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Rational Invariant Subspace Approximations with
Applications

Mohammed A. HasarMember, IEEEMahmood R. Azimi-SadjadSenior Member, IEEEand Ali A. Hasan

Abstract—Subspace methods such as MUSIC, Minimum Norm,  Several techniques that seek to determine signal sub-
and ESPRIT have gained considerable attention due to their su- space-based estimates without eigendecomposition have
perior performance in sinusoidal and direction-of-arrival (DOA) been proposed. These include the principal component AR
estimation, but they are also known to be of high computational . . . .
cost. In this paper, new fast algorithms for approximating signal method [17_]’ which uses a pplynomlal gpproxmatlon to
and noise subspaces and that do not require exact eigendecompoth€ pseudoinverse of the covariance matrix. The method of
sition are presented. These algorithms approximate the required [18] approximates a basis of the signal subspace from a set
subspace using rational and power-like methods applied to the di- of transformed data vectors where the signal subspace was
rect data or the sample covariance matrix. Several ESPRIT- as well approximated using the discrete Fourier and Cosine transforms.

as MUSIC-type methods are developed based on these approxima- . . . .
tions. A substantial computational saving can be gained comparing In [19], a basis for signal subspace were obtained by solving

with those associated with the eigendecomposition-based methods@ linear least squares prediction problem. In [20], Tuft and
These methods are demonstrated to have performance comparable Melissinos used Lanczos and power-type method to approx-

to that of MUSIC yet will require fewer computation to obtainthe  jmate the signal subspace. Ermolaev and Gershman [9], [10]
signal subspace matrix. used powers of the sample covariance matrix based on Krylov
Index Terms—DOA, ESPRIT, frequency estimation, minimum  subspaces to approximate the noise subspace when the number
norm, MUSIC, power methods, rational subspace approximation. ¢ impinging signals and a threshold that separates the signal
and noise eigenvalues are knowarpriori. These methods are
|. INTRODUCTION shown to have significant computational saving over those
.. that explicitly compute eigen or singular vectors. However, in
T HE SIGNAL subspace approach has found applicationg,st anpjications, the above two parameters (a threshold and
in several fields such as harmonic retrieval [1], [2], SP€¢pe number of signals) are unknown and, thus, place a serious
ral es_tlmatlon and autoregressive moving average (ARM'ﬁ itation on the usefulness of these techniques. It should be
modeling [3], [4], sensor array processing [5], [6], systemoniigned that none of these methods are developed in the
identification [7], and even in filter design applications [8]context of the less-costly ESPRIT method.
Signal subspace algorithms can usually provide much bettelcl-he objective of this paper is to extend the results of [9],

perfor!”nance than tradmonal least squares methods; hqwe 6], and [20] in approximating the signal and noise subspaces
associated computational load make them less attractive fory apply them for the derivation of ESPRIT- as well as

real-time implementation. Among the most attractive Or":I‘\ﬁUSIC—type methods. We will present arbitrarily accurate

are MUSIC [5], MIN-NORM linear prediction [9], [10] and approximations of subspace decomposition using rational
ESPRIT [11]-[14]. In subspace methods, the data matrix or gp o P . P _using
proximations and a power-like method. Minimum norm,

matrix of some statistics of the data is normally decompos@vlsm_, and ESPRIT-type estimators will be derived and

into two orthogonal subspaces. Then, the direction of arriv. . : - :
(DOA) is estimated using the orthogonality of the noise suf: own to provide numerically efficient and accurate solutions.

space and the array manifold (MUSIC and MIN-NORM) or th his include a method of estimating signgl subspace when the
rotation invariance over the signal subspace (ESPRIT). THYMPer of sources are known, and pori knowledge of a
decomposition is usually carried out using the singular valdgreshold is required. This is an improvement of the method in
or eigenvalue decomposition. Several exact methods have bEdnWhere both the number of sources and the threshold must
presented in [15] and [16]. However, the computation of thebe knowp. The approach presented here is also useful in other
exact decompositions is often very intensive, which may mak¥A estimators such as beamspace MUSIC [21], FINE [22],

the subspace algorithms prohibitive. and generalized MIN-NORM [10]. . _
This paper is organized as follows. Section Il describes the

. . . . data model of the frequency estimation problem and back-
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on exact decomposition, they give comparable performanegherew;,: = 1,---, M are sinusoidal frequencies, addare
All proofs are given in the Appendices. positive amplitudes. In addition, it is assumed that the following
conditions hold: 1) Thep; are independent random variables

Il. PROBLEM FORMULATION uniformly distributed ovef—m, 7], and 2)v(k) is white with

zero mean and independentgf

A. Model Description The covariance matri,, for the array data is given by

The directions of arrival (DOAs) and the harmonic retrieveal
problems can be described as follows. In the DOA problem, we R, = E{y(k)y(k)"} = ARsA* + 071},
considerM narrowband planewaves simulataneously incide\r)vthere Re is th . i fos(k do? i
on a uniform linear array dfsensors. The signals arriving at all s 15 the covariance matrix. 05(k), an p 1S an
sensors during’ snapshots are unknown noise variance. S}{mnarly, in the harmonic retrieval
problem,R, = E{y(k)y(k)¥} = R, + o2I1. The sample
y(k) = x(k) + v (k) (1a) covariance matrix will be denoted ty, and is estimated as in
Section II-B.
where Note that the minimum eigenvalue &, is equal tos? with
1 o 1 multiplicity L— M. Ifthe §’s are all distinct, the unknown matrix
I(2d/ ) sin(6,) o I(2d/ ) sin(617) A e C*Mis of ranka/. In general, only the covariance matrix
x(k) = : : : R, is known. The actual valugf and the dimension of botA
andS are unknown, as is the value @f . Given the matrixz,,
our goal is to determine the number of signals ahfiom the
s1(k) noisy data{y(k)}/ ;.
. = As(8)(k) (1b) It is shown in [23] that the sample covariance mam%,b( =
R,+0,(1/V/N), whereR, is the true covariance matrix of the
sm (k) signaly(k). The additive term decreases to zero in probability

where s, (t) is the kth narrowband signal (with center wave-@sN — oo. Therefore, any of the methods applied here using
length \.) arriving at angledy, d is the spacing between adja-sample covariance matrices yields consistent estimates of the

G (24/N) (L=1)sin(8) ... 4i(2d/A) (L—1) sin(9x)

cent sensors, and the array manifold matrix amplitudes and frequencies.
AB) =[a(6) alBs) - alBun)] B. Preliminaries
. Generally, modern high-resolution sub-space estimation
with 7 )
schemes are of the following types:
a(@) =[1 CHYNsin@) i (2d/N (L1 sin(6))T « extrema searching techniques like spectral MUSIC [5];
¢ polynomial rooting techniques such as Root-MUSIC and
is the steering vector of the array toward the directioilere, Pisarenko methods [3], [24];
s(k) € ¢M (C is the field of complex numbers), and « matrix shifting methods such as ESPRIT [12]-[14], matrix

_ T pencils and unitary ESPRIT [11].
s(h) = [s1(k) s2(k) oo sm(R)] The subspace decomposition can be performed on the data

y(k) andv(k) areL x 1 vector of observation and additive noiséna@trix¥” using a singular value decomposition (SVD)

in sensors with Y. o] [v*
X=UsV*=[U, Uy [ o 0} [V} )
y(k) =[y(k) w(k) - yo(B)]* 0
v(k) = [vi(k) wlk) - wn(B)]F. where the vectors it associated with th&/ nonzero singular

values, span the signal subspace, whereas the vectgs &s-
It is also assumed that the signals and additive noise ajciated with the zero singular values, span the noise subspace
stationary and zero-mean ergodic complex-valued random pfer which
cesses such thd(v;(k)vi(k)] = o26;; fori,j =1,---, L. .
Here,E[] and* denote the expectation and conjugate transpose a(0x)'Up=0, k=12 M ®3)
operators, respectively. _ For a more self-contained description, let us first give the basis

The harmonic retrieval problem can be described as f%’r some subspace methods.

lows. Consider the sum off complex sinusoids in additive

zero-mean complex white Gaussian nai$k) having variance 1) Pisarenko MethodG]: It is shown by Pisarenko that a

52 positive definite Toeplitz matrix of ordet/ + 1 can
v be modeled as the covariance matrix of a stationary
y(k) = z(k) + v(k) (1c) stochastic signal consisted of at massinusoids and
a white noise process. The energy of the white noise
where signal equals the smallest eigenvalyeof the Toeplitz

M matrix 12,. In the case that, is simple, the frequen-
z(k) = Zdiej(wikwi) (1d) cies of the sinusoidsvy,---,wy; are defined as the
= zerosz; = exp(jw;) of the eigenpolynomiab(z) =
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[1,2,---,2M]¢, which are the amplitudes of the wavewith corresponding eigenvector&; }~ ;. The eigenvectors
associated with those zeros, whéris the eigenvector {u;}*£, are usually called the signal vectors, and the eigen-
corresponding tey. vectors {u;}~ ,,,, are called the noise vectors. L& =
2) MUSICI5] searches over angteof M global minima [u; we -+ wup], Po =  [uar+1 a2 -0 ur)]
of the null-spectrum function Then, U, = P.P* = M wuf andUy = PPy =
_ . . Zf=M+1 u;u; are projections onto the signal and noise
P(8) = a(6)"UoUg a(6). “) subspaces, respectively. In presence of white nai§e),
3) ROOT-MUSIC algorithn24] forms the roots of the A(0)RsA*(8) = U, A*U;, whereA = diag(Ai, Az, -+, Awr),

null-spectrum polynomial and henceA(e)Ri/2 = U,AV for some orthogonal matrix
. V. Therefore, Uz A(6)RY? = UU,AV = 0 from which
P(z)=a <1> UoUga(2) (5) UsA(f;) = 0 or equivalently{u,}/ ,,,, are orthogonal to

{a(6:)}}L,. As stated earlierk, = R, + O,(1/v/N) and
where {Zi — 2d/X) Sin(ei)}g\il are the p0|ynomia| thereforeh; = A; + Op(l/\/ﬁ), Uy = u; + Op(]./\/ﬁ) which
roots. TheM roots with largest amplitudes inside thdmply that spaii; }2, = spaf{u;}}Z, + O,(1/v/N). Note
unit circle are chosen as the Signa| roots. that Spal@ﬁ,k} is the maximum likelihood estimate of the Signal
It is known that the theoretical covariance matrix is Toeplitgubspace. This fact is the basis for the use of MUSIC, ESPRIT,
and centro-symmetric, i.e, = JR:J, whereJ is the per- and others. The eigendecompositions are expensive to compute,
mutation matrix with ones along the cross diagonal. To effetequiring O(L?) flops for reasonably good estimates. In the
tively use the structure of the data, the sample correlation nf¥ext result, we derive a method for splitting the eigenspace into
trix R, is estimated using the forward-backward method so th&@veral invariant subspaces.

R, =1/(2(N — L+ 1))Y}Y7, where In the next theorem, we generalize the above idea to obtain a
rational approximation of the signal subspace.
[ YL Yo—1 - v Theorem 1:LetR, = Y"1, \;u;uf, where), andu; are the
Yr+1 yr, e Y2 ith eigenvalue andéh corresponding eigenvector. Assume that
A > A2 Ay > Ayg1 =0 = Ap = o2 and that the
Y, = N UN-L o YUN-L4 (6) corresponding eigenvectofs; }/~; are chosen to be orthog-
1 Y2 9L onal. LetS > 1 and{#;};_, be real positive numbers such that
Y3 Y3 T Y 0 < b < by < - < bs.Definelly =3, .\ w
* * * andl/;, = Ei:b1<)\i<b2 uiu;" e U, = Ei:br<)\i<br+l uiu;“,
LYN—1+1 YN—142 Ynv A forr =1,---,5 — 1. Then
where the notationy,. denoteg;(k). Thus, one may expect that . S ,in . 1
the forward-backward methoé ir)1 (6) yields a better estimate of nlgr;o oy (bl — By) (b L + Ry
R, than the lower or upper part af;,. =Up— U + Uy +---(—1)°Us. @)
In the SVD-based methods, the correlation maff.@xis de- o ) )
composed aﬁ’,y = Uy ALV} + U As V', whereUsU; = 8,1, Proof: The p_roof is given in Appendix A. _
VAV, = 6,1, UV, = 0, andA; is diagonal matrix for Remark 1: If w |sapr|m|F|ve(S+1)th root of unity, one can
i,j = 1,2. Here apply Theorem 1 several times to compute
6;,_; Kronecker delta function; . S /in 1 pny (pn ny—1
Ay ’ matrix of the most significant singular values; ,}E{}o My (b T - By ) (Bl + By)
As diagonal matrix whose diagonal holds the least sig- r S S ‘
nificant singular values. =1, <Z Ui + ' Z Ui) = Z (w)'U; (8)
7=0 i=r+1 7=0

Several techniques are available in the literature to compute
the SVD or solve the eigenvalue problem in general. Well-egsr ; = 1.2.... 5. TheseS equations can be solved for the
tablished methods can be found in EISPACK [25] and [26};.’s as follows.

The computational complexity of these algorithms is of order
O(L?), whereL is the size of the matrix. In the next section,

we utilize the idea that for high SNR, signal singular values are
generally larger than noise singular values, and thus, powering
would widen the separation of the noise and signal eigenvectomere

S
U, = Z(w*”)iWi forr=0,---,8

i=1

Nl

S T S n I pn 7 ny—1
[1l. D OMINANT SUBSPACES OF THESAMPLE COVARIANCE Wi = lim Wy (0 I+ w By (b L 4 By )™

MATRIX The significance of Theorem 1 is that it provides a way of

Since R, is Hermitian, it has the eigendecompositiorsplitting C* into several complementary invariant subspaces
R, = Ei"zl Aiwul, where; andw; are theith eigenvalue of the matrix /2, without actually computing any eigenvalues.
and ith corresponding eigenvector. For convenience, it Ehese subspaces correspond to eigenvalues inside the strips
assumed that the eigenvalues are sorted in decreasing oRlealz) < 01,0, < Realz) < boyiforr=1,---,5-1
sothatA; > X+ > Ay > Ayg1 = -+ = Ay = o2 andbs < Realz). In the presence of white noise, only two
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subspaces are required for deriving subspace methods. Thug.imMApproximated MUSIC
the last result, if- = 1, we obtain the following.

Theorem 2: LetR, = Zf:l Auul, wherel; andu; are the
ith eigenvalue and corresponding eigenvector.iLget 0 such

Given the projectiori/,; onto the signal subspace, the MUSIC
estimator is expressed as

1
thatAy > X 2 Ay > b > Ay = - = Ap = Puusic(9) =
o2 and that the corresponding eigenvectpis}~ , are chosen la*(6) (I — Us)a(0)]|
to be orthogonal. LeP, = [u; us --- wuyp]andPy = _ 1 (12a)
[upi41 vnm42 -+ ug),andletUs = B, P}, Uy = PoFy. |L — a*(6)U,a(8)]

The.n, we have the following. where the frequencies are estimated as the location of the peaks
i) (b1 —Ry) (b1 +Ry)~" convergestd := Uy—Us  of Pyysie(f). The signal subspace approximation of Theorem
(asn — o0), and thereforel/s = (Ir — U)/2 and 2 j) yields the following approximated MUSIC estimator
Uoz(IL+U)/21. . .
i) Ry(b"IL + Ry)~* converges td/s (asn — oc). P Vusie(0) = _ — — .
iy *(b"I + Ry)~* converges td/, (asn — ). ’ L — a*(O)Ry{bnIr, + Ry }ta(6))|
Proof: The proof follows directly from Theorem 1. From applying Theorem 2, we conclude m@(fl) (6) con-
A rough estimate of the thresholik,, = & can be ob- ’ : : MUSIC
1 verges toPyiusic(#). Note that this estimator is dependent on

tained from the equatior\y, = (Tr(R,)/L), provided ihe narameteb. An approximated thresholdcan be provided
that L is sufficiently large. One can see the validity of thig,s i the following algorithm.

equation froan noting thak; > o, for¢ < L, and hence,
Tr(R,) =>"._1 A\ > Lo,.Here, T{A) denotes the trace of Algorithm 1 (Rational-MUSIC)
A.

(i) Choosen > 1 (normallyn < 5 suffices), and compute

IV. APPROXIMATED SIGNAL SUBSPACEALGORITHMS W _ Tr(Ry) ’ e
= —7 Ip — Ry

In [9], an approximation of the noise subspace basis is de-
rived using rational functions. This algorithm requirediori . n -1
knowledge of the number of impinging signals and a threshold . Tr(Ry) I+ R®
Ainr, Which separates signal and noise eigenvalues. The approx- L Y
imated noise subspace was then giveq b} /A7) + 1.}~ _ @
Using this approximation, the minimum norm solution was de-  and letF, = (F;) + F,,(0*)/2. X
rived. However, no procedure was provided for choosing. (if) Compute the approximated noise subspége= (1, +
In the next few subsections, we apply Theorem 2 to obtain Fn)/2.
approximate minimum norm, MUSIC and ESPRIT estimators. (i) Compute Pb(ff\,)ﬂ_TSIC(H) using Pb(fﬁUSIC(H) =
(1/|a*(6)[5a(6)]), and locate the peaks. The fre-

(12b)

A. Approximated Minimum Norm Algorithm quencies are estimated as the angular positions of the
The minimum norm solution of the DOA problem as formu- peaks.

lated in [9] is to findw € CM that solves the minimization

problem C. Approximated Rational-ESPRIT

The computional cost associated with the search of the peaks
of MUSIC-type algorithms is usually very demanding, partic-

wheree; is the first column of thel x I identity matrix, and ularly for large dimensions. Several methods were proposed
U, is the projection of the signal subspace. Then, the minimufh the literature to lower the computational requirements of

norm estimator determines tiié highest peaks of the function the traditional subspace methods such as ESPRIT [12], UNI-
Pun(8) given by TARY-ESPRIT [11], ROOT-MUSIC [24], and many others. In

these methods, the computation is focused on estimating the
_ 1 ) (10a) frequencies by solving an eigenvalue problem or a polynomial
la*(0)Uoer |* rather than searching the whole plane or a circle. Then, the
frequencies are estimated as the angular positions of the eigen-
values of a matrix formed from the powers of the correlation
matrix. Normally, all MUSIC, Root-MUSIC, and Minimum
Pun(8) = 1 . (10b) norm estimators require the estimation of the noise subspace,
|a*(8)Upc|? whereas ESPRIT-type methods require the knowledge of
the signal subspace. The main idea behind ESPRIT can be
explained as follows. Leti(#) be as defined in (1). Then, the
1 (11) signal subspace is the column spaced¢#). Generally,A(6)
la*(6) (It — Rp(b™ I + R)~L)ey |2 is unknown; however, a basis of the signal subspace can be
obtained from the most significant eigenvectors of the correla-
Clearly, ng‘]{,(e) converges td’yn(6) asn — oc. tion matrix. It can easily be shown thak A(0) = E; A(6)S,

Minimize w*w subject tol/,w = 0 andw’e; =1  (9)

Py (6)

Note that the vectoe; in (9) can be replaced by any vector
that is not in the signal sub-space witte; # 0 to obtain

Thus, by approximating/y as in Theorem 2, we obtain

Pi(6) =
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where E; € RU—UxL with E; is the identity matrix with  The MUSIC and Min-Norm frequency estimates were ob-
the last row removed, whered$ is the identity matrix with tained as the frequencies at which the highest peaks in the
the first row removed, and = diag(z1, 22, -, 2ar), Where peak spectrum (14) occured.

z; = /24N =n(8) Hence,(ELA(0))TE,A(0) = S. Here, A ROOT-MUSIC algorithm based on Theorem 3 can be de-
BT denotes the generalized inverseihonsingular matrix®.  scribed as follows:

This property also holds for any matrx whose column space 1\*

is the signal subspace, in which cage,= A(6)P for some  P™(z)=a <;> RSP (Ryr ™ RGD) ™ Ry ™% )a(2)
nonsingular matrix®. In this case, i1Q; = E;Q, and: = 1, 2, i (14c)
thenQfQy = P HELA(0))TE2A(0)P = P~1SP, which \wherez = ¢/(2¢/Y5n(®) The M roots with largest amplitudes
is similar to S. To develop an ESPRIT based on the rationﬂhside the unit circle are chosen as the Signa| roots.
approximation of Theorem 1, Iét be a threshold separating A more efficient method that can be viewed as a modification
noise and signal eigenvalues; then, from the above discussignTheorem 3 is presented in the following MUSIC algorithm.

it can be shown that Note that this algorithm requires a rough estimate of the number
lim (B Ry ("I + Rg)—1)+EQRZ(bn]L + Rg)—l of sources.
= PSP (13)  Algorithm 2 (Power-MUSIC)

for some nonsingular matri®; . Thus, the directions of arrival (1) Choose7(zn?uﬁiciently large (usuallyn < 5), and let

can be estimated from the eigenvalues of the above matrix for 2 = [c e§” -], wherec{" is theith column

large n. Simulations showed that < 5 normally produced of Ry.
reasonable results. (i) Choose theV! largest (in magnitude) columns, and form
the matrixCy = [ ¢ -] (les, || = lleis || 2
V. POWER-LIKE METHODS w2 leiy ll)-

In the previous section, a threshold that separates the noisg”) ComputeQé\r{; = Oy (OO 10(%(71)*_
and signal subspaces is assumed to be kreriori. In this (V) Compute Pypgic(#) = 1/(L — a™(0)Q), a(6)), and
section, we derive an approximation of the signal subspace 0cate the peaks.
using only powers off?, on the assumption that the number )
of signals is known. It will be demonstrated in the next resut- POWer-ESPRIT Algorithm
that if the numbeiV is known, then the signal subspace can be An approximated ESPRIT algorithm can be developed based

approximated to any desired degree of accuracy. on the following theorem.
Theorem 3:Let Ey; be an L x M full-rank matrix, Theorem 4: Let F'1, E», andS be as defined in Section IV-C.
where E,U; is nonsingular. LetRE(}) = RyEy, and set Let E), be anL x M full rank matrix, whereE’, U, is nonsin-

Q, = RE\Z)(R]w(n)*Rg\Z))—lR]w(n)*_ Then,Q,, converges to _gulgr; _then,(ElRZEM)+E2RZEM converges to a matrix that
U,, wherelU, is the projection onto the signal subspace. Addis similar toS. .
tionally, the rate of convergence is asymptotically proportional ~ Proof: See Appendix C.

to (Anr+1/An)™. The matrix¥y; in this theorem can be replaced by the selec-
Proof: See Appendix B. tion matrix in Algorithm 2. In this case, the limits
Theorem 2 can be considered to be a basis of many subspace . (R)\+ (n)
lim (E E 15a
algorithms, which is shown next. nl_{l})o( 1@ )T E2Qy (152)
lim (B, )t B, 15b
A. Power-Like Estimators Jim (EvC)y )" E2Cy (15b)

Let Rg\’}) be as in Theorem 2: then, a second approximat@&iSt and are similar t§. Another version of approximated ES-

MUSIC is given by PRIT-type can be derived from Theorem 3 and has the form
P{sic(0) Lim (ErQn)™ (B2 Qy)- (15¢)
1

_ = = This limit exists and is similar t&'.
|la*(0) (I — Ry, (R (* Ry )~ Ry () *)a(6)]| o . .
M M C. Estimation Based ondgged Coariance Matrix
(14a)

As shown in [27] and [28], subspace methods can be derived
based on lagged covariances. These lagged covariance matrices
lim p](\?%src(ﬁ) = Puusic(9). can be obtained by partitioning,. This means that if a covari-
e ance matrix of large dimensioi. (> 2M/) is constructed so that

and one can show that

Similarly, the minimum norm estimator can be written as

R11 R
Piin(®) = @ <1 Y R) LR ) ®= {R‘n RJ (o
“(0) (I, — Ry, (Rp* Ry —L Ry (0
[7(8) Uz = Ry (Rt 2 )T )(il4|b) whereR;  is of dimensionl /2, assuming, for simplicity, that

is even, therRy; = R}, and is less biased by noise th&gp, or
which converges t@y, x (6) in (10a). R,5, especially if the noise process is an MA process, e.g., white
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noise. If Ry, is of dimensionkK with L = 2K andK > M, case,the MUSIC and minimum norm estimators have the forms
thenR,, = R, (K), whereR,(K) is Toeplitz, which is defined 1

* Ritsie® = @ mpert, + mpa@ O
_ |1 Ty ry(L—2 (n) _
RU(K)_ MN(Q)‘ |a*(9) (R;n(anL_i_R;n)—l)eﬂ' (20)
ry(1) 7y(2) e ry(K)

(17) The parameteb is as defined in Theorem 2. The number
should be chosen carefully to keep appreciable separation be-

wherer,(m) = E{y(k + m)y*(k)}. Thus, the matrixR;, tween noise and signal subspaces to allow the rational and power

can be utilized to derive subspace methods for frequency dRgtNCds to extract one of these subspaces. One way to choose

bearing information. All methods derived so far can be replt 'S # = trace(}?y).f more accnurate approximation can be

cated by replacing?, with R, (k) for someK > M. obtained by solving:™ = trace 1z};). A sharper estimate of
comes frony™ = tracg R};)/L).

) _ The approximated power-ESPRIT based&is obtained

D. Fast Squaring Algorithm from the following limit:

As can be observed from the last few sections, approximating. i S 11 o el
the signal subspace requires only power&gpf Thus, a numer- 3520&(() (B L+ 1, ")) B (U (0 L+ 1)) (1)

ically efficient method of powering is required. The simplest , . . L
S . . ) . -which exists and is similar t§'.
method of achieving this goal is the squaring procedure in whidh

R,, R}, R} --- RY" are computed, wherg, is a sufficiently o c
large integer. The only problem in computing these power ma- V1. OPERATION COUNT
trices is thatlzj; become large (overflow) it; > 1 or small The methods presented in the previous sections are multipli-

(underflow) if A; < 1. To alleviate this numerical problem, cation rich in that for a given, f?.g is required and is followed

scaling may be applied. A stable method of generating scalegl a matrix inversion. Matrix multiplication can be obtained

powers of complex matrices can be described as follows:  very efficiently by applying the Strassen algorithm [26]. In this
algorithm, if A € RI*F and B € RIL with L is a power

Ry of 2, thenC = AB can be obtained witk ~ L?%°7 multi-
0 pTr(Ry) plications. Thus, asymptotically, the number of multiplications
B2 in the Strassen algorithm 9(L2-%°7) compared withO(L?)
Bpy1 = "y T 0,1, (18)  in the conventional method. It should be mentioned that in [29],

Bailey implemented a Strassen approach that required only 60%

wherep is a positive number slightly less than unity, and.Ay of the time needed by the convenfuonal mult|pl|calt|on.
denotes the trace of. By a suitable choice of, one can be sure _ 1 he number of flops in computing™Ir, — &)™ (b"Ir, +

of staying within the range from-1 to 1, even with round-off %) consists of approximately the number of flops in computing
error. Fortunately, it is noticed from several simulations thdt, and the matrix inverse. Assuming that= 2", both of these
po = 2 or 3 yields reasonable separation of noise and sigripcesses cost abouk?507 4 (2L3/3). )
subspaces. The rapidity of convergence to the limit depends o he number of flops required to compute the SVDIf by

the ratios|Axs41/Aas|. This ratio can be made smaller in twothe Golub-Reinsch algorithm il L? [30]. For example, if we
ways: One is by initially considering or R;;, and the other choose- to be 4, which corresponds to= 16, which is a value

is by considering?, + 71, wherer is judiciously selected. It thatisveryhighinmostapplications,the numberofflopsrequired
can be shown that the best choicerd$ 7 = (A, + A1, )/2. One inthe rational MUSIC istZ>897 + (2.3 /3), which is still much
can further improve the above results by choosing a Chebyshess thare1L? using the Golub-Reinsch algorithm [30].

polynomialS,.(A) of degreer, which satisfies-1 < 5,.(A\) < 1 Efficient matrix inversion can be computed using the LU de-
for —1 < A < 1. This implies that-1 < A\(S,.(R,)) < 1 for composition. Once the LU factorization dfis known, the in-
—1 < X £ 1, thus guaranteeing a numerical stability. verse matrixA=! can be computed id(L — 1) (2L — 1)/3

flops [26]. Thus, the total number of flops involved in com-
puting(b"Ir, — R2)=(b"Ir, + Ry) is about(4L3/3) +2rL® =
(2r 4+ 1.333) L3. This number is still far less than the flop count
The results of Section IV and V can be modified so that tifer computing the SVD, which is aboRt L2, for» < 10. Note
noise subspace is approximated rather than the signal subsptiad.» = 9 corresponds ta = 512, which is extremely large
This can be established as follows. Let> A;, and consider for most applications. Thus, for all practical purposes, these al-
the matrixt;, = Iy, — R,. This new matrix is also Hermitian, gorithms, which are based on Theorem 2, are less costly than
Toeplitz, and centro-symmetric positive definite, and its eigethe truncated SVD-based methods. In addition, in many appli-
values, indecreasing order,are A\, > u—Ap_1--- > u—Ay, cations, the matrices under consideration have other structures,
i.e.,n—Ag is the largest eigenvalue &f,. Hence, we can apply e.g., Toeplitz, Hankel, block Toeplitz, or block Hankel, and fur-
the same process above to find the noise subspace, in whillr saving of computation can be achieved.

E. Minor Subspace Computation
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VII. SIMULATION RESULTS TABLE |
. . ) ) . MEAN AND RMSE OF FREQUENCIES FORDATA OF TwWO COMPLEX SINUSOIDS
In this section, the frequency estimators described in Seaf FReQUENCIES0.50AND 0.52IN NoISE wiTH SNR = 20, 15,AND 10, dB,

tions IV and V were examined on several data sets generated DMENSION OF DATA VECTORSL = 10. ALGORITHM 1 IS USED
by the equation

SNR T 7. | BMSE; | RMSE,,
, . 20 dB | 0.500556 | 0.521225 | 0.00563 | 0.012522
j(2 j(2
y(n) = dy? F™hnten) o g ed@rfantee) L y(n)  (22) 15 dB | 0.500831 | 0.521748 | 0.00652 | 0.018531
10 dB | 0.501025 | 0.523003 | 0.01126 | 0.032547

whered; = 1.0,d> = 1.0,f; = 0.5, fo = 0.52, andn =
1,2,---, N = 25. The¢, are independent random variables TABLE I

i i H i i MEAN AND RMSE OF FREQUENCIES FORDATA OF TwO COMPLEX
.unlformly distributed (_)ver the mterv@_ﬂ’ W]' The nOIS.eJ(n) SINUSOIDS AT FREQUENCIESO.50AND 0.52IN NOISE WITH SNR =
is assumed to be white and uncorrelateq with _the s!gr?al. NOt€ 50 15 AnD 10 dB, DMENSION OF DATA VECTORSL = 10, M = 2.
that 2 — fi < (1/N). The SNR for either sinusoid is de- SVD-BASED METHOD IS USED

fined as10log,,(02/0?), wherez(n) = die/Crfinté) 4

der(%fznwz.)’ andog andaﬁ_ are the vqria_mces af(n) and . 2SON£3 0.5({6226 0.5?133 g%iﬁ% gf)ﬁﬁff
v(n), respectively. The covariance matrix is constructed using 15 dB 1 0500762 [ 0.52182 | 0.007814 | 0.008461
forward-backward method described in Section Il to increase 10 dB | 0.501239 | 0.52214 | 0.013078 | 0.010458
robustness. The size of the covariance matrix is chosen to be

L =10, which, in the absence of noise, has effective rank two. TABLE Il

We performed expenments to Compare the proposed methd\ﬂ@N AND RMSE OF FREQUENCIES FORDATA OF TWO COMPLEX SINUSOIDS

. . AT FREQUENCIES0.50AND 0.52IN NOISE WITH SNR= 20, 15,AND 10 dB,
versus the truncated SVD-based MUSIC. The SVD routine i DIMENSION OF DATA VECTORSL = 10, M = 2. ALGORITHM 2 1S USED

MATLAB is used for the computation of the signal subspace

eigenvectors and eigenvalues required to implement an SVD- SNR T f2 RMSE;, | RMSEy,
based method for comparison. We varied SNR from 10 to 20 20 dB | 0.50115 | 0.52098 | 0.00763 | 0.00883
in 5-dB steps and estimated the frequencies for data length 25. 15 dB | 0.50182 | 0.52143 | 0.00827 | 0.01445
For each experiment (with data length and SNR fixed), we per- 10dB 0'501953 052192 | 0.01281 | 0.01205

formed 100 independent trials to estimate the frequencies. We

use the following performance criterion (RMSE): averaged over 100 trials, and the mean and RMSE of each fre-
guency was presented in Table IIl. At high SNR, it has been ob-
. served that each of the 100 spectra has two peaks near the true
RMSE = 1 Z (fi — firue)? frequencies; however, atlow SNR, some of the peak spectra dis-
e played only one peak nedy; + f2)/2. Itis also noticed that

the rate of joint detection of the two frequencies is identical to

to compare the results. Her®, is the number of independentthe SVD-based method. Clearly, Table Il shows very good res-
realizations, and; is the estimate provided from theh real- olution of the two frequencies using a lower powenof 3.
ization. Several experiments were conducted to test the perforin the same experiments, the projection onto the domi-
mance of Algorithms 1 and 2 and the SVD-based MUSIC. Th&nt signal subspace is approximated for the 100 random
mean values of estimated frequencies and their RMSE of tlperiments using Algorithm 2. Comparison between signal
SVD-based MUSIC are given in Table Il. The simulations resubspaces are made by using the eigenvalues of the matrix
sults of applying Algorithms 1 and 2 are summarized as fofg ;" * Q. Here,Qg\’}) is obtained as in Algorithm 2, and
lows. First, Algorithm 1 is applied for a set of 100 random ex&};, is obtained from the SVD of the covariance matrix. The
periments for different (SNR= 20, 15, and 10 dB) using;; eigenvalues of this matrix are the cosine of the angles between
with n = 3. The mean values and standard deviations of thige vectors in the two subspaces. These eigenvalues are found
estimated frequencies are given in Table I. The threshatd to be close to 1.
these simulations is estimated by= (Tr(R,)/L). The peak  We also performed experiments to investigate the effect of the
spectrum in each trial was computed using 1000 frequency bpmwvern on the performance of Algorithm 2. It is observed that
covering a normalized frequency range of 0 to 1. Each spénereasing. does not significantly effect the RMSE as long as
trum distribution is scaled so that its maximum equals 1. The > 3.
frequency estimates were obtained as the frequencies at whickinally, we would like to comment on the performance of
the two highest peaks in the peak spectrum occured. The méaadeveloped algorithms with respect to overestimatiof/of
and RMSE are taken only over realizations where two peal¢henn is small, it is observed that overestimationidfleads
have occured. Table | shows the estimated frequncies resultingoetter estimation of the frequencies. The robustness of the
from applying Algorithm 1 for the case in which SNR15 dB methods against overestimation of the number of souides
and usingky; for n = 3. In this table, the spectrum distributioncan be explained as follows. Overestimationiéfmeans that
of 100 trials were included. As can be seen from Tables | and #iclditional vectors are included in the basis of the signal sub-
both Algorithm 1 and the standard MUSIC have virtually idenspace. In our approximation, these vectors are not purely noise
tical performance. but contain some signal component. In the standard MUSIC, if

Next, we repeated the experiments in part 1 using Algorithedditional vector is added to the basis, a purely noise vector is
2. The results of testing this algorithm for different SNR wericluded in the signal subspace causing spurious peaks. Note
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that whenn is small, the first few signal vectors contain noise APPENDIX B
components since the noise and signal vectors are not well sep- PROOFS OFTHEOREMS3 AND 4
arated. Thus, we have to consider more vectors to capture th

X . . Fhe proof of Theorems 3 and 4 follow directly from the fol-
signal subspace. However, this separation becomes more prPdeg two results
enant as increases. '

Lemma 5: Let A, C, B € CY* be diagonalizable matrices
such thafAnin(A)| > |[Amax(B)]; then,(A")~1CB™ — 0
asn — 00. (Apin(4), andAyax(A4) denote the minimum and

Several approaches for approximating the dominant and suaximum eigenvalues of).
dominant subspaces have been developed that avoid the costly Proof: We will only prove this Lemma for diagonalizable
eigendecomposition or SVD. More generally, we providematrices. Letd = 35 \;q;p} andB = Ele pyu; vy with
a way of splitting anL-dimensional space into several comp;q; = ujv; = &_;. Then
plementary invariant subspaces of the covariance matgix
without actually computing any eigenvalues. Frequency estima- {

VIIl. CONCLUSION

tors such as MUSIC-, Minimum-Norm-, and ESPRIT-type are (A™)~1CB™ =
then derived using these approximated subspaces. The compu-

L
ZAJ"qmi} Cq D wiuv;
j=1

=1
tation of obtaining these approximate subspaces and estimators L N
are shown to be less than the standard techniques. Even though _ Z Z <ﬁ) qpiCuv? (B1)
. . . - T ¥ P
these methods are introduced only as approximations, they , Ai E

=1 j5=1
perform well even at low SNR. The good performance of these ’

approximate methods is due to the fact that the estimated Sigv%kch convergesto 0sindg;| < |\i|foré,j = 1,--- L.Q.E.D
7 ) 1S T PN

and noise v_ectors Obte‘_'”ed using the proposed algorithms %he last result holds for nondiagonalizable matrices and can
not purely signal or noise vectors, whereas methods basedb n

t eigend tion treat fth : shown using a continuity argument.
exact elgendecomposition freal Some OTINEse VEClors as PUreiyqqrem 6: Let R, be a positive definite matrix such that
signal or purely noise vectors, which is not true especially at On O
low SNR, resulting in undesirable effects. The main featurds, = QAQ*, whereQ =
. . Q21 QQQ
of these methods are that they are computationally simple and AL 0]
easy to implement in that only matrix inversion and powet§x, andA = [ 0 AJ is diagonal. HereQ11, @12, @21, and

of the sample covariance matrix are required; nonethelessQ% areM x M, M x (L— M), (L — M) x M, and(L — M) x
comparable performance to high-resolution exact eigenvec@r_ M) complex matrices, respectively. The matridgsand

} is an orthogonal ma-

methods has been achieved. A, are diagonal matrices such thiat = diag(A1, - - -, Ays) and
AQ = diaq)‘l\l-l—lv ) )‘L)i with |)‘min(Al)| > |)‘max(A2)|-
APPENDIX A Assume, without loss of generality, that the matijx; is non-
PROOF OFTHEROEM 1 .
singular. LetR, = f;” ?2} and for eachn > 1, let
From the eigendecoposition &f,, we have R R 21 22
. \ RZ _ [RMEZ; R12E77:LL§:| , whereR;; and@;; have the same
n n n ny—1 __ :] - :] * . . 21_ 22
(bplp — Ry) (b + Ry)™ = ; b A U dimensions; then
and nh_‘%o Ryi(n)Rii(n) ' = Qu Q! (B2)
by =AY (1, ifA < b
b+ A {—1, if \; > b, (A1) and
Note that the matrice§U; };_, defined in Theorem 1 are pro- lim Ry1(n) 'Rya(n) = QI Q. (B3)
jections and that/;l/; = U;6(¢ — 7), whereé is the Kronecker e
delta function. Hence, by virtue éf;U; = U;6(i — j) Proof: The decomposition
2 (W1 — R™) (b + R™)™*
r=i(b )51 g B — |:Q11 Q12:| |:A1 0 } [Qn Q12:| (B4)
~ I, <Z U, — Z Ui) v Q21 Qo 0 Ao |Qun Qn
1=0 1=r+1 N
s r s is possible sincé?, is Hermitian. From the relatio34, we
= <U0 - ZUZ) () <Z Ui- > Ui> (---)  obtain
=1 1=0 1=r+1
5 s R o— [Qn Q12:| [A? 0 } [Qn er
YU —Us | =Up—Ur+ Uz +-+(-1)°Us. y On Qua|| 0 AZ||Qu Qo
1=0

_ | QuATQT + QA3 QT QuATRS + Qr2A3Q5,
QED. = :

Q2 ATQT, + Q22A5Q7, Q2 ATQ3 + Q2ATQ5,
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Since|Amin(A1)| >  |Amax(A2)], it follows from Lemma 4 The nonsingularity of)1W guarantees that the matriz, (n)
that is nonsingular for all sufficiently large: (see Section IV-C).
Hence, from (B5), we also obtain

lim Ryy(n)Ryy(n) !

~ lim (QuATQL + Q2A3Q1) By AP (B AO)P,)* = By A(B) (B, A(9))*
(QuATQT + QAT QT) .
— lim (QQlA?Qtl) (QllA?Q*]il)_l _ Q?lQl_ll' which is similar to S. QED

Remark: One of the other important aspects of Theorem 6 is
that the dominant eigenvectors can be extracted using only the
elements of?g for sufficiently largen. The only problem is that
there is no guarantee th&; is invertible. This can be over-
come by permuting the rows d%g. Another interpretation of

Similarly, to prove (B3), we have

lim Rll (7’L) _1R12 (7’L)

= lim (QuA7Q%, + QmAgQ’b)*l Theorem 5 is that a basis of the signal subspace can be approx-
noee s imated by applying the Gram—Schmidt process on the columns
(QuAT Q5 + Q12A5Q%,) of I

= nh_l)go(QllAertl)il(QllA?Qzl) =Qu* Q. Ry (n)Ryy(n)
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