4}$	104 100	－13	-840 -560	10.6 9.2	10.0 12.5	70 25	${ }_{21}^{10}$	80 83	12	-950 -700	19.4 10.4 10.0	7.5 10.0	72 92	12 10	70	7	-1140 -810	13.0
$1 \cdot \mathrm{O}$	0	－？	104	1	－410	9.5	15.0	45	32	93	26	－4， 0	1.02	12.5	85	s	91.	1	－520	9.4
1.5	14	24	9 i	18	－290	9.4	17.5	35	36	9	30	－3＜0	4.0	14.0	92	5	87	－1	－360	7.3
23.0	7\％	17	n？	11	－170	9.2	20.0	93	41	93	34	－250	9.7	17.5	78	5	82	-1	－220	9.4
\cdots	71	17	72	17	－100	9.3	22.5	82	39	90	32		8.2	20.0 22.5	77		77	－1	-140 -70	9.2 8.8
？$\because 2$	73	24	90	17	－40	8.9	25.0 27.5	75 63	33	80	23	－110	3.0	22.5 25.0	73	13 18	78 78	11	-70 -20	8.8 3.5
30	6.	16 >0	－70	14	10 60	8.2 7.6	27.5 30.0	63 67	30 32	74 71	22 25	－60	8.0 7.9	27.5	75	22	78	15	－ 30	8.3
23.5	6：	17	84	！	9	7	32.5	¢3	29	54	11	50	7.9	37.0	74	is	76	10	（10）	н．${ }^{\text {\％}}$
34.0	55	10	61	3	120	7.5	35.0	57	2.2	55	15	90	7.2	32.5	s6	20	68	13	120	7.8
37.5	53	13	56	6	160	7.6	77.5	55	24	60	17	110	7.2	35.0	hr_{5}	14	59	？	150	7.5
40	44	4	51	？	190	7.5	40.0	51	29	55	20	130	7.2	37.5	57	12	57	5	170	7.7
4.5	$4{ }_{4}^{4}$	17	51 50	3	170 220	7.1	42.5	49	21	47	13	170	8.9	40.0 42.5	52 49 49	12	57 59	5	170 240	7.1
47.5	45	4	49	－3	2ヶ0	7.3	45.0 47.5	47 45	23 19	47 47	13 12	1	6.7 6.9	45.0	48	4	53	－3	250	7.2
50.0	43	3	49	－4	250	7.2	50.0	44	13	47	6	220	7.0	47.5	4.7	1	51	－6	270 270	7.0 6.9

Dinnis	vat	var	- vrt	vRQ	D-values	iADJ	ratius	var	vau	vrt	VRr	o-values	TADJ	Qaelus	vat	var	vRt	vRQ	d-values	rails
5.0	in	-15	56	-7	-970	9.4	5.0	47	-5	52	$?$	-1070	11.4	5.0	43	-29	53	-21	-1100	10.0
\%.9	24	-17	36	-7	-790	8.6	7.5	95	-23	1 nb	-16	-R00	10.3	1.5	97	-24	112	-16	-960	8.9
10.0	:11\%	-14	101	-11	-570	8.0	10.0	$1{ }^{19}$	-21	117	-13	-500	9.4	1%	110	-19	110	-10	-700	7.8
17.5	1~2	-25	97	-18	-360	7.2	12.5	113	-27	98	-19	-320	7.8	12.5	109	-37	106	-28	-440	6.6
: 10	36	-20	97	-13	-210	5.6	15.0	95	-25	คо	-17	-120	6.6	15.0	a?	-34	95	-26	-270	5.8
:7.5	96	-32	76	-14	-80	4.8	17.5	83	-18	71	-10	-10	5.4	17.5	23	-22	79	-15	- 20	5.1
20.0	71	-26	¢9	-19	10	5.0	20.0	73	-21	63	-13	70	5.2	$2{ }^{2 \times} \cdot$	86	-28 -16	74	-19	20	4.8
22.5	$?$	-25	64	-19	no	5.4	22.5	66	-6	57	?	110	5.4	$\xrightarrow{22.5}$	79	-16 -74	71	-9 -16	90 160	4.9
$\therefore 2$	71	-19	75	-12	140	4.6	25.0	67	-3	72	- ${ }^{4}$	140	5.0 4.0	27.0 27.5	77	-74 -30	71 73	-16 -22	140 190	4.5
27.3	75 71	-1\%	70 68	-8	190 250	3.1 2.6	27.5 30.0	70 68	-31 -27	64 62	-23	220 260	4.0	27.5 30.0	76 75	-30 -24	73 72	-22	190 230	3.0 2.4
2 O .5	67	-i -	64	-10	290	2.6	32.5	68	-27	61	-19	300	2.4	32.5	72	-21	64	-13	270	2.3
35.0	64	-19	59	-11	300	2.5	35.0	67	-26	54	-18	340	2.5	35.0	63	-20	55	-12	300	2.4
3',	1.2	-1\%	56	-6	320	2.6	77.5	65	-2?	57	-14	370	2.3	37.5	65	-13	54	-5	370	2.6
4%	¢	-15	59	-7	350	2.7	40.0	61	-2?	52	-15	370	2.1	4 n .0	5 ,	-17	56	-9	360	2.7
$4 \cdot .5$	59	- ${ }^{2}$	5.4	-6	380	3.1	42.5	59	-23	53	-15	410	1.9	47.5	54	-15	51	-7	370	3.2
4).0	\%	-1)	55	-2	999	994.0	45.0	57	-21	51	-13	420	1.9	44.0	4.6	-16	58	-r	390	999.0
47.5	¢ 9	94\%	399	999	949	999.0	47.5	53	-25	47	-17	430	2.1	67.5		999	yon	999	999	999.0
59.0	971	+17	899	997	999	9 9.0	50.0	53	-15	45	-7	450	2.2	5 5 .9	909	99	999	999	979	997.0

2atas	vat	var	VRT	vRr	o-values	tad	rajtus	vat	var	vot	ver.	o-values	tads	Rantus	vat	var	vrt	vRr	o-values	tanj
4.0	:0	-11	49	-	-1190	11.0	5.0	49	-	54	1	-1370	10.2	5.0	46	-n	46	2	-1240	8.5
7.3	172	$-1 / 4$:21	-5	-1000	9.4	7.5	117	-15	115	-7	-1210	7.2	7.5	103	-3	115	0	-1100	7.8
15	$1: 5$	-1	109	7	-590	8.2	10.0	121	-27	120	-19	-9.90	8.0	$1 \mathrm{~A} \cdot 3$	$1: 7$	-3	122	5	-840	6.6
17.5	173	-9	98	-1	-400	7.6	12.5	109	-29	107	-20	-560	7.1	12.5	111	-4	107		-510	5.4
13.0	938	-20	20 83	-12	-240	6.4	15.0	76 83	-27 -23	73 87	-18 -15	-310 -170	R.0 3 3.2	15.9	129	-13	91	-4	- 300	4.9
17.3	96	-10	83 78	-2	-0	5.2 5.5	17.5 20.0	83 86	-23 -15	83 79	-15 -6	-170 -5.7	5.2	17.5 $? 3.10$	89 0 0	- ${ }^{-1}$	86 79	$\stackrel{\square}{8}$	-150 -30	4.6
22.5	71	-14	73	-7	140	5.8	22.5	33	-14	$9 ?$	-6	40	5.8	27.5	\bigcirc	-10	65	-2	40	4.5
2ヶ.0	74	-2.	72	-14	190	4.7	25.0	80	-14	76	-6	110	5.4	25.0	77	-19	69	-10	100	4.4
27.5	$?$	-20	${ }^{6}$	-12	240	3.3	27.5	9	-17	77	-9	150	4.0	27.5	75	-?	73	0	150	4.0
$3 \cdot 8$	\cdots	- 20	6_{5}	- 12	200 3	2.8	30.0	77	-10	75 65	-1!	180	$3 \cdot 2$	30.0	$?$	-12	68	- -6	210	3.6
32.5 15.0	86	-22 -19	${ }_{53} 5$	-14 -12	320 340	2.8 2.9	32.5 35.0	71 67	-11 -10	65 64	-3	210 250	3.3 3.3	32.5 35.0	- ${ }_{3}$	-1/4	63 53	-6	250 270	3.4 3.3 3.3
37.5	63	-17	54	-10	3%	2.7	37.5	61	$\rightarrow 7$	58	2	300	3.4	37.6	61	-12	59	-4	230	3.1
40.9	57	-11	56	-3	410	2.3	40.0	56	-9	56	0	340	997.0	49.0	57	-6	54	2	310	3.2
42.3	96	-13	53	-5	4 CO	2.2	42.5	379	999	999	999	999	977.0	42.5	994	999	997	999	999	999.0
45.0	56 56	-12	47	-5	380 380 180	2.5 2.7	45.0	999	999	999 000 09	999	999	999.0 799.0	45.0	997	$\begin{array}{r}499 \\ 982 \\ \hline 98\end{array}$	999	999 999	979	999.0
41.5 50.0	$4{ }_{4}$	-16 -15	47	-8	380 370	2.8	30.0	970	999	999	999	999	999.0	50.0	979	999	999	999	999	999.0

radius	vat	var	vRt	ver	n-values	taj	gentus	vat	var	vat	VRr	o-values	tad	radius	vat	var	vRT	vrr	n-values	tand
5.0	35	4	43	7	-1240	9.0	5.6	26	1	49	-4	-1130	9.7	5.0	45	0	90	-3	-1040	11.2
7.5	120	17	125	15	-10.50	7.3	7.5	76	0	76	-6	-840	8.4	7.5	78	7	65	3	-9990	9.0
10.0	104	31	107	27	-750	$6 \cdot 0$	12.0	154.	-1	105	-8	-550	6.0	10.0	no	14	80	9	-6.90	7.6
12.5	90	3	92	0	-390	4.4	12.5	93	5	32	-2	-310	5.0	17.5	39	23	93	16	-4.60	6.1
15.0	77		81	0	-230	5.6	12.3	79	,	78	2	-190	5.0	15.0	89	26	92	19	-270	$3 \cdot 1$
17.3	68	15	73	3	-110	5.4	17.5	70	11	72	3	-70	4.7	17.5	91	21	83	13	-130	5.3
20.0	65	19	67	13	-30	5.2	29.0	65	14	67	7	30	4.5	20.0	75	28	78	no	-20	1.8
27.5	64	20	67	14	40	5.5	22.5	H	21	oc	14	100	4.3	22.5	76	27	${ }^{9} 2$	20	+0	4.3
25.0	$0 \cdot 5$	18	${ }_{67}$	17	1 100	5.6	25.0	${ }^{60}$	13	54	11	160	4.2	25.0	70	21	70	14	110	4.1
27.5	64	27	64	20	150	4.6	27.5	fo	$2{ }^{2}$	64	17	200	4.3	27.5	71	27	75	19	180	4.0
30.0	63	21	64	14	200	4.1	3.80	53	23	$5{ }^{5}$	16	230	4.2	30.0	6,	2.7	68	20	220	3.9
32.5	59	19	60	12	240	4.2	32.5	53	24	52	17	240	4.1	32.5	64	24	67	16	270	3.7
35.0	55	23	57	15	270	3.9	35.0	62	23	69	16,	250	3.8	35.0	59	19	58	11	290	3.4
31.5	43	13	51	6	310	3.5	37.5	61	23	55	16	290	3.2	37.5	$5 ?$	17	49	10	310	3.0
40.0	$4{ }^{4}$	9	56	1	340	3.5	4.96	$5{ }^{5}$	19	55	12	330	3.1	40.0	50	17	49	10	340	<..
42.5	46	-1	52	-9	350	3.9	43.5	$4{ }^{\text {s }}$	15	60	8	360	3.2	42.5	49	16	45	я	170	$2 \cdot 4$
43.0	39	4	45	-3	959	990.0	45.0	51	17	48	5	400	3.1	45.0	50	17	45	4	390	2.7
47.5 50.0	39 42	3	48	-3	9999	999.0 99.0	47.5 50	48	?	4.4	${ }_{2}^{2}$	430	2.9 2.7	47.5 50.0	50 46	11	49 48	- ${ }^{3}$	410	2.7

\begin{tabular}{|c|}
\hline radius \& vat \& var \& VRI \& vRS \& b-values \& IADS \& ratios \& var \& var \& VR T \& vRr \& o-values \& tad J \& ranius \& vat \& var \& ver \& vre \& d-values \& Tan)

\hline 5.0 \& 32 \& 5 \& 48 \& -1 \& -1330 \& 9.3 \& 5.8 \& 13 \& \bigcirc \& 56 \& ${ }^{3}$ \& -1070 \& 12.0 \& 5.0 \& 34 \& 9 \& 48 \& 0 \& -1110 \& 11.9

\hline 7.5 \& 90 \& 479 \& 95 \& 949 \& -1000 \& 3.5 \& 7.5 \& 73 \& 989 \& ${ }^{80}$ \& 999 \& -860 \& 11.6 \& 7.5 \& 70 \& 994 \& $3{ }^{30}$ \& 997 \& -970 \& 4.6

\hline 10.0 \& 95 \& 397 \& 9 \& 997 \& -630 \& 1.4 \& 10.0 \& 92
86 \& 939 \& 101 \& 999 \& -580 \& 9.1 \& 10.0 \& 97

78 \& 977 \& 101 \& 997 \& -560 \& 9.0

\hline 12.5 \& 15 \& 999 \& 80 \& 997 \& -350 \& 5.0 \& 12.5 \& 96 \& 981 \& 95 \& 999 \& -310 \& 6.8 \& 12.5 \& ก98 \& 99% \& 95 \& 499 \& -390 \& 4.7

\hline 15.0 \& 61 \& 6 \& 71 \& \bigcirc \& $-1 p 0$ \& 5.0 \& 15.0 \& 80 \& 1 \& 35 \& -5 \& -230 \& 6.0 \& 15.0 \& 72 \& 12 \& 82 \& 5 \& -140 \& 5.0

\hline 17.5
20.0 \& 60
50 \& 4 \& 65
59
59 \& -2
-2 \& -60 \& 5.6
$h .1$ \& 17.5
20.0 \& 73
75 \& [15 \& 90
77 \& 12 \& -110
-30 \& 6.2
.8 .8 \& 17.5
20.0 \& 72
6.7 \& 16
20 \& 76 \& 10 \& -70 \& 4.9

\hline 22.5 \& 52 \& 10 \& 58 \& 3 \& 50 \& 6.0 \& 27.3 \& ¢7 \& 17 \& 67 \& 11 \& 30 \& 5.2 \& 22.5 \& 5 ¢ \& 26 \& 83 \& 19 \& 140 \& 4.7

\hline 25.2 \& 52 \& 9 \& 53 \& 2 \& 90 \& 9.0 \& $2 \cdots 0$ \& 63 \& 24 \& 66 \& 13 \& 90 \& 5.0 \& 25.0 \& 59 \& ${ }^{24}$ \& 64 \& 17 \& 170 \& 4.4

\hline 27.5 \& 54 \& 17 \& 61 \& 10 \& 140 \& 4.5 \& 27.5 \& 52 \& $1{ }^{1 / 4}$ \& 63 \& 9 \& 170 \& 4.9 \& 27.5 \& 91 \& 28 \& 61 \& 21 \& 260 \& 3.7

\hline 30.0 \& 52 \& 19 \& ${ }^{3} 8$ \& 12 \& 190 \& \bigcirc \& 30.9
3.5 \& 5 \& 5 \& 62
56 \& -2 \& 220 \& 4.7 \& 30.0 \& $\begin{array}{r}37 \\ \hline 50\end{array}$ \& 29 \& 60
54 \& 27 \& 250 \& 3.8

\hline 32.5
35.0 \& 47
44 \& 10 \& ${ }_{58}^{62}$ \& - ${ }^{3}$ \& 230
200 \& 5.0
5.2 \& 32.5
37.0 \& 54
$5 ?$
5 \& ${ }_{16}{ }^{7}$ \& 56
56 \& 9 \& 240
270 \& 4.5

4.3 \& | 32.5 |
| :--- |
| 35.0 |
| 8.0 | \& 50 \& 261 \& 54

59
59 \& 14 \& $\begin{array}{r}240 \\ 300 \\ \hline\end{array}$ \& 3.3
3.3

\hline 37.5 \& 47 \& 2 \& 51 \& -5 \& 290 \& 5.0 \& 37.4 \& 53 \& 17 \& 49 \& 12 \& 300 \& 4.1 \& 37.5 \& 45 \& 20 \& 53 \& 13. \& 370 \& 3.3

\hline 40.0 \& $4{ }_{4}$ \& 2 \& 49 \& -5 \& 340 \& 4.0 \& 40.0 \& 51 \& 11 \& 45 \& 4 \& 330 \& 3.9 \& 40.0 \& 40 \& 21 \& 52 \& 14 \& 410 \& 3.2

\hline 42.5 \& 37 \& 11 \& 4.8 \& 4 \& 340 \& 3.6 \& 42.5 \& 45 \& 16 \& 46 \& , \& 3×0 \& 3.8 \& 42.5 \& 35 \& 13 \& 52 \& 6 \& 430 \& $3 \cdot 2$

\hline 45.0 \& 34 \& 14 \& 41 \& 6 \& 350
360 \& 3.0 \& 45.5
47.5 \& 4.4 \& 10^{7} \& 49
4
4 \& $\frac{1}{3}$ \& 380
400 \& 3.6
3.3
3.3 \& 45.0
47.5 \& 32
30
30 \& 17 \& 44
30
30 \& $\stackrel{5}{8}$ \& 430
440 \& 3.1

\hline \&

\hline
\end{tabular}

raitus	V^t	var	VRT	VRR	d-values	TanJ	rapius	var	var	vRt	VRR	D-values	tadj	radius	vat	VAR	vRi	VRR	0-values	IADJ
5.0	979	397	999	393	999	999.0	5.0	-11	-5	17	2	-620	12.0	5.0	-4	-13	22	\bigcirc	-540	
7.5	979	999	. 979	999	9,93	399.0	7.5	-7	-2.9.	3 c	-1	-610	11.4	7.5	-4	-15 -15	23	8	-540 -550	11.3
10.0	,	-19	- 32	-6	-610	15.8	10.0	-2	-12	27	-	-620	11.9	10.0	5	-19	23	$\stackrel{8}{5}$	-540	11.4
12.5	19	-11	35	-	-6n0	15.3	12.5	2	-10	30	2	-610	9.3	12.5	9	-15	26	9	-5?	11.9
19.0	110	-16	37	-3	-590	16.2	17.5 17.5	12	-15 -14	35 40	-4	-610 -600	$\underset{12.1}{12.7}$	15.0 17.5	6	-7 -2	28 34 3	5	-520 -440	11.5
211.0	23	-16	49	-	- 5no	14.3	20.0	15	-12	44	-1	-590	13.7	20.0	7	-1	36	1	-460	10.0
22.5	33	-12	59	3	-570	10.6	22.5	14	-9	43	0	-560	12.4	22.5	6	7	36	7	-420	10.0
25.0	59	-10	85	5	-470	9.9	20.0	14	-11	44	-4	-550	10.7	25.0	11	15	41	12	-410	9.5
27.5	55	-25 -33	${ }^{82}$	-17	-460	9.9	27.5	14	2	44	7	-530	10.5	27.5	18	16	47	17	-180	3.9
30.0	36 43	-33)	63 68 68	-17 -16	-450 -430	8.3 8.4	3.0 32.5	40	-17 ${ }^{6}$	70	-11	-470	3.7	30.0	19	16	48	$1 ?$	- 7 90	\%. ${ }^{\text {a }}$
35.0	45	-26	78	-10 -10	-430 -420	8.4 9.0	32.5 35.0	47	-17 -21	77 61	-11 -14	-400 -400	8.9	32.5 35	21	13	50	10	-340	9.5
37.5	4,5	-2.4	70	-8	-380	я. 0	37.5	33	-22	$6 ?$	-15	-3:90	8.5	37.5	12	7	4	$\stackrel{9}{9}$	-320 -310	9.8
40.0	43	-21	88	-5	-370	7.9	46.0	$2 \cdot$	-2.5	58	-17	-390	9.5	40.0	13	-4	42	7	-310 -320	8.6 9.5
42.3	44	-19	69	-1	-350	7.9	42.5	29	-75	57	-16	-360	11.8	42.5	99%	999	999	997	- 909	997.0
45.0 47.5	40	-14	64 65	2	-340 -720	7.8	45.0	20	-17	57	-9	-340	11.3	45.0	99.9	999	999	999	499	997.0
47.5 50.0	41	-12	65 57	4	-730	7.8 8.0	47.5	25	-20	53	-10	-330	10.6	47.5	979	999	997	997	797	999.7
50.0				2	-2.0)	8.0	53.0	26	-20	55	-9	-280.	10.3	50.0	979	979	999	999	999	997.0

ranius

vat	var	VRT	vrr	D-values	inds
38	-33	12	-3	-540	11.1
$3:$	-31	14	-?	-620	12.4
27	-27	16	0	-6.40	12.9
27	-27	20	-?	-6,30	14.1
23	-22	24	2	-630	14.4
21	-19	35	1	-6,40	13.6
22	-17	4	-2	-630	13.7
14	-10	38	?	-610	12.7
16	-13	38	-2	-670	13.5
15	-12	18	0	-5,0	16.4
20	-15	41	-3	-560	14.8
36	-36	52	-14	-540	15.2
3.9	-25	53	-13	-5.30	12.3
43	-20	65	-7	-500	11.8
4	14	75	:	4	'i.?
40	-11	70	3	-430	10.2
45	-14	70	0	-3.90	10.8
46	-19	70	-4	- 370	11.5
46	-23	70	-9	-340	9.7

patius	vat	VAR	VRT	VRr	o-values	[AID J	radius	vat	var	vat	vre	e-valufs	ramj
5.0	on	จดา	999	999	997	999.0	5.0	27	-19	1	1	-570	12.0
7.5	979	993	999	999	999	999.0	7.5	24	-19	13	${ }_{0}$	-580	12.0
10.0	8	-17	34	-2	-6co	15.4	10.0	19	-17	15	1	-570	12.7
17.5	13	-19	38	-2	-570	15.4	12.5	19	-17	19	0	-570	13.4
15.0	11	-19	37	-1	-580	14.4	15.0	22	-21	21	-5	-570	13.3
17.5	16	-?	33	7	-570	13.8	17.5	23	-72	29	-6	-b70	13.6
20.0	17	-23	46	-7	-550	12.4	2 n .0	23	-15	41	0	-570	11.3
22.5	79	-24	57	-12	-510	10.4	22.5	22	-17	35	-1	-511)	11.0
25.0	41	-40	69	-28	-4.90	8.0	25.0	20	-17	40	-1	-5.70	11.4
27.5	35	-45	65	- 35	-480	8.9	27.5	26	-11	46	4	-5,50	11.9
33.3	51	-2.3	80	-20	-480	8.4	30.0	38	-17	56	-3	-560	$14 \cdot n$
32.5	45	-22	74	-14	-430	8.4	32.5	41	-17		-1	-530	14.0
35.6	47	-17	77	-9	-400	8.4	35.0	999	997	999	994	499	99.90
37.5	44	-12	74	-4	-390	8.1	37.5	979	9\%	999	จ9\%	979	47\%.0
40.5	4	-i;	13	-	-350	8.0	410.0	$9 \% 9$	999	999	997	994	997.0
42.5	40	-6	68	$?$	-340	7.9	42.5	999	วาง	979	9 ¢า	999	997.0
45.0	37	-4	${ }_{5}^{66}$	4	-330	7.4	45.0	997	999	999	393	993	494.0
47.3	30	-4	${ }^{58}$	5	-370	7.2	47.5	749	79%	799	497	797	979.0
50.3	31	-4	80	5	-310	6.9	50.0	979	999	999	999	999	$99 \% 0$

level
 SPD／DIP／HOG／NOTH／GTM／ANGIF／EYERAQ／PQFS／ACTUAL／RFL．MMAX WO／

2AツUS	vat	VAr	vRit	VRr	o－values	IADJ	radius	var	VAR	VRT	vRr	d－values	TADJ	aades	vit	vas	vRr	vRr	n－values	rads
5.0	－	14	14	-14	－410	10.1	5.0	997	999	999	997	979	997.0	5.0	24	20	12	－8	－430	7.3
7.5	15	10	19	-19	-400	9.5	7.5	949	994	999	994	999	994.0	$1 \cdot 3$	29	13	12	－1i	－400	$7 \cdot 7$
1\％	20	10	21	－19	－320	7.4	10.0	11	10	19	-15	-520	7.6	10.0	25	13	15	-9.	－460	7.3
12.5	72	6	24	－23	-350	6.4	12.5	23	16	16	－12	－520	$\pi .7$	12.5	38	11	15	-7	－450	7.3
15\％	32	？	29	－20	－350	6.5	15.0	35	$? 1$	18		－510	7.9	$14 . \%$	41		26	－11	－467	$\cdot 7.5$
17.5	32	6	29	－22	－350	6.1	17.5	39	20	24	－4	－5c0	7.2	17.5	${ }^{13}$	9	17	－5	－430	7.4
\cdots	40	$1:$	32	－19	－340	6.0	20.0	40	17	24	－7	-4.90	7.8	$2 \mathrm{c} \cdot 0$	47	7	2.1	－5	－420	6.4
27.5	4	18	32	－-	－310	6.3	22.5	44	18	24	－5	－690	7.8	22.5	55	10	25	－1	－410	0.5
5．c	54	21	35	－5	－300	6.5	25.0	51	18	32	－4	-490 -460	7.7	25.0	15 75	11	37	－3	－4c0	6.0
27.5	4？	27	38	1	－-2.0	6.4	27.5	59	24	39 44 40	3	-460 -440	7.3	27	75		37 50	1	-360 -350 -300	5.3 4.9
30，	57 76	25 2.9	43 59	-1 4 4	-770 -250	6.1	36.0 32.5	57 65	23	44	1	－410	7.3	32.5	93	12	54	2	－ 310	4.9
3.0	70	28	50	7	－240	5.3	35.0	66	19	45	1	－34n	6.8	3．0）	81	21	r，4	12	－300	4.7
17.5		32	40	6	－220	4.1	37.5	69	23	48	4	－ 340	5.7	37.5	9	17	58	7	－280	4.5
$1 \% .9$	72	35	50	10	－210	5.0	40.0	89	17	68	－2	－ 300	5.3	40	97	17	60		－720	4.5
42.5	96	34	66	9	－2c0	5.6	42.5	72	16	71	－2	－280	4.3	4.7 .5	20	16	$\stackrel{4}{4}$	；	－210	． 3.7
mor	95	$3{ }^{3}$	65	11	－130	5.6	45.0	34	20	63	${ }^{2}$	－260	$4 \cdot 1$	45.2	8	11	63	0	－260	3.7
47.5	\because	25	69	0	－130	4.9	47.5	82	27	${ }_{6}$	10	－220	4.2	47.3	9	12	h？	1	－180	3.8
30.0	\bigcirc	$2 i$	61	－3	－100	4.4	50.0	77	999	53	999	－190	999.0	50.0	07	11	b2	－1	－130	3.6

 125／50／190／E／2／00／25／768／60／80／40．0 $125 / 50 / 1351, \varepsilon / 2 / 105 / 25,1969,98,69,1,0.0$ $125 / 5) / 105 / \mathrm{E} / 3 / 120 / 25$

2astus	vat	vas	VRT	vrr	d－values	tans	racius	vat	var	vrt	vrr	d－values	tan．j	qamius	var	var	vit	vrr	c－values	iad
¢or	：0	16	20	－12	－450	8.4	5.0	979	979	979	947	499	949.0	¢．0	qu9	21	497	2	999	9.5
． 5	io	is	23	－10	－450	9.0	7.5	779	979	975	993	997	997.0	7.5	33	29	20	1	－400	9.0
10， 0	12	： 4	24	－11	－450	R． 5	10.0	33	－29	5	－1	-460	\cdots ？	12.9	$4 ?$	25	？	－1	－480	0.6
12.5	10	10	30	-13	－440	6.9	12.5	46	-14	20	－？	－4．80	9.7	12.5	43	19	27	－4	-470	9.3
10.2	\％	12	37	－ 11	\cdots	5.8	15.0	52	－4	25	3	－4？0	9．3	150	50	12	31	－7	－430	7.7
：－5	20	13	40	－9	－400	5.5	17.5	51	4	20	8	－400	9.4	17.5	5	\％	32	－10	－420	H． 5
\cdots	3	15	53	－7	－3．90	5.8	20.0	44	3	16	6	－360	8.5	2 Co	58	9	36	－7	－420	6.4
22.5	30	19	54	－4	－370	6.4	27.5	48	4	20	5	－370	8.0	27.5	61	${ }^{\circ}$	36	－6	－320	6.5
2 n .0	3 B	17	59	－3	－390	6.6	25.0	60	4	33	4	－350	7.0	25.9	69	12	44	－1	－360	6.5
21．3	40	<1	$0 \cdot$	\bigcirc	－390	0.3	27.5	$7{ }^{7}$	$?$	\％is	1	－ 30	0.3	29	93	12	40	0	－340	6.7
31.0	4.4	25	74	4	－310	6.3	30.0	77	5	48	${ }^{3}$	－330	6.5	3.9	70	15	50	3	－320	6.2
3.5	49	31	77	1	－290	6.0	37.5	80	4	52	0	－300	6.5	32.7	70	9	5π	－5	－ 300	4.9
$35 . ?$	90	19	79	－3	－250	5.7	35.0	95	11	5	4	－ 310	6.1	35．\％	17	10	53	－3	－2n0	5.0
37．5	4	：	$8 \cdot$	－2	－230	5.4	37.5	20	15	62	10	－290	5.9	37.5	71	5	69	－8	－260	4.9
－0；	60	16	80	－4	－． 230	5.6	40.0	98	$1{ }^{\circ}$	69	12	－240	4.4	黾。	9	4	66	－9	－250	4.7
42.5	50	19	10	－1	－220	4.9	42.5	74	13	64	7	－22n	3.8	42.5	89	11	65	－1	－240	4.0
45.3	4%	27	12	7	－210	4.1	45.0	92	15	63	$\stackrel{\text { an }}{5}$	－170	4.0	45.5	36	1	3	－1	－220	3.8
47.5	－ 48	， 30	－ 9 979		－ 180 -99	4.4 999.0	47.5 50.0	91 96	12	61 59	5	-170 -120	4.0	47.5 50.0	R 81	1	61 57	-12 -5	-170 -160	4.45

SPO/ DIR / HDG /NOTH/GTM/ANGIF/FYFRAN/ DPES/ACTUAL/REL /MAX WD/

raitius	vat	var	vri	v2R	d-valufs	tad J	naries	vat	VAR	VRT	VRR	d-values	tanJ	kanius	vat	va	VRT	VRr	n-valufs	TAJJ
5.0	993	993	999	993	979	999.0														
7.5	997	-33	999	-5	979	9.1	7.5	?	$\xrightarrow{990}$	9	999	999	999.0	5.0	994	23	999	2	994	4.4
10.0 12.5	42	-18	12	-2	-370	7.9	10.0	5	5	22	-1?	939 -530	399.0 9.6	7.5 10.0	13 13		16	7	-510 -510	9.2
12.3 15.0	5	-11 $-1 ?$	17 26	-7	-370 -370	7.4	17.5	4	0	22	-6	-520	9.3	12.5	13 6	-1	16 22	6	-510 -510	9.7
17.5	65	-15	35	-12	-320	6.7	13.5	3	-	21	-1	-510	9.0	15.0	6	-4	2.3	2	-520	9.h
27.0	6.	-9	36	-	-310	7.2	17.5	7	-2 -7	24	-1	-5c0	9.4	17.5	11	-11	20	-5	-480	9.4
22.5	70	-3	40	-4	-780	6.5	22.5	9	-4	36	-5	-490 -490	9.5	20.0	15	-13	34	?	-5c0	10.2
25.0	30	-1	51	-3	-300	6.0	25.9	3	n	29	3	-400	9.6	25.5	10	-	34 35	-1	-460	10.a
27.5 30.0	R0	${ }_{8}^{4}$	51	0	-270	5.3	27.5	3	-?	13	2	-470	9.7	27.5	21	-5	595	-1 -2	-450 -450	11.2
32.5	81	10	50	4	-240	S.1	30.0	${ }^{6}$	4	31	9	-470	9.8	30.0	32	-14	57	-11	-4A0	12.0
35.0	85	16	55	9	-230	4.9	32.0		- 2	26 25	10	-440 -430	9.4	37.5	32	-11	54	-7	-4,30	7.6
37.5	15	$1{ }^{18}$	55	11	-190	5.0	37.5	$\stackrel{8}{8}$	-8	27	-	-430 -420	10.6 10.5	35.0 37.5	27	-9	54	-6	-370	7.7
40.0	37	19	57	10	-180	4.8	$4{ }^{10} 0$	17	-13	37	-5	-420		4 4 .0	?	-4	54	-4	-350 -320	7.3
42.5	97 97	15 15	62 68	?	-140 -150	5.0	4,	17	$-$	55	4	-400	6.4	42.5	17	-3	44	-	-306	7.3
47.5	98	13	71	5	-120	4.6	47.5	37	5	69 64	14	-310 -300	5.9	45.0	14	5	41	${ }^{\text {® }}$	-290	4.8
30.0	101	10	75	2	- 20	4.2	56.0	33	5	59	15	-300	5.5	47.5	14 37	14	52	17	-230	4.9

ramius	vat	var	vpi	VKP.	o-values	Tnos	ramius	vat	var	vat	VRR	o-values.	tadJ	ramius	vat	var	VRT	vrr	n-values	In 1
5.0	9,	999	999	\%9\%	929	999.0	5.6	999	999											
7.5	907	-36 -37	999	-8	979	9.1	7.5	(1)	$8 \rightarrow 7$	979	9979	979	994.0 999.0	5.0 7.5	. 10	14	20	-14	$-4,10$	10.1
10.0 17.5	37	-37 -32	10	-7	-4.20 -4.40	7.8	10.0	30	$\rightarrow 7$	\bigcirc	$\xrightarrow{\text { ? }}$	999 -500	999.0	7.5 10.0	${ }_{9}^{8}$	10 10	21	-19	-430	9.5
15.0	26	-25	15	-2	$-4,9$ -4.50	7.6	12.5 15.0	$3{ }_{31}$	$-2 n$ -31	10	1	-4,0	9.7	12.5	4	6	23	- 73	-450	7.3
17.5	35	-24	22	4	-430	10.4	17.5	29	- 29	35	-5	-480 -470	9.6	15.0	?		30	-20	-410	6.7
20.0	27	-23	29	5	-340	10.7	20.0	37	-28	30	-4	-480	10.1	17.5 20.0	4	${ }^{6}$	33	-23	-430	6.1
22.5 25.0	32 37 7	-27	$\begin{array}{r}36 \\ 38 \\ \hline\end{array}$	-	-400 -390	11.5	27.5	32	-28	38	- 5	-440 -480	11.1	20.0 22.3	$\stackrel{4}{9}$	18	33 36	-18 -7	-420 -300	0.0
27.5	37	-23	46	3	-360	10.8	5.0 37.5	33 3 3	-29 -98	39	-5	-420	11.2	25.0	18	20	37	-5	-310	6.5
35.0	40	-25	48	\checkmark	-150	10.4	3 3 .0	3	-26	31	-5	-410 -400	11.5	27.5	22	$\begin{array}{r}27 \\ \hline 25\end{array}$	45	c	-370	6.4
32.5	43	-31	47	-6	-340	10.5	32.5	29	- 27	33	-7	-400	11.6	37.0 32.5	17	25 29	37 34	-1	-350	6.1
35.0 37.5	42 35	-30	47	-6	-310 -240	12.3	35.0	21	-22	32	-3	-4c0	11.3 11.3	35.0	21	29	$4{ }_{4}$?	-340 -340	6.0
40.0	35	-23	46	0	-270	11.8	${ }_{4}{ }^{2} \cdot 0$	27 24	- 218	41 25	- ${ }_{-1}$	-390 -330	12.2	37.5	55	32	78	6	- 2 ¢0	4.7
4.2 .5	4.	-29	50	-6	-290	10.9	4 i 9	31	-73	37	-5	-330	12.5 10.1	40.0 42.5	49 39 10	35 34	71 50	10	1250 -240	5.0
45.0 47.5	52 47	-30 -30	59 65	-8	-260 -230		49.0	45 48 5	-72	50	-4	-350	9.0	42.5 45.0	38	34	5989	11	-240 -180 -180	5.6
50.0	49	-29	61	-7	-210	9.9	47.5 $b 0.0$	58 45	-21 -28	63 60	-10	-270	7.0	47.5	39	25	58	0	- ino	4.8
												-220	4.0	50.0	3 ?	21	58	-3	-170	4.5

STRRM, DATE/ FEET/, MB, / TMTFQVAL /OUT/ LAT/IONG/ ID

 SPI/ NIR / HOG /AOTH/GTM/ANGIF/FYFRAR/ DPES/ACTUAL/REL MMAX WO/

-...---......

2aTtus	vis	vas	vit	vRa	D-values	tand	radius	vat	vas	vet	vkr	d-values	tads	pantus	vat	var	vet	vRr	o-valufs	TADJ
5.6	9	17	87	3	-950	17.7	5.0	87	33	93	20	-790	12.0	5.0	102	33	94	20	-950	17.9
7.5	101	n	110	-5	-4,50	15.6	1.5	34	45	78	32	-430	11.9	7.5	103	5	95	-	-520	11.0
12.9	33	12	95	-2	-280	12.8	10.0	78	35	75	22	-220	11.6	10.0	89	4	86	-9	-2:0	10.3
12.5	70	14	75	1	-160	10.9	12.5	${ }_{6}^{66}$	27	6.7	14	-110	11.3	12.5	no 67	11	73	-2	-90	10.7
is.0	86 5 5	13	64 57	-9	-50 30	10.5 10.8	15.0 17.5	61 51	18	60 54	5	-30 30	11.4 11.0	15.0 17.5	67 56	11 16	62 5	-3 3	-10	10.9
20.6	54	18	52	5	70	10.9	20.0	58	7	55	14	no	10.5	20.0	57	23	50	10	100	10.2
27.5	5)	12	48	-1	100	10.6	22.5	${ }^{6}$	32	56	21	1:0	10.3	22.5	49	16	49	2	150	10.0
25.0	54	15	4.9	4	140	10.2	25.0	45	14	49	1	170	ic. 2	$2{ }^{25} 0$	55	25	49	11	180	4.7
?7.\%	S3	15	5	1	170	10.0	27.5	52	19	45	5	200	7.9	27.5	51	19	50	. 5	220 250	9.7
38	35	21	5,2 44	-8	210 230	9.9 9.5	30.0 32.5	46 4	19	45	4	230 260	9.6	30.0 3	56 45	17 22	4.48	9	250 270	4.6 7.5
35.2	4.5	1 n	40	-3	270	9.1	35.0	43	\&	40	-h	240	8.8	35.0	47	18	41	4	280	4.4
37.5	39	,	37	-6	280	4.1	37.5	40	5	39	-8	360	9.6	37.5	37	16	38	2	300	4.3
4	42	${ }^{6}$	37	-7	300	8.7	40.0	37	3	36	-11	310	$0 \cdot 5$	49.0	35	13	36	-1	370	9.1
$4 \cdots$	317	3	3 3	-13	310	8.6	42.5	39	$?$	36	-12	330 340	2.6	42.5	37 35	11	35	- -5	330 350	8.9 8.7
44.8	37	3	38 39	-11 -10	330 350	8.3 8.3	45.0 47.5	40	9	36 3 3	-7	340 350	R. 8.7 8.7	45.0 47.5	35 32	10 2	33 32	-5 -13	350 360	R. B .7 .7
si.c	41	${ }^{\prime}$	41	-8	360	8.4	50.0	33	,	31	-6	3\%,0	3.0	50.0	33	1	32	-13	370	H. 7

Qari:s	vat	vak	vRt	VRR	d-valufs	тand	radius	vat	var	VRI	vRr	o-values	raids
5.6	6.9	15	73	${ }^{2}$	-970	16.7	5.0	63	10	61	-1	-1120	15.4
7.3	3	17	$\bigcirc 0$	13	-700	14.7	7.5	118	999	113	949	-750	14.9
17.6	23	15	24	1	-480	12.5	10.0	100	977	35	997	-4CO	12.8
12.5	37	7	87	-7	-160	11.2	12.5	07	997	${ }_{7}^{82}$	999	-290	11.0
15.0	72	20	71	-	-40	10.5	15.0	77	13	73	- 0	-150	10.7
17.6	4	12	62	-2	20	10.8	17.5	1,4 56	3	61 54 58	-13	-60	10.0 10.5
2.25	5.9	34	59	9	140	10.0	22.5	59	10	52	-3	60	10.8
25.0	56	15	54	1	180	9.6	25.0	57	16	50	3	10	10.7
27.5	50	1.7	53	4	210	9.8	27.5	53	${ }^{\text {B }}$	49	-4	130	10.1
3	53	20	52	6	230	9.9	30.0	55	10	50	-2	160	7.4
:1.)	50	*	45	-5	250	7.5	32.5	5	$1{ }^{1}$	48	-1	170	9.3
35.0	42	,	43	-9	280	9.0	35.0	50	10	46	-2	220	9.2
37.5	9	${ }^{6}$	36	-9	300	8.9	37.5	46	0	44	-13	240	${ }_{8}^{8.8}$
46	30	12	31	-2	320	8.9	40.0 42.5	47	2	43	-10	260 290	月.4
4,5.5	37	${ }_{6}$	$3{ }_{3}$	-9	350	8.7	45.0	41	4	30	-	290	H. 1
417.5	36		35 34	- ${ }_{-6}$	360 370	8.3	47.5 50.0	46	12	41	-4	300 300	8.2 8.3
30.0	35	9	34	-6	370	B. 3	50.0	47	12	42	-1	300	9.3

> PRFG ALT TTMF
> STORM, DATE / FEET, MB. / TNTERVAL /OUT/ IAT/LONG/ TD,
STOQM TPUE OCTANT ATMTH TN POR CENT/ MAX WTNGI IMAX WD/

zan ${ }^{\text {a }}$	vat	vas	vRt	vRr	n-values	tand
			${ }^{1} 1$	24	-780	11.7
4.0	${ }_{125}$	1	123	33	-4,0	10.8
10.0	119	11	116	35	-290 70	7.0 7.6
12.5	70	1	91	15 5	30	7.1
$15 . \%$	4. 38	$\stackrel{-17}{?}$	79	16	130	6.9
17.5	37		79	2	210	6.2
20.0	91	-17	76	7	2 H0	6.0
22.5		-18	71	2	290	5.8
25.5	72	- -1	68	6	310	5.7
27.5 30.0	6	-12	65	3	340 380	5.5 5.3
32.5	65	-13	${ }_{5}^{6.3}$	-6	4	5.2
35.9	4.5	-21	51	-10	430	5.0
37.3	5	-21)	51	-6	4.0	5.3 4.9
42.5	55	-11	51	-3	460	4.7
45.0	57	-1?	52 5 5	12	470	4.7
47.5	49	-2	50	3	480	5.4
37.0	51	-11				

hatius	vit	var	vri	vRr	o-values	tand
		-93	69	-12	99	12.2
7.0	116	-40	121	-28	-5.0	$11 . ?$
10.0	48	-31	102	-16	-200	4.0 7.0
12.5	84	-31	$\stackrel{95}{76}$	- -1	80	6.2
15.0	72	-1	75	-1	150	5.2
170.0	P0	-1	:7	16	220	4.4
22.5	91	5	84	19	310	4.7
21.0	73	4	70	16	340	4.5
27.5	${ }_{56}$	-	59		370	4.2
37.5	5,4	-12	53 55	3 5	4,00	4.1
35.0	56	-9 -13	53 53	1	4.30	4.4
37.5 40.0	50	-12	47	2	440	4.4
42.5	51	-7	47 090	999	999	999.0
45.0	9	497	999	949	999	999.0
50.0	ท9	979	999	979	999	¢9\%*

-4:1us	var
5.0	97
7.5	121
10.9	19
12.7	
15.0	74
12.5	7
27.3	
27.0	4
27.5 3.0	8
37.5	
32.0	,
37.5	
42.5	
49.9 47.5	

112751
RADIUS
5.0
7.5
10.0
12.5
15.0
17.5
20.0
22.5
25.0
27.5
30.0
32.5
35.0
37.5
40.0
42.5
45.0
47.5
50.0

$v a t$	var	VRT	vore	d-values	tajs
90	0	93	13	- m 2 C	ค.я
121	-10	120	3	-5c0	7.5
104	-10	104	3	-250 -130	5.9
97	-4		9	-130	5.7
P4	-4	97 81	11	90	5.8
17 73	-2	76	11	140	5.4
72	-9	72	4	210	4.4
71	-6	${ }_{68}$	5	250	4.6
65 61	-	65	15	280	4.4
59	0	${ }_{6} 2$	13	310	4.4
¢ 58	-6 -10	62 63	3	360	4.9
58	-10	${ }_{5}^{61}$	4	380 370	3.5
56	-7	59	$\stackrel{8}{\text { a }}$	400	6.0
55	-5	58	11	410	6. 2
53	-2	56	11	420	b.3

rastus	vat	var	VRT	vre	()-values	TADJ
	77	-15	9.5	-4	-790	12.4
5.0	112	- -15	117	-8	-400	11.4
10.0	10 \%	-19	105	-5	-220	7.8 8.2
12.5	¢	-17	22	0	-1c0	7.5
15.0	¢1.	-11	85	${ }_{5}^{2}$	${ }^{10}$	7.2
17.5 :	56	-78	\%888	-14	140	0.8
29.0	70	- 21		-5	$1 ? 0$	6.4
22.5	70	-19	71	0	200	5.2
27.0	H2 5 59	-15	65	-2	240	4.4
3.20°	53	-15	67	-3	240	4.1
32.5	63	-21	66	-	$\begin{array}{r}320 \\ \hline 200\end{array}$	4.2
15.0	45	-72 -19	66 63	-4	340	4.1
37.5	${ }_{5} 8$	-16	61	-3	350	4.7
$4 \mathrm{C}$.	59 50	-13	58	1	370	5.0
42.0	4.7	-13	56	0	190 410	5.4
47.5	53	-4.	58	5	399	6.4
50.0	53	-8	999			

112.

ratius	vat	vir	vrt	VRa	o-values	tadj	zactus	vat	vab	VRT	VRR	d-values	tadj	raotus	var	var	vR $\mathrm{T}^{\text {d }}$	vRr	d-values	tan
5.0	92	-19	${ }^{5}$	-5	-900	8.4	5.0	71	977	76	997	-810	10.0	5.0	35	30	84	16	-690	12.1
7.5	125	-21	176	-7	-630	1.3	7.3	76	879	101	999	-540	8.4	7.5	107	46	105	32	-380	10.4
10.0	107	-22	113	-9	-320	6.6	10.0	P7	979	92	999	-280	7.7	10.0	82	4.5	94	31	-170	T. 6
12.5	97	-18	97	-4	-110	6.4	12.5	7:	47	RO	34	-40	7.6	12.5	67	32	72	18	-20	7.4
14.0	30	-70	34	-7	40	6.6	15.5	54	34	63	20	90	7.4	15.0	55	19	57	5	70	7.3
17.5	74	-19	79	-4	120	6.6	17.3	6	24	53	10	100	7.0	17.5	46	8	45	-6	120	7.1
23.0	6.	-17	75	\bigcirc	170	6. 3	20.0	43	21	45	7	200	6.5	20.0	40	9	41	-6	160	7.2
22.5	69	-10	73	3	220	5.7	22.5	36	32	40	18	250	6.3	22.5	45	9	43	-6	210	7.0
25.0	67	-11	72	2	260	4.6	25.0	21	29	38	14	300	6.5	25.0	47	18	46	4	250	7.0
27. ${ }^{\text {S }}$	$? 2$	-14	71	0	300	4.8	27.3	41	24	41	10	330	6.7	27.5	46	h	45	-	200	6.7
31.0	R5	-17	67	-4	330	4.5	30.0	410	<2	43	${ }_{5}$	370		30.0	40	-1	4 ?	15	320	6.2
32.5	57	-14	60	-	340	4.4	32.5	32	$1{ }^{19}$	$4{ }_{4}$	4	400	6.1	32.5	39	0	41	-1/	350	5.5
35.0	50	-11	56	2	360	4.5	35.9	10	21	$4 ?$	7	410	6.0	35.0	40	-1	42	-15	370	5.0
37.5	60	-13	58	1	320	4.4	37.5	${ }^{36}$		42	-10	420	5.7	37.5	40	-1.	40	-15	390	4.6
40.0	53	-9	56	5	400	4.7	40.0	40	?	40	-6	420	5.3	40.0	36	?	37	-12	450	4.2
42.5	48	-9	51		410	$4 \cdot 9$	42.5	31	6	35	-8	440	5.0	42.5	35	5	37	-9	420	3.8
45.0	999	999	499	999	994	99.0	45.5	31	7	35	-7	460	4.9	45.0	29	-2	38	-16	420	4.0
47.5 50.0	999 999	999 999	999 999	999 999	799 999	997.0 997.0	47.5 50.0	32 30	3	35	-11 -10	490 480	5.0 4.9	47.5 50.0	34 3	7	35 34	-14 -7	420 490	4.2
	-	9	¢	¢)	-														

varlus	vat	var	vRt	vrr	d-values	tadj	kadius	vat	var	vit	vre	d-values	tadj
「.")	44	3	36	-?	-910	15.7	5.0	24	-6	27	3	-960	16.4
7.5	64	7	56	4	-940	15.0	7.5	37	-11	45	-?	-930	15.4
$10: 10$	7	13	6 ?	3	-780	14.5	10.0	54	-7	55	?	-roo	14.6
17.5	77	$1{ }^{1 / 4}$	68	10	-700	13.8	12.5	+2	-14	60	-4	-8no	14.2
15.0	75	11	65	6	-610	17.9	15.0	62	-4	55	6	-700	14.2
17.5	75	15	65	10	-550	12.8	17.5	6?	-10	51	0	-6,30	14.3
20.0	5	13	67	B	-5c0	12.1	20.0	59	-	55	1	-5, 0	14.4
22.5	9	17	71	12	-450	12.3	22.5	60	-15	62	-5	-530	14.1
¢5.0	98	17.	77	12	-400	12.3	25.0	69	-	67	1	-460	13.9
27.5	17	3	88	11	-370	11.5	27.5	79	18	78	-9	-420	14.2
30.0	24	13	87	8	-2.70	11.0	30.0	75	-17	74	8	-390	13.4
23.5	3	15	85	10	-260	10.5	32.5	75	-16	74	-7	-380	12.2
35.0	$\bigcirc 7$	10	77	5	-2.10	10.3	35.0	76	-21	75	-12	-370	11.4
17.6	${ }^{\circ} 7$	11	75	7	-170	10.1	37.5	76	-3	74	7	-270	11.1
4). 0	94	7	73	2	-120	9.9	40.0	73	-4	70.	0	-230	11.0
42.5	77	16	69	11	-130	9.6	42.5	66	-7	69	1	-230	11.2
45.0	73	24	67	24	-60	9.2	45.0	6 ?	-7	67	3	-180	11.4
47.5	77	15	71	10	-10	9.0	47.5	6.5	-8	70	1	-150	11.6
50.9	วาก	939	980	999	999	999.0	50.0	6.7	-8	68	2	-1 10	11.8

k4intis	vat	vas	vqi	vrg	d-values	tadj	radius	vat	var	vRI	vRr	d-values	TADJ
5.0	4.2	1	32	-1	-950	15.0	5.0	28	-6	31	3	-3\%0	1ヶ.9
7.)	${ }_{5} 6$	3	49	0	-890	14.2	7.5	59	0	47	1	-910	15.2
10.0	91	8	58	6	-810	14.0	10.0	66	3	54	5	-830	14.7
:2.5	Sh	6	$\therefore 0$	4	-740	13.5	12.5	76	6	63	9	-760	14.1
15.\%	69	в	60	5	-680	12.7	15.0	74	-1	66	3	-6.70	13.5
17.\%	6.7	6	59	3	-6,10	17.7	17.5	74	0	65	4	-620	13.0
23.0	st,	4	60	2	-570	12.6	20.0	71	-3	63	1	-570	13.6
22.5	67	1	64	-2	-510	12.3	22.5	72	-6	64	-2	-520	13.2
2h.0	90	16	71	14	-430	12.4	25.0	77	0	${ }_{6} 7$	5	-470	12.6
8.7 .5	-	21	79	18	-4.30	12.2	27.5	80	1	70	6	-470	12.2
7\%.9	83	n	79	-4	-390	11.6	30.0	74	2	66	7	-370	11.3
32.5	73	-4	71	-8	-330	11.3	32.5	70	1	64	,	-330	10.4
35.0	72	-3	74	-8	-280	11.2	35.0	67	-1	63	4	-280	10.7
1.6	\%	,	14	4	-cto	16.8	37.5	7.	,	62	,	-250	ir.s
4 CO	9	2	72	-3	-240	10.5	40.0	${ }^{66}$	-7	${ }_{60}$	-2	-270	10.8
42.5	79	-3	- 72	-8	-210	10.5	42.5	70	-4	57	1	-210	10.8
43.0	76	+	68	0	999	10.5	45.0	737	99\%	999	999	979	39% \%
47.5	999	999	949	999	999	999.0	47.3	9 999	979	999			
5 C.	\cdots	(9)	939	99.9	999	99.0	50.0	999	999	999	999	999	9490

ratios	vat	var	vet	VRr	d-values	tadj
5.0	18	,	22	7	-930	16.4
-. 5	43	-17	48.	-4	-880	16.0
10.0	55	-5	60	3	-810	15.7
12.5	53	-	58	1	-720	15.0
15.9	34	-4	57	4	-6.40	15.2
17.	51	-R	58	0	-590	14.5
2 n 0	51	-13	60	-6	-530	14.4
27.5	52	11	58	-3	-470	14.6
25.0	64	-8	70	-1	-430	15.0
27.5	H_{2}	-2	nip	\%	-380	13.7
37.0	66	-6	72	1	-340	12.1
32.5	76	- ${ }^{\text {a }}$	82	0	- 280	11,?
35.0	61	-14	69	-7	-260	11.1
37.5	6.	-15	67	-8	-200	11.3
40.0	58	-6	63	1	-170	11.5
42.5	56	-2	60	5	-130	11.0
45.0	53	-?	59	5	-90	10.5
47.3	53	-5	58		-70	10.1
5 c .0	47	-1	57		-60	9.8

manims	vit	var	vRt	VRR	o-values	tads	radius	vat	var	vRt	var	D-values	tads	rantus	vat	vas	VRT	VRR	d-values	tndj
5.9	27	-11	37	-4	-440	9.5	5.0	26	-4	38	$?$	-600	11.0	5.0.	42	1	31	1	-460	$7 . \%$
$7 \cdot 3$	41	-11	44	-?	-390	8.4	7.5	37	-3	44	3	-540	11.5	7.5	47	2	36	0	-380	6.9
10.0	42	-7	49	0	-340	7.7	10.0	52	2	58	0	-480	11.4	10.0	51	5	42	1	-330	6.7
12.5	55	-15	56	-2	-300	7.1	12.5	55	2	59	-1	-400	10.6	17.5	48	1	40	-1	-290	6.3
15.0 17.5 1.0	5.4 1.4	-17 -17	66	-5	- 240	6.9	15.0	50	-4	54	1	-3po	9.5	15.0	60	3	5.3	1	-220	5.6
17.5 2.0	6, 6	-17 -15	68 73	-5 -9	-180 -140	6.4 5.7	17.5	50	-5	54	4	-330	9.1	17.5	68	6	6.3	5	-160	6.3
27.5	77	-46	81	-35	-100	5.7 5.6	27.0 22.5	65 73	-3 -5	71 79	-2 -7	-270 -200	9.2	20.0 22.5	91 85	4	84	-7	-70	5.4
2300	30	-37	83	-37	-60	5.4	25.0	73	-4	79	-3	-140	8.5	25.5 25.0	85 86	5	778	-2	-10 -50	4.9 4.6
27.5	$7 ?$	-34	81	-21	20	5.7	27.5	63	-13	70	-7	-120	7.6	27.5	9	15	71	10	100	4.6
30.5 3.5	71	-74	81 75	-15 -16	70 110	5.3 5.0	30.0 32.5	62 62	-8	69	-5	-70 -30	7.2	30.0	76	11	68	7	130	3.9
35.0	70	-27	68	-17	140	5.2	35.0	62	-14	71	-7 -15	-30	6.9 3.9	32.5 35.0	76	16	69	5	180	3.8
37.5	$1.5{ }^{\circ}$	-29	64	-17	180	5.0	37.5	53	-25	60	-17	50	4.3	37.5	74	8	67	4		4.0
4.0	59	-23	62	13	200	5.1	40.0	997	979	999	997	9 9า	997.0	40.0	74 67	7	80	4	210 210	4.2
4.35	*0	-31	63	-17	220	5.3	42.5	999	999	999	999	299	979.0	42.5	979	999	999	999	999	999.0
45.0	${ }_{6}^{6}$	-14	60	-10	240	5.6	45.0	999	999	999	994	979	999.0	45.0	979	979	979	997	999	999.0
47.5	6,5 4	-16 -14	63 64	-7	270 300	5.9	47.5	999	999 997	999	997	999	979.0	47.5	999	999	499.	9 n	974	999.0
36.0	$t \cdot$	-14	64	-5	300	5.6	50.0	979	997	999	999	999	997.0	50.0	999	979	999	999	999	999.0

an:us	jat	vak	vRt	VRR	i-values.	raos	ranius	vat	var	vrt	VRR	o-valufs	tanj	Ranius	vat	var	V2т	VRR	o-values	tanj
¢.	is	-8	23	-3	-580	11.0	5.0	27	-4	35	0	-580	9.0	5.0	40	-11	33	-2	-440	9.4
7.5	27	-4	33	3	-540	10.1	7.5	36	1	44	3	-5co	4.0	7.5	56	-110	50	-2	-4,10	8.8
13.0	4.4	-17	49	7	-450 -410	9.6	10.0	44	-5	52	-1	-440	8.4	10.0	59	2	52	7	-350	8.6
12.5 15.6	$\begin{array}{r}53 \\ 63 \\ \hline 8\end{array}$	-17 -4	68 71	5	-410 -350	9.9 9.7	12.5 15.0	47	O	55	4	-4.0	8.7	12.5	97	2	62	11	-300	7.9
1.95	65	-4	72	1	-350	9.7	17.5	49 52 5	-3 -10	57 64	- -4	-350 -300	9.0	15.0	72	-1	64	$\stackrel{\text { A }}{5}$	- 240	6.7
2 O 0	61	-1	67	3	-240	8.4	20.0	63	-7	69	- 5	->80	7.8	17.5 20.0	75	-9	68	1	-180	6.0 5.2
2.5	72	-9	78	-1	-190	7.4	22.5	62	-4	70	-3	-200	9.0	22.5	9 ?	-16	85	-4	- 60	4, ${ }_{1}$
250	67	-13	74	-4	-110	6.4	25.0	73	2	80	-5	-170	7.9	25.0 2.0	25	-1.4	83	-7	-20	4.4
37.5	\% 7	-18 -18	74	-7	-80	6.3	27.5 30.0	64	-16	72	- -8	-110 -70	6.6	27.5 30.0	89	-17	$8{ }^{8 .} 8$	-10	30 70	4.5
32.5	8.2	-15	69	$?$	-10	5.0	37.5	66	-9	74	-6	-20	$4 . \%$	330.0	897	-1:	83 88	-ii	170	4.3
35.0	52	-27	71	7	30	3.9	35.0	65	-11	69	-7	30	4.4	35.0	82	-8	76	-3	1130	4.3
\cdots	64	-39	69	-13	40.	3.8	37.5	6.0	-11	67	-6	60	4.4	37.5	91	-11	75	-5	170	4.4
40.17	237	-797	897	997	$9 ¢ 9$	999.0	40.0	63	-10	70	-6	R0	4.4	40.0	78	-12	70	-4	190	4.2
42.5 -5.0	9.19 997	997 990	999 909	999 997	999	999.0	42.5 4.5 .0	57 63	-6 -3	66 67	-4	120 140	4.5 4.9	42.5 45.0	76 75	-10	69 68	-4	200	4.2
47.5	799	980	299	959	999	979.0	47.5	61	-6	6.4	-3	170	4.0	47.5	74	-11	68 66	-2	240 250	4.1
$5 \cdots .0$	497	949	999	999	999	999.0	50.0	54	-1	61	,	180	4.0	50.0	74	-15	65	-?	270	4.0

STORM 14
level 2

STOQM TOUE OCTANT ARMTH YN PDR CENT MAX WINS DRESACTUAL DFL MAX UD

9antas	vat	VAR	VRT	VRr	o-values	tad	ramius	vat	var	vRt	vRR	o-valufs	TADJ	radius	vat	var	VRT	VRR	d-values	tans
¢.0	1	3	17	-5	-820	15.7	5.0	7	-1	17	0	-850	17.2	5.0	10	-9	17	4	-r. 50	15.6
7.5	21	?	31	-1	-900	15.0	7.5	22	-6	31	1	-840	17.1	7.5	18	-10	30	1	-830	15.8
15.7	4	13	43	1	-770	14.5	10.0	31	-4	36	5	-820	16.7	10.0	27	-8	38	-2	-810	15.3
12.5	56	19	57	4	-750	13.8	12.5	34	0	40	${ }^{\circ}$	-810	16.4	12.5	38	-9	47	-5	-780	16.4
15.0	57	17	61	5	-700	13.3	15.0	43	-4	52	6	- 710	16.2	12.0	54	-13	6	-1	-740	15.6
17.5	62	21	61	9	-640	12.9	17.5	64	-2	69	5	-720	15.9	17.5	54	-9	66	-3	-690	15.2
2 n .0	61	14	62	?	-590	12.5	20.6	73	-6	74	,	-660	15.6 15.4	20.0 22.5	59	-12 -15	68	-6	-540 -590	15.1 14.9
22.5	no	16	64	${ }_{5}$	-550	12.3 12.4	22.5 25.0	73 68	-4,	73 73	5 5	-610 -570	15.4 15.3	27.5 27.0	56 51	-15 -21	65 64	-7 -15	-579 -550	14.9 14.5
250	67	17	67 70	4	-560 -460	12.4 12.7	27.5	71	-8	72	,	-530	15.4	27.5	56	-13	62	-9	-510	14.6
30.0	7 i	21	69	,	-430	12.7	31.0	67	-7	71	4	-490	15.3	30.0	54	-6	63	0	-570	14.7
32.	66	22	no	11	-390	12.7	32.5	67	-7	70	4	$-4 \leq 0$	15.1	32.5	53	-11	65	-5	-430	1\%\%
35.0	67	25	6.5	14	-360	12.8	35.0	64	-7	68	$?$	-420	14.9	35.0	58	-7	${ }_{6}^{66}$	-2	-390	13.9
39.5	6.3	24	67	12	-320	12.3	37.5	64	-10	67	1	-380	14.5	37.5	57	-11	66	-2	-360 -340	13.2
4 4 .0	6t	21	66	9	-200	12.6	4 4 .0	68	-12	69	-1	-360 -350	14.3 14.1	40.0	56 57 58	-11	${ }_{66}^{66}$	-5	-340 -310	13.0 13.5
42.5	69	${ }^{11}$	65	8	-260 -230	12.4	42.3 4.0	69 67	-13	70	-2	-370	13.9	45.0	56	-13	68	-8	-290	13.7
47.0	t, 2	21	61	10	-210	12.4	47.5	84	-9	6.9	1	-290	13. ${ }^{\text {a }}$	47.5	59	-11	70	-4	-260	13.2
	53	25	64	13	-210	12.5	50.0	65	-5	68	6	-270	13.7	50.0	61	-10	69	-3	-240	12.9

smocthed vertex averages							
anotus	vat	var	vRt	ver	d－values	TADJ	VAT2
5.0	16	0	21	0	－836	16.4	350
7.5	77	． 0	31	0	－821	16.3	884
10.0	33	2	41	1	－795	16.1	1674
12.5	47	3	50	1	－759	15.6	2436
17.6 17.5	$5{ }^{3}$	2	57	0	－714	15.0	3192
17.5 26.6	60 63	1	6,2 6,4	－0	－665	14.5	3631
22．0，	63	－	85	－0	-615 -571	14.2 13.9	4073 4238
25.0	63	－0	65	－1	－531	13.9	4375
27.5	65	0	1.5	0	－496	14.0	4378
${ }^{3 C .6}$	65	2	85	1	－465	13.9	4283
32.5	65	$\frac{2}{3}$	65	$\stackrel{2}{2}$	-423 -187 -185	13.8 1.6	4291 4308
37.5	5	3	6	2	-387 -355	13.6 13.3	4308 4337
4 CO	6.5	3	6.5	2	－329	13.2	4357
$4 \mathrm{4} \cdot \mathrm{S}$	8.5	3	65 65	2	－304	13.2	4327
47.3	63	4	65 65	4	－278	13.2 13.1	4200 4089
50.0	65	6	6.5	6	－243	12.9	4291

		stor	1	OAT	$\text { , FEET }, ~ M P E S$		$\begin{gathered} \text { in } \\ \hline 0 \text { in } \end{gathered}$			IAT/ONE/ IR./			
		GTOPMSPO/ DIP		true neta		STM/AN	TN PDO CFNT		MAX WYNDG DARIUS /ACTUAL/REL /MAX WD/				
qathes	vat	var	vit	vRr	d-values	tadj	radius	vat	var	vRt	ver	0-values	TADJ
5.9	12	-7	20	,	-870	15.8	5.0		-25	,	-16	-840	10.4
${ }_{10.5}{ }^{7} 5$	4	- -5	39 39	$\stackrel{2}{7}$	-850	15.2	7.5 10.5	19	-11	25	-1	-820	16.2
$1 \cdot .5$	4	-	4.	10	-790	1:. 3	12.5	51	4	50	2	-710	16.1
12.0	so	-1	53	10	-760	14.8	15.0	5 A	3	57	3	-730	16.7
17.5	62	-7	6	10	-720	14.5	17.5	54	2	52	0	-670	16.2
22.0	63 68	-7	6.7 64	5	-660 -620	14.2 14.4	20.0	51	-	50	1	-6,50	15.7
25.3	6.	-?	64	4	-530	14.6	25.0	52	-7	53 55	3	-610 -580	15.3
27.5	+3	1	6.5	8	-550	14.8	27.5	57	- -	60	0	-540	15.0
30.0	65	-7	6.6	3	-510	14.9	30.0	60	-12	64	0	-510	15.1
32.5	68	-12 -12	69	-	-470	15.0	32.5	66	-13	67	?	-470	15.1
35.0	$\%_{0}^{8}$	-1%	ta_{7}	-2	-450	13.0	35.0	65	-13	67	-1	-440	13.9
3.5 4.5 40.0	86	-14 -10	67 69	-2	-420 -380	14.6	37.5	64	-10	65	1	-410	14.1
4	64 6.0	$\begin{array}{r}-11 \\ 1 \\ \hline 1\end{array}$	65	- 7	-380 -340	14.3 14.2	40.0 42.5	64 60	-10 -11	64 62	2	-360 -330	14.4
450	6.7	\rightarrow	63	2	- 310	14.0	42.5 45.0	59	-11	62	$\frac{1}{9}$	-330 -310	14.3 $14 . ?$
47.5	94.)	394	974	999	994	999.0	47.5	993	999	999	999	999	ก94.0
59.0	วา9	972	979	999	999	299.0	50.0	999	999	399	499	999	999.0
Qastus	vat	var	vRT	vRg	D-values	tanj	radius	vat	var	vRt	vRe	d-values	TAOJ
5.0	17	-i)	17	-1	-840	16.4	5.0	,	-9	18	-1	-nso	16.4
${ }^{7.5}$	$3 ?$	-15 -21	31 45	-4	-830	16.8	7.5	19	-9	28	-1	-850	16.4
13.3	¢ 5	-21 -18	45 55	-9 -5	-860 -750	10.4 $1 i .2$	10.0 12.5	29 63	-8	36 56	2	-840	16.4
15.0	53	-10	59	1	-700	15.3	15.0	62	-15	69	-5	-770	16,4
17.5	61	-13	62	-3	-550	15.2	17.5	63	-11	69	-9	-760	16.8
	6\%	- ${ }_{\text {- }}^{\text {- }}$	6.5 65	5	-610 -570	15.0	20.0	73	11	75	22	-640	16.6
24.0	84	-13	64	-1	-530	15.3 15.3	22.5 25.0	${ }_{68} 8$	-14	77	- 5	-690 -550	16.1 15.6
27.3	60	-14	62	-1	-560	15.6	27.5	70	-3	70	4	-510	15.4
33.8	92	-14	84	-1	-450	15.6	30.0	${ }^{63}$	-19	${ }^{64}$	-1	-470	15.2
350	S6	-i9	67	-8	-390	14.6	32.5 35.0	76	-38	74 81	32 39	-430 -390	14.4
37.,	6.9	-19	69	-6	-360	14.0	37.5	$0 \cdot 1$	15	P. 9	34	-370	13.5
47.0	99	-is	69	-5	-350	13.3	40.0	95	22	71	34	-340	13.1
$4 ? .5$	65	-13	68	-3	-330	13.2	42.5	87	24	92	23	-310	13.2
45.9	-5	-7	67	${ }_{7}$	-290	13.0	45.0	70	-10	. 75	1	-290	13.5
47.3 50.0	${ }_{7} 86$	-1	67 998	- ${ }^{7} 9$	-280 -999	13.1 999.0	47.5 50.0	71 989	99^{1}	76 999	12 999	-270 -979	13.7 997.0

STORM 14
level 4

STJRM	0.9TE	zLVL	PLVL	$\begin{aligned} & \text { TIVE } \\ & \text { INTERVAL } \end{aligned}$	1-0	$1.4 T$	LING	$\begin{gathered} \text { Sir } \\ \text { IIR } \end{gathered}$	Spon	TH	OH	OSTM	A2L	10	$\begin{aligned} & \text { RDR EYE } \\ & \text { RADIUS } \end{aligned}$	$\begin{aligned} & \text { CLNT. } \\ & \text { PRES } \end{aligned}$	vatx	9, \% W	vRTx
rima	640001	าяา0	715	1755-1810	1	28	69	285	10	290	E	5	100	121		95			
0304	640707	9090	715	1,57-1610	n	29	64	285	10	110	SF	5	110	117	13	969	69	32.5	67
Düa	34030	$\bigcirc 390$	715	1713-1730	\square	28	69	285	10	110	SE	5	110	122	15	960	69	37.5	67
mera	640007	9830	715	1617-1530	1	28	$6{ }^{6}$	295	10	300	SE	5	120	118		90	68	32.5	67
otia	640907	Opa\%	115	1540-1+50	1	39	69	285	10	90	4	1	275	119	13	96.	${ }_{7} 7$	42.5	92
cera	690907	$\sin ^{\circ}$	715	1910-1430	ก	78	69	285	10	300	W	i	295	123	13	959	81	32.5 50.0	${ }_{8}^{69}$
cura	840, ${ }^{\text {a }}$? ${ }^{\text {a }}$	715	16,30-1654	ก	78	69	285	10	290	NH	1	290	120	15	960	87	50.0	81
dera	64.9707	9980	715	1655-1713	1	ว	67	285	10	110	w	1	290	124	15	960	89	50.0	68 87
u; madothed weighteo vortex avfrages																			
		racies		vat var		vRt	vq	d-values				tanj	vaiz						
		4.10		-0		14	-	-950				15.8	8 A						
		7.5		201		29	-	-833-809				15.4	173						
		12.0		36		38						15.2	$\begin{array}{r}1333 \\ 2830 \\ \hline\end{array}$						
		12.5		$5 \% 10$		50		-809				15.3							
		15.0		56 8		58		-736				15.3	3137						
		17.3		58		61		-682-639				14.9	3439.4107						
		20.0		${ }^{53} \quad 8$		63						14.5							
		22.1		057		65		-639-596				14.2	4107						
		32.0		84		63		-552				14.0	4121						
		27.5		645		63		-513				14.1	4163						
		30.0		64 -2		6.4	-	-438				14.0	4178						
		32.\%		641		68						14.0	488347284						
		35.0		68 10		6.	10	-438-404				13.7							
		31.5		6) 7		71	10	-378				13.3	4915						
		4 CH		7010		72	10					13.2	5097						
		42.5		6814		71	10	-314-291				13.1							
		45.6		61 8		69						13.1							
		47.3		$72 \quad 13$		73	11					12.8	5364						
		5 c .0		$17 \quad 23$		76	11	-220				12.3	561936193						

[^2]

 110/285/200/E/5/110/15/756/84/89/37.5

Raniles	vat	VAP.	vRt	VRR	o-values	TADJ	radius	vat	var	vrt	Vrr	d-values	tald
5.0	10	-6	14	-9	-890	12.6	5.0	15	4	10	-8	-900	$12 . ?$
7.5	25	4	26	-2	-870	12.2	7.5	28	日	24	-3	-910	12.0
10.0	38	1,	42	6	-850	12.4	10.0	37	11	36	-1	-9rd	12.2
12.5	43	21	4	$\stackrel{8}{7}$	-790	12.4	12.5	5.5	15	43	3	-8. 60	12.0
15.0	90	17	49	7	-750	11.8	15.0	65	11	57	0	-790	11.7
17.5	50	17	50	4	-710	11.2	17.5	65	14	58	0	-710	10.9
20.0	50	14	50	2	-660	11.0	20.0	62	13	59	1	-650	10.2
22.5	52	22	51	5	-670	10.8	22.5	64	13	65	3	-6co	10.0
24.0	55	17	53	5	-580	10.0	25.0	70	16	68	5	-570	9.5
27.5	60	?	56	B	-570	10.0	27.5	70	14	68	?	-540	9.1
31.0	51	19	63	5	-550	10.2	30.0	70	21	68	9	-5.0	7.2
32.5	70	19	70	6	-570	9.6	32.5	68	21	66	6	-4.70	9.4
35.0	70	22	70	10	-4,70	9.0	35.0	65	24	64	12	-440	9.4
37.5	57	23	66	11	-430	8.9	37.5	10	20	64	7	-4.0	4.9
45.0	70	19	67	9	-4c0	8.8	40.0	67	19	64	7	-390	10.2
42.5	70	2\%	03	11	-370	8.8	42.5	65	22	61	9	-380	16.0
45.0	70	24	69	12	-340	8.9	45.0	60	20	58	ๆ	-330	9.5
47.5	67	21	68	14	-310	8.6	47.5	60	2.1	56	10	-310	7.2
52.0	1.7	18	64	6	-300	8.4	50.0	60	17	56	5	-360	9.2

 $110 / 285 / 195 / 5 / 5 / 195 / 15 / 960 /$ o-values

[^3]| ramius | vat | var | vRt | vre | o-values | tads | ynomes | var | vas | VRt | vrr | d-values | tadj | radius | vat | var | vRt | vise | o-values | IADS |
| :---: |
| 5.0 | 5 | -5 | 13 | 1 | -970 | 13.4 | 5.0 | 10 | 9 | 16 | -3 | -900 | 13.1 | 5.0 | 27 | 10 | 11 | 5 | -910 | 14.0 |
| 7.5 | 15 | ค | 23 | 2 | -910 | 13.2 | 7.5 | 15 | 7 | 24 | -1 | -390 | 13.0 | 7.5 | 31 | h | 22 | -3 | -9C0 | 13.2 |
| 10.0 | 35 | 15 | 41 | 7 | -860 | 12.4 | 15.0 | 23 | 10 | 32 | 2 | -870 | 12.8 | 1.0 .0 | 44 | A | 46 | - | -96n | 12.6 |
| 12.5 | 47 | 19 | 50 | 5 | -87n | 11.2 | 12.5 | 35 | 15 | 37 | 2 | -830 | 12.0 | 12.5 | 49 | 13 | 48 | -2 | -830 | 21.1 |
| 15.0 | 55 | 19 | 56 | 9 | -770 | 10.6 | 15.0 | 52 | 3 | 51 | -8 | -8.0 | 11.3 | 15.0 | 84 | 10 | 59 | -1 | - 770 | 11.5 |
| 17.5 | 59 | 16 | 61 | 5 | -720 | 10.4 | 17.5 | 55 | , | 55 | -6 | -760 | 10.7 | 17.5 | 71 | 9 | 67 | -1 | -720 | 11.2 |
| 20.0 | 67 | 21 | 64 | 9 | -670 | 10.2 | 25.0 | 55 | 11 | 56 | 0 | -730 | 10.4 | 20.0 | 70 | 17 | 69 | 8 | -640 | 110.9 |
| 22.5 | 70 | 17 | 68 | 5 | -620 | 9.9 | 22.5 | 57 | 19 | 38 | | -670 | 10.2 | 22.5 | 55 | 10 | 52 | -2 | -610 | 10.4 |
| 25.0 | 63 | $1 ?$ | 63 | 0 | -57c | 1 C .0 | 25.0 | 60 | 17 | 61 | 1 | -620 | 10.2 | 25.0 | 66 | 10 | 63 | -1 | -570 | 10.2 |
| 27.5 | 64 | 18 | 65 | 7 | -540 | 9.1 | 27.3 | 64 | 10 | 64 | | -580 | 10.0 | 27.5 | 68 | 7 | 66 | -5 | -530 | 10.0 |
| 30.0 | 66 | 23 | A5 | 17 | -5n0 | 3.0 | 30.0 | 65 | 14 | 65 | 2 | -510 | 10.0 | 30.0 | 65 | 17 | 62 | 5 | -510 | 10.0 |
| 37.5 | 67 | 30 | 65 | B | -45ii | 9.2 | 32.5 | 63 | 6 | 64 | -3 | -560 | 10.2 | 32.5 | 60 | | 58 | -5 | -470 | 9.8 |
| 35.0 | 65 | 20 | 6. | | -430 | $10 . ?$ | 35.6 | 59 | in | 59 | -2 | -430 | 10.0 | 35.0 | 64 | 11 | 63 | 0 | -450 | 10.0 |
| 37.5 | 6 ? | 17 | 61 | 5 | -410 | 10.8 | 27.5 | 64 | 6. | $6 ?$ | -6 | -440 | 9.6 | 37.5 | 63 | 13 | 62 | 1 | -470 | 10.0 |
| 40.0 | 60 | 19 | 61 | 6 | -390 | 11.0 | 40.0 | 6.5 | 10. | 63 | -1 | -400 | 9.4 | 40.0 | 64 | 13 | 65 | 1 | -390 | 7.8 |
| 42.5 | 60 | 17 | ${ }^{\text {f1 }}$ | 7 | -360 | 10.7 | 42.5 | 50 | 10 | 60 | -2 | -380 | 9.7 | 42.5 | 70 84 | 15 | 68 | 5 | -360 | 9.7 |
| 43.0 | 64 | 13 | 60 | 7 | -340 | 9.7 | 45.9 | 60 | 21 | 62 | ? | -360 | 9.6 | 45.0 | 84 | 20 | 83 | 8 | -350 | 9.6 |
| 47.5 | 62 | 16 | 58 | 7 | -920 | 9.0 | 47.5 | 73 | 38 | 74 | 26 | -290 | 9.4 | 47.5 | 78 | ? 1 | 79 | 8 | -300 | 4.0 |

STORM 14
LEVEL 5

		$\begin{aligned} & \text { STORM } \\ & - \text { STOPN } \\ & \text { SPO/ DIR } \end{aligned}$		$\begin{gathered} \text { DATE } \\ \text { TPUE } \\ \text { HDG } \end{gathered}$											
		OCTANT AZMTH TN POQ CENT MAX WTNOS RADTUS /MOTH/STM/ANGLE/EYERAD/ PRES/ACTUAL/RFI. MAX WD/													
2anius	vat			var	vrt	vre	d-values	tanj	racius	vat	var	vet	VRR	d-values	tanj
5.0	70	-1	9	5	-770	15.2	5.0	7	-17	5	-5	-780	15.6		
1.5	29	2	18	. 7	-750	14.7	7.5	11	-14	14	-3	-770	15.5		
10.0 12.5	34 3	20	22	18	-730 -700	14.5	10.0	19.	-11	20	-1	-790	15.7		
15.0	37	5	26	7	-680	13.8	12.5 15.0	33	-10	314	-1	-8.0	15.8 15.8		
17.5	34	5	26	5	-670	13.7	17.5	38	-6	41	-1	- 780	15.4		
20.0	43	3	30	2	-640	14.4	20.0	43	-6	43	0	- 770	18.9		
22.5	48 57	35	35	1	-620	14.3	22.5	17 54	-6	51	0	-740	1 H .6		
$\begin{aligned} & 25.0 \\ & 27.3 \end{aligned}$	57 68	-	44	0	-610	13.7	25.0	54	-4	53	1	-720	16.2		
37.3	78	-7	50 64	-2 -4	-590 -540	12.8 11.9	27.5 30.0	59	-1	60	$1{ }^{4}$	-680 -650	15.1 15.6		
32.5	83	1	69	3	-510	11.7	32.5	64	6	66	a	-630	14.8		
35.0	8.3	-1	73	${ }_{5}^{2}$	-480	11.4	35.0	96	5	73	10	-570	14.2		
31.5	45	4	45	5	-440	11.3	37.5	76	4	79	10	-530	13.9		
$4{ }^{4} .0$	979	979	999	999	999	999.0	40.0	76	5	79	10	-470	12.4		
$4 \% .5$	-394	497	499	979	979	999.0	42.5	30	5	84	9	-450	11.4		
47.5	¢99	99\%	999	9797	999	999.0 999.0	45.0 47.5	79	9	83	$1 ?$	-470	10.6		
52.0	9\%*	497	999	999	999	99990	47.5 50.0	70	11^{7}	79 79	115	$\begin{aligned} & -360 \\ & -350 \end{aligned}$	10.2 10.0		
$121235 / 90 / E / 5 / 90 / 151962 / 70 / 71 / 50.0112 / 285 / 901 / 6 / 1 / 270 / 151962 / 82184 / 32.5$															
racius	vat	vas	vRT	vRr	o-values	tanj	raoius	vat	var	v®t	vRr	d-values	tanj		
5.0	8	-7	6	6	-690	16.2	5.0	11	\&	20	-5	-6.670	16.2		
7.5	${ }^{8}$	-3	11	8	-690	15.7	7.5	18	4	24	-3	-670	12.5		
10.9 12.5	3	-5	14 22	$\stackrel{8}{8}$	-670 -660	15.4 15.3	10.0	15 37	9	22	-1	-560 -640	14.8		
15.0	13	-1	22	11	-650	15.3	12.5	34	7	38 41	-1 -2	-640 -610	14.5 14.2		
17.5	21	-3	22	6	-560	15.2	17.5	41	9	43	-1	-590	13.7		
20.0	? 6	-7	$2{ }^{28}$	7	-630	15.7	20.0	46	25	50	0	-550	13.7		
22.5	34 37	-6 -10	35 38 8	8	-610	15.4	27.5	39	22	45	0	-530 -500	17.0		
27.0 87.5	37 4 4	-10 -9	38 48	$\stackrel{2}{4}$	-590 -570	14.9 14.6	25.0 27.5	55 57	118	60 60	1	-500 -470	12.4		
3.2	41	-13	41		-5¢0	14.7	30.0	74	21	76	10	-440	10.9		
$3 \cdot .5$	47	-8	45	2	-540	15.1	32.5	82	19	84	7	-390	10.0		
35.9	51	-5	51	8	-530	15.4	35.0	82	10	84	10	-340	3.7		
$37 \cdot$	57	-5	52	7	-500	15.5	37.5	78	21	80	10	-310	10.2		
43.0	56	-5	55	7	-490	15.6	40.0	73	29	76	9	-2p0	10.1		
45.3	59 59	-	58 59	$?$		15.2 14.3	47.5 45.0	72 68	189	73 70	12	-260 -220	10.7 7.9		
47.5	6.7	-4	65	7	-410	13.6	47.5	64	17	66	$1 ?$	- 190	4.9		
51.5	70	-5	71	6	-330	13.5	30.0	58	9	61	15	-170	10.0		

 $121235 / 92 / E / 5 / 90 / 15 / 962 / 70 / 71 / 50.0$

$$
\text { ID024 / } 640908 / 11730 / 667 / 1337-1400 / 0 / 27 / 74 / 145 \text {, }
$$

hadius vat var vrt vrr d-values tadj

5.0	8	-7	10		-550	13.3
7.5	11	- 5	16		-540	-13.5
10.0	16	-4	21	8	-530	13.4
12.5	22	-5	26	7	-530	13.7
15.0	33	-15	34	-2	-510	13.8
17.5	42	-17	39	-5	-500	13.8
20.0	47	-19	43	-6	-460	13.5
22.5	48	-16	46	-3	-4.40	13.5
25.0 27.5	43	-14 -14	44	-1	-420	13.4
27.5 30.0	51	-14	49	1	-400	12.8
32.5	58	-12	50	1	-350	12.3
35.0	65	-13 -13	53 69	3	-340	12.3
37.5	77	-16	68	-5	-3.30	12.3
40.0	8.2	-22	82	-9	-260	11.3
4.5	82	-26	78	-12		9.5
5.0	78	-33	74	-20	-240	月.7
47.5	76	-27	71	-16	-180	8.6
50.0	75	-33	69	-18	-160	9.1

radius	vat	va	VRT	VRR	D-v	tad.
5.0	16	11	12	-2	-540	11.8
7.5 10.0	19	5	18	-9	-540	11.7
12.5	19 18	1	24	-1.2	-530	11.9
15.0	18	2	21	-10 -10	-490 -440	12.1
17.5	24	0	32	-10	-470	12.8
20.0	27	4	36	-7	-460	12.5
22.5 25.0	?9	5	38	-6	-440	12.3
25.0 27.5	31 3	4 5	41	-6	-430	12.5
30.0	36	$\stackrel{8}{9}$	42	-7	-410 -380	12.5
32.5	42	10	48	-1	-370	12.6
35.0 37.5	45	14	48	4	-350	12.1
37.5 40.0	43 50	13	49 54	3	-320	10.6
42.5	54	21	54 59	1	-290 -260	10.0
45.0	6.2	29	64	18	-260	10.1
47.5	70	34	70	22	-190	9.9
50.0	73	31	76	18	-170	9.2

132.

Storn	date	LLVL PlVL	$\begin{aligned} & \text { TINE } \\ & \text { INTRVAL } \end{aligned}$	1-0	L4T	LONG	$\begin{gathered} \text { STOR } \\ \text { DIR } \end{gathered}$	$\begin{aligned} & \text { RYM } \\ & \text { SP } \end{aligned}$	TH	ON	QSTM	art	In	ROR EYE radius	CENT. PRES	vatk	RMW	VRIX
nora	¢¢ (\%)	4780800	1706-1731	0	29	79	280	10	80	E	4	80	147		965	77	42.5	74
dren	54070.7	4787960	15n6-15?	1	79	79	280	10	125	SE	6	125	148	25 ^	965	82	40.0	84
OUR	$64010 \cdot$	4790860	1544-16,92	1	24	79	280	10	10	S	6	170	149	25 A	965	82	45.0	89
DITRA	64cycy	4790 P. 50	1513-1531	ก	29	79	290	10	230	SW	8	730	150	25 A	965	71	47.5	17
ocra	640307	47808300	1450-1509	1	29	79	280	10	110	W	${ }^{\text {a }}$	260	151	25	965	81	47.5	82
		Ras:Ius	ghemootmin weightio voriex averages															
			vat vak		V2t	Var	d-values			tanj		vatz						
		5.6	11 -l		18	-	-1208				20.7							
		7.5	230		27		-1187				20.6							
		10.6	31		34		-1155				20.4							
		12.5	38		40		-1116				20.2							
		15.c	442		43		-1071.				17.9							
		17.5	032		43						19.8							
		70.0	484		50		-1004				19.7							
		23.5	51		53						19.6							
		75.6	53		54		-929.				19.4							
		21.5	$54 \quad 6$		56		-899				19.3							
		31.0	5% 8		1.5		-86?				19.0							
		2.5	6.58		67		-824				18.6							
		34.8	67 . 7		69	1	-824-793				19.2							
		31.5	$70 \quad 11$		72		-753				17.9							
		4 C .	73		74		-753-719				17.6							
		42.5	7212		75	1	-719				17.4							
		45.8	7411		17	1	-651				17.2							
		47.3	$77 \quad 10$		78	1	-623				17.0							
		50.0	767		79		-601				16.9							

smedthed vortex averages

pagius	vat	var	vRt	vrr	d-values	TADJ	vatz
5.0	14	-1	21	-2	-1201	20.7	261
7.3	25	0	27	-1	-1183	20.6	774
10.0	31	0	34	-0	-1153	20.4	1095
12.3	38	1	40	0	-1115	20.2	157.3
15.6	43	2	45	?	-1073	20.0	1884
17.5	43	3	48	3	-1037	17.9	2077
2\%.0	48	4	50	5	-1001	13.7	2361
22.5	51	4	52	6	-963	19.6	2658
25.6	53	4	54	6	-930	19.4	2376
27.5	55	6	58	7	-897	19.3	3146
3 coc	60	8	8.4	8	-861	17.0	3658
32.5	64	8	6.9	9	-826	18.6	4204
35.4	67	8	67	10	-791	18.2	4591
37.5	70	10	72	12	-754	17.9	5032
40.0	72	10	73	14	-719	17.6	5317
42.5	73	11	75	15	-685	17.4	5398
45.0	73	11	77	14	-653	17.2	966日
47.5	76	10	79	13	-626	17.1	5857
50.0	17	8	74	11	-609	17.0	544,3

hatius	vat	var	vet	vre	o-values	tads	radius	vat	var	VRT	VRR	D-valufs	rass	badius	vat	vak	vR ${ }^{\text {t }}$	vRR	d-values	1AOJ
9.9	943	4.94	999.	999	-630	14.3	5.0	23	5	24	1	-970	14.7							
7.9	13	-1	10°	997	-670	13.3	7.5	33	6	28	1	-740	14.5	3.0	28 33	6 2	23 28	5	-760 -730	15.5 14.5
19.0 12.5	73	-3 -3	24 27	?	-600 -580	13.0 13.5	10.0	31	3	33	2	-790	14.3	10.0	36	$\stackrel{1}{0}$	31	-1	-730	14.5 15.1
15.6	21	-2	29	-1	-5.0	13.3	15.0	37	3	40	-	-720 -690	14.2	12.5	37	2	32	\bigcirc	-670	14.5
17.5	23	-1	33	7	-540	13.6	17.5	44	-1	47	-1				3 m	12	33	10	-690	14.7
20.0	34	-1	39	2	-540	13.3	20.9	60	5	56	-1	-670	14.5 14.7	17.5	40	13	35	$11^{.}$	-640	14.0
26.5	35	-1	41	-1	-5?0	13.4	22.5	60	5	62	0	-570	14.7	20.0	49 60	14	44	12	-630	13.5
\cdots	40	-5	4.4	-	-500	13.3	25.0	6.3	6	6.1	2	-530	13.1	25.0	6	5	550	8	-590 -500	12.3
27.5	19 51	-2	50	4	-460	13.3	27.5	65	$\stackrel{9}{9}$	64	4	-490	13.1	27.5	73	\%	$5{ }_{60}$	-	-5n0	13.2 13.2
\because ?	5.	7	$5 \cdot 3$	9	-3, 30	13.2	37.0 32.5	67 64	9	66	4	-460	12.7	30.0	6.7	6	62	4	-470	13.0
3 CO	51	9		10	-350	13.2	35.0	6,6	14	65	4	-410 -370	12.5	32.5	77	5	73.	3	-430	17.7
3 3. ${ }^{\text {a }}$	93	7	57	4	- 320	12.9	37.5	70.	14	70	6	-370 -340	12.5	33.0 37.5	80	5	75.	3	-360	12.9
4	so	-?	56	3	-270	12.8	40.0	72	17	71	9	-320	12.?	40.0	76 79	-1	71 74	-3	-330 -310	12.7
¢T\%	48	-1	56	3	-250	12.6	42.5	71	12	71	12	->9n	12.0	42.5	74	-1	74	-3	-310 $-2,20$	12.5
\cdots	9	4	$5{ }^{8}$	5	-240	12.7	45.0	71	11	71	10	-250	11.9	45.0	73	?	68	-2	-290 -260	12.0
$4 \cdot 5$	r^{2}	$\stackrel{6}{6}$	60	5	-210	12.5	47.5	68	11	70	8	-220	11.6	47.5	74	4				11.7
$0 \cdot 0$	${ }^{18}$	$?$	62	4	-180	12.3	30.0	66	11	68	7	-190	11.6	50.0	75	3	70	.	-170	11.7 11.2

4-itius	vas	var	vrt	ver	d-values	TADJ	radius	vat	var	vRt	VRR	n-values	tanJ	Radius	vat	var	vRt	var	d-values	iADJ
\%.0	970	979	10	0	-830	16.0	5.0	18	11	16	5	-670	14.1	5.0	997	739	20			
7.5	15	?	22	1	-780	16.0	7.9	31	5	29	4	-6,50	14.1	7.5	34	737 -5	28	999	-590 -590	13.9
10.9	13	\%	23	?	-740	11.3	10.0	27	1?	24	4	-6.30	13.9	10.0	39.	-6	34	3	-590	11.5 13.4 17.4
19.0	35	5	26 28 28	-1	-710 -670	16.3	12.5	34	8	31 35	?	-6no	13.6	12.5	35°	-8	38	-3	-569	13.4
17.5	33	2	32	- 2	-620	16.0	17.9 17.5	38	5	35	0	-5an	13.6	15.0	$4{ }^{4}$	-8	44	0	-520	13.5
$2 \% 0$	26	-1	37	-4	-610	16.1	20.0	46	-4	35	-2	-570	13.3	17.5	55	-5	50	-1	-490	13.7
27.5	33	-?	42	-4	-600	15.9	22.5	59	-7	54	-3	-540	14.5	22.5	67	-5 -7	54 55	-2	-470	13.7
1%	37	-1	47	-4	-580	15.3	25.0	58	-1	54	-2	-49n	14.3	25.0	60	-10	58	-5	-440	14.1 14.6
27.5	44	0	51	-3	-550	14.5	27.5	56	-1	52	-3	-450	14.2	27.5	61	-11	57	-5		14.6 14.7
30.3	45	0	52	-2	-510	13.7	30.0	56	0	52	-3	-4, 0	14.2	30.0	60	-11	58	-6	-370	14.7 14.6
37.5 35.0	6.7 4.9	5	51 51	$\frac{1}{3}$	-470 -440	13.6 13.7	32.5 35.0	56 68	5	52	$\frac{1}{2}$	-4n0	14.3	32.5	59	-12	58	-4	-350	14.6
37.5	4	9	51	4	-460	13.3	37.0	$\underline{61}$	5	59 50	?	-360 -320	14.1 13.8	35.0 37.5	60 6 6	-7 -7	58 59 59	-2	-320 -300	17.7
40.5	51	7	5 ?	3	-370	13.0	40.0	62	7	57	4	-300	13.3	40.0	64	-6	60	-2	- 300 -200	12.9 12.5
42.5	53	11	54	5	-350	13.0	42.5	65	6	59	6	- 260	12.3	42.5	6.2	-8	58	-1	- 2150	12.5 12.2
45.0	57	12	56	${ }^{8}$	-320	13.1	45.0	67	7	57	4	-260	12.5	45.0	999	999	999	997	499	12.2 999.0
47.5 90.0	560	14	47 58	$\stackrel{7}{6}$	-300 -280	12.9 12.6	47.5 30.0	$\begin{array}{r}67 \\ \hline 99\end{array}$	49	-599	$9{ }_{9}^{6}$	999	2973.0	47.5	994	999	997	999	999	9999.0
																99	999	999	499	994.0

$$
\begin{aligned}
& \text { STORM TPUE OCTANT AZMTH TN ROR CFNT MAX WTNOS PANIUC } \\
& \text { SDD/ OIR, HDR iNOTH/CTM/ANGIF/FYFDAN/ DNFS/ACTUAL/REL IMAX WD, }
\end{aligned}
$$

Stoam	Qupe	ilvL Plvt	$\begin{gathered} \text { TIMF } \\ \text { INTEQVAL } \end{gathered}$	1-0	lat	LONG	$\mathrm{SiP}_{\text {Stom }}$		TH.	QN	QStm	ARL	10	RDR EyE RADIUS	CENT. PESS	vatx	R ${ }^{\text {d }}$	vrix
cora	548707	\%	1359-1492	1	$?$	$7{ }^{\circ}$	280	10	295	f	5	100	154		965	58	50.0	
0cza	840407	9190715	1836-1990	1	29	79	280	10	325	s	6	160	155	25 A	965	56	50.0	58
ocira	$64040 \cdot 9$	9790715	2043-2111	1	29	79	280	10	35	SW	7	210	156	25 ^	965	72	40.0	71
0324	640.0. ${ }^{\text {a }}$	$\rightarrow 880715$	1535-1549	1	29	79	280	10	90.	H	1	270	157		965	67	45.0	59
dura	86.0707	2000715	10n1-1.93	n	27	79	280	10	270	4	1	270	15n	25 A	965	80	35.0	75
Dran	060904	94\%0 715	1513-1527	\square	27	79	280	10	370	N	2	370	159	25 A	965	64	40.0	60
			unsmbetheo	wFIG	hted	Vorte	x aver	race										
		rapius	vat var		vit	vR	Rr	D-V	lues		tads		vat?					
		5.6	$27 \quad 5$		20		2		00		14.7		745					
		7.5	260		24		1		77.		14.3		772					
		10.3	29		28		0		56'		14.2		905					
		17.3	31		32		0		27		14.1		1058					
		15.6	3%		35				00		14.1		277					
		17.5	39		19		1		575		14.1		6.97					
		2¢.6	45		46				58		14.1		261					
		22.5	$51-0$		50		1		22		14.0		277					
		75.0	$53-2$		53		1		94		14.0		2965					
		27.5	$57-2$		56		-		64		13.9		3365					
		32.8	57 - 0		57		0		33		13.6		3371					
		32.5	531		59		1		99		13.5		3529					
		35.0	60.4		6\%		3		61		13.3		3733					
		37.5	$60 \quad 4$		60		2		31		12.7		379					
		4 CO	62		61		1		07		12.7		3978					
		42.5	60		61		3		79		12.4		3806					
		45.0	$60 \quad 6$		62		4		00		12.4		393					
		4,7.3	607		62		5		25		12.1		3818					
		5c. ${ }^{\text {c }}$	6\% 4		65		3		93		11.9		265					

smoothed vortex averages

qar.ius	vat	vak	vRt	vre	d-valies	tanj	vatz
5.0	29	5	22	1	-692	14.5	\%sh
7.1	26	0	25	1	-675	14.3	734
1 cos	28	0	78	0	-654	14.2	415
12.5	11	0	32	-0	-627	14.1	107
15.6	34	0	35	0	-600	14.1	1327
17.5	39	0	40	0	-577	14.1	1741
72.0	45	0	45	0	-554	14.1	2260
22.;	50	-0	49	-0	-523	14.0	2695
25.6	53	-1	53	-1	-493	14.0	2998
27.5	46	-1	56	-0	-464	13.8	3275
30.6	57	0	57	,	-432	13.7	3397
37.5	58	1	5.	1	-397	13.5	3545
34.0	to	3	60	2	-362.	13.3	3700
37.',	so	,	60	2	-333	13.0	3814
40.0	61	2	60		-306	-12.7	3894
42.5	¢1	2	So	3	-281	12.5	3838
45.0	60	6	62		-258	12.4	3829
47.3	61	8	62	4	-225	12.1	3908
5 c .0	63	5	64	3	-204	11.9	4175

ドトに へし「

 FEET，MB，TIMF OUT／I ATMONGヒ，In／． STORN TOUE OCTANT AZMTH IN RDR CFNT MAX WTNIS RADIUS SPI／DIR，HDG ANTH／STM／ANGILEIEYERAD／PRES／ACTUAL／RFL MMAX WDI
hadius vat var vat var d－values tadj

5.0	28	\square	25	5	－400	9.1
7.5	36	3	33	3	－380	8.6
10.0	38	5	35	4	－360	8． 5
12.5	49	8	37	6	－340	8． 3
15.0	$5 ?$	9	45	7	－300	1.6
17.5	59	19	51	10	－2．50	7.3
20.0	68	16	63	14	－210	6.9
22.5	\％6	15	61	16	－1170	6.4
25.0	n4	10	60	8	－150	6.3
27.5	67	14	62	12	－120	6.4
30.0	63	16	65	16	－90	8.2
37.5	6,7	17	63	15	－60	6.0
33.0	62	14	60	13	－30	6.7
37.5	61	18	58	14	0	6.5
40.0	57	14	58	17	20	6.4
42.5	64	21	60	18	40	6.4
45.0	h7	22	60	15	70	6.3
47.5	53	13	55	12	1 co	6.1
50.0	57	10	62	12	120	6.2

IDCNA／640909／13800／618／1627－1640／0／29／79／161／

radius	vat	var	vRr	vRr	n－values	IADJ
5.0	12	3	20	1	－310	9.2
7.5	16	1	23	1	－330	9.6
10.0	19	－1	23	1	－370	9.4
12.5	17	2	27	0	－310	8.7
15.0	32	0	38	0	－250	3.1
17.5	43	－9	50	－8	－220	8.0
2 c ． 0	4.4	－1	50	－2	－210	8.5
22.5	4.4	－2	50	0	－190	9.0
25.0	44	2	48	－2	－150	8．${ }^{\text {¢ }}$
27.5	48	－4，	45	－4	－170	ค． 3
30.0	40	－7	49	－5	－100	7.3
32.5	52	－4	55	－4	－70	6.6
35.0	47	0	52	－2	－50	0.6
37.5	47	－1	52	1	－20	6.5
40.15	949.	999	979	999	999	999.0
42.5	¢ッワ	วํา	9 9\％	994	999	999.0
45.0	394	939	999	999	999	999.0
47.5	997	999	999	979	779	999.0
50.0	999	999	999	499	999	999.0

mantus	Vit	var	VRT	VRR	d-values	TADJ	ramus	vat	var	VRT	VRR	o-valufs	TADJ	ranius	vat	var	VR T	VRR	o-values	tanj
9.0	25	11	. 13	9	-1460	22.9	5.0	70	-4	18	7	-1330	22.7	5.6	12	-4	24	-6	-1290	23.:
7.5	53	10	$\cdots 3$	8	-1440	23.0	7.5	43	-9	38	0	-1250	21.9	7.5	42	-7	47	-9	-1230	21.0
$1 \mathrm{~m}, 6$	1 n 3	12	74	9	-14.0	22.4	10.0	73	-12	74	-2	-1210	21.3	10.0	65	3	73	2	-1100	21.4
12.5	111	-6	101	-10	-14.00	21.8	12.5	9 ค	-1	93	10	-930	20.8	17.5	8.4	-3	95	-4	-1010	20.8
15.0	110	3	91	-1	-1300	21.0	17.0	110	-2	105	7	-750	20.2	15.0	33	-9	95	-11	-810	20.2
17.5	103	1	95	-3	-1120	20.2	17.5	96	-?	93	A	-6.30	19.4	17.5	ก0	-13	93	-15	-670	19.9
$2 \mathrm{P} \cdot 0$	129	-1	P. 6	-5	-840	17.6	20.0	97	-7	84	3	-570	17.5	2 C .0	75	\rightarrow	83	-10	-610	19.7
22.5	33	?	84	-2	-740	20.0	22.5		-4	77	6	-500	14.5	22.5	73	-3	83	-9	-500	19.3
4.0	31	1	R 2	-3	-590	20.2	25.0	81	0	77	9	-420	19.4	25.0	74	-16	8.	-18.	-4.50	19.1
27.5	8	?	03	-2	-510	20.1	27.5	7.1	-2	76	8	-36.0	19.3	27.5	73	-12	83	-13	-300	19.1
30.7	$\stackrel{9}{97}$	-	81	-2	-470	2 C .0	310.0	74	-2	69	8	-370	19.1	30.0	71	-16	76	-17	-340	19.1
32.5	35	-2	75	-h	-4.0	19.7	32.5	71		66	4.	-780	18.8	32.5	67	-17	78	-14	-300	13.月
35.0 37.5	9 78	-1	70	-4	-350 -320	13.2 18.8	33.0 37.5	69	-5	63 66	${ }^{4}$	-230 -200 170	19.3)	36.0	65	-13	72	-14	-250	13.8
451.0	75	5	67	-4	-320	18.9 18.7	37.5 40.0	68 67	3	66 64	12	-200 -170	17.1 11.9	37.5 40.0	61 61	-16 -19	73 75	-17 -20	-230 -220	18.7
42.5	74	2	63	-3	-170	18.7	42.5	$6{ }_{6}$	10	60	0	-150	14.0	42.5	63	-19	71	-	-	10.5
46.0	76	3	65	-1	-160	18.5	45.0	65	-17	61	-8	-130	19.0	45.0	60	-13	71	-13	-180	13.3
49.5	75	b	67	0	-150	18.3	47.5	63	-16	55	-6	-100	14.6	47.5	58	-11	68	-12	-130	18.2
31.0	75	4	66	-1	-160	18.1	50.0	62	-14	59	-4	- 20	17.?	50.0	57	-7	68	-7	-140	18.1

Strey	cate	7.VL	PLVL	$\begin{gathered} \text { Tive } \\ \text { LNTERVAL } \end{gathered}$		1-0	lat	LOHG	$\begin{aligned} & \text { STORM } \\ & \text { OIR SPO } \end{aligned}$		rH	QN	QSTM	ARL	10	RDR EYE RADIUS	$\begin{aligned} & \text { CFNTI } \\ & \text { PRRS } \end{aligned}$	vatx	R.Vm	VRTX
glanys	6407i7	32.3	907		550	0	24	64	300	9	5	N	2	5						
glabrs	640917	3240	901		335	0	24	${ }_{64} 6$	300	9	90	N	4	90	163	13	949 954	111	12.5	101
glabys	040717	1240	907	137	4 ns	1	24	64	300	9	270	E	4	100	164	13	954		15.0	100
glaicys	$54 \mathrm{Col}{ }^{7}$	3210	907		527	I	24	64	300	9	$\stackrel{10}{ }$	${ }_{5}$	7	195	164	13	954 948 9	110	15.0	105
glacrs	640717	32.0	י07	123	316	I	74	64	300	9	35	sw	7	225	166	13	954	84	12.5	109 75
geners	640917	3240	907		436	0	24	64	300	9	260	*	8	260	157	13	954	93	12.5	98
unsmothed weighte vortex averages																				
rancus				vat	vaie		vat	vя	d-yalues			tadj vat2								
		5.8		21	-2		19	-	-1364			22.0 467								
		7.5		47	-3		40	-	-1328			22.32357								
		12.0		20	0		74					$\begin{array}{ll}21.9 . & 6716 \\ 21.2 & 9939\end{array}$								
		12.:		94	-6		98	-5	-1230											
		15.6		100	-2		77	-2	-1155-960			$\begin{array}{rr}21.2 & 9739 \\ 20.4 & 10159\end{array}$								
		11.5		91	-2		91	-	-960-809			19.9 946?								
		20.0		84	-2		32	-	-659.			19.6								
		22.5		79	-0		79		-657.-576-495											
		$2 \cdot 6$		77	-0		76	n				19.76362								
		27.3		76	2		77		-495			$\begin{array}{ll}19.6 & 6037 \\ 10.5 & 5932 \\ \end{array}$								
		$3 \mathrm{n} \cdot \mathrm{a}$		75	2		76	-	-433-387				19.4							
		32.5		73	-1		73	-0	$\begin{aligned} & -339 \\ & -293 \end{aligned}$				19.2	5414						
		35.0		70	-1		m	-1					19.0	4980						
		37.8		66	1		69						18.9	4480						
		40.0		65	-2		67	-1	-261				10.7	43634274						
		42.5		65	0		63	-2	-219				18.6							
		45		6,4	-3		64	-2	-162				18.5	42744198		.				
		47.3		63	-4		61	-3	-142				18.5	419841284						
		5 c .0		64	-4		6.4	-4	-133			18.3 . 4193								

antus	vat	var	vRt	var	o-values	tanj	radius	vat	VAR	vri	vRr	0-valufs	IADS
5.0	s	5	15	1	-1210	20.月	5.0	26	1	40	ค	-1170	10.0
$\because .5$	14	-2	10	-6	-1210	19.8	7.5	48	2	53	15	-1100	13.4
17.0	33	-6	25	-11	-1170	18.5	10.0	71	12	83	1 n	-990	13.7
12.5	$4{ }_{4}$	-9	43	-14	-11.0	17.5	12.5	91	6	94	14	-820	12.1
15.0	59	-10	50	-15	-1150	15.5	15.0	90	4	91	10	-610	10.6
17.5	30	-37	57	-25	-770	13.6	17.5	73	0	e 3	7	-580	10.4
20.1	75	-14	71	-20	-840	12.2	20.0	6.6	1	74	B	-400	$1 \mathrm{ir.4}$
32.5	50	-18	44	-7	-740	11.4	22.5	6.3	0	74	2	-4,70	10.1
25.0	50	-16	46	-22	-650	10.5	25.0	61	-5	69	0	-360	10.2
27.3	49	-?	45	-11	-560	9.8	27.5	61	-5	70	1	-300	9.)
3 l	73	-17	72	-27	-490	9.9	30.0	59	-7	67	-2	-260	9.7
32.5	7	10	78	1	$-4 \mathrm{CO}$	4.8	37.5	56	-6	65	-1	-220	10.7
19.6	${ }^{515}$	-r.	74	997	-300	9.8	35.0	58	-6	63	-	-190	4.7
17.	37	997	8 g	997	-210	10.1	37.5	59	-5	58	-1	-1/0	7.5
4 n .6	31	49%	86	497	-150	9.7	47.0	52	-2	61	2	-170	4.5
4	96	20.3	ns	997	-100	9.2	42.5	'5	-6	62	0	- 0	9.4
43.0	32	471	8 s	997	-60	9.0	43.0	$5 \cdot 4$	-11	63	-5	-70	9.5
47.5	91	370	90	993	-30	8.9	47.5	52	-n	60	-6	-40	7.7
sr.c	R1	999	но	999	-10	9.0	50.0	49	-	52	-5	- 1.0	4.4

 ratije vat var vet vir

$5 . n$	90	1	18
1.5	32	-1	27
10.0	${ }^{4}$	-7	34
12.5	\%	1	82
13.0	$\square い$	-	96
17.5	13	-1	$n 9$
20.0	\cdots	-5	85
22.3	71	- ?	مf
25.0	97	5	33
27.5	9	2	81
3.13	9	-3	81
32.5	33	-?	76
35.0	32	-4	75
3.5	90	-2	74
$4 \mathrm{C} \cdot 0$	77	2	71
42.5	74	,	6.
45.0	71	4	66
47.5	64	0	65

D-Values
-1100
-1080
-1040
-910
$-8 n 0$
-630
-540
-440
-360
-300
-210
-710
-170
-140
-100
-80
-60
-30
10
$1 A 0 S$
17.2
15.8
14.3
12.3
11.2
11.1
10.8
10.0
9.9
10.1
9.7
9.3
8.8
8.9
8.4
7.2
8.9
8.4
8.7

RADIUS	VAT
5.0	31
7.5	60
10.0	8.2
12.5	8.1
15.0	78
17.5	71
20.0	6.4
22.5	61
25.0	58
27.5	54
30.0	50
32.5	46
35.0	65
37.5	51
40.0	50
42.5	49
45.0	51
47.5	49
50.0	48

VAR	VRT
7	27
13	69
6	90
17	89
15	84
7	78
7	72
4	66
6	67
7	57
8	51
0	56
-3	381
-3	58
1	52
9	55
11	49
13	56
	50

vur	n-valufs	[AI) ${ }^{\text {d }}$
-2	-117n	14.5
4	-1000	15.7
-3	-	+3.4
2	-70	12.0
6	-5\%0	10.7
?	-430	16.1
-2	-420	10.0
-5	-360	1 c .1
- 3	-310	10.1
-3	-270	9.8
-1	99.	9.9
-9	099	$1{ }^{10} 1$
-12	999	9.9
-10	999	9.5
-6	94\%	\% 6
-1	999	1.4
1	999	9.0
4	999	ฯ.0

/9/300/195/ N/3/ $20 / 13$ /945/107/107/15.0						
patius	vat	var	VRt	VRr	d-values	tans
5.0	24	-6	12	-4	-1530	16.7
7.5	51	-4	30	-3	-1490	14.0
10.0	77	-3	69	-3	-138C	12.6
12.5	98	6	95	5	$-1 ? 10$	11.1
15.0	107	-4	107	-5	-1030	10.1
17.5	28	-s	87	-8	-890	9.6
20.0	92	-4	84	-6	-770	9.6
2e.5	96	-4	75	-5	-640	9.7
25.0	83	6	71	4	-620	9.9
27.5	85	3	73	1	-560	10.2
30.0	96	-2	78	-3	-5ro	9.7
32.5	\square_{4}	0	74	-2	-460	0.9
35.0	71	0	69	2	-410	8.8
31.5	76	-5	67	-7	-370	8.7
40.0	73	-?	63	-5	-340	8.7
42.5	69	-4	60	-6	-300	A. 6
45.0	66	-4	57	-6	-290	8.5
47.5	6.3	-2	55	-5	-250	8.3
50.0	72	-2	52	-5	-230	8.2

/GLADYS/B40917/9980/715/1910-1950/0/24/64/173/

radius	vat	var	VRT	VRR	o-values	tioj
5.0	13	4	24	7	-1500	19.3
7.3	32	3	30	6	-1470	17.9
10.0	6.4	-5	87	-2	-1410	16.1
12.5	96	-8	102	-2	-1240	14.5
15.0	90	-?	96	3	-1070	12.0
17.5	82	-4	90	1	-910	10.4
20.0	73	-3	${ }^{80}$	2	-810	9.9
2?.3	68	-4	78	2	-730	10.2
25.0	65	-3	72	?	-670	10.3
27.5	62	-4	70	1	-620	10.1
30.0	61	-4	66	1	-550	10.1
32.5	57	-3	63	2	-500	10.7
35.0	53	-3	61	1	-460	9.5
37.5	53	-4	61	1	-420	9.4
40.0	56	-7	64	-2	-380	4.7
42.5	60	-5	70	-1	-360	8.9
45.0	55	2	63	7	-340	9.0
17.5	53	-10	59	-5	-310	8.9
50.0	54	-8	66	-3	-290	8.3

ramtus	vat	vas	VRT	vrr	o-values	tads	rantus	vat	vas	vRt	vrr	n-values	tanj
3.0	20	-2	18	8	999	9.7	5.0	7	0	14	-6		
7.5	35	-3	31	6	999	7.2	7.5	1.	3	76	-4	999	9.4
10.6	70	-13	71	-4	999	4.7	10.0	44		50	0	909	7.2
12.5	93	-12	93	-3	999	1.9	12.5	77	1	83	-1	974	5.10
	$\because 9$	-4	93	5	979	1.7	15.0	97	0	33	-7	979	3.9
17.5 20.0	? 8	-7	83 80	$?$	979	1.0	17.5	77	-1	${ }^{1} 4$	-7	99.9	2.2
?2.5	9	-	71	5	999 999	$\stackrel{.}{ } \cdot \mathbf{3}$	20.0 22.5	78 69	-1	79	- -9	99.1	1.8
25.0	$7{ }^{3}$	-	71	3	997	-.	25.0	60	-1	73	-9	779	$\stackrel{.7}{1.3}$
27.5	93	-9	77	0	979	-. 4	27.5	72	10	78	-	$\bigcirc 9$	+1.3
30.0 $3: 5$	78	-1 2	73	1^{8}	779	-. ${ }^{\text {a }}$	31.0	65	15	71	8	979	1.0
3 3 .0	-	\rightarrow ?	70 65	17	999 999	-. 2	32.5 35.0	62 55	8	68	-	990	. 1
37.5	8	-5	59	4	999	0.0	37.5	60	- 1	$6{ }_{6}$	-7	979	$\rightarrow \cdot 3$
40.0	65	-7	60	1	999	0.0	40.0	59	5	64	-7	959	3.0 0.0
42.5	6.7	1	82	9	999	-. 1	42.5	61	13	67	5	397	-. 1
45.0 47.5	6,6 72	-1	61 67	$\stackrel{7}{\square}$	999	-.3 -.2	45.0 47.5	5	3	61 59	- -5	799	- 1
5n.c	6.6	0	61	9	999	-. 1	50.0	53 5	3	59	-5		-. 3

146.

STORM . 15 level

store:	2nte	zivi plyl	1:7 ${ }^{T}$	(ersal	- La	va	${ }_{\text {cte }}^{\text {StCRM }}$		on	ostm	ARL	10		${ }_{\substack{\text { centige } \\ \text { pres }}}^{\text {che }}$	vatx	RNW	vRTX
	${ }^{6} 41001$	3740939	14.47	1512	24		310	180									
HLCA	buicol	3240 3240 2007 907	$\xrightarrow{1320}$	134, 14	24		310	$5{ }_{5} 280$	E	4	$8{ }^{5}$		9	950 950	110	12.0	104 104
hilun	641001	3240 907	1343	1407	${ }_{24}^{24}$	1	310	$\begin{array}{lll}5 & 263\end{array}$	${ }_{6}^{5}$	${ }_{8}^{6}$	${ }_{260}^{180}$	${ }_{382}^{381}$	${ }_{9}^{10}$	950 950	${ }_{83}^{89}$	15.0	${ }_{86}^{94}$
		racius	UVSMODTH:O wfichter vortex averages														
			vas	var	VRT	VR		D-val.ues		TADJ							
		5	35 50	${ }_{13}^{5}$	${ }_{5}^{33}$	4		-1547		24.3							
		16.6	79	11	79	12		-		24.0 23.4							
		12.5 15.0 18.5	9\%	-	\%	-1		-1173		22.7	90						
		11.5	87	\bigcirc	$8{ }^{8}$	-		- -1021		22.1	${ }_{7}^{83}$						
		22.0.	${ }_{8,}^{83}$	0	${ }_{8}^{8.2}$	-		- 718		${ }_{21.5}$	69						
		25.0	80	-2	${ }_{70}$	-0		-7683		21.2 21.9 20.9	69						
		37.3	76 75	-9	75 74	-9		-633		20.8	59						
		32.9	10	-11	${ }_{70}$	-11		-593		20.6	${ }_{5}^{58}$						
		34.0 37.5	67	-6	67	-6		-515		20.5	46						
		48.6	60 6	-6	66	-8 -7		-478		20.4 20.2	4						
		${ }^{4.2 .5}$	648	-98	${ }_{6}^{63}$	-5		-416		20.0	41						
		41.3	$\stackrel{63}{98}$	${ }_{-8}^{-7}$	62 60	-7		-395		19.9 9.9	4						
		зс.6	54	-11	52	-11		-350		20.1	${ }_{302}^{362}$						

 /5/310/135/SE/5/135/9, $950 / 93 / 95 / 15.0$

ramius	vat	var	vrt	ver	d-values	Inds
5.0	20	-17	20	-19	-1340	19.9
7.5	37	-11	47	-i7	-1290	17.5
10.0	73	-21	70	-26	-1180	17.7
12.5	100	3	104	-2	-930	1.69
15.0	92	-12	98	-17	-830	15.7
17.5	73	-10	79	-14	-680	15.?
20.0	63	-10	72	-14	-560	15.1
22.5	63	-5	69	-8	-4n0	14.3
25.0	61	-9	67	-11	-470	15.2
27.5	58	-8	63	-11	-3,0	15.6
30.0	57	-	59	-9	-320	15.3
32.5	49	-	58	-7	-270	14.2
35.0	54	-1	58	-4	-7.40	13.3
37.5	50		55	-3	-210	13.6
40.0	49	-1	53	-4	-197	13.7
42.5	47	-2	51	-5	-150.	13.7
45.0	46	-1	52	-4	-130	13.4
47.5 50.0	47	-4	53 52	-7	-120 -70	13.5 13.1

lever 3

STORM 16 LEVEL

aterius	Vat	VAR	vet	vRr	d-values	tadj	radius						
¢. 5	739	-90	99%	999			Rantus	Vat	var	VRT	VR9	n-values	tads
$7{ }^{7}$	773	27	999	999	-460 -330	2.6 2.0	5.0	15	939	21	999	-4.0	2.2
19.5 12.5	3,	\% 79	999	999	-230	${ }_{1} .6$	7.5 10.0	36 46	499 -2	34	997	-380	1.7
12.5	- 489	จาํา	993 909	999	-90	1.5	12.5	46 9 9	-2	51 98	4	-270	1.4
17.5	91.	ว9า	999	959	20	1.0	15.0	72	-?	77	3	-170	$1 . ?$
20.0	70	-14	61	-13		$\cdot 9$	17.5	$?$	0	64	5	140	$\stackrel{8}{6}$
27.5	67	-13	59	-12	250	$\stackrel{8}{8}$	20.0	37	-4	73	2	200	96
23.0	${ }_{6}$	-10	${ }_{5}^{6}$	\rightarrow	310	.7	25.0	64 68	-3	$6{ }_{6} 6$	6	760	- ${ }^{\text {d }}$
27.5	5?	-8	55 52	-7	360	. 7	27.5	56	- 6	64 61	-1	310	. 5
32.5	51	-?	4.7	-2	340 430	.8	30.0	52	-3	56	-	360	9
37.0	is	-9	43	-9	450	.7	32.5 35.0	46	-4	50	1	420	9
37.5 40.6	$4{ }_{4}^{4}$	-11	38	-3	480	. 6	37.5	43 42	-1	48 45 48	4	470	- 6
42.5	¢	-10	43	-9	510 530	$\cdot 7$	40.0	43	5	$4{ }^{4} 7$	10	740 500	${ }^{-6}$
45.0	93	9วา	999	993	540	8	42.5	44	3	43	8	510	$\cdot{ }^{2}$
47.5	377	9ッ)	999	999	550	.88	47.0	44	7	42	12	510	0.0
50.0	73	97%	977	939	590	. 8	50.0	47	1	45 47	6	420 530	-. 4

qastus	vat	vas	VPT	VRR	d-values.	tadj	radius	var	var	Vki	vRr	D-valufs	
\%.9	$3 / 4$												
7.9	6.5	-11	41	-4	-150 -70	2.7	5.0	13	-1	19	3	-5.90	iAdj
10.0 10.5	55	-4	52	-	-70 30	2.3 2.2	7.5 10.0	32	4	37	8	-5.0 -4.50	1.2
12.5	9.7	-8	8	-1	150	${ }_{1.8}$	10.0 12.5	70 77	16	75 81	20	-290	${ }^{-5}$
17.5	76	-11 -4	73	-5	270 760	1.6	15.0	76	-i	181 81 81	13	-190 -20 -100	$: 4$
$2 \mathrm{2n}$ -	72	-5	77	$\stackrel{1}{1}$	360 430	1.0 .9	17.5	70	?	74	6	-20	8
27.3	$\bigcirc 9$	-6	68	1	470	. 7	20.0 22.5	${ }_{64}^{64}$	- ${ }^{1}$	67	5	150	. 3
2\%.0	AS an	-10	66	-3	520	. 6	22.5 25.0	64 57	-2	69	3	210	$\stackrel{3}{ }$
3 n . 3	98	-5	${ }_{6}^{62}$	-4	550 580	$\stackrel{8}{8}$	27.5	53	-2	58	2	260 370	:3
32.5		-2	52	4	6.20	$\stackrel{.8}{8}$	30.0	52	-6	57	-2	320	$\cdot 3$
35.6 37.5	59 5 5 5	-4	54	3	\bigcirc	-8	35.5 15.0	55 58 58	-9	60	-5	360	.3
$4{ }_{4}$	55 55	${ }_{-}^{-3}$	51	4	670 690	- 6	37.5	999	99%	${ }_{9} 98$	989	400 499	949.3
42.5	53	-4	49	3	690 710	. 5	40.0	977	973	979	999	979	999.0
45.0 47.6	4.	-4	48	3	730	.5	42.5 45.0	999 999	997	999	999	994	999.0
47.5 50.0	4.3 4	n -5	41 41	${ }_{2}^{7}$	750	. 4	47.5	999 999	999	999	999 999	999	999.0
				2	770	. 4	50.0	997	999	999	999	999	979.0

STORM 16 level 4

zantus	vat	var	vri	vRR	d-values	tabj	radius	vat	var	vRt	vrr	b-values	TAl)
5.0	11	-2	18	-8	-370	4.4	5.0	34	,	30	-3	-170	3.0
7.5	34	2	35	-3	-320	3.7	7.5	so	14	59	8	-40	1.4
10.0	79	-15	94	-20	-260	1.6	10.0	90	994	BC	999	150	-. 1
17.5	95	-5	91	-9	-140	1.0	12.5	95	979	85	979	270	-. 4
15.0	74.	4	79	2	-20	0.0	15.0	80	nno	80	997	330	-. 6
17.5	70	6	75	3	110	-1.0'	17.5	75	979	75	997	460	-. 9
20.6	67	2	76	0	180	-1.3	20.0	69	999	68	949	520	-.
22.5	f4	-3	71	-6	250	-1.4	21.5	1.4	ก99	64	971	570	-.h
25.0	62	-	6.7	-6	290	-1.7	23.0	60	999	60	999	610	-.4
27.5	57	-1	65	-2	310	-1.8	27.5	56	-5	55	-11	6.40	-. 4
3 C .0	51	-1	55	-4	340	-1.9	30.0	51	0	51	-1	heo	-. 7
32.5	51	5	56	4	390	-2.0	37.5	4.	1	51	-5	700	-. 3
35.0	57	5	6.4	3	410	-7.2	35.0	47	-3	50	-9	730	-1.0
31.5	5 ¢	7	64	7	450	-2.0	37.5	49	-?	49	-9	760	-1.1
40.0	54.	6	62	3	490	-1.7	40.0	51	-1	52	-7	780	-1.4
42.5	49	4	52	1	510	-2.0	42.5	53	0	54	-6	H00	-1.2
45.0	15	8	47	4	530	-2.1	45.0	53	3	53	-5	月20	-1.1
47.5	45	?	54	-1	550	-2.3	47.5	49		49	-3	850	-1.3
30.0	48	0	56	-2	580	-2.5	50.0	49	4	53	-3	890	-1.4

MILSA/B41001/18290/520/1526-1545/1/24/91/397 / $51.310 / 100 / \mathrm{NH} / 1 / 297 / 9$ /950/74/76/12.5

anatus	vat	vap	vat	ver	d-valufs	tad
5.0	26	5	23	-1	-17	. 9
7.5	3	11	38	4	-13	. 6
10.0	58	7	60	0	-3	. 6
17.5	74	in	76	3	16	. 6
10.0	70	10	72	3	21	. 7
17.5	74	10	76	3	30	. 7
23.0	72	10	74	3	42	- ${ }^{\text {¢ }}$
22.5	A 7	12	67	5	49	. 8
25.3	63	11	62	5	54	- 8
27.5	59	12	58	6	60	. 8
30.0	54.	16	$5 \cdot 1$	-	64	.9
37.5	48	6	47	0	65	. 9
35.0	46	8	47	1	68	1.0
37.5	4	10	45	4	70	1.1
413.0	4	月	47	2	73	1.0
42.5	43	10	42	3	75	1.0
45.5	44	5	47	-1	77	- 8
47.5	49	3	49	-4	78	. 6
sc.o	52	0	52	-7	81	. 4

STス2"	OATE	! $1 . \mathrm{vL}$	9LVL			1-0	lat	Loivg		$\begin{aligned} & \text { STORM } \\ & \text { ORR SPD } \end{aligned}$		TH	ON	QSTM	ARL	10	RDR FYF radius	$\begin{aligned} & \text { CFiNT- } \\ & \text { PRES } \end{aligned}$	vatx	RH^{H}	VRTX			
hiliza	bitcal	10.720	520		635	1	24	91		310	5	230	NE	3	50	397	\bigcirc	950	79	20.0	61			
milea	541001	18298	520		n:3	1)	24	91		310	5	120	SE	5	120	393	9	950	90	12.5	86			
hilon	sitiont	18208	$3 ? 0$		134	1	74	91		310	5	355	S	6	175	394	9	950	81	12.5	86			
milea	stirgt	19230	523	180	1212	1	24	91		310	5	0	s	6	180	395	9	950	77	12.5	87			
hidoa	6.icot	1980	520		791	0	24	91		310	5	245	SW	8	245	396	9	950	85	12.5	91			
Milda	butber	19200	520		545	I	24	91		310	5	120	NW	1	297	397	9	930	74	12.5	75			
milien	sul0.:	1390	520	181	P35	0	74	91		310	5	305	NW	1	305	398	8	950	${ }_{5}$	12.5	85			
uasmogthed heighted vortex averages																								
-	asinius			vat	va		vRt		VR	d-values			tanj		vata									
		5.0		25	-1		25		-1	-301				2.7	774									
		7.6		44	1		43		1	$\begin{array}{r} 328 \\ -228 \\ -130 \end{array}$				2.0										
		10.0		65	-0		67		1			1.2												
		12.5		$8{ }^{84}$	0		85							$\begin{array}{r} -120 \\ 0 \end{array}$			1.0		77					
		15.0		77	0		18				103			. 6										
		17.5		73	3		73				198			. 2										
		$2 \mathrm{2c} 0$		68	-2		$3{ }^{3}$		-1		199264			. 1										
		22.5		65	-2		${ }_{5}^{59}$		-2		264319			. 1										
		25.0		62	-2		H2		-2		362362			-1										
		27.3		59	-4		58		-2		3389			-1										
		3 O		54	-1		${ }_{5}{ }_{4}$		-3.		399426			-1										
		32.5		51	-1		51		-1		460			- 0										
		35.0		51	-2		52		-0		487			-. 0										
		37.5		49	-0		$4 ?$		-2		571			-. 1										
		4 Cr \%		43	-		$\because 8$		-0		542			-. 1										
		4.5		49	-0		47		-0		558571			-. 2										
		45.0		47	2		4		-0					-.?										
		47.5		45	1		46		2		587			-. 3										
		50.0		46	-0		48		$\stackrel{2}{0}$		587609			-. 5										

STORM 16 level 4
156.

/4ILRA/641001/40R7i/190/1552-1704/0/24/91/403/

radius	$v_{\text {a }}{ }^{\text {t }}$	var	VRT	vRr	d-values	TADJ
5.0	8	-3	15	-3	197	-44.9
7.5	4	-4	10	-4	205	-44.88
10.0	13	-4	19	-5	209	-44.7
12.5	35	4	42	4	215	-44.8
15.0	38	10	45	10	213	-45.2
17.5	47	-3	48	-3	216	-45.9
27.0	36	-n	40	-9	215	-46.9
22.5	29	-25	38	-25	216	-47.5
$2 \cdot .0$	33	-30	40	-30	217	-48.6
27.5	36	-27	42	-27	217	-49.7
31.0	4 ?	17	48	17	216	-5c.4
37.5	40	-11	47	-11	217	-50.6
35.0	38	-10	45	-10	221	-50.7
37.5	31	-9	38	-10	222	-50.3
40.0	26	-6	33	-6	223	-50.9
42.5	27	0	33	-1	225	-50.9
45.0	26	1	34	1	224	-51.0
47.5	28	4	36	3	224	-51.1
50.0	29	-2	37	-2	226	-51.2

LEUEL 5

								10	15	193		an，an	70 ／？ 7 \％ 5
ancius	vat	var	VRT	Vrr	o－values	TADJ	radius	vat	var	VRT	VRR	d－values	taij
5.0	18		19	1.	－1400	25.3							
	27	3	23	－2	－1440	25.3 25.0	5.0	15 23	-7 -9	19 22	－-4	-1410 -1380 -1380	24.8
10.0 12.5	43	－1	39 54	－6	－1310	24.8	10.0	30	－14	30	－4	-1180 -1340	24.5 24.2
15.017.5	64	13	54 59	－38	－12．40	24.2	12.5	39	－15	39	－11	－1310	24.0
	71	26	69	71	－11100	23.8 23.2	15.0 17.5	45	－14	47	－9	－1270	24.4
17.5 29.0	93	32	82	27	－1000	22.7	27.0	62	－18	49 65	-11 -13	－1240	25.2 26.4
23.9 22.5	㫛 7	29 29	${ }^{9} 9$	24	－910	22.4	22.5	71	－11	69 73	-13 -6	-1260 -1140	26.4 26.0
27．5	no	23	92		-856 -780	22.3	25.0	78	-12	78	－6	－11960	26.2
3 C .0	90	21	87	24	-780 -700	22.2 21.4	27.5	80	－22	79	－16	－990	24.5
32.535.577.5	an	30	8 A	26	－ 640	21.9	36.0	78	-18	76	－12	－890	23.4
	n3	$\stackrel{17}{-7}$	89	13	－650	21.4	32.5 39.0	76 74	-14 -13	76 74	-9 -7	-820 -750	22.9
35.7 37.5	9\％${ }_{\text {P\％}}$	$\xrightarrow{-7}$	97	5	－550	21.3	37.5	74 71	-13 -11	74	－7	－750	22.3
47.6 47.5	409\％	494	999	997	799 999	994.0	40.0	6.9	－7	88	－1	－6， 6	22.2 22.1
45.0	ワวง	9ッフ	979	997	999	999.0	42.5	67	－8	65	－3	－600	22.0
47.39.0		979	979	999	999	799.0	47.5	$\begin{array}{r}67 \\ 6.3 \\ \hline\end{array}$	－2	63	4	－560	31.8
	494	999	979	999	999	999.0	50.0	62	－9	61	－3	-519 -510	21.8

ractios	vat	vai	var	VRR	o－vaiues	taoj	radius	vat	$v a$	vet	VRU		
5.0	19	7	18									vatur	tios
7.3	32	13	32	18	-1430 -1400	24.8 24.8	5.0	37	-4	37	－1	－14co	24.6
15.0	40	15	40	21	－1370	25．4	7.5 10.0	4	－3	44 49	－7	－1340	34.3
12.9	41	10	47	15	－1330	26.6	17.5	47 59 8	-7 5	4989	－7	－1290	24.0
15．0	S3	11	53	17	－1770	26.6	15.0	59 89	5 6	39 80 80	－1	-1200 -1120 -1220	21.5
$1 \cdot 3$	55	5	55	11	－1210	26.4	17.5	96	6	96	0	－1120	22.9
20	57	7	59	13	－1160	26.5	20.0	103	1	104	－4	－1220	22.3
25.0	$\stackrel{9}{7}$	－5	69 77	12	－1090	25.0	22.5	100	－6	100	－11	－830	22.1
$2 \cdot .5$	7%	？	79		－1010	23.5	25.0	74	？	49	－3	－7，0	21.9
3n．9	$8:$	4	91	9	－740	22.5 22.2	27.5	90	4	90	－1	－690	21．4
32.5	81	7	81	12	－790	22.0	32.5	88	5	86	－	－610	21.0
35.0	17	4	77	10	－710	21.8	32.5 35.0	87	5	36	0	－570	20.9
37.5	12	4	72	10	－650	21.8	37.5	02	？	－87	－3	－570	20.7
\cdots	ni	；	69	10	－670	21.8	40.0	no	2	80	－3	－ 470	20.4
$4 \cdot 0$	67	1 －	67	6	－550	21.6	42.5	77	3	77	－2	－470	20.5
43.0 47.5	67 81 81	－4	63.	1	－520	21.8	45.0	74	5	74	0	－390	20.7 20.5
5 n .0	5%	－3	59	I	－490	21.9	47.5	73	5	73	0	－360	20.6
						21.7	50.0	72	3	72	－2	－340	20.5

/HILDA /641002 / 9880/715/2027-2058/0/26/92/409/
15 / 0/ $10 / \mathrm{E} / 319019$ /956/87/183/37.5
raitius vat var vrt, vre d-values taits

5.0	19	5	14	1	-1040	15.3
7.5	27	2	22	-2	-1000	15.0
10.0	35	3	30	0	-960	15.1
12.5	44	1	38	-2	-910	15.3
15.0	48	3	44	0	-860	15.3
17.5	53	2	38	-1	-830	14.8
20.0	59	0	48	-3	-770	14.6
22.5	68	7	62	4	-740	14.0
25.0	72	7	66	4	-680	13.8
27.5	74	4	70	0	-590	13.2
30.0	76	1	74	-4	-520	12.8
32.5	80	-3	76	-	-4.60	12.3
35.0	94	-8	80	-12	-410	11.7
37.5	67	-12	83	-15	-3:10	11.1
40.0	86	-8	82	-11	-330	11.5
47.5	nt	-10	81	-13	-260	10.6
45.0	81	-16	77	-19	-210	10.5
47.5	${ }^{\text {a }}$	-15	77	-18	-200	10.0

164.


```
/HILIDA / 641002 / 3R670/211/1549-1604/1 / 26/92/415/
```



```
rablus vat var vrt var d-values tadj
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 5.0 & 10 & 12 & 17 & 16 & 1910 & -4.2. \\
\hline 7.5 & 15 & 11 & 19 & 15 & 1970 & \(-4.4 .4\) \\
\hline 10.0 & 13 & 12 & 21 & 15 & 1920 & -44.4 \\
\hline :2.5 & 2 & \& & 7 & 10 & 1940 & -45.4 \\
\hline 15.0 & 2 & 7 & 7 & 9 & 1930 & -4.4.5 \\
\hline 17.5 & 2 & 4 & 7 & 6 & 1840 & -4.4.6 \\
\hline 20.0 & -4 & 13 & 1 & 15 & 1700 & -44.4 \\
\hline 22.5 & -1 & 11 & 4 & 13 & 1870 & -4.4.5 \\
\hline 25.0 & 0 & 9 & 5 & 11 & 1930 & -4.4.7 \\
\hline 27.5 & 1 & 14 & 6 & 16 & 1930 & -44.8 \\
\hline 30.0 & 4 & 11 & 9 & 13 & 1940 & -4.9.7 \\
\hline 32.3 & 5 & 7 & 10 & 9 & 1930 & -45.0 \\
\hline 35.0 & 6 & 11 & 11 & 13 & 1890 & -45.2 \\
\hline 37.5 & 16 & 27 & 21 & 23 & 18,0 & -43.3 \\
\hline 40.0 & 14 & 23 & 20 & 24 & 1820 & -45.6 \\
\hline 42.5 & 18 & 21 & 24 & 23 & 1840 & -45.9 \\
\hline 45.0 & 21 & 12 & 26 & 14 & 1840 & -4.0.2 \\
\hline 47.5
50.0 & 23 & 10 & 29 & 11 & 1800 & -46.2 \\
\hline
\end{tabular}
```


asers	vir	var	vRt	vkr	d－values	tadj	radius	vat	var	vRT	ver	d－values	tans	Ranils	vat	vak	VRT	vrr	n－values	taja
$5 \cdot$	41	10	59	7	－1140	19.7	5.0	in	－27	46	－13	－1120	25.4	5.0	98	37	43	21	－700	
7.5	73	\cdots	31	36	－970	11.4	7.5	36	－46	75	－32	－470	25.0	7.5	43	30	89	14	-700 -630	19.2 19.8
17.0	102 8 8	35	119	18	-980 -750	19.2	10.0	96	-53 -59 -59	85	－40	－860	24．${ }^{\text {a }}$	10.0	33	18	74	1	-530 -530	19.8 in．
15.0	74	42	$?$	32	－670	18.7 18.4	15.5	$\stackrel{9}{7}$	－59 -56	77 69	-4.5 -42 -45	-710 -670	24.1	12.5	$8{ }^{81}$	-1	76	－19	－450	18.0
17.9	65	33	77	21	－5co	17.8	17.5	70	－49	60	－35	－ 530	22.9	17.5	74	26	70	10	－380	17.8
29.3	${ }^{3}$	43	75	30	－420	17.8	2 C .0	58	－47	49	－35	－470	21.0	20.5	73	27	65 68	\bigcirc	-290 -270	17.7
29.5	40	31	72	38	－370	18.0	22.5	51	－42	41	－28	－410	17.8	22.5	72	29	68 6,7	13	－ 270 -290	17.9
25.0	${ }^{1} 4$	31	76	18	－360	18.1	25.0	50	－36	－41	－27	－340	19.8	25.0	5	17	59	0	－270	17.8
87.5	52	219	6%	17	－300	17.9	27.5	47	-4.2	37	－29	－3c0	18.4	27.5	71	18	67	1	－240	17.8
$3 \mathrm{3} \cdot 9$	53	35	${ }^{4} 4$	2	－280	17.5	30.0	49	-4.5	40	－32	－2\％0	18.0	3 n .0	96	10	63	－6	－200	19.0
3 3	ris	26 27	67 65	$1 / 4$ 14	-270 -240	17.5 17.4	32.5 35.0	47	-49 -39	38	-34 -24 -24	－270	18.0	32.5	61	15	57	－2	－200	17.7
37.5	＋5	18	76	5	－270	17.3	37.5	50	－31	45	－24 -16	－220	$1 \mathrm{R} \cdot 3$	35.0 37.5	h1 50 n	23 -5	57 4,7	－22	-1.90 -190	17.5
4？．：	7n	970	979	$\bigcirc 99$	949	999.0	40.0	49	－30	39	－16	－190	18.4	40.0	58	4	54	-13	－180	17.2
43.5	วา	97\％	ควา	997	939	999.0	47.5	46	－36	36	－22	－180	17.7	42.5	4.4	2	57	－15	－180	17.6
45.3	$5 \cdots$	－79\％	9＊9	999	999	999.0	45.0	4.4	－36	33	－：？	－1／0	18.7	45.0	394	994	999	999	999	999.0
4．${ }^{5}$	909	979 999	979	999	979	999.0	47.5	4.3	-34 -35	32	－21	－140	19.2	47.5	カッフ	437	997	999	979	999.0
50.0	979	999	989	999	999	999.0	50.0	44	－35	33	－2？	－140	14.4	50.0	929	999	999	997	997	987.0

2aves	vat	var	vrt	VRa	o－values	tadj	ranius	v＾t	var	vit	ver	o－valufs	［A1）${ }^{\text {d }}$	radius	vat	var	vRt	Vre．	d－values	ianj
5.9	43	月	32	6	－1070	20.2	5.0	0	－35	－1	-18	－1110	25.9			\bigcirc				
7.9	51	－h	42	－7	－1050	24.5	7.5	31	－32	31	－14	－1100	27.5	3.0	28	12	12 67	17	-990 -870	23.7 22.5
$1 \because 0$	${ }_{10}^{104}$	-14 -17	72	-16 -20	-850 -670 -870	22.6 17.5	11.0	44	-20 -30	45	－2	－1090	23.7	10.0	$3{ }^{3}$	31	53	38	－8c0	20.1
12．5	107	－189	42 75	-20 -31	-670 -570	17.5 18.6	12.5 15.0	66 60	-30 -22	67 62	-12 -5	-960 -910	26.7 24.7	12.5 15.0	54	35 48	69	62 5	－660	19.6
17．9	25	－74	57	－27	－480	18.2	17．3	46	－26	48	－7	－710	22.7	17.5	93	47	68	55 55	－570	1.93
＜2．0	73	－ 2 ：	61	－34	－390	18.2	20.0	4	－17	47	0	－6．30	20.7	20.0	48	42	64	49	－ 400	19.3
27.5	73	－25	57	－28	－330	$17 . \%$	22.5	51	－16	53	1	－510	17.0	22.5	45	43	61	4 B	－350	19.4
27．5	8	-25 -15	60 53	－23	-260 $-2>0$	17.3 18.3	25.0 27.5	48 $4 ?$ 4	－-4	51 4,4	${ }^{8} 8$	-440 -350	13.7 14.0	25.0	$4{ }^{4}$	42	60	48	－210	19.0
30.0	75	－	59	－13	－180	18.2	30.0	4.8	－4	4	15	－	14.0 14.7	27.5 30.0	36 37	31	${ }_{5}^{52}$	37	－ 260	19.0
3.75	74	－is	59	－i9	－180	18.0	32.5	45	h	48	23	－740	18.8	31.5	37	24	55	29	－	14.1
34.0	8	－i，	53	-17	－160	17.8	35.0	41	－3	4.	17	－270	13.7	35.0	31	27	47	27	－180	17.0
37.5	H2 8	－27	46	－24	－150	17.9	37.5	36	－	40	17	－170	1 H .6	37.5	29	19	45	75	－160	1\％．7
40.4	${ }_{4}{ }^{1}$	－18	51，	-11 -20 -20	-130 -120	17.0 17.9	40.0 42.5	32 31	－${ }^{-8}$	35 34	$\stackrel{9}{4}$	-160 -150 150	18.1	40.6	29	25	45	30	－150	17.1
4	G2	－17	4.6	－16	－1co	17.4	45.0	35	－14	24 29	3	－150	18.3 19.1	42.3 45.0	\cdots	22 25	4.4	27 30	-140 -140	19.0 19.7
47.5	82	－19	46	－16	－80	17.3	47.5	26	－17	29	－1	－120	17.5	47.5	27	16	43	21	-140 -120	19.7
50.0	54	-14	${ }^{38}$	－19	－90	17.4	50.0	23	-1.3	26	4	－110	17.5	50.0	23	14	39	21	－100	1 n .1

smcothen vortex averages

> DOEG AIT
> $\begin{gathered}\text { tTME } \\ \text { thtEPVA }\end{gathered}$
> STOPM, DATF, FFFT, MQ., TNTFPVAL /OUT/ LAT/ONR/ TD,
> STOPN TQUF DCTANT ATMTH TM PNO CENT MAX WYNOS DAOTIS

parius	vat	vas	vRT	VR？	D－values	TADJ	hadius	vat	var	VRT	ver	n－values	tand
30	an	20	50	2	－540	12.3	5.0	71	－26	${ }_{5} 3$	－6	－150	19.4
7.9	97	35	24	22	－320	11.6	7.5	57	-29	51	－9	－350	19.4
1－\％	$1{ }^{1} 1$	31	95	20	－230	10.6	10.0	70	－19	63	－1	－270	17.2
12.5	19	19	79	8	－130	10.6	12.5	69	－16	no	1	－ 230	15.5
$1 \cdot 0$	29	5	82	－4	－110	10.6	15.0	72	－20．	63	－2	－190	15.3
12.5	9	0	79	－9	－180	10.6	17.5	76	－24	${ }_{68}$	－7	－190	15.9
2）．0．	13	－6．	77	－14	－30	9.6	20.0	67	－27	57	－10	－110	15.0
27．，	33	－10	12	－17	－80	8.7	27.5	n79	วา	994	997	วํา	99．0
25．\％	\because	－i1	\％	－18	－50	2． 1	25.0	9%	990	999	999	$9 \% 9$	799.0
27.5	33	－11	to	－18	－30	8.7	27.5	วาก	749	999	999	999	97.0
30.1	$?$	－11	63	－19	30	8.7	30.0	979	9 9\％	994	499	499	949.0
17.5	？9	－0	hr^{2}	－16	40	8.8	32.5	997	9าง	99า	999	929	979.0
35．9	？	－9	6.2	－15	70	8.9	35.0	349	49	997	999	999	737 ．
17.5	1	－7	4	－13	80	9.2	37.5	9%	99%	99%	979	999	999.0
4．0	$7{ }^{\prime \prime}$	－？	53	－8	9	9.7	40.0	9\％9	－79	499	949	999	944.0
47.5	71	$?$	54	－5	100	9.8	42.5	37	997	979	ว97	วํา	999.0
45.6	\because	5	58	－1	130	10.2	43.0	97\％	9า	979	\cdots	737	97．9
4%	76	－	57	3	140	12.9	47.5	n99	29\％	999	499	99	949.0
3：06	69	1	52	－5	150	11.3	50.0	379	999	999	499	999	994.0

2atus	vis	var	VRT	vRb	d－values	tadj	railius	vat	var	vRt	vRr	d－valufs	［adJ
5.9	20，	ตッフ	999	99	－570	22.4	5.0	to	－10	45	2	－410	17．）
7．3	－	30	979	997	－540	20.7	7.5	18	8	63	20	$\rightarrow 70$	$1 \times .7$
12.3	31	-15	12	-13	－350	15.0	10.0	93	－1	67	10	－2？	15.1
12.5	102	1	$\%$	1	－740	13.5	17.5	37	1	72	12	－210	15.1
：1．0	1in？	1	94	－1	－190	11.1	15.0	84	－7	69	5	－170	14.1
17.5	97	－4	79	－7	－140	10.0	17.5	79	－21	63	－9	－190	13.0
23.0	\cdots	2	74	－2	－90	9.5	20.0	74	－22	59	－10	－160	13.1
22.5	$\bigcirc 3$	b	71	1	－90	9.5	22.5	74	－20	60	－7	－1／50	13.1
－ 25.5	9	0	58	－6	－50	4.7	25.0	71	－24	27	－10	－110	12．1
27.3	93	－1	ne	－7	－40	9.6	27.5	72	－21	58	-14	－00	12.9
30.0	77	－5	60	-12	－30	9.5	30.0	74	-20	57	-9	－20	12.5
13．5	71	－6	54	－13	－9	9.4	32.5	76	－10	57	－5	0	11.9
3．\％	72	－5	55	－13	－13	9.2	35.0	74	－	55	－6		11.3
17.5	6	13	34	4	－10	9.2	37.5	74	－9	55	－9	19	11.5
4こ．j	or°	${ }^{13}$	53	3	0	10.2	40.0	74	－11	55	－11	20	11.9
42.5	As	15	52	3	30	10.3	42.5	11	－10	－ 57	-10	30	12.2
45.10	9\％	$0 \cdot 9$	49%	997	999	799.0	45.0	69	－	50	－7	30	11.6
41.3	72：	399	979	999	999	9990	47.5	67	－3	50	－5	90	11.5
cues	91%	99.	989	949	999	994.0	50.0	65	2	47	－1	110	11.4

STORM 17
LEVEL 2

 STORM / DATF/ FFFT, MR., TNTFQVAL /OUT/IATMONE/IO/
 STORN TOHF OCTANT ATMTH TN DDR CFNT MAX WINDG RADIHS SPN/ DIR / LחR MMTH/CTM/ANGAF/FYFRAD/ PRFS/ACTUAL/RFL IMAX WR/

IISBFLL / $541014 / 15960 / 570 / 2140-2158 / 1 / 24 / 93 / 93$ /
11/ 35/265/55/3/145/13. 1970 / $87 / 71 / 20.0$

Reiotis	vai	var	vrt	VRR	o-values	tads
3.9	59	16	57	34	-20	3.4
7.5	th	1	61	19	30	6.6
10.0	63	18	49	36	70	6.4
17.5	71	-14	62	-7	60	2.3
15.0	93	-10	67	-5	140	. 5
17.5	84	-2	65	2	200	. 8
20.0	87	5	71	9	280	. 8
22.5	96	8	65	12	350	. 5
25.0	9s	-8	69	-4	370	-. 1
27.5	92	-17	64	-14	380	-. 5
30.0	79	-17	58	-14	340	-. 3
17.5	77	-21	57	-19	400	-. 6
35.0	72	-20	47	-19	4 co	-. 7
31.5	69	-20	49	-19	420	-. 9
40.0	ns	-25	44	-22	440	-1.0
42.3	64	-21	43	-21	470	-.8
45.0	02	-17	42	-18	56.0	-. 5
47.5	51	-12	41	-12	530	-. 6
50.0	6.0	-16	40	-18	540	-1.0

173.

2. 110 s	vat	var	VPT	ver	d-values	tanj	raioius	var	var	virt	vor	o-values	An)	Rantus	VAT	VAR	VRT	VRr	o-values	tanj
¢ 0	$2 T$	-	40	9	-1220	17.3	5.0	39	5	34	16	-126.0	17.n	5.0	22	6	33	-15	-1200	1 ta .3
7.3	33	-11	63	7	-1200	18.3	7.5	57	13	48	21	-1150	17.1	7.5	39	7	37	-14	-1230	16.0
ir.a	72	-17	80	9	-1150	18.8	10.0	75	21	82	26	-1040	15.4	10.0	8.5	9	51	-17 -20	-1140	15.3
$1 ? .5$	76	-7	79	is	-1030	17.6	12.5	77	21	89	25	-710	13.8	12.3	81	7	83	-17	-940	$1 \% 6$ 14.2
! $\%$	74	-6	76	10	-960	16.0	13.5	72	27	88	35	-710	13. ${ }^{\text {a }}$	17.5	84	12	83	-	-870	14.1
! \cdot. ${ }^{\text {d }}$	74	-11	74	7	-910	14.6	23.0	73	37	87	34	-6er	13.3	20.0	31	19	89	-?	-750	13.7
:".	29	-13	8.6	19	-320	13.7	22.5	81	0	? 9	4	-6,0	12.5	22.6	34	¢	100	-17	-6,40	13.2
2.5	71	15	97	28	-670	13.2	27.0	78	9	95	10	-510	12.5	25.0	9	0	93	-20	-5.0	12.6
¢ ${ }^{\text {c }}$	30	¢	?	22	-530	12.6		75	15	91	17	-440	12.4	27.5	P. 7	-9	91	-19	-490	11.9
\because	O!	0	76	20	-480 -420	12.2 11.3	30.0	72	14	90	19	-390	12.0	30.0	98	-5	90	-22	-630	11.0
\%	\%	5	$\stackrel{7}{8}$	20	-350	11.6	32.5	68	12	38	17	-340	12.0	32.5	96	1	8^{88}	-18	-350	10.7
34.0	92	\%	35	21	-290	11.5	35.0	66	15	93	?	-30\%	11.9	35.0	R 7	-4	82	-22	-360 -260	10.6 10.8
31.5	19	8	${ }^{1}$	21	-240	11.6	37.5	63	13	78	17	- 270	11.9	37.5	78	-4	${ }_{78} 8$	-14	-260	10.8 11.7
60.)	17	4	77	17	-180	11.3	40.0	50	-2	80	4	-150	11.5	42.5	\bigcirc	17	83	- -1	-150	17.2
42.5	3	0	74	13	-140	11.0	45.0	52	-5	82	4	-120	11.2	45.9	79	13	85	-6	-120	12.0
478	59	?	70	12	-120	10.9	47.5	50	\bigcirc	82	0	- 80	10.9	47.5	69	-1	${ }_{68}^{90}$	-17	-80 -50	11.3 10.7
$\therefore 0.0$	67	\bigcirc	69	14	-90	10.9	50.0	50	-1	70	-i	-50	.	50.0						10.7

STORM 18
level 1

zantus	v : r	vas	vor	VRr	o-values	tadj	ramius	vat	var	vRT	vRr	D-values	190」	ramius	vat	var	vRt	vre	D-values	talb
i.f	32	:	20	-?	-860	13.4	5.0	25	-8	24	0	-940	14.2	5.0	34	4	38	0	-710	11.8
\bigcirc	4.3	?	31	0	-850	12.5	7.5	37	-3	37	5	- bno	13.8	7.5	47	10	59	5	-670.	16.3
10.0	6.1	6	63	5	-790	11.5	10.0	55	-	56	2	-930	13.5	10.0	59	0	${ }^{68}$	-4	-640	7.6
$12 . ;$	4	3	74	2	-780	10.2	12.5	69	-3	75	6	-790	13.3	12.5	05	7	72	3	-5,40	4.2
15.3	29	3	81	1	-550	8.9	15.0	30	-	31	1	-6.20	12.4	15.0	6.5	$\stackrel{0}{6}$	73	2	-400	8.7
17.5	86	7	76	5	-440	8.4	17.5	82	-5	8 ?	5	-470	11.6	17.5	62	3	6.7	-1	-280	0.4
?n.f	9	12	74	10	-310	8.0	20.0	8.2	-4	82	5	-420	10.2	20.0	63	?	67	5	-2.0	8.5
22.5	46	\rightarrow	97	-3	-270	7.6	22.5	24	-10	$n 4$	n	-3+10	9.2	22.5	72	21	72	17	-120	9.3
'5.0	\%	-4	95	-6	-210	6.8	25.0	92	-1	94	9	-260	8.7	25.0	15	19	78	14	-50	7.7
27.5	94	-1	90	-7	-90	6.1	27.5	n)	2	0	12	-140	7.0	27.5	75	15	78	11	0	7.3
3 O .0	12	\%	83	-2	10	5.8	30.0	? 7	-14	86	-4	-70	7.3	30.0	68	0	73	-4	20	7.0
32.5	9.7	-4	ro	-5	70	5.8	32.5	88	-13	89	-3	0	7.1	32.5	64	1	70	-3	50	6.4
35.9	9.	-5	75	-7	110	5.8	35.0	77	2	72	12	70	7.4	35.0	A1	1	66	-3	30	5.5
37.5	03	-1	74	-3	140	5.8	37.5	77	0	72	10	150	7.8	37.5	59	3	65	-1	130	4.7
40.3	?	-3	73	-4	180	5.7	41.0	79	¢	71	19	190	7.4	40.0	56	-5	64	-8	160	4.3
$4 \cdot \cdot ;$	97	n	72	-2	240	5.5	47.5	74	3	71	17	200	6.9	42.5	52	-1	60	-6	$1: 0$	3.9
6r.?	73	10	69	9	270	5.5	45.0	67	-6	65	4	210	6.5	45.0	47	2	57	-3	200	3.9
4.9 ${ }^{\text {c }}$	74	. 20	60	19	270	5.9	47.5	6.5	3	65	13	740	6.4	47.5	46		52	-1	250	3.9
50.0	71	11	60	9	280	5.8	50.0	65	-10	65	0.	2 BC	6.8	50.0	46	4	52	0	260	4.0

 $10 / 315 / 330 / \mathrm{NW} / 1 / 330 / 15 / 752 / 87 / 85 / 22.5$

2n-us	vat	vir	VRT	vRr	d-values	TA: ${ }^{\text {d }}$	rantus	vat	vai	vrt	vas	D-values	tans	ramius	vat	VAR	VRt	vRq	d-valufs	TAOJ
\%os	34	-	19	0	-390	13.7	5.0	27	-2	31	1	-900	13.6	5.0	24	9	65	0	-810	12.2
7.3	47	-7	37	-1	-820	13.7	7.5	42	4	51	\%	-92C	12.2	7.5	70	19	73	9	-700	9.5
12.0	"9,	-ii	61	-6	-790	13.6	10.0	83	7	70	10	-720	15.6	10.0	72	11	72		-620	8.6
12.3	15	-i1	83	-5	-6.90	12.4	12.5	71	16	82	19	-6,00	9.5	12.5	71	3	69	-6	-500	9.7
: $\%$?	9	-17	81	-7	-560	10.6	15.0	70	9	79	13	-450	4.4	15.0	74	7	74	-3	-400	9.6
$1 \cdot \cdot 3$	27	$-i^{\sim}$	7 h	-5	-430	4.6	17.5	65	7	72	10	-4n0	9.2	17.5	90	14	77	4	-310	9.8
\cdots	03	-6	73	0	-310	9.6	20.0	63	15	72	19	-320	8.7	20.0	8.4	23	83	13	-230	0.5
2 P	95	-i	96	1	-190	9.4	22.5	80	18	74	21	-2c0	7.8	22.5	P7	14	$\begin{array}{r}85 \\ \hline 85\end{array}$	4	-150	8.1
2-:	$1 \cdots$	-1:	95	-6	-100	7.7	25.0	63	21	80	26	-70.	7.2	21.0	97	17	35	7	-110	7.6
31.7	\cdots	-17	97	-11	-40	7.0	27.5	7\%	23	84	26	-10	7.0	27.5	87	5	85	-4	-70	6.3
20.3	??	$-\mathrm{i}$	86	-11	40	6.5	30.0	74	23	82	26	70	7.4	30.0	ค\%	10	85	,	-10	5.7
$3) .5$	97	-in	73	-13	80	6.1	32.5	73	20	78	23	130	7.6	32.5	97	4	84	0	Ro	5.7
35.0	$0 \cdot 5$	-13	75	-7	140	5.7	35.0	68	14	74	17	170	7.3	35.0	84	5	80	-5	120	5.7
\% $\%$	4	-1:	14	-4	130	5.6	31.5	81	"	11	12	210	6.0	31.9	41	1	11	-8	1 tu	0.2
-6:	91	-	73	-2	220	5.7	40.0	55	-1	69	-2	250	5.5	40.0	79	9	73	0	170	6.5
4%,	78	-7	72	-i	250	5.9	42.5	54	1	66	4	29.0	5.7	4.2 .5	77	11	72	$?$	240	6.5
45.8	74	-19	68	-4	200	5.7	45.0	53	0	6.3	3	300	5.2	45.0		$2 \cdot$	70	10	280	6.5
4.7 .5 30.0	70 68	-13 -10	66 6	-6 -3	330 350	5.4 5.3	47.5 50.0	49 4 4	-9 -2	53 51 51	-6	310 330	4.93	47.5 50.0	76 75	15 4	70 72	5 -5	320 330	6.5 6.5

quaius	var	var	VRT	var	d-values	TADJ	racius	vat	var	VRT	vRr	d-valufs	tanj	radius	\checkmark NT	var	vRt	vRr.	d-values	ranj
	$\because!$	-i1	26	$9 \% 9$	-290	4.1	5.0	22	0	34	11	999	3.5	5.0	37	5	34	-9	-260	$2 \cdot 10$
7.5	35	-14	36	12.	-270	3.4	7.5	34	-2	4	5		? 2.7	$\begin{array}{r}7.5 \\ 10.0 \\ \hline 10.5\end{array}$	57 68	15 17	56 54	-6	-210	1.0
12.0	90	-15	1.5 57	5	-250	2.6	10.0 12.5	47 6,4	-5 -10	${ }_{74}$	5	999	2.0	10.0	74	81	40	-2	-10	1.0
? $\%$	1.5 8.5 8	-11	57 78	4	-200	1.8	15.0	73	-2	Po	6	999	1.4	15.0	83	23	45	24	${ }^{\text {RO }}$	1.4
$\because 9$	\cdots	-i,	87	7	0	1.5	17.5	77	2	$0 \cdot 4$	10	949	1.6	17.5	89	26	89	13	170 240 3	1.0
23.0	98	-2	96	7	90	1.6	20.0	78	-			35	1.7	23.0	$\stackrel{3}{7}$	10	79	-7	310	$\xrightarrow{\text {. }}$
$\because \cdot 5$	37	-5	R1,	10	170	1.5 1.2	22.5 25.0	78	-1	80	-4	$4{ }^{4}$	1.?	25.0	P1	a	75	-3	390	1.0
20.0	9.9 9 9	\hat{i}	42 80	12	340	1.7	27.5	59	-9	6.7	-5	54	1.1	27.5	9	${ }^{18}$	73	-3	450	1.1
$3: .0$	$?$	- 4	78	15	390	. 7	30.10	55	-5	67	8	64	1.1	30.0	16 70	25	74 67	$?$	5100	1.0
$\because \cdot 5$?	-1	74	1	430	$\cdot 5$	32.5 35.0	5,5 54	4	67	7	73	1.7	35.0	6,5	14	61	4	690	. 9
3700	\bigcirc	-	72	11	480 470	. 3	35.0.	54	0	64	3	76	. 3	77.5	64	9	59	-5	710	$\cdot 6$
37.5	$\xrightarrow{8}$	-4.	14 $n 3$	12	470 570	-. 5	40.0	52	-2	${ }_{6}^{64}$	4	80	$\cdot 1$	40.6	65 65	10	${ }_{51}^{61}$	2	740	$\cdot 3$
48	7	-r	61	7	590	$-.9$	42.5	5	-3	63 62	4	${ }_{71}$	\because	42.5 45.0 4.5	65 6.5	20 19	57	5	770	\therefore
45.0	¢9 89	-10	60	$\frac{1}{2}$	630 660	-1.1 -1.4	4.7 .5	54	5	61	10	73	c. 0	47.5	45	17	56	12	810	-. 4
	S980	-		${ }_{4}^{2}$	670	-1.5	50.0	53	13	60	11	73	0.0	50.0	84	16	56	13	840	-. 7

STORM 18 LEVEL 3

DDFG ALT
 TTME
 JN
 STORM / MATF / FFFT, MQ. / TMTFYVAL /OUT/LATMONO/ TD/
 STOPM TDUF OCTANT ATMTH TM PND CFNT MAX WTMIC RADTUC SPI/ חIR/ HIG NNOTH/GTM/ANGIF/FYFRAD/ DUES/ACTUAL/REL ;MAX WD/

LEVEL 5

/nETSY /65045, $3240 / 907,0-2810 / 29 / 75 / 270 /$

ramius	vat	var	VRT	var	p-values	taju
4.0	17	3	13	0	999	21.2
7.5	30	7	29	1	999	21.0
10.0	40	8	44	,	959	21.0
12.5	43	11	54	1	9 9\%	20.8
15:0	4.7	6	56	-?	393	20.\%
11.5	40	2	56	-?	994	20.4
20.0	42	7	56	2	999	20.3
22.5	45	3	57	0	999	20.3
25.0	49	0	58	-4	949	20.3
27.5	54	7	60	-3	999	20.2
30.0	60	10	66	-3	949	2c.0
32.9	63	*	no	-3	999	19.8
35.0	64	-8	94	-9	999	19.6
17.5	6t	-2	9	-7	999	1.7 .5
40.0	66	0	96	-6	9 99	19.6
42.5	71	-7	92	-11	979	19.6
45.0	64	1	87	-4	999	13.6
47.5	63	6	83	-2	999	19.6
50.0	60	1	84	-1	997	19.6

131:80	5; / sk / 3 /230/				$1{ }^{3} 1$	7137.9
Ratius	v9「	var	v2T	v2r.	D-values	tios
5.0	6	-8	13	-2	999	21.5
7.5	21	-8	29	-1	999	21.1
18.0	43	-4	44	2	999	21.0
17.5	53	\%	54	6	959	2 C .8
15.9 17.5	52 50	4	56 56	$\stackrel{7}{9}$	979	20.7 20.6
20.0	63	15	56	16	999	20.5
22.5	52	6	57	14	999	20.5
25.0	50	7	58	11	979	20.3
27.5 30.0	54	,	60	9	949	20.3
32.5	$\bigcirc 6$,	80	12	999	20.5 20.6
35.0	91	- 8	04	-2	999	20.4
37.5	93	-18	97	-13	999	20.2
40.0	no	-14	96	-10	999	14.8
42.3	9 9	-21	92	-16	499	19.7
45	30 86	-15 -13	87 83	-11 -4	999 999	19.7 19.8
50.0	79	-24	84	-3	999	19.8

STORM 18
level

131180	$35 / \mathrm{NE} / 7 / 35$				1751	$80 / 40.0$
ramius	vat	VAR	VRt	vrr	D-valufs	tad
5.0	11	-5	16	-1	-890	19.2
7.5	19	3	29	7	-850	18.4
10.0	36	1	46	4	- 810	17.8
12.5	55	-3	57	0	-740	17.2
15.0	57	-1	59	3	-750	17.6
17.5	55	0	58	4	-6.50	17.8
23.0	53 54 54	2	58	${ }^{6}$	-600	17.2
22.5	54	${ }^{5}$	61	12	-540	15.2
25.0 27.5	57	12	63	16	-430 -440	15.8
30.0	6	15	72	-14	-440 -410	15.7 15.4
32.5	69	16	76	20	-360	15.1
35.0	71	13	76	17	-3c0	14.0
37.5	72	9	77	13	-230	14.4
40.0	75	3	80	7	-210	13.7
42.5	70	-3	75	,	-190	13.3
45.0	70	1	73	5	-170	13.2
47.5	6s	-2	77	2	-140	13.2
50.0	64	-5	69	0	-120	13.4

 GPI/ OIR / UNG NNOTH/STM/ANGIF/FYFQAN/ PRES/ACTUAL/REL OMAX WO/
/RETSY /650905/11780/667/1657-1715/0/25/13/274/

	ramius	vat	var	vrt	vir	d-values	tanj
	5.0	10	1	13	-2	- 570	11.7
	7.5	$? 3$	${ }_{0}$	26	-1	-530	11.0
	10.0	34	1	40	1	-440	10.5
	12.5	55		55	3	-410	10.1
	15.0	57	1	60	4	-350	9.9
	17.5	59	0	61	7	-290	9.7
	20.0	51	6	60	9	-2,0	9.9
	27.5	53	9	59	10	-200	4.6 7.7
	25.0 27.5	59 59 59	10	62	13 16	-1c0	8.7
	30.0	58	7	65	16	-50	8.4
	32.5	56	10	59	13	-20	8.0
	35.0	59	15	62	20	10	7.6
	37.5	72	13	72	15	50	7.0
	4 C .0	6.7	4	70	6	90	6.4
	42.5	63	-3	65	1	130	6.4
	45.0	49	3		${ }^{5}$		6.3
	47.5	56	4	57	117	170 200	6.1 6.1
	50.0	50	13		17		6.1
	/fersy / 650005 / 11780/667/1635-1658/1/25/73/275/						
	/3/180/60/5w/2/210/10, 968/70/67/50.0						
	ratius	vat	VAR	VRT	VRR	o-values	tadj
	5.0	21	2	11	-2	-560	10.6
	7.5	27	4	25	- ${ }^{1}$	-570	10.5
	10.0 12.5	4.3 4.6	-1 5	39 50 50	-6	-470 -430	10.4 9.9
	15.0	57	10	54	4	-380	9.7
	17.5	56	7	54	3	-330	9.0
	20.0	61	-1	57	-6	-290	4.7
	22.5	54	0	54	-5	-240	9.3
	25.0	61	-3 -4	57	-7	-260 -180 180	8.7
	27.6 30.6	63	-4	60 60	-8	-180 -150	8.1
	32.5	6.2	12	61	8	-110	7.7
-	35.8	49	-2	58	-7	- 50	7.9
	37.5 40.0	6,2 03	1	58 60	-5	-20 -30	7.9
	47.0	6\%	-1	63	-5	50	7.8
	45.0	66	6	64	2	60	7.8
	47.5	69 70	10		6	70 100	7.6
	50.0	70	5	67	1	100	7.3

rarius	vir	var	vot	VRR	o-values	tadj	- panius	vat	var	VRT	vRR	d-values	ravj
n.n	12	-3	11	-2	999	999.0	5.0						
7.5	26	-3	25	0	120	-. 2	7.5	$3{ }_{3}$	12	315	12 2	130 160	0.7 0.0
12.9 12.5	37 47	-9	36	-5	160	-. 5	10.0	46	11	47	$\stackrel{2}{4}$	190	-0.01
8	47	-8.	$4{ }^{4,}$	-3	270 250 270	-1.9	12.5 15.0	$4{ }_{4}$	15	49	3	200	-. 4
17.5	$5 \cdot 3$	-3	52	1	270	-1.0	15.0 17.5	58 54	19	52 55 5	11	250	-. 9
20.0	52	-5	51	1	300	-. 2	20.0	56	14	55 57	5	$\begin{array}{r}300 \\ 350 \\ \hline\end{array}$	-1.2 -1.5
$2 ? .5$	53	-18	5.7	-4	350	. 6	22.5	58	15	59	\%	350 400	-1.5
23.0	5.	-:1	53	-5	390	1.0	25.0	57	19	58	11	440	-1.6
37.5	5	-11 -10	53 52 5	-5	$\begin{array}{r}430 \\ 470 \\ \hline\end{array}$	1.0	27.5	55	15	56	${ }_{8}^{11}$	4480 480	-1.6)
32.6	53	-14	52	- -8	470 500	1.0	30.0	52	18	53	11	480	-1.9
35.9	52	-17	51	-11	520	1.0	37.5 35.0	52 54 54	17	52 55 5	11	510	-2.0
37.5	52	-19	51	-17	550	1.0	37.5	54 55 5	$\begin{array}{r}18 \\ 20 \\ \hline 8\end{array}$	55 56 58	12	540 570 80	-2.0
40.9	53	-14	52	-8	580	1.0	40.0	54	19	56 55	$\stackrel{1}{12}$	570 600	-2.1
为: ${ }^{\text {a }}$	$5{ }_{5}$	-12	51	-6	640	1.0	42.5	- 50	22	60	16	6no $h 30$	-2.3 -2.3
47.5	993	-2	949	4	720	$\stackrel{.8}{.3}$	45.0 47.5	56 6 6	27	57	20	670	-2.5
3.0	习)	-	997	,	720	-. 3	90.0	8.4	24	68 6.5	18	7700	-2.5

2.tus	Vir	var	v2t	VRR	o-values.	tadj	Rnolus	vat	var	VRt	VRR	n-values	19nj
5.3	20	-1	19	-3	140	-. 2	5.0	14	\bigcirc	15			
$\because \because$	37	3	28 38	-2	160	-. 2	7.5	23	-2	24	6	1150	\cdots
\cdots	4.5	i	45	- ${ }^{0}$	290 750	-. 4	10.0	10	-3	31	2	100	. 2
if. ${ }^{\text {\% }}$	50	-4	40	-7	270	--9	12.5 15.0	34 36 38	-	35	5	250	. 3
:7.5	52	!	51	-2	370	-. 3	17.5	39	-6	39	-	310	. 7
$2 \cdot 3$	$5{ }^{\text {c }}$	-	55	-6	360	-. 1	20.0	38	-6	39	2	350	-21
22.5	\%	-3	59	-6	400	. 2	27.5	37	-2	38	2	430	$\because ?$
\cdots	${ }_{54}^{4}$	3	5	-í	420	$\cdot 3$	23.0	39	-5	40	1	450	-. 3
3	54 54 5	?	53 52	-2	450 400	$\cdot 3$	27.5 30.5	398	-6	40	-2.	490	-. 0.4
3.5	$4{ }_{6}$	1	53	\cdots	530	$\cdot 3$	32.5	40	-88	40	-4	910 510	-. 5
35.4	55	-?	54	-5	560	. 3	35.0	41	-	42	1	530	-0.
	37	${ }_{6}^{6}$	56 59 59	-3	588	- 3	37.5	41	-3	42		570	-1.0
4.95	69	9	r, 9	3	610	$\cdot 2$	40.0	41	-8	42	-5	590	-1.5
45.9	59	17	59	15	680	-. 2	45.3	5	-5	48	1	640	-1.9
47.5	59	is	53	13	670	-. 6	47.5	49	-14	5	- ${ }^{-11}$	630	-2.?
53.0	97	11	59	8	690	-1.2	50.0	49	-17	50	-14 -14	710 70	-2.4 -2.3

STORM 18
level 9

2コロバ5	vir	vir	vRT	VRR	D－values	tADJ	radius	vat	Var	VRT	Vra	（）－vasues	IAIJ
5.0	n）	9 9\％	999	999	979	997.0	5.0	99\％	999	994	999	999	497.0
7.5	307	97	999	797	989	999.0	17.5		7717	990	497 16	1420	－5\％． 4
1：－	－15	$1{ }^{10}$	－10	$\stackrel{15}{?}$	1330 1300	-49.1 -49.5	10.6	4	14	－2	16	1570	－5c．0
\because	\cdots	－17	－3	－19	12：30	-47.3	15.0	5	3	0	5	1560	－51．3
17.5	－7	-12	-3	－13	1370	－50．0	17.5	5	－3	0	－	1540	－51．7
？$\%$ \％	－5	－12	i	－i2	1370	－50．2	22.5	13	－9	8	－9	1510	－5．9．1
$2 \cdot 5$	－3	－17	3	－17	310 1390	-50.2 -50.4	25.0	b	－1	0	－1	1580	－52．9
2\％	！	－1	7	－1	1380	－50．7	27.5	10	－3	5	－3	1570	－52．4
32.0	－ 3	\cdots	3	－4	1390	-51.0	30.0	10	－17	4	－17	1340	－52．7
3.5	2	-2	8	$-{ }_{-5}$	1470 1400 1300	-51.4 -55.7	35.0	14	－26	8	－26	1770	－53．6
32.0	-2 -4	$\stackrel{-5}{5}$	－3	－5	1300	－5i．9	37.5	13	－33	7	－34	1320	－5．4．5
400	-1	4	－3	5	1440	-5.9	40.0	$?$	－33	3	-34 -34 -14	1270	－94．2
$4 \therefore 3$	-10	，	-4	－	1480	－59．2	4． 4.0	3	－34	－3	－34	1240	－54．1
4.0	-5	－2	－1	－3	1370	－53．3	47.5	－1	－32	-7	－34	1150	－54．3
59	－7	，	3	8	1390	－53．5	50.0	3	－30	－2	－30	1120	－54．4

sncctheo virtex averagas

2ndius	vat	var	VRT	VRR	n-values	tads	varz
5.0	939	949	999	999	999	999.0	999
1.5	994	999	99%	99.	999	999.0	997
1 c .6	-	13	-0	13	1432	-49.8	68
12.5	1	10	1	10	1449	-50.1	66
15.0	3	5	3	5	1454	-50.4	65
17.5	3	3	3	3	1458	-50.6	67
2 T .0	6	1	6	1	1445	-50.9	109
22.5	${ }^{8}$	-1	8	-1	1436	-51.0	151
25.0	7	-0	7	-1	1455	-51.1	108
27.5	9	-1	9	-1	1469	-5. 3	159
33.0	12	-3	12	-3	1471	-51.6	304
37.3	14	-5	14	-5	1448	-51.9	389
35.0	14	-7	14	-7	1424	-52.3	470
37.'5	14	-7	1/4	-8	1417	-52.6	5 n 2
4 CO	14	-	13	-8	1424	-57.9	528
42.3	14	-9	14	-9	1421	-53.1	597
45.0	14	-10	14	-10	1413	-53.4	569
47.5	13	-11	13	-12	1395	-53.7	505
50.0	13	-11	13	-11	1375	-53.7	426

smgotheo vortex averages

radius	vat	var	VRT	vRr	d-values	TADJ	vats
5.0	59	5	57	6	-353	9.7	3931
. 5	78	6	77	7	-198	8.9	6564
10.0	79	5	78	\%	-24	8.1	6537
12.9	75	7	73	12	108	7.3	5.548
15.9	70	6	¢8	17	208	6.8	5032
17.9	64	2	63	5	2ns	6.7	4271
20.0	50	-0	58	0	351	6.5	3597
22.5	55	-3	54	-2	400	6.2	3123
25.0	52	-3	51	-3	441	6.0	2851
27.5	50	-2	47	-2	471	5.8	2547
30.0	47	-3	46	-3	491	5.6	2261
32.5	44	-4	4.	-4	509	5.5	2073
35.0	43	-5	42	-5	530	5.5	1954
37.5	41	-5	40	-5	544	5.5	1829
40.0	39	-5	39	-5	559	5.6	1689
42.5	38	-4	33	-4	569	5.6	1603
45.0	37	-1	37	-2	577	5.6	1537
47.5	37	-0	37	-0	590	5.6	1548
50.0	37	-1	37	-2	599	5.6	1536

2antus	vat	var	vRt	VRr	D-values	tad	radius	vat	var	VRT	VRR	D-Values	TADJ	qadius	vat	VAR	VRT	VRr	d-values	TADS
5.0	59	5	50	-?	370	. 2	5.0	32	-8	$4{ }^{4}$	\rightarrow									
17.5	70	${ }_{2}^{2}$	59	-4	490	-. 3	7.5	54	-6	62	- 2	490	-1.6	5.0 7.5	10 56	14 20	39 68	14	370	-1.1
10.0	70	16	60	12	610	-. 2	10.0	51	-19	58	-9	600	-2.5	7.5 10.0	56 48 48	20 10	66 57	14	960 570	-2.0 -2.2
$\begin{aligned} & 12.5 \\ & 15.0 \end{aligned}$	74 73	-1	63 62	-4	730	-1.2	12.5	53	-19	59	-9	730	-3.1	12.5	46	12	54	3	570	-2.3 -2.3
17.5	t	-1:	50	-13		-2.5		52 50	-15 -10 -15	57	-5	810	-2.4	15.0	41	19	49	11	760	-2.5
20.9	67	-9	56	-11	930	-2.7		4	-10	56 54 5	0	850	-1.4	17.5	56	10	64	2	800	-2.9
27.5	51	-12	40	-13	96.0	-2.7	22.5	49	-14	55	-4	890 920	-.98	28.0 22.5	$5{ }^{5 \%}$	$\begin{array}{r}18 \\ 15 \\ \hline 15\end{array}$	62	10	873 478	-3.3
25.0	47	-12	38	-13	960	-2.7	25.0	45	-14	50	-6	950	-. 6	25.0	42	15	49	7	950	-3.2
219	40	- -7	42	-4	1010 1020	-2.7	27.5 30.0	41 38	-15	46 44 46	-5	980	-. 5	27.5	44	10	50		970	-3.2
32.5	42	-5	31	-6	1050	-3.4	32.5	41	-9	4.4 46	-1	1080 1020	-. 5	30.0	36	${ }^{8}$	43	-1	10.0	-3.1
35.0	4.5	-7 -13	3.4	-7 -13	1060	-3.5	35.0	37	-13	46 42	-4	1030	-. -6	32.9 35.0	32 32	118	39 39	$\stackrel{9}{9}$	1010	-2.9
$47 \cdot 9$	488	-13 -13	35 31 31	-13 -13	1070	-3.5	37.5	36	-7	41	3	1040	-.7	37.5	35	${ }_{21}^{18}$	41	12	1020 1030	-3.8 -3.9
1.2 .5	46	-16	30	-17	1090	-3.6	40.0 42.5	22	-12	27	-2	1050	-. 9	40.0	36	23	43	15	1030	-4.2
95.0	4	-15	32	-14	1090	-4.0	45.0	32	-6	24 3	4	1066 1070	-.:80	42.5	74	23	37	14	1040	-4.3
\cdots	4,	-14,	33	-13	1120	-3.9	47.5	35	-6	40	$\%$	1080	-. 9	47.5	36	15	43	16	1068	-4.5
5.0.	43	-15	32	-14	1130	-4.0	50.0	48	-?	53	\bigcirc	1090	-1.1	50.0	37	19	44	10	1100	-4.2

R40:13	vit	vas	vRT	vRr	d-values	tad	fadmes	vat	var	VRT	VRe	D-values	rans	radius	vat	vair	vRT	vrr	D-values	TADJ
$\mathfrak{5}$	6	-7	54	-1	370	1.5	5.0	3 月	0	48										
7.5	72	-7	6.4	-2	500	1.4	7.5	53	11	${ }_{6} 8$	14	350 480 80	-1.4 -1.8	5.0 7.5	53	5	50	-6	400	-0.4
10.6	5 8	-5		${ }_{14}^{2}$	610 740	104	10.0	40	-3	51	$\stackrel{1}{4}$	580	-1.9	17.5	¢0\%	9	50 85	-2	520 620	-1.1 -1.5
15.8	53	3	4%	11	700	1.3	12.5	49 50	${ }^{2}$	59	\%	950	-2.3	12.5	6.9	-6	65	-16	750	-2.9
17.5	53	12	45	20	860	.3	1775	50	15	61 60	18	780 810 80	-2.2	15.0	72	-3	68	-20	8.10	-3.0
20.0	62	-8	54	0	920	$\cdot 1$	20.0	41	19	51	21	¢170	-2.8		31	-8	58	-19	830	-3.2
23.5	0.1	1	53	-	950	0.0	22.0,	44	9	54	11	970	-2.9	20.0	54	-3	51	-16	210	3.1
23.0	5%	4	48	11	${ }^{9} 909$	0.0	25.0	36	10	47	17	950	-3.6	35	56	-7	53 54 50	-19	730 0×0	-2.7
3108	48	\cdots	38 3 3	4	1010 1020	-. 3	27.3	10	7	4	${ }^{9}$	910	-3.7	27.5	53	-	50	-11	990	2.7 -3.5
32.5	4 9	-2	43	6	1050	-. 0.7	32.5	29 30	12	40	12	990 1000	-3.7	30.0	51	-1	48	-12	10 no	-4.0
35.0	43	2	35	?	1080	-2.1	35.0	21	12	32	14	1020	-3.7	32.5 35.0		1	45	-10	1010	-3.5
17.5 60.0	40	${ }_{-3}$	32 76	16	1080	-2.0	37.5	24	-5	34	-3	1030	-4.3	35.5	59 47	$\stackrel{1}{2}$	\% 6	-11	1020 1030	-3.9
42.5	40	-3	32	5	1100	-2.0	42.5	24	- 1	35 35	-1	1050	-3.9	40.0	47	6	45	-4	1040	-4.5
45.9	3.	-7	31	0	1110	-2.2	45.0	2	4	33	11	1070	-4.0	42.5 45.1	49 4 4	4	45	- -1	1050	-4.3
$4 \cdot 5$	37	-7	30	0	1120	-2.4	47.5	21	6	32	7	1080	-3.9	47.5	4 n	,	4.3	-2	1070 1080	-4.2
5.0	36	-9	28	0	1150	-2.5	50.0	17	5	30	6									-4.7

196.

STORM 19
LEVEL

GPO，TDIIF OCTAAT ATMTH TM PNO CENT MAX WYNDS RAMIMS
LEvEL 1

Ransus	vat	var	VRT	yRg	d－values	TADJ	raolus	var	var	ver	VRQ	o－values	rasj	raphus	vat	var	vrt	ver	o－values	rad．
$9 \cdot 0$	：4，	－1？	$\cdot 173$	-16	－2110	26.1	5.0	123	－15											
7.9	121	－7	108	－11	－1720	23.6	7.5	115	-15 -19	${ }_{123}^{132}$	-4 -8	－206n	26.4 24.5	5.0 7.5	R0 111	37 49	69 121	28 30	-2210 -1800 -1200	26.5 29.1
19.0	111	－10	48 95	－3	－ 14×0	23.2	10.0	103	－-20	110	－${ }^{-17}$	－1150	23．6	10.0	on	39	110	27	-1280 -1370	29.1 24.7
1.3	102	－11	89	－14	－920	22.6	15.0	9	－22	110	-17	－3iso	22.3	12.5	41	${ }^{28}$	107	19	－1050	23.8
17.5	73	－7	80	－8	－7c0	22.5	17.5	83	－28	99	－15	－760	22.3 22.2	15.0 17.5	37 78	15 10	97	5	-890 -750	22.7
20.8	$\stackrel{9}{7}$	-16	75	－17	－540	22.2	20.0	73	－32	80	－ 20	－ 590	22.2	17.5 20.0	67	10 10	86 77	${ }_{9}$	-750 -630	22.4 22.2
25.0	80	－is	66	－25	－450	22.2 21.2	22．3	61	-24 -23 -28	67	－12	－530	22.1	22.5	6.7	9	76	－1	－570	22.4
27.5	$7{ }^{7}$	－19	62	－11	－410	21.5	27.5	60	－21	68	－19	－-1.50	22.0 21.8	25.0 27.5 8.0	56 58 48	12	65	－	－5c0	22.5
30.0	72	-13	57	-14	－380	21.1	30.0	54	－22	61	－ 10	－410	21.6	30.0	45	． 7	61 54	－4	－470	21.5 21.6
32．4	li， 6	－${ }_{-8}$	52	－1？	－350	21.4	32.5	53	－24	59	－12	－370	21.6	32.5	43		51	－8	－390	21.5
37.5	－5	－9	51	－9	－ 290	21.3 21.3	35.0 37.5	478	-75 -32	56 59 59	-13 -20	-350 -120 -180	21.5	35.0 37.5	36	3	44	－9	－360	21.7
$4 \cdot 3$	$5{ }^{5}$	－9	51	－9	－2．80	21.1	41.0	4.5	－24	52	－12	－290	21.6	470	15	－2	$4{ }_{4}^{48}$	-9 -13	-370 -710	21.9
4，	53 5	-7	49	-9	－270	20.9	42.5	43	－23	50	－11	－290	21.2	42.5	14	－3	42	－14	－290	21.8
吅．	57	－7	43	－	－-750	21.3	45.0	42 40 10	－20	49	－88	－260	21.3	45.0	33	2	41	－10	－270	10.6
いい	1；9	－6	43	－7	－250	21.0	50.0	35	－24	$4{ }^{4}$	－11	-2640 -230	21．5	47.5 50.0	32 31	$\frac{1}{5}$	40	－11	－270	21.4

\begin{tabular}{|c|}
\hline 2nilus \& yat \& var \& vet \& vrr \& o－values \& tad \& radius \& vat \& vas \& vrt \& ver \& 0－values \& tald \& radius \& vat \& VAR \& ver \& VRR \& n－values \& TADS

\hline \bigcirc \& 118 \& 0 \& 114 \& 13 \& －2170 \& 26.0 \& 5.0 \& 32 \& －5 \& 47 \& －2 \& －2070 \& 26.5 \& ${ }_{5} .0$ \& \& \& \& \& \&

\hline 7.5 \& 173 \& -1 \& 120 \& 6 \& -1700 \& 24.4 \& 7.5 \& 1% ． \& －2 \& 134 \& － \& －1950 \& 24.9 \& 7.5 \& 123
.102 \& 14
17 \& 119
97 \& 0 \& -1910
-1550 \& 24.4
24.1

\hline \％ \& 117 \& $-1 / 4$ \& 115 \& －1 \& －1220 \& 23.3 \& 19.5 \& $3{ }^{\circ}$ \& －4 \& 119 \& －1 \& －1！co \& 24．9 \& 17.5 \& 102 \& 17 \& 107
102 \& 4 \& -1550
-1140 \& 24.1
23.4

\hline 12．5 \& i： 2 \& －is
-71 \& 10% \& -2 \& －990 \& 22.4 \& 12.5 \& 21 \& －20 \& 105 \& －19 \& －670 \& 22.4 \& 12.5 \& 97 \& 10 \& 93 \& －3 \& －960 \& 23.4
22.7

\hline 17.5 \& 73 \& -71
-24 \& $\xrightarrow{96}$ \& －7 \& －750 \& 22.6 \& 15.0 \& mon \& -5.2 \& \％ \& －53 \& －tor \& 22.9 \& 15.0 \& 94 \& 4 \& 90 \& －9 \& － 210 \& 22.7
22.3

\hline 20.9 \& $\because ?$ \& －22 \& 79 \& －9 \& － 570 \& 21.4 \& 20.0 \& 8.2 \& － $\begin{aligned} & -38 \\ & -20\end{aligned}$ \& $\stackrel{93}{76}$ \& -34
-30 \& －5．0 \& 21.3 \& 17.5 \& 96 \& ${ }_{5}$ \& $2 ?$ \& －14 \& －670 \& 22.0

\hline 2 P .5 \& 1 \& -18 \& 72 \& －4 \& －510 \& 21.3 \& 22.5 \& ， 6 \& － 30 \& 70 \& －3： \& － \& 310 \& 20.0 \& 14
74 \& 5 \& 72
70 \& －9 \& -570
-510 \& 22.2

\hline 25.0 \& or \& －${ }^{\text {a }}$ \& 65 \& －5 \& －44， \& ？ 1.5 \& 25.0 \& 50 \& －20 \& 6.4 \& －22 \& －390 \& 21.0 \& 24.0 \& 14
6.8 \& ${ }_{3}^{6}$ \& 86 \& －9 \& －510 \& 21.6
21.5

\hline 27.5 \& 30 \& -23 \& 66 \& －9 \& －390 \& 21.4 \& 27.5 \& 45 \& -19 \& 59 \& －21 \& － 330 \& 21.9 \& 27.5 \& 62 \& 3 \& 5 \& －10 \& －480 \& 21.5
21.9

\hline \％－6 \& 5 \& -31
-28 \& 5 \& -18 \& －360 \& 21.6 \& 30.0 \& 4 \& －17 \& $6 ?$ \& －19 \& －240 \& 21.7 \& 37.0 \& 52 \& 1 \& 48 \& －13 \& －400 \& 21.9
21.8

\hline 34.0 \& 5 \& \because \& 4 \& －19 \& -350
-380 \& 21.2

12.0 \& 32.5
35.0 \& 3， \& －18 \& 52 \& －20 \& －290 \& 21.6 \& 32.5 \& 5 ？ \& 7 \& 49 \& －7 \& －330 \& 21.7

\hline \bigcirc \& 53 \& －30 \& 48 \& －17 \& －360 \& 2 i .0 \& 17.5 \& 35 \& －19 \& 49 \& -16
-20 \& -270
-250 \& 21.6 \& 35.0 \& 49 \& 3 \& 45 \& -11 \& －340 \& 21.3

\hline \& 51 \& -20 \& 46 \& －17 \& －290 \& 20.7 \& 40.0 \& 33 \& －12 \& 4 \& －13 \& －250 \& 21.5 \& 37.5
40.0 \& 40
50 \& 1 \& 44 \& －14 \& －310 \& 21.7

\hline 42.5 \& 53 \& －27 \& 43 \& －14 \& －260 \& 20.7 \& 42.5 \& 31 \& －16 \& 45 \& －17 \& －250 \& 22.0 \& 42.5 \& 41 \& 10 \& 47 \& －3 \& -300
-290 \& 21.8

\hline 45.0 \& 53
53 \& -32
-20 \& 47
48
48 \& －9 \& －220 \& 20.8 \& 45.0 \& 31 \& -13 \& 46 \& －14 \& －240 \& 22.2 \& 45.0 \& 43 \& 17 \& 39 \& 3 \& －280 \& 21.2

\hline $5 \cdots .0$ \& 4. \& -21 \& 43 \& － 8 \& －190 \& 20.4 \& 41.5
50.0 \& 25 \& -13 \& 34 \& －14 \& － 220 \& 22.8 \& 47.5 \& 4 \& $\stackrel{1}{4}$ \& 43 \& －5 \& －270 \& 21.4

\hline
\end{tabular}

STORM 20 ABUEL I

GPI/ ПIR / HחG /NOTH/GTM/ANGIF/FYFRAO/ DUES/ACTUAL/REL /MAX WO/

41.01 u	vat	var	vrt	vRr	d-values	YAOJ	radius	vat	var	VRT	vRr	o-valufs								
b.0	109	-7	101	4								o-valurs	raid	Radus	vat	var	vRt	vrr	o-values	IADJ
7.5	15.3	-5	143	4	-1780 -1370	14.0	5.0	75	-7	85	1	-1810	17.6	5.0	78	-10	91	-8	-1870	
16.0	127	-11	120	1	-1000	13.3	10.0	116	- ${ }^{9}$	118	17	-1790	11.10	7.3	97	-17	110	-15	-1.20	16.?
12.5	108	-12	100	-1	-680	13.7	12.5	116	-10	123 102	\%	-770	14.0	10.0	36	-5	110	-4	-490	14.0
17.9	107	-6	85	6	-490 -320	13.2	15.0	8n	-12	${ }^{18}$	0	-700	12.6 12.7	12.5	80 72	1	$4{ }^{4} 4$	1	-710	13.5
20.0	95	-2	79	10	-3.0 -250	12.7	17.5	76	-13	83	-1	-370	12.9	17.5	04	-2	77	-2	-560 -770	13.3
22.4	73	-9	66	4	-160	11.9	22.5	6	-12 -19	78	-7	-290	12.2	20.0	55	-6	68	-6	-200	12.4
?	\bigcirc	-6	63	7	-130	12.3	25.0	H_{4}	-14	71	-2	-160	11.9	72.3	45	-3	67	-3	-1:0	12.3
3 C .0	¢	-4 -1	62 56	1	-90	11.7	27.5	55	-9	62	3	-150	11.4	27.5	47	-	69 63	,	-140	12.5
32.5	58	-10	51	2	-50	11.5	30.0	5	-12	60	0	-90	11.9	30.0	40	-8	53	-8	-1.0	12.4 12.3
34.0	57	-2	52	10	0	11.4	35.0	S4,	-19	58	-	-70	12.1	32.5	46	-6	60	-b	-50	12.2
37.5 4.0	5	-7	50	4	20	11.3	37.5	47	-18	${ }_{53}$	-6	-40	12.0	35.0 37.5	42	-10	56	-10	-30	11.7
42.5	56	-6	49	4	40	11.3	41.0	44	-11	50	1	-10	11.3	40.0	36	-7	54 50	-	10	11.6
47.0	56	-3.	49		60	12.1	45.0	$4{ }_{3}$	-10	47	?	10	11.4	42.5	32	-?	45	-3	50	11.3
47.5	$5 ?$	-10	45	2	70	11.6	47.5	34	-11	45	-1	40	11.2	45.0	$: 7$	-n	41	-9	60	11. ${ }_{1}$
B.o?	s?	-11	44	0	80	11.4	57.0	36	-16	42	-4	50	11.5	47.5	? ${ }^{\text {R }}$	-4	41	-5	70	11.4
														50.0	28	-R	41	-8	70	11.3

24.105	var	var	vrt	vrr	o-values	IAdj
5.0	113	-4	100	-2	-1740	17.7
7.5	14.0	3	132	2	-1370	15.6
10.0	111	5	117	3	-940	13.8
12.5	$1: 7$	3	103	1	-700	13.6
15.9	104	3	91	$?$	-490	13.8
17.5	48	*	24	$?$	-390	13.9
20.0	3	;	82	4	-300	13.0
22.5	86	5	72	4	-220	12.0
2i.0	78	6	65	5	-160	11.6
27.5	71	?	57	7	-130	11.7
3.10	70	?	57	1	-60	11.8
$3 \cdot .5$	${ }^{5} 5$	0	52	-1	-40	11.4
$3 \mathrm{3r} 0$	1,7	\bigcirc	54	-1	-20	11.2
3.5	$0 \cdot 3$	-2	50	-3	0	11.3
4.0	4.2		48	2	10	11.9
42.5	n1	$\stackrel{8}{ }$	47	7	30	12.3
$4{ }_{4} 4.0$	${ }_{5}{ }^{\text {a }}$	7	48	7	50	12.?
47.5 50.5	55	13	42	13	50	11.5

Raintus	vat	var	vrt	VRR	D-values	ranj
5.0	116	-6	104	-	-1790	
7.5	14.4	-3	131	-4	-1330	15.7
10.0	124	-4	111	-6	900	14.2
12.5	107	-	94	-10	-670	13.4
15.0	105	1	92	-1	-470	13.0
17.5	92	$?$	79	-1	-370	12.9
22.5	81 84	3 5	70	${ }^{0}$	-300	12.7
25.0	79	5	66	- ${ }^{-3}$	-210	12.7
27.5	75	1	63	-2	-110	12.2
30.0	68	-1	55	-4	-10	11.7
37.5	67	5	53	,	-20	11.9
35.0	58	-1	45	-3	-10	11.5
37.5	62	0	49	-3	40	11.9
40.0 42.5	62	1	49	-2	40	11.7
42.5 450	6.5 58 58	6	52 45	1	-40	11.9
47.5	55	10	4	7	130	11.9 11.6 11.8
50.0	56	14	4			11.6

radius	vat	var	vrt	var	o-values	ranj
5.0	87	\bigcirc	94	-3	-1690	17.5
7.5	124	5	132	-6	-1.330	15.0
10.0	403	4	111	-7	-950	14.0
12.5	87	9	96	-2	-650	13.8
15.0	\bigcirc	14	90	3	-510	13.9
17.5	72	15	77	4	-420	14.1
23.0	17	11	77		-270	13.0
22.5	on	13	73	?	-240	12.5
25.0	n 2	15	69	4	-170	12.2
27.5	67	15	67	4	-170	12.2
30.0	57	15	65	3	-140	12.2
32.5	53	12	60	1	-70	12.0
35.0	42	9	49	-2		
37.5	33	B	45	-3	-40	12.7
49.0	38	n	45	-3	10	12.6
42.5	34	1	41	-11	30	13.0
45.0 47.5	34	-3	41	-14	40	12.8
50.0	36	-1	43	-11 -12	50 60	12.9

CTORM 20
LEVEL

12185	51	413	51	/ $934 / 122 / 109 / 5.0$			1275	120	E 16	120	,	+1101	1	/275	235	W 18		/	/100 1	115.
zailus	v , r	var	VRT	vrr	o-values	[AI) 3	radius	vat	var	VRt	VRR	d-values	tans	radius	Vit	VAR	VRT	VRR	d-values	tanj
¢.0	172	-7	ion	-3	-1240	11.9	5.0	87	23	91	37	-1460	12.5	5.0	100	$\hat{*}$	112	-1	-1780	12.0
$\bigcirc \cdot 5$	118	?	105	11	-8400	9.9	7.5	110	19	114	32	-410	8.7	7.5	89	-7	101	-14	-860.	11.0
10.0	$1: 2$	$?$	9%	9	- 5.40	6.9	10.0	74	- ${ }^{2}$	98	11	-600	8.0	10.0	89	-6	100	-13	-600	8.0
17.9	103	4	8.8	7	- 340	7.1	12.5	$? 8$ 34	-13	93	!	-430 -260 -100	7.7	12.5	77	-10	98 82 8	-18 -15	-400	7.8 6.7
17.5	as,	13	$\stackrel{8}{87}$	14	-120	6.3	17.5	68	-15.	74	-3	-190	6.3	17.5	61	-7	71	-17	-110	5.7
20.0	$8 \cdot$	17	70	13	- 50	6.5	20.0	64	-12	70	0	-30	5.6	20.0	50	-2	67	-13	-80	5.8
2.3	74	13	60	14	-30	6.8	22.5	63	-23	69	-10	-20	5.3	22.5	54	3	63	-7	-10	6.4
-	Ti	$2 \cdot$	57	20	00	5.3	25.0	57	-25	63	-13	60	$4 \cdot 3$	25.0	50	1	58	-10	80	5.9
27.5	69	$1{ }^{\circ}$	55	17	100	5.5	27.5	49	-23	56	-11	10	5.2	27.5	48	-3	54	-14 -14	100	5.4
37.6	:1	$\stackrel{7}{5}$	4.	7	140	4.3	30.0	4.7	-20	56	- 0	100	5.4	30.0	4.4	-3	51	-14	110	5.0
27.5	8	5	47	- ${ }^{3}$	180	4.7	32.5	50	-17	57	-5	110	5.9	32.5 35.6	4.4	- -	51	-14 -12	120	4.5
	53	6	30	- 3	220	4.9	35.0	48	-22	54	-10	170	6.1 6.4	35.0	44 37	-1 -3	4	-12 -14	130 140 170	4.4
37.3 40.0	51 5 5	3	37 39	1	230 240	4.3 4.6	37.5 40.0	42	-26 -27 17	49 51	-14 -15	190 190	6.4 3.0	37.5 40.0	37 38	-3 -5	44	-14 -16	140 170	4.3 4.9
42.5	57	¢	39	4	250	4.6	42.5	43	-19	50	-7	210	4.7	47.5	35	-6	42	-17	190	5.1
4 4 \% 0	\cdots	970	9วก	397	260	4.7	45.0	4.4	-26	51	-14	270	4.6	45.0	39	-8	45	-20	190	5.5
4.75	non	979	498	949	260	4.4	47.5	34	-22	40	-10	270	4.3	47.5	30	-7	37	-10 -10	220	5.8
¢n.a	(\%)	19.	499	989	270	4.6	50.0	35	-15	4 ?	-3.	270	4.5	50.0	33	-6	40	-18	230	5.2

ractus	Vnt	v^a	vat	vrr	d-values	tanj	ramtus	Vit	vir	vRT	VRR	d-values	тan.	ratius	vat	var	VRT	vRr	d-valufs	tanj
5.0	115	-b	175		-1490	11.2	5.0	65	-16	78	-19	-1450	11.7	5.0	110	-12	102	-24	-1270	12.3
7.5	126	0	115	9	-9:0	8.3	7.3	73	-17	106	-19	-910	3.1	7.5	105	-9	98	- 21	-760	?.?
11.0	117	1	107	,	-580	7.3	10.0	93	-19	106	-19	-580	6.9	10.0	34	-2	87	-15 -15	-4.60	8.2
12.5	107	?	96	10	-3, ${ }^{\text {a }}$	7.2	12.5	17	-19	91	-17	-310	5.0	12.5	$9{ }^{1}$	-2	85	-15	-320	7.8
15.0	191	7	20	15	-240	7.0	15.0	74	-15	37	-14	-200	7.0	15.0	81	-1	75	-13	-200	7.6
17.5	86	-8	75	-2	-140	5.9	17.5	64	-14	77	-13	-110	¢. ${ }^{\text {¢ }}$	17.5	77	4	71	-?	- 0	7.7
2:-0	$?$	-7	76	\bigcirc	-90	8.4	20.0	54	-19	68	-17	-10	4.9	20.0	76	\%	71	-5	-20	6.7
? 3 ;	77	-7	64	-1	-20	'.5	22.5	92	-17	65	-15	70	3.0	22.5	70	6	65	-1	0	6.6
25.0	1.9	-11	57	-5	10	5.0	25.0	47	-11	6 ?	-	60	4.7	25.0	64	6	59	-7	80	6.1
27.5	63	3	55	9	50	5.4	21.5	43	-4	55	-3	90	4.4	27.5	80	4	55	-9	120	5.6
3.0	?	0	53	6	100	5.1	30.0	41	-8	54	-8	140	4.2	30.0	5 s	6	51	-7	1 ¢0	5.0
32.5	ns	4	53	10	150	4.9	32.5	35	-2	43	0	190	4.3	32.5	54	9	49	-4	130	5.2
35.0	\bigcirc	-3	45	3	160	5.5	35.6	12	0	46	2	200	4.1	35.0	51	${ }^{9}$	46	-3	200	4.7
37.9	$5 \cdot$	0	41	\%	100	4.7	37.5	34	-12	37	-10	2.10	4.9	37.5	53	12	48	-1	230	4.4
4 n \%	52	0	40	6	220	4.3	40.0	25	$=12$	39	-11	230	4.9	40.0	53	15	48	2	250	4.5
43.5	54	3	4	10	230	4.5	42.5	25	-12	39	-11	240	4.7	42.5	47	10	42	-3	270	4.4
45.0	53	4	41	10	250	4.4	45.0	24	-7	38	-5	250	4.6	47.0	45	12	40	-1	270	4.3
4.95 57.0	53 43	0 -5	40 31	?	290 290	4.4	47.5 50.0	32	-3	36 45	-1	260 270	4.1 4.2	47.5 50.0	43 48	7	39 43	-6	290 310	4.5 4.6

204.

sumothen vortex ayerages

qactus	vat	vas	vet	vrr	o-values	ta	valz
5.0	201	-0	101	-0	-1192	11.0	10623
7.3	103	-1	103	-0	-973.	$9 \cdot 2$	10917
1 n .c	98	-3	97	-3	-595.	7.9	4791
12.5	90	-4	эо	-4	-395	7.4	3314
15.6	83	-4	93	-3	-234	7.0	7162
17.3	\%	-4	75	-4	-127	6.4	5914
2 c .0	70	-4	70	-4	-57	6.1	5090
22.5	64	-4	64	-4	-4.	5.8	4321
25.0	5.	-3	59	-4	50	5.5	3695
31.8	56	-2	55	-3	89	5.2	3252
30.0	53	-2	53	-3	123	5.0	2956
3.5	50	-1	50	-2	152	5.0	26.95
35.6	47	-2	47	-3	176	5.0	2359
${ }^{37} \cdot 9$	45	-4	44	-5	175	4.9	2142
42.0	43	-4	43	-5	214	4.7	2027
42.5	42	-3	42	-4	231.	4.7	1933
45.	43	-3	42	-4	249	4.7	1843
47.5	3.7	-3	40	-4	265	4.6	171
5 c .6	34	-3	39	-4	273	4.6	1612

このn*s	vat	vas	vet	vrr	n-values	tad	ranlus	vat	VAL	vRT	VRR	0-values	tan,	Ranlus						
5.0	33	-23	91	-17	-400	3.7								RAnıus	vat	var	VRT	VRR	D-values	tanj
1. 5	104	-23	$9 ?$	-16	40	-. 9	7.5	115	27	120	35	-520	1.8	5.0	4	7	89	-5	-850.	2.0
12.9	$1{ }^{\text {in }}$	-?	83	-7	530	-2.6	17.0	102	-4	115	-7	- 220	-1.3	7.5	116	6	110	-7	-590	2.3
15.0	198 9	-4	90	-3	520	-2.7	12.5	90	-6	103	-9	440	-1.8	120.0	104 97	11	$\underline{104}$	-9	-200	$-\mathrm{i} \cdot \mathrm{F}$
:17.)	73	7	60	${ }_{-8}$	$7 \geqslant 0$	-2.2 -1.5	15.0 17.5	74	-3.	13	-6	570	-2.2	15.0	90	26	97	-2	150	-1.7
23.3	69	\rightarrow	47	-1	760	-2.7	27.0	$5{ }_{5}$	0	$\bigcirc 6$	-	670	-2.9	17.5	91	30	81	17	250	-2.4
$2 \cdot \mathrm{~b}$	6	-4	48	-4	840	-3.5	22.5	46	1	59	-2	710	-3.4	20.0	73	2.3	73	16	340	-2.6
27.5	5	-4 -3	43	-4,	350 860	-3.9	25.0	45	2	${ }_{5}{ }^{\text {R }}$	-	830	-4.2	22.5 25.0	72	33 26	72	20	$3{ }^{3} 0$	-3.4
11.0	31	0	38	-4	860 930	-4.1	27.5 30.0	47	-1	60	-4	890	-4.4	27.5	58	20	${ }_{57}$	12	410	-3.6 -3.7
32.5	${ }^{5} 2$	0	39	-1	940	-4.7	37.5	41	7	54	-1	890	-4.6	30.0	56	19	55	6	490	-4.0
35.0	54	\bigcirc	40	-1	970	-4.4	35.0	40	11	53	10	910	-4.7	32.5 35.0 375	53 59	20	51	7	510	-3.9
$4 \% 3$	4	-?	30 30 3	-3	780	-4.7	37.5	38	17	53	11	920	-4.4	35.0 37.5	59 59 59	22 21	56 54 54	$\stackrel{\square}{8}$	59 550 550	-3.8
\cdots	52	-1	39	-2	990	-4.8	42.0	17	11	40 45	${ }^{9}$	420	-4.5	40.0	53	20	51	7	550 570	-4.1
$4 . ?$	$4{ }^{3}$	-7	41	-8	1000	-4.6	45.0	36	11	45 50	10 10	920 980	-4.7	42.5	55	18	52	5	590	-4.5
47.3	47	-11	34	-14	1060	-4.8	47.5	3.9	13	53	13	930	-5.1	45.0 47.5	52	17	49	4	600	-4.9
3	53	-10	40	-15	1010	-5.1	50.0	41	11	55	11	940	-5.7	50.0	5	16	49 47	4	610 610	-4.9

2.ntus	VAT	var	var	var	d-values	tadj	ramius	vat	var	VRT	vere	D-values	
5.0	?	-11	?9	-12	-500								
7.5	137	21)	125	24	-210	0.7	7.5	${ }_{6}^{61}$	-1	173	"	-500	3.4
10.1	13	-	112	-3	90	-2.6	10.0			115	13	-210	-1.5
12.5	107	-	93	?	350	-2.3	12.5	75	10°	$\begin{array}{r}1184 \\ 87 \\ \hline 8\end{array}$	1	160	-2.5
i.o	9	-5	97	3	510	-2.6	15.0	85	11	$\stackrel{87}{77}$	5	3×0	-3.0
17.5	r's	-9	76	-i	580	-2.7	17.5	¢7	12	8	4	430	-1.?
\cdots	is	-5	on	4	660	-2.9	20.0	64		75	1	5	-3.0 -2.0
\cdots	72	-	*	3	750	-3.\%	22.5	5.9	¿	t. 4	-7	bea	-2.0,
27.5	4	-6	50	?	820	-3.4	25.0	41	4	60	-6	810	-4.7 -4.4
12.9	G/	-9	54	$\stackrel{5}{0}$	330 860	-3.8	27.5	43	4	52	- 7	980	-4.4
12.5	84	,	55	11	890	-4.3	30.0	42	6	$5!$	-4	990	-4. ${ }^{\text {a }}$
3.0	51	2	51	12	900	-4.4.4	35.0	44	\%	5	4	90.0	-4.9
37.5	51	?	42	11	910^{-}	-4.4	77.5	45	9	52 54	- -1	96	-4.7
$4{ }^{4}$	2.8	4	30	;	970	-4.3	40.0	46	9	54	-1 -2	710 910	-5.3
4.9	46	-	37	4	980	-4.9	42.5	53	17	6.	-	920	-5.4.4
45.0	4	-6	38	4	1000	-5.0	45.0	50	19	58	9	920	-5.9 -5.7
57.0	50	-13	40	-4	1010 1020	-5.1	47.5	45	18	53	0	930	-5.3

STORM 20
LEVEL

Rartus	vat	VAR	vet	VRr	o-values	tanj	ramius	vat	var	vet	visk	d-valufs	ramj
5.7	10	4	15	10	-1190	24.1	5.0	21	-11	13	-19	-1270	24.3
7. ${ }^{\text {a }}$	13	$?$	15	9	-1180	21.1	7.5	48	-10	39	-12	-1170	24.0
10.9	26	${ }_{5}^{6}$	29	13	-1170	24.2	10.0	${ }^{5} 5$	\rightarrow	57	-11	-1140	23.4
12.5	$4{ }^{4}$	5	50	12	-1140	23.7	12.5	69	-10	62	-13	-1060	23.3
15.4	17	20	77	27	-1050	23.6	15.0	6,	-6	56	-9	-960	23.2
17.5	12	14	77	20	-980	23.3	17.5	74	2	67	-1	-890	33.1
20.0	${ }^{88}$	1	73	7	-810	23.4	20.0	73	-13	66	-17	- P 10	21.0
$2 ? .5$	¢	- 2	78	4	- 230	22.9	22.5	76	-11	69	-14	-160	27.8
25.0	[.2 5	-3 -3	68 63	3 2	-789 -780	22.9 22.9	25.0 27.5	78 74	-7 -10	71	-10	-730	22.6
35,0	58	-7	64	\rightarrow	-770	$\rightarrow 2.4$	3 mos	70	-0	67	-17	- -7.70	22.9
32.5	no	-6	66	-1	-700	22.3	32.5	72	-10	65	-13	-6.30	23.3
35.9	A1	-6	67	-1	-670	22.0	35.0	67	-10	60	-13	-6,00	22.3
37.3)	80,	-9	67 68	- ${ }^{-1}$	-610	21.7	37.5	72	-16	65	-19	-530	21.9
41.3 4.9	57 59 59	-6 -13	$\xrightarrow{69}$	- ${ }_{-1}$	-580 -570	21.6	410.0	74 76	-14	${ }_{6}^{65}$	-17 -14	-480	21.7
45.0	S.	-7	67	-2	-530	21.6	4.5 45.0	75	-11 -7	68	-14	-460 -410	21.6
47.5	31	-15	59	-11	-4,90	21.5	47.5	74	-5	6.7	-8	-380	17.9
53.9	57	-10	66	-5	-470	21.6	50.0	71	-2	64	-5	-320	19.7

Smadthfo vortex avfrages

panius	vat	vas	vit	vrr	d-values	tanj	vati
9.7	15	-1	16	2	-269	14.2	275
$7 . \%$	22	-0	23	0	-233	14.2	551
1 c .0	30	-1	30	-0	-204	13.8	495
17.5	$3{ }^{3}$	-1	39	-1	-169	13.0	15988
15.0	48	-2	48	-2	-136	12.1	2398
17.5	56	0	56	${ }_{7}$	-101	11.2	3273
2 CO	60	${ }^{6}$	${ }^{36}$	7	-52	10.3	4507
?i.0	72	14	72	14	4	9.6	5404
27.5	70	12	71		61	$9 \cdot 1$	5457
32.0	65	5	6.6	12 5	121	8.7	${ }_{4} \mathrm{CO}_{44}$
32.5	62	2	63		205	7.0	4442
35.\%	62	1	62	1	230	6.3	4097
37.\%	5.7	1	-59	,	251	6.0	378 B
$4 \mathrm{C.0}$	56	2	56	2	272	5.8	3419
42.5	54	5	54		296	5.5	3123
43.0	54	6	54	6	324	5.2	3159
47.5	47	1	51	3	348	5.2	2580
sç.c	47	2	49	3	359	5.0	2426

STORM 22 LEVEL 2

W. M. GRAY'S FEDERALLY SUPPORTED RESEARCH PROJECT REPORTS ON TROPICAL CYCLONES SINCE 1967

```
CSU Dept. of
```

Atmos. Sci.
Report No.
Report Title, Author, Date, Agency Support

The Mutual Variation of Wind, Shear, and Baroclinicity in the Cumulus Convective Atmosphere of the Hurricane (69pp). W. M. Gray. February 1967. NSF Support.

Global View of the Origin of Tropical Disturbances and Storms (105pp.) W. M. Gray. October 1967. NSF Support.

124 Investigation of the Importance of Cumulus Convection and Ventilation in Early Tropical Storm Development (88pp). R. Lopez. June 1968. ESSA Satellite Lab. Support.

Unnumbered Role of Angular Momentum Transports in Tropica Storm Dissipation over Tropical Oceans (46pp). R. F. Wachtmann. December 1968. NSF and ESSA Support.

Unnumbered Monthly C1imatological Wind Fields Associated with Tropical Storm Genesis in the West Indies (34pp) J. W. Sartor. December 1968. NSF Support.

A Climatology of 'lropical Cyclones and Disturbances of the Western Pacific with a Suggested Theory for Their Genesis/Maintenance. W. M. Gray.
NAVWEARSCHFAC Technical Paper No. 19-70 (225pp). November 1970. (Available from U.S. Navy, Monterey, CA). U.S. Navy Support.

The Structure and Dynamics of the Hurricane's Inner Core Area (105 pp). D. J. She. . April 1972. NOAA and NSF Support.

Feasibility of Beneficial Hurricane Modification by Carbon Black Seeding (130pp). W. M. Gray. April 1973. NOAA Support.

Hurricane Spawned Tornadoes (57pp). D. J. Nov1an. May 1973. NOAA and NTSF Support:

Tropical Cyclone Genesis (121pp). W. M. Gray. March 1975. NSF Support.

Tropical Cyclone Genesis in the Western North Pacific (66pp). W. M. Gray. March 1975. U.S. Navy Environmental Prediction Research Facility Report. Technical Paper No. 16-75. (Available from the U.S. Navy, Monterey, CA). Navy Support.

Tropical cyclone Motion and Surrounding Parameter Relationships (105pp). J. E. George. December 1975. NOAA Support.

Typhoon Genesis (79pp). R. M. Zehr. October 1976. NSF and NOAA Support.

The Structure, Dynamics and Energetics of Tropical Cyclones (197pp). W. M. Frank. October 1976. NSF and NOAA Support.

OTHER NON-TROPICAL CYCLONE FEDERALLY SUPPORTED RESEARCH PROJECT REPORTS SINCE 1967

CSU Dept. of
Atmos. Sci.
Report No.
116

Report Title, Author, Date, Agency Support
A Statistical Study of the Frictional Wind Veering in the P1anetary Boundary Layer (57 pp). B. Mendenhall. December 1967. NSF and ESSA Support.

Characteristics of the Tornado Environment as Deduced from Proximity Soundings (55pp). T. G. Wills. June 1969. NOAA and NSF Support.

Statistical Analysis of Trade Wind Cloud Clusters of the Western North Pacific (80 pp). K. Williams. June 1970. ESSA Satellite Lab. Support.

A Diagnostic Study of the Planetary Boundary Layer over the Oceans (95pp). W. M. Gray. February 1972. Navy and NSF Support.

Cumulus Convection and Larger-Scale Circulation, Part I: A Parametric Model of Cumulus Convection (100 pp). R. E. Lopez. June 1972. NSF Support.

Cumulus Convection and Larger-Scale Circulations, Part II: Cumulus and Meso-Scale Interactions (63pp). R. E. Lopez. June 1972. NSF Support.

Cumulus Convection and Larger-Scale Considerations (80pp). W. M. Gray. July 1972. NOAA-NESS.

Characteristics of Carbon Black Dust as a Tropospheric Heat Source for Weather Modification (55pp). W. M. Frank. January 1973. NSF Support.

Variability of Planetary Boundary Layer Winds (157pp). L. R. Hoxit. May 1973. NSF Support.

A Study of Tornado Proximity Data and an Observationally Derived Model of Tornado Genesis (101pp). R. Maddox. November 1973. NOAA Support.

Analysis of Satellite Observed Tropical Cloud Clusters (olpp). E. Ruprecht and W. M. Gray. May 1974. NOAA-NESS Support.

Precipitation Characteristics in the Northeast Brazil Dry Region (56pp). R. P. L. Ramos. May 1974 NSF Support.

Weather Modification through Carbon Dust Absorption of Solar Energy (190pp). W. M. Gray, W. M. Frank, M. L. Corrin, and C. A. Stokes. July 1974.

Diurnal Variation of Oceanic Deep Cumulus Convec- tion. Paper I: Observational Evidence. R. W Jacobson, Jr. Paper II: Physical Hypothesis (106pp). W. M. Gray. February 1976. NOAA NESS Support.

[^0]: ${ }^{\text {I }}$ In 1960 the name was changed to the National Hurricane Research Jaboratory (NHRL).

[^1]: \qquad

[^2]: \qquad

[^3]: rans

