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Rational Invariant Subspace Approximations with
Applications
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Abstract—Subspace methods such as MUSIC, Minimum Norm,
and ESPRIT have gained considerable attention due to their su-
perior performance in sinusoidal and direction-of-arrival (DOA)
estimation, but they are also known to be of high computational
cost. In this paper, new fast algorithms for approximating signal
and noise subspaces and that do not require exact eigendecompo-
sition are presented. These algorithms approximate the required
subspace using rational and power-like methods applied to the di-
rect data or the sample covariance matrix. Several ESPRIT- as well
as MUSIC-type methods are developed based on these approxima-
tions. A substantial computational saving can be gained comparing
with those associated with the eigendecomposition-based methods.
These methods are demonstrated to have performance comparable
to that of MUSIC yet will require fewer computation to obtain the
signal subspace matrix.

Index Terms—DOA, ESPRIT, frequency estimation, minimum
norm, MUSIC, power methods, rational subspace approximation.

I. INTRODUCTION

T HE SIGNAL subspace approach has found applications
in several fields such as harmonic retrieval [1], [2], spec-

tral estimation and autoregressive moving average (ARMA)
modeling [3], [4], sensor array processing [5], [6], system
identification [7], and even in filter design applications [8].
Signal subspace algorithms can usually provide much better
performance than traditional least squares methods; however,
associated computational load make them less attractive for
real-time implementation. Among the most attractive ones
are MUSIC [5], MIN-NORM linear prediction [9], [10] and
ESPRIT [11]–[14]. In subspace methods, the data matrix or a
matrix of some statistics of the data is normally decomposed
into two orthogonal subspaces. Then, the direction of arrival
(DOA) is estimated using the orthogonality of the noise sub-
space and the array manifold (MUSIC and MIN-NORM) or the
rotation invariance over the signal subspace (ESPRIT). This
decomposition is usually carried out using the singular value
or eigenvalue decomposition. Several exact methods have been
presented in [15] and [16]. However, the computation of these
exact decompositions is often very intensive, which may make
the subspace algorithms prohibitive.
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Several techniques that seek to determine signal sub-
space-based estimates without eigendecomposition have
been proposed. These include the principal component AR
method [17], which uses a polynomial approximation to
the pseudoinverse of the covariance matrix. The method of
[18] approximates a basis of the signal subspace from a set
of transformed data vectors where the signal subspace was
approximated using the discrete Fourier and Cosine transforms.
In [19], a basis for signal subspace were obtained by solving
a linear least squares prediction problem. In [20], Tuft and
Melissinos used Lanczos and power-type method to approx-
imate the signal subspace. Ermolaev and Gershman [9], [10]
used powers of the sample covariance matrix based on Krylov
subspaces to approximate the noise subspace when the number
of impinging signals and a threshold that separates the signal
and noise eigenvalues are knowna priori. These methods are
shown to have significant computational saving over those
that explicitly compute eigen or singular vectors. However, in
most applications, the above two parameters (a threshold and
the number of signals) are unknown and, thus, place a serious
limitation on the usefulness of these techniques. It should be
mentioned that none of these methods are developed in the
context of the less-costly ESPRIT method.

The objective of this paper is to extend the results of [9],
[10], and [20] in approximating the signal and noise subspaces
and apply them for the derivation of ESPRIT- as well as
MUSIC-type methods. We will present arbitrarily accurate
approximations of subspace decomposition using rational
approximations and a power-like method. Minimum norm,
MUSIC-, and ESPRIT-type estimators will be derived and
shown to provide numerically efficient and accurate solutions.
This include a method of estimating signal subspace when the
number of sources are known, and nopriori knowledge of a
threshold is required. This is an improvement of the method in
[9], where both the number of sources and the threshold must
be known. The approach presented here is also useful in other
DOA estimators such as beamspace MUSIC [21], FINE [22],
and generalized MIN-NORM [10].

This paper is organized as follows. Section II describes the
data model of the frequency estimation problem and back-
ground of high-resolution methods. Approximated subspaces
based on rational approximations are given in Section III.
Minimum-norm, MUSIC-, and ESPRIT-type estimators are
developed in Section IV. Subspace approximations using
power-like methods are given in Section V. Operation count is
discussed in Section VI. Finally, Section VII contains several
simulation results designed to show that although our algo-
rithms use significantly less computation than methods based
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on exact decomposition, they give comparable performance.
All proofs are given in the Appendices.

II. PROBLEM FORMULATION

A. Model Description

The directions of arrival (DOAs) and the harmonic retrieveal
problems can be described as follows. In the DOA problem, we
consider narrowband planewaves simulataneously incident
on a uniform linear array ofsensors. The signals arriving at all
sensors during snapshots are

(1a)

where

...
...

...

... (1b)

where is the th narrowband signal (with center wave-
length ) arriving at angle , is the spacing between adja-
cent sensors, and the array manifold matrix

with

is the steering vector of the array toward the direction. Here,
( is the field of complex numbers), and

and are vector of observation and additive noise
in sensors with

It is also assumed that the signals and additive noise are
stationary and zero-mean ergodic complex-valued random pro-
cesses such that for .
Here, and denote the expectation and conjugate transpose
operators, respectively.

The harmonic retrieval problem can be described as fol-
lows. Consider the sum of complex sinusoids in additive
zero-mean complex white Gaussian noise having variance

:

(1c)

where

(1d)

where , are sinusoidal frequencies, andare
positive amplitudes. In addition, it is assumed that the following
conditions hold: 1) The are independent random variables
uniformly distributed over , and 2) is white with
zero mean and independent of.

The covariance matrix for the array data is given by

where is the covariance matrix for , and is an
unknown noise variance. Similarly, in the harmonic retrieval
problem, . The sample
covariance matrix will be denoted by and is estimated as in
Section II-B.

Note that the minimum eigenvalue of is equal to with
multiplicity . If the ’s are all distinct, the unknown matrix

is of rank . In general, only the covariance matrix
is known. The actual value and the dimension of both

and are unknown, as is the value of . Given the matrix ,
our goal is to determine the number of signals andfrom the
noisy data .

It is shown in [23] that the sample covariance matrix
, where is the true covariance matrix of the

signal . The additive term decreases to zero in probability
as . Therefore, any of the methods applied here using
sample covariance matrices yields consistent estimates of the
amplitudes and frequencies.

B. Preliminaries

Generally, modern high-resolution sub-space estimation
schemes are of the following types:

• extrema searching techniques like spectral MUSIC [5];
• polynomial rooting techniques such as Root-MUSIC and

Pisarenko methods [3], [24];
• matrix shifting methods such as ESPRIT [12]–[14], matrix

pencils and unitary ESPRIT [11].
The subspace decomposition can be performed on the data

matrix using a singular value decomposition (SVD)

(2)

where the vectors in , associated with the nonzero singular
values, span the signal subspace, whereas the vectors in, as-
sociated with the zero singular values, span the noise subspace
for which

(3)

For a more self-contained description, let us first give the basis
for some subspace methods.

1) Pisarenko Method[3]: It is shown by Pisarenko that a
positive definite Toeplitz matrix of order can
be modeled as the covariance matrix of a stationary
stochastic signal consisted of at mostsinusoids and
a white noise process. The energy of the white noise
signal equals the smallest eigenvalueof the Toeplitz
matrix . In the case that is simple, the frequen-
cies of the sinusoids are defined as the
zeros of the eigenpolynomial
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, which are the amplitudes of the waves
associated with those zeros, whereis the eigenvector
corresponding to .

2) MUSIC[5] searches over angleof global minima
of the null-spectrum function

(4)

3) ROOT-MUSIC algorithm[24] forms the roots of the
null-spectrum polynomial

(5)

where are the polynomial
roots. The roots with largest amplitudes inside the
unit circle are chosen as the signal roots.

It is known that the theoretical covariance matrix is Toeplitz
and centro-symmetric, i.e., , where is the per-
mutation matrix with ones along the cross diagonal. To effec-
tively use the structure of the data, the sample correlation ma-
trix is estimated using the forward-backward method so that

, where

(6)

where the notation denotes . Thus, one may expect that
the forward-backward method in (6) yields a better estimate of

than the lower or upper part of .
In the SVD-based methods, the correlation matrixis de-

composed as , where ,
, , and is diagonal matrix for

. Here
Kronecker delta function;
matrix of the most significant singular values;
diagonal matrix whose diagonal holds the least sig-
nificant singular values.

Several techniques are available in the literature to compute
the SVD or solve the eigenvalue problem in general. Well-es-
tablished methods can be found in EISPACK [25] and [26].
The computational complexity of these algorithms is of order

, where is the size of the matrix. In the next section,
we utilize the idea that for high SNR, signal singular values are
generally larger than noise singular values, and thus, powering
would widen the separation of the noise and signal eigenvectors.

III. D OMINANT SUBSPACES OF THESAMPLE COVARIANCE

MATRIX

Since is Hermitian, it has the eigendecomposition
, where and are the th eigenvalue

and th corresponding eigenvector. For convenience, it is
assumed that the eigenvalues are sorted in decreasing order
so that

with corresponding eigenvectors . The eigenvectors
are usually called the signal vectors, and the eigen-

vectors are called the noise vectors. Let
, .

Then, and
are projections onto the signal and noise

subspaces, respectively. In presence of white noise ,
, where diag ,

and hence, for some orthogonal matrix
. Therefore, from which

or equivalently are orthogonal to
. As stated earlier, and

therefore , which
imply that span span . Note
that Span is the maximum likelihood estimate of the signal
subspace. This fact is the basis for the use of MUSIC, ESPRIT,
and others. The eigendecompositions are expensive to compute,
requiring flops for reasonably good estimates. In the
next result, we derive a method for splitting the eigenspace into
several invariant subspaces.

In the next theorem, we generalize the above idea to obtain a
rational approximation of the signal subspace.

Theorem 1: Let , where and are the
th eigenvalue andth corresponding eigenvector. Assume that

and that the
corresponding eigenvectors are chosen to be orthog-
onal. Let and be real positive numbers such that

. Define
and , , ,
for . Then

(7)

Proof: The proof is given in Appendix A.
Remark 1: If is a primitive th root of unity, one can

apply Theorem 1 several times to compute

(8)

for . These equations can be solved for the
’s as follows.

for

where

The significance of Theorem 1 is that it provides a way of
splitting into several complementary invariant subspaces
of the matrix without actually computing any eigenvalues.
These subspaces correspond to eigenvalues inside the strips
Real , Real for
and Real . In the presence of white noise, only two
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subspaces are required for deriving subspace methods. Thus, in
the last result, if , we obtain the following.

Theorem 2: Let , where and are the
th eigenvalue and corresponding eigenvector. Let such

that
and that the corresponding eigenvectors are chosen

to be orthogonal. Let and
, and let , .

Then, we have the following.

i) converges to
(as ), and therefore, and

.
ii) converges to (as ).
iii) converges to (as ).

Proof: The proof follows directly from Theorem 1.
A rough estimate of the threshold can be ob-

tained from the equation Tr , provided
that is sufficiently large. One can see the validity of this
equation from noting that for , and hence,
Tr . Here, Tr denotes the trace of

.

IV. A PPROXIMATEDSIGNAL SUBSPACEALGORITHMS

In [9], an approximation of the noise subspace basis is de-
rived using rational functions. This algorithm required anpriori
knowledge of the number of impinging signals and a threshold

, which separates signal and noise eigenvalues. The approx-
imated noise subspace was then given by .
Using this approximation, the minimum norm solution was de-
rived. However, no procedure was provided for choosing.

In the next few subsections, we apply Theorem 2 to obtain
approximate minimum norm, MUSIC and ESPRIT estimators.

A. Approximated Minimum Norm Algorithm

The minimum norm solution of the DOA problem as formu-
lated in [9] is to find that solves the minimization
problem

Minimize subject to and (9)

where is the first column of the identity matrix, and
is the projection of the signal subspace. Then, the minimum

norm estimator determines the highest peaks of the function
given by

(10a)

Note that the vector in (9) can be replaced by any vector
that is not in the signal sub-space with to obtain

(10b)

Thus, by approximating as in Theorem 2, we obtain

(11)

Clearly, converges to as .

B. Approximated MUSIC

Given the projection onto the signal subspace, the MUSIC
estimator is expressed as

(12a)

where the frequencies are estimated as the location of the peaks
of . The signal subspace approximation of Theorem
2 ii) yields the following approximated MUSIC estimator

(12b)

From applying Theorem 2, we conclude that con-
verges to . Note that this estimator is dependent on
the parameter. An approximated thresholdcan be provided
as in the following algorithm.

Algorithm 1 (Rational-MUSIC)
(i) Choose (normally suffices), and compute

Tr

Tr

and let .
(ii) Compute the approximated noise subspace

.
(iii) Compute using

, and locate the peaks. The fre-
quencies are estimated as the angular positions of the
peaks.

C. Approximated Rational-ESPRIT

The computional cost associated with the search of the peaks
of MUSIC-type algorithms is usually very demanding, partic-
ularly for large dimensions. Several methods were proposed
in the literature to lower the computational requirements of
the traditional subspace methods such as ESPRIT [12], UNI-
TARY-ESPRIT [11], ROOT-MUSIC [24], and many others. In
these methods, the computation is focused on estimating the
frequencies by solving an eigenvalue problem or a polynomial
rather than searching the whole plane or a circle. Then, the
frequencies are estimated as the angular positions of the eigen-
values of a matrix formed from the powers of the correlation
matrix. Normally, all MUSIC, Root-MUSIC, and Minimum
norm estimators require the estimation of the noise subspace,
whereas ESPRIT-type methods require the knowledge of
the signal subspace. The main idea behind ESPRIT can be
explained as follows. Let be as defined in (1). Then, the
signal subspace is the column space of . Generally,
is unknown; however, a basis of the signal subspace can be
obtained from the most significant eigenvectors of the correla-
tion matrix. It can easily be shown that ,
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where with is the identity matrix with
the last row removed, whereas is the identity matrix with
the first row removed, and diag , where

. Hence, . Here,
denotes the generalized inverse ofnonsingular matrix .

This property also holds for any matrix whose column space
is the signal subspace, in which case, for some
nonsingular matrix . In this case, if , and ,
then , which
is similar to . To develop an ESPRIT based on the rational
approximation of Theorem 1, let be a threshold separating
noise and signal eigenvalues; then, from the above discussion,
it can be shown that

(13)

for some nonsingular matrix . Thus, the directions of arrival
can be estimated from the eigenvalues of the above matrix for
large . Simulations showed that normally produced
reasonable results.

V. POWER-LIKE METHODS

In the previous section, a threshold that separates the noise
and signal subspaces is assumed to be knowna priori. In this
section, we derive an approximation of the signal subspace
using only powers of on the assumption that the number
of signals is known. It will be demonstrated in the next result
that if the number is known, then the signal subspace can be
approximated to any desired degree of accuracy.

Theorem 3: Let be an full-rank matrix,
where is nonsingular. Let , and set

. Then, converges to
, where is the projection onto the signal subspace. Addi-

tionally, the rate of convergence is asymptotically proportional
to .

Proof: See Appendix B.
Theorem 2 can be considered to be a basis of many subspace

algorithms, which is shown next.

A. Power-Like Estimators

Let be as in Theorem 2; then, a second approximated
MUSIC is given by

(14a)

and one can show that

Similarly, the minimum norm estimator can be written as

(14b)

which converges to in (10a).

The MUSIC and Min-Norm frequency estimates were ob-
tained as the frequencies at which thehighest peaks in the
peak spectrum (14) occured.

A ROOT-MUSIC algorithm based on Theorem 3 can be de-
scribed as follows:

(14c)
where . The roots with largest amplitudes
inside the unit circle are chosen as the signal roots.

A more efficient method that can be viewed as a modification
of Theorem 3 is presented in the following MUSIC algorithm.
Note that this algorithm requires a rough estimate of the number
of sources.

Algorithm 2 (Power-MUSIC)
(i) Choose sufficiently large (usually ), and let

, where is the th column
of .

(ii) Choose the largest (in magnitude) columns, and form
the matrix . (

).
(iii) Compute .
(iv) Compute , and

locate the peaks.

B. Power-ESPRIT Algorithm

An approximated ESPRIT algorithm can be developed based
on the following theorem.

Theorem 4: Let , , and be as defined in Section IV-C.
Let be an full rank matrix, where is nonsin-
gular; then, converges to a matrix that
is similar to .

Proof: See Appendix C.
The matrix in this theorem can be replaced by the selec-

tion matrix in Algorithm 2. In this case, the limits

(15a)

(15b)

exist and are similar to . Another version of approximated ES-
PRIT-type can be derived from Theorem 3 and has the form

(15c)

This limit exists and is similar to .

C. Estimation Based on Lagged Covariance Matrix

As shown in [27] and [28], subspace methods can be derived
based on lagged covariances. These lagged covariance matrices
can be obtained by partitioning . This means that if a covari-
ance matrix of large dimension ( ) is constructed so that

(16)

where is of dimension , assuming, for simplicity, that
is even, then and is less biased by noise than or

, especially if the noise process is an MA process, e.g., white
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noise. If is of dimension with and ,
then , where is Toeplitz, which is defined
as

(17)

where . Thus, the matrix
can be utilized to derive subspace methods for frequency and
bearing information. All methods derived so far can be repli-
cated by replacing with for some .

D. Fast Squaring Algorithm

As can be observed from the last few sections, approximating
the signal subspace requires only powers of. Thus, a numer-
ically efficient method of powering is required. The simplest
method of achieving this goal is the squaring procedure in which

are computed, where is a sufficiently
large integer. The only problem in computing these power ma-
trices is that become large (overflow) if or small
(underflow) if . To alleviate this numerical problem,
scaling may be applied. A stable method of generating scaled
powers of complex matrices can be described as follows:

Tr

Tr
(18)

where is a positive number slightly less than unity, and Tr
denotes the trace of. By a suitable choice of, one can be sure
of staying within the range from 1 to 1, even with round-off
error. Fortunately, it is noticed from several simulations that

2 or 3 yields reasonable separation of noise and signal
subspaces. The rapidity of convergence to the limit depends on
the ratios . This ratio can be made smaller in two
ways: One is by initially considering or , and the other
is by considering , where is judiciously selected. It
can be shown that the best choice ofis . One
can further improve the above results by choosing a Chebyshev
polynomial of degree , which satisfies
for . This implies that for

, thus guaranteeing a numerical stability.

E. Minor Subspace Computation

The results of Section IV and V can be modified so that the
noise subspace is approximated rather than the signal subspace.
This can be established as follows. Let , and consider
the matrix . This new matrix is also Hermitian,
Toeplitz, and centro-symmetric positive definite, and its eigen-
values, in decreasing order, are ,
i.e., is the largest eigenvalue of . Hence, we can apply
the same process above to find the noise subspace, in which

case, the MUSIC and minimum norm estimators have the forms

(19)

and
(20)

The parameter is as defined in Theorem 2. The number
should be chosen carefully to keep appreciable separation be-
tween noise and signal subspaces to allow the rational and power
methods to extract one of these subspaces. One way to choose

is trace . A more accurate approximation can be
obtained by solving trace . A sharper estimate of
comes from trace .

The approximated power-ESPRIT based on is obtained
from the following limit:

(21)

which exists and is similar to .

VI. OPERATION COUNT

The methods presented in the previous sections are multipli-
cation rich in that for a given , is required and is followed
by a matrix inversion. Matrix multiplication can be obtained
very efficiently by applying the Strassen algorithm [26]. In this
algorithm, if and with is a power
of 2, then can be obtained with multi-
plications. Thus, asymptotically, the number of multiplications
in the Strassen algorithm is compared with
in the conventional method. It should be mentioned that in [29],
Bailey implemented a Strassen approach that required only 60%
of the time needed by the conventional multiplication.

The number of flops in computing
consists of approximately the number of flops in computing

and the matrix inverse. Assuming that , both of these
processes cost about .

The number of flops required to compute the SVD of by
the Golub-Reinsch algorithm is [30]. For example, if we
choose to be 4, which corresponds to 16, which is a value
that isveryhigh inmostapplications, thenumberof flopsrequired
in the rational MUSIC is , which is still much
less than using the Golub-Reinsch algorithm [30].

Efficient matrix inversion can be computed using the LU de-
composition. Once the LU factorization of is known, the in-
verse matrix can be computed in
flops [26]. Thus, the total number of flops involved in com-
puting is about

. This number is still far less than the flop count
for computing the SVD, which is about , for . Note
that 9 corresponds to 512, which is extremely large
for most applications. Thus, for all practical purposes, these al-
gorithms, which are based on Theorem 2, are less costly than
the truncated SVD-based methods. In addition, in many appli-
cations, the matrices under consideration have other structures,
e.g., Toeplitz, Hankel, block Toeplitz, or block Hankel, and fur-
ther saving of computation can be achieved.
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VII. SIMULATION RESULTS

In this section, the frequency estimators described in Sec-
tions IV and V were examined on several data sets generated
by the equation

(22)

where 1.0, 1.0, 0.5, 0.52, and
1, 2, , 25. The are independent random variables
uniformly distributed over the interval . The noise
is assumed to be white and uncorrelated with the signal. Note
that . The SNR for either sinusoid is de-
fined as , where

, and and are the variances of and
, respectively. The covariance matrix is constructed using

forward-backward method described in Section II to increase
robustness. The size of the covariance matrix is chosen to be

10, which, in the absence of noise, has effective rank two.
We performed experiments to compare the proposed methods
versus the truncated SVD-based MUSIC. The SVD routine in
MATLAB is used for the computation of the signal subspace
eigenvectors and eigenvalues required to implement an SVD-
based method for comparison. We varied SNR from 10 to 20
in 5-dB steps and estimated the frequencies for data length 25.
For each experiment (with data length and SNR fixed), we per-
formed 100 independent trials to estimate the frequencies. We
use the following performance criterion (RMSE):

RMSE

to compare the results. Here, is the number of independent
realizations, and is the estimate provided from theth real-
ization. Several experiments were conducted to test the perfor-
mance of Algorithms 1 and 2 and the SVD-based MUSIC. The
mean values of estimated frequencies and their RMSE of the
SVD-based MUSIC are given in Table II. The simulations re-
sults of applying Algorithms 1 and 2 are summarized as fol-
lows. First, Algorithm 1 is applied for a set of 100 random ex-
periments for different (SNR 20, 15, and 10 dB) using
with 3. The mean values and standard deviations of the
estimated frequencies are given in Table I. The thresholdin
these simulations is estimated by Tr . The peak
spectrum in each trial was computed using 1000 frequency bins
covering a normalized frequency range of 0 to 1. Each spec-
trum distribution is scaled so that its maximum equals 1. The
frequency estimates were obtained as the frequencies at which
the two highest peaks in the peak spectrum occured. The mean
and RMSE are taken only over realizations where two peaks
have occured. Table I shows the estimated frequncies resulting
from applying Algorithm 1 for the case in which SNR15 dB
and using for 3. In this table, the spectrum distribution
of 100 trials were included. As can be seen from Tables I and II,
both Algorithm 1 and the standard MUSIC have virtually iden-
tical performance.

Next, we repeated the experiments in part 1 using Algorithm
2. The results of testing this algorithm for different SNR were

TABLE I
MEAN AND RMSEOF FREQUENCIES FORDATA OF TWO COMPLEX SINUSOIDS

AT FREQUENCIES0.50AND 0.52IN NOISE WITH SNR= 20, 15,AND 10, dB,
DIMENSION OF DATA VECTORSL = 10. ALGORITHM 1 IS USED

TABLE II
MEAN AND RMSE OF FREQUENCIES FORDATA OF TWO COMPLEX

SINUSOIDS AT FREQUENCIES0.50AND 0.52 IN NOISE WITH SNR=
20, 15,AND 10 dB, DIMENSION OF DATA VECTORSL = 10,M = 2.

SVD-BASED METHOD IS USED

TABLE III
MEAN AND RMSEOF FREQUENCIES FORDATA OF TWO COMPLEX SINUSOIDS

AT FREQUENCIES0.50AND 0.52IN NOISE WITH SNR= 20, 15,AND 10 dB,
DIMENSION OFDATA VECTORSL = 10,M = 2. ALGORITHM 2 IS USED

averaged over 100 trials, and the mean and RMSE of each fre-
quency was presented in Table III. At high SNR, it has been ob-
served that each of the 100 spectra has two peaks near the true
frequencies; however, at low SNR, some of the peak spectra dis-
played only one peak near . It is also noticed that
the rate of joint detection of the two frequencies is identical to
the SVD-based method. Clearly, Table III shows very good res-
olution of the two frequencies using a lower power of 3.

In the same experiments, the projection onto the domi-
nant signal subspace is approximated for the 100 random
experiments using Algorithm 2. Comparison between signal
subspaces are made by using the eigenvalues of the matrix

. Here, is obtained as in Algorithm 2, and
is obtained from the SVD of the covariance matrix. The

eigenvalues of this matrix are the cosine of the angles between
the vectors in the two subspaces. These eigenvalues are found
to be close to 1.

We also performed experiments to investigate the effect of the
power on the performance of Algorithm 2. It is observed that
increasing does not significantly effect the RMSE as long as

.
Finally, we would like to comment on the performance of

the developed algorithms with respect to overestimation of.
When is small, it is observed that overestimation of leads
to better estimation of the frequencies. The robustness of the
methods against overestimation of the number of sources
can be explained as follows. Overestimation ofmeans that
additional vectors are included in the basis of the signal sub-
space. In our approximation, these vectors are not purely noise
but contain some signal component. In the standard MUSIC, if
additional vector is added to the basis, a purely noise vector is
included in the signal subspace causing spurious peaks. Note
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that when is small, the first few signal vectors contain noise
components since the noise and signal vectors are not well sep-
arated. Thus, we have to consider more vectors to capture the
signal subspace. However, this separation becomes more prom-
enant as increases.

VIII. C ONCLUSION

Several approaches for approximating the dominant and sub-
dominant subspaces have been developed that avoid the costly
eigendecomposition or SVD. More generally, we provided
a way of splitting an -dimensional space into several com-
plementary invariant subspaces of the covariance matrix
without actually computing any eigenvalues. Frequency estima-
tors such as MUSIC-, Minimum-Norm-, and ESPRIT-type are
then derived using these approximated subspaces. The compu-
tation of obtaining these approximate subspaces and estimators
are shown to be less than the standard techniques. Even though
these methods are introduced only as approximations, they
perform well even at low SNR. The good performance of these
approximate methods is due to the fact that the estimated signal
and noise vectors obtained using the proposed algorithms are
not purely signal or noise vectors, whereas methods based on
exact eigendecomposition treat some of these vectors as purely
signal or purely noise vectors, which is not true especially at
low SNR, resulting in undesirable effects. The main features
of these methods are that they are computationally simple and
easy to implement in that only matrix inversion and powers
of the sample covariance matrix are required; nonetheless, a
comparable performance to high-resolution exact eigenvector
methods has been achieved.

APPENDIX A
PROOF OFTHEROEM 1

From the eigendecoposition of , we have

and

if
if .

(A1)

Note that the matrices defined in Theorem 1 are pro-
jections and that , where is the Kronecker
delta function. Hence, by virtue of

Q.E.D.

APPENDIX B
PROOFS OFTHEOREMS3 AND 4

The proof of Theorems 3 and 4 follow directly from the fol-
lowing two results.

Lemma 5: Let be diagonalizable matrices
such that ; then,
as . ( , and denote the minimum and
maximum eigenvalues of ).

Proof: We will only prove this Lemma for diagonalizable
matrices. Let and with

. Then

(B1)

which converges to 0 since for .Q.E.D.
The last result holds for nondiagonalizable matrices and can

be shown using a continuity argument.
Theorem 6: Let be a positive definite matrix such that

, where is an orthogonal ma-

trix, and is diagonal. Here, , , , and

are , , , and
complex matrices, respectively. The matricesand

are diagonal matrices such that diag and
diag , with .

Assume, without loss of generality, that the matrix is non-

singular. Let , and for each , let

, where and have the same

dimensions; then

(B2)

and

(B3)

Proof: The decomposition

(B4)

is possible since is Hermitian. From the relation , we
obtain
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Since , it follows from Lemma 4
that

Similarly, to prove (B3), we have

Q.E.D.
Proof of Theorem 3:Let with

and such that is nonsin-

gular, and set , where ,

and . Then, applying the same ideas of the
Proof of Theorem 5, we obtain

By simple algebraic manipulation, we obtain

where is defined in Theorem 5. Note that the third

equality follows from Theorem 6. Q.E.D.
Proof of Theorem 4:Since the columns of each of

and span the signal subspace, it follows that

for some nonsingular matrix . Therefore, for large ,
the matrix can be approximated as

(B5)

The nonsingularity of guarantees that the matrix
is nonsingular for all sufficiently large (see Section IV-C).
Hence, from (B5), we also obtain

which is similar to S. Q.E.D.
Remark: One of the other important aspects of Theorem 6 is

that the dominant eigenvectors can be extracted using only the
elements of for sufficiently large . The only problem is that
there is no guarantee that is invertible. This can be over-
come by permuting the rows of . Another interpretation of
Theorem 5 is that a basis of the signal subspace can be approx-
imated by applying the Gram–Schmidt process on the columns

of .
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