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Abstract

An environmentally adaptive system for prediction of acoustic transmission loss (TL) in the atmosphere is developed in this paper. This system
uses several back propagation neural network predictors, each corresponding to a specific environmental condition. The outputs of the expert
predictors are combined using a fuzzy confidence measure and a nonlinear fusion system. Using this prediction methodology the computational
intractability of traditional acoustic model-based approaches is eliminated. The proposed TL prediction system is tested on two synthetic acoustic
data sets for a wide range of geometrical, source and environmental conditions including both nonturbulent and turbulent atmospheres. Test results
of the system showed root mean square (RMS) errors of 1.84 dB for the nonturbulent and 1.36 dB for the turbulent conditions, respectively, which
are acceptable levels for near real-time performance. Additionally, the environmentally adaptive system demonstrated improved TL prediction
accuracy at high frequencies and large values of horizontal separation between source and receiver.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of modelling and predicting the effects of
acoustic waves propagating in the atmosphere has always
been of great importance especially in noise forecasting
and detection applications (Embleton, 1996). Prediction of
acoustic transmission loss (TL), or the diminishment in sound
pressure level from a reference point to a receiver depends
on a variety of factors, namely problem geometry, source
frequency, characteristics of the ground surface, refraction
caused by wind and temperature conditions and atmospheric
turbulence. Several model-based methods exist to accurately
predict TL values in atmospheric acoustic propagation, but the
computation times are generally excessive for situations when
near real-time environmental awareness is desired. With the
increasing importance of Unattended Ground Sensor (UGS)
technologies (Srour, 1999) in localizing and tracking acoustic
sources, the need for real-time awareness of atmospheric
acoustic propagation effects has recently emerged.
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Originally developed for applications in underwater acous-
tics, several computational methods for modelling acoustic
environments have been adapted and successfully ap-
plied (Gilbert & Di, 1993; Salomons, 2001; West, Gilbert,
& Sack, 1992; West, Sack, & Walden, 1991) to atmospheric
acoustic problems over several years. The fast-field program
(FFP) (West et al., 1991), Crank–Nicholson parabolic equa-
tion (CNPE) (West et al., 1992), and Green’s function parabolic
equation (GFPE) (Gilbert & Di, 1993) are among the most ex-
tensively studied atmospheric acoustic models. Using any of
these techniques, the calculated TL values are generally ac-
cepted as reliable (Attenborough et al., 1995), but the computa-
tional resources required to compute these TL values is highly
variable. The computation times often depend on the maximum
vertical and horizontal ranges in which TL values are computed,
along with the frequency of the acoustic source. In general, the
computation times of the FFP, CNPE, and GFPE methods are
simply too long to make them useful for most practical ap-
plications. Additionally, inclusion of realistic effects such as
atmospheric turbulence or three-dimensional field calculations
(Salomons, 2001), further increases the computational
intractability of the FFP, CNPE, and GFPE methods.
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Some important aspects of acoustic propagation effects and
their influence on source direction-of-arrival (DOA) estimates
for passive acoustic arrays operating in atmospheric turbulence
are discussed in Wilson (1998). It was reported that the
DOA estimation accuracy for a given environment and array
configuration tends to degrade in performance as frequency,
turbulence strength, and propagation distance between acoustic
source and receiver increase. Certain types of atmospheric
turbulence, namely those related to the wind velocity were
determined to be particularly detrimental to DOA estimation
performance accuracy. The work of Wilson (1998) was then
modified in Collier and Wilson (2003) and Collier and Wilson
(2004) for plane waves and spherical waves, respectively. For
simple array geometries (lines and rectangles) the authors
showed that atmospheric turbulence is extremely important in
calculating accurate performance bounds for acoustic arrays.
They speculated that atmospheric turbulence, and possibly
other factors such as ground reflections and atmospheric
refraction should be included in sensor performance evaluation
calculations for all acoustic array geometries.

One problem with methods analyzing performance for
acoustic sensors (Collier & Wilson, 2003, 2004; Wilson, 1998)
is the large computational cost inherent in using acoustic
prediction methods such as the parabolic equation (PE)
model to approximate environmental conditions. In Mungiole
and Wilson (2006), the authors attempt to overcome the
large computational requirements of traditional acoustic TL
calculation methods by using an artificial neural network.
Although this neural network-based TL prediction method
was found to be promising, inaccurate estimates tend to
occur consistently at large values of horizontal separation
between source and receiver, large values of source frequency,
and during calm, night-time (stable) atmospheric conditions.
Although, neural networks have found limited use in
atmospheric acoustic applications, they have been extensively
utilized in different environmental areas. Following the
pioneering work of Chevallier, Chèruy, Scott, and Chedin
(1998), where neural networks were used for a weather
forecast atmospheric model, the field has grown steadily. For
example, in Tang and Hsieh (2003) neural networks assist
in the assimilation of surface data into the lower layers
of an ocean model. A recent environmental application of
neural networks is the hybrid numerical modelling approach
of Krasnopolsky and Fox-Rabinovitz (2006), where presented
applications include hybrid climate models and a hybrid
wind–wave ocean model.

In this paper, a new approach to rapid TL prediction is
presented where a different nonlinear neural network prediction
model is applied to the data corresponding to a specific
environmental condition, thus generating a bank of expert
nonlinear predictors. Prior knowledge based on atmospheric
physics is used to determine the conditions of interest, and form
the foundation of our environmentally adaptive TL prediction
system. The environmentally adaptive TL prediction system
exploits a decision-making process for selecting the appropriate
predictors under a given condition. This process works by
assigning a fuzzy confidence (weighting) measure to the output
of each predictor in the bank. Furthermore, the decision-
making device allows the user to embed prior information
regarding the likelihood and importance of encountering certain
atmospheric and ground conditions. A fusion system is then
used to optimally combine the weighted estimates from the
different predictors in the bank, obtaining a near real-time
TL estimate. In this work we train our neural network-based
predictors with data that was synthetically generated using
a nondimensional acoustic PE model, and Crank–Nicholson
solution scheme (Mungiole & Wilson, 2006). The synthetic PE
model data provides a large, well-controlled and diverse data
set for use in neural network generation. The environmentally
adaptive prediction system is implemented and benchmarked
against the single neural network predictor of Mungiole and
Wilson (2006) on the PE model test data. In Wichern, Azimi-
Sadjadi, and Mungiole (2006) the environmentally adaptive TL
prediction system was shown to work well when atmospheric
turbulence effects were not included. In this work these results
are expanded and extensively compared with TL prediction
results for a turbulent atmosphere.

This paper is organized as follows: Section 2 provides
a brief review of the parabolic equation model for sound
propagation in the atmosphere. Section 3 describes the
proposed environmentally adaptive TL prediction system. Test
results and discussions of the environmentally adaptive system
in turbulent and nonturbulent environments are provided in
Section 4. Conclusions are presented in Section 5.

2. Review of the parabolic equation model for sound
propagation

Due to the nonstationary behaviour of the physical
atmosphere, as well as the fact that no actual field data
set encompasses the variability and randomness required
for the large range of parameters used to describe the
propagation environment, our data set was synthetically
generated using a nondimensional parabolic equation (PE)
model and Crank–Nicholson solution scheme (Mungiole &
Wilson, 2006; Salomons, 2001; West et al., 1992). Part of
the rationale for using the nondimensional PE model is that
it reduces the number of parameters required to specify
the propagation environment from 15 or more, to the 10
nondimensional neural network input parameters discussed
in Mungiole and Wilson (2006). This dimensionality reduction
also improves the accuracy of function approximation (Haykin,
1999). In this section, we briefly describe the main points
in deriving the nondimensional PE model; a more thorough
derivation is provided in Mungiole and Wilson (2006). The
crux of our model as described in West et al. (1992) is the
two-dimensional narrow-angle PE, which approximates the full
wave equation for atmospheric sound propagation by

∂ P(x, z)
∂x

=
j

(2k0)

(
∂2

∂z2 + k2
eff(z) − k2

0

)
P(x, z) (1)

where x and z are the horizontal (range) and vertical (elevation)
coordinates, respectively, of the sound pressure field in the
propagation direction. The reference value of the wave number
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is k0 = 2π f/c0 where f is the frequency and c0 is the
reference sound speed. We define the effective wavenumber
as keff(z) = 2π f/ceff(z) + jν(z) where ν is an attenuation
coefficient modelling the absorption of sound energy as
the acoustic wave propagates higher in the atmosphere
(Salomons, 2001), and ceff is the effective sound speed (Wilson,
2003) defined as the speed of sound plus the wind speed
component in the propagation direction. The variable P(x, z)
represents a substitute for the actual sound pressure denoted
by p(x, z), which is obtained from the relation p(x, z) =

P(x, z) exp( jk0x)
√

x . The cylindrically symmetrical 2-D
approximation (West et al., 1992) necessitates the use of this
substitute sound pressure. If ρ0 represents reference air density,
we can define the dimensionless quantities: p̄ = p/(ρ0c2

0), P̄ =

P
√

(c0/ f )/(ρ0c2
0), x̄ = x f/c0, z̄ = z f/c0, k̄eff = keffc0/ f , and

k̄0 = k0c0/ f = 2π , which result in the nondimensional version
of (1) becoming

∂ P̄(x̄, z̄)
∂ x̄

=
j

(4π)

(
∂2

∂ z̄2 + k̄2
eff(z̄) − 4π2

)
P̄(x̄, z̄) (2)

where the overbars indicate dimensionless variables.
To compute the acoustic field, the PE model uses a spatial

marching procedure where the sound field is calculated at
discrete range steps along the propagation path (West et al.,
1992). This allows the calculated acoustic field at any given
point to incorporate reflection and refraction effects that
occurred previously along the propagation path. Additionally,
because more refraction is present at high frequencies the
step size in the spatial marching procedure is inversely
proportional to the source frequency and hence, proportional
to wavelength, λ = c0/ f . For the dimensional PE model
the step size in both the vertical and horizontal dimensions
is ∆x = ∆z = λ/10, and in nondimensional form,
the step size becomes ∆x̄ = ∆z̄ = 1/10, where the
frequency information is now embedded in the nondimensional
variables, x̄ and z̄. At low frequencies and small horizontal
separations between source and receiver the PE model can
compute TL values rather quickly. However, as frequency and
horizontal separation increase, the computation time increases
dramatically. Furthermore, most acoustic sources of interest
contain several different frequency components and require
TL calculations at several frequencies making the PE model
method intractable in these types of situations. It is for these
reasons that we use neural network predictors to approximate
the PE model and overcome its inherent computational
requirements.

The location of the acoustic receiver can be defined as
(x̄r , z̄r ), where x̄r is the non-dimensional horizontal separation
between source and receiver and z̄r is the nondimensional
receiver height. The sound pressure level (SPL) in decibels
(dB) at receiver location (x̄r , z̄r ) can be determined from the
following equation (Salomons, 2001):

SPL = 20 log10 | p̄(x̄r , z̄r )| (3)

where p̄(x̄r , z̄r ) = P̄(x̄r , z̄r ) exp( j2π x̄r )
√

x̄r is the actual
nondimensional sound pressure. Since we are interested in
predicting the amount of acoustic attenuation from source
to receiver, we refer to SPL diminishment from source to
receiver as transmission loss (TL) (Mungiole & Wilson, 2006)
throughout this paper. The PE model output value generated by
(3) will be used as the desired value for the training of the neural
network predictors.

2.1. Boundary and initial conditions

The ground surface causes wave reflections that interact
with the direct acoustic wave as it propagates away from the
source. The ground surface is assumed flat and incorporated at
the bottom of the PE model computational domain using the
following boundary condition (Mungiole & Wilson, 2006):

∂ P̄0

∂ z̄
= − j2π P̄0/Z̄c (4)

where P̄0 = P̄(x̄, 0) is the non-dimensional surrogate sound
pressure field at the ground surface, and Z̄c denotes the
nondimensional ground impedance. The boundary condition
in (4) is solved for second order accuracy in this paper. In
our formulation we use the model for Z̄c described in Wilson
(1997) that is given by

Z̄c = q̄
[(

1 +
γ − 1

(1 − jπ Npr q̄2/σ̄ )0.5

)

×

(
1 −

1
(1 − jπ q̄2/σ̄ )0.5

)]−0.5

(5)

where Npr and γ are the Prandtl Number and the ratio of
specific heats for air. The nondimensional static flow resistivity
σ̄ , is defined by σ̄ = σ sp

2/( fρ0Ω), where sp is the pore
shape factor, and Ω is the porosity (Attenborough, 1985). The
tortuosity (Attenborough, 1985) to porosity ratio q̄ is defined as
q̄ = q/Ω , where q is the tortuosity. The static flow resistivity
σ models the hardness of the ground surface with high values
corresponding to hard ground (e.g. asphalt) and low values
corresponding to soft ground (e.g. fresh snow). The porosity
Ω models the number of pores in the ground surface, and the
tortuosity q models the twisting of the pores. The pore shape
factor, porosity and tortuosity are all unitless parameters.

The computational grid used in the nondimensional PE
model is typically truncated at a certain height. This causes
computationally spurious reflections to occur at the height
where the PE model grid is truncated. Note that these reflections
are not present in the actual physical environments, as the
actual atmosphere does not have a well-defined “boundary”. To
minimize the effects of computationally spurious reflections at
the top of the grid, we construct an absorbing layer according
to the model in Mungiole and Wilson (2006).

The initial condition from which the finite difference
solution of the PE is spatially marched forward (sound pressure
at x̄ = 0) is the Gaussian starter function from Mungiole
and Wilson (2006) that depends on the nondimensional source
strength, S̄ = S/ρ0c2

0, the nondimensional source height, z̄s =

zs f/c0, and the surface reflection coefficient R =
Z̄c−1
Z̄c+1

where

Z̄c is the nondimensional ground impedance defined in (5).
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2.2. Atmospheric profile

We now consider the effect of refraction, which is the
bending of sound waves in the near ground atmosphere due
to vertical gradients in wind velocity and temperature, both
of which directly relate to the speed of sound. Different
atmospheric profiles can cause sound to refract in different
directions, and hence cause hot spots (regions where sound
levels are locally elevated) and shadow regions (where sound
levels are locally depressed) to appear in different locations
of the sound field. The near ground atmospheric profiles used
in our study fall from the equation for the effective sound
speed (Wilson, 2003)

ceff(z) = c(z) + u(z) cos β (6)

where u(z) is the wind component in the horizontal direction,
β is the azimuthal angle (angle between the sound propagation
and wind directions), and c(z) is the actual sound speed in air
described by

c(z) = c0

(
1 +

T ′(z)
2T0

)
. (7)

Here, T ′ symbolizes the quantity of a small temperature
variation about the ambient value T0. It is assumed, for this
formulation of the sound speed c, that the effect of humidity
is small and hence negligible. The near ground temperature
T and wind velocity u profiles (the latter of which is also
influenced by the ground roughness length z0) are formed using
the Monin–Obukhov similarity theory (Monin & Obukhov,
1954), and derived in Mungiole and Wilson (2006). From (6)
and (7) we see that the wind and temperature profiles essentially
describe the effective sound speed as a function of height.
For a given atmospheric condition, the temperature gradient
is T ′(z) = T (z) − T (zref), where zref is a reference height
(zref = 5 m for our experiments). This temperature gradient can
essentially be described by the sound speed fluctuation scale
parameter, c∗ (Wilson, 2003), which can be written as c∗ =

c0T∗/(2T0), where T∗ is a temperature scale representing the
covariance of vertical velocity and temperature at the surface.
Similarly, the wind speed profile as a function of height u(z)
can essentially be described by the friction velocity, denoted by
u∗. Details on the exact formulations of T ′(z) and u(z) used
in this work can be found in Monin and Obukhov (1954) and
Mungiole and Wilson (2006), but in the following we are only
concerned with the values of c∗ and u∗ for a given atmospheric
state. The nondimensional versions of c∗ and u∗ are given
by c̄∗ = c∗/c0 and ū∗ = u∗/c0, respectively. The ratio of
adiabatic coefficients for sound speed and wind is denoted by
A (Wilson, 2003), and equals the temperature dependent sound
speed scale c∗ divided by the wind dependent friction velocity
u∗, i.e., A = c∗/u∗. This ratio is important in governing the
direction of sound refraction in the atmosphere, and illustrates
the relative contributions of wind and temperature gradients
in the acoustic atmosphere as they relate to sound refraction.
Typically, values of A > 0 occur during calm nighttime
conditions, and cause sound to refract downward. We will refer
to this condition as the stable atmospheric regime (Stull, 1988).
Atmospheric conditions when A < 0 tend to occur when the
sun heats the ground during the daytime, and cause sound to
be refracted upward. We will refer to this condition as the
unstable atmospheric regime (Stull, 1988). Since the wind-
related friction velocity term u∗ is always positive, the sign of
the sound speed fluctuation scale c∗ is the determining factor
between the stable and unstable regimes.

2.3. Model parameters as inputs to TL predictors

As our ultimate goal is to approximate the acoustic
propagation solution of the PE model using neural networks
for improved prediction speed, we must define a parameter set
to be used as neural network inputs. We now discuss the 10
parameters that are used as neural network inputs, and also
specify the acoustic environment simulated by the PE model. To
select the range of these individual input parameters, we choose
values that cover most atmospheric and ground conditions
likely to be encountered in practice, as well as frequency and
geometrical ranges that are of tactical importance in UGS
acoustic environments. Further justification of the parameter
ranges is provided in Mungiole and Wilson (2006).

A number of parameters can be eliminated from considera-
tion since they do not affect the sound pressure level (Mungi-
ole & Wilson, 2006). These include the nondimensional source
strength S̄, which can be eliminated because we are interested
in predicting TL values, not the actual sound pressure. In ad-
dition, two absorbing layer parameters, the attenuation coeffi-
cient and absorbing layer depth, can also be eliminated if we
presume that this layer controls sound reflections. Finally, we
specify that a constant temperature reference height is used for
each synthetic case.

Table 1 provides the range of values used in our study as well
as the baseline and extreme values for each input parameter.
The baseline values are likely to be encountered in practice,
and are often near the middle of the range for each parameter.
The extreme parameter values, primarily for the parameters
that strongly influence TL (Mungiole & Wilson, 2006), are
generally selected to be close to one end of the range of the
respective parameter. If the baseline value was near the end of
the range, the extreme value was at or near the opposite end
of the range of the respective parameter. Extreme parameter
values will be used in this study to examine the robustness of
the developed prediction systems.

The combination of the sound speed fluctuation scale c∗ and
friction velocity u∗ allow coverage between the unstable and
weakly stable atmospheric regimes, i.e. both calm and windy
conditions during the daytime and windy conditions during
the night-time. Additionally, the meteorological parameters c∗

and u∗ have their values constrained by the limitations of the
Monin–Obukhov similarity theory (Monin & Obukhov, 1954),
which breaks down in the highly stable atmosphere when A �

0. To avoid such cases in our synthetic data set, a filter is
implemented (Mungiole, Wilson, & Ostashev, 2004), based on
calculated values of the surface heat flux, and inverse Obukhov
length. Both of these parameters are functions of c∗ and u∗ only,
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Table 1
Range and baseline parameter values used to specify the PE model data set in our study

Parameter (units) Non-dimensional definition Min Max Baseline Extreme

Frequency (Hz) N/A 20 200 50 200
Horizontal separation (m) x̄r = xr f/c0 100 900 500 900
Source height (m) z̄s = zs f/c0 0 5 0 5
Receiver height (m) z̄r = zr f/c0 0 5 0 5
Azimuthal angle (rad) β 0 π 0 π

Friction velocity (m/s) ū∗ = u∗/c0 0.05 0.5 0.28 0.067
Sound-speed scale (m/s) c̄∗ = c∗/c0 −1.18 0.1 −0.2 −1.11
Static flow resistivity (Pa s/m) × 106 σ̄ = σ s2

p/( fρ0Ω) 0.025 2 0.2 1
Tortuosity/porosity q̄ = q/Ω 1.54 10 2.8 7.5
Roughness length (m) z̄0 = z0g/c2

0 0.001 0.1 0.01 0.01
Fig. 1. Schematic of the PE model TL computation procedure.

and the filter eliminates any case for which the combination of
c∗ and u∗ violates the theory.

A schematic identifying the main steps involved in executing
the sound propagation model is given in Fig. 1. This schematic
indicates that the specified parameters are input to the model
followed by determining the grid to be used. Some initial and
boundary conditions are then set and the effective sound speed
and wave number are determined for the entire grid. After
these preliminary steps are completed, the marching procedure
is performed during which the SPL and TL are obtained for
each vertical grid location at the next horizontal grid location.
SPL and TL values are obtained for each successive horizontal
grid location until the particular horizontal separation value is
reached. The TL at the combination horizontal and vertical grid
location for the particular case being simulated is then saved as
the target value required for neural network development.

The nondimensional PE model just described will be used
to create a data set, which will subsequently be used to train
neural network predictors to capture the input–output mapping
between the input parameters used to describe the PE model and
the TL value generated by the PE model. The neural network
input data is defined using the 10 parameters from Table 1 as
x = [ f, x̄r , z̄s, z̄r , β, ū∗, c̄∗, σ̄ , q̄, z̄0]

T, where each component
of x is varied independently and uniformly over its specified
range. Due to the Monin–Obukhov similarity theory (Monin &
Obukhov, 1954) constraints in the stable atmospheric regime
discussed above, the parameters c∗ and u∗ have slightly non-
uniform distributions. The output of the PE model from (3) is
defined as y, and used as the desired value in neural network
training. Once trained, our neural network-based predictors
are expected to accurately approximate the PE model in all
geometrical, atmospheric and ground conditions of interest over
a range of frequencies without the high computational cost
inherent in the PE model.

2.4. Turbulent scattering

Up to this point, our discussions on the PE model
concentrated on a nonturbulent atmosphere, where the effective
sound speed profile is smooth (e.g. logarithmic). As discussed
in Salomons (2001) this profile should be thought of as an
average profile, where the effective sound speed as a function
of height has been averaged over an approximately 10 min
long interval. In reality, atmospheric turbulence causes the
temperature and wind profiles (used to define the effective
sound speed) to vary considerably on time scales of seconds
or minutes, and the instantaneous effective sound speed profile
is not a smooth function of height. The effect of atmospheric
turbulence varies depending on how the wind and temperature
gradients shape the effective sound speed profile. In an upward
refracting (unstable) atmosphere refractive shadow regions
are present near the ground due to the upward bending of
sound waves. Without turbulence upward refraction causes all
sound waves to bend above these shadow regions leading to
very low sound pressure values. The addition of atmospheric
turbulence causes large increases in the sound pressure levels
usually present in an acoustic shadow region, as the random
turbulent fluctuations cause slight changes to the direction
of propagation. These changes in propagation direction allow
more sound to penetrate into a shadow region and are often
referred to as turbulent scattering. In a downward refracting
(stable) atmosphere, turbulence also causes an increase in the
sound pressure level, but for different reasons. Downward
refraction causes a large number of reflected sound waves, and
when the direct and reflected waves are 180◦ out of phase,
interference minima occur leading to a sharp reduction in
sound pressure. The inclusion of turbulence in essence leads
to random phase fluctuations of the direct and reflected waves,
which generally reduce the depth of the interference minima
(Salomons, 2001).

The method used to simulate atmospheric turbulence for
the PE model data set is described in Wilson (2000). This
method, which uses empirical orthogonal functions (Lumley,
1971) to generate a turbulence field, effectively works by
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adding a random phase fluctuation at each range step of the
PE model algorithm. In this paper, the simulated turbulence
fields had a resolution of 0.45 m and a height of 1/10 the
horizontal separation, thus, the turbulence height would range
between 10 and 90 m using the xr values from Table 1. Adding
turbulence to the PE model introduces a certain amount of
randomness, meaning that for a given combination of input
parameters two different runs of the turbulent PE model will
yield two different TL values. Thus, errors could be due to a
combination of random turbulent fluctuations and inaccuracies
in the neural network mapping function. To better assess the
errors of the neural network mapping function, we obtain an
ensemble average TL value from the turbulent PE model by
performing 50 realizations for a given combination of input
parameters, which is considered as the output of the turbulent
PE model. The turbulent PE model provides a more realistic
TL value than the nonturbulent model, but simulating the
turbulence field for a single realization requires approximately
twice the computer processing time to compute the TL values.
Also, because 50 realizations are required to generate a single
average TL value, it takes approximately 100 times longer to
obtain a TL value from the turbulent PE model as opposed to the
nonturbulent one. The increased computational requirements of
the turbulent PE model make the development of fast methods
for TL prediction even more important.

3. An environmentally adaptive TL prediction system

Fig. 2 shows the block diagram of the proposed
environmentally adaptive TL prediction method. In this figure,
x j represents the j th input vector, ŷi j is the estimate from the
i th predictor in the bank, Ci j is the confidence measure given
to the i th predictor in the bank, and ŷT L j is the final output
of the system. The environmentally adaptive system provides
improved acoustic TL prediction when compared to a single
neural network, which cannot accurately handle the drastic
environmental changes caused by the high variability of the
input parameters in the PE model data sets. This structure also
provides the flexibility to modify the prediction system if new
environmental conditions are encountered, while providing the
ability to fine tune the system for increased accuracy under
conditions of interest.

Each back-propagation neural network (BPNN) predictor
in Fig. 2 is trained for a specific environmental condition
corresponding to a specific combination of selected input
parameters. The prediction results of these BPNNs are
given fuzzy confidence measures (close to one for the most
appropriate predictor, or close to zero for the least appropriate),
and then combined using another BPNN in the fusion centre.
It is envisaged that this mixture of environmentally specific
experts will improve overall acoustic TL prediction accuracy
using the principle of divide and conquer (Haykin, 1999).

3.1. Environmentally specific data subsets

In order to create expert networks for specific environmental
conditions we must first partition the data into environmentally
Fig. 2. Block diagram of the environmentally adaptive TL prediction system.

specific data sets. Traditionally, an unsupervised learning
technique, e.g. clustering (Hastie, Tibshirani, & Friedman,
2001) is used to partition input data into various subsets.
In our application we have prior knowledge of the physical
mechanisms responsible for the variation in TL values
generated by the PE model in different regions of the input
space. Since this knowledge is available, we will use it to
partition the data into environmentally specific subsets as
opposed to an unsupervised learning algorithm.

The number of environmentally specific data subsets will
be signified by L . These environmentally specific data subsets
denoted by Di , i = 1, . . . , L correspond to specific
environmental conditions from the data set (i.e. high c∗ values,
low u∗ values, etc.). The Di have soft membership meaning that
a given input sample x j can belong to multiple environmentally
specific data subsets (e.g. sample x j can have a low c∗ value
and a high u∗ value).

For the PE model data we partition the available cases into
six environmentally specific data subsets (L = 6). We chose six
data subsets, because using fewer would not allow significant
partitioning and the prediction scheme would exhibit behaviour
similar to a single BPNN. If more than six environmentally
specific data subsets were used there would not have been
sufficient data to train predictors for all conditions of interest.
Another factor to be considered when partitioning the data is
the inclusion of overlap between environmentally specific data
subsets. Having samples belong to multiple environmentally
specific data subsets allows multiple experts to contribute in
estimating the output TL.

For the presented data-partitioning method, the parameters
chosen to divide the original data set were the friction velocity
u∗, and the sound speed fluctuation scale c∗. These parameters
were chosen because the results in Mungiole and Wilson
(2006) showed that they are environmental parameters with
a significant influence on the TL, and also responsible for
increased neural network output errors as they were varied over
their respective ranges. The combination of c∗ (temperature)
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and u∗ (wind) govern the direction sound waves are refracted as
they propagate higher in the atmosphere. Thus, each partitioned
data subset can be thought of as corresponding to different
atmospheric refraction conditions. Note that other important
parameters such as frequency, f , and horizontal separation
between source and receiver, xr , were not chosen as they are
dependent on the source of interest and not the environment.

The six environmentally specific conditions used in our
partitioning method are as follows:

(1) High values of u∗ (u∗ ≥ 0.275 m/s);
(2) High values of c∗ (c∗ ≥ 0 m/s);
(3) Moderate values of u∗ (0.125 m/s < u∗ < 0.425 m/s);
(4) Moderate values of c∗ (c∗ ≥ −0.9 m/s);
(5) Low values of u∗ (u∗ < 0.275 m/s);
(6) Low values of c∗ (c∗ < −0.3 m/s).

The high, medium and low u∗ data subsets were chosen
to divide the entire range of u∗ into roughly equal thirds
with significant portions of overlap. The high c∗ subset
(c∗ > 0) was chosen because it corresponds to the stable
atmospheric regime and downward refraction conditions where
the PE model behaviour is highly variable as a function
of c∗. The medium and low c∗ data subsets were chosen
to partition the entire range of c∗ into approximately equal
halves with significant portions of overlap. Partitioning of the
environmentally specific data sets using parameters besides
c∗ and u∗, namely c∗ and the ground-related static flow
resistivity σ was explored in Wichern (2006). In terms of
the performance metrics discussed in Section 4 the overall
difference between the partitioning schemes was less than 2%,
with the presented partitioning method (based on c∗ and u∗)
tending to provide slightly better TL prediction performance
for the data sets examined in this paper. When comparing
different partitioning methods, the alternative ground-based
partitioning scheme (based on c∗ and σ ) improved performance
under soft ground conditions, while sacrificing TL prediction
accuracy in the highly unstable atmospheric regime. Once these
environmentally specific data subsets are partitioned, they are
used to train the environmentally specific predictors shown
in Fig. 2.

3.2. Environmentally specific predictors

In order to train the environmentally specific BPNN-
based predictors of Fig. 2 on the partitioned data subsets
described in Section 3.1, we first randomly subdivided our
PE model data sets into thirds forming training, validation
and testing sets (prior to partitioning of the data into the
environmentally specific data subsets described in Section 3.1).
The purpose of the validation set is to select the best-trained
networks for different topologies, training algorithms and
weight initializations. The testing set is used for performance
evaluation of the selected BPNN’s on data they have never seen
before. Note that although the training and validation sets are
different for each expert predictor, the testing set is the same
for all the environmentally specific predictors in Fig. 2. That is,
each environmentally specific BPNN produces a prediction of
the TL for a given combination of input parameters.
Next, we need to choose appropriate network structures
and training algorithms. Two- and three-layer BPNN predictors
with varying number of hidden-layer neurons were tried to
find the optimum network structures. For each environmentally
specific predictor in Fig. 2, except the one for the c∗ > 0 subset,
a two-layer network with 10-45-1 structure, i.e. 10 inputs (10
dimensional vector x j ), 45 hidden layer neurons and one output
(estimated TL ŷ j ), was found to provide the best overall results.
Note that this is consistent with the findings in Mungiole and
Wilson (2006). To find this structure the number of hidden layer
neurons was varied from 15 to 60 in steps of 15 and the trained
networks were then tested on the validation data sets. For the
c∗ > 0 subset, a three-layer BPNN with structure 10-22-11-
1 had to be used in order to obtain acceptable TL prediction
results. Again, this structure was arrived at experimentally by
varying the number of first and second hidden-layer neurons
in the ranges 20–25 and 10–15, respectively. For the two-layer
BPNN predictors, the selected training algorithm was based
upon the fast Levenberg–Marquardt (LM) algorithm (Hagan &
Menhaj, 1994), For the three-layer BPNN, a traditional gradient
algorithm (Haykin, 1999) with an adaptive learning rate and
momentum constant of 0.9, was more effective than the LM
training method. For each expert network, 10 different random
weight initializations were tried, and the one that led to the best
performance on the validation set was chosen and subsequently
used for further testing.

3.3. Confidence measure assignment

The assignment of the confidence measure allows for
incorporation of prior knowledge of the problem domain or
some user information, which is not typically present in the
training data, to be included in the prediction system. Thus, the
confidence measure component is treated independently from
the environmentally specific predictors and the fusion centre,
whose parameter values depend only on the training data. The
purpose is to assign confidence weights to the output of each
predictor in Fig. 2, depending on the employed partitioning
method, the value of the input parameter vector, x j , and
other prior environmental and operational information. This
confidence measure assignment can be accomplished using
fuzzy set theory (Zadeh, 1965), which can determine how
appropriate each environmentally specific predictor is for a
given input vector. This is due to the fact that fuzzy sets allow
natural language terms such as high, medium, and low to be
represented mathematically, by allowing elements to be partial
members of different sets with varying degrees of membership
at the same time (Harris, Hong, & Gan, 2002).

Here, we provide a brief review of fuzzy measures for the
purpose of clarity. For a detailed treatment the reader is referred
to Harris et al. (2002), Lin and Lee (1991), and Klir and Yuan
(1995). A fuzzy variable (Harris et al., 2002) Vz is described
by a 4-tuple: {z, T (z), χ, M(z)} where z is the symbolic name
or linguistic variable, T (z) = {T 1

z , T 2
z , . . . , T L

z } is the set of
linguistic labels associated with z, χ is a closed interval of
real numbers containing the range of values over which T (z)
is defined, and M(z) = {M1

z , M2
z , . . . , M L

z } is a semantic
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rule function that returns the meaning of a given linguistic
label in terms of its membership function. That is, T `

z , ` =

1, 2, . . . , L is a linguistic label associated with membership
function M`

z , ` = 1, 2, . . . , L . For example, if linguistic
variable z represents wind speed, then T (z) might be {slow,
medium, fast}, χ may be [0, 100] (miles per hour), and M(z)
represents the membership functions assigned to each element
in T (z).

Given the j th input vector, x j , and its predicted output
value from the i th predictor in the bank ŷi j , we would like
to assign a confidence measure Ci j to ŷi j based upon the
degree of membership that input sample x j belongs to the i th
environmentally specific data set, Di . This is done by defining a
fuzzy variable for each input parameter that is used to partition
the input data into environmentally specific subsets following
the procedure of Section 3.1. If we let zk denote the kth
parameter used to partition the data (i.e. c∗ or u∗, in this case)
we define the fuzzy variables Vzk , as

Vzk = {zk, {T 1
zk

, T 2
zk

, . . . , T Lk
zk

}, χk, {M1
zk

, M2
zk

, . . . , M Lk
zk

}},

for k = 1, 2, . . . , K (8)

where K is the number of parameters namely c∗ and u∗, χk

is the range of real numbers associated with zk , T `k
zk , `k =

1, 2, . . . , Lk is the linguistic label associated with membership
function M`k

zk , and Lk is the number of fuzzy sets affiliated
with zk . For the j th input vector x j the value of the kth
partitioning parameter zk( j), is mapped to the fuzzy set labeled
by T 1

zk
with membership degree M1

zk
(zk( j)) and to the fuzzy

set labelled by T 2
zk

with membership degree M2
zk

(zk( j)), and
so on. For example, in this data-partitioning method z1 = c∗,
z2 = u∗, Tz1 = {High c∗, Medium c∗, Low c∗}, Tz2 =

{High u∗, Medium u∗, Low u∗}, χ1 = [−1.18, 0.1] (m/s),
and χ2 = [0.05, 0.5] (m/s), where the values of χk cover
the entire range of c∗ and u∗ from Table 1. The sets of
membership functions {M1

z1
, M2

z1
, M3

z1
} and {M1

z2
, M2

z2
, M3

z2
}

for this partitioning method are shown in Fig. 3(a) and (b)
for z1 = c∗ and z2 = u∗, respectively. Fig. 3(a) and (b)
show the adopted Gaussian membership functions (Harris et al.,
2002), M`k

zk (zk( j)), with mean and variance m̂`k and σ̂ 2
`k

that are
computed using all the training samples belonging to Di . Note
that this Gaussian membership function is not a pdf, rather it
gives a degree of membership that a given value satisfies a fuzzy
concept. As discussed in Harris et al. (2002), there is no unique
fuzzy membership function for a given problem. Besides the
Gaussian there are several other common fuzzy membership
functions (Klir & Yuan, 1995), such as triangular or B-spline.
Our use of the Gaussian membership function is motivated by
several reasons: (1) computational tractability, (2) smooth and
local behaviour, and (3) allow overlap between the different
predictors in the bank for generating multiple predictions
with different confidence measures. The confidence measure
Ci j assigned to each predicted output ŷi j , based upon the
degree of membership that input sample x j belongs to the i th
environmentally specific data set, Di can be determined from
the membership function using Ci j = C(k`k ) j = M`k

zk (zk( j))
where j is the input sample index, in our application k = 1, 2
is the index of our parameter of interest (i.e., z1 = c∗, z2 = u∗),
and `k = 1, 2, 3 is the index of the fuzzy set (i.e. ` = 1, k = 1
corresponds to the High c∗ set, ` = 2, k = 1 corresponds
to the Medium c∗ set, and so on). For notational convenience
the index i represents a relabeling of the double index (k`k),
i.e. i = Lk(k − 1) + `k . In our application, we also find it
convenient to normalize the Ci j for a given sample j , and add
a term that allows for prior weighting of each environmentally
specific data subset Di . This is done by redefining Ci j as

Ci j =
αi Ci j

M∑
i=1

αi Ci j

(9)

where αi is a prior weighting term assigned to each expert, and
represents a prior knowledge that an input sample belongs to
Di , and/or that the user is more confident in the i th predictor of
the bank. This provision provides the ability to heavily weight
conditions of interest. For example, if the environmentally
adaptive TL prediction system was operating in an environment
where calm wind conditions were very likely to occur (low u∗

values), the user could imbed a high value for αi , corresponding
to the low u∗ data set, and help to offset possible inaccuracies in
the monitoring equipment used to measure the environmental
parameters. If for some reason certain predictors are known
to give unreliable estimates due to modelling or measurement
errors while generating their training data, this information
can also be embedded into the αi terms. For the experiments
presented here we assume that all Di are equally reliable and
likely to be encountered in practice, i.e. αi = 1 for all i , in our
presented results.

The environmentally specific predictor outputs, ŷi j are
multiplied by their corresponding confidence measure Ci j ,
and used to form the vector of weighted predictions b j =

[C1 j ŷ1 j , C2 j ŷ2 j , . . . , CL j ŷL j ]
T. The vector b j containing the

weighted estimates of the L environmentally specific predictors
is then applied to the fusion centre for sample x j .

3.4. Fusion centre design

The combination rule employed by the fusion centre in Fig. 2
can take either a linear or nonlinear approach (Benediktsson,
Sveinsson, & Swain, 1997). Here, we used a nonlinear fusion
system using a separate BPNN. Assuming n available input
parameter vectors in the training set, the weighted estimates
of the L environmentally specific predictors are used to
form the n × L matrix B = [b1, b2, . . . , bn]

T of weighted
estimate vectors, b j ’s. We denote the desired output vector
(TL values generated by the PE model) of size n × 1 as y =

[y1, y2, . . . , yn]. The input data matrix B and desired vector
y are then used as the training data for the fusion BPNN. For
our TL prediction problem, a BPNN of structure 6-30-1, where
the six inputs correspond to the weighted estimates from the
(L = 6) environmentally specific predictors, b j , was found to
provide the best results. The final output of the environmentally
adaptive system in Fig. 2 for the j th training sample, which is
defined by ŷT L j , can be obtained from the value of the single
(linear) output neuron of this fusion network. The final TL



492 G. Wichern et al. / Neural Networks 20 (2007) 484–497
(a) {M1
zk

, M2
zk

, M3
zk

}, for zk = c∗. (b) {M1
zk

, M2
zk

, M3
zk

}, for zk = u∗.

Fig. 3. Membership functions used for the data-partitioning method based on c∗ and u∗.
prediction ŷT L j , is then compared with the actual PE model
output (SPL from Eq. (3)) to determine the performance of the
environmentally adaptive prediction system.

4. Results and discussion

4.1. Environmentally adaptive TL prediction accuracy

In evaluating the performance of the environmentally
adaptive prediction system presented in Section 3 we
benchmark its performance against the single BPNN prediction
method discussed in Mungiole and Wilson (2006) on the actual
PE model test data. The performance measures used to evaluate
TL prediction accuracy are the root mean square (RMS) error
criterion computed over all cases in the data set. The other
performance measure used in our experiments is the percentage
of cases where the magnitude of the error on the testing set was
greater than a 2 dB threshold value, which is representative of
the percentage of unreliable estimates (outliers). In addition to
comparing the quantitative performance measures of the two
methods it is also important to note that the environmentally
adaptive system provides the flexibility to incorporate prior
knowledge into the system, and that its modular architecture
can be easily modified when new conditions are encountered.

Using the nondimensional PE model, a data set of N =

40, 163 pairs were generated for the nonturbulent atmospheric
condition, and N = 25, 204 pairs for the turbulent condition.
With each pair consisting of an input parameter combination
and its associated TL value, i.e. {x j , y j }

N
j=1. Each data set

(nonturbulent or turbulent) was then divided into thirds forming
the training, validation and testing sets used to build and
evaluate the neural network-based prediction systems. The
reason for the smaller size of the turbulent data set is due to the
increased computation time required to generate a single case as
discussed in Section 2.4. Table 2 gives a performance measure
comparison of the environmentally adaptive and single BPNN
prediction methods for both the non-turbulent and turbulent
conditions. As can be observed, the environmentally adaptive
method reduces the RMS error on the testing set by 15.6%
for the nonturbulent condition, and 12.3% for the turbulent
condition. We also notice a greater increase in RMS error
values from the training to the testing sets for the turbulent
condition in Table 2, when compared with the nonturbulent
RMS error values. This may be attributed to the smaller
size of the turbulent data set when compared to that of the
nonturbulent data set. As a result, it is possible that certain
regions of the 10-dimensional input space are not covered in
the training set, hence leading to the poor generalization in
those regions. Additionally, it is important to note that the
environmentally adaptive method reduces the percentage of
cases in the testing set where the magnitude of error is greater
than 2 dB (outliers) by 24.1% for the nonturbulent condition
and 27.5% for the turbulent condition, when compared to
the single BPNN prediction method of Mungiole and Wilson
(2006). The results lead to the important observation that while
the environmentally adaptive system is effective in reducing the
overall RMS error, it performs proportionately better on outliers
when compared to the single BPNN. This reduction in the
number of outliers is extremely important, as it demonstrates
that the environmentally adaptive prediction system is much
more likely to estimate a reliable TL value, which is within
2 dB of the value calculated using the PE model. It is
evident in Table 2 that the turbulent atmospheric condition has
reduced RMS errors and number of outliers, when compared
to the nonturbulent atmosphere. As previously indicated, each
turbulent synthetic case represents the average TL obtained for
an ensemble of 50 realizations of the same combination of input
parameters. Most of these ensemble average cases resulted in
reduced errors because they tended to smooth out the sound
pressure level field by increasing the energy that scatters into
shadow zones and decreasing the energy entering hot spots,
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Table 2
RMS error comparison of environmentally adaptive and single BPNN prediction methods on the PE model data set

Training set RMS error (dB) Validation set RMS error (dB) Testing set RMS error (dB) |error| > 2 dB Testing (%)

Single BPNN (nonturbulent) 1.90 2.14 2.18 16.2
Env. adaptive (nonturbulent) 1.64 1.70 1.84 12.3
Single BPNN (turbulent) 1.17 1.54 1.55 5.1
Env. adaptive (turbulent) 1.08 1.15 1.36 3.7

(a) Non-turbulent. (b) Turbulent.

Fig. 4. Testing set RMS error trends for the environmentally adaptive and single BPNN predictors as a function of frequency.
when compared to nonturbulent cases with comparable input
parameter combinations.

Although we have indicated the generally large reduction in
execution time to obtain TL with the use of a neural network,
it would be appropriate to put the accuracy of the results in
Table 2 in perspective. The RMS errors that we have found in
this study are well within the variability in SPL that has been
observed due to existing atmospheric turbulence. That is, if
experiments were conducted under actual atmospheric, ground,
and geometrical conditions that were within the respective
ranges of this study, the SPL would nearly always vary by
amounts substantially more than 2 dB.

We now examine the testing set RMS error trends as
a function of the individual input parameters, which have
significant influence on the TL. The binning procedure
proposed in Mungiole and Wilson (2006) is used to generate
the plots of the RMS error as a function of individual input
parameters. Here all cases in the testing set were divided
into 40 bins each containing an equal number of cases, based
on the input parameter under investigation. The RMS error
was then computed separately for each of these binned data
points. A smooth curve was then fit to the binned data points,
which represent the RMS error trend as a function of the input
parameter of interest.

Fig. 4(a) shows the RMS error trend on the non-turbulent
testing set as a function of frequency f , for the two prediction
methodologies. As can be seen, the RMS error values are
lower for the environmentally adaptive method over the entire
frequency range considered in our study, and the improvements
are most pronounced at high frequencies. It appears that the
collaborative behaviour of the environmentally adaptive system
is able to better compensate for the increased refraction that
occurs at high frequencies. A similar plot for the turbulent
atmospheric condition is shown in Fig. 4(b), where the
environmentally adaptive system improves prediction accuracy,
especially at high frequencies.

Fig. 5(a) and (b) show the testing set RMS error trend as a
function of horizontal separation between source and receiver
xr for the non-turbulent and turbulent PE model data sets,
respectively. The environmentally adaptive method also led to
improvements at large values of xr , as shown in Fig. 5(a) and
(b). For the environmentally adaptive method we see a levelling
off of the nonturbulent RMS error curve shown in Fig. 5(a) at
approximately 750 m up to the maximum xr value used in our
study of 900 m. The collaborative nature of the environmentally
adaptive system provides an ability to better account for some
of the PE model effects that occur at large xr values, such as the
increased likelihood of encountering refractive shadow regions
where sound levels are locally depressed.

Fig. 6(a) and (b) show the RMS error as a function of
A = c∗/u∗, or the sound speed scale divided by the friction
velocity for the nonturbulent and turbulent PE model data
sets, respectively. Once again the environmentally adaptive
method improves prediction accuracy across the entire range
of A values in Fig. 6(a) and (b), with slight improvements
in the stable regime as A becomes positive and large,
both with and without atmospheric turbulence. Under stable
atmospheric conditions sound waves are likely to be refracted
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(a) Nonturbulent. (b) Turbulent.

Fig. 5. Testing set RMS error trends for the environmentally adaptive and single BPNN predictors as a function of horizontal separation between source and receiver.

(a) Non-turbulent. (b) Turbulent.

Fig. 6. Testing set RMS error trends for the environmentally adaptive and single BPNN predictors as a function of A = c∗/u∗.
downward, and it is more likely for destructive interference
between direct and reflected waves to occur under these
conditions. Furthermore, near ground ducting increases sound
pressure levels in the stable atmospheric regime at distances
where destructive interference minima are not present. These
effects make fast and accurate prediction of the TL in the
stable atmospheric regime a difficult problem, and are partly
responsible for the large RMS errors at positive A values
shown in Fig. 6(a) and (b). Although, the environmentally
adaptive prediction system used an environmentally specific
data subset corresponding to exclusively stable regime data, the
RMS error improvements in Fig. 6(a) and (b) appear minimal in
the stable regime. This result suggests a possible limitation of
neural network modelling for atmospherically stable acoustic
environments. The environmentally adaptive method improved
the RMS error trend as a function of the other input parameters
from Table 1, but the results are not shown here due to space
constraints. The RMS error trends as a function of the other
input parameters for the single BPNN TL prediction method
can be found in Mungiole and Wilson (2006), and for the
environmentally adaptive TL prediction system in Wichern
(2006).

Similar to the results obtained in Mungiole and Wilson
(2006), the outliers in this study generally occurred for the
higher frequency, greater horizontal separation, and stable
atmospheric conditions. While the environmentally adaptive
predictors could have been partitioned differently to reduce the
number of outliers in specific ranges of these parameters, it
would likely have increased the number of outliers for selected
ranges of other parameter combinations. An appropriate quality
control practical feature to consider in future work would be
to also include the probability of specific conditions actually
occurring in nature and include that as an additional weighting
factor in determining the neural network. As an example, 3.7%
of the test cases are outliers for the turbulent environmentally
adaptive neural network but it is possible that the parameter
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combinations comprising these outlier cases may naturally
occur somewhat less than 3.7% of the time.

We now examine the ability of the environmentally adaptive
and single BPNN predictors to approximate the nonturbulent
PE model as horizontal separation, xr is varied, while all other
input parameters are held constant. Fig. 7(a) and (b) show the
ability of the two prediction methods in approximating the
PE model at frequencies of 100 Hz and 150 Hz respectively,
when all input parameters besides horizontal separation are
held constant at their baseline values from Table 1. For
both frequencies displayed in Fig. 7(a) and (b) the single
BPNN generally seems unreliable in providing an accurate
approximation of the PE model. Under baseline parameter
values from Table 1 the environmentally adaptive predictor
approximates the PE model almost perfectly at a frequency
100 Hz as shown in Fig. 7(a). As frequency is increased
to a value of 150 Hz the environmentally adaptive predictor
loses accuracy in approximating the PE model at large values
of horizontal separation, although it remains more accurate
than the single BPNN. At high frequencies and/or large
horizontal separations the greatest attenuation of the acoustic
signature is observed, and refraction and reflection effects
are more likely to alter the acoustic signature, leading to
the increased errors at large xr values in Fig. 7(b) for a
frequency of 150 Hz. Fig. 7(c) and (d) show similar plots when
the other input parameters, except frequency and horizontal
separation, are set to their extreme values from Table 1.
Once again we notice the inaccuracy of the single BPNN
in approximating the PE model as horizontal separation is
varied for all investigated frequencies. We also notice that the
behaviour of the PE model is increasingly nonlinear under
extreme conditions, especially at the high frequency of 150 Hz,
shown in Fig. 7(d). Although the environmentally adaptive
method exhibits improved approximation accuracy over the
single BPNN in Fig. 7(a)–(d), its accuracy deteriorates as
the PE model behaviour becomes increasingly nonlinear at
high frequencies. The extreme parameter conditions shown
in Fig. 7(c) and (d), correspond to an upwind propagation
direction which increases refraction, and a highly unstable
atmosphere that causes sound to refract upward increasing the
probability of refractive shadow regions. It is likely that these
atmospheric refraction effects are responsible for the decrease
in prediction accuracy at high frequencies exhibited by the
neural network-based prediction systems in Fig. 7(d).

The four cases shown in Fig. 7(a)–(d), all considered an
unstable or upward refracting atmospheric condition. Fig. 7(e)
and (f) show the approximation capabilities of the two
predictors in the stable atmospheric regime, where all input
parameters besides frequency and horizontal separation are set
at their baseline values from Table 1. Also, the sound speed
scale, c∗, is set to the positive (stable atmospheric regime)
value of 0.05 m/s. From Fig. 7(e) and (f) we see that the PE
model behaviour is highly nonlinear for both frequencies shown
here. We also notice in Fig. 7(e) and (f), sharp interference
minima, or precipitous drops in the TL for certain combinations
of horizontal separation and frequency. If turbulence were
included in the PE model, these interference minima would
tend to be reduced as discussed in Section 2.4. Thus, we
are not overly concerned by the failure of the two prediction
methods to capture these large dips, but would like to capture
the near ground ducting present in the stable regime, or the
unusually high TL values at large horizontal separation values
in Fig. 7(e) and (f), outside of the characteristic minima.
Examples of near ground ducting in the stable regime can
be seen in both Figs. 7(e) and (f) at horizontal separations
between approximately 600 and 900 m. Developing prediction
methodologies that capture the near ground ducting present
in the stable atmospheric regime, while not being adversely
affected by the characteristic minima is a problem, which
necessitates further study.

As discussed in Section 2.4, the inclusion of atmospheric
turbulence in the PE model tends to “smooth out” some of the
large drops in the nonturbulent PE model TL curves shown in
Fig. 7(d)–(f). This should then make it easier for our developed
neural network-based prediction methods to approximate the
turbulent PE model data set. Thus, we feel that the worst case
scenario has been presented in Fig. 7(a)–(f), and similar plots
are not needed for the turbulent condition.

5. Conclusion

In this paper an environmentally adaptive acoustic TL
prediction system was developed. This environmentally
adaptive system improves the accuracy of PE model
approximation in terms of RMS error and number of outliers,
by using a bank of expert BPNN predictors to estimate the
TL. The system also exploits a decision-making component
to assign fuzzy confidence measures to the appropriate experts
for a given input parameter combination. The decision-making
device also allows the user to input a priori information or
requirements into the system, such as the likelihood and/or
tactical importance of certain environmental conditions being
encountered in practice. A fusion centre is then used to combine
the weighted estimates from the appropriate expert predictors
obtaining the final TL estimate. The environmentally adaptive
prediction system was tested on a synthetic PE model acoustic
data set and its results were extensively benchmarked against
those of a single BPNN predictor. The results demonstrate that
the environmentally adaptive system reduced the testing set
RMS error by 15.6%, and the number of outliers by 24.1% on
the nonturbulent PE model data set, when compared with the
single BPNN predictor. The environmentally adaptive system
also improved TL prediction accuracy at high frequencies and
large horizontal separation values.

Additionally, the proposed TL prediction system was tested
on PE model data where the effects of atmospheric turbulence
were also synthesized. In a turbulent atmosphere the predicted
TL values exhibited better accuracy in approximating the PE
model, as turbulent scattering tends to reduce the severity of
acoustic shadow regions and destructive interference patterns.
For example, the environmentally adaptive prediction system
had a testing set RMS error of 1.36 dB for the turbulent
condition, and 1.84 dB for the nonturbulent case. Moreover,
the environmentally adaptive TL prediction system reduced the
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(a) Baseline, 100 Hz. (b) Baseline, 150 Hz.

(c) Extreme, 100 Hz. (d) Extreme, 150 Hz.

(e) Baseline (stable), 100 Hz. (f) Baseline (stable), 150 Hz.

Fig. 7. Variation of the acoustic transmission loss as horizontal separation is varied for the nonturbulent PE model and two different neural network-based prediction
schemes.
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percentage of testing set outliers by 27.5% when compared with
single BPNN predictor for the turbulent condition.

Finally, it should be mentioned that the environmentally
adaptive prediction system reduced the computational times
necessary to compute a single TL value by a factor of
approximately 10 when compared with the PE model in the
nonturbulent condition, a frequency of 20 Hz, and horizontal
separation between source and receiver of 100 m. At a
frequency of 200 Hz, a horizontal separation of 900 m,
and turbulent condition, computation times are reduced by
a factor of roughly 50,000, which is significant for many
acoustic sensing scenarios. Evaluation of the environmentally
adaptive TL prediction system on acoustic data sets with
increased ranges of frequency (20–300 Hz) and horizontal
separation (100–2000 m) are currently under investigation.
Computationally efficient schemes to simulate the effects of
atmospheric turbulence on acoustic signatures are also being
examined. Additionally, the future research should involve the
design of physics-based neural network TL prediction systems
that can capture mapping functions in a manner similar to
multidimensional partial differential equations (PDE).
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