

IN-COMVEC SEC: In-vehicle Security for Medium and Heavy Duty Vehicles

Subhojeet Mukherjee

Advisor: Dr. Indrakshi Ray, Dr. Indrajit Ray

Computer Science Department

Colorado State University

@PST'17, CCS'17

Introduction

Why In-ComVec Sec

Transport goods worth about \$53 billion were moved each day in 2015

- Financially motivated attacks. **Emergency vehicle response time is** critical
- Personally motivated attacks.

Capital equipment bear high asset value

- Commercially motivated attacks. Military vehicles are mission critical
- Politically motivated attacks.

Mechatronic Threats: Our Scope

Electronic control units (ECU) communicate over the 2-wire CAN bus

- Make informed decisions.
- Enhanced reliability, quality and safety.
- Messages composed and interpreted according to SAE J1939 standards.

Existing flaws in ECU and external connectivity can be exploited

 Direct access to critical ECUs via CAN bus can be threatening.

A Novel Research Topic

Passenger car security was perceived towards the middle of last decade

- 1.4 million Jeep cars recalled in 2015.
- Significant amount of security research on CAN since 2004.

Heavy vehicles are different...

- Attacking SAE J1939, a common standard, can have large-scale impact.
- Non-proprietary standards on actively changing networks.
- Greater automation and external access.

New, possibly unknown threats are likely.

Highly adaptive, and possibly novel security solutions are required.

Prepare

@SAE Comvec'16

A testbed for conducting sandboxed heavy vehicle security research

- Nodes connected to the network
- Engine and retarder controller.
- Brake controller
- Telematics unit
- Beaglebone node controllers.
- Remote access.
- Allows access to a CAN backbone.

Invade

@ICISS '16

Request Overload

Issue

 Network nodes will process all requests directed to them [SAE J1939-21].

Attack

- Bombard a node with multiple requests. **Impact**
- Node stops functioning.
- Replies back with cannot respond.
- Periodic messages decrease drastically.

Successfully executed on a real truck at the 1st Cyber-Truck challenge, Warren, Michigan.

Experiment independent Factors

- number of concurrent thread
- injection time interval in ms
- source address

High Priority messages

Average drop: 46%

Low Priority Messages Average drop: 65 %

Two-tailed Mann-Whitney U test

p-value of 0.01468 (<= .5)

- 5% confidence interval

False RTS

Request RTS 21 Allocate False-RTS 5 ReallocateCTS Data **CRASH!**

- Low Priority - SRC 0F

- During connection set-up a RTS can be sent to the recipient with piggybacked message size [SAE J1939-21].
- If a new RTS is sent, it shall be acted upon.
- No notification is sent back to the original sender.

Attack

- Send false RTS with reduced message size. **Impact**
- Possible buffer overflow.

Connection Exhaustion

Connect Refused Keep Alive

Issue

- Only 255 possible addresses.
- Only 1 active connection from a node [SAE J1939-21].
- Connections can be kept alive by sending periodic clear-to-send (CTS).

Attack

- Masquerade as nodes on the network.
- Make connections.

Impact

Legitimate connections are rejected.

Report Precedence Graphs (RPG).

Defend

Anomaly-Based Message Injection Detection

 Reports are basic units of state information derived from one J1939 message.

Erratic, unplanned transitions characterize malicious behavior.

- Hard-barking, tire-slip are anomalous but not malicious.
- Can distinguish such behavior from attacks. **Features**
- Normalized Graph Flux Capacity (NGFC)
- Flux capacity: fc(n) = in-deg(n)*out-deg(n)
- NGFC = $\sum fc(n)/|\{n\}|^3$
- Edge-Weight Distribution Skewness (EWS)

Visualizing anomalous behavior

- Blue box
- Hard-brake
- No significant deviation in both features
- Red box
- Attack
- Significant deviation in both features

Results

- Almost 80-90% of injections detected. 60-70% attack windows detected.
- 1-9 % false positive (hard-brake) detection rate.

Vehicle (Attack) State Visualization

Obtain Attack Traffic Patterns Submit exploits Use exploits

Visualize vehicle states

Submit feedback

- Vehicle states are distinct combinations of parameter instances.
- Our application realizes states from network traffic.
- Eg. accelerating, hard-braking, malicious message injections etc.

Prevent malicious injections.

Adapting low power cryptographic approaches.