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ABSTRACT OF DISSERTATION 

PENALIZED ESTIMATION FOR SAMPLE SURVEYS IN THE PRESENCE OF 

AUXILIARY VARIABLES 

In conducting sample surveys, time and financial resources can be limited but 

research questions are wide and varied. Thus, methods for analysis must make the 

best use of whatever data are available and produce results that address a variety 

of needs. Motivation for this research comes from surveys of aquatic resources, in 

which sample sizes are small to moderate, but auxiliary information is available to 

supplement measured survey responses. The problems of survey estimation are con­

sidered, tied together in their use of constrained/penalized estimation techniques for 

combining information from the auxiliary information and the responses of interest. 

We study a small area problem with the goal of obtaining a good ensemble es­

timate, that is, a collection of estimates for individual small areas that collectively 

give a good estimate of the overall distribution function across small areas. Often, 

estimators that are good for one purpose may not be good for others. For example, 

estimation of the distribution function itself (as in Cordy and Thomas, 1997) can 

address questions of variability and extremes but does not provide individual estima­

tors of the small areas, nor is it appropriate when auxiliary information can be made 

of use. Bayes estimators are good individual estimators in terms of mean squared 

error but are not variable enough to represent ensemble traits (Ghosh, 1992). 

An algorithm that extends the constrained Bayes (CB) methods of Louis (1984) 

and Ghosh (1992) for use in a model with a general covariance matrix is presented. 

This algorithm produces estimators with similar properties as (CB), and we refer to 

in 



this method as general constrained Bayes (GCB). The ensemble GCB estimator is 

asymptotically unbiased for the posterior mean of the empirical distribution function 

(edf). The ensemble properties of transformed GCB estimates are investigated to 

determine if the desirable ensemble characteristics displayed by the GCB estimator 

are preserved under such transformations. The GCB algorithm is then applied to 

complex models such as conditional autoregressive spatial models and to penalized 

spline models. Illustrative examples include the estimation of lip cancer risk, mean 

water acidity, and rates of change in water acidity. 

We also study a moderate area problem in which the goal is to derive a set of 

survey weights that can be applied to each study variable with reasonable predictive 

results. Zheng and Little (2003) use penalized spline regression in a model-based 

approach for finite population estimation in a two-stage sample when predictor vari­

ables are available. Breidt et al. (2005) propose a class of model-assisted estimators 

based on penalized spline regression in single stage sampling. Because unbiasedness 

of the model-based estimator requires that the model be correctly specified, we look 

at extending model-assisted estimation to the two-stage case. By calibrating the 

degrees of freedom of the smooth to the most important study variables, a set of 

weights can be obtained that produce design consistent estimators for all study vari­

ables. The model-assisted estimator is compared to other estimators in a simulation 

study. Results from the simulation study show that the model-assisted estimator is 

comparable to other estimators when the model is correctly specified and generally 

superior when the model is incorrectly specified. 

Mark J. Delorey 
Department of Statistics 
Colorado State University 
Fort Collins, Colorado 80523 
Summer 2008 
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Chapter 1 

INTRODUCTION 

A sample survey is generally undertaken to provide information about a pop­

ulation regarding particular research questions of interest. Often times, in addition 

to obtaining information about the whole population, the sample survey can be 

designed to provide information about subpopulations or domains, which may be 

defined by geographic areas or socio-demographic groups. Domains may be regarded 

as large or small, according to Rao (2003, Chapter 1); the definition depends upon 

whether or not the domain-specific sample is large enough to provide direct estimates 

of adequate precision. A direct estimate is based solely on the domain-specific sam­

ple data. If the domain-specific sample is large enough, the domain is regarded as 

"large"; otherwise, it is regarded as "small". Although it may use auxiliary informa­

tion or be motivated by a model, a direct estimator is typically design based in the 

sense that inferences depend upon the probability distribution induced by the sam­

pling design with the population values held fixed. In addition to the small and large 

domains, we introduce the notion of a moderate domain. For the purposes of this 

paper, we will distinguish a moderate domain as one in which direct estimates may 

be of adequate precision; however, the presence of auxiliary information suggests the 

estimate can be enhanced by using a model. This dissertation consists of two broad 

themes linked in their use of auxiliary data for estimation in sample surveys. The 

first theme involves the problem of small area estimation and the use of constrained 

Bayes methods in this context. Because our motivating examples are environmental, 

we are interested in extensions of these methods to spatial covariance models and to 
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semiparametric spatial regression models. Small area estimation is reviewed in Sec­

tion 1.1. The second theme involves the problem of moderate area estimation using 

model-assisted survey regression estimates in the context of two-stages of unequal 

probability sampling. It is tied to the first research theme through consideration of 

penalized splines but is otherwise largely independent. Moderate area estimation is 

reviewed in Section 1.5. 

1.1 Small Area Estimation 

Because we will apply the small area estimation problem to natural resources 

data, including aquatic data, our domains of interest are geographic regions. If 

we were only interested in regional inferences, a probability sample over the entire 

region may be large enough to make model-free inferences using direct estimates. 

However, if the goal is to estimate responses for small geographic areas within this 

region, samples are not sufficiently dense in these small domains to make such es­

timates with reasonable precision. In fact, some of the small areas may contain no 

observations whatsoever. In this case, an indirect or model-dependent estimator is 

more appropriate. An indirect estimator will make use of responses in neighboring 

or related areas, effectively increasing the sample size in each of the small areas. 

The responses in neighboring areas are incorporated through a model which specifies 

the relationship between auxiliary data and the response as well as the relationship 

among responses in neighboring regions. Rao (2003, Chapter 5) classifies small area 

models into two types: aggregate or area level models that relate small area direct 

estimators to area-specific covariates, and unit level models that relate the individual 

units in the population to unit-specific covariates. We will focus on the area-level 

model. 

For notation, let Oh represent the characteristic of interest for small area h, 

where h = l , . . . , m . For example, in Section 3.3, Oh represents acid neutralizing 
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capacity (a measure of water's acidity) and h indexes the hydrological region as 

designated by the United States Geological Survey (Seaber et al., 1987). Also, let 

Xh — {xhi,Xh2, • • • > %hp) be a vector of known covariates associated with small area 

h, and let 7 = (71,72,.. . , 7P) be a coefficient vector for the covariates. Then the 

basic area-level model, generally referred to as the Fay-Herriot model after Fay and 

Herriot (1979), is 

0h = xlj + Uh + Ch, /i = l , . . . , m . (1.1) 

Here, the u^'s are area-specific random effects that are assumed to be independent 

and identically distributed (iid) with E [u>h] = 0 and Var[w/j] = a^, and the e^'s are 

independent sampling errors with E [e^] = 0 and Var[e/,] = ipf. 

1.1.1 Small Area Estimation with Constrained Bayes 

Inferential goals vary from study to study. In some cases, we are only interested 

in the individual area-specific characteristic, Oh- However, the variation in the char­

acteristics among the small areas is also of interest in this situation. We therefore 

would like to find an ensemble estimate of the spatially-indexed true values {6h}^=1 

that efficiently estimates the area-specific characteristics and whose distribution es­

timates the true empirical distribution function (edf) 

1 TO 

Fm(z) = -J2H8h<z}, 
h—l 

where / {A} — 1 if A is true and 0 otherwise. Following Rao (2003, p. 180), we extend 

the model specification to describe the uncertainty in estimating the spatially indexed 

Vh = 0h + eh, {eh} NID (0, a2
h) 

6h = xT
hl + toh, {uh} NID (0, r2J) , (1.2) 

where NID denotes normally and independently distributed. We complete the proba­

bilistic specification of all uncertainty in (1.1) by specifying a joint prior distribution 
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on ff^, 7 and r^ as 

/ (a 2 , 7 , rl)=g{^)h{1)k{rl). 

With this model, the posterior means 

Bl = E [h \Y) = E {ijhVh + (1 - Jft) x ^ 7 I y ) , (1-3) 

with 

T,2 

*7fc = 
fT2 4- T 2 ' 

give the best mean squared error (MSE) individual estimates in the sense that 

m m 

Y,E {0* ~ Oh)2 = mm^E (th - 6h)
2 . 

h=\ h=l 

For fixed <r2 and r^, (1.3) can be written as 

r]hyh + (l-Vh)xlE(j\Y), (1.4) 

in which it is easier to see that the E (0/, \ Y) are weighted averages of the data (the 

2/h's) and the mean predicted by the {xf^j), given the data. If the variability of the 

prior distribution r2 is large compared to the observation error a\, then r\h will be 

large and the data is weighted heavier than the prior. The reverse is true when r^ is 

small compared to a\. 

However, the Bayes estimates in (1.3) are "over-shrunk"; there is too little vari­

ability among the {0f } to give a good representation of the edf of the 0^. Specifically, 

Louis (1984) and Ghosh (1992) show that 

E W - eBT < E £ ( " * - * ) a l y 

.h=l 

where 0 = ^ XX=i @h a n d QB = ^ ^ C h l i ^ i that isi the empirical variability of 

the posterior means is strictly less than the posterior variability of the true values. 

Thus, the posterior means obtained from a Bayesian analysis are not good for both 
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individual and ensemble estimates. It is already the case that the sample mean of the 

Bayes estimates matches the posterior mean of 0, which is a desirable characteristic. 

Because the empirical variability of the Bayes estimates does not match the posterior 

variability of {Oh}, it is of interest for ensemble estimation to reduce the "shrinkage" 

so that the sample variance of the estimates matches the posterior variance of the 

true values (see Louis, 1984; Ghosh, 1992). 

Following Ghosh (1992), first compute the scalars 

Hi(Y) = tr{Var(e-61\Y)}, 

where tr denotes the trace of a matrix, and 

m 

The constrained Bayes (CB) estimate of Oh is then 

Oc
h
B = aOB

h+{l-a)0B (1.5) 

where 

Figure 1.1 shows alternative estimates of the edf of the {Oh}- Note the amount 

of shrinkage of the Bayes estimator. The posterior mean of Fg, 

lib 

is shown by the dashed curve and is the best estimate of the true edf in terms of 

MSE. 

The posterior mean of Fg does not, however, give an ensemble estimate in the 

sense of individual estimates of the {Oh}- The edf of the Bayes estimates and the 

edf of the CB estimates are both estimates of the true edf, and ensemble estimates. 

Figure 1.1 shows that the edf of the CB estimates is closer to the posterior mean of Fg 
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i _ , ! , , , ! p-

-200 -100 0 100 200 300 400 

Figure 1.1: Shrinkage comparisons for ensemble estimates of {#/J. The dashed 
line is the posterior mean of Fg, the gray line is FCB, and the solid black line is 
FB. The data are simulations from yh\9 ~ N (6^,7000), 0h\fx ~ N(nh,A000), and 
\xh ~ uniform (-100,300) for h = 1 , . . . , 200. 

than is the edf of the Bayes estimates. The edf of the Bayes estimates has too little 

variability (is "overshrunk") as an estimator of Fe, but the edf of the CB estimates 

is a better estimator of Fg due to shrinkage reduction. This result is also shown 

numerically through a comparison of quantiles of the edf's to those of Fe
B. Table 1.1 

shows that 0 is the 25"1 percentile for the ensemble of Bayes estimators while it is at 

about the 31 s t percentile for Fe
B and for the constrained Bayes edf. These, combined 

with the estimates at Fg (100), suggest that the edf of {0%B} is similar to Ff and 

the edf of {0^} contains more mass at the center of the distribution. 

As noted earlier, the small areas considered here are geographical regions. It 

might be expected that there exists some spatial correlation among the different 

regions. However, the form of CB estimates given in (1.5) does not take this into 
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Table 1.1: Comparison of ensemble estimates at selected quantiles. These numeric 
results are from the simulation presented graphically in Figure 1.1. The edf of {Off} 
contains almost 20% of its mass above 200 while the posterior mean of Fe and the 
edf of {d%B} contain nearly 25% of their masses above 200. Likewise, the edf of 
{0B} contains 25% of its mass below 0 while the posterior mean of Fg and the edf 
of {6%B} contain over 30% of their masses below 0. 

Estimate F9 (0) F9 (200) 

edf of {9B} 0.250 0.805 

posterior mean of Fe 0.307 0.766 

edf of {9%B} 0.315 0.755 

account. In Chapter 2, we will illustrate Stern and Cressie's (1999) extension of 

constrained Bayes to spatial data. We extend this further to take full account of 

parameter uncertainty, developing a methodology that applies to the broader setting 

of the general linear model with covariance matrix, known up to the values of a 

small number of parameters. This covers the case of linear mixed models, where 

the parameters are variance components, and so also applies to penalized splines. 

Additionally, it is often the case that when measuring geographical information, 

inferences are desired on a scale different from that upon which measurements were 

taken. So, we also will examine the problem of constrained Bayes estimates on 

different scales. 

1.2 Conditional auto-regressive models 

In this section we review certain spatial models that are relevant to the prob­

lem of geographic small area estimation. Suppose {#/j}™=1 follows a joint Gaussian 

distribution with means {/J-h}- Let Q~h = {9\,... ,Qh-\, #/i+i, • • • ,0m) • Then the 



conditional density of 9^ given 0-h, can be written as 

p(dh\0_h) = -iJL=exp{-—^[eh-r,h(9-h)]
2), (1.6) 

^2n(avh)2 I 2 ( ^ ) J 

where ??/»(0-^) is the conditional mean and (crvh) is the conditional variance. Besag 

(1974) and Cressie (1993) show that, under a regularity condition of pair-wise only 

dependence between lattice points, 
m 

r)h (0-h) = Hh + y^chi{9h- jii), h=l,..., m, (1.7) 
i = l 

iyth 

where \±h is the unconditional mean of 0/,, Q„tf = c^i^, C ^ = 0, and Chk = 0 unless 

there is pairwise dependence between area h and area k. Additionally, if (J — C ) " 1 

exists and ( I - Cy1 V is symmetric, where I is the identity matrix, C = (c^) , and 

V = diag(t>i,... ,vm), then 

» ~ ^ V ( / i , ( T 2 ( / - C ) " 1 V ) . (1.8) 

Cressie (1993) notes that model (1.7) qualifies as a spatial analogue of an autore-

gressive time series since, if we define u = (I — C) (0 — fj.), then 
m 

9h-iJ>h = Yl CM ̂ h ~ ^+Wft*h = -1' • • • ' m ' (L 9) 
i = l 

which has a form similar to that of the AR(p) time series 
p 

Xt = Y^&Xt-i^ Zu 

where {Zt} is a zero-mean process with Zs independent of Xt for all s < t. Likewise, 

under the definition in (1.9), E [u>] = 0 and 

Cov[u,0) = E[uOT) 

= E[G9T - ndT-Cd6T+ CiiOT] 

= a2 {i- cy1 v + wT - wT - °2c (j - cy1 v - c^T + c^T 

= al{l-C){l-CyxV 

= a2V, 
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which is a diagonal matrix. This implies, due to normality, that ujh is independent 

of 0-h for all h. Because of the properties outlined here, the model (1.8) is called a 

conditional autoregressive or CAR model. 

Banerjee et al. (2004) note that since the conditional densities given in (1.7) are 

compatible, an analytical expression for the joint distribution of 0 given by (1.8) is 

ensured by Brook's lemma. The conditions c^vf = Ci^v\ are still needed to guarantee 

that ( I — C)~ V is symmetric. However, they give an example of a case in which 

the conditionals (1.7) are defined, yet the covariance matrix (J — C ) - 1 V in (1.8) is 

singular, and thus, the distribution of 6 is improper. They caution, then, that care 

must be taken in defining the matrices C and V. Both Banerjee et al. (2004) and 

Cressie (1993) show that the impropriety problem can be taken care of by redefining 

(1.8) as 

6~ N(n,a2(I -~<t>CylV) (1.10) 

and choosing </> so that (I — 4>C)~l V is positive-definite. Positive-definiteness is 

achieved if and only if 

Y € (,'f'min) r m a x 

) , ( I - " ) 

where ^min = rf[l, 0max = rj~l, and r]\ < 0 < rjn are the smallest and largest 

eigenvalues, respectively, of V1'2CV1'2. 

The choices made for $ = (I — <f>C)~l V determine the spatial relationships. 

The matrix C is called the adjacency matrix since its elements Cy can be interpreted 

as a measure of spatial association between area i and area j . If Cy = 0 then area 

i and area j are statistically independent. The larger the value of Cy the stronger 

the dependence between areas i and j . This property can be used to reflect, for 

example, the hierarchical nesting of areas and subareas. The diagonal elements Vhh 

of the matrix V represent variance scaling factors for each 6^. The parameter <p is 

called the spatial dependence parameter and is a measure of the overall strength of 

spatial correlation. Clearly if <fr = 0, then $ = a2I and 9h and 0k are independent 

for all h, k. 
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1.3 Penalized splines 

The general problem reviewed in this section involves the common action of 

fitting a model to paired data (a;,, y;), where y 1 ( . . . , yn are responses that have been 

observed at fixed, non-stochastic design points x\ < • • • < xn and generated from 

the model 

yi = f(xi) + Ci, « = l , . . . , n . (1.12) 

Here, / is an unknown regression function and e j , . . . , en are zero-mean, uncorrelated 

errors. The problem then is to estimate / . 

A traditional method for the estimation of / is to assume some parametric form 

for / and minimize the residual sum of squares criterion 

n „ 

RSS(f) = Y,{vi-f(xi)) (L 1 3) 
»=i 

over all functions / with the assumed parametric form. A problem with this ap­

proach arises when the function / is not from the parametric family that is assumed. 

Ruppert et al. (2003) use, as an example, LIDAR (light detection and ranging) 

data shown in Figure 1.2 along with three polynomial fits. The explanatory variable 

"range" is the distance traveled before the light is reflected back to its source, and the 

response is the log of the ratio of the received light from two laser sources. Interesting 

features of these data include a distinct non-linear trend and heteroscedasticity (the 

response is much more variable for higher ranges than for lower ranges). As can be 

seen in Figure 1.2, neither the third nor fourth degree polynomial is flexible enough 

to follow the trend; the third degree polynomial does not capture the relatively flat 

region of the data over the lower ranges, while the fourth degree polynomial curves 

up unnecessarily at the end. The tenth degree polynomial does a better job, but 

has too many slope changes in the flat region of the lower ranges. Thus, even higher 

degree polynomials will not always provide an adequate fit to the data nor are they 
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range 

Figure 1.2: LIDAR data from Ruppert et al. (2003) showing three different polyno­
mial fits. 

always the most parsimonious since, in order to obtain a sufficiently good fit, a higher 

degree polynomial may require the estimation of significantly more parameters. 

One could take the approach of assuming / is not parametric but is from the 

set of all smooth functions for some measure of "smoothness". However, then / has 

infinite dimensionality. Thus, we want to restrict the class of functions from which 

/ can be selected. One solution is to let / be a piecewise parametric function called 

a spline. Doing this allows / to adjust to local patterns in the data, remaining flat 

or changing slope rapidly as required. For example, let 

K 

f(Xi) =p0 + PiXi + • • • + Pvx\ + ]T] A** i(xi ~ «*)+]" » C1-14) 
fc=i 

where p is the degree of the spline, K\ < • • • < KK is a set of fixed constants, (3 = 

(/?o, • • • ,PP+K) is the coefficient vector, and (x)+ = XI{X>Q}. The values KI,...,KK 
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are called knots, referring to the fact that the piecewise function is "tied together" 

at these points. The part of (1.14) involving the terms /30 , . • •, Pp is just a regular 

polynomial function. However, by including the knot terms, we are allowing the 

coefficients of xl,... ,xp to change between each pair of knots. This can be seen by 

rewriting (1.14) as follows: 

K 

fc=l 

K 

= A) + to + • • • + PA + J2 pp+k ]T ( v, I A (-Kk)p~j i{Xl-Kk>o} 

= Po + PlXi + '-'+Pfrf 
K 

+ XP 

fc=i L \ / 

= [ Po + 'Y] /3p+kI{Xi-Kk>Q} (~Kfc)P 

V fc=i / 

+ I P\ + X)^JH-fc/{»i-«*>0} ( 1 J (-Kfc)P _ 1 J Xi 

+ • • • + I Po + J2 Pp+kh*i-«k>o}) <• (L15) 

If we say fk (x) = f (x) for Kk < x < K*+I, equation (1.15) shows that, for each k, 

fk is a (potentially) different polynomial of degree p. 

The spline in (1.14) uses knot terms of the form (x — «*.)+. Note 

that any function that is piecewise p-th order polynomial, with knots 

at KI,...,KK, can be obtained as a linear combination of the functions 

{ l , x , , . . , xp, (x — K\)p
+ , . . . , (x — K K ) ^ } . Thus, we call this set a spline basis, more 

specifically a truncated power basis of degree p. This is by no means the only spline 

basis tha t we could have chosen. 

One of the disadvantages of the truncated power basis is that the functions are 

not orthogonal. Computationally, this can lead to numerical instability when there 

are a large number of knots or the smoothing parameter is close to zero. B-splines 
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(see Eilers and Marx, 1996) are the result of a transformation of the truncated power 

basis and lead to more stable estimation of the parameters. Other bases include 

the trigonometric basis, Demmler-Reinsch basis, and wavelet basis (see Nychka and 

Cummins, 1996; Ogden, 1996; Hardle et a l , 1998). 

Because of their interpretability, we will assume the use of the truncated power 

basis functions. In fitting a spline, we would like to be able to capture the trend in 

the scatter without picking up microvariation or overfltting to chance fluctuations. 

The greater the number of knots in the model, the more frequently we are allow­

ing / to change its slope, and thus the closer we come to interpolating the data. 

For example, assuming we have only one response for each Xi, if we let the knots 

occur at the design points x\,... ,xn, then / will be a p-th order piecewise poly­

nomial that interpolates the data, and hence will be severely overfitted. Two ways 

to reduce this overfltting are either to reduce the number of knots or to constrain 

the influence of the knots themselves. Ruppert et al. (2003, p. 65) suggest that 

the constraint J ] / 3 | < C is one that can rectify overfltting and is easy to imple­

ment. If we let /3 = (PQ, ..., PP, (3p+i,. •., (3K)1\ where (3Q,..., (ip are the coefficients 

of x°,...,xp, respectively, and /3p+i,... ,PK are the coefficients of the knot terms, 

then X]fc=p+i Pl<C c a n D e written as (3TD(3 < C, where 

JJ _ 0(p+l)x(p+l) 0(p+l)xX 

The problem then becomes one in which we want to minimize (1.13) subject to 

/3 rD/3 < C. By using a Lagrange multiplier argument, this means choosing (3 to 

minimize 

\\y - X/3f + A/3TD/3. (1.16) 

This minimization problem has the solution 

/3= (XTX + \D)~1XTy. 
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The larger the sum ^ f c = p + 1 /?f, the more significant is the change of slope at each 

of the knot points, and thus, the "rougher" the estimated curve will be. Hence, 

A/3TD/3 is called the roughness penalty since, for fits that are rough, this term will 

be large, and thus, these fits are unlikely to be selected. The parameter A is called 

the smoothness parameter because it determines the weight or importance that is 

placed on the smoothness of the fit. If A = 0, then / , in the extreme case where 

there are knots at each design point, is just the interpolant. As A -> co, a change of 

slope at the knots is not allowed, and / approaches a polynomial of degree p. 

1.3.1 Selecting knot locations and the value of the smoothing parameter 

It was noted earlier that the number and location of the knots, together with 

the value of the smoothing parameter, A, affect how well the fitted function can 

respond to changes in variability of the data as well as how smooth the fit will 

be. It is desirable to place more knots where the response is more highly variable; 

doing so will allow the rate at which / changes slope to be higher where needed. 

Conversely, fewer knots are needed where the response is less variable. When the 

knots are at the design points x1,... ,xn, the result is a smoothing spline. Green 

and Silverman (1994) note that, though the use of the design points as knots leads 

to an exact fit, it may be desirable to approximate this fit with a smaller number 

of knots. Reasons for doing so include large sample sizes that make the solution 

computationally intense and when a smaller number of parameters are desired for 

ease of interpretation. Ruppert et al. (2003) give details on how so called low rank 

smoothers, smoothers that use significantly fewer knots than data points, extract only 

the essential information from the data. There are several data driven methods for 

estimating the smoothing parameter: likelihood approach, cross-validation (CV) and 

generalized cross-validation (GVC), Mallows Cp, and AICC, which are all described 

by Ruppert et al. (2003). 
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1.3.2 Degrees of freedom of the smooth 

Ruppert et al. (2003) describe how it is possible to measure the degrees of 

freedom of a smooth. This will assist us later on in interpreting the smooth since a 

penalized spline with u degrees of freedom smooths the trend about the same amount, 

in some sense, as a vXh. degree polynomial. In parametric regression, the hat matrix 

H is so called because it converts the observed response y into the predicted response 

y, i.e., 

y = Hy. (1.17) 

It is a well known result of simple linear modeling (see, for example, Hocking, 1996, 

p. 302) that 

tr (H) — number of fitted parameters 

= degrees of freedom. (1.18) 

The model in (1.14) can be written as 

f(x) = X0 

and estimated by 

f(x) = XP 

= X(XTX + XDy1XTy 

= Sxy. 

Here, S\, called the smoother matrix, plays a role similar to H in equation (1.17). 

Both are linear operators on y and convert an observed response vector to a vector 

of predicted responses. Extending the definition of degrees of freedom given in (1.18), 

we can say that 

tr (S\) — equivalent number of parameters 

= degrees of freedom of the smooth. 
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As shown by Ruppert et al. (2003), if a penalized spline has K knots and degree p, 

then 

tr {So) =p+l + K 

and 

tr (S\) — p + 1 as A —> oo, 

which corresponds to the piecewise polynomial and the global polynomial, respec­

tively. 

1.3.3 Extension to spatial regression 

In the introduction to Section 1.3, we note that we use the truncated power 

basis functions because of their interpretability. This is true for the model-assisted 

estimation in Chapter 5 in which the data are one-dimensional. In Chapter 4 we 

apply a general constrained Bayes algorithm to spatial data that are modeled using 

a penalized spline. The model in (1.12) is extended to the two-dimensional model 

Vi = f(s»ti) + €i, i = l , . . . , n , (1.19) 

where / is a real-valued bivariate function. Once again, / is an estimator of / , and 

we restrict / to the class of penalized splines. The spline model in (1.14) can be 

naturally extended using a two-dimensional version of the truncated power basis. 

For example, with p = 1, we have (Ruppert et al., 2003, p. 240) 

Ks Kt 

f (Xi) = A) + PaSi + 0tU + E < (Si ~ Kfc)+ + E U* (*< ~ K*) + 
fc=l k=\ 

Ks Kt 

+lSiU + E VkSi (U - Kt) + + E "fa (Si ~ Kfc) + 
fc=l fc=l 

Ks Kt 

+ E E u & (* - **)+ & - K*)+ • (L2°) 
fc=i fc=i 
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Because the model in (1.20) is obtained by forming all pairwise products of the 

basis functions 

1, s, (s - K\)+ , . . ., [s - KS
KJ + 

ht,(t-K\)+,...,(t-Kt
Kt)+, 

it is referred to as the tensor product basis. However, the tensor product basis is 

not rotational invariant (Ruppert et a l , 2003). Therefore, the analysis of any data 

dependent upon the orientation of their coordinate system (such as geographical 

data) would yield different results if data are measured on a different set of axes. 

Ruppert et al. (2003) then note that rotational invariance can be achieved by using 

a radial basis. These are functions of the form 

C ( | | ( M ) - ( K V ) | | ) , (i.2i) 

where C is a univariate function. Since C (s, t) depends only on the distance, and 

not the direction, from the knot (ft\ft'), reorienting the coordinate system will not 

affect the value of C at (s,t). 

1.4 Lattice models and penalized splines as general linear models 

The simple linear model 

y = Xj3 + e, where e ~ N (0, a2l) (1.22) 

assumes heteroscedasticity and independence among the j/j's, among other assump­

tions. When a more complex variance structure exists in a linear model, one approach 

is to generalize (1.22) to 

y = X/3 + e, where e ~ TV [0, a2V (0)] (1.23) 

and where V (0) is a positive definite matrix, possibly depending upon some vector 

of parameters <p. The linear mixed model 

y = X(3 + Zu + e, (1.24) 
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where u ~ N (0,G) and e is as in (1.22) can be written in the form of (1.23) by 

defining e* = Zu + e and calling V = V (0) = ZGZ' + a2I. The generalized 

least squares or gls estimate of/3 under model (1.23) is J3 = (X'V"~1.X")~ X ' V ~ 1 Y . 

Furthermore, if V (0) is known, this is the best linear unbiased estimator (BLUE) 

of (3 McCulloch and Searle (see, for example 2001). There are many models that fit 

into this framework. For example, the first-order moving average process 

yt = Zt + aZ ( . i 

[Zt)U ~ N(0,a2l) 

can be written as 

where 

V = 

a2 + l 
a 
0 

y~N(0,a2V), 

a 0 0 0 
a2 + 1 a 0 0 

a a2 + 1 a 0 

0 
0 

0 a a2 + 1 

0 
0 
0 

a 
0 0 a a2 + 1 

It is easy to see that the CAR spatial model (1.8) is of the form in (1.23). 

Stern and Cressie (1999) make use of this fact in deriving CB estimates for the 

CAR model, and we make use of it to extend their method to apply to more general 

problems. Model (1.12) with / a penalized spline is also of the form in (1.23) which 

we demonstrate here by outlining Ruppert et al. (2003), Chapters 3 and 4. Recall 

the penalized spline fitting criterion \\y - X@f + A/3TD/3 = \\y - X(3\\2 + A | |/32 | |2 

in (1.16), where (32 = (/3p+i,... ,0K)'- Dividing this by of yields 

at 3 „y-X/3|r + -£||/33||
a. (1.25) 

The expression in (1.25) can be made equal to the BLUE criterion by considering 

/32 a set of random coefficients with Var(f32) — a12I-> where a2^ — a\j\. A standard 
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method for estimating the smoothing parameter A is to treat /3p+i, • • • ,/3K in (1.14) 

as random effects in a linear mixed model specification. The result is that (1.12), 

with / as in (1.14) can be written as 

Y = Xf3x + Z(32 + e, (1.26) 

where (31 = (/30 , . . . ,/3p)\ /32 = (Pp+i, • • •, PK)', and X and Z are known design 

matrices for the fixed effects (3X and random effects (32, respectively. Additionally, 

we let (32 ~ (0,7]2I) and e ~ (0,cr2J). Thus, (1.26) can be written as (1.23) with 

V — rfZZ' + a21. In this formulation, the GLS estimator for (3X is 

)31 = {X'V-lX)~lX'V-lY. (1.27) 

1.5 Moderate area estimation 

A moderate domain, as defined in the introduction, is one in which direct esti­

mates may be of adequate precision, but the presence of auxiliary variables suggests 

enhancing the estimate by using a model. A model can improve upon the estimates, 

in terms of their variability, in the large area estimation problem, too. However, 

whenever a model is introduced, there is the risk that it may be misspecified. A 

grossly misspecified model can result in estimates for which the bias is quite large. 

In a true large area estimation problem, we may not want to risk misspecifying the 

model. The direct estimates have sufficient precision, and the additional gain in 

precision that can come through a model is not worth the risk of the increased bias 

if the model is misspecified. In a moderate area estimation problem, we may be 

content with the precision of the direct estimates. However, the improvement in 

precision obtained from introducing a model is worth the risk of misspecification. To 

alleviate some of the risk of misspecifying the model, we will use penalized splines, 

a semi-parametric alternative to the specification of a parametric model. 
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1.6 Structure of paper 

Chapter 2 begins with a discussion of the method given by Stern and Cressie 

(1999) that incorporates spatial relationships into the constrained Bayes approach 

through a CAR model. As noted above, a CAR fits into the general linear model 

framework, and the CB estimators make use of the projection matrix derived from a 

gls regression. In Section 2.3 we extend the method of Stern and Cressie (1999) to a 

general covariance matrix and introduce a completely hierarchical Bayesian model. 

An algorithm for finding CB estimates for a linear model with a general covariance 

matrix is presented. Our applications in later chapters are ecological, in which there 

is often a need for estimators/predictors for different scales of geography. So, in the 

remaining sections of Chapter 2, we will examine the properties of constrained Bayes 

estimates on scales different from that of the data. Primarily, this involves studying 

properties of linear combinations of the estimates. 

In Chapter 3 we compare the analysis of the Scotland lip cancer data done by 

Stern and Cressie (1999) to an analysis using our extension of their method. Both 

analyses use CB estimates derived from a CAR model. In Stern and Cressie (1999), 

the spatial association parameter <fi is fixed, and they select the estimate of <fi by 

running the analysis several times using different values of 4> a n d choosing the one 

that yields the lowest mean square prediction error (MSPE). Our methods assume <f> 

is random, and its value is estimated from the data. Continuing with a CAR model, 

we analyze the acid neutralizing capacity (ANC) for watersheds in the Mid-Atlantic 

Highlands of the United States. The watersheds have a nested structure to them, 

with watersheds within a particular nesting level sharing similar characteristics in 

terms of geography. Therefore, we can try to identify correlation among different 

nesting levels. We analyze the data using first one, then two levels of nesting. 

In Chapter 4, we apply the algorithm developed in Chapter 2 to a penalized 

spline model. As noted in Section 1.4, Ruppert et al. (2003) demonstrate that 



21 

penalized splines can fit into the linear mixed model framework. Thus, our algorithm 

can be used to find CB estimates of the fixed and random components of the penalized 

spline model. We use the model and data on Northeast lakes from Opsomer et al. 

(2008) 

Chapter 5 turns to the second research theme of this dissertation, with an 

exploration of moderate area estimation with penalized splines. We construct a 

model-assisted survey regression estimator for two-stage sampling using penalized 

splines, extending the single-stage estimator in Breidt et al. (2005). It is shown 

that the estimator is asymptotically design-unbiased and design consistent under 

mild assumptions and that its variance can be consistently estimated. The two-

stage model-assisted estimator is contrasted with the estimator in Zheng and Little 

(2003), which uses penalized spline regression in a model-based approach. A series of 

simulations demonstrate that the model-assisted estimators generally fare no worse 

than model-based estimators when the model is correctly specified and generally are 

superior to model-based estimators when the model is incorrectly specified. 



Chapter 2 

CONSTRAINED BAYES ESTIMATION 

2.1 Introduction 

We approach the problem of small area estimation for an ensemble of characteristics 

from a Bayes perspective. Keeping in mind our two-fold objective, the limitations of 

the typical posterior mean have already been examined: while the posterior means 

are good for individual estimates, constrained Bayes estimation is more appropriate 

for the ensemble of estimates since the set of constrained Bayes estimators {0^B} 

matches the posterior mean and posterior variance of the true values {dh}™=i (Ghosh, 

1992). Stern and Cressie (1999) illustrate how constrained Bayes can be employed 

in a CAR model. We extend this idea to a fully Bayesian context with a general 

covariance matrix. 

The mapping of disease incidence and mortality rates has been used by epi­

demiologists and others to identify so called "hotspots", geographic regions with 

unusually high (or low) rates. Not only are these extremes properly regarded as 

important components to the summary of the data, but extremes are also of inter­

est as they are often indicative of unusual or extraordinary conditions. In terms of 

public health, extremely high or low disease rates are usually cause for intervention 

or special study. Various methods have been used to estimate these rates, Clayton 

and Kaldor (1987), Cressie and Chan (1989), and Kleinschmidt et al. (2001) employ 

an empirical Bayes approach using a conditional autoregressive model (CAR) that 

accounts for spatial relationships among neighboring regions. Manton et al. (1989) 
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also use empirical Bayes methods while accounting for spatial dependence. While 

these methods give good estimates of individual rates, they may not be appropriate 

for broader inferential goals. It has been pointed out by several authors (see, for 

example Louis, 1984; Ghosh, 1992; Devine et al., 1994a; Devine and Louis, 1994; 

Devine et al., 1994b; Stern and Cressie, 1999) that the posterior means used in stan­

dard Bayesian analysis are "overshrunk" and thus do not give a good representation 

of the overall distribution of these rates. Constrained Bayes methods Ghosh (1992) 

described in Section 1.1.1 force the variability of the estimates to match the posterior 

variability of the true values, thus providing an ensemble of estimates that satisfy 

certain first and second-order moment conditions and, therefore, reflect properties of 

the true vector of parameters. 

2.2 Background 

We now extend the model in (1.10) and let 

Y\0,a ~ N(0, a2D) 

0|7,TW,^ ~ N(x-r, ^(i-^cyW) (2.i) 

where a is an unknown parameter, D is a known matrix (not necessarily diagonal), 

X is a design matrix of covariates associated with each lattice point, and 7 is an 

unknown coefficient vector. 

With this model specification, Bayes estimates of 6 can be obtained relatively 

easily either analytically or numerically. A benefit of using Bayes estimates is that 

the impact of sparsely-sampled, high-variance areas is lessened by borrowing strength 

across areas through the model (2.1). Thus, using Bayes estimates seems to make 

sense. However, for the two-fold inference goal described in Chapter 1, in which 

we are interested in good individual estimates and a good ensemble estimate, the 

same limitations of the Bayes estimates arise. The Bayes estimates are "overshrunk" 
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toward the overall mean, and Gelman and Price (1999) show that, in spatial mapping, 

sparse areas are much less likely to appear as extreme values than dense areas. 

Therefore, if we are interested in capturing the true variability of the response over 

the lattice or identifying high and low extremes, Bayes estimates may not be the 

best choice. 

As was discussed in Chapter 1, constrained Bayes (CB) estimates address this 

issue by forcing the estimates to match the posterior expected values of the sample 

mean and sample variance of the parameters. Stern and Cressie (1999) provide an 

extension of CB estimates to the spatial case with a CAR model. The main result 

we will use is Theorem 1 from Stern and Cressie (1999, p. 77). We state it here 

without proof and refer the reader to the paper for details of the proof. 

Theorem 1 Suppose that Y\6 ~ p{Y\6) and 9 ~ N (X~f,o-2$), with $ positive 

definite, and 7, a, and <& known. Let 9Q = {Y : H2 (Y) > 0} with H2 (Y) defined 

below, and let P = X ( X T $ _ 1 X ) XTQ~~l denote the projection matrix that yields 

the predicted values for the generalized least squares regression on X with error vector 

that has variance matrix $ . Then, for Y G 90, the estimator t(Y) that minimizes 

the posterior expected weighted squared error E (6 — t(Y)) ^>_1 (0 — t (Y)) \Y 

subject to 

PE[0\Y) = Pt(Y) (2.2) 

and 

E T ^ - l eT ( j - py $ l ( i -p)8\Y\=t ( I T (i - py $ l (i-p)t (Y) (2.3) 

is given by 

t (Y) = aE [e\Y] + (1 - a) PE [0\Y] 

where 
1/2 

a = a(Y) = 
H2 (Y) 
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and 

HX(Y) = trt.Var\$-l/2(I-P)e\Y~\\ 

H2 (Y) = E [d\Y)T (I - P)T $ - J (I-P)E \6\Y}. 

Theorem 1 says that the projection of the estimates t (Y) on X matches the 

projection of the posterior mean of 0 on X and that the residual variance of the esti­

mates about the regression surface matches the expected posterior residual variance 

of 0 about the regression surface. 

An important assumption of this result is that 7, a, and (f> are all known. Stern 

and Cressie (1999) give some direction on choosing the variance matrix $ . In par­

ticular, in order for <& to be positive definite, 4> € (fimin, </Wc) where 4>min = rf[l, 

4>max = Vn1' a n d Vi < 0 < Vn, are, respectively, the smallest and largest eigenvalues 

of M~"1/2CM1/'2. When incorporating the conditional autoregressive model into a 

constrained Bayes context however-, the results in Stern and Cressie (1999) assume 

<p is fixed. 

2.3 Constrained Bayes with a General Covariance Matrix 

We now consider the problem of fitting a more general small-area model using 

constrained Bayes methods. The basic model from Chapter 1 is 

Vh = 0h + eh, {eh}~NID(0,a2
h) 

6h = xT
hl + uh, {uh} ~ NID (0, TI) , 

with e independent of w, which we extend to 

yh = 9h + eh, e ~ J V ( 0 , V ( V ) ) 

6h = xli + uh, w ~ J V ( O , E ( 0 ) ) . (2.4) 



26 

In (2.4), V (0) and £ (0) are covariance matrices dependent upon parameter vectors 

X/J and 0, respectively. We write V = V (xj)) and S = X (0) for compactness of 

notation. 

Now, let P = X {XTll~lX) XTY,~l denote the projection matrix that yields 

the predicted values for the generalized least squares regression on X with error 

vector that has variance matrix £ . We find the estimator t (Y) that minimizes 

the posterior expected weighted squared error E\(e-t {Y))T S - 1 (0 - t (Y)) \Y 

subject to 

E[PO\Y] = E[P\Y]t(Y) (2.5) 

and 

E T e1 (i-py i}-1(i-p)o\Y\ =t(Yy EUi-py n-1(i-p)\Y\t(Y) v T v i - l 

(2.6) 

Equation (2.5) is the analogue of (2.2), with P allowed to depend on unknown 

parameters. Similarly, (2.6) is the analogue of (2.3). 

2.3.1 General Constrained Bayes 

We begin this section by stating the main result, which is an extension of The­

orem 1 presented in Section 2.2. 

Result 1 Suppose that Y\0 ~ [0, V (iff)] and 0 ^ N [X-f, S (0)], with V (V») and 

S (0) positive definite, andj, 0 , and 0 vectors of parameters on which the models 

depend. Writing S = S (0), let P — X ( X T S _ 1 X ) X T S - 1 denote the projection 

matrix that yields the predicted values for the generalized least squares regression on 

X with error vector that has variance matrix S, and P* = ( X T S _ 1 X ) X S - 1 . 

Then, the General Constrained Bayes (GCB) estimates minimize the posterior ex­

pected weighted squared error 

E { £ [(0 - t {Y))T S - 1 (0 - t (Y)) | Y, 0] I Y} (2.7) 
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subject to 

and 

E 

E [P*E {0\Y,(/))\Y] = E [P* | Y] t (Y) 

| E eT(i-p)rs-1 (i-p)e\Y,<t> \Y\ 

= t ( y ) r £ ; [ ( / - p ) r s - 1 ( j - p ) |y"U(y). 

TTie GCB estimates are given by t (A0, A), where 

i - i 
t (Ao, A) = [2E (S-11 y) - 2A0£ ((I - P)T IT1 (I - P) | Y 

2E [S _ 1 E (0 | y, 0) |y] + [E (p* I y ) f A 

and (AO,A) are i/ie solutions to 

o - ^{^^(/-pfE-^j-pj^iy.^] |y] 
-E t (A0, A) ( I - P)1 5T 1 ( I - P ) t (Ao, A) | y 

0 = E[PE{0\Y,(f>) \Y}-E[P*t{\0,\) \Y], 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

respectively. 

Unlike the result of Theorem 1, the GCB estimator is not available analytically, 

and we resort to numerical methods in its computation. In particular, we use La-

grangian methods to minimize (2.7) subject to the constraints in (2.8) and (2.9). 

Writing t = t(Y), the Lagrangian is then 

L = E [E [(e - tf E-1 (e -1) |y,0] |y} 

+X0E { E \eT (i - pf S"1 (i - p) 01 y, 0] | y } 

-\0t
TE [I - Pf 5T1 (I - P) \Y 

+Ar
 {E [P*E (01 y, 0) | y] - £ [p* | y] *} (2.13) 

where A is a p x 1 vector. 
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Before continuing with the constrained minimization problem, we comment on 

the use of the constraint in (2.8) instead of 

E [PE (d\Y,(f))\Y} = E[P\Y]t (Y) (2.14) 

Note that (2.14) represents a system of m equations while (2.9) is a single equation. 

Thus, if we use the constraint in (2.14), we must solve for m + 1 Lagrange multipliers. 

By using the constraint 

E [P*E {6\Y,cj))\Y] = E [P* | Y] t (Y) 

in place of (2.14), then we have reduced our problem to one in which we must find 

p + 1 Lagrange multipliers, where p is the number of covariates, typically much 

smaller than m. 

To optimize L, take its partial derivatives with respect to t, Ao, and A and set 

equal to zero: 

0 = ^ - = E[2V-l{t-E(e\Y,<t>))\Y] . 

-2A 0 £ (I - P)T H-1{I-P)t\Y\-[E (P* | Y)f A (2.15) 

dL 

-E 

6T (J - Pf E" 1 (I-P)0\Y,(f> 

t(I-P)T'E'1(I-P)t\Y 

dL 
0 = ^ - E[P*E(0\Y,<f>)\Y]-E[PH\Y] 

C/A 

(2.16) 

(2.17) 

Solving (2.15) for t gives equation (2.10), which can then be substituted into (2.16) 

and (2.17). The resulting system of equations is (2.11) and (2.12), which in general 

requires a numerical solution for A0 and A. 

Equations (2.10)—(2.12) require various posterior expectations, which in practice 

are approximated numerically. First note that, by standard computations (e.g., 

Gelman et al., 2004, p. 87), 

o\Y,<j> - yv[(s-1 + y-1)"1(s-1x7 + y-'1y),(s-1 +V"1)-1 

= N(n,r) (2.18) 
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Using the notation in (2.18), the posterior expectations in the expressions (2.11) and 

(2.12) can be simplified using 

E(9\Y,cf>) = n (2.19) 

and 

E \T^-l 
91 {i-py J;-1(I-P)0\Y,<P 

= tr (I - P)T XT1 ( I - P) r l + / i T ( / - Pf 2 _ 1 ( I - P) /x, (2.20) 

the latter due to Theorem 2.3, p. 49 in Hocking (1996). 

The following is a numerical algorithm for computing the GCB using readily 

available software such as S-Plus or R: 

1. Specify the model and obtain draws from the complete conditional distribu­
tions of all parameters in the model. For this we use WinBUGS (Lunn et al., 
2000), which uses Gibbs sampling, possibly with a Metropolis step, to obtain 
realizations from each conditional distribution. 

2. Import the draws into R (h t tp : / /www.r -p ro jec t .o rg / ) . Compute the fol­
lowing quantities: 

(a) E ( S _ 1 | y ) . This is done by computing the function S _ 1 for each draw 
and taking the mean across all draws. 

(b) E [ S _ 1 ( I — P) | y ] . This is done by computing the function 

£ - l T v - 1 v r 1 v T v - l i-x{xTirxxylxTv 
for each draw and taking the mean across all draws. 

(c) E\TrlE{0\Yt<t>)\Y]. This is done by computing E{0\Y,4>) = yit 
from (2.19) for each draw from the Gibbs sampler. Then, S - 1 ^ is 
computed for each iteration and the mean quantity is taken across all 
draws. 

, - i 
(d) E{P*\ Y) = E ( X r E _ 1 X ) X T S - J | Y . This is done by computing 

the function ( X T S _ 1 X ) X T S _ 1 for each draw and taking the mean 
across all draws. 

http://www.r-project.org/
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(e) E | E \BT (I - Pf E" 1 ( I - P) 9 \ Y, </>] I Y}. The inner expectation 

can be computed for each draw from the Gibbs sampler by using the 
equality in (2.20). Taking the mean of this quantity over all draws gives 
an estimate of the outer expectation. 

(f) E (I - Pf' XT1 (J - P)\Y . This is done by computing the function 

(I-P)TYTl{I-P), where 

P = X (X^^X)'1 X T 5 T \ 

for each draw and taking the mean over all draws. 

(g) E [P*E (0 | Y, 4>) \Y], computed as in (c) above. 

Parts (a)-(d) of Step 2 allow computation of (2.10) up to the values of Ao and 
A. Parts (e)-(g) constitute the remaining terms in (2.11) and (2.12). Plugging 
in all of these values, solve for the Lagrangian multipliers A0 and A (2.11) and 
(2.12), a system of p + 1 equations. This nonlinear system may be solved in a 
number of ways. In particular, we have had success using the function optim 
in R, which uses a Nelder-Mead optimization algorithm, to minimize the sum 
of the squared estimation errors. With it, we compute (with some abuse of 
notation) 

( A 0 , A T ) = argmin [(2.11)2 + (2.12)T(2.12)] , 
Ao,A 

where (2.11) and (2.12) denote the right-hand sides of their respective 
equations. 

4. Compute the GCB estimates by substituting the Lagrangian multipliers Ao 

and A into (2.10) to obtain i = t (Ao, Aj . 

2.4 Cons t ra ined Bayes Es t imat ion on Different Scales 

Recall tha t the CB estimators have the following properties: 

1 m 

±-f^ec
h

B = E[e\Y] (2.2i) 
h=l 
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T,(°»-S)2\Y 
, / i=i 

(2.22) 

and 
m „ 

where Y is the data vector. It is of interest to know to what extent the properties 

of CB estimators are preserved under linear transformations. For example, we may 

wish to convert to a coarser set by aggregating small areas into larger regions. Do 

the CB properties hold for the coarser set? We show in this and the following 

section some negative results: CB properties are generally not preserved under linear 

transformations. 

Let (3* = A6CB, where A is any full row rank n x m matrix, n < m. We begin 

by showing that {/3*}"=1 generally does not satisfy the mean constraint in (2.21) nor 

the variance constraint in (2.22). First, 

and 

i—\ i= l 

= -lT
nAdCB, 

n 

E [f3\Y] E 

1 

-ilAe\Y 
n n ' 

= ^nAE[d\Y) 

Likewise, 

Ylift-P*)2 = {(3* - (3*ln)
T {/3* - P*ln) 

i = l 
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1. 
A6V" - -UnA& CB 

n 
A0°" - -UnAff 

n 

CB 

= {A9CB)T AdCB - - {AdCB)T UnA6CB 

= {BCBf UTA - \ATUnA\ 9CB 

where Un is an n x n matrix of l's, and 

E £ ( A - $ V 
t = i 

5 

E 

(/3-pin)
T(p-pin)\Y 

= E 

= E 

A0 - -UnAd] [Ad - ~UnA6 I \Y 
n J V n 

((A0)T A0 - - (A6)TUnAd) \Y 

eT[ATA--ATUnA)6\Y 
n 

So, 

n 

1=1 

*> -lT
nAdCB 

n n 

E [0\Y] 

^AE[d\Y), (2.23) 

Li=l 

0T ( V A - Â'J t/nA I 6\Y 

where •& denotes if and only if. Furthermore, 

n 

]T>*-^)2 = E 
2 = 1 

^ ( 0 c s ) T ( ' A T A - i A T C / n A ' ) 0 O B = E 

^tr{(0CBf(ATA-±ATUnA)oCB\ = i r / i ? 

^ f r | r A T A - i A r t / n A ^ C B ( e C B ) T | = tr |£7 

^^I^A-^t/^^^)7} = tr((ATA-^ATUnA\E{eeT\Y)\ 

^tr{A*6CB(0CB)T} = tr{A'E(00T\Y)}. (2.24) 

Bl \A1A--A1UnA )e\Y 

ATA _ ±ATUUA ) eeT\Y 
n 
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The conditions in (2.23) and (2.24) will hold in some cases, but in general, they do 

not as illustrated in the following numerical counterexample. 

Let y\6 ~ N(6,a2I) and 0 ~ N (/J,,T2I). Then, straightforward Bayes and 

Constrained Bayes manipulations will show that 

E[8\y] = 
a2 ix + r2y 

a2 + r 2 

E [eeT\y] 

eCB 

r2a2 

a2 + r2 Im + E[0\y]E[0\y]7 

= [alm + -Um ) E [0\y], and 
m 

a = 1 + 

\T „2 

(m-l)£& 
1/2 

E[6\y}J {lm-iUm)E[6\y}i 

Suppose fj, = (10 20 30 40) J , a2 = 5, r2 = 10, and y = (18 16 27 34) J . Then, 

E\e\y) = ( 1 5 ^ 1 7 ^ 2 8 36) , 

0 CB 

£[00T|y] = 

o/ 4 + ^ p ^ ) f l 5 ^ 17^ 28 36 

238| 265 | 429§ 552 

265| 303^ 485 | 624 

429| 485 | 787| 1008 

552 624 1008 1299§ 

and 

eCB (6CB)T r 1 ~ a T T 

al4 H —U4 

235± 265| 429| 552 

265| 300| 485| 624 

429| 485± 784 1008 

552 624 1008 1296 

al4 -j 7—1/4 

where 

= f521_\ 
503/ 

1/2 
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If 

A = 
10 1 0 0 

0 0 1 .1 

then 

-lT
mA9CB 

m m 1 0 0 ^ - jL 1 0 1 - = -llAE \0\y], and 
10000 r 15 m m [ | y J 

tr {A*0CB {eCB)T} = 19491^ + 20152- - tr {A*E {OeT\y)} . 

In general then, (3 B ^ A9CB. In the next section, we explore further relationships 

between (3GB and A6CB. 

2.4.1 Search for alternative criteria 

In this section, we will assume that we are estimating 9. In addition to finding 

a good ensemble estimate 6 of 9, we would like a good ensemble estimate /3 = A9 

for /3 = A9. We already know that 9 — 9CB has good properties with respect to 

mean and variability. But as shown in the previous section, /3* = A9CB does not 

necessarily share these properties. This section focuses on the search for an ensem­

ble estimate 0 such that (3 — A9 satisfies, approximately, the mean and variance 

constraints in (2.21) and (2.22). 

We begin by showing that if the variance constraint in (2.22) is satisfied, then 

the mean constraint (2,21) is automatically satisfied. Using a Lagrange multiplier 

argument to perform constrained optimization, we minimize the mean squared error 

E 
2 

_h=\ 
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subject to 

m „ 

£(^-*)V (2.25) 
h=i _h=l 

The Lagrangian is then 

L = £ o-eY (e-e) \Y 

+\<\o--ume) (e--ume) -E e~-ume) (e--ume 

To minimize, we take the partial derivative with respect to 0 and set equal to zero: 

^ = 2(d-E[e\Y})+2\(im-^um
S\d = 0 

^-um(e-E[d\Y])+x-um(im--um)e = o 

<*-um(d-E[o\Yi)+\-umd-\-vmd = 0 
m V / m m 

m 
&-Um[0-E[G\Y} 

-£« = £ 0 I F . 

Thus, we focus our attention on the variance constraint. 

Equation (2.24) gives us some guidance as to additional constraints we might 

consider in order to find an estimator 6 that will ensure 

E(&-?)a = £ £(&-/*)> 
»=i 

(2.27) 

For example, it is clear from (2.24) that if 

eeT = E (eeT\Y) (2.28) 
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then (2.27) will hold. Examining this condition, we notice a difficulty, namely that 

every element of the two matrices must be equal. Consider again a simple example 

9l 9\92 

where Y\6 ~ N (0, a21) and 0 - N (/x, T2I). Let 0 = (0i, 02). Then, 

E [ddT\Y] = E 

So, we have to match three quantities: 

V 9\92 #2 J 

E [e2\Y], 

E [9l\Y] , and 

M 2 = E{6X62\Y]. 

~9\ 

(2.29) 

But, as long as a2, r2 > 0, 

E[d\\Y) = 

E[9\\Y) = 

#[01021*1 = 

er2 + r2 

T2a2 

a2 + T' 

+ 
2 2 \ 2 

o->i + -ryi 
a2-_|_ r 2 

+ I ^ + ,2 ) > ^ 

cr2^! + T2ya \ /a2At2 + r2y2 

a2 + T2 az + Tz 

± jE[e2\Y]E[9j\Y}, 

as would be required by the assignments in (2.29). More generally, the constraint in 

(2.28) would always require E^J^Y) = ^JE[9f\Y] E [02\Y]. But, using Cauchy-

Schwartz, 

E{9i9j\Y] < |£ [0^1*11 < TJE[02\Y]E[6]\Y], 

with \E{9i9j\Y}\ = JE [92\Y] E [92\Y] if and only if one of 9i\Y,9j\Y = 0 or 

0j|V = c9i\Y for some constant c. Thus, in most useful situations, the constraint in 

(2.28) will not be attainable. 
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There are two directions this investigation might take from this point: one, we 

can try to find a set of estimators 0 of 6 for which the constraints hold approximately, 

or two, we can try to find a class of linear transformations represented by A for 

which the constraints hold. In the last chapter of this dissertation, we discuss some 

candidates for 9 and A that have been investigated and shown to be inadequate and 

some candidates that will be investigated in future work. 

2.5 Bias of Fes (k) and F9CB (k) 

As demonstrated earlier, F6OB (k), the empirical distribution of the constrained 

Bayes estimators of 6, appears to be a better estimator of Ff (k), the posterior 

mean of the empirical distribution of 0 than is F6B (k), the empirical distribution of 

the Bayes estimators of Q. We seek an analytical demonstration of this observation 

under a normal model and use the results as a point of comparison for the relationship 

among F% (k), F0. (k), F^ (k), where 0* is defined in Section 2.4 and /3' = AdB. 

That is, we have demonstrated that 0* = A9CB is not CB, but does it at least have 

better ensemble estimation properties than (3'1 

Assume the conditional model 

y\0 ~ N(6,a2l) 

6 ~ JV(/i,r2/), (2.30) 

which leads to a joint model of 

y 
N 

< ^ ( 

W V 

(r2 + a2)I r2I 

T2I T2I 

(2.31) 
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Define the bias of F0B (k) as 

m "I ^ 

-Enoh<k}\y 
h=l J J 

E [FOB (k) - F? (k)] = E\-Y,I{E(9h\y)<k}-E 
I T Th . 
k h-l 

-. m 

h=\ 
- m 

/ i = i 

ro. -t—' 

O2 + T2*'1 a2+T2 -E[I{eh<k}\ 

h=l 

Vh < 
k - -JT^Vh 

a'+T'1 

-E[I{0h<k}} 

m 

m 

M 
/ i = l 

/ 

P 

•. 

^ V>h 

/ i = i 

*/» < 

2/! < 

V ^ T 

k- \ih 

o-2+ra 

- P Zfc < 

E[J{0h<A:}] 

k- HH 
(2.32) 

where {.z/J™=1 are NID(0,1). 

For the case of (2.32) in which Hh = H f° r a u h, we get 

(2.32) - P 

1 0, 

z < 
k — jx 

O'+T* 

- P z < 
k — n 

(2.33) 

demonstrating that, for this special case FBB is not even asymptotically unbiased for 

Ff. An illustration of this is shown in Figure 2.1 for which we let \± — 0. The nine 

different graphs show the bias for different ratios of <T2/T2, with r2 fixed at 1. The 

bias is much higher as a2 gets larger. This is because the scale factor A / T 2 / (a2 + r2) 

get smaller, shrinking the first probability in (2.32) closer to zero. 
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Figure 2.1: Bias of F6B (k). The value of T2 is fixed at 1, a2 

0.05,0.1, 0.2,0.5,1,2,5,10,20, and m = 1000. Here, we assume /i is the 0 vector. 

The bias of FSCB (k) is more complex because the form of {6CB} contains several 

functions of {y}, the probabilistic component. With a(y) defined as in Chapter 1, 

E[Fecs(k)} = £J^f>KCB<fc}j 
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In (2.34), 0B, a (y), and 9% are all functions of {y}. To begin, we find an expression 

for a(y) under the model (2.31): 

a(y) = 
tr { Var (0 - 011 Y)} \ V2 

£"=i(#-**)2 J 
1/2 

1 + 

1 + 

fr { Kar [(I - i t / ) 0 | Y] } 

T.:^[E{0h\Y)-lY.Z.E{9h\Y)}2) 

. *r{(f-Il/)^(J-it/)} 

ELi [ T O 0-2v* + *V*) - i ELi TO ( ^ + **/*)]! 

\ 1/2 

1/2 

1 + T^+g &(!-&) 

( T O ) E L I [r2 (yfc - y) + *2 (Mh - A)]' 

i + 
^ r ( n - l ) 

1/2 

1 + 

( ^ b ) Er=i [r2 (y* - y) + a2 (^ - p)]' 
r V \ V2 

r2+cr2 \ 

1 + 

fe) W 
T V \ 1 / 2 

•H+<r-
• D 

(2.35) 

where 

- \ 2 

ZW£ 4 v ^ (y/» - y) 
n - 1 

+ <7* 
(Hh - H) (VH - y) (Ph - \A 

n — 1 
h=l " h = l h = l 

The first term of D is an estimate of r4 (r2 + a2). Likewise, the second and third 

terms of D are representations of the variability in {/x} and the covariability of {y} 

and {fJ,}, respectively. To simplify the problem of understanding the bias of F6CB (k), 

we assume {/x} is a constant vector, and replace a (y) with its limit as m —* oo. Then, 
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the second and third terms of D become 0 and (2.35), in its limit, becomes 

r 2 \ V2 

fllim = 1 + 
er (2.36) 

Using this expression for a(y), we have 

1 m ( 

E [FeCB (k) - FB (k)} = - £ P [6B + alim (0B - 0B) <k]-P 
m h=l 

Zh < 
k - fih 

(2.37) 

Now, the first probability in (2.37) is 

p[eB + aVim(eB-eB)<k} = P 

Furthermore, 

a2 + r2 a2 + T 
rM 

r 2 

+Ou m ^5— -yh + Q|im-0 , _9M 
a2 + r2 ' 

2 m 

• a 2 + r 2 ' 

Glim T 

m a2, + 

p 
1 m m h — a n 

— >.2//i + aumJ/fc 2..VK < -2 

(2.38) 

.. m m 

— S>2,yh + anmyh — Y]y h ~ AT 
ft=l /i=i 

M, (^2 + r2) 
1 - oL + mo?. lim 

m 

So, 

P[0B + a}irn{9B-9B)<k] = P ^̂  < 
M 

•ff2 + r 2 ) l-afim+maf|m 
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and using the expression for ayim in (2.36), we get 

1 m 

E [FeCB (k) - F? (*)] = - E P 

ft=i 

^ < 

^/i < 
k — /J, 

r j l - m(a2+T2) 

- P Zh < 
k — ji 

P 

0 as m —> oo. 

k — jx 

rj\ rrt(a2+T2) 

P Z < 
k — JJL 

(2.40) 

Equation (2.40) indicates that the bias of FQCB is relatively high when a2 is large 

relative to r2. However, as m increases, the bias gets smaller. In fact, (2.40) shows 

that FgCB is asymptotically unbiased for F^ in the special case where \±h = A* in 

contrast to (2.33) which shows that FSB is always biased. Figures 2.1 and 2.2 show 

the bias of F6B and F6CB, respectively, for different values of the ratio a2 /r2 and 

assuming /i = 0. From the figures we see that when the variance (r2) of the prior 

distribution of 6 is large compared to the variance of the measurement error (a2), 

J\ m(J2+r'2) *s c^o s e to 1 and there is very little bias for all values of k as shown 

in the upper left panel. Note that the bias of FgcB is smaller than the bias of FQB by 

three orders of magnitude. 

We turn now to the bias of Fp and Fp». First, using A^ to denote the element 

of A in the ith row and hXh. column, 

E[Fp{k)-F*(kj\ = 
\ i—l L »=1 

^^f:i\p^E(0h\y)<k^ 

i=l \h=l ) J ) 
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Figure 2.2: Bias of FQCB (k). The value of r2 is fixed at 1, a2 

0.05,0.1,0.2,0.5,1,2,5,10,20, and m = 1000. 

J2 AihE (dh\y) < k ] T Aihdh < k 
.h=l 

-z Yl A*yh + -^—i J2 AihfXh ^k 

-P J2 Aihdh ̂ k 
L/i=l 
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n ^ 1 E AihVh < 
k ~ a2+Tl JZh=l Aih^h 

»=1 (, lh=l 

m 

O-^+T' 

•P 

. / l= l 

& < 

-F Zi < 

VS=7^ 

(2.41) rvEr=i^ 

Equation (2.41) indicates that the bias of Fp is relatively high when a2 is large 

relative to r2 . 

In deriving the bias of Fp-, we make the same simplifications as we did when 

deriving the bias of F6CB. By following steps similar to those shown in deriving 

(2.38), (2.39), and (2.41), we find that 

E[F0.(k)-F?(k)] = EUJ2l{ft<k}-E ±£/{A<fc}|y 
V. i = l L * = l 

-*{=£'{f;"H 
- n ( m \ 

- E 7 {EA^^k\\y -E 
»=1 \h=l 

i = l 
E^^B^fc 
h=\ 

E ̂ ^ ^ fc 
.h=l 

(2.42) 

Now, the first probability in (2.42) is 

£>#*<* 
h=l 

J2Aih{eB + aVim(e*-eB))<k 
U=l 

P 
r2 1 m a2 

h=l 
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r2 m a2 

+ Qlim 2 2 J^ KhVh + aumA,. /i 

a / + r̂  ft=i 

r2 1 

o-̂  + r2' 

r2 

P 

<x2 + r2m ^-^ a2 + r2 

ft=i 
.. m m 1 ?n 

A - — y j y/i+aiim y ] »̂/»s//i - aiim A - — y ^ yft 
T2 

ft=l 

C7'i + T' i 

(2.43) 

Furthermore, 

1 m m 1 m 

j4»- — y ^ Vh + aiim y ] AihVh - O-VaaA- — / ^ 2/ft 

ft=l 

N 

ft=l ft=l 

Ai.fi, {a2 + r2) A ' ~ alim A- + malim Sft=l Aft 

m 

Using the expression for Oiim in (2.36), 

1 " 
E [Fp. (k) - F* (*)] = - E P 

» = i 

*i < 
k ~ 2^/i=i Aft/^ 

-P Zi < 

V m 42 *a(EhU*Q 
2^ft=l Aft m(<72+T2) 

fe ~ 2-^ft=i AftM (2.44) 

Figures 2.3 and 2.4 show the bias of Fp and Fp., respectively, for different val­

ues of the ratio a2/r2 and assuming /x = 0. The patterns of bias are similar to one 

another and to those seen in Figures 2.1 and 2.2: bias is high when the measurement 

error a2 is large relative to the prior variance r2 . In Figure 2.4, when the variance (r2) 

of the prior distribution of 6 is large compared to the variance of the measurement er­

ror (cr2), a2 (XX=i Aih) I (m (a2 + r2)) is close to 0 and there is very little bias for all 

http://Ai.fi
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values of k as shown in the upper left panel. When the variance of the prior distribu­

tion of 6 is small compared to the measurement error, a2 (XX=i Aih)2 / (m [a2 + r2)) 

approaches (XX=i ^ih) /m (f°r fixed m) and the effective scale factor of the first 

/ m a2{y,m- A hY 

probability in (2.44) is less than ryY^h=i ATI L " T i ) so the bias is large (in 

absolute value) for values of k between the mean and the extrema as shown in the 

lower right panel. Note again that the bias of Fp* is smaller than the bias of Fp by 

three orders of magnitude. 

The arguments leading to expressions (2.41) and (2.44) provide heuristic evi­

dence that Fpr is biased for Fp while Fp* is asymptotically unbiased for Fp . We 

consider the case in which the elements of A are non-negative. This would be the 

case if A was a means or a sums matrix, i.e., a matrix in which the rows of A sum 

or average the Oh within some larger grouping. A reasonable asymptotic assumption 

is that the row sums of A are bounded as n —•> oo. This holds, for example, if the 

number of small areas n* in group i is bounded as the number of groups, n, goes 

to infinity. More specifically, let XX=i Aih < C\ < oo and (XX=i ^ih) < c2 < oo 

independent of i as m,n —> oo. Then we can say from equation (2.44) that the bias 

of Fp- decreases as m increases. Thus, preliminary analytical results in (2.41) and 

(2.44) plus numerical computations illustrated in Figures 2.3 and 2.4 suggest that 

A6CB is in fact a better ensemble estimator than AGB. 
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Figure 2.3: Bias of Fp (k). The value of r2 is fixed at 1 and a2 = 
.05,0.1,0.2, 0.5,1,2,5,10,20. A is an 1000 x 200 sums matrix where each fa is the 
sum of five ^ s . Here, we assume fx is the 0 vector. 
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Figure 2.4: Bias of Fecs (k). The value of r2 is fixed at 1 and a2 = 
0.05,0.1,0.2,0.5,1,2,5,10,20. A is an 1000 x 200 sums matrix where each A is 
the sum of five f?̂ s. Here, we assume /J, is the 0 vector. 



Chapter 3 

GENERAL CONSTRAINED BAYES WITH CAR 

3.1 Introduction 

As mentioned in Chapter 2, Stern and Cressie (1999) presented a method for 

computing CB estimates for lattice data using a CAR model. In their method, the 

spatial dependence parameter <p is fixed. In order to determine the best value of 

(f>, they compute the value of the loss function for several different values of <f> to 

see which results in the smallest loss. They then demonstrate their method on the 

Scotland lip cancer data set"(Breslow and Clayton, 1993). In the first section of 

this chapter, we try to reproduce their analysis using the GCB algorithm outlined 

in Chapter 2. 

We then apply the GCB algorithm to water quality data from the Mid-Atlantic 

highlands, which is the original motivation for exploring constrained Bayes estimation 

and the reason for the development of the GCB algorithm. The 2002 report titled 

"Response of surface water chemistry to the Clean Air Act Amendments of 1990" 

(Stoddard et al., 2002) was written to assess the response in surface water chemistry 

in the northern and eastern United States to changes in acid deposition, primarily 

from acid rain. A key indicator of whether or not a particular watershed is at risk 
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due to acid deposition is acid neutralizing capacity (ANC), the ability of a body of 

water to buffer inputs of acid. Stoddard et al. (2002) differentiate between acidic and 

acidified waters. 'Acidic' describes a condition that can be defined and documented, 

such as ANC< 0. 'Acidified' refers to an increase in acidity over time and does not 

require that the body of water be acidic. An important aspect of assessing the impact 

of the Clean Air Act Amendments of 1990 is identifying improvements in water 

chemistry. This speaks to quantifying and properly interpreting acidification, or more 

specifically, the change in ANC over time. Increasing values of ANC are expected in 

response to decreasing deposition of acid from the atmosphere. The region of interest 

consist of watersheds identified by the United States Geological Survey (USGS) and 

will be described in more detail later in this chapter. A spatially indexed estimator 

of ANC over time is needed for each watershed in the study area. Additionally, an . 

ensemble estimate that can be used to identify correctly the proportion of watersheds 

with decreasing ANC will be valuable. The spatial structure of the watersheds from 

which the water quality data come is hierarchical or nested; each watershed on one 

level of the hierarchy is divided into smaller watersheds. This suggests that spatial 

correlation may exist at several levels of the hierarchy. We specify a CAR model 

on two levels of the hierarchy and demonstrate the ability of the GCB algorithm to 

handle such a model. 

3.2 Application: lip cancer counts in Scotland 
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In the Scotland lip cancer data set, 56 geographic districts are defined in the local 

government structure prior to a 1995 reorganization (Stern and Cressie, 1999). The 

data set consists of observed cases of lip cancer (0); expected cases of lip cancer 

(E) based on variation in demographic factors across the region; the percent of 

the population in each district engaged in an outdoor industry, such as agriculture, 

fishing, or forestry (denoted AFF); and the neighbors (adjacent districts) for each 

district. The analysis by Stern and Cressie assumes the model 

Y\0 ~ N(6,a2D) 

e^N{x1,T
2{i-<t>cylv), (3.i) 

where 

0 = E(Y) 

and 

The vector x\ = (1 Xh) consists of an intercept and xh = the AFF for district h. The 

other elements of the model are defined according to (iv)-(vi) in Stern and Cressie 

(1999) and are as follows: 

• D is diagonal with hth element dhh — 1/Eh-

• V is diagonal with hth element dhh = ^-1 Eh-

(Ek/Ehf\ k€Nh 

• chk = < 
elsewhere, h — 1 , . . . , 56, 
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where A^ is the neighborhood of district h. Additionally, a2 is fixed at 1. Stern and 

Cressie (1999) compute the predicted mean squared error (PMSE) for several values 

of <j) and find that the value of <p that yields the smallest PMSE is 0.14. 

We also use the model in (3.1) but consider (ft random. The prior distributions 

on each of the parameters in our fully Bayesian algorithm are listed below in (3.3). 

The normal priors, N (/i, r ) , specify the mean \x and precision r rather than the usual 

mean and variance. The priors are 

a2 ~ Inverse gamma (0.001, 0.001) 

7i ~ W (0,0.0001), for » = 0,1 

r2 ~ Inverse gamma (0.001,0.001) 

<f> ~ Uniform (<£rain,</>max), (3.3) 

where </>mjn and 0max are defined as in (1.11). These priors were chosen to reflect 

the fact that we have little information regarding the parameters ahead of time. 

The precision parameters l/<72 and 1/r2 have gamma distributions with mean 1 and 

variance 1000 which, on the scale of the data, represent uncertain precision. Likewise, 

the prior distributions on {7} suggest we have little information about the sign or 

magnitude of those parameters. The spatial correlation parameter <j> is given equal 

density over its valid quantities. 

Three separate MCMC chains were run with initial values given by: 

• Chain 1 

- a2 = 10000 



53 

- 7o = 7i = 0 

- r2 = 10000 

- 0 = 0.1 

• Chain 2 

- a2 = 10000 

- To = 7i = 1 0 

- r2 = 10000 

- 0 = 0 

• Chain 3 

- a2 = 100000 

- 7o = 7i = ~ 1 0 

- r2 - 100000 

- 0 = 0.5 

Each chain was run was run for 10000 iterations, the first 4000 of which were dis­

carded as the "burn-in". Gelman-Rubin statistics (Gelman and Rubin, 1992) indicate 

convergence of all three chains. The posterior mean of 0 was 0.1365 to four deci­

mal places, agreeing quite well with the value of 0.14 obtained by Stern and Cressie 

(1999). The parameters of interest are the relative risks A^ = E(Oh)/Eh. The 

relationship between 6 and A is 

1/2 / - 1 

' " " ^ l1 + iA^)' P 4 ) 
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the approximation due to a Taylor series expansion of E (Yh) around E {Oh)- Stern 

and Cressie (1999) compute the CB estimates of 6 and then back-transform to obtain 

estimates of A. Results from Section 2.4 demonstrate that the transformed CB 

estimates are not the same as the CB estimates of the transformed parameter. Thus, 

the loss function should be defined on A and its CB estimates be computed directly. 

However, to be consistent with Stern and Cressie (1999) we computed the GCB 

estimates for 6 and then computed estimates for A using (3.4). The estimates of A 

from Stern and Cressie (1999) and A Q Q Q are shown in Table 3.1. With the exception 

of districts 17 and 55, the estimates are comparable. The transformation in (3.2) is 

such that Y is approximately normal, and it generally preserves the ordering of the 

data: when the {Oh/Eh} are placed in descending order, the {Yh} are generally in 

descending order, too. The values for Yn and Y5s are conspicuously out of order. 

The two districts have six and five neighbors, respectively, which are about the 

average number of neighbors for a given district. Thus, it seems unlikely that that 

the inconsistent estimates for these two districts are due to lack of information from 

its "neighborhood". 

3.3 Application: acid neutralizing capacity trends in the Mid-Atlantic 

Highlands 

The problem of CB small area estimation with a general covariance matrix is now 

examined in an environmental setting. The response of interest is a trend parameter, 

namely the change in acid neutralizing capacity (ANC) over time. ANC measures 
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Table 3.1: Constrained Bayes (CB) estimates and General Constrained Bayes (GCB) 
estimates of the relative risk for skin cancer of 56 Scotland districts. The fixed <f> 
estimate is the CB estimate from Stern and Cressie (1999) with <j> = 0.14; the random 
(f> estimate is the GCB estimate using the method presented in Section 2.3.1. With 
the exception of districts 17 and 55, the estimates are similar. 

Ai 
A2 

A3 

A4 

A5 

A6 

A7 

A8 

A9 

Aio 
An 
Al2 

Al3 
A14 

Al5 

Al6 

Al7 

Al8 

Al9 

A20 

A21 

A22 

A23 

A24 

A25 

A26 

A27 

A28 

CB:0 fixed 
6.77 
4.22 
3.42 
3.64 
3.58 
3.58 
3.15 
2.90 
3.32 
3.08 
3.01 
3.29 
3.53 
2.50 
2.04 
2.24 
2.74 
1.58 
1.84 
1.58 
1.48 
1.46 
1.30 
1.14 
1.20 
1.10 
1.13 
1.14 

GCB:(/> random 
6.71 
4.49 
3.78 
3.78 
3.57 
3.53 
3.24 
3.21 
3.22 
3.09 
3.04 
3.04 
3.16 
2.57 
2.22 
2.07 
2.26 
1.76 
1.72 
1.69 
1.56 
1.39 
1.31 
1.32 
1.25 
1.23 
1.24 
1.16 

A29 

A30 

A31 

A32 

A33 

A34 

A35 

A36 

A37 

A38 

A39 

A40 

A41 

A42 

A43 

A44 

A45 

A46 

A47 

A48 

A49 

A50 

A51 

A52 

A53 

A54 

A55 

A56 

CB:<£ fixed 
1.25 
1.04 
1.07 
1.36 
1.05 
0.88 
0.90 
0.85 
0.93 
0.74 
1.01 
0.71 
0.52 
0.65 
0.66 
0.43 
0.41 
0.45 
0.39 
0.37 
0.34 
0.39 
0.38 
0.36 
0.24 
0.22 
0.16 
0.16 

GCB:</> random 

1.15 
1.12 
1.14 
1.22 
1.07 
0.99 
0.93 
0.93 
0.91 
0.89 
0.91 
0.84 
0.56 
0.55 
0.59 
0.44 
0.39 
0.43 
0.44 
0.38 
0.32 
0.34 
0.43 
0.40 
0.26 
0.21 
0.07 
0.15 

how well bodies of water can buffer inputs of acidity from, for example, acid rain or 

industrial runoff. As such, it can be used to measure the risk of a body of water to 

acidification. The geographical region of interest is the Mid-Atlantic Highlands, an 

area roughly bounded by New York to the north, North Carolina to the south, and 
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Ohio to the west. This region is particularly susceptible to acid rain as a result of its 

location relative to industrial centers and prevailing weather patterns. The inferential 

goal again is two-fold. First, we would like to obtain good individual estimates of 

6h = AANC/j/time, for the h — 1 , . . . ,m watersheds in this region, and second, we 

would like the spatially indexed ensemble {6,^st}^L:1 to have similar characteristics 

to the spatially indexed true values {#h}™=1. This will enable us, for example, to 

estimate P (d < 0), the proportion of watersheds for which ANC is decreasing over 

time. Following a Gaussian-Gaussian probability model, we model (1 as a function 

of auxiliary information and place a Gaussian distribution on 90bserved I @true-

In this section we compute constrained Bayes estimates for the watershed-

specific rates-of-change in ANC for the data set described above. The data originally 

consisted of 103 hydrologic units (HUCs) in the Mid-Atlantic highlands. The HUCs 

for which we are estimating (3 are among the smallest watershed unit identified by 

the USGS (Seaber et al., 1987). Within each of the 103 HUCs for which data were 

available, ANC was recorded for at least one site in at least one year between 1993 

and 1998. Since we are interested in 9 — AANC^/time, 17 HUCs had to be discarded 

because ANC was available for only one year. Thus, we were left with 86 HUCs 

in which we had ANC data for at least two years. From these data, we calculated 

0 = QOLS
; the ordinary least squares slope when ANC was regressed on year. HUC 

level covariates that were available included spatial coordinates of the HUC cen-

troid, area, average elevation, average topological slope, maximum slope, percents 
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agriculture, urban, and forest, and S04 deposition for the current and three previous 

years. 

The HUC structure is nested. The United States is divided and sub-divided 

into successively smaller hydrologic units which are classified into four levels: re­

gions, sub-regions, accounting units, and cataloging units, according to the USGS 

(ht tp : / /water .usgs .gov/GIS/huc.html) . The hydrologic units are arranged 

within each other, from the smallest (cataloging units) to the largest (regions). Each 

hydrologic unit is identified by a unique hydrologic unit code consisting of eight digits 

based on the four levels of classification in the hydrologic unit system. Thus, 8 digits 

are required to identify a unique cataloging unit, 6 digits are required to identify a 

unique accounting unit, 4 digits are required to identify a unique sub-region, and 2 

digits are required to identify a unique region. When we refer to an 8-digit HUC, we 

are referring to a cataloging unit, and so forth for other levels in the hierarchy. 

The HUC structure is not arbitrary. Major geographic regions are contained 

within 2-digit HUCs; large river systems and coastal drainage basins are contained 

within 4-digit HUCs; 6-digit HUCs contain surface drainage basins or combination of 

basins; and 8-digit HUCs distinguish parts of drainage basins and unique hydrologic 

features. It is thus not unreasonable to assume that all of the 8-digit HUCs nested 

within the same 6-digit HUC have similar hydrological characteristics and likewise 

for other nesting structures in the hierarchy. It is under this assumption that we 

justify the use of the CAR model and create the spatial adjacency matrix C. 

http://water.usgs.gov/GIS/huc.html
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3.3.1 GCB es t imates for a one-stage CAR 

We define the matrix C so that it reflects appropriate relationships among the 

different 8-digit HUCs; this model assumes that all (or at least a majority) of the 

spatial dependence resides among the 8-digit HUCs nested within the same 6-digit 

HUCs. Hence, we assume the model 

Oh — 0h + eh 

Oh = xl~Y + u>h, (3.5) 

where 

e~N(Q,a2D) (3.6) 

and 

w ~ / V ( 0 , r 2 ( I - ^ C ) _ 1 M ) . (3.7) 

Additionally, we will define (I - 4>C)"1 M = $ . 

First, we define the matrices D, C, and M from (3.6) and (3.7). The matrix 

D defines the covariance structure among the 6 vector. If we think of Oh as the true 

value Oh plus some observation or measurement error, it is reasonable to assume that 

the precision of Oh is independent of Ok f°r k ^ h, and is proportional to Uh, where 

Hh is the number of observations taken in HUC h and used in the computation of 

0h. Therefore, we set D — diag (n^1, n^1,..., n^1) . 

The matrix C defines the existence and strength of association among the dif­

ferent HUCs. The neighborhood structure we use reflects the nested structure of the 

USGS HUC designation. All HUC-8s within the same HUC-6 region are considered 
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part of the same neighborhood. No spatial relationships among HUC-6 or HUC-4 

regions are considered at this time. The adjacency matrix C is then defined as 

distance betweenHUC-8 centroids' i f h a n d k a r e ne iShbors; 

chk = \ (3.8) 

0, otherwise. 

An adjacency matrix defined this way indicates that HUC-8 regions within the same 

HUC-4 are correlated, and the strength of the correlation is inversely proportional 

to the distance between the HUC-8 centroids. 

The matrix M must be a diagonal matrix (Cressie, 1993) and each element of 

the diagonal is a scaling factor for the variance in each 8-digit HUC. We assume that 

the more neighbors upon which a given HUC is dependent, the more of a stabilizing 

effect this will have on the response for that HUC. Another way to look at it is that, 

referring back to equations (1.6) and (1.7), the form of the conditional mean of 6h\B-h 

includes a weighted average of the vector #_/>. It is therefore not unreasonable to 

expect an averaging effect causing the conditional variance to decrease as the number 

of neighbors, and hence the number of terms in the conditional mean, increases. Thus 

we define rrihh — N^1, where iV/, is the number of neighbors for HUC h. This choice 

for M along with the choice for C in (3.8) satisfies Chk^rikk = Ckh^nhh since for h, k in 

the same neighborhood, Chk = ckh and vn,hh = m ^ ; for h, k in different neighborhoods, 

Chk = Ckh = 0 . 

We place the following priors on the parameters in the model: 

a2 ~ Inverse gamma (0.001,0.001) 
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7^ ~ TV (0,1000) 

Inverse gamma (0.001,0.001) 

4> ~ Uniform (0, </>max) 

where 4>max is defined in (1.11). These priors are chosen because they are fairly 

uninformative in the sense that the variances are large. The precisions, 1/cr2, of 

0h, h = l , . . . , m and 1/r2, of w ,̂ h = l , . . . , m are gamma distributions with 

variances= 0.001/0.0012 = 1000. Note that (f> € (Q,<f>max) leads to a valid covariance 

matrix since </>mjn < 0. Results from fitting this model are described in Section 3.3.3. 

3.3.2 GCB es t imates for a two-stage CAR 

In the previous section, we assumed all of the spatial association was among 

8-digit HUCs within the same 6-digit HUC. By the nature of the HUC designation 

system, it is certainly plausible that all 6-digit HUCs within the same 4-digit HUC 

have similar ANC characteristics, and so on. We will redefine the model (3.5) to 

include two levels of spatial correlation, one among 8-digit HUCs within the same 

6-digit HUC and another among 6-digit HUCs within the same 4-digit HUC. We 

cannot explore the existence of correlation among the 4-digit HUCs within the same 

2-digit HUCs as all of the 4-digit HUCs in the region of study belong to the same 

2-digit HUC. 

To account for this second possible source of spatial correlation, we can expand 

the model to, say 

Oih — &ih + (-ih 
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®ih = xlj + ai + ojh. (3.9) 

Here, i indexes the 6-digit HUC and h indexes the 8-digit HUC. Thus, a; is a random 

effect for the 8-digit HUC and Uj is a random effect for the 8-digit HUC. A CAR 

model can then be placed on both a and u) to account for spatial dependence that 

may occur on the larger scale. When the variation was additive as in (3.9), the 

algorithm had a difficult time partitioning it between the 8-digit HUCs and 6-digit 

HUCs. Rather than define the random effects as independent and additive, we nested 

them: 

6ih = xlf + at + uh\u (3.10) 

where 

e ~ N(0,a2D), (3.11) 

a ~ N (0, r6
2 ( I - (peCe)'1 M 4 ) , and (3.12) 

u\a ~ N(CX,TI{I-4>8CS)-
XM&). (3.13) 

Again, i indexes the 6-digit HUC and h indexes the 8-digit HUC. 

The matrices D, C$, and Mg are defined as in Section 3.3.1. CQ and Me are 

defined similarly, so that 

-p-7 T—T 1TTTT<^ c 1—vj-1 if * and j are neighbors; 
d is tance between HUC-6 cen t ro ids ' J ° ' 

(3.14) C6ij \ 

otherwise, 
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and M 6 = [m6ii] = [Ag"1] , ?' = 1, • • •, n6, where N6i is the number of 6-digit HUC 

neighbors for 6-digit HUC i. 

The following priors are placed on the parameters in the model: 

a2 ~ Inverse gamma (0.001,0.001) 

7h ~ W (0,1000) 

Tg ~ Inverse g a m m a (0 .001,0 .001) 

r6
2 ~ Inverse gamma (0.001,0.001) 

<f)8 ~ Uniform (0, 0 8 m a x ) 

0 6 ~ Uniform (0,^6max) 

where 0 8 m a x = j ^ ^ , 0 6 m a x = 7 7 ^ , and ??8 m a x a n d r]6max a re t h e largest eigenvalues 

of M\/2C6M\/2 and M\/2CGM\/2, respectively. 

3.3.3 Results 

Three independent MCMC chains were run for both the one-stage and two-stage 

CAR models, one with high starting values for the parameters, one with intermediate 

values, and one with low values. Convergence was reached on all chains for all 

parameters after a burn-in of 10000 iterations according to Gelman-Rubin statistics 

(see Table 3.2 for a summary). The chains were then run for an additional 10000 

iterations which were used in the analysis. 

The posterior means of some of the parameters in the model are shown in Ta­

ble 3.3. Of particular note are the estimates of a2 and r2 . Recall from the model 
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Table 3.2: Gelman-Rubin ratios for the parameters in the one-stage model. Rather 
than list the statistic for each p and 7, we list only the maximum value. 

Parameter 

e 
7 
0 
a2 

T2 

G-R Statistic 
1.002 (max) 
1.001 (max) 
1.000 
0.998 
0.969 

(2.1) that the parameter a2 can be interpreted as measurement or observation error 

while T2 represents a scaling factor on the variability in the spatial dependence. The 

results shown in Table 3.3 suggest that the variability in the data is primarily from 

the former source. The consequences of this become evident as we analyze the data 

further. The complete conditional distribution of 0, given the data and all of the 

other parameters is given by (2.18). In the Gibbs sampler, if a2 is large and r2 is 

small, the approximate conditional distribution of 0, given the-data and all of the 

other parameters is 

in the notation of (2.18), or using the notation of (3.5) through (3.7), 

i V ( X 7 , $ ) (3.15) 

Thus, the realizations of 0 in the Gibbs sampler are essentially drawn from (3.15), 

and hence 

E \T K-1 91 (i-py &-i(i-p)o\e 

E (e\dY (i - pf $-x (I-P)E (010) (3.16) 

Equation (3.16) says that, given the data and all other parameters, the posterior 
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Table 3.3: Posterior means of 10000 realizations for the spatial dependence parameter 
and the two variance components. 

One-stage CAR 
Parameter 

4> 

r2 

a2 

Posterior mean 
4.67 

1.67 

793165.10 

Two-stage CAR 
Parameter 

r2 

T2 

'6 

a2 

Posterior mean 
0.24 
3.91 

21.96 
1.25 

161810.80 

mean of the residuals from the projection of 6 onto the column space of X is ap­

proximately equal to the residuals from the projection of the Bayes estimators onto 

the column space of X, Equation (3.16) is also an approximation of (2.3) with 

t (Y) = E (0\0), implying that the GCB estimates are approximately equal to the 

Bayes estimates. This result is illustrated in Figure 3.1 which shows the empirical 

distribution functions (edf) of the Bayes estimates of 6 (dashed/dotted line) and of 

the GCB estimates of 6 (dotted line). The solid line represents the posterior mean of 

Fg, the edf of 6, which is the distribution we are trying to match. The edf of the CB 

estimates follows the posterior mean of Fg, as we would expect. That the edf of the 

Bayes estimates also follows the posterior mean of Fg and is difficult to distinguish 

from the edf of the CB estimates is because the estimate of r2 is so small compared 

to a2. Thus, there is very little shrinkage in the Bayes estimates. 

To assess the amount of spatial correlation within the different levels of HUC 

hierarchy, Moran's I was calculated on two different scales, first to measure the de­

pendence among 8-digit HUCs within the same 6-digit HUC, and second to measure 

the dependence among the 6-digit HUCs within the same 4-digit HUCs. There were 

not enough data to compute Moran's I at other scales. Results from Moran's I indi-
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Figure 3.1: Empirical distribution functions. 

cate that there is no spatial dependence at the 8-digit HUC level (p = 0.94), which is 

consistent with the results above, while at the 6-digit HUC level, there appears to be 

very minimal spatial dependence (p = 0.08). Figures 3.2(a) and 3.2(b) show contour 

plots of the ANC rates predicted by GCB with the one-stage CAR and two-stage 

CAR, respectively. The patterns are similar. However, the image in Figure 3.2(b) is 

bit smoother, which reflects the slight correlation among the 6-digit HUCs. While 

the results of this comparison are largely negative, the main point is to illustrate the 

possibility of computing GCB estimates in fairly complex models, motivated by a 

real application. 
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(a) One-Stage CAR 

S r" 

r 
(b) Two-Stage CAR 

Figure 3.2: Contour plots of GCB estimated ANC rates in /ig/L/year. Darker shades 
represent lower levels. The black contour line is the 0 contour 



Chapter 4 

SMALL AREA ESTIMATION WITH GENERAL CONSTRAINED 

BAYES USING PENALIZED SPLINES 

4.1 Introduction 

In this chapter, the GCB algorithm from Chapter 2 for computing CB estimates 

with a general covariance matrix is applied to a spatial small area model specified 

with penalized radial basis functions and formulated as a linear mixed model as 

described in Chapter 1. We analyze the data set from Opsomer et al. (2008). The 

data are from the Environmental Monitoring and Assessment Program (EMAP) of 

the U.S. Environmental Protection Agency in which 334 lakes out of 21,026 in the 

Northeastern U.S. were surveyed over six years from 1991 to 1996. There are 551 

observations in the data set. We will again estimate ANC for each 8-digit HUC; 

however, whereas in Chapter 3 we modeled change in ANC over time for each HUC, 

here we will follow the analysis of Opsomer et al. (2008) and model the mean ANC 

for each HUC. The model used by Opsomer et al. (2008) is of the form 

Vhi = f (Xhi) + thi (4.1) 
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where yhi is ANC for the ith observation in the hth HUC. Also, / here is defined as 

K 

f (Xhi) = Po + PlXhi + Uh + Y^ Pk+lTk+l (C«), (4.2) 

fc=i 

where x^ is the elevation at the ith observation in HUC h, Uh ~ N (0, al) is a 

random effect for HUC h, rk (c^) is the transformed radial basis function defined in 

Ruppert et al. (2003, p. 253) as 

K 

rk+l{chi) = J2 C (chi - Kk) [C (nk -Kk>)]~1/2, (4.3) 
k'=\ 

C(r) = | | r | r iog | | r | | , Chi = {cm,C2hi) denotes the geographical coordinates for ob­

servation i in HUC h, and K^ k — 1 , . . . , K are the geographical coordinates at the 

spline knots. Following Ruppert et al. (2003) as outlined in Chapter 1, (4.2) can be 

written as 

Y = X/3 + Du + Z 7 + e, (4.4) 

where X , D, and Z are the design matrices for the fixed effects, random HUC effect, 

and random knot effects, respectively, and 

u~{0, all) 

7 ~ (0 ,<T) 

e ~ (0, a\l) . (4.5) 

The model in (4.4) is defined on each observation, but the characteristic Opsomer 

et al. (2008) wish to estimate is mean ANC 

yh = xh/3 + uh + zhj (4.6) 
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for HUC h, where xt is the mean elevation of HUC h and zh is the mean value of 

(4.3) for HUC h. As an estimator for yh, Opsomer et al. (2008) use 

yh = xh{3 + uh + zhj, (4.7) 

where 

/3 = (X'V^Xy1 X'V^Y 

u = alD'V'1 (Y - Xpj 

7 = a^Z'V-1 (Y - XP} 

V = a2
uDD' + o*ZZ' + of I, (4.8) 

and variance components are set equal to their restricted maximum likelihood 

(REML) estimates. 

4.2 Estimation of mean A N C using GCB 

We estimate % directly through (4.6) with the following model specification: 

y| /3 ,7 ,u ~ N (x/3 + u + zy, ofdiag (nh)) 

(3 ~ N{Q,o*I) 

u ~ N(0,a2j) 

7 ~ N(0,a*l), (4.9) 

where nh is the number of observations in HUC h. Results from Opsomer et al. (2008) 

suggest that the variances are on the order of 103 to 105. Therefore, all variances in 

(4.9) have a prior distribution of inverse gamma (0.5, 0.005). With this prior on of, 
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Table 4.1: Analysis of the Northern Lakes data. Comparison of posterior means for 
the HUC-level model (based on 3000 Gibbs draws after burn-in) and ML/REML 
estimates for the site-level model in Opsomer et al. (2008). 

Parameter 
Intercept 
Elevation 

Posterior mean 
169.1 

-0.6633 
49.8 

185.7 
166.4 

Opsomer et al. 
228.6 

-0.814 
71.2 

365.7 
179.5 

<Xg, al, and <r̂ , the prior precisions for the distributions of y | /3,7,u; /3; u; and 7 

have mean 100 and variance 20000. Such a prior is relatively non-informative. 

Note that model (4.9) is different from the model in (4.4)-(4.5). This is necessary 

in order to try to duplicate the results from Opsomer et al. (2008). We do not want 

to estimate site responses and average them for each HUC as is done in Opsomer 

et al. (2008) since this would mean computing a transformation of GCB estimates. 

As already shown, this is not the same as computing the GCB estimate of the 

transformation. We expect the GCB estimates of {y} from (4.9) to be comparable 

to the estimates of {y} from (4.4)-(4,5). We do not necessarily expect the parameter 

estimates to be comparable. 

4.3 Resul ts 

We again used WinBUGS (Lunn et al., 2000) to generate realizations from the 

conditional distributions. Three independent MCMC chains were run, one with high 

starting values for the parameters, one with intermediate values, and one with low 

values. Convergence is reached on all chains, based on Gelman-Rubin statistics, 

after a burn-in of 2000 iterations. The chains are then run for an additional 3000 
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iterations which are used in the analysis. Bayes estimates for the fixed and random 

effects are shown in Table 4.1. The Bayes estimates of the parameters are of the 

same order of magnitude as those from Opsomer et al. (2008), but they compare 

only roughly in value. We can argue that since we are modeling means rather than 

individual observations, we might expect the variance component for the spline a^ to 

be smaller for model (4.9) than for model (4.4)-(4.5). However, we also observe that 

the estimate of the variance component for the HUC random effect a\ is smaller for 

model (4,9) than for model (4.4). This makes less sense since there is no averaging 

of the HUC effect. The estimates of the error variance of are much closer to one 

another compared to the estimates of the other variance components. This is likely 

due to the fact that in (4.9), the conditional variance of y is explicitly scaled in 

the model. The estimate of the elevation effect has the same- sign and comparable 

magnitude in both models, which is what we would want. 

The empirical distribution functions of the observed mean ANC, the Bayes es­

timates of mean ANC, and the GCB estimates of mean ANC for each HUC are 

shown in Figure 4.1. The edf of the Bayes estimates is shown by the thick gray line 

and clearly shows significant shrinkage. The edf of the GCB estimates, shown by 

the thick black line, corrects for this and follows much more closely the edf of the 

observed data, shown by the thin black line. For the most part, the GCB estimates 

preserve the ordering observed in the data as shown in Figure 4.2. For example, the 

minimum observed mean ANC is 6.95//g/L observed in HUC 2040301. The GCB 

estimate for mean ANC in HUC 2040301 is -1.70/ig/L and is the smallest of the 
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Figure 4.1: Empirical distribution functions of observed and estimated ANC Hydro-
logic Unit Code (HUC) small areas within Northeast U.S. The edfs indicate much 
less variability among the Bayes estimates than among either the observed data or 
the GCB estimates. 

GCB estimates. The observed HUC means are plotted along the upper horizontal 

line and the GCB estimates are plotted along the lower horizontal line. Segments 

connect the observed value and GCB estimate for each HUC. 

Finally, we compare the results from the GCB algorithm to the results from 

Opsomer et al. (2008). In Figure 4.3, each rectangle is located roughly at the centroid 

of a HUC for which ANC was observed in at least one site. More specifically, the 

latitude and longitude coordinates at sampled sites were averaged within a HUC; 

the rectangles are centered at these coordinates. Break points in the figure's gray 

scale for estimated mean ANC are the same as in Figure 4 of Opsomer et al. (2008). 
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Figure 4.2: Comparison of observed mean ANC (/xg/L) and GCB estimates. Seg­
ments connect the observed mean ANC and GCB estimated mean ANC for each 
HUC. In general the GCB estimates do a good job of preserving the observed order 
of ANC values. Several of the segments in the middle of the plot cross, indicating 
that the ordering is not completely preserved. 

Figure 4.3 indicates that mean ANC is low in northern coastal regions and in the 

higher elevations of the Adirondack Mountains (northern New York) and in the the 

White Mountains (New Hampshire and western Maine). High mean ANC is seen in 

the Great Lakes area of New York and in the Connecticut River valley. These are 

the same findings as in Opsomer et al. (2008). 
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Figure 4.3: GCB estimated ANC (/ig/L) for Hydrologic Unit Code (HUC) small areas 
within Northeast U.S. Rectangles are centered at the mean latitude and longitude of 
observed sites within HUCs. 



Chapter 5 

TWO-STAGE, MODEL-ASSISTED ESTIMATION USING 

PENALIZED SPLINES 

5.1 Introduction 

In a survey framework, a two-stage sampling design can be employed to make the 

best use of what are often limited time and financial resources. Even with the ability 

to focus such resources, it is often the case that the sample sizes are not sufficiently 

large to make model-free inferences. The presence of auxiliary information suggests 

employing a model in our inferences. Opsomer et al. (2008) propose incorporating 

this auxiliary information through a class of model-assisted estimators based on 

penalized spline regression in single stage sampling. Zheng and Little (2003) also use 

penalized spline regression in a model-based approach for finite population estimation 

in a two-stage sample. In a survey context, weights computed from a set of auxiliary 

information are often applied to many study variables. With this approach, model-

assisted estimators should fare better than model-based estimators as discussed in 

Section 5.2.3. We compare the two through a series of simulations. 
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If the weights computed from the auxiliary information are obtained with simple 

linear regression, applying them to many study variables does not pose much of a 

problem as the hat matrix is a function of the predictors only. However, when 

we replace a simple linear model with something more flexible such as a penalized 

spline, obtaining an adequate set of survey weights becomes more complicated. The 

hat matrix is now a function of the variance components associated with the knots 

and with any additional random effects assumed in the model. To address this, we 

fix the degrees of freedom of the smooth and estimate the variance components of the 

random effects assuming a linear model. Asymptotic properties of these estimators 

are examined both analytically and through simulation. It is shown that model-

assisted estimators fare at least as well as model-based estimators in this context. 

When we consider two-stage sampling with auxiliary information, we must spec­

ify the extent to which the auxiliary information is known and on what scale it is 

known. Four different cases are possible: 

Case A: The auxiliary information is available for all clusters in the population 

• Leads to regression modeling of quantities associated with the clusters, such as 

cluster totals 

• Cluster quantities can be computed for all clusters 

• Population quantities can be computed from cluster estimates 

Case B: Complete Element Level Auxiliaries 

• The auxiliary information is available for all elements in the population 
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• Leads to regression modeling of quantities associated with the elements 

• Cluster and population quantities can then be computed from element esti­

mates and observations 

Case C: Limited Element Level Auxiliaries 

• The auxiliary information is available for all elements in selected clusters only 

• Leads to regression modeling of quantities associated with the elements 

• Regression estimators can be used for cluster-level quantities only for the clus­

ters selected in the first-stage sample 

Case D: Limited Cluster Level Auxiliaries 

• The auxiliary information is available for all clusters in the first-stage sample 

• Design-based estimator can be used for population quantities 

• In some cases, good estimators for population quantities are not available 

In this chapter, we focus on Case A in which the auxiliary information is known 

for all clusters in the population. 

5.2 Background 

5.2.1 T h e Fini te Popula t ion and Superpopula t ion Concept 

We begin by assuming a population of elements U = { 1 , . . . , k,..., TV}. 

These elements are partitioned into clusters or primary sampling units (PSUs), 
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C/i,..., Ui,..., UN,, which are mutually exclusive and collectively exhaustive. Thus, 

we have 

U= [j Ui and N =^2 N*> 
ieU[ teU[ 

where Af, is the number of elements or secondary sampling units (SSUs) in Ui and 

Ui — {1, 2 , . . . , TV/}. Associated with each cluster i 6 Uj is a known vector of 

auxiliary information £Cj = (XJI, xl2, • • •, xip) . Associated with each element k € U 

is an unknown quantity of interest y^. We focus on finding an estimator of 

keu ieUi fcg(/i ieUi 

where ty is the total for the quantity y over the entire population, and tyi is the total 

for the quantity y for PSU i. 

When dealing with finite populations, it is useful to consider a superpopulation 

model, say £, which specifies a relationship between the auxiliary variables and the 

response of interest. Cassel et al. (1977) give several possible interpretations for the 

superpopulation concept: 

1. The finite population is actually drawn from a larger universe. 

2. The distribution £ is modeled to describe a random mechanism or process in 

the real world. 

3. The distribution £ is considered as a prior distribution reflecting subjective 

belief, as in a Bayesian approach. The unobserved numbers among j / i , . . . ,y/v 

may be looked upon as parameters for which we seek the posterior distribution, 
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given the sample. 

4. The distribution £, while being associated neither with a process in the real 

world nor with an expression of subjective belief, is used simply as a mathe­

matical device to make explicit the theoretical derivations. For example, one 

may be interested in knowing the various model formulations which justify the 

use of an intuitively appealing estimator such as the sample mean. 

5. The superpopulation approach may be a useful device for incorporating the 

treatment of nonsampling errors in survey sampling. 

5.2.2 Two-stage Sampling 

Regardless of how we interpret the superpopulation, the assumption is that 

the finite population is a realization from the superpopulation, and our sample is 

obtained from this realization through some specified sampling design. We will use 

a probability sample. Probability sampling is an approach to sample selection that 

satisfies certain conditions, as outlined in Sarndal et al. (1992): 

1. We can define the set of samples, S = {si, s2, • • •, % } that are possible to 

obtain with the sampling procedure. 
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2. A known probability of selection p (s) is associated with each possible sample 

s. 

3. The procedure gives every element in the population a nonzero probability of 

selection. 

4. We select one sample by a random mechanism under which each possible s 

receives exactly the probability p(s). 

In the two-stage sampling design, we first select a sample of clusters, sj (the 

subscript / is a Roman numeral referring to stage I), from the universe of clusters, 

[//, based on some design pi(-). The design p/(•) assigns a first order inclusion 

probability nu > 0, for i € £//. The 717* is the probability that cluster i is selected 

in the first stage of the sample. Additionally, pi (•) assigns a second order inclusion 

probability 717̂  to each pair of clusters i,j in Uj. The 717̂  is the probability that 

both clusters i and j are selected in the first stage. Note that nm — IT a. In the 

second stage, from every cluster i € si, a sample Sj is drawn from Ui according to 

a design p//(-|sj) with first and second order inclusion probabilities 717̂  and 7rW|j, 

respectively. 

5.2.3 Design Based Inference versus Model Based Inference 

In the course of this chapter, we will look at model-based and model-assisted 

estimators. The model-based and model-assisted approaches view the role of the 
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model differently. In model-based estimation, the statistical properties of the es­

timator (expected value, bias, variance, etc.) are derived from the assumptions in 

the model; the sampling design is completely ignored although Sarndal et al. (1992) 

advocate randomized selection of the sample as a safeguard against selection bias. 

Thus, we view the model not only as a random process in the real world, but we also 

use it to describe nonsampling error. In model-assisted estimation, the statistical 

properties of the estimator (expected value, bias, variance, etc.) are derived solely 

from the design p (s). The model £ is simply a mechanism to describe how the finite 

population we want to study arises. Additionally, by explicitly stating the model, 

we can derive and justify the estimates for model parameters. However, the error 

properties of the model properties are ignored. 

5.3 Model-assisted estimator with penalized spline 

We focus on Case A, in which the auxiliary information is the scalar Xi at the 

cluster level and is known for all clusters in the population. Consider the superpop-

ulation model 

£ : yk = / (xt) + at + ek; for k € Ui and i = 1, 2 , . . . , Nj, (5.1) 

where {a,} are independent random variables with mean zero and variance r2 , {e/J 

are independent with mean zero and variance a2, and the two sequences are inde­

pendent of one another. 

Recall that the finite population is considered a realization from this model. If 

the entire realization had been observed, we could estimate / (•) using a P-spline 
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with truncated power basis, according to the details in Chapter 1, as 

K 

f (x;(3) = 0O + fax + . . . + 0px" + Y/PP+I[(X ~ «0+]P • (5.2) 
; = i 

Once again, p is the degree of the spline, Ki < • • • < « # is a set of fixed knots, 

/3 = (0o, • • •, 0P+K) is the coefficient vector, and (x)+ = X / ^ X J } - Substituting (5.2) 

into (5.1), we get 

K 

Vk 0o + 0iXi + 'Y^0i+i (xi - Ki)+ + &i + £ik; for k € Ui and i = 1,2,.. . , iV/. (5.3) 

For simplicity, we consider the linear case with independent errors, although the 

methods here can be extended to higher order polynomials and models with het-

eroscedasticity. In matrix notation, we can write this as 

Y = Z1f31 + Z2(32 + Z3/33 + e, (5.4) 

where 

Ypfxl — 

lyfcJfceCA 

u/fcifcet/2 

h ,feJfce[/jv; 

Z, = 

I1 ̂ W, 

I1 x^keu2 

[i i N / ; ZeeC/jv 

, 0 i 
A) 

01 

JVx2 

z2 = 

[ ( > i - K i ) + ( a ; i -« 2 )+ ••• O d - « * ) + ] fcet/l 

[ ( X 2 - K I ) + ( a j 2 - K a ) + ••• ( ^ - ^ ) + ] f c 6 [ / 2 

[(xjV, - Ki) + (XJV7 ~ «2) + • • • (XjV, - « K ) + ] keUNj J 

, /32 = 

A 

Pl+K 

NxK 
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[1 0 • • • 0]keUl 

[ o i ••• o]keU2 

[00 ••• 1] fc€£/A 

, and j33 = 

Oil 

aNl 

NxN, 

Now, write the spline fitting criterion as 

\Y - Ztfy - Z2(32 - Z3f33f + Ax | |/32 | |2 + A21|/33| (5.5) 

We can then use an argument similar to the one made in Chapter 1 to show that, 

up to a known multiplier, this is the same as the likelihood criterion obtained when 

finding the BLUP of (3lt f32, and /33 under the model assumption 

Y\^, /32, & ~ N {Zl^1 + Z2f32 + Z3(33, a21) , 
1^ 

/V(0,G). 

where 

G 
r]2lKxK 0 

0 T2IN,XNI 

Thus, the (2 + K + A7/) vector (3 = (/3f, ^ /O^)7 that minimizes (5.5) is 

1 vTy Bv= {ZTZ + Dxy'ZTY (5.6) 

where 

Z — \Z\ Zi Z3] ikeUi i€Ut 

and Dx = diag 0, 0, Aj , . . . , Ax, A 2 , . . . , A2 

K Nj 

Let rrii = A ^ , = NizjBu be the model-predicted total for PSU i, assuming 

the entire population was observed. If these fitted values were known and if we were 
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able to obtain the cluster totals without error, then we would have a single stage 

sample and could estimate ty with a version of the difference estimator from Sarndal 

et al. (1992, p. 221): 

4,*//- = E mi+E v\ m% • (5-7) 
ieu, tea/ h 

However, we are not able to obtain the cluster totals without error. Due to cost 

or other considerations, a two-stage sampling design has been employed, and tyi is 

not observed for sampled clusters. In this case, we estimate tyi with its Horvitz-

Thompson estimator 

Vk 

kest ^ 
tyin — / , 

kesi 

which is design unbiased for tyi (see Horvitz and Thompson, 1952). What we will 

call the difference estimator is then obtained by (5.7), substituting tyin in for tyi in 

iet// ies, h 

Both iy,difp and £„,<&// are design unbiased for ty. The design variance of (5.7) 

is 

Var (W) = EE A;,^^^p, (5.9) 

where A/^ = ITUJ — TTH^IJ, and the design variance of (5.8) is 

VT (u,/) = E E ̂ ^ ^ + E £ ("») 
ijec// ^ iec// 

where 
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and Afcj|j = Wki\i — ^k^iyi- The extra term in (5.10) compared to (5.9) comes from 

the fact that we are estimating ty. 

Clearly, the estimator in (5.8) still cannot be calculated since we do not know 

mj. Just as we replaced tyi with the sample-based estimator iyin, so we will replace 

rrii with its own sample-based estimator rhi. To define rhi, we follow Breidt et al. 

(2005); for a more detailed argument see Sarndal et al. (1992, Chapter 8). First, 

define the diagonal matrix W = diag f cS[/{1/^} and its sample submatrix Ws = 

diagfc€s {l/7Tfc}. Also, let Z3 be the submatrix of Z consisting of those rows for which 

k G s, and similarly for Y s a subvector of Y. For fixed Ai and A2 and under suitable 

regularity conditions, the weighted estimator 

B = (ZT
SWSZS + D A ) " 1 ZjWsYs = GXYS (5.11) 

is a design-consistent estimator of B\j. Finally, define rhi = Nifc — NizjB. We can 

then define the model-assisted P-spline estimator as 

i€Ut ies/ I% 

5.4 Properties of the estimator 

Define the indicator function In = 1 if i € s/ and In = 0 otherwise, and the 

n x 1 indicator vector e» which is a vector of zeros except for a one at position i. 

Then, noting that Ys = Ylkes ekUk, we can write (5.12) as 

ty,spl — 2_^ rtli "*" 2-e Z 



= ]TA^fGAYs + £ 
£ * * % ~ NlZfGxYs 

ieu, i£sj 
7T/i 

^N,zraXY,+Y.z hih\i 
Vk 

i6U, ieu, Mi*1™* £f,ni 
J2~NlZfGxYs 
•« ' • ' ' • * IT r • 

= ££ + 5>«T*(>-£)5>* 
tec * ief// v J l / fces 

1 + £ A^GAefc (l - ^ ) 

fees fe iet// 

- E 
(5.13) 

kes 

which shows that iytSpi is a linear estimator, making it useful in a survey estimation 

context. If we let tz = Ylieu ^iZi and tz,HT — Ylisu ^iz%l^iii then we can also 

write 

t y,spl E , V - ^ ''y»w mi rrii + 2^--

Vk 

Kli 

= E £ + X>*TG* i 
fees ^ »et// 

1/ 

= £j/,J/T + {tz — tz,HT) P, 

which has the form of the traditional Horvitz-Thompson estimator plus a regression 

adjustment term. 

5.4.1 Cal ibra t ion 

Sarndal et al. (1992, Chapter 5) show that the ratio and linear regression esti­

mators, in a single stage sampling design, have the property 

keu 
(5.14) 
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Breidt et al. (2005) show this property also holds for the P-spline estimator in the 

single stage sampling design. Additionally, if an intercept is included in the model, 

they demonstrate that the P-spline estimator in the single stage sampling design is 

location and scale invariant, in the sense that 

]Pw k s (ayk + b) = a^2wksVk + Nb (5.15) 
fces fees 

for any constants a and 6. This is a property shared by the general regression 

estimator. 

In the two-stage sampling design, (5.14) and (5.15) do not necessarily hold. 

From (5.12), we see tha t (5.14) holds if X ^ 6 s / ^i^Ji = YlkeaVk^k1- Further, the lo­

cation invariance in (5.15) will hold provided that J2kesWks = N. Proposition 1 and 

Proposition 2 address conditions in which (5.14) and (5.15.) will hold, respectively, 

in the two-stage design. 

P r o p o s i t i o n 1 Consider the model-assisted P-spline estimator ty<spi defined in 

(5.12). If 

V — = NU (5.16) 
/L~J T^k\i fees, 

then 

EE = E£ ^ 
M, 1XH tz7Pfc 

and so iytSpl = Y^ieu, ^ 

Proof of Proposition 1: 



In the model specification (5.3), the existence of the intercept is important. This 

means that ejzi = 1 for all i and ejDA = (0 ,0 , . . . , 0), 

rhi v-^ Nizf / >r-> zkzl , _ \ v ^ ^3 /* 

yNielzizl+eT Uyztf \ y z ^ 

M r̂ „ w ̂ - zfczr 
-1 

= ' I E ? ^ E T ' + M £ 

If 

I\iXiX; „ \ / v >̂ xkxk 
-1 

s.t6s/ / \kes K 

*es/ fees 

£ yfc 

fcGs 

To see when (5.19) holds, we write 

T \~l ( T ^ -1 

xkxk , T». I — I Y~̂  V s xixi 

Thus, if 

then (5.19) holds, and (5.14) follows. 

(5.18) 

E - ^ + D A ) ( E ^ + D A ) = / , ( , 1 9 ) 

\J6s/ 

then from (5.18) we get 

y ; — = NU (5.20) 
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One example of when the condition in (5.20) holds is in the case of a fixed size 

design within clusters with itk\i — UiN~l. We now turn our attention to (5.15) with 

Proposition 2. 

Proposition 2 Consider the model-assisted P-spline estimator iy,spi defined in 

(5.12). If 

T-L = NU (5.21) 

then the weights {uiks} given in (5.13) satisfy 

fees 

(5.22) 

Proof of Proposition 2: 

Again, using the fact that ejzi = 1 for all i and efD> = (0 ,0 , . . . , 0), we have 

J2Wk = E 
fees fees H*H) 

fees K i&Ji x 

= E ^ E ( ^ . T - ^ ) ( E 

E ^ + M E 

fees tec// 

TTfc 

g f c g f c 

TTfc 

fees 

•Zfc 

TTfc 

- 1 

fees fc tec// x 

- E£+£(* 
fees fc tec/, x 

- E ^ + E™-E 
fees tec// ie«/ 

i — ' IT,. i—J IT,: 

T IjiNizT 

E 
\kes 

zk4 
TTfc 

+ D, 

+ D> 

£^fci + DAei 
v te« 

TTfc 

E ^ + ^ h 
>fces 

TTfc 

7T/i 
ei 

fees tes/ 
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so that (5.22) holds if and only if 

kes 

EE 7T I--71 

i£si k€s 

i€si kesi 
^Ii^k\i 

A sufficient condition for (5.23) is 

M 

5.4.2 Asymptotic Results 

Sarndal et al. (1992) give an overview of the asymptotic framework for sampling 

from finite populations. More details and examples can be found in Isaki and Fuller 

(1982), Robinson and Sarndal (1983), and Brewer (1979). In the two-stage sampling 

design, we consider an infinite sequence of sets of clusters Un C (7/2 C UJS C • • •, 

where Ujv is a set of Njv clusters of elements. Assume that Uv = {JieU UVi, where 

cluster UVi contains NVi < oo elements. We bound the number of elements in each 

cluster for every v so that no one cluster dominates the population. It is assumed 

that UVi C U(v+i)i for all v and i. Then, as v —* oo, Njv —> oo. As a consequence, 

N —* oo although the number of elements in each cluster remains bounded. 

Now, for each Ujv, consider a first stage sampling design piv (•) that assigns a 

certain probability pjv (sjv) to every possible sample of clusters sjv from the set of 

clusters [//„. For simplicity, assume the first stage sample size, njv, is fixed. Also, 

assume nn < nn < nrs < • • •• Thus, we also have njv —> oo as v —> oo. We 
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assume that the first stage sampling fraction niv/Niv —> ir where n e (0,1). This is 

a necessary condition for assumption A5 below. 

This framework, then, embeds the clusters Ujv and first stage sampling design 

Piv (•) into a sequence {Ujv,piv (•)} indexed by v. We could just as easily index such a 

sequence by Nj and allow Nj —> oo. This would mean that m —> oo in a predictable 

way if we make the assumption that nj/Nj —> IT as Nj —> oo. Thus, going forward, 

we drop the i> notation and consider the sequence {£//(jV/),P/(N/) (•)} indexed by Nj. 

The op (•) and Op (•) notation below is with respect to the sequence of designs. 

The following additional assumptions are also made: 

A l . B — iimjvj-too Bu exists, and B — Bv = o p ( l ) . Furthermore, 

E [Bi - Bmy (BJ - BVjy o(l) forij = l , . . . , p . 

A2. The limiting design covariance matrix of the normalized Horvitz-Thompson 

estimators, 

E IZijeUi ^iv ^ VTj + IZieUi TJl E 22i,jeu, A/i,? TJ^f 

EE* 
"K lift I j 

EE* 

?-"yy t-iyz 

Z-',,, ZJZZ yz 

= hm —-x 
JV/-*oo Nf 

TT/j 

is positive definite, where 

Vi~z2z2 (^'l* ~~ 7rfc|*7r'l») 
fcec/i iei/i 

7Tfc|i7r/|i 

and 

A/ i j = 7T/y - 7 ^ 7 ^ - . 

A3. T/ie normalized Horvitz-Thompson estimators satisfy a central limit theorem: 

Ni 

Eiet / j Efeec/i (TT/iTTMi l)yk 

EieC// */*?• ( f t - 1 

dist 7V(0,E) 
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as Ni —> oo. 

A4. The estimated covanance matrix for the Horvitz-Thompson estimators is design 

consistent in the following sense: 

E y^ A/jj iyn, iVj„ . y^ K y> y> Aft,- t\lmZi 

E V * A/ t j Zjtyjjr 

as Ni —> oo , where 

A5. For oW iV/, 

min 7T/J > A > 0, 
ieur 

min 7T/ij > A* > 0, and 

limsupn/ max . |7Tjy - nu^ijl < oo. 

A6. Additional assumptions involving higher-order inclusion probabilities: 

l imsupn; max \E [(Ih - 717̂ ) (Ji2 - irIh) (Ih - irH3) (4, - 7r/i4)]| = Mi < oo, 
JV/—»00 (* 1 ,*2 .»31*4 ) € -D4, iVj 

where Dt,N denotes the set of all distinct t-tuples (ii, i<i, • • •, it) from Uj, 

limsupn/ max \E [(Ih - -KHlf (h2 - nIi2) (h3 - irIi3)] | = M2 < oo, 
JV/-+00 (Hi*2,*3)e^ )3,N ; 

and 

limsup max \E [{Ih - nHl)
3 (Ih - 7r/i2)] | = M3 < oo. 

J V / ^ o o (*ii»2)6£>a,jv7 

A7. Additional assumptions involving element-wise products of the auxiliary vector: 

1 Nl 

iv,-*oo Ni 
j = i 
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As Brewer (1979) notes, asymptotic analysis must allow the sample size, and 

therefore ty>spi, to go to infinity. Thus, we will consider the limit of iyiSpi/N rather 

t h a n tytSpi. 

The next series of results leads to a reasonable estimate for the variance of tVtSpi 

and an asymptotic distribution result using this estimate. Theorem 2 shows that a 

reasonable estimate for Var (ty,diff) can be obtained by 

v ^ y A/jj (tyin - rhj) [tyjir — rhj) T—-v Vj 

^ 4 ^ nHj niiitj ^ nu' 

Theorem 2 Under assumptions Al, A2, and A4, 

A ^ ( U ~ **) (tvjn -mj)+yVL = Vaf {i fNj\ 
irjij TTHTtj {-^ixn

 VJ/1 " > p\njJ Lh, ,... 
Proof of Theorem 2: 

y ^ y ^ A/jj (iyjV - rrij) + (m, - rhj) (tvp - m,) + (m, - rhj) > p ft 

— V^ V^ ^Hj v'v™ ~ m v v/fi7r ~ m J / \~^ ^ 
4 ^ 4 ^ ^/y 7r«7r^ o ^ 

y ^ y ^ A/jj (TTCJ - rhj) (m, - ro,-) 2 y y AJJJ (tyj„ - TiZj) (m,- - rhj) 
^ 4 ^ ^/y Knit j j j - * 1 Z-J niij TTumj 

= Var (iv,diff) 

y > y ^ A f < i (TTZJ - rhj) (ro, - m,-) ^ ^ A/<3- ( ^ - m») (m,- - ro,-) 

= vH~r {iy4iff) + V, + V2 (5.25) 

By A4, Var (iy4iff) = Var {ty4iff) + op (j£)- Also, 

\ J t—*1 t—' TXUA TTn Tin V / 
i£si i€sj 
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op(l)Op(^jop(l) 

= Ov 

N[ 
ni 

and 

= ^EE 

(B - By) 

A/jj ByZjz) 
S - S y 

A/j j tyi7izj 
-Bu) 

= O p ( ^ j o p ( l ) - O p ^ ) o p ( l ) 
A^ 

= o„ 
71/ 

The result follows, f 

We next show that, asymptotically, Var(tytSpi) and Var(tyi<nff) are equivalent. 

This will allow us to use the expression 

V~* V ^ ^ / i J ^yin ~~ ^ v vyi* ~~ ™j) I V ^ ^ 
£—< £—J -n-r,, -rrr,7T, ^—^ 7T/y 7r/i7r7- Kli 

from Theorem 2 as an estimator for Var(tytSpi). First, though, we need the following 

two lemmas: 

Lemma 1 Assumption Al implies that the following results hold elementwise: 

1 N' 

Ni—>oo Ni 

1 N / 

lim —-- > ZizJ < oo, and 
iV,^oo Ni t-^ 

l *' 
lim — V z i < iY,-+oo A/j 

OO. 

i=l 
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Proof of Lemma 1: 

Write Zi = (zn,zi2..., zip) . Then, 

T T _ z i z i z i z i ~ 

Zn 2 ^ - = 1 ZtjZn Z{\ 2_/j = l zijzi2 

zi2 J2j = 1 Zij Zi 1 Z^YLj=\ Zij Zi1 

zi\ 2—ij=l zijzip 

zi2 Z_yj = l ZijZip 

Zip /Lij = lZiiZH Zip 2-ij-l ZijZi2 ' " ' zip 2 l j j = l ZijZip 

each element of which can be expressed as zia X^= 1
 z1jz%b for some a, 6 e { 1 , . . . ,p}. 

Now since lim7v/_00 77- Y^i\ z% < °° f°r 3 - 1> • • • >P by A7, we have by Cauchy-

Schwartz that 

iV/̂ oo TV/ 
zijziazit 

< lim 
JI L-uj Zij \ I 2-ji /L/j ZiaZib \ 2L-/i Z_n i 

Nr N, 

1/2 

< I™ I \ ±=!ilil\ ^1/2 / Yli Zia \ fJ2iZib^ lim \Y 
V , - . o o I •£—' 
JV/^oo \ < ^ A^ 

\ 3 

V Nr Nr 

< oo. 

Thus, we have the following element-wise finite limits: 

r » "' 
N/-oo Nj 

ZizfzizJ < oo. 
1 = 1 

Similar Cauchy-Schwartz arguments show the remaining assertions in Lemma 1 hold, 

t 
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Lemma 2 Under assumptions A5, A6, and Lemma 1, 

lim E 
JV;—>oo 

mj E In 

mi E 
ieUi 

Zi\ 1 
717, 

Nr E 
ieu{ 

T I hi i 
z; I l 

7T/i 

< oo, (5.26) 

where the limits are element-wise. 

Proof of Lemma 2: We outline a sketch of the argument as straightforward bound­

ing arguments and application of A5, A6, and Lemma 1 lead to the result. 

Let D4 be the set of all distinct 4-tuples of the set of indices {i,j, k, 1} and D% 

be the set of all distinct 3-tuples of the set of indices {i,j,k}. The expression in 

(5.26) consists of the sum of terms in the form of: 

n. 
0-1 rE EEEE-S:^-''*)^-^) 

X {IIk - nIk) {hi - nil)] 

T T 

E E E l.LkJ(Iu-nrf(7/i~^(Iik~i*ik)2 

.i,j,keUf,i,j,keDa KliKljKlk 

n 
a3 

CI4 

NfE EE 
T T 

"i i j j 

n 
N?E 

n". as = NfE 

2 2 (7« ~ ^O Vu ~ KIJY 

E 
«Ii 

(Ili - TTn) (5.27) 

O n l y a gene ra l form of each t e r m is l is ted in (5.27) . Now, by A 5 , A6 , a n d L e m m a 1, 

01 - A/4 EEEE 
ZjZ) ZkZ\ 

Nf 2-1 2—i ̂  2-i iriiTTijirikTrn 
1 i,j,k,leUr,i,j,k,lGD4 ,l 1J 1K n 

n] max {E [(IH - Trn) (//_,- - 717,) (//ft - 7T/fc) ( / / ( - TT/J)]} 



97 

,T „ . „T 

Ml V 1 i l i X~^ *1L V^ — V^ — 
\4 2^ N 2^ N 2 ^ N 2^ Nj 

0(1) , 

T T 

jk E E E -^1-^nIm&x{E[(IH-TTn){IIj-TTIj)(Ijk-TiIk)
2]} 

11 ijteUnijteD, WMk 

mM2 y ^ Zj v ^ ^J y ^ zkz\ 
iV/A4 ^ TV/ ^ iV; ^ iV, 

0 ( 1 ) , 

n2, v ^ ZizJ^ N-^ ZjZJ 
2\4 2^ Mr 2^1 

0(1) , 

n2
rM3 yy Zi_ ^ ZJZJZJ 

0(1) , and 

2 T T 

' tec// " 
2 T T 

Tlj \~~\ ZiZi ZiZi 

NfX4 ^ N] 1 ieUj ' 

0(1) . 



Using similar bounding arguments on all terms of (5.26 gives the result. 

T h e o r e m 3 Under assumptions A1-A4, 

nj ni lim -r^Var (tVtSpl) = lim -j^Var (<„,*//) 
JV/-»oo N iV;^oo Nf 

(5.28) 

P r o o f of T h e o r e m 3: 

ni nj 
Var(ty<spl) = —^Var 

Nf ' "' vy>"v,/ Nf 

nj_ 

Nf 

.tec/, ies, nh i€U, V *lx' 

ni 
Var(f-y^ff) + Tf2Var 

N .iec// 
m<i - m,i) 1 

tv,diff, V (mi - mi) ( 1 - - ^ ) (5.29) 

The first term in (5.29) is 

ni (t , ni 
j^Var (tytdiff) = ^ 

Vi E y * A £yi - mi tyj - m^ \ r ^ _^_ 
/-—< l ] IT-,- -TTT- L—J TTTJ 

.ieUi jeu, ievt * « j 7T/i 7T/j 

which, by A2, converges to S r o + BfjEzzBu - 2T.yzBu as N/ -+ 00. The second 

term can be written as 

Nf 
Var 

ni_ 

Nf 

ni_ 

Nf 

'Y\(mi-mi)[l ) 
iec/, 

Var 

V a r 

^(zTB-zTBtAtl 
.ieu, 

111 

Nf E 

E*(-£)(*-0 
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Nf 
E 

p v 

.fc=l J = l \ i € £ / , j 6 £ / , V / l / V / J 

hi I Ij 

yvfEEE 
7 fc=i ;=i 

fEE^(1--)f1--)N 

Bk - Buk) (Bi - Bui 

Bk - BUk) lBt - Bm 

2 ^ 1/2 

x 1 E Bk - BUk) [Bi - B, wi 

1/2 

0(1)0(1) 

by Lemma 2 and Al. Finally, because 

(5.30) 

—L 
Nf 

< 

< 

Cov 

ni 

ieu, \ ^ 

I 

Nf\ 
Var [iy,diff] Var Y ] (rfii - mO (1 - — ) 

\ 

j^Var [tyAff\ jpVar 
.tec// 

m» mj) I 1 - — 

(5.31) 

the third term in (5.29) equals o( l ) , and the result is proven, f 

The following theorem shows that iyiSpi is design consistent and provides its 

asymptotic distribution. 

Theorem 4 Under assumptions A1-A3, the penalized spline estimator iy>spi is design 

•\fn~i-consistent for ty, in the sense that 

ty,spl ty _ p. 
Nj ~Up 

1 
(5.32) 

file://�/fn~i-
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and has the following distribution: 

ty,spl ty dist 

Var ikdiff) 
N(Q,l) (5.33) 

Proof of Theorem 4: 

ni (f _ M - v n ' 
y^y^pl ><y) — Ni 

Vet / / tes7
 J 

N7 Em*+E ^t/lTT llvi 
L>1, 

KH 

Nj 

+ E*-E™*-E- + E -
ieu, ieui ies; 7r/l *e*, 7r/t. 

(*«,*// - ̂ y) + E ^ ^ 
*€£// 

E ^ - E ' ^ + E'* AU T B v ^ , A^fBr j 

iec/7 i e ^ " ^ *W, n i i 

Ni 

JrTi 
Ni 
/n} 

(*»,*// - ty) + °P( -7=) °P (!) 

(Wz-^+Opf-i) (5-34) yv7 v-v .*/ / - *v) + < M - ^ 

by Al and A3. Focusing on the leading term in (5.34) we see that 

•77-(«v,*//-M = -̂ r- E m * + E " -Ly* 
' J Vet// ies/ " feet/ / 

y/ni 

N 7 E —*** - L v* + E —w< - E ' 
7 Viet/, ^ fcGC/ igu, nh ieuj 

vfcec/ feet/ Ki€Ur 

£ ( ^ - i W ) + vn' 
\fcg£/ 

E 1*1% 
1 B r 

(5.35) 
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Thus, by A2 and A3, 

\/n~I 17 , \ dist 
N ( W - ty) - N (0, Syy + BlEzzBv - 2TlyzBu) = N (0, r2) 

which implies ^/nj (ij,,*// - ty) /Ni = Op (1). From (5.34), we now get 

vy^Spl "y s-x I •*• \ / •*• 

- = Op [ —— )+op 

= o- ' 
m7 . 

which shows (5.32). To see that (5.33) holds, we note that 

—» r as Nj —> oo. 

The result follows, f 

5.5 Simulation Study 

5.5.1 Simulation Design 

A simulation study is conducted to compare the performance of the model-

assisted estimator with P-spline to other choices. For the simulation, an artificial 

population is generated according to (5.1) with eight study variables whose mean 

functions are given by m(xih), h — 1 , . . . , Ni, where xih is a known quantity associ­

ated with cluster h. Since auxiliary information is often proportional to cluster size, 

we use a design in which the first stage inclusion probabilities are proportional to the 

cluster size and let xih = Kin- Eight different mean functions are generated similar 

to those from Breidt and Opsomer (2000): 



102 

quadratic bump 

exponential growth cycle 1 cycle 4 

Figure 5.1: Plots of the mean functions for the eight study variables used in the 

simulation. 

linear: mi {^ih) = 10 + 5 (-KJH — 0.5), 

quadratic: m2 (nIh) = 10 + 200 (irIh - WJ) , 

bump: m3 (irIh) = 10 + 5 {TTJH - 0.5) + exp (-20000 (7r/h - 0.5)2), 

jump: m4 (irIh) = [10 + 5 {-KJh - 0.5) I{„Ih<a.i}] + [H-25 + 5 (717̂  - 0.5) /{T/h>o.i}]; 

exponential: 7715 (nih) = 10 + exp (-30 (irih — 0.05)), 

growth: m6 (nIh) = 10 - ^ ^ g ^ , 

cyclel: m7 (TTM) = 10 + sin ( 2 * ^ ) , 

cycle4: m8 (TTM) = 10 + sin ( s y r ^ ^ y ) , 

Plots of the mean functions are shown in Figure 5.1. 

We use Zheng and Little (2003) as a guideline for the structure of the population 

and for the sample design. The total number of Primary Sampling Units (PSU) is 
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fixed at 500; the size of the PSUs are integer values that can range from 50 to 400. 

The first stage sample is fixed at 48 PSUs, and the first order inclusion probabilities, 

irji, i = 1, . .. , h, are proportional to the size of the PSUs. The second stage inclusion 

probabilities, n^, are inversely proportional to the first stage inclusion probabilities. 

This is an example of a self-weighting design with a fixed first-stage sample. In 

general, for such a design, 

1 
7Tfc|i OC 

TTH 

= — , and 

TTfc = 7T/i7Tfc|i 

C 2 

1*1% 

= C2 . 

From this we see that each element in the population has the same probability n^ — c2 

of being selected. Also, if we write 7 ^ = rii/Ni, then we see that n̂  = C2/C1, which 

is a constant. Thus, in a self-weighting design, the number of elements drawn from 

each cluster i € s/ is the same for every i. 
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5.5.2 The Estimators 

Five different estimators through this simulation: 

HT Horvitz-Thompson 

LIN Model-assisted with simple linear model 

SPL Model-assisted with P-spline and no random effect for cluster 

SPLRE Model-assisted with P-spline and random effect for cluster 

MBRE Model-based with P-spline and random effect for cluster 

The HT estimator is the ix estimator from Sarndal et al. (1992, p. 137) 

si S 

and is a generalization of the two-stage estimator given in Horvitz and Thompson 

(1952). The three model-assisted estimators are computed as in (5.12); the only 

difference is how rhi is computed. A summary of the model-assisted estimators 

follows. 
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LIN 

Working Model: yk = (30 + (5xv:H + efc 

Estimate: rhi = Ni i A) + PITTH 

SPL 

Working Model: yk = P0 + px%H + £ , = 1 Pi+i fai - «j)+ + ek 

Estimate: m* = N» (A) + Ai^/i + E£=i A+i (nn ~ Ki)+) 

SPLRE 

Working Model: yk = Po + PiXi + X4I1 ft+i (^i - «0+ + «; + efc 

Â t (A) + Ai^/i + Ef=i Ai+* O/i ~ Kfc)+ + «i) for i e sj 
Estimate: rhi — { 

Ni (A) + Avr/i + Ef=i Ai+* (7r« ~~ ftfc)+) otherwise. 

The MBRE estimator is taken from Zheng and Little (2003) and is computed as 

tyMB = Yl t^^ + (Ni ~ n^> ̂  + Yl Ni^ ^'36^ 

where & is the sample mean of cluster i € s/ and 

A i = < 
A) + Aî r/i + EfeLi An-* (T« - «fc)+ + on for* G s / 

A) + AITT/Z + Ef=i An-* (^/i 
— Kfc)+ otherwise. 
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5.5.3 Knot selection and smoothing parameters 

In Chapter 1, automatic knot selection and data driven smoothing parameters 

were discussed. We now consider what approach to take in the context of a large 

survey with many study variables. Mindful of the goal of obtaining one set of survey 

weights that can be applied to any study variable, it becomes clear that we need to 

set the number and location of knots and the smoothing parameters ahead of time. 

There are several ways this can be done. 

If we had fit an unpenalized spline, then the number of knots and their location 

would have a dramatic effect on the fit. With too few knots, the fitted function 

may not be flexible enough to capture the complete trend in the data. With too 

many knots, the fit may be too rough; the large number of knots will allow the fitted 

function to change slope too often, which will cause it to pick up small fluctuations 

in the data that may not be of consequence. However, a penalized spline allows 

control over the effect of the knot terms through the smoothing parameter. Recall 

the penalty term from (1.16), A/3 Dj3. Because of the matrix D , the penalty term 

penalizes only the coefficients of the knots, and if A is large, then the effect of the 

knots is diminished and the overall fit approaches the least-squares fit. Thus, one 

solution is to include a large number of knots in the model and allow the penalized 

least-squares criterion to determine the relative importance of each knot. 

Ruppert et al. (2003) offer some guidelines in choosing the number of knots, 

noting that we want enough knots to resolve the underlying structure in the data but 

that too many knots will complicate computations. Through several demonstrations, 
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they show that there appears to be a threshold in the number of knots. Once this 

threshold is reached, adding more knots has a minimal effect on the fit, while a 

number of knots below this threshold leads to an over-smoothed fit. As a general 

rule, they suggest 4-5 unique observations between knots, with a maximum number 

of knots between 20 and 40. We will use the default choice for the number of knots 

K given by Ruppert et al. (2003, p. 126) 

K = min I - x number of unique 2^,35 J . (5.37) 

The choice of the location of the knots will also affect the fit. More knots 

are needed in rougher areas of the scatter in order to capture the fluctuations with 

frequent slope changes, while smoother parts of the scatter will not need as many 

knots since there is less of a need for a change in slope. Ruppert et al. (2003, p. 126) 

suggest knot locations given by 

Ki = I — ) th sample quantile of the unique £j, I = 1 , . . . , K. (5.38) 
\K + 2 / 

Several data-driven methods for estimating the smoothing parameter are out­

lined in Chapter 1. Since the goal is to obtain one set of survey weights, we will not 

fit a smoothing parameter for each study variable. One option is to fix the degrees 

of freedom of the smooth and find the corresponding A. A scatterplot smooth with 

v degrees of freedom summarizes the data to about the same extent as a {y — 1)-

degree polynomial, which provides some guideline in choosing degrees of freedom. 

A second reasonable option is, if one study variable is considered more important 

relative to the others, to use one of the data-driven methods for choosing A with 
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this study variable. This smoothing parameter estimate is then used for the other 

study variables. The P-spline with random effect for cluster in (5.3) requires two 

smoothing parameters, one for the knot terms and one for the random effect. We use 

a combination of the two. For the penalized spline with cluster random effect used 

in SPLRE and MBRE, we fit the model to the linear data using the function lme in 

Splus. Here the linear data is assumed to be the most important of the eight "study 

variables". The smoothing parameter associated with the random effect is estimated 

from this fit. The degrees of freedom due to the knot terms is then fixed and the 

corresponding degrees of freedom is computed as outlined in Chapter 1. A justifi­

cation for combining these two methods for the two different smoothing parameters 

follows from Aerts et al. (2002). 

5.5.4 Results 

Population data were generated for each of the eight study variables with four 

different combinations of variance parameters a2 and r2. One thousand samples were 

then drawn from each of these populations and the five estimators were computed 

for each sample. The estimators involving the penalized spline were computed with 

4 degrees of freedom and with 10 degrees of freedom assigned to the knot terms. 

Mean square error (MSE) ratios are shown in Tables 5.1 and 5.2. The denominator 

in both tables is the MSE of the estimated sum of the response using the SPLRE 

method. Thus, ratios above 1 favor the use of SPLRE. It is clear that, in most cases, 

SPLRE does significantly better than HT, LIN, and SPL, while it often does as well 
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as MBRE. Recall that MBRE is a model-based method; it is, essentially, the result 

we would get by fitting a separate spline model to each study variable in each sample 

and ignoring the design properties of the simulation, instead relying solely on the 

model. Since the objective was to avoid having to rely on a model, we use MBRE 

as a comparison only and not as a viable option for our purposes. This re-fitting is 

often not an option in a real survey context, where a single set of weights is required. 

5.6 S u m m a r y 

In this chapter, we constructed a model-assisted survey estimator using a penal­

ized spline. When the smoothing parameter is fixed, this estimator has the form of 

a linear estimator and also the form of the traditional Horvitz-Thompson estimator 

plus a regression adjustment term. Additionally, under reasonable conditions, the es­

timator is location and scale invariant. Asymptotically, Var (iy<spi) can be estimated 

by (5.24). By fixing the degrees of freedom of the smooth obtained by the P-spline, 

we compute the weights w^ in (5.13) once, regardless of the number of study vari­

ables. This yields a single set of weights that can be applied to all study variables. 

Fixing degrees of freedom of the smooth involves fixing the smoothing parameters 

and hence, the variance components; the variance components are not estimated for 

all study variables (or perhaps not for any study variable). Yet, the weights derived 

from iytSpi will provide design consistent estimates for ty. 

The simulation study in Section 5.5 illustrates the usefulness of the estimator 

iytSpi- Data were generated for eight different study variables, all with different mean 



no 

Table 5.1: Mean square error ratios greater than one favor the model-assisted es­
timator with P-spline and cluster random effect. Results based on 1000 replicate 
random samples of size n/ — 48 and n, = 12, i e s/. Degrees of freedom assigned to 
the knot terms is 4. 

Study variable a2 r2 

linear 0.01 0.01 
0.01 0.25 
0.25 0.01 
0.25 0.25 

quadratic 0.01 0.01 
0.01 0.25 
0.25 0.01 
0.25 0.25 

bump 0.01 0.01 
0.01 0.25 
0.25 0.01 
0.25 0.25 

jump 0.01 0.01 
0.01 0.25 
0.25 0.01 
0.25 0.25 

exponential 0.01 0.01 
0.01 0.25 
0.25 0.01 
0.25 0.25 

growth 0.01 0.01 
0.01 0.25 
0.25 0.01 
0.25 0.25 

cyclel 0.01 0.01 
0.01 0.25 
0.25 0.01 
0.25 0.25 

cycle4 0.01 0.01 
0.01 0.25 
0.25 0.01 
0.25 0.25 

HT LIN SPL MBRE 
35.65 1.65 1.95 1.01 

6.64 3.42 1.19 0.95 
1.40 1.25 1.00 1.04 
1.51 1.51 1.09 1.01 

29.92 43.73 3.12 0.40 
18.27 23.03 1.10 0.78 

1.10 1.38 1.00 0.97 
2.67 2.20 1.91 0.92 

21.19 3.13 0.99 0.97 
2.46 1.35 1.12 1.11 
1.43 1.05 1.00 0.98 
1.67 1.09 1.10 0.99 

10.87 4.13 1.27 0.79 
21.32 10.60 1.54 0.91 

3.56 1.97 1.00 0.93 
5.68 2.52 1.14 0.89 

29.23 2.20 1.70 0.92 
13.63 1.89 1.26 0.91 
2.61 0.98 1.00 0.89 
3.76 0.94 1.07 0.97 

23.58 7.36 1.74 0.92 
16.51 8.19 1.35 1.00 
2.51 1.60 1.00 0.93 
3.47 1.68 1.06 0.99 

12.89 5.31 2.03 0.79 
39.39 19.62 2.86 1.13 

1.97 1.06 1.01 0.89 
4.33 1.90 1.17 0.96 
9.92 1.87 1.08 0.98 
1.56 1.61 1.76 0.91 
1.09 1.07 1.00 0.93 
1.12 1.21 1.02 1.08 

functions. To obtain values for the smoothing parameters, we used a combination of 

data-driven methods and fixing the total number of degrees of freedom of the smooth 

while still only computing the Wk's once. These weights were then applied to all of 



I l l 

Table 5.2: Mean square error ratios greater than one favor the model-assisted es­
timator with P-spline and cluster random effect. Results based on 1000 replicate 
random samples of size nj = 48 and n̂  = 12, i € sj. Degrees of freedom assigned to 
the knot terms is 10. 

Study variable <r2 r2 

linear 0.01 0.01 
0.01 0.25 
0.25 0.01 
0.25 0.25 

quadratic 0.01 0.01 
0.01 0.25 
0.25 0.01 
0.25 0.25 

bump 0.01 0.01 
0.01 0.25 
0.25 0.01 
0.25 0.25 

jump 0.01 0.01 
0.01 0.25 
0.25 0.01 
0.25 0.25 

exponential 0.01 0.01 
0.01 0.25 
0.25 0.01 
0.25 0.25 

growth 0.01 0.01 
0.01 0.25 
0.25 0.01 
0.25 0.25 

cyclel 0.01 0.01 
0.01 0.25 
0.25 0.01 
0.25 0.25 

cycle4 0.01 0.01 
0.01 0.25 
0.25 0.01 
0.25 0.25 

HT LIN SPL MBRE 
15.94 1.14 1.16 0.97 
10.34 4.63 1.13 0.95 

1.69 1.29 1.34 0.99 
1.20 0.98 1.02 0.94 

28.46 9.20 1.07 0.91 
19.64 31.63 1.41 1.04 
3.61 2.48 1.06 0.97 
2.60 1.74 1.12 0.97 
7.27 2.68 1.73 0.72 
6.58 3.29 1.37 1.11 
1.34 1.11 1.07 1.02 
1.41 1.11 1.17 1.03 

10.94 10.38 2.54 0.87 
37.39 25.15 2.70 0.92 
4.55 2.48 1.12 0.95 
8.30 4.75 1.49 1.10 

44.77 1.35 0.87 0.54 
39.47 1.96" 1.85 1.14 

2.72 0.94 1.30 1.07 
3.13 0.90 1.15 1.01 

12.49 4.20 1.28 0.93 
32.10 25.24 1.82 1.03 

2.80 1.68 1.20 1.04 
3.47 1.48 1.06 0.99 

26.55 3.27 1.18 0.82 
32.01 18.80 1.37 1.05 
3.07 1.53 1.32 0.79 
2.97 2.11 1.23 1.03 

32.96 3.52 1.17 0.87 
2.72 2.88 2.68 1.09 
1.02 1.10 1.04 0.91 
1.84 1.70 1.69 1.09 

the study variables. The results using iytSpi were compared to the Horvitz-Thompson 

estimator and to two other model-assisted estimators, one using a linear model and 

one using a P-spline with no random effect for cluster. Additionally, results from 
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ty,spi were compared to the model-based estimator from Zheng and Little (2003). In 

the comparison to the model-based estimator, we fit a model to each study variable. 

As noted above, this was done for comparison. The results show that when the 

model-based estimator has a correctly specified model, it is usually better than iVtSpi 

in terms of MSE. However, £yi5pi is extremely competitive and is superior to the 

model-based estimator when the model is incorrectly specified. 



Chapter 6 

DISCUSSION A N D FUTURE RESEARCH 

6.1 Summary of current research 

We set forth to present and describe new methods that can be used in sample 

surveys to estimate characteristics of domains of interest. These characteristics can 

be specific quantities associated with an individual domain, as in estimating cluster 

totals or mean ANC for a HUC, or properties of a collective set of domains, as in 

the estimation of the distribution of change in ANC over time across all HUCs. This 

dissertation introduced two methods for addressing estimation problems in sample 

surveys: GCB estimators and a model-assisted estimator using penalized splines. 

Chapter 2 introduced the GCB estimator and presented a numerical algorithm 

for the computation of GCB estimates. The GCB estimates, like the CB estimates 

introduced by Ghosh (1992), have good individual and ensemble properties. The 

motivating example behind the GCB estimator was an ecological application. In 

such a scenario, it is often of interest to obtain estimates on different scales, and 

the ensemble properties of GCB estimates are examined under a transformation. We 

demonstrate that the CB and GCB estimates of a transformation are not the CB and 

GCB estimates, respectively, of the transformation. As an ensemble, the transformed 
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GCB estimates are better than the transformed Bayes estimates as, asymptotically, 

the edf of the transformed Bayes estimates is biased for the posterior mean of the 

edf of the transformed quantities of interest while, under reasonable conditions, the 

edf of the transformed GCB estimates appears not to be. 

With computing power continuing to increase and with the availability of free 

(at the writing of this dissertation) software such as WinBUGS and R, Bayesian 

methods are readily accessible. Bayesian methods also can be an attractive approach 

to analysis with complex models since posterior means can be obtained for any 

parameter or function of parameters. In this context, the GCB estimator introduced 

in Chapter 2 should have a wide appeal in applications that require an understanding 

not only of individual domain characteristics, but also of ensemble characteristics. 

Using the GCB estimator, we are able to extend the analysis of the Scotland 

lip cancer data from Stern and Cressie (1999) to a fully Bayesian context for a CAR 

model, producing results close to those of the earlier study. Having thus confirmed 

that GCB produces believable results for a CAR model, we apply the algorithm 

to a CAR model used on water quality data from the Mid-Atlantic Highlands. The 

nested structure of the watersheds in this region suggests that several levels of spatial 

correlation may exist. The GCB estimator is able to take advantage of this using 

a more complex model in which a CAR is placed on two levels of residuals. The 

flexibility of GCB is demonstrated in Chapter 4 where we reconsider the analysis of 

Opsomer et al. (2008) whose small area estimates for mean ANC in watersheds of 

the Northeast U.S. employ a penalized spline. As shown by Ruppert et al. (2003), 
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a P-spline can be formulated as a linear mixed model. Using the mixed-model spec­

ification we obtain GCB estimates that exhibit similar patterns to the results from 

Opsomer et al. (2008). 

In Chapter 5, we looked at a second problem in survey estimation: obtaining 

a set of survey weights that can be applied to many study variables in a two-stage 

sampling design. The model-assisted estimator discussed in this chapter, tytSpi, was 

shown to have properties that make it useful in a survey context: it is a linear esti­

mator, under reasonable conditions it is scale and location invariant and is calibrated 

to the model estimate, and it is design consistent. In a simulation study, iyi3pi was 

generally superior to other model-assisted estimators. Additionally, it was found to 

be competitive with a model-based estimator when the model was correctly speci­

fied and superior to the model-based estimator wherr-the model was not correctly 

specified. 

6.2 Future work 

While the two methods discussed in this dissertation are fairly disparate, they 

are loosely tied together in their use of constrained or penalized methods. Future 

work includes an investigation of this connection in some detail. In particular, the 

Lagrangian function for the GCB estimator has the form of a sum of squares plus 

some "penalty" terms. This is similar to the form for maximum penalized likelihood 

in which we have a term to be minimized subject to a penalty for roughness. We 

want to examine what happens to the GCB estimates as the "penalty" coefficients 
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are allowed to vary and whether or not the GCB estimator has an interpretable mixed 

model representation similar to that of the penalized splines discussed in Chapters 

1 and 5. 

Currently, the GCB algorithm is a numerical procedure. It requires the estima­

tion of a solution to a system of non-linear equations, and this system of equations 

can contain several unknown parameters. In order for the GCB algorithm to work 

well, the system of equations must have a stable solution and/or use a numerical algo­

rithm that is able to converge correctly upon the solution. Our use of the R function 

optim to solve for Lagrangian parameters involves a minimization of squared er­

ror. In minimizing squared error, the algorithm converged more easily than when we 

solved the system of equations by minimizing absolute error. However, if the squared 

error function is flat in a neighborhood of the vertex, the numerical algorithm may 

have a more difficult time converging upon the correct minimum. Thus, options used 

in the numerical procedure should be investigated more thoroughly, including crite­

ria for convergence and optimization methods. This is especially important when 

the Lagrangian is of high dimension. Use of a numerical algorithm to compute GCB 

estimates can be avoided if an analytical solution can be found. 

In Chapter 2, we also noted that the GCB estimates of a function of the quantity 

of interest does not give the same results as applying the same function to the GCB 

estimates. Like CB estimators, GCB estimators constrain only low-order properties 

of the conditional distribution. In order for the ensemble properties of the GCB 

estimates to be preserved under a transformation, it is likely that at least some 
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constraint on the conditional covariance needs to be included. Depending upon the 

model, this may increase the dimensionality of the problem appreciably. However, 

using models for which the covariance structure can be specified relatively simply 

or with few parameters, such as an autoregressive process of order one, may make 

specification of a covariance constraint reasonable. 

Chapter 5 focuses solely on one of the four cases describing the extent to which 

the auxiliary information is known and on what scale it is known, namely, Case A in 

which the auxiliary information is available for all clusters in the population. Recall 

that in Case D, auxiliary information is available for all clusters in the first-stage 

sample only. As such, it is difficult to make extensive use of the auxiliary information. 

Estimators for population quantities in this case must be design -based rather than 

model-based or model-assisted. Because of this, Case D is fairly uninteresting in the 

context of Chapter 5, and future work will focus on exploring Cases B and C. Of the 

two, Case B offers the most promise. In both Case B and C, regression modeling 

can be used to estimate quantities associated with elements. However, in Case C we 

can only obtain regression estimates of cluster-level quantities for clusters that are 

part of the first-stage sample. A design-based estimator must be used for quantities 

associated with the population. Case B is more conducive to the use of regression 

estimates since we have auxiliary information at the element-level from which cluster 

and population quantities can be estimated. 
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