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ABSTRACT 
 
 

VISCOELASTIC CHARACTERIZATION AND MODELING OF MUSCULOSKELETAL SOFT TISSUES 
 
 

 Over the last decade there has been a dramatic rise in musculoskeletal soft tissue 

injuries in the general, athletic, and military populations. The etiology of this increase has been 

largely ascribed to dynamic loading events, including strenuous physical overuse and trauma. 

Additionally, instability arising from soft tissue pathology or trauma can induce and/or 

accelerate joint degeneration. Degenerative sequelae, such as post-traumatic osteoarthritis, can 

cause significant debility and an associated reduction in one’s quality of life. Development of 

successful treatment modalities for joint instability and soft tissue compromise is highly 

dependent upon a thorough understanding of the affected tissue’s mechanical (viscoelastic) 

behavior. However, current soft tissue viscoelastic characterization paradigms predominantly 

utilize quasi-linear viscoelastic (QLV) formulae despite substantial empirical evidence which has 

conclusively demonstrated that these tissues violate its fundamental assumption of elastic and 

viscous behavior separability. Furthermore, development of more applicable nonlinear 

viscoelastic formulations has been hindered by the inability of currently-available constitutive 

models and characterization methodologies to include relaxation manifested during dynamic 

loading events. As a result, implementation of nonlinear viscoelastic formulae in soft tissue 

computational models has not been widespread. To surmount these shortcomings, this work 

develops a novel, nonlinear viscoelastic constitutive formulation and a corresponding 

experimental characterization technique which can be included in current state-of-the-art 

computational algorithms. Specifically, the aims of this dissertation were: (1) Develop and 

validate a nonlinear viscoelastic characterization technique for musculoskeletal soft tissues that 

incorporates relaxation manifested during loading; (2) Characterize the nonlinear viscoelastic 
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behavior of various types of ligamentous tissues and tendon; (3) Integrate a fully nonlinear 

viscoelastic constitutive formulation into a finite element algorithm. Aims 1 and 2 were 

accomplished via development and application of a novel comprehensive viscoelastic 

characterization (CVC) technique and constitutive formulation to describe the nonlinear 

viscoelastic behavior of various human cervical spine ligaments (anterior and posterior 

longitudinal ligament and ligamentum flavum) and ovine Achilles tendon. Additionally, 

improvements in the predictive accuracy of the CVC fitted coefficients over previously accepted 

viscoelastic characterization techniques were quantified. Furthermore, a computationally 

tractable fully nonlinear viscoelastic formulation was developed and validated against an 

analytical solution (Aim 3). Implementation of the important nonlinear viscoelastic behavior into 

computational models will greatly accelerate our ability to understand the functional role of soft 

connective tissues in whole joint mechanics and facilitate future treatment options. 
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1. Background 

1.1. Clinical Significance 

 Musculoskeletal soft tissue injuries resulting from strenuous or traumatic dynamic 

activities are becoming increasingly prevalent and costly. For example, automobile-related 

spinal ligamentous injuries such as whiplash1-7 are common among the general population and 

carry corresponding annual costs of $4.5 billion in the United States8,9. Additionally, acute lower-

limb and spinal soft tissue injuries are a frequent occurrence among athletes10-14 and the military 

population due to physically rigorous training15-18 and service19-22 environments. In addition to 

the clinically debilitating nature and the societal costs of acute soft tissue injury alone, the 

resulting degenerative sequelae are equally burdensome. Compromise of peri-articular soft 

tissues significantly increases the risk of developing chronic post-traumatic osteoarthritis (PTOA) 

in the affected joint7,23-26. Long-term clinical follow-up studies have reported a 10-fold increase 

in the risk of developing knee osteoarthritis following a ligamentous or meniscal injury27,28. PTOA 

affects approximately 5.6 million individuals in the United States and carries a corresponding 

annual cost of $3 billion28,29. Alarmingly, current treatment methods have not been successful at 

eliminating or arresting PTOA progression26,27. Specifically, it has been reported that the post-

treatment risk of developing PTOA following a significant joint injury is greater than 40%28,30. 

These data suggest that current repaired and reconstructed tissues do not restore the native, 

pre-injury mechanical environment of the tissue. Since the functional role of musculoskeletal 

soft tissues, such as ligament and tendon, is to facilitate, guide, and constrain joint motion 

under both physiologic and traumatic dynamic loading events, it is necessary to consider and 

characterize their temporal mechanical behavior. As a result, treatment modalities for 

musculoskeletal soft tissue injury may be significantly improved by accurately understanding 
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and characterizing the normal viscoelastic behavior of these tissues. This dissertation seeks to 

build upon current soft tissue viscoelastic characterization paradigms, specifically for tendon 

and ligament musculoskeletal soft tissues, in order to obtain accurate experimental data which 

will serve as the basis for development of future novel treatment modalities. 

1.2. Functional Anatomy of Ligamentous and Tendinous Tissues 

 Ligament and tendon are dense fibrous connective tissues with similar, primarily 

mechanical, functional roles that provide locomotion and stabilize the skeleton. Tendinous 

tissues transmit muscular contractions to bone and limbs in order to invoke locomotion and 

provide active joint stability (via the musculature). Ligamentous tissues span across a joint 

(connecting adjacent bones) in order passively guide physiologic joint motion patterns and 

restrict potentially harmful movements. The gross (tissue-level) mechanical phenomena 

exhibited by these tissues are a result of their specific geometry and their biochemical and 

microstructural composition. The objective of this dissertation is to develop a general method 

and constitutive formulation to characterize and model the viscoelastic behavior of these 

musculoskeletal tissues. The following subsections outline the specific anatomy of ligamentous 

and tendinous tissues and relate these anatomical features to their functional mechanical role.  

1.2.1. Relevant tendon anatomy 

 Tendon is a natural fibrous composite material with a hierarchical structure. It is 

composed of collagen fibers (predominately type I) embedded in a highly hydrated proteoglycan 

matrix (ground substance). Collagen fibers dominate the solid-phase microstructure, 

constituting more than 85% of the tissue’s dry weight31. The collagen structure exhibits its own 

hierarchical organization, where tropocollagen molecules successively amalgamate to form 

three distinct structured bundles: (1) five tropocollagen molecules are linearly staggered at 

periodically repeating units spaced 67 nm apart32 (called the D-period) to form microfibrils; (2) 
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microfibrils are grouped to form subfibril structures; (3) collagen fibrils are assembled from 

these subfibril structures (Figure 1)33. Each of these collagen substructures are tightly packed 

and exhibit a high degree of anatomical alignment parallel to the longitudinal axis of the tendon. 

Intermolecular and intramolecular crosslinks exist within the alpha-helix chains of the 

tropocollagen molecules and between adjacent tropocollagen molecules and the extracellular 

matrix, respectively, which allows these tissues to achieve high mechanical integrity (high tensile 

stiffness and strength)34,35. Additionally, the collagen fibrils exhibit a wavy crimp pattern that is 

thought to play an important role in the tissue’s mechanical behavior (Figure 1)36. Fibrils are 

bound together via the ground substance and the associated proteoglycans (PGs) in order to 

form fascicle structures (Figure 1)31,34,37. Individual collagen fascicles are bound within a 

fascicular membrane sheath (endotenon), which is a loose connective tissue that supports blood 

vessels, nerve endings, and lymphatics31,38. Similarly, the external reticular membrane surrounds 

a group of fascicles to form the gross tendon structure (Figure 1).  

 
Figure 1: Structural hierarchy of the tendon. Adapted from Kastelic et al.

33
. 

 Although PGs constitute a relatively small portion of the total solid phase tendinous 

microstructure (less than 2% of the total dry weight), these molecules are essential for 

maintaining tendon hydration (and therefore viscoelastic mechanical function) and collagen 
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fibrillogenesis34,38. Each PG contains a protein core with at least one glycosaminoglycan (GAG) 

side chain that determines its functional role. For example, PGs aggregated with the anionic 

hyaluronan GAG forms a hydrophilic molecule which imbibes water34,39, thereby contributing to 

regulation of tissue hydration. Water constitutes more than half (approximately 60%) of the 

total wet weight of tendon40. Other GAG molecules, such as decorin, are important for 

maintaining proper collagen fiber diameters41,42 and alignment43,44 during fiber development. 

 Cellular components (predominately fibroblasts) are sparsely embedded within the 

fascicle ground substance and are aligned in the direction of the fibrils (Figure 1)31. These cells 

synthesize and secrete collagen fibers and extracellular matrix components34,45,46. Production of 

these extracellular components is regulated by mechanobiologic stimulation. For example, 

human tendon fibroblasts have been shown to modulate production of type I collagen when 

subjected to a dynamic loading environment47. Cellular nutrition is provided by diffusion or 

vascular supply31,38.  

1.2.2. Relevant ligament anatomy 

 Although ligaments are biologically and morphologically similar to tendons, these 

tissues contain distinct differences that reflect upon their unique physiologic role. For example, 

ligaments must exhibit greater extensibility than tendons in order to facilitate joint motion40. 

Morphologically, this reduced stiffness is achieved via a reduced collagen fiber content (70% of 

the total dry weight) and a reduced degree of parallel collagen fiber arrangement as compared 

to tendons31,40,48-50. The increase in collagen fiber dispersion is a result of the different in vivo 

loading conditions experienced by these two tissue types. Whereas tendons predominately 

experience consistent uniaxial (longitudinal) forces, ligaments may be subjected to multiaxial 

loading patterns40 (depending on their anatomical location) that require specific mechanical 

properties in the off-axis directions. For example, the cruciate and collateral knee ligaments 



5 
 

exhibit a spatially varying collagen fiber arrangement in order to withstand multidirectional 

loads51,52.  

 Additionally, ligaments typically contain greater amounts of the structural protein 

elastin (typically 1% to 2% of the total dry weight) as compared to tendons40. In some specialized 

ligaments, such as the spinal ligamenta flava, elastin is the predominate fibrous component53. 

This greater elastin content gives the ligamenta flava unique mechanical properties that allow it 

to undergo a greater amount of elastic deformation as compared to the other, predominately 

collagenous, spinal ligaments14,54,55. 

 In addition to the primary mechanical function of the ligament, recent studies have 

suggested that these tissues contain innervations that may play a secondary role in joint stability 

and proprioception. It has been demonstrated that mechanoreceptors within ligamentous tissue 

become activated under deformation, which may trigger the peri-articular musculature to 

actively stabilize the joint56. Therefore, joint instabilities resulting from ligament compromise 

may not only be a result of a disruption to the ligament’s normal mechanical behavior, but also a 

loss in proprioception57 via damage to these mechanoreceptors. 

1.2.3. Ligament and tendon biomechanics 

 The following subsections provide a background of the empirical elastic (quasi-static or 

time-independent) and viscoelastic (time-dependent) behavior of ligament and tendon, and 

relate this behavior to the tissue’s anatomy described above. 

Elastic behavior 

 The quasi-static elastic behavior of ligament and tendon has been extensively studied. 

These tissues experience nonlinear, finite deformations in vivo which cannot be described by the 

infinitesimal strain theory (Hooke’s law) of typical engineering materials58. When these tissues 

are tensioned at a constant strain rate, they exhibit the nonlinear, hyperelastic force-
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displacement (or stress-strain,  - ) relationship shown in Figure 259. The concave-up region from 

0 to A is commonly referred to as the “toe region” of the curve. This nonlinear region typically 

encompasses the physiologic range of the tissue; the relatively linear region from A to B typically 

lies outside of this range59. The increased stiffness (slope or      ) in the A-B region serves as a 

protective mechanism for the tissue and its associated joint by increasing the tissue’s energy-

absorbing capacity and restricting non-physiologic joint motions. Following this linear region, a 

nonlinear sub-failure region (from B to C) is proceeded by ultimate tissue failure at C. 

 
Figure 2: A typical force-displacement (or stress-strain) curve for dense connective tissue. 

 Tendons and ligaments have unique load-deformation profiles that are specific to their 

in vivo mechanical function. Tendons typically have a smaller toe region and a greater stiffness 

and ultimate strength than ligaments. These properties maximize the efficiency with which 

muscular contractions are transmitted to the bone and protect the tissue when subjected to 

large musculoskeletal forces31,40. The high mechanical integrity (stiffness and strength) of the 

tendon is derived from its relatively high proportion of longitudinally-aligned collagen fibers31. 

Conversely, ligaments exhibit a longer toe region (i.e., they undergo a greater amount of 

deformation at a reduced stiffness), in order to facilitate joint movement40. This increased 
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extensibility decreases the amount of muscular expenditure required to move the joint 

throughout physiologic motions55.  

 The shape of the nonlinear loading curve is related to the tissue’s microstructure, 

specifically collagen fiber recruitment and orientation. In the zero-force configuration, the 

collagen fibrils are crimped (Figure 1) and offer negligible resistance to deformation. As a tensile 

load is applied to the tissue, these fibrils become successively straightened and recruited60, 

resulting in the toe region of the loading curve. The linear region of the loading curve arises as 

more fibrils are recruited and become load-bearing60. By direct measurement of the collagen 

fiber spread of spinal ligaments during deformation (via X-ray diffraction techniques), Kirby et 

al.50 and Hukins et al.49 demonstrated an increase in fibril alignment towards the loading axis. As 

the fibers became more oriented with the loading axis, apparent stiffness of the tissue also 

increased.  

Viscoelastic behavior 

 While the elastic properties offer some insight into the functional mechanical role of 

tendons and ligaments, application of these static properties is severely restricted since these 

hydrated tissues are subjected to transient and dynamic deformations in vivo. As a result, these 

tissues exhibit a significant amount of viscoelastic, or time-dependent, behavior, such as: creep, 

stress relaxation, hysteresis, and strain-rate dependent stiffness. Creep describes the continued 

increase in tissue strain over time when subjected to a constant stress (Figure 3). Stress 

relaxation describes the temporal stress decay within the tissue when it is subjected to a 

constant strain (Figure 4). The viscoelastic effects of hysteresis and strain-rate dependent 

stiffness arise during tissue loading and unloading. Hysteresis is defined as the energy lost 

during cyclic loading, and is evidenced by energy dissipation (depicted as different loading and 

unloading profiles) on a stress-strain plot of a loading cycle [Figure 5(a)]. Finally, the effective 
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stiffness of a viscoelastic material is dependent upon the rate which the tissue is extended 

[Figure 5(b)]. A primary objective of this dissertation is to develop a robust method to 

characterize the transient experimental stress relaxation behavior of musculoskeletal soft 

tissues which incorporates the viscoelastic effects present during the experimental loading 

period. 

 

 

  
Figure 3: Creep behavior. If a constant stress of    is instantaneously applied to a 
viscoelastic material (left), the resulting strain will increase (or creep) over time (right). 

 

 

  
Figure 4: Stress relaxation behavior. If a constant strain of    is instantaneously applied to 
a viscoelastic material (left), the resulting stress will decrease (or relax) over time (right).  

 

σ

t

σ0

ε

t

ε

t

ε0

σ

t



9 
 

  
Figure 5: Viscoelastic effects during loading and unloading. (a) Hysteresis is the energy 

dissipated during cyclic loading. (b) The stiffness of a viscoelastic material (     ) is 
dependent upon the loading rate. 

 While it is widely accepted that the phenomenological viscoelastic behavior of soft 

connective tissues arises from its morphology, the specific microstructural mechanisms for this 

behavior are a subject of ongoing debate. Current theories speculate that the origin of tendon 

and ligament viscoelasticity arises from mechanisms acting on different length scales, including: 

intermolecular viscoelasticity of the collagen fibrils, interactions between the solid-phase 

(collagen and PG) constituents, and/or movement of fluid through the tissue. Intermolecular 

viscoelastic effects within the collagen fibrils themselves have been reported via observation of 

changes in the D-period spacing between tropocollagen molecules in tendon subjected to creep 

experiments61. Additionally, development of theoretical constitutive models has led some to 

hypothesize that interactions between the GAG and fibril constituents contribute to tissue-level 

viscoelasticity62,63. However, recent experimental work has demonstrated that GAG-fibril 

interactions do not significantly affect the viscoelastic behavior of the tissue39. Instead, the GAG 

constituents may contribute to tissue-level viscoelasticity by regulating fluid flow through the 

tissue. Similar to cartilage, the GAG constituents in ligament affect its transverse permeability in 

compression64. This compressive behavior may affect fluid flow through the matrix (inducing 

tissue-level viscoelasticity) during axial tensile loading because of the relatively large Poisson’s 

ratio (lateral contraction) observed by these tissues64-67. Collectively, these previous 
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experimental studies of molecular-level viscoelasticity and fiber-level fluid flow suggest that 

several mechanisms, at different length scales, are responsible for the gross viscoelastic 

behavior of the tissue.  

 As with the elastic mechanical behavior describe above, the viscoelastic properties of 

tendon and ligament have important contributions to normal physiologic function by facilitating 

joint motion, minimizing muscular expenditure, and protecting the joint (and the tissue itself) 

during traumatic events. Both tendon and ligament exhibit strain-rate dependent stiffness31; 

displaying a reduced stiffness at slow (physiologic) strain rates, and a high stiffness at fast 

(traumatic) strain rates [Figure 5(b)]. For ligaments, a reduced stiffness decreases the amount of 

muscular energy required to produce physiologic joint motions. At traumatic strain rates, the 

increased stiffness and ultimate load indicates an increased energy-absorbing capacity, 

improving the tissue’s resistance to abnormal motions and mitigating ligamentous and/or joint 

injury. Similar strain-rate dependent behavior has been reported for muscle-tendon units68 

protecting these tissues from injury during fast loading rates. Additionally, tendon creep 

(lengthening under constant load) minimizes the rate of muscle fatigue during isometric 

contractions by allowing the muscle to shorten31. 

 Historically, mathematical models used to describe connective tissue viscoelasticty have 

treated the elastic and time-dependent mechanical properties as separate entities (refer to 

section 1.3.2 below). Recent work has shown that separability of these behaviors cannot provide 

a comprehensive representation of the experimental tissue behavior69-74. The outcome of this 

dissertation will significantly contribute to the development of these non-separable viscoelastic 

models by developing a more robust and comprehensive mathematical model to describe 

connective tissue mechanics. 
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Effect of injury, healing, and current surgical treatment techniques on ligament and tendon 

mechanical properties 

 Ligament and tendon injury can occur as a result of an single overstretch event (sprain), 

where the elastic limit (Figure 2, region between B and C) of the tissue is exceeded, or by 

repetitive cyclical loading (overuse)75. Sprains are clinically characterized by three grades: Grade 

I is minimal overstretch without tissue disruption; Grade II is moderate overstretch with gross 

tears and hemorrhages; Grade III is complete tissue disruption31. Sub-failure injuries (sprain 

Grades I and II and cyclical overuse) can greatly affect the mechanical performance of the native 

tissue immediately following the injury (i.e., if no healing is allowed to occur). Alterations in 

elastic properties include a rightward shift in the toe region on the stress-strain curve, a reduced 

stiffness in the linear region, and/or a decreased strength76-80. Viscoelastic alterations include a 

greater amount of creep and altered stress relaxation behavior, which suggests that injured 

tissues dissipate energy abnormally48,79,81.  

 In addition to the effects of injury, there have been several studies which have 

interrogated the effects of healing and treatment on the mechanical properties of these tissues. 

Many of these previous studies utilized the knee medial collateral ligament (MCL) model 

because this tissue is known to exhibit spontaneous healing82. For healing times ranging from 

seven days to two years, improvements in the mechanical integrity of the injured MCL have 

been reported; however, the mechanical properties (elastic and viscoelastic) remain inferior to 

the normal state80-90. Additionally, treatment of injured anterior cruciate ligament (ACL), which 

does not exhibit spontaneous healing31,91, is typically performed via bone-patellar tendon-bone 

or hamstring tendon grafts82. Biomechanical evaluation of human cadaveric knees determined 

that these grafts restore physiologic anterior tibial translation motion, but not rotary motion92. 

This may be a result of the difference inherent mechanical properties of the graft compared to 
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the native ACL, the graft placement, and/or a reduction of the initial graft tension following 

insertion (because of graft relaxation)31,82,92. Furthermore, surgical treatment of tendon via 

sutures is complicated by the inherent viscoelasticity of the tissue as well as the viscoelastic 

behavior of the suture material, which can affect the gap distance between the ruptured ends of 

the tendon31.  

 Together, the inferior mechanical behavior of healing and/or treated ligament and 

tendon may cause significant joint laxity and instability, altered joint kinematics and loading 

patterns, altered muscular contraction characteristics, and a higher incidence of tissue failure. It 

is thought that these alterations following injury or treatment are the mechanism of the 

abovementioned high incidence of PTOA. Effective treatment practices of these injuries would 

restore the normal mechanical function of these tissues. Therefore, this dissertation seeks to 

develop a robust and accurate mechanical characterization method and a mathematical 

formulation that elucidates the normal mechanical behavior of tendon and ligament tissues, 

thereby establishing a basis wherein novel treatment modalities can be established. 

1.3. Viscoelastic Theory 

 Visceolastic theory describes the time-dependent relationship between stress and strain 

for a solid material. Consequently, the current mechanical state of the material depends on 

previous loading events; that is, the mechanical behavior is dependent upon the loading history 

(history-dependent behavior). All biological tissues, especially soft tissues such as ligament and 

tendon, exhibit viscoelastic behavior. In the previous section, it was demonstrated that this 

time-dependent behavior is necessary to perform the important functional roles of the tissue. 

This section develops the mathematical formulae typically used to model viscoelastic 

phenomena in biological tissues.  
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1.3.1. Linear viscoelasticity  

Transient behavior 

 For typical engineering materials (e.g., steel, aluminum, titanium) at room temperature 

subjected to small strains, the one-dimensional stress response (   to an instantaneous 

application of strain (  ) is described by Hooke’s law: 

       (1) 

where   is the Young’s modulus of the material that characterizes its resistance to deformation 

(stiffness). Similarly, the material’s compliance ( ) in response to an instantaneous stress 

application of    can be described by the inverse of equation (1):           . For a 

viscoelastic material, the intrinsic parameter relating stress and strain (analogous to   for elastic 

materials) depends on time,  . Thus, the time-dependent stress response to an instantaneous 

(transient) strain application of    is given by: 

              (2) 

where      is the relaxation modulus (or relaxation function) of the material that characterizes 

its stress decay (stress relaxation) over time. An analogous form of equation (2) can be 

developed to describe the time-dependent strain in response to an instantaneous stress 

application of   :             , where      is the creep compliance of the material that 

characterizes its creep behavior. The mathematical form of the relaxation function is not 

arbitrary; thermodynamic restrictions require it to be a monotonically decreasing function93,94. A 

linear viscoelastic relaxation function that has been used among the biomechanics community is 

derived from the standard linear solid model59: 

            
      (3) 
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where    represents the (steady-state) elastic component of the mechanical behavior (as 

   ) and    represents the strength of the viscous (time-dependent) relaxation  component 

corresponding to the time constant   .  

Cyclical behavior 

 If a linear viscoelastic material is subjected to harmonic oscillations, the strain will “lag” 

the stress due to internal material damping (Figure 6); a consequence of the viscous component 

of the material94. Thus, for a sinusoidal stress applied to a material at a specific frequency ( , 

expressed in units of Hz): 

                  (4) 

the resulting out-of-phase strain is: 

                    (5) 

where   represents the phase lag between stress and strain (Figure 6). The tangent of the phase 

lag,        , is called the loss tangent and is a measure of a material’s internal damping94. As a 

consequence of the phase lag between stress and strain, the dynamic stiffness (  ) of a material 

can be expressed as a complex number94: 

  

  
            (6) 

which has a magnitude of: 

                    (7) 

The storage modulus (  ) and the loss modulus (   ) in equations (6) and (7) are defined as: 

                (8) 

                   

 

(9) 

where    represents the energy stored within the material and     represents the energy 

dissipated per cycle95.  



15 
 

 
Figure 6: Cyclic behavior of a viscoelastic material. The strain lags the stress by a phase 

shift, δ. 

Constitutive (general) behavior 

The equations developed above apply to very specific (transient and cyclical) loading 

histories. Since biological tissues are subjected to complex, arbitrary load applications in vivo, it 

is desirable to obtain general constitutive formulae to describe linear viscoelastic behavior. Such 

a mathematical form can be developed using the Boltzman superposition principle, which 

postulates that the effect of a compound cause is a sum of the individual causes94. Utilizing a 

more rigorous mathematical approach96, recall from above that for a single instantaneous input 

of strain: 

             (10) 

where    is the input strain magnitude and      is the Heaviside step function defined as: 

       

       
 

 
      

       

  (11) 

the resulting stress output is:             for    . A series of such step increases in strain 

can be used to describe any arbitrary strain input profile. Hence, for   discrete step increases in 

strain, equation (10) can be recast as: 

σ
, 
ε

t
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        (12) 

where     is the change in strain magnitude for the  th step occurring at time   , and   is the 

current time. Utilizing the Boltzmann superposition principle, the resulting stress output [from 

equation (2)] is: 

 
         

 

   

                (13) 

As the number of strain steps increases to infinity, equation (13) converges to the hereditary 

integral: 

 
                        

 

 

  (14) 

where   is a continuous time variable of integration representing the history effect94,96. In 

equation (14), the term          since     is imposed and falls within the bounds of 

integration96. Therefore, for a differentiable strain history, the final form of the constitutive 

relationship for a linear viscoelastic material can be cast as: 

 
             

     

  
   

 

 

 (15) 

 It can be shown that for a single instantaneous strain history of            , the 

transient stress response given by equation (2) is recovered from equation (15). Additionally, if a 

harmonic strain history      is imposed, the stress given by equation (15) can be represented as 

a complex number in the form of equation (6)94. If the relaxation function given by equation (3) 

is assumed and input into equation (15), the complex moduli are determined by94: 

 
           

    
 

      
  (16) 

          

   

     
 (17) 
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where       (  is the loading frequency as defined above).  

 Linear viscoelasticity assumes that both the elastic and the viscous components of the 

mechanical behavior are linear. Specifically, a material modeled utilizing linear viscoelasticity 

must satisfy two assumptions: (1) the relationship between stress and strain during stress 

relaxation experiments performed at different strain magnitudes (taken at isochrones) is linear 

(linear elastic behavior assumption), and (2) the relaxation modulus is independent of the 

applied strain level (linear viscous behavior assumption)94. Soft connective tissues which 

undergo finite deformations violate the assumptions of linear viscoelasticity. Therefore, more 

general, quasi-linear and fully nonlinear formulations have been developed to describe the 

nonlinear viscoelastic behavior of soft tissues.  

 It is important to note that the one-dimensional (i.e., uniaxial) nonlinear formulae in the 

following sections (1.3.2 and 1.3.3) are presented in terms of infinitesimal engineering strains in 

order to simplify their interpretation as a generalization of the linear viscoelastic formulation 

[equation (15)]. These nonlinear formulae are applicable to one-dimensional finite deformations 

because rotations are not present in uniaxial tensile tests and these infinitesimal strain values 

can be readily converted to finite deformation strain measures (e.g., Green-Lagrangian strain)34. 

1.3.2. Quasi-linear viscoelasticity 

 The quasi-linear viscoelastic (QLV) theory proposed by Fung97 has been widely-accepted 

as the gold-standard to describe the time-dependent behavior of soft connective tissues21,84,98-

105. This formulation incorporates the known nonlinear, hyperelastic behavior exhibited by soft 

connective tissues by generalizing the linear elastic behavior assumption of linear viscoelastic 

theory. Specifically, the strain- and time-dependent stress in response to an instantaneous 

(Heaviside) strain application is modeled as the separable convolution ( ) of the hyperelastic 

      and viscous      components of the mechanical behavior:  
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                   (18) 

A restriction is imposed on the relaxation function      such that       . This normalized 

function is called the reduced relaxation function. For general strain histories, the QLV equation 

takes the form59: 

 
              

      

  

     

  
  

 

 

 (19) 

Since      is independent of the applied strain magnitude, a fundamental assumption of QLV 

theory is linear viscous behavior. 

1.3.3. Fully nonlinear viscoelasticity 

 Recent studies have conclusively demonstrated both that tendon69 and ligament70-74 

exhibit fully nonlinear viscoelastic behavior (nonlinearity in both the elastic and the viscous 

aspects of the tissue’s mechanical behavior) at strain magnitudes associated with physiologic 

joint motion. This nonlinear behavior cannot be accurately captured by equation (19). Fully 

nonlinear viscoelastic formulations allow relaxation to occur as a function of the applied strain 

via a non-separable formulation94: 

 
                      

     

  

 

 

   (20) 

where        is the strain- and time-dependent relaxation modulus. The non-separability 

condition in equation (20) necessarily imposes the condition that        simultaneously 

describe both elastic and viscous nonlinearities. Several techniques for direct integration of 

equations (15) and (20) are presented in Appendix F. Under a Heaviside strain application of   , 

equation (20) reduces to: 

                     (21) 

 An objective of this dissertation is to interrogate the errors associated with the 

predicative accuracy of the QLV model. Additionally, in order to shift the current FE modeling 
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paradigm to include fully nonlinear viscoelastic effects and accurately model physically-

important dynamic loading events, a fully nonlinear viscoelastic formulation and 

characterization methodology will be developed and implemented into a FE algorithm. 

1.4. Specific Aims 

 As described above, there is a significant need to characterize and model the normal, 

nonlinear viscoelastic behavior of connective tissues. Therefore, the overall objectives of this 

dissertation are to develop a robust viscoelastic characterization technique to model the 

nonlinear viscoelastic behavior of soft biological tissues, and to implement this model into 

current FE software. In order to achieve this objective, three specific aims are designated for this 

dissertation:  

Specific Aim 1: Develop and validate a nonlinear viscoelastic characterization technique 

for musculoskeletal soft tissues that incorporates relaxation manifested during loading. 

 Viscoelastic relaxation during tensioning is an intrinsic protective mechanism of 

musculoskeletal soft tissues. However, current viscoelastic characterization methodologies for 

these tissues either negate this important behavior or attempt to incorporate this behavior 

using methods that are restricted to a specific viscoelastic formulation and/or assume an a priori 

(linear) strain ramp history. In order to address these shortcomings, chapter 2 presents the 

development and validation of a novel finite ramp time correction method for stress relaxation 

experiments that is transferrable between various viscoelastic formulations and can 

accommodate an arbitrary strain ramp history. Additionally, the errors associated with currently 

accepted characterization methodologies which utilize specific QLV and fully nonlinear 

viscoelastic formulations are elucidated. The data presented in this chapter: (1) indicate that this 

novel correction method significantly reduces the errors associated with previous 

characterization techniques, and (2) demonstrate the necessity for the use of a fully nonlinear 
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viscoelastic formulation, which incorporates relaxation manifested during loading, to model the 

viscoelastic behavior of biological soft tissues. 

Specific Aim 2: Characterize the nonlinear viscoelastic behavior of various types of 

ligamentous tissues and tendon. 

 Since ligamentous tissues exhibit large variability in morphology and biochemistry40, 

specific ligaments exhibit substantially different viscoelastic characteristics72. In addition, 

tendinous tissues may exhibit different nonlinear viscoelastic behavior than ligament69. 

Therefore, in order to gain a measure of the robustness and the applicability of the 

characterization methodology and constitutive formulae developed in chapter 2 to describe 

general musculoskeletal soft tissue viscoelasticity, this method and formulae are used to fit and 

predict the viscoelastic behavior of various spinal ligaments and tendinous tissue. 

 Chapter 3 applies the characterization method developed in chapter 2 to three human 

spinal ligaments which display unique mechanical properties. The nonlinear viscoelastic 

behavior of the human anterior longitudinal ligament (ALL), posterior longitudinal ligament (PLL) 

and ligamentum flavum (LF) were elucidated across the temporal spectrum associated with 

physiologic spinal motion patterns. It was observed that the strain-dependent viscoelastic 

behavior of the longitudinal ligaments (ALL and PLL) was dominated by both the short-term (0.1 

s) and the steady-state (>> 100 s) behavior. Conversely, the LF exhibited consistent relaxation 

behavior across the temporal spectrum. From these data, it can be concluded that the unique 

strain-dependent temporal behavior of these spinal ligaments may be a functional adaptation 

that minimizes muscular expenditure during quasi-static postures while maximizing structural 

stability during transient loading events. 

 Chapter 4 interrogates the applicability of the characterization method and the 

constitutive formulae developed in chapter 2 to describe tendinous nonlinear viscoelasticity. 
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The nonlinear stress relaxation behavior of ovine Achilles tendon was characterized using the 

methodology developed in chapter 2, and the ability of the fitted coefficients to predict 

physiologic dynamic behavior was elucidated and quantified. The results indicated successful 

application of the developed characterization method to describe tendinous nonlinear 

viscoelasticity by maintaining a high degree of predictive accuracy.   

Specific Aim 3: Integrate a fully nonlinear viscoelastic constitutive formulation into a finite 

element algorithm.  

 The widespread use of QLV theory as a model for soft tissue viscoelasticity in 

computational models stems from the relative ease in which the material parameters can be 

input into various software packages. Therefore, in order to shift the current computational 

modeling paradigm from these over-simplified QLV formulations towards incorporation of fully 

nonlinear viscoelastic behavior, chapter 4 provides the derivation and validation of a novel, 

nonlinear viscoelastic formulation [based on equation (20)] that can be directly input into FE 

algorithms. This formulation and an accompanying experimental characterization technique 

(chapter 2) is compared to a previously accepted characterization method and validated against 

an independent analytical model. The results demonstrated that the FE approximations are in 

good agreement with the analytical solution. Additionally, the predictive accuracy of these 

approximations was highly dependent upon the experimental characterization technique.  

 Completion of these specific aims will represent a significant advancement in our 

capability to characterize and model the complex nonlinear viscoelastic behavior of 

musculoskeletal soft tissues. Development of the constitutive formulae that can be 

implemented in computational models will greatly accelerate our ability to understand the 

functional role that these tissues play in whole joint mechanics and facilitate future treatment 

options. 
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2. Viscoelastic Effects During Loading Play an Integral 
Role in Soft Tissue Mechanics 

The data presented in chapter 2 has been published in the literature (Troyer KL, Estep DJ, 

Puttlitz CM. Viscoelastic effects during loading play an integral role in soft tissue mechanics. 

Acta Biomaterialia. 2012; 8(1):234–243). 

2.1. Introduction 

 Relaxation during loading may play a vital role in soft tissue mechanics. For example, the 

spinal anterior longitudinal ligament (ALL) exhibits a greater stiffness, ultimate load, and peak 

energy at faster loading rates than at slower ones14,106,107. This rate-dependent behavior 

facilitates and guides normal spinal motion patterns at slow loading rates, but prevents 

excessive joint motion and tissue damage by absorbing additional energy during (fast loading 

rate) traumatic situations108. Unfortunately, this intrinsic relaxation mechanism during loading 

complicates the experimental viscoelastic characterization of these soft tissues.   

 From a modeling perspective, soft tissue viscoelasticity can be characterized via stress 

relaxation experiments to define the tissue’s relaxation modulus. Theoretically, the relaxation 

modulus completely characterizes the temporal stress behavior of the tissue in response to an 

instantaneous (Heaviside or step) strain application. However, inertial limitations of physical 

testing devices prevent instantaneous strain applications, and very fast ramp times are 

intractable due to issues such as overshoot, vibration, and poorly approximated strain 

histories84,98,109-112. Empirical deviations from a true step strain application can cause significant 

errors in the determination of the tissue’s relaxation modulus because of the intrinsic relaxation 

that occurred during the ramping (loading) period of the experiment. 

 Several methods have been developed to either correct for the finite ramp time of 

stress relaxation experiments, or to reduce the error associated with fast ramp times69-
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71,94,99,109,110,113-116. However, these methods either negate relaxation manifested during the 

short-term loading period, or are restricted to very specific (linear) strain applications and/or 

viscoelastic formulations.  To the best of the author’s knowledge, no formal study has been 

performed to interrogate the errors associated with negating the important short-term 

relaxation behavior. Additionally, for fast ramp times, which accurately represent in vivo loading 

conditions during the activities of daily living110, the inertial effects of the testing device result in 

poor linear ramp approximations. Thus, a finite ramp time correction method that is restricted 

to a linear ramp assumption may introduce errors if physiologic loading rates are used for the 

experiment. Furthermore, multiple QLV21,59,98,100,109 and fully nonlinear viscoelastic69-71,110,117 

formulations have been proposed to describe soft tissue viscoelasticity. Current finite ramp time 

correction methods are not transferrable between these various formulations. Therefore, there 

exists a significant need to develop a general method to characterize the viscoelastic behavior of 

these tissues which incorporates relaxation manifested during loading. The aims of this chapter 

were: (1) to develop and validate a finite ramp time correction method for stress relaxation 

experiments that is independent of the shape of the applied ramp history and the specific 

viscoelastic formulation, and (2) to interrogate the errors associated with (a) using a linear ramp 

history assumption applied to fast-ramp stress relaxation experiments and (b) negating the 

short-term relaxation behavior. 

2.2. Materials and Methods 

 In order to demonstrate the transferability of the finite ramp time correction method 

[hereafter referred to as the comprehensive viscoelastic characterization (CVC) method] 

between various viscoelastic formulations, this method was used to fit a QLV and a fully 

nonlinear viscoelastic formulation to an empirical stress relaxation data set. Since our laboratory 

is specifically interested in spinal tissues, this method was developed using the human cervical 
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spine ALL as the model for soft tissue viscoelasticty. Structurally, the ALL is a narrow fibrous 

band (with predominant fiber alignment parallel to the spinal axis) connecting the anterior 

aspects of adjacent vertebrae108. Functionally, this ligament stabilizes the spinal column during 

flexion-extension motions and maintains intradiscal pressures by resisting disc bulge108,118,119. 

Although the ALL is known to exhibit fully nonlinear viscoelastic behavior72, experimental data 

were also fitted to the QLV formulation in order to demonstrate the transferability of the CVC 

method between viscoelastic formulations commonly used to describe soft tissue mechanics. 

The parameters obtained from the stress relaxation fits were used to predict an independent 

cyclic data set. All stress relaxation fits and cyclic predictions were performed in MATLAB 

(version 7.11; TheMathWorks, Inc.; Natick, MA).  

2.2.1. Empirical data capture 

 The ALL experimental data utilized in this chapter represents a subset of a larger study 

which also interrogated the viscoelastic behavior of the posterior longitudinal ligament (PLL) and 

the ligamentum flavum (LF)72. The following briefly describes the dissection procedure used to 

isolate all three ligaments (ALL, PLL, and LF). Data regarding the PLL and LF nonlinear viscoelastic 

behavior are presented in chapter 3 along with the interpretation of the behavior for all three 

ligaments with regard to functional spinal biomechanics. The experimental data in the current 

chapter utilizes the ALL data as a tissue model strictly to develop and validate the CVC 

methodology. 

 Briefly, the C5-C6 motion segment of eight human cadaveric spines (mean age: 59 ± 9.2; 

2 females, 6 males) was isolated and all non-osteoligamentous tissues were carefully removed. 

In order to separate the longitudinal ligaments from the LF, a cranial-to-caudal cut was made at 

the pedicles to isolate the anterior column from the posterior elements. The ALL ( =8) and PLL 

( =8) were isolated into bone-ligament-bone (BLB) preparations by transecting the anterior 
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column in its mid-coronal plane and carefully removing the disc tissues. The LF ( =6) BLB 

preparations were isolated by transecting the facet capsular ligaments and the interspinous and 

supraspinous ligaments of the posterior elements. Two LF preparations were damaged during 

dissection and were excluded from study. The vertebral elements of the BLB preparations were 

potted in polymethylmethacrylate for attachment to the testing device. Hydration was 

maintained throughout the dissection and potting procedures via periodic saline spray. Each 

potted BLB preparation was placed in an environmental chamber (isotonic saline maintained at 

37°C), which was affixed to a servohydraulic mechanical testing device (858 Mini Bionix II; MTS; 

Eden Prairie, MN) with a load cell (500 N capacity; model 661.11B-02; MTS; Eden Prairie, MN) 

placed in the load train, and allowed to equilibrate for 1 hour in its zero-force configuration. 

Inertial artifacts caused by the load cell placement (connecting the testing device actuator to the 

specimen) were determined to be minimal (Appendix B). 

 Following hydrothermal equilibration, each ligament was tensioned to 5 N110,123,128 and 

allowed to relax for 600 s. The resulting displacement was used as the reference configuration. 

Each ligament was then subjected to a cyclic (haversine) frequency sweep (0.001 Hz, 0.01 Hz, 0.1 

Hz, and 1 Hz) at 10% and 15% peak-to-peak strain amplitudes. The slowest frequency (0.001 Hz) 

was performed as a preconditioning procedure. The remaining frequencies were chosen to 

observe the model’s predictive accuracy with regard to varying physiologic loading rates, from 

quasi-static (0.01 Hz) to dynamic (1 Hz). Following this cyclic protocol, the reference 

configuration was re-defined under 5 N of pretension, and the specimen was preconditioned 

(10% peak-to-peak strain amplitude, 1 Hz, 120 cycles) and subjected to stress relaxation 

experiments (ramp time: < 0.3 s, hold: 600 s, recover: 600 s123,128) at 4%, 6%, 8%, 10%, 14%, 16%, 

18%, 20%, and 25% engineering strain magnitudes. These strain magnitudes are well below the 

failure strains reported for these ligaments22 and fall within the physiologic bounds predicted by 
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computational and mathematical models14,120. The cross-sectional area of each ligament was 

measured using post hoc digital image capture72. 

2.2.2. Quasi-linear viscoelastic formulae 

 For this chapter, the QLV formulation was cast as: 

 
              

      

  

     

  
  

 

 

    (22) 

where    represents the initial tissue pretension in the reference configuration. The reduced 

relaxation function was approximated by the Prony series21,72,121: 

 
            

     

 

   

 (23) 

subjected to the constraint: 

                  (24) 

where    is the steady-state relaxation coefficient [             ], and the    coefficients 

represent the relaxation strength corresponding to the    time constants. This relaxation 

function was selected such that it was similar in form to the fully nonlinear relaxation modulus 

described in detail in the following section (2.2.3). The Prony series representation (with fitted 

parameters   ,   , and   ) is known to yield non-unique solutions59. However, a unique solution 

can be achieved by fixing the    time constants (Appendix A). Additionally, our previous work72 

has demonstrated that this Prony series representation is insensitive to initial guesses spanning 

five decades (0.001 to 10). Therefore, the shortest fixed time constant,    = 0.1 s, was chosen to 

temporally coincide with the experimental ramp time (< 0.3 s). Succeeding time constants were 

incrementally increased by decade values21,72, ending at the decade value which corresponded 

with the length of the experiment:    = 1 s,    = 10 s,    = 100 s. The instantaneous elastic 

stress, and its derivative, was represented by the nonlinear equations: 
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                (25) 

       

  
       (26) 

where   and   are the instantaneous elastic parameters21,72,121. 

 If the applied strain ramp history is complex (not a pure linear ramp and constant hold), 

differentiation of the applied strain history      complicates direct numerical integration of 

equation (22). Therefore, in order to simplify the integration of equation (22), the differential 

operator was removed from the input strain history via integration by parts: 

 
               

       

  
      

 

 

                            

         
       

  
      

 

 

               

(27) 

 Several finite ramp time correction methods have been developed for QLV 

formulations99,109,114,115. For this study, our method is compared to that developed by 

Abramowitch and Woo109, which has been implemented in many recent studies72,82,84,122-125. The 

methods used for obtaining the data for these comparisons is outlined in our previous 

manuscript72. Limitations of the Abramowitch and Woo method include the assumption of QLV 

tissue behavior (linear viscous behavior) and the assumption of a pure linear strain ramp 

application, which require very long (non-physiologic) ramp times. In order to elucidate errors 

associated with a pure linear strain assumption applied to an actual (nonlinear, fast-ramp) strain 

history, the fitted parameters obtained using the methodology of Abramowitch and Woo were 

used to predict the full (ramp-relax) stress relaxation experiment, and the cyclic experiments, by 

numerically integrating equation (27) with the actual strain history used as input. Since the QLV 

theory assumes that      is independent of strain magnitude, only stress relaxation data at the 

10% strain magnitude were fitted for this study. 
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2.2.3. Fully nonlinear viscoelastic formulae 

 For the current chapter, the fully nonlinear viscoelastic formulation was cast as: 

 
                      

 

 

     

  
      (28) 

The nonlinear (strain- and time-dependent) relaxation modulus was approximated by the Prony 

series126: 

 
                    

     

 

   

 (29) 

where       represents the strain-dependent steady-state modulus [                  ], 

and the       represent the strain-dependent moduli corresponding to the     time constants. 

Analogous to equation (27), equation (28) was integrated by parts to simplify the numerical 

integration: 

 
            

            

  
    

 

 

                                   

   
            

  
    

 

 

                    

(30) 

 To the best of the author’s knowledge, there are relatively few finite ramp time 

correction methods for fully nonlinear viscoelastic materials113,116. However, these previous 

attempts were developed specifically for the Schapery nonlinear viscoelastic material model, 

rather than the single integral formulation of the modified superposition method [i.e., equation 

(28)]94,96 which has been recommended for modeling ligament viscoelasticity117. Instead of 

directly correcting for the finite ramp time, equation (28) has traditionally been used with fast 

ramp times that approximate a true (Heaviside) step function, which has the form:  

                        (31) 

Data from the relaxation period of the experiment are then considered only after a specified 

amount of time in order to reduce the transient errors of the testing device. Multiples of the 
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ramp time (  ), such as     
70,71,94 and      

69,94,110, have been used or recommended for 

connective tissues. These methods negate important short-term relaxation information and may 

not be appropriate if the relative degree of short-term relaxation is substantial111. Since the 

short-term relaxation behavior plays an important role in the mechanical performance of soft 

tissues, the errors associated with the      and the       fitting methods are elucidated in this 

chapter by quantifying the ability of their fitted parameters to predict the full (ramp-relax) stress 

relaxation experiment and the cyclic experiments (via numerical integration of equation (30) 

using the actual strain history). For the fully nonlinear viscoelastic formulation the stress 

relaxation curves from all strain magnitudes were fitted using the      method, the       

method, and the CVC method. 

2.2.4. Comprehensive viscoelastic characterization method 

 Thermodynamic limitations require the relaxation modulus to be a monotonically 

decreasing function93,94. Therefore, the CVC method was designed to fit only the decreasing 

(relaxation) period of the full experimental curve so that the fitted parameters are 

unconstrained. The relaxation manifested during loading is then incorporated by utilizing the 

following iterative algorithm:  

(a) Fit the relaxation period of the experimental data, assuming a Heaviside strain 

application. For the QLV formulation, an instantaneous strain application can be 

considered by assuming separability of the functions       and     100,109. Thus, 

equation (25) was fitted to the ramping period (0 <   <   , where    is defined by the 

maximum stress), and equation (23), subjected to the constraint in equation (24), was 

fitted to the normalized [       ] relaxation period (    )100,109. For the fully 

nonlinear formulation, a Heaviside step was assumed, and data in the relaxation period 

were fitted to equation (31). 
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(b) Predict the full (ramp-relax) experiment by inputting the Heaviside assumption 

parameters obtained from step (a) into the integral form of the constitutive equation 

(Figure 7). The integral formulations [equation (27) for the QLV formulation, equation 

(30) for the fully nonlinear formulation] were numerically integrated (quadgk MATLAB 

function). The actual experimental strain history was included in this integration by use 

of a fitted cubic spline (csaps MATLAB function) to functionally describe     . 

 
Figure 7: Depiction of the CVC method for a typical specimen for both (A) the long-term 
behavior, and (B) the short-term behavior. 
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(c) Fit the relaxation period of the predicted curve obtained from step (b), assuming an 

instantaneous strain application [see step (a) for the analogous fitting procedure].  

(d) Calculate the difference     between the fitted parameters for the experiment and 

the current prediction as: 

                     (32)  

where        is a vector containing the fitted parameters from step (a), and         is a 

vector containing the fitted parameters determined form step (c). For the QLV fits: 

                        ; for the fully nonlinear fits:                     . 

(e) Define a new set of parameters        as input into the integral form of the 

constitutive equation and integrate to obtain a new predicted curve (Figure 7): 

                    (33)  

(f) Iterate steps (c) through (e) until the following criterion (tolerance,    ) is satisfied:  

                (34)  

 For the present study,     = 10-6 (Figure 7). By utilizing initial guesses within the range 

described above, and forcing the shape of the predicted curve to match the experimental curve 

[step (d)], the prescribed (relatively low) tolerance necessitates that the best set of (unique) 

coefficients has been obtained.  

2.2.5. Error quantification 

 Since the coefficient of determination (r2 value) is a poor measure of goodness-of-fit for 

stress relaxation experiments due to the disproportionately large amount of datum points in the 

long-term behavior72, a weighted root mean-squared error (     111,127 was calculated in order 

to determine the probable error of the fitted stress relaxation curves:  
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where   is the number of datum points. The weighting function,      , was defined as: 
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where    is the  th time datum point, and        
 and           are the  th experimental and 

model stress datum points, respectively. The      was also calculated without the weighting 

function to quantify the error associated with the cyclic predictions. Additionally, the percent 

error between the  th datum points for the cyclic predictions were calculated as: 

 
         

                 

       

       (37) 

2.2.6. Statistics 

 All statistical analyses were performed using SAS statistical software (SAS Institute, Inc.; 

Cary, NC). Due to the large number of separate statistical analyses, each statistical test in this 

chapter is outlined in the corresponding figure or table caption for clarity. Unless otherwise 

stated, p<0.05 was used to define statistical significance.  

2.3. Results 

2.3.1. QLV stress relaxation fits 

 Figure 8 depicts a typical QLV stress relaxation curve fit using the Abramowitch and Woo 

method and the CVC method. Although there was not a statistical difference between the 

     calculated for both methods (p=0.547; Table 1), there was a statistically significant 

difference between several of the fitted reduced relaxation function coefficients (Table 2). With 

the actual strain history used as input for equation (27), the Abramowitch and Woo parameters 

poorly predicted the stress relaxation experiment (Figure 8), as indicated by statistically 
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significant increases (one order of magnitude) in      (p=0.008 for both comparisons; Table 

1).  

 
Figure 8: A typical QLV stress relaxation curve fit from a representative specimen for both 
(A) the long-term and (B) the short-term behavior. 
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Table 1: Median      values (95% lower confidence limit, 95% upper confidence limit) for 
the two QLV curve fitting methods compared to the stress relaxation curves predicted by 
inputting the Abramowitch and Woo (linear ramp assumption) fitted parameters into 

Method        [kPa] 

Abramowitch and Woo: linear ramp assumption 

 
1.89 (1.10, 4.79)a 

Abramowitch and Woo: actual strain history 

 
49.98 (23.01, 67.66)b 

CVC method   1.81 (0.65, 3.14)a 

Superscript letters indicate statistical groupings; different letters indicate p<0.017 
 

Table 2: Comparison of the median fitted parameters (95% lower confidence limit, 95% 
upper confidence limit) for the two QLV fitting methods. The Abramowitch and Woo fitted 
parameters (with a linear ramp assumption) significantly under-predicted the amount of 
relaxation that actually occurred during the experiment, as indicated by the reduced   , 

  , and    coefficients. These under-predictions were manifested as an increase in the    
coefficient. Statistical analyses were performed by using a Wilcoxon signed-rank test. 

Parameter 
 

Abramowitch and Woo  
 

CVC method 
 

p-value 

   
 

0.262 (0.219, 1.173) 
 

0.203 (0.094, 1.31)  
0.148 

   
 

8.908 (4.031, 11.111) 
 

8.380 (7.359, 13.716)  
0.742 

    
 

0.725 (0.704, 0.833) 
 

0.601 (0.567, 0.695)  
0.008 

    
 

0.036 (2.318E-4, 0.066) 
 

0.112 (0.082, 0.178)  
0.008 

    
 

0.076 (0.056, 0.109) 
 

0.059 (0.048, 0.092)  
0.195 

    
 

0.065 (0.040, 0.097) 
 

0.097 (0.063, 0.125)  
0.008 

      0.098 (0.062, 0.175)   0.117 (0.075, 0.195)   0.008 

 

2.3.2. QLV cyclic predictions 

 A significant amount of error was observed for the cyclic predictions within each 

frequency and amplitude for both QLV fitting methods (Figure 9). However, the CVC method 

cyclic prediction had a significant reduction in error when compared to the curve predicted 

using the Abramowitch and Woo method (Table 3). The cyclic predictions from each of the QLV 

fitting methods, except for the 10% strain amplitude, 1 Hz frequency, had a greater      and a 

statistically larger percent error than the experimental error (Table 3), indicating that these 

predictions were outside the bounds of experimental variability.  
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Figure 9: Comparison of the 10% cyclic strain amplitude predictions for both QLV fitting 
methods at the (A) 0.01 Hz, (B) 0.1 Hz, and (C) 1 Hz loading frequencies. Although both 
fitting methods produced good stress relaxation fits, each method poorly predicted the 
average cyclic experimental data across all frequencies. The cyclic predictions for the 15% 
strain amplitude were similar. Experimental error was defined as one standard deviation 
from the experimental mean. 
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Table 3: Summary of the error calculations for the QLV cyclic predictions for both fitting methods at (A) the 10% and (B) the 15% strain 

amplitudes. The median percent error (95% lower confidence limit, 95% upper confidence limit) and      for the predictions from both 
fitting methods were outside the bounds of experimental error (defined as one standard deviation from the experimental mean). 
Statistical analyses were performed on the percent error by using a Kruskal-Wallis test within each strain amplitude and frequency 
grouping. Post hoc pairwise comparisons were performed by a Wilcoxon rank-sum test with Bonferroni adjustment (statistical 
significance defined as p<0.017). 

    Percent error [%]        [MPa] 

  

0.01 Hz 
 

0.1 Hz 
 

1 Hz 

 

0.01 Hz 

 

0.1 Hz 

 

1 Hz 

(A) 10% strain amplitude 
               

CVC method 
 

53.79 (53.07, 54.45)
a
 

 

53.41 (51.66, 55.05)
a
 

 

56.52 (48.97, 63.22)
a
 

 

0.126 
 

0.132 
 

0.146 

Experimental error 
 

40.17 (40.14, 40.20)
b
 

 

42.30 (42.22, 42.41)
b
 

 

40.36 (40.03, 40.77)
a
 

 

0.071 
 

0.076 
 

0.074 

Abramowich and Woo 
 

107.21 (106.00, 108.47)
c
 

 

106.64 (103.87, 109.55)
c
 

 

111.16 (99.32, 121.08)
b
 0.239 

 
0.245 

 
0.261 

  
  

 
  

 
  

 
     

(B) 15% strain amplitude 
 

  
 

  
 

  
 

     

CVC method 
 

76.65 (75.50, 77.96)
a
 

 

80.27 (79.40, 81.1)
a
 

 

96.07 (90.89, 99.98)
a
 

 

0.306 
 

0.333 
 

0.348 

Experimental error 
 

44.93 (44.87, 44.98)
b
 

 

43.96 (43.83, 44.09)
b
 

 

44.34 (44.07, 44.58)
b
 

 

0.121 
 

0.125 
 

0.126 

Abramowich and Woo   151.40 (149.44, 152.89)
c
   151.15 (146.33, 155.29)

c
   152.66 (135.91, 167.06)

c
 0.532   0.562   0.575 

Superscript letters indicate statistical groupings within each strain amplitude and frequency; different letters indicate p<0.017 
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2.3.3. Fully nonlinear viscoelastic stress relaxation fits 

 Both the      and the       methods fit the relaxation period of the data equally well, 

producing relatively small      values that were not statistically different (p=0.262; Table 4). 

Although these small      values indicated that the      and the       methods produced a 

good fit of the relaxation period of the experiment, a significant amount of error was observed 

when their resulting fitted parameters were input into equation (30) with the actual (ramp-

relax) strain history (Figure 10; Table 5). Statistical analyses demonstrated larger      values 

for the predictions from the      and the       methods when compared to the CVC method 

(p<0.001 for both comparisons). 

 The fully nonlinear viscoelastic strain-dependent moduli [equation (29)] were also 

dependent upon the fitting method (p<0.001; Figure 11). Statistical differences based on the 

fitting method were observed for the      ,       , and       moduli, and no differences were 

observed for the       and       moduli (Figure 11). 

Table 4: Median      values (95% lower confidence limit, 95% upper confidence limit) for 

the       and the      fitting methods (which fit only the relaxation period of the data) at 
each strain magnitude. Statistical analyses were performed using an Analysis of 
Covariance model (in the SAS PROC MIXED procedure) in order to account for strain 
magnitude, with a logarithmic transformation used to normalize the variance of the      
values. 

Strain [%]              [kPa]             [kPa] 

4 
 

0.193 (0.141, 0.911) 

 
0.131 (0.104, 0.922) 

6 
 

0.269 (0.193, 0.950) 

 
0.178 (0.129, 0.970) 

8 
 

0.317 (0.203, 0.969) 

 
0.217 (0.141, 0.988) 

10 
 

0.296 (0.189, 0.912) 

 
0.195 (0.125, 0.919) 

12 
 

0.338 (0.242, 0.968) 

 
0.292 (0.154, 0.955) 

14 
 

0.441 (0.399, 0.965) 

 
0.322 (0.278, 0.939) 

16 
 

0.475 (0.307, 0.961) 

 
0.342 (0.189, 0.978) 

18 
 

0.665 (0.379, 1.064) 

 
0.497 (0.297, 1.014) 

20 
 

0.603 (0.395, 1.122) 

 
0.433 (0.285, 1.046) 

25   0.855 (0.469, 1.247)   0.535 (0.426, 1.033) 
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Figure 10: Typical fully nonlinear viscoelastic stress relaxation curve fits from a 
representative specimen for (A) the long-term and (B) the short-term behavior. Both the 

     and       fitting methods over-predicted the experimental stress relaxation curve 
because these methods neglect important short-term relaxation behavior which was 
manifested before 10 and 2.5 times the ramp time, respectively. 
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Table 5: Median      values (95% lower confidence limit, 95% upper confidence limit) for the fully nonlinear viscoelastic CVC method 

fits, as well as the       and the      predictions. The      values were different for all comparisons within this table (p≤0.03). The 
CVC method produced the best representation of the data (smallest      values) for these three methods. On average, the median 

     values for the       and the      predictions were more than 1,500% larger than the      values for the CVC method fits. 
Statistical analyses were performed using an Analysis of Covariance model (in the SAS PROC MIXED procedure) in order to account for 

strain magnitude. A logarithmic transformation was used to normalize the variance of the      values. 

Strain [%] 
 

CVC method      [kPa] 
 

           [kPa] 
% increase relative to 

the CVC method  
          [kPa] 

% increase relative to 
the CVC method 

4 

 

0.49 (0.34, 1.03) 

 

23.47 (16.70, 38.54) 4,835.36% 

 

23.21 (16.39, 38.03) 4,783.37% 

6 

 

0.76 (0.55, 1.16) 

 

25.20 (15.26, 37.64) 3,323.03% 

 

24.68 (14.59, 36.88) 3,254.89% 

8 

 

1.08 (0.90, 1.98) 

 

24.92 (21.42, 41.24) 2,315.02% 

 

24.07 (20.26, 40.25) 2,236.27% 

10 

 

1.34 (1.13, 2.97) 

 

24.40 (20.55, 37.11) 1,815.63% 

 

22.96 (18.77, 35.89) 1,708.33% 

12 

 

2.01 (1.40, 4.10) 

 

24.27 (18.49, 39.65) 1,206.50% 

 

22.77 (16.50, 37.54) 1,132.07% 

14 

 

3.04 (2.14, 6.40) 

 

27.96 (23.24, 40.65) 919.10% 

 

24.37 (18.39, 37.86) 800.88% 

16 

 

3.81 (2.68, 7.53) 

 

25.28 (17.79, 38.37) 663.76% 

 

21.84 (14.17, 35.31) 573.56% 

18 

 

5.23 (3.40, 12.68) 

 

28.67 (24.45, 42.73) 547.66% 

 

23.92 (15.89, 37.09) 457.02% 

20 

 

6.70 (4.37, 17.14) 

 

27.41 (25.25, 49.85) 409.05% 

 

22.63 (14.65, 35.50) 337.63% 

25   10.40 (6.87, 30.69)   33.18 (26.72, 85.50) 319.03%   21.82 (17.42, 37.65) 209.80% 

Average: 
      

1,635.42% 
   

1,549.38% 
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Figure 11: Summary of the fully nonlinear viscoelastic strain-dependent moduli [equation (29)] for each fitting method. The fitted 
equation for each moduli (not shown for brevity) was determined using a foreword selection method on a polynomial hierarchy, 
beginning with the intercept. The forward selection method was ceased when the coefficient associated with the highest polynomial 
degree was not statistically different from zero. Statistical analyses were performed using the SAS PROC MIXED procedure with an 
appropriate data transformation (square root or logarithmic) used to normalize the variance. These analyses indicated the       
equations were different for each fitting method (p≤0.005), the            method equation was different from both the CVC method 

equation and the       method equation (p≤0.024), and the       CVC method equation was different than both the      and       
method equations (p≥0.006). All other comparisons were not statistically different (p>0.05). Error bars indicate standard error of the 
mean. 
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2.3.4. Fully nonlinear viscoelastic cyclic predictions 

 A significant amount of error was observed for the      and the       cyclic predictions 

(Figure 12). The CVC method, however, predicted the cyclic data extremely well, with percent 

errors and      values that were an order of magnitude less than the experimental error 

(Table 6). The percent error and      values for the CVC method predictions were also at least 

an order of magnitude less than the      and the       predicted curves (Table 6). Except for 

the 15% strain amplitude, 1 Hz frequency, there were no statistical differences between the 

percent error for the      and the       method predictions.  

 

 
Figure 12: Comparison of the cyclic 10% strain amplitude predictions for the fully 
nonlinear viscoelastic fitting methods at the (A) 0.01 Hz, (B) 0.1 Hz, and (C) 1 Hz loading 
frequencies. The cyclic predictions for the 15% strain amplitude were similar. 
Experimental error was defined as one standard deviation from the experimental mean. 
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Table 6: Summary of the error calculations for the fully nonlinear viscoelastic cyclic predictions at (A) the 10% and (B) the 15% strain 
amplitudes. The CVC method parameters predicted the cyclic data extremely well, exhibiting median percent error (95% lower 

confidence limit, 95% upper confidence limit) and      values that were well within the bounds of experimental error (one standard 
deviation from the experimental mean) for both strain magnitudes and across all frequencies. Conversely, the parameters obtained from 

both of the       and the      fits poorly predicted the cyclic behavior. Statistical analyses were performed on the percent error by 
using a Kruskal-Wallis test within each strain amplitude and frequency grouping. Post hoc pairwise comparisons were performed by 
using a Wilcoxon rank-sum test with Bonferroni adjustment (statistical significance defined as p<0.008). 

    Percent error [%] 
 

     [MPa] 

  
 

0.01 Hz 
 

0.1 Hz 
 

1 Hz 
 

0.01 Hz 
 

0.1 Hz 
 

1 Hz 

(A) 10% strain amplitude 

               CVC method 

 

5.22 (5.18, 5.27)
a
 

 

2.76 (2.67, 2.84)
a
 

 

6.65 (6.17, 7.31)
a
 

 

0.006 
 

0.006 
 

0.012 

Experimental error 

 

40.17 (40.14, 40.20)
b
 

 

42.30 (42.22, 42.41)
b
 

 

40.36 (40.03, 40.77)
b
 

 

0.071 
 

0.076 
 

0.074 

     method 

 

105.96 (105.08, 106.72)
c
 

 

104.10 (102.46, 105.71)
c
 

 

103.68 (98.14, 109.39)
c
 

 

0.188 
 

0.188 
 

0.188 

      method 

 

105.96 (105.17, 106.78)
c
 

 

104.44 (102.82, 105.97)
c
 

 

104.75 (99.69, 110.18)
c
 

 

0.188 
 

0.189 
 

0.197 

  
  

 
  

 
 

  
     

(B) 15% strain amplitude 

 
  

 
  

 
  

 
     

CVC method 

 

6.48 (6.37, 6.58)
a
 

 

6.16 (6.04, 6.28)
a
 

 

6.06 (5.27, 9.18)
a
 

 

0.019 
 

0.025 
 

0.032 

Experimental error 

 

44.93 (44.87, 44.98)
b
 

 

43.96 (43.83, 44.09)
b
 

 

44.34 (44.07, 44.58)
b
 

 

0.121 
 

0.125 
 

0.126 

     method 

 

78.45 (77.37, 79.61)
c
 

 

85.65 (83.70, 87.93)
c
 

 

82.55 (75.48, 88.21)
c
 

 

0.192 
 

0.190 
 

0.189 

      method   78.29 (77.25, 79.51)
c
   86.83 (84.78, 89.02)

c
   92.92 (85.47, 99.95)

d
   0.193 

 
0.193 

 
0.203 

Superscript letters indicate statistical groupings within each strain amplitude and frequency; different letters indicate p<0.008 
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2.4. Discussion 

 Current viscoelastic characterization methods used for modeling biological soft tissues 

largely ignore the significant transient viscoelastic effects during loading. In order to address this 

shortcoming, this chapter interrogated the role of soft tissue relaxation during loading by 

introducing a novel, empirically-based method to correct for finite ramp time associated with 

stress relaxation experiments. Since this method is based on the shape of the relaxation curve, 

instead of the specific form of the constitutive equation, it can be applied to any viscoelastic 

formulation. Additionally, since the actual strain history is used as input for the integral form of 

the constitutive equation, no assumptions are made with regard to the applied strain history. 

Thus, this method is independent of the loading duration (i.e., can be applied to short or long 

ramp time experiments). Pilot stress relaxation experiments (data not presented) on viscoelastic 

leather strips demonstrated that the CVC methodology described the data very well across ramp 

times that ranged over three orders of magnitude (0.1 s, 1 s, and 10 s). 

 One objective of this chapter was to elucidate (quantitatively) the error associated with 

the assumption of a linear ramp strain history applied to a fast ramp experiment. Alarmingly, an 

apparently good fit (small     ) was produced under the linear strain ramp assumption, with 

     values that were comparable to those calculated using the CVC method (which 

incorporated the actual strain history). However, when the fitted coefficients obtained from the 

linear ramp assumption were input into the QLV integral formulation [equation (27)], with the 

actual strain history used as input, a significantly poor fit (demonstrated by an order of 

magnitude increase in     ) was observed. The poor stress relaxation prediction (Figure 8) 

and statistically different      parameters obtained using the linear ramp assumption (Table 2) 

suggests that a purely linear ramp assumption cannot accurately account for relaxation 

manifested during loading. The observed initial (apparently good) fit may mislead one into 
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believing that a linear ramp assumption is acceptable when, in fact, it is not.  It is important to 

emphasize that the strain application for all stress relaxation experiments, especially at elevated 

strain rates, will deviate from a pure linear strain ramp due to the inertial effects of the testing 

device. Also, since these inertial effects are dependent on the design of experimental fixture, 

the CVC method presented herein removes the effect of variable fixturing between different 

laboratories because the actual strain history is used as input. Furthermore, these nonlinear 

inertial effects are representative of the loading patterns experienced by soft tissues in vivo 

during the acceleration/deceleration of different body mass components during physiologic 

motions.  

 Since no finite ramp time correction method has been developed for the fully nonlinear 

viscoelastic formulation commonly used to describe the viscoelastic behavior of biological 

tissues117, fast ramp times are commonly used to approximate a true step function. Data in the 

initial ramping period is neglected, and the relaxation data is curve-fit beginning at multiples of 

10 or 2.5 times the ramp time in order to negate errors associated with the transient load 

application69-71,94,110,128. This methodology is based on the viscoelastic characterization of typical 

engineering materials, such as glassy polymers in creep128, which can more easily be tested for 

long experiment times (e.g., >104 s by a “hanging weight” experiment). However, viscoelastic 

experiments involving soft tissues are typically performed at substantially shorter experimental 

times21,69-72,109 due to biological limitations such as tissue degradation110. Thus, negating the 

short-term behavior for these relatively brief experiments can greatly affect the accuracy of the 

fitted parameters. This error is exacerbated by the significant amount of relaxation these tissues 

exhibit in the initial short-term behavior (during loading), as indicated herein by the dominant 

short-term       modulus. Neither the      nor the       fitting methods correctly 
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incorporated this short-term relaxation behavior, which resulted in the observed over-

prediction of the long-term behavior,      .  

 Analogous to the aforementioned misleading conclusions of QLV linear ramp 

assumption, the      and       curve fitting methods may also result in a misinterpretation of 

the fitted parameters. Previous studies have reported high goodness-of-fit parameters, typically 

the r2 value, when fitting data using these methods70,71,74,94. These relatively high r2 values force 

the conclusion that the fitted coefficients are an acceptable model of the mechanical behavior. 

The results presented herein also produced high goodness-of-fit values (small     ) using the 

     and       fitting methods; however, when the fitted parameters were input back into the 

fully nonlinear integral formulation [equation (30)] to predict the entire experiment, a significant 

increase in error was observed. Therefore, although the coefficients obtained using the      

and the       methods fit described the relaxation period of the data well, this apparently good 

curve fit does not imply that the fitted coefficients have accurately characterized the entire 

mechanical response of the tissue. 

 Since human cervical spine ligaments are known to exhibit fully nonlinear viscoelastic 

behavior72, the validity of the CVC method developed in this chapter was supported by the 

ability of the fully nonlinear viscoelastic parameters to predict an independent cyclic data set 

consisting of multiple strain amplitudes and frequencies. The median percent error and      

of the nonlinear viscoelastic cyclic predictions were well within the bounds of the experimental 

error across all frequencies and strain amplitudes. Abramowitch and Woo used a similar method 

to validate their finite ramp time correction method. Specifically, they utilized their fitted stress 

relaxation coefficients to predict the peak stresses of an independent cyclic stress relaxation 

experiment100 and reported an average percent error of 6.3 ± 6.0%109. The median percent error 

of the nonlinear viscoelastic cyclic validation predictions is similar in magnitude to these 
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previously reported values. Additionally, the robust behavior of these cyclic predictions, as 

indicated by the relatively small percent error and      magnitudes across multiple strain 

amplitudes and frequencies, strongly suggests validity of our CVC method and the fully 

nonlinear viscoelastic constitutive model. 

 Although the QLV formulation is commonly used to model the viscoelastic behavior of 

connective tissues, it has recently received criticism with regard to its inability to predict 

mechanical behavior other than that used to fit the model69,71,74,129. Our results support this 

criticism by demonstrating that the QLV model fits the stress relaxation behavior well at a single 

strain magnitude (indicated by the low      values), but poorly predicts the tissue’s cyclic 

mechanical behavior, regardless of frequency or strain amplitude (depicted in Figure 9 by the 

approximately 150% and 90% over-prediction of peak stresses across all frequencies for the 

Abramowitch and Woo and the CVC method methods, respectively). While the fully nonlinear 

     and the       fitting methods slightly improved the cyclic predictions when compared to 

the QLV predictions (approximately 85% over-prediction in peak stresses as depicted in Figure 

12), the CVC method applied to the fully nonlinear formulation showed considerable 

improvement, with a negligible difference observed between the experimental data and the 

predicted curve. The greatly improved cyclic prediction of the fully nonlinear viscoelastic 

formulation suggests that the elastic and time-dependent aspects of soft tissue mechanical 

behavior are not separable, and it is therefore requisite to use a viscoelastic formulation that 

allows relaxation to occur as a function of strain magnitude (i.e., nonlinear viscoelasticity).  

 Overall, this study represents the first attempt to: (1) develop a method to incorporate 

relaxation manifested during loading that is independent of a specific viscoelastic formulation; 

(2) incorporate the actual strain history into this viscoelastic formulation in order to remove the 

effect of fixture inertia from the fitted coefficients; (3) develop a robust constitutive formulation 
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for soft tissues that can accurately and simultaneously describe both the static (stress 

relaxation) and dynamic (cyclic) soft tissue behavior; and (4) explicitly interrogate the errors 

associated with previously accepted viscoelastic formulations and characterization methods. 

2.5. Conclusion 

 The results presented in this chapter demonstrate strong evidence for the following 

conclusions: (1) From a material characterization and modeling perspective, relaxation during 

soft tissue tensioning is significant and cannot be neglected if one is to accurately predict the 

transient material behavior under dynamic loading conditions; (2) A good curve fit under a single 

loading condition does not imply predictive power of the fitted parameters; (3) Quantitative 

validation studies under multiple loading conditions must be performed as part of the selection 

method for a particular viscoelastic constitutive model; (4) Fitting stress relaxation experimental 

data using a linear ramp history assumption may not accurately account for relaxation that 

occurred during the actual loading history. 
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3. Nonlinear Viscoelasticty Plays an Essential Role in 
the Functional Behavior of Spinal Ligaments 

 The data presented in chapter 3 has been published in the literature (Troyer KL, Puttlitz 

CM. Nonlinear viscoelasticity plays and essential role in the functional behavior of spinal 

ligaments. Journal of Biomechanics. 2012; 45(4):684–691). 

3.1. Introduction 

 The stability of the spinal column and its ability to protect the spinal cord is partially 

dependent upon the mechanical behavior of the individual spinal ligaments. The functional role 

of these ligaments is to passively facilitate three-dimensional physiologic motion patterns and 

maintain vertebral postures while protecting the spinal cord by limiting excessive motion and 

absorbing additional energy during traumatic events108. Inclusion of all aspects of these 

functional roles requires consideration of the ligament’s temporal (viscoelastic) mechanical 

behavior.  

 Despite the significant role ligament viscoelasticity plays in functional spinal 

biomechanics, previous research has primarily focused on characterization of their elastic (time-

independent) mechanical behavior14,53,107,130-137 and the relationship of this elastic behavior to 

the fibrous microstructure49,50,138. Several studies have implicitly incorporated spinal ligament 

viscoelasticty into the elastic properties by defining these properties as a function of the loading 

rate14,107. Although this rate-dependent behavior provides some insight into spinal ligament 

protective mechanisms, it does not provide a comprehensive description of spinal ligament 

viscoelasticity. Therefore, a more rigorous and explicit approach is requisite to elucidate, 

characterize, and model spinal ligament viscoelasticity. 

 Surprisingly, relatively few experimental studies have been performed to directly 

characterize human spinal ligament viscoelastic behavior21,72,95,139. These studies have very 
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restricted applications and interpretations due to over-simplified viscoelastic formulations or 

assumptions. For example, Yahia et al.139 and Lucas et al.21 characterized the stress relaxation 

behavior of spinal ligaments according to the quasi-linear viscoelastic (QLV) formulation 

proposed by Fung59. This formulation is a special (simplified) case of fully nonlinear 

viscoelasticity wherein it is assumed that the stress relaxation behavior is independent of the 

applied strain magnitude. Recent investigations have demonstrated strong experimental 

evidence which suggests that spinal ligaments violate this QLV assumption wherein the 

observed relaxation is a function of strain magnitude72,73,95. Additionally, current nonlinear 

viscoelastic models72,73,95 are limited in that they do not incorporate relaxation manifested 

during loading events (i.e., during the ramping period of the experiment), an important 

physiological protective mechanism. As demonstrated in chapter 2, neglecting this important 

short-term behavior can greatly affect the accuracy and predictive power of the fitted 

constitutive model. Therefore, the purpose of the current chapter was to utilize the CVC method 

developed in chapter 2 to directly characterize the nonlinear viscoelastic behavior of three 

primary human spinal ligaments: the anterior longitudinal ligament (ALL), the posterior 

longitudinal ligament (PLL), and the ligamentum flavum (LF). The objectives of this chapter were: 

(1) to characterize the nonlinear viscoelastic constitutive behavior of the human spinal ALL, PLL, 

and LF via stress relaxation experiments at multiple strain magnitudes, and (2) to validate this 

constitutive relationship by quantifying its ability to predict an independent cyclic data set 

across multiple strain amplitudes and frequencies. 

3.2. Materials and Methods 

3.2.1. Experimental methods 

 The experimental methods for this chapter are described in detail elsewhere72, and are 

outlined briefly in section 2.2.1 (page 24). 
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3.2.2. Constitutive formulation 

 Since human cervical spine ALL, PLL, and LF exhibit fully nonlinear viscoelastic 

behavior72, the nonlinear viscoelastic constitutive formulation given by equation (28) was 

utilized for this study. The relaxation modulus was modeled using the Prony series given by 

equation (29). This Prony series representation is useful to parse the relaxation behavior 

contributions at specific time scales (specifically:    = 0.1 s,    = 1 s,    = 10 s,    = 100 s).  

Stress relaxation fitting procedure 

 The ALL, PLL, and LF experimental stress relaxation data were fitted (MATLAB, version 

7.11; TheMathWorks, Inc.; Natick, MA) using the novel CVC method developed and validated in 

chapter 2. This algorithm incorporates relaxation manifested during the fast (< 0.3 s) loading 

period of the stress relaxation experiments. Some of PLL and LF the curve-fits (15 out of 220, or 

< 7%) required the experimental data to be filtered in order to obtain mathematical 

convergence (moving average filter; maximum span: 50 out of 6,025 datum points). To 

interrogate any effect of this filtering on the resulting fitted parameters, data from the 

unfiltered ALL specimens at the strain magnitude extrema (4% and 25%) were filtered using the 

maximum moving average span, and the resulting fitted parameters were compared to the 

unfiltered parameters by performing a Wilcoxon Rank-sum test (statistical significance: p<0.05) 

using SAS statistical software. This comparison indicated that filtering the data did not 

significantly affect the determination of the fitted parameters (p≥0.345). 

 As in section 2.2.5 (page 31), the goodness-of-fit for the stress relaxation curves was 

calculated using a weighted      [equation (35)]. The weighting function for these calculations 

is given by equation (36). 

 In order to determine the strain-dependent moduli equations [equation (29)], a forward 

selection regression analysis on a polynomial hierarchy was utilized in the SAS PROC MIXED 
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procedure (statistical significance: p<0.05). If required, an appropriate transformation (square 

root or logarithmic) was used to normalize the variance of these parameters. 

Cyclic prediction procedure 

 In order to interrogate the validity of the proposed constitutive equation and its fitted 

parameters to model the dynamic viscoelastic behavior of these ligaments, the fitted 

parameters obtained from the transient stress relaxation fits were used to predict [via equation 

(30)] the cyclic experiments across the 0.01 Hz, 0.1 Hz, and 1 Hz frequencies and the 10% and 

15% strain amplitudes. The 0.001 Hz frequency ( ) was not included in these predictions since it 

falls outside the spectrum of the chosen time constants (   =      = 0.01 Hz). To quantify the 

ability of the fitted parameters to predict the cyclic behavior, a non-weighted      [i.e., 

equation (35) without the weighting function] and the percent error [equation (37)] were 

calculated for each strain amplitude and frequency and for each ligament. In order to compare 

the model predictions to the experimental variability, one standard deviation from the 

experimental mean was calculated as a percentage of the mean and its corresponding      

and percent error were calculated. Within each strain amplitude and frequency the 

experimental error and the model prediction were compared using a Wilcoxon ranked sum test 

in SAS (statistical significance: p<0.05). 

3.3. Results 

 The nonlinear viscoelastic constitutive equation fit both the short-term and long-term 

relaxation data well (Figure 13), producing very low      values (on the order of kilopascals) at 

each strain magnitude for each ligament type (Table 7).  

 The strain-dependent moduli were notability different for the ALL, PLL, and LF, and each 

polynomial formulation was unique to the specific ligament type (p≤0.038 for all comparisons; 

Figure 14). For the ALL and the PLL, the relaxation modulus was dominated by both the steady-
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state       and the short-term       moduli. The viscoelastic behavior of the LF was much 

more consistent than the longitudinal ligaments across the investigated temporal decades. 

Additionally, this consistent strain-dependent behavior of the LF was substantially reduced with 

respect to the longitudinal ligaments (ALL and PLL). This disparity may be indicative of 

differences in the ligaments’ physiologic functions. 

 
Figure 13: Curve-fits for a typical specimen from each ligament type: ALL shown in 
subplots (a) and (b), PLL shown in subplots (c) and (d), and LF shown in subplots in (e) 
and (f). The constitutive model fit the experimental stress relaxation data very well for both 
the long-term [subplots (a), (c), and (e)] and short-term [subplots (b), (d), and (f)] behavior. 
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Table 7: Median weighted      values (95% lower confidence limit, 95% upper confidence 
limit) derived from the stress relaxation experiments for each ligament type and strain 
level. 

Strain [mm/mm]   ALL [kPa] 
 

PLL [kPa] 
 

LF [kPa] 

0.04 

 

0.49 (0.34, 1.03) 

 
0.29 (0.14, 1.47) 

 
0.07 (0.05, 0.09) 

0.06 

 

0.76 (0.55, 1.16) 

 
0.45 (0.17, 1.73) 

 
0.11 (0.06, 0.13) 

0.08 

 

1.08 (0.90, 1.98) 

 
0.65 (0.27, 2.57) 

 
0.12 (0.06, 0.17) 

0.10 

 

1.34 (1.13, 2.97) 

 
0.78 (0.18, 3.10) 

 
0.11 (0.06, 0.19) 

0.12 

 

2.01 (1.40, 4.10) 

 
1.05 (0.25, 3.19) 

 
0.14 (0.07, 0.23) 

0.14 

 

3.04 (2.14, 6.40) 

 
0.96 (0.28, 4.78) 

 
0.26 (0.06, 0.56) 

0.16 

 

3.81 (2.68, 7.53) 

 
1.04 (0.29, 6.47) 

 
0.23 (0.07, 0.45) 

0.18 

 

5.23 (3.40, 12.68) 

 
1.26 (0.34, 7.64) 

 
0.46 (0.06, 1.17) 

0.20 

 

6.70 (4.37, 17.14) 

 
1.19 (0.40, 9.69) 

 
0.57 (0.07, 1.20) 

0.25   10.40 (6.87, 30.69)   1.52 (0.54, 13.60)   1.03 (0.11, 1.88) 

 

 
Figure 14: The mean strain-dependent relaxation moduli components [equation (29)] and 
the corresponding fitted equations (table below). The data indicate that the strain-
dependent viscoelastic behavior was unique to each ligament type (p≤0.038 for all 
comparisons). Error bars represent standard error of the mean. 

ALL PLL LF 
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 The constitutive equations determined from the stress relaxation experiments predicted 

the cyclic behavior well for each ligament type at each frequency and strain amplitude (ALL: 

Figure 15; PLL: Figure 16; LF: Figure 17), resulting in relatively low      values (at least 1 order 

of magnitude less than the peak stresses) and percent errors (less than 7.2%) (ALL: Table 8; PLL: 

Table 9; LF: Table 10). The error calculations indicated that all cyclic predictions were well within 

the bounds of the experimental error (at least one order of magnitude less).  

 

 
Figure 15: The ALL cyclic predictions at the (a) 0.01 Hz, (b) 0.1 Hz, and (c) 1 Hz for the 10% 
(peak-to-peak) strain amplitude. The constitutive equation predicted the data very well and 
was well within the bounds of experimental error (one standard deviation from the 
experimental mean) at each frequency and strain amplitude. The 15% strain amplitude 
predictions (not shown) were similar. 
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Figure 16: The PLL cyclic predictions at the (a) 0.01 Hz, (b) 0.1 Hz, and (c) 1 Hz for the 10% 
(peak-to-peak) strain amplitude. The constitutive equation predicted the data very well and 
was well within the bounds of experimental error (one standard deviation from the 
experimental mean) at each frequency and strain amplitude. The 15% strain amplitude 
predictions (not shown) were similar. 

 

 
Figure 17: The LF cyclic predictions at the (a) 0.01 Hz, (b) 0.1 Hz, and (c) 1 Hz for the 10% 
(peak-to-peak) strain amplitude. The constitutive equation predicted the data very well and 
was well within the bounds of experimental error (one standard deviation from the 
experimental mean) at each frequency and strain amplitude. The 15% strain amplitude 
predictions (not shown) were similar. 
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Table 8: The percent error and      values for the ALL cyclic predictions indicate that the model predicted the cyclic behavior well 

across all frequencies at both (A) the 10% strain amplitude, and (B) the 15% strain amplitude. Both the percent error and      values 
were an order of magnitude smaller than the experimental error (one standard deviation from the experimental mean), indicating that the 
model prediction was well within the bounds of experimental error (p<0.001 for the percent error comparisons). 

    Percent error [%] 
 

     [kPa] 

  
 

0.01 Hz 
 

0.1 Hz 
 

1 Hz 
 

0.01 Hz 
 

0.1 Hz 
 

1 Hz 

(A) 10% strain amplitude 

               Model prediction 

 

5.22 (5.18, 5.27) 

 

2.76 (2.67, 2.84) 

 

6.65 (6.17, 7.31) 

 

6.33 
 

6.06 
 

11.76 

Experimental error 

 

40.17 (40.14, 40.20) 

 

42.30 (42.22, 42.41) 

 

40.36 (40.03, 40.77) 

 

71.08 
 

76.18 
 

74.44 

  
  

 
  

 
 

  
     

(B) 15% strain amplitude 

 
  

 
  

 
  

 
     

Model prediction 

 

6.48 (6.37, 6.58) 

 

6.16 (6.04, 6.28) 

 

6.06 (5.27, 9.18) 
 

19.08 
 

24.58 
 

32.14 

Experimental error 

 

44.93 (44.87, 44.98) 

 

43.96 (43.83, 44.09) 

 

44.34 (44.07, 44.58) 
 

121.29 
 

125.16 
 

126.22 

Percent error shown as: median (95% lower confidence limit, 95% upper confidence limit) 
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Table 9: The percent error and      values for the PLL cyclic predictions indicate that the model predicted the cyclic behavior well 

across all frequencies at both (A) the 10% strain amplitude, and (B) the 15% strain amplitude. Both the percent error and      values 
were an order of magnitude smaller than the experimental error (one standard deviation from the experimental mean), indicating that the 
model prediction was well within the bounds of experimental error (p<0.001 for the percent error comparisons). 

    Percent error [%]        [kPa] 

  
 

0.01 Hz   0.1 Hz   1 Hz 
 

0.01 Hz 

 

0.1 Hz 

 

1 Hz 

(A) 10% strain amplitude 
               Model prediction 
 

2.36 (2.33, 2.39) 
 

2.50 (2.40, 2.59) 
 

5.74 (5.47, 6.12) 
 

4.40 

 

5.35 

 

13.63 

Experimental error 
 

55.80 (55.49, 56.15) 
 

55.50 (54.80, 56.32) 
 

55.26 (53.24, 57.69) 
 

124.28 
 

125.58 
 

127.87 

           
     

(B) 15% strain amplitude 
          

     
Model prediction 

 
3.72 (3.69, 3.74) 

 
7.20 (6.85, 7.53) 

 
5.47 (5.01, 6.07) 

 

9.39 

 

16.99 
 

21.17 

Experimental error   62.36 (61.89, 62.80)   63.12 (61.99, 64.26)   62.58 (59.06, 66.72)   206.24   210.99   213.30 

Percent error shown as: median (95% lower confidence limit, 95% upper confidence limit) 



58 
 

Table 10: The percent error and      values for the LF cyclic predictions indicate that the model predicted the cyclic behavior well 

across all frequencies at both (A) the 10% strain amplitude, and (B) the 15% strain amplitude. Both the percent error and      values 
were an order of magnitude smaller than the experimental error (one standard deviation from the experimental mean), indicating that the 
model prediction was well within the bounds of experimental error (p<0.001 for the percent error comparisons). 

    Percent error [%]        [kPa] 

  
 

0.01 Hz   0.1 Hz   1 Hz 
 

0.01 Hz 

 

0.1 Hz 

 

1 Hz 

(A) 10% strain amplitude 
               Model prediction 
 

3.51 (3.48, 3.54) 
 

3.63 (3.54, 3.71) 
 

2.85 (2.70, 3.05) 
 

3.11 

 

2.84 

 

2.45 

Experimental error 
 

21.0 (20.99, 21.03) 
 

21.4 (21.37, 21.48) 
 

21.5 (21.37, 21.64) 
 

13.96 
 

13.91 
 

13.74 

           
     

(B) 15% strain amplitude 
          

     
Model prediction 

 
3.44 (3.36, 3.51) 

 
3.09 (2.96, 3.23) 

 
3.40 (3.28, 3.52) 

 

4.68 

 

4.41 
 

3.78 

Experimental error   23.0 (23.01, 23.06)   23.7 (23.60, 23.78)   24.0 (23.69, 24.27)   17.35   17.56   17.39 

Percent error shown as: median (95% lower confidence limit, 95% upper confidence limit) 
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3.4. Discussion 

 Human spinal ligaments facilitate and guide quasi-static and dynamic physiologic spinal 

motion patterns and absorb energy during traumatic events in order to protect the spinal cord. 

Thus, viscoelasticity is requisite to comprehensively model the functional mechanical behavior 

of these ligaments. The purpose of the current chapter was to directly characterize the 

nonlinear viscoelastic behavior of three primary spinal ligaments: the ALL, the PLL, and the LF. 

To the best of the author’s knowledge, the results presented herein represent the first report to 

empirically derive a comprehensive constitutive equation at multiple strain magnitudes for 

spinal ligaments that can accurately model the entire physiologic stress relaxation response and 

predict their cyclic behavior. Additionally, the Prony series representation of the constitutive 

equation [equation (29)] provides a temporal decomposition of the viscoelastic properties of 

these ligaments to elucidate this behavior across multiple temporal decades. 

 All three ligament types (ALL, PLL, and LF) were observed to exhibit unique nonlinear 

viscoelastic behavior. This is likely attributed to the different morphologies and specific 

physiologic function of each ligament type. Structurally, the longitudinal ligaments are narrow 

fibrous bands with similar (relatively highly) collagenous compositions49,140. These ligaments 

serve similar physiologic roles; primarily to stabilize the spinal column during flexion-extension 

motions and to maintain intradiscal pressures by resisting disc bulge108,118,119. By temporally 

decomposing the relaxation modulus into its decade components, it can be observed that the 

ALL and PLL viscoelastic behavior is dominated by both the       and the       moduli. The 

dominant behavior of the steady-state       modulus indicates that these ligaments maintain a 

substantial proportion of their initial applied load. This property may be attributed to the need 

for these ligaments to maintain mechanical integrity to support the spine during sustained 

postures. The dominant behavior of the short-term       modulus of the ALL and PLL indicates 
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that these ligaments relax quickly, and that the relaxation during loading events is of vital 

importance. The large contribution of the       modulus may be the mechanism for the 

significant rate-dependent elastic behavior previously observed14,107, as this modulus 

corresponds to the loading period of the experiment. Additionally, this fast relaxation behavior 

may be important to minimize peri-spinous muscle expenditure during sustained postures since 

the majority of relaxation occurs quickly (on the order of 0.1 s).  

 The ALL exhibited the greatest amount of viscoelastic behavior of the longitudinal 

ligaments. This may be attributed to its anatomical location, which is further from the motion 

segment’s center of rotation than the PLL. During extension the ALL experiences a greater 

amount of deformation than the PLL does in flexion14. Therefore, in order to maintain spinal 

stability during these larger deformations, it is requisite that the ALL maintain a greater amount 

of its initial stress than the PLL. Additionally, the increased damping characteristics observed for 

the ALL over the PLL [increased      ,      ,      ,       behavior] may be an adaptation that 

allows greater extension while imparting sufficient stability without becoming too stiff. 

Functionally, this is important because the ALL is the dominant ligamentous structure that 

resists excessive extension motion.  

 Contrary to the longitudinal ligaments, the LF is a thick, wide structure whose fibrous 

content is dominated by elastin53. This ligament exhibited significantly reduced steady-state and 

short-term viscoelastic behavior as compared to the ALL and PLL. The observation of the 

reduced steady-state behavior is consistent with the significantly reduced elastic modulus of the 

cervical LF reported previously134. This may be an adaptation of the LF since it is required to 

undergo a greater amount of deformation than the longitudinal ligaments due to its anatomical 

location (i.e., it is more remote from the spinal center of rotation)14. The reduced      ,      , 

     ,       behavior indicates that the LF exhibits less viscoelastic behavior than the 
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longitudinal ligaments. The increased elastic behavior observed for the LF is congruent with the 

assertion that the primary role of the LF is not to provide mechanical support of the spine, but 

rather to protect the spinal cord from impingement during neck motion14. 

 An important outcome of this study is the observation that spinal ligament relaxation is 

significantly dependent on strain magnitude across all temporal decades, behavior which has 

been previously neglected21,139. Physiologically, this adaptive relaxation behavior may be 

important to minimize muscular energy expenditure when maintaining a quasi-static posture. 

The stiffening effect that spinal ligaments exhibit when tensioned would require greater 

muscular energy to maintain postural attitudes at greater deformations. The increasing      , 

     ,      ,       moduli indicate that the ligaments dissipate more of this elastic energy 

when a posture is maintained at higher strain magnitudes49. During physiologic motions, 

additional elastic energy is dissipated in order to reduce the muscular forces required to 

maintain a consistent posture. The dominant       behavior, as compared to the      ,      , 

and       moduli, indicates that this energy is dissipated quickly, possibly to minimize the active 

muscular contribution required to stabilize the spine during this brief period of instability. 

Additionally, the increased viscoelastic properties of these ligaments with relatively greater 

deformation indicate that these ligaments store additional elastic energy that would help 

protect the spine during high strain and loading rate traumatic events. 

 The results presented herein may have important implications with regard to spinal 

stability. Typical curved column structures, which are geometrically similar to the spine, have a 

critical buckling load; below this load the structure is stable and above this load it demonstrates 

elastic instability. However, since the spine is a viscoelastic structure, its mechanical behavior 

includes a temporal component wherein its stability is also a function of the rate of load 

application and the time over which load is maintained108. The results presented herein 
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demonstrate that the load magnitude on the spinal ligaments significantly alters their temporal 

mechanical behavior due to their nonlinear viscoelastic characteristics. This complex behavior, 

which may result from rearrangement of the ligament microstructure108, may be an intrinsic 

protective mechanism that restores structural stability of the ligamentous spine in a transient 

load environment. 

3.5. Conclusion 

 The data from this chapter provides strong evidence of the following conclusions: (1) All 

three ligament types (ALL, PLL, and LF) exhibit a significant amount of relaxation during the 

loading period of the experiment; (2) Each ligament type displayed unique nonlinear viscoelastic 

behavior which may be attributed to its specific morphology; (3) The nonlinear viscoelastic 

behavior of the LF is substantially different from the longitudinal ligaments, suggesting a 

different functional role; (4) The adaptive (strain-dependent) viscoelastic behavior of these 

spinal ligaments may have important implications with regard to spinal stability and muscular 

expenditure. 
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4. Finite Element Implementation of Fully Nonlinear 
Viscoelasticity 

4.1. Introduction 

 Developed over forty years ago, the quasi-linear viscoelastic (QLV) theory proposed by 

Fung97 has been the widely-accepted gold-standard to describe the temporal mechanics of soft 

tissues21,34,84,98-105. Fundamentally, this theory assumes that the tissue’s mechanical behavior can 

be separated into a nonlinear hyperelastic (time-independent) component and a linear time-

dependent (strain-independent) component. Widespread use of QLV theory stems from its 

reduced mathematical interpretation (as compared to available fully nonlinear formulations) 

and the relative ease with which it can be incorporated into many commercial finite element 

(FE) software packages. For example, ABAQUS® includes typical strain energy functions to 

describe the tissue’s hyperelastic component and permits direct input of the experimental stress 

relaxation curve to simulate the linear time-dependent component141. 

 Despite its historical popularity, the linear time dependence assumption of QLV theory 

severely limits its applicability as a robust mechanical model for soft tissues because these 

tissues are subjected to temporally varying loading regimes in vivo. Recent studies have 

conclusively demonstrated that soft tissues violate the QLV assumption wherein fully nonlinear 

(and non-separable) viscoelastic behavior has been observed under various static and dynamic 

loading events. With specific reference to connective orthopaedic tissues, both ligament70-73,142 

and tendon69 exhibit strain-dependent stress relaxation and stress-dependent creep behavior 

under constant (static) strain and stress magnitudes, respectively. In addition, it has been 

explicitly shown that ligament exhibits amplitude-dependent viscoelastic effects when subjected 

to dynamic oscillations72,143. Overall, these complex nonlinear phenomena cannot be captured 

by QLV theory, thereby significantly reducing the formulation’s predictive accuracy under 
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physiologically germane loading conditions69-71,142,144. In addition, the characterization method 

used for experimentally-based nonlinear viscoelastic models can also have a substantial impact 

on the resultant model predictions. Specifically, it has recently been suggested that viscoelastic 

characterization techniques which incorporate relaxation manifested during the experimental 

loading (ramping) period are requisite to maintain predictive fidelity of the fitted model144. 

 In order to shift the current FE modeling paradigm to include fully nonlinear viscoelastic 

behavior and accurately model physiologically-important static and dynamic loading regimes, 

the aims of this chapter were: (1) to experimentally characterize the nonlinear viscoelastic 

behavior of orthopaedic connective tissue under static (stress relaxation) loading conditions, (2) 

to develop a nonlinear viscoelastic constitutive relationship that accurately captures this 

experimental behavior and implement this formulation into FE algorithms (i.e., demonstrate 

computational tractability), and (3) to validate the predictive accuracy of the viscoelastic FE 

model under static and dynamic (cyclic) loading conditions. 

4.2. Materials and Methods 

4.2.1. Experimental data acquisition 

 Ovine Achilles tendon and its corresponding muscle belly and calcanei were immediately 

excised from ten ( =10) skeletally mature ewes euthanized for unrelated studies, wrapped in 

saline-soaked gauze, sealed in a plastic bag, and frozen (-20 °C). This tissue model was selected 

because of its relatively large size and constant cross-section. Before testing, each specimen was 

thawed to room temperature, the muscle belly was carefully removed, and the calcaneous was 

potted in polymethylmethacrylate bone cement. Thereafter, the potted specimen was wrapped 

in saline-soaked gauze, sealed in a plastic bag, and refrozen (-20 °C) until the day of testing. 

Similar careful refreezing procedures have been used69 and shown to minimally affect the 

hydrated tissue’s viscoelastic properties145.  



65 
 

 On the day of testing, the specimen was gradually thawed and placed in a warmed 

saline bath (ovine body temperature, 39 °C) for one hour to ensure hydrothermal equilibration. 

The specimen was subsequently attached to a servohydraulic materials testing machine (858 

MiniBionix II; MTS; Eden Prairie, MN). The experimental apparatus included a translation (x-y) 

table, an environmental chamber (saline, 39 °C), and a six degree-of-freedom load cell (MC3A-

1000; AMTI; Watertown, MA; axial capacity: 4,448 N) placed below the environmental 

chamber72. The potted calcaneous was rigidly attached to the fixed environmental chamber and 

the distal tendinous tissue was attached to the actuator via a custom-designed cryo-clamp to 

minimize tissue slippage69,146,147.  

 The tendon’s initial gage length was defined under a 10 N preload, and the tissue was 

allowed to relax at this length for 5 minutes. The specimen was cyclically (haversine) 

preconditioned with a peak-to-peak strain amplitude of 7% engineering strain for 50 cycles at 

0.5 Hz followed by 50 cycles at 1 Hz. The tissue was allowed to recover for 1,000 s. Three ( =3) 

pilot specimens were subjected to repeated stress relaxation experiments following this 

preconditioning procedure (data presented in Appendix C, page 109), and demonstrated 

repeatable results that were within previously-defined boundaries69. Following preconditioning, 

seven ( =7) tendons were subjected to a series of  physiologic69 stress relaxation (randomized 

strain magnitudes: 1%, 2%, 3%, 4%, 5%, 6%, ramp rate: 10 mm/s, hold: 100 s, recover: 1,000 s, 

data capture rate: 102.4 Hz), dynamic (randomized strain amplitudes: 3% and 6%, frequencies: 1 

Hz and 10 Hz, data capture rate: 204.8 Hz), and creep experiments (load rate: 1,000 N/s, hold: 

100 s, recover: 1,000 s, data capture rate: 102.4 Hz). The order of stress relaxation, dynamic, 

and creep experiments was randomized for each specimen, with the restriction that creep did 

not occur first. If the order of the experiments was randomly selected as (1) dynamic, (2) creep, 

(3) stress relaxation, then the target forces for the creep experiments were obtained from the 
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maximum force observed from the 1 Hz (3% and 6%) cyclic experiments. Otherwise, the target 

forces were obtained from the maximum forces recorded during the 3% and 6% stress 

relaxation experiment.  Cross-sectional area of each tendon was measured post hoc using an 

area micrometer technique (Appendix C)148-151. 

 Due to experimental errors caused by high-frequency vibrations, the 10 Hz force data 

were not accurately captured by the six degree-of-freedom load cell. Data from a load cell 

placed above the specimen, between the cryoclamp and the MTS actuator, are presented in 

Appendix D. Additionally, attempts to interrelate the creep and stress relaxation data are 

presented in Appendix E. The current chapter presents data from the stress relaxation fits and 

the corresponding 1 Hz cyclic predictions. 

4.2.2. Nonlinear viscoelastic formulations 

 Both the analytical and FE nonlinear viscoelastic formulations are described in the 

following two subsections. All fits and analytical predictions were performed with MATLAB 

(version 7.11; TheMathWorks, Inc.; Natick, MA), and the FE simulations were performed using 

ABAQUS (version 6.9; Simulia; Providence, RI). 

Analytical formulation 

 Since tendon is a nonlinear viscoelastic material69, the viscoelastic constitutive 

formulation given by equation (28) was utilized for this study. The relaxation modulus was 

modeled using the five-term Prony series given by equation (29) with fixed decadal time 

constants:    = 0.1 s,    = 1 s,    = 10 s,    = 100 s. 

 Stress relaxation data at each strain magnitude were fitted to equation (28) using two 

characterization techniques: (1) the comprehensive viscoelastic characterization (CVC) method 

developed in chapter 2, which incorporates viscoelastic effects during the loading event via an 

iterative algorithm144, and (2) a previously used characterization technique 69,94,110 wherein strain 
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was assumed to be applied instantaneously (i.e., a Heaviside step application; thereby 

neglecting relaxation manifested during loading) and data fitting began after a multiple of 2.5 

times the ramp time    (referred to in the current chapter as the 2.5   method).  

 For each fitting method, the strain dependence of the moduli components were 

determined post hoc via a polynomial formulation117,144,152-154: 

             
  (38) 

where    and    were fit for each individual modulus component [     ,      ,      ,      , 

     ].  

 In order to interrogate any differences between these two characterization techniques, 

the coefficients from each method (and strain level) were input into the analytical formulation 

[equation (28)] with the actual (ramp and relax) strain history to predict the experimental stress 

relaxation curve144.  

 The relaxation period fits and the full predicted curves were compared via calculation of 

an exponentially weighted root mean-squared error [     , equation (35)]127,144,154. Statistical 

comparisons on the       were performed using the PROC MIXED procedure in SAS (SAS 

Institute, Inc.; Cary, NC; statistical significance: p<0.05). 

Finite element formulation 

 Consider a five-component mechanical model (Figure 1) composed of an elastic (steady-

state) spring in parallel with four Maxwell components126. Under deformation, each component 

experiences the same strain  , whereas the total stress   is a summation of the stress in each 

individual component (   and   ) plus any initial pretension   :  

 
        

 

   

    (39) 

The steady-state stress    component is given by the purely elastic relationship: 
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            (40) 

whereas the stress in each Maxwell component    (  = 1, 2, 3, 4) is governed by the time-

dependent differential equation94: 

 
    

 

  
            (41) 

where      represents differentiation with respect to time and      ,      , and    are defined 

above (section 2.2.3, page 28).  

 
Figure 18: A five-component spring and dashpot nonlinear viscoelastic mechanical model. 

Nonlinearity of the spring constants      ,      ,      ,      , and       was modeled via 
a quadratic polynomial [equation (38)]. The dashpots are characterized by their respective 

time constants    (  = 1, 2, 3, 4). 

Equation (39) can be implemented numerically by use of the stable integration operator141: 

 
  

  
 
 
  

 
  

  
 

 
  

 
 
  

    
  

  
 

(42) 

where   is an arbitrary function,    is its value at the current time, and    is the change in   

over a time step   . Hence, by defining           , where      is the function value from 

the previous time step, the total stress at the current  time [equation (39)] can be recast as: 
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    (43) 

where    is the strain at the current time,    is the strain increment, and   
    is the  th 

Maxwell component stress [equation (41)] from the previous time step. 

 In addition to the stress definition [equation (43)], the FE solution procedure also 

requires definition of a tangent stiffness. Utilizing the relations in equations (39)-(42), the 

uniaxial tangent stiffness    can be cast as141: 

 

   
   

   
          

 

  
  
   

     
  

 

   

 (44) 

4.2.3. Finite element model 

 A tension-only FE model of tendon was created in ABAQUS CAE using a single, two-node 

linear truss element (T3D2). This element is ideal for representing long, slender structures which 

support only axial loads and do not support bending/torsional moments141; a typical geometry 

and mechanical behavior exhibited by tendon and several other connective tissues. A custom-

written (FORTRAN) user-defined subroutine (UMAT) was developed to calculate the stress and 

tangent stiffness [equations (43) and (44)] using the coefficients obtained from either the CVC 

method or the 2.5   method. Gage length and cross-sectional area measurements obtained 

experimentally were used in the model geometry definitions.  

 In order to interrogate the predictive accuracy of the FE model and the two 

characterization methods, the FE models with material coefficients obtained from the each 

method were used to predict the average dynamic behavior via input of the average 

experimental cyclic displacement history. Accuracy of these predictions were quantified via 

calculation of the non-weighted      [i.e., equation (35) without the weighting function] and 

the percent error [equation (37)]144,154. For each strain amplitude, FE predictions for each 
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characterization technique were compared to their corresponding analytical predictions 

[obtained via equation (28)] and to the experimental variability (defined as one positive 

standard deviation from the experimental mean) using a Kruskal–Wallis test. Post hoc pairwise 

comparisons were performed using a Wilcoxon rank-sum test with Bonferroni adjustment (SAS, 

statistical significance: p<0.005). 

4.3. Results 

 Both characterization methods fit the stress relaxation period well [Figure 19(a)] 

producing very low       values in comparison to the peak stresses [Table 11(a)]. Statistical 

analyses indicated that the       for the 2.5   method fit was lower than that of the CVC 

method (p<0.001). However, there was a significant increase in       for 2.5   method 

prediction of the entire (ramping and relaxation periods) curve as compared to the CVC method 

[p<0.001, Table 11(b)]. 

 The polynomial formulation [equation (38)] described the strain dependence of the 

moduli well (  ≥0.89, Figure 20). Comparison of the two fitting techniques indicated that there 

was no statistical difference between the      ,      ,      ,       moduli components 

(p≥0.44, Table 12). However, the       modulus, corresponding to the 0.1 s time constant, was 

observed to be highly sensitive to the fitting technique (p<0.001). 
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Figure 19: (a) A typical relaxation period curve fit (CVC method       = 2.62 kPa, 2.5   

method       = 1.33 kPa); (b) the corresponding full (ramping and relaxation periods) 

analytical and FE curve predictions (CVC method       = 54.21 kPa, 2.5    method 
      = 182.51 kPa); and (c) the ramping period only predictions. Since the inherent 
viscoelastic nonlinearity was determined post hoc, the CVC method predictions at 
individual strain magnitudes were not explicitly inclusive of the relaxation as a function of 
the applied strain. As a result, there was a minor disparity between the predicted stress 
relaxation behavior and the experimental ramping period [shown in (c)] that lead to an 
increase in       with strain amplitude (Table 11). The FE model closely approximated 
the analytical solution of both characterization methods. 
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Table 11: Comparison of the median (95% lower confidence limit, 95% upper confidence limit)       values for (a) the stress 

relaxation fits and (b) the full curve analytical predictions. Although the reduced magnitude (p<0.001) of the 2.5         indicates a 
better fit of the data [as shown in (a)], there was a substantial increase in error when the resulting fitted coefficients were used to 

predict the full curve [as shown in (b)]. The CVC method reduced the       (p<0.001) by an order of magnitude for the 2%, 4%, 5%, 
and 6% strain as compared to the 2.5   method. Median peak stress (     ) values are provided as a relative scale for the magnitude of 

the       calculations. 

Strain 

  (a) Fit: relaxation period [kPa]   (b) Prediction: full (ramp and relax) curve [kPa]   
Median       [kPa] 

 
CVC method 

 
2.5   method 

 
CVC method 

 
2.5   method 

 0.01 
 

2.54 (0.54, 4.17) 
 

1.40 (0.29, 2.50) 
 

2.63 (0.60, 4.32) 
 

8.21 (4.27, 37.44) 

 

452.31 

0.02 
 

2.67 (0.67, 4.25) 
 

1.49 (0.35, 2.47) 
 

6.98 (4.40, 14.56) 
 

18.44 (7.61, 44.83) 

 

1,968.80 

0.03 
 

2.67 (0.99, 4.19) 
 

1.51 (0.47, 2.23) 
 

33.48 (21.71, 40.15) 
 

68.45 (49.647, 98.24) 

 

4,803.20 

0.04 
 

3.51 (2.18, 4.02) 
 

2.02 (1.22, 2.17) 
 

63.25 (52.45, 74.95) 
 

182.51 (91.30, 345.13) 

 

8,161.60 

0.05 
 

2.83 (1.82, 3.88) 
 

1.57 (0.75, 2.12) 
 

89.27 (80.06, 116.79) 
 

598.99 (428.11, 862.60) 

 

11,658.00 

0.06   2.84 (1.66, 3.96)   1.62 (1.08, 2.28)   116.85 (113.73, 159.69)   1,496.40 (978.82, 2151.10)   15,756.00 



73 
 

 

 
Figure 20: Average strain-dependent behavior of each moduli component with its 

corresponding fitted equation [equation (38)]. The data indicated that the       coefficient 
(corresponding to    = 0.1 s) was highly dependent upon the fitting technique (Table 12). 
Error bars represent one standard deviation. 

 

 

 

Table 12: Comparison of the strain-dependent moduli for each characterization technique. 

Statistical analyses indicated that the       moduli, which corresponds to the    = 0.1 s 
time constant, was the only component that was dependent upon the fitting technique 
(p<0.001). 

Modulus 
  CVC method 

 
2.5   method 

 p-value 

 

   [MPa]    [MPa]    
 

   [MPa]    [MPa]    

        

 

4403.1 -9959.3 0.99 
 

4008.3 -7179.7 0.99 
 

0.93 

       

 

901.1 8437.0 0.99 
 

0.0 5.8E5 0.89 
 

<0.001 

       

 

343.5 -684.1 0.99 
 

309.7 1147.3 0.99 
 

0.90 

       

 

331.2 -1201.2 0.99 
 

368.2 -1650.4 0.99 
 

0.59 

         476.5 -363.4 0.99 
 

165.7 3828.6 0.97 
 

0.44 

 



74 
 

 The FE model predictions for each fitting method closely approximated the average 

cyclic analytical solution at both the 3% (Figure 21) and the 6% (Figure 22) strain amplitudes 

(Table 13). Data taken from the last full cycle [Figures 21(b) and 22(b), Table 13] indicated that 

the material coefficients obtained using the CVC method: (1) fell within the bounds of 

experimental variability, (2) closely approximated the average experimental peak stress (within 

the bounds of experimental variability), and (3) was in-phase with the average experimental 

data (Table 13). Conversely, the coefficients obtained from the 2.5   method could not 

comprehensively capture these three criteria at either strain amplitude. 

 
Figure 21: Average 3% strain amplitude cyclic behavior and the corresponding analytical 
and FE predictions from the two fitting techniques for (a) the full experiment and (b) the 
last full cycle. Although the 2.5   method predictions closely approximated the loading 
phase of the dynamic behavior, its peak stress magnitude was out-of-phase from the 
average experimental data. Conversely, the CVC method predictions were within the 
bounds of experimental variability and in-phase with the average experimental data. 



75 
 

 
Figure 22: Average 6% strain amplitude cyclic behavior and the corresponding analytical 
and FE predictions from the two fitting techniques for (a) the full experiment and (b) the 
last full cycle. The 2.5   method predictions poorly approximated both the magnitude of 
the average experimental data and its phase. Conversely, the CVC method predictions 
were within the bounds of experimental variability and in-phase with the average 
experimental data. 
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Table 13: Summary of (a) the 3% and (b) the 6% strain amplitude cyclic prediction error metrics. For the last cycle, peak stresses (     ) 

and their corresponding time shifts are provided as a reference for the magnitude of the      values and phase considerations, 

respectively. Quantitative error metrics (percent error and     ) indicated that the CVC method analytical and FE predictions were well 
within the bounds of experimental variability and were in-phase with the average cyclic behavior at both strain amplitudes. In contrast, 

the 2.5   method was unable to comprehensively capture this dynamic behavior (both amplitude and phase) at either strain amplitude. 

    All cycles 
 

Last full cycle 

  

Percent error [%] 
 

     [MPa] 
 

Percent error [%] 
 

     [MPa] 
 

      [MPa]  Time shift 

(a) 3% strain amplitude 
        

 
  

 

Average experimental data 
 

-- 
 

-- 
 

-- 
 

-- 
 

5.74  -- 

Experimental variability 
 

16.43 (15.05, 17.89)
a
 

 
1.33 

 
16.60 (11.97, 21.76)

a
 

 
1.30 

 
7.93  0 

CVC method, analytical prediction 
 

5.70 (5.08, 6.41)
b
 

 
0.80 

 
5.34 (4.00, 7.84)

b
 

 
0.76 

 
4.20  <   

CVC method, FE prediction 
 

5.95 (5.30, 6.65)
b
 

 
0.81 

 
5.84 (4.38, 8.53)

b
 

 
0.78 

 
4.15  <   

2.5   method, analytical prediction 
 

2.93 (2.86, 3.01)
c
 

 
0.91 

 
2.97 (2.75, 3.33)

c
 

 
0.89 

 
5.40  >7   

2.5   method, FE prediction 
 

3.52 (3.38, 3.61)
c
 

 
0.90 

 
3.25 (2.20, 3.81)

c
 

 
0.87 

 
5.34  >7   

  
        

  
 

(b) 6% strain amplitude 
 

        
  

 

Average experimental data 
 

-- 
 

-- 
 

-- 
 

-- 
 

16.26  -- 

Experimental variability 
 

4.78 (4.47, 5.07)
a
 

 
1.05 

 
5.40 (4.17, 6.61)

a
 

 
1.06 

 
17.00  0 

CVC method, analytical prediction 
 

1.39 (1.27, 1.52)
b
 

 
0.96 

 
1.45 (1.07, 2.01)

b
 

 
0.39 

 
15.47  <   

CVC method, FE prediction 
 

1.23 (1.12, 1.34)
b
 

 
0.99 

 
1.27 (0.87, 1.58)

b
 

 
0.40 

 
15.30  <   

2.5   method, analytical prediction 
 

11.70 (9.96, 13.67)
c
 

 
5.59 

 
14.12 (8.03, 22.19)

c
 

 
5.89 

 
27.86  >7   

2.5   method, FE prediction   10.96 (9.33, 12.95)
c
 

 
5.42 

 
13.24 (7.13, 21.23)

c
 

 
5.68 

 
27.46  >7   

Superscript letters depict statistical groupings; different letters indicate p<0.005. 
Percent error is presented as: median (95% lower confidence limit, 95% upper confidence limit) 
The temporal resolution of the experiment was:    = 0.0049 s. 
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4.4. Discussion 

 Soft tissues exhibit fully nonlinear viscoelastic properties under varying strain 

magnitudes. This behavior cannot be captured using the popular QLV formulation. Recent work 

from our laboratory72,154 and several others69-71,73,110,142,153 have observed substantial errors in 

the predictive fidelity of QLV formulations under multiple loading conditions. Implementation of 

more accurate, fully nonlinear viscoelastic models has been hindered by the lack of available 

material models that can be directly input into a FE algorithm. Previous studies have 

recommended the use of the single integral modified nonlinear superposition formulation 

[equation (28)] for soft tissues because of its simplicity and its ability to accurately model 

nonlinear viscoelastic behavior117.  To the best of the author’s knowledge, the current study is 

the first to develop and validate a material model with an accompanying experimental 

characterization technique for this formulation which can be directly implemented into FE 

algorithms. 

 Data generated in the current chapter demonstrate the importance of considering the 

viscoelastic effects during loading events. Current nonlinear viscoelastic characterization 

methodologies rapidly apply the deformation (   on the order of milliseconds), then begin data 

fitting at a specified time-point that is temporally remote from the experimental ramp time (e.g.  

2.5  ). As demonstrated herein, the coefficients obtained using the 2.5   method fit the stress 

relaxation data well (Tables 11 and 12; Figures 19 and 20). However, this technique poorly 

predicted the material behavior under different (dynamic) loading conditions, which is 

congruent with our previous observations144. These poor predictions are likely a result of the 

2.5   method inaccurately capturing the important short-term behavior, as indicated by the 

statistically different       moduli which describes the mechanical behavior on the order of 0.1 

s.  
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 Although a significant amount of cyclic preconditioning was performed, a noticeable 

stress decay (approximately 25% reduction in amplitude) in the 6% strain amplitude average 

cyclic data was observed post hoc. This irreversible behavior was not accurately captured by the 

nonlinear viscoelastic formulation utilized herein (Figure 22). Previous work has reported similar 

behavior in which stress decay was observed in tendon after many repeated cycles without 

reaching steady-state155,156. These previous findings were also more pronounced at larger strain 

magnitudes155, a trend also observed in the current study.  In order to capture these decay 

effects, it has been postulated that consideration of a constituent-based model (which would 

allow for the incorporation of transient component contributions such as collagen fiber 

recruitment) may be required156. However, our predictions of the entire dynamic loading regime 

curve were within the bounds of experimental variability (Table 13), and the errors (percent 

errors and      values) from these full predictions were similar in magnitude to previously 

published acceptance criteria84,144,154.  

 An important advantage of the proposed differential FE formulation [equation (43)] with 

regard to computational efficiency is that it requires storage of a single (axial) stress value from 

the previous step rather than the entire stress history [as necessitated by equation (28)]. Even 

for FE models with relatively few elements, storage of the entire stress history at each 

integration point may be computationally expensive or intractable. Similar methods have been 

previously developed for an integral formulation, but its applicability has been restricted to QLV 

theory157. 

 The constitutive formulae presented herein are limited to uniaxial (one-dimensional) 

tensile deformations. Nevertheless, both the integral [equation (28)] and the differential 

[equation (43)] formulations may be generalized to multiaxial stress states96, although tendon 

and ligament anisotropy is rarely considered in whole joint simulations. Current whole joint FE 
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investigations, such as those of the cervical spine158,159, the lumbar spine160,161, the knee162,163, 

the sacroiliac joint164, and the pelvic joint165 typically model these connective tissues as one-

dimensional elastic spring or truss elements in order to reduce computational cost. Three 

dimensional, continuum-based material models have been put forth in an attempt to more 

accurately represent connective tissue anisotropic nonlinear viscoelasticity166-168. However, 

these continuum formulations require very complicated experimental characterization 

techniques owing to the relatively large number of required material coefficients, and 

implementation of these anisotropic derivations into whole joint FE model has, to date, been 

shown to be largely intractable. 

4.5. Conclusion 

 To conclude, this study was the first attempt to develop and validate a computationally 

tractable, fully nonlinear viscoelastic formulation that can be directly implemented into FE 

algorithms. It is expected that adaptation of this formulae and associated characterization 

technique will greatly improve the predictive fidelity of soft tissue transient internal mechanical 

parameters for whole joint FE simulations subjected to temporally fluctuating loading regimes. 
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5. Overall Conclusions  

The overall conclusions of this dissertation are: 

 The comprehensive viscoelastic characterization (CVC) technique developed in chapter 2 

significantly improves the predictive fidelity of the fitted material coefficients for 

musculoskeletal soft tissues under static and dynamic loading regimes as compared to 

previously accepted characterization methods. 

 The short-term aspect (on the order of 0.1 s) of spinal ligament and tendon viscoelasticity is 

highly important under temporally fluctuating (static and dynamic) loading conditions. 

 The proposed strain-dependent Prony series relaxation modulus with fixed time constants 

described spinal ligament and tendon viscoelasticty well (within the bounds of experimental 

variability) under multiple loading conditions, indicating that this model accurately captures 

the nonlinear viscoelastic behavior of multiple musculoskeletal tissue types. 

 The finite element formulation developed herein offers a fully nonlinear viscoelastic 

material model that can be directly implemented into whole joint musculoskeletal models. 

 



81 
 

6. Future Work 

 While this dissertation represents a significant advancement in our ability to 

characterize the viscoelastic behavior of biological tissues, further investigations are warranted 

to develop more sophisticated models. The following sections detail several possible future 

investigations. 

6.1. Anisotropic Nonlinear Viscoelastic Characterization 

  Although the nonlinear viscoelastic formulae developed herein [equations (28) and (29)] 

accurately captured the one-dimensional temporal behavior of various musculoskeletal soft 

tissues, theses tissues are known to exhibit a significant amount of mechanical anisotropy due 

their fiber-composite microstructure. Previous efforts have developed microstructural (fiber-

level)167,169-172 and multiphasic-based viscoelastic models to describe this anisotropic behavior173. 

Unfortunately, the available microstructural-based formulae are either restricted to utilizing 

over-simplified QLV formulations169-172 or are burdened with an inordinate number of material 

coefficients whereby implementation into FE codes becomes intractable167. Additionally, 

multiphasic representations are complicated by the appropriate prescription of the constituent 

(namely fluid) boundary conditions as would be present in vivo174. Although these constituent-

based models offer insight into the origins of tissue viscoelasticity, they are not particularly 

necessary to describe tissue-level (phenomenological) behavior.  

  Several tissue-level anisotropic phenomenological formulations have been suggested for 

modeling ligament viscoelasticity95,157,175,176. Nonetheless, most of the these models are based 

on over-simplified QLV assumptions which cannot accurately capture nonlinear viscoelastic 

behavior157,175,176.  However, a possible fully nonlinear viscoelastic formulation proposed by 
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Rajagopal and Wineman174 may offer the generality necessary to describe multidimensional soft 

tissue nonlinear viscoelasticity: 

 
                      

 

      
             

 

 

       (45) 

where   is the Cauchy stress tensor,     is the indeterminate stress (due to the 

incompressibility constraint),      is the time-dependent deformation gradient,      is the right 

Cauchy-Green deformation tensor, and             is the tensorial relaxation modulus. 

Equation (45) is similar in form to the one-dimensional nonlinear superposition formulation 

utilized herein [equation (28)]. 

 Implementation of equation (45) is not straightforward. Several experimental and 

computational challenges exist, such as: (1) the explicit definition of the form of the tensoral 

relaxation modulus  , (2) the protocol for conducting multiaxial nonlinear stress relaxation 

experiments (at multiple strain magnitudes) under controlled hydrothermal conditions, and (3) 

the complex (simultaneous) fitting of the multidimensional stress relaxation data to determine 

the material coefficients of  . It is likely that appropriate material symmetries (such as 

transverse isotropy) are requisite in order to reduce the number of tensoral components of 

equation (45) and make the definition of   tractable177. Additionally, the form of   must satisfy 

previously established thermodynamic feasibility requirements93,94. It is postulated that fitting 

the mulitaxial experimental data to equation (45) may be carried out by developing FE model of 

the experimental specimen (based on physical measurements) where the actual experimental 

forces and/or displacements can be used as the input FE boundary conditions. This FE model, 

which includes a custom user-defined material (UMAT) that implements equation (45), can be 

used to create the predicted curves [step (b)] in the CVC algorithm (page 30). This protocol 

would be similar to a previous study that combined analytical and computational models to 

achieve the optimum coefficients for an anisotropic QLV model for brain stem178.  
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6.2. Interrogation of Various Nonlinear Viscoelastic Formulations 

 Although several studies have demonstrated that the single integral nonlinear 

superposition model [equation (28)] can accurately capture the nonlinear viscoelastic effects of 

soft tissues subjected to temporally varying (stress relaxation and cyclic) loading conditions69-

73,117,144,179, recent evidence suggests that this formulation demonstrates reduced accuracy when 

describing other viscoelastic effects such as stress recovery179 and creep (Appendix E). A single 

integral formulation developed by Schapery180 may be more applicable to describe soft tissue 

recovery than equation (28)179. In addition, multiple-integral nonlinear viscoelastic models, 

which contain more general nonlinear material definitions than the single integral models94,96, 

may offer the ability to represent numerous soft tissue viscoelastic effects. To the best of the 

author’s knowledge, there has been no effort to implement multiple integral formulations into 

soft tissue viscoelasticity.  

 Additionally, there are a number of relaxation moduli proposed to describe 

musculoskeletal soft tissue viscoelasticity, including Prony series [e.g., equation (29)] and power 

law formulations69-71,110,117,153. To date, there has been no general agreement in the literature 

over which specific form the relaxation modulus must take to describe soft tissue viscoelasticity.   
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Appendix A: Uniqueness of a Prony Series with Fixed 
Time Constants 

 Since the general Prony series formulation          
      

    with fitted coefficients 

   and    is non-unique59, it is of interest to verify that the mathematical form of the proposed 

relaxation modulus [a Prony series with fixed    time constants, equation (29)] yields a unique 

solution. The author gratefully acknowledges Professor Donald Estep (Departments of 

Mathematics and Statistics; Colorado State University; Fort Collins, Colorado) for providing the 

following proof, which demonstrates uniqueness of the relaxation modulus [equation (29)] 

utilized throughout this dissertation. 

A.1. Proof of Uniqueness of a Prony Series With Fixed Time Constants 

 Consider a Prony series expansion of the relaxation modulus under the assumption of 

fixed time constants            : 

 
                    

     

 

   

 (46) 

Assume that the function        allows another expansion with possibly different coefficients: 

 
                      

     

 

   

 (47) 

Subtracting equations (47) and  (46) yields: 

 
               

     

 

   

 (48) 

where          . If it is shown that      for all  , then the expansion coefficients are 

unique. This argument uses the fact that fixing the time constants             means 

that the expansion is linear in the coefficients that vary. 
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 If we take the limit of equation (48) as    , then all of the exponential terms in the 

sum converge to zero. This yields        .  Hence, now consider: 

 
         

     

 

   

 (49) 

Multiplying equation (49) by      , yields: 

 
               

              

 

   

 (50) 

Note that the terms in the summation all have negative coefficients in the exponent. Hence, 

taking the limit as     yields        .  Subsequently, we consider the equation: 

 
         

     

 

   

 (51) 

and return the same mathematical procedure. Proceeding successively using the same 

argument after multiplying by      ,      , and      , and taking the limit as     each time, it 

is concluded that         for each  , thereby proving uniqueness of a Prony series with fixed 

time constants. 
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Appendix B: Interrogation of Inertial Artifacts 

B.1. Introduction 

 For the spinal ligament experiments (chapters 2 and 3), the load cell was placed above 

the specimen, between the actuator of the testing device and a custom upper fixture (Figure 

23). While this setup permitted convenient attachment of the specimen to the testing device 

and has been utilized in recent transient viscoelastic investigations (with ramp times similar in 

magnitude that used in chapters 2 and 3)69,70,110,179, the mass of the upper fixture may have 

induced inertial force artifacts during the brief periods of acceleration/deceleration. Therefore, 

the specific aim of this appendix was to directly elucidate the potential inertial artifacts 

generated by the experimental setup used in chapters 2 and 3. 

 
Figure 23: Setup for spinal ligament viscoelasticity experiments. Placement of the uniaxial 
load cell above the specimen may have caused inertial artifacts in the recorded force 
readout during the brief periods of acceleration/deceleration. 
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B.2. Materials and Methods 

B.2.1. Experimental data capture 

 A series of fast-ramp (5 mm/s) and slow-ramp (0.1 mm/s) stress relaxation experiments 

were conducted on a representative leather strip specimen. The fast-ramp velocity was chosen 

to be identical to the rate used in chapters 2 and 3; the slow ramp velocity was chosen to be an 

order of magnitude less than the fast-ramp velocity in order to minimize the inertial effects. 

Potential slippage of the specimen was reduced by wrapping its ends around a metal fixture, 

which were secured with bolts and washers, and potting each end in polymethylmethacrylate 

(PMMA) (Figure 24). After the PMMA cured, the potted leather strip was attached to an 

experimental setup that was identical to that of the spinal ligament experiments (Figure 23) 

with the addition of a six degree of freedom load cell (MC3A-1000; AMTI; Watertown, MA) 

placed between the specimen and the translation table. Both load cells were zeroed by lowering 

the MTS actuator until there was visible slack in the specimen. 

 
Figure 24: Picture of the leather strip specimen during potting. This potting procedure was 
performed in order to eliminate potential slippage of the specimen during testing. 

 Analogous to the spinal ligament experiments, the specimen was ramped to 5 N of 

pretension at a rate of 0.1 mm/s and held at the resulting displacement for 1,000 s. The gage 
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length (53.64 mm) was defined in this configuration as the distance between the potting 

fixtures. Following the 1,000 s hold, the specimen was preconditioned at frequency of 0.5 Hz 

and a peak-to-peak strain amplitude of 10% engineering strain, then returned to its reference 

configuration for 1,000 s of recovery. Subsequently, the specimen was subjected to two 

repeated fast-ramp stress relaxation experiments (strain magnitude: 10%, hold: 100 s, recover: 

1,000 s). Following the recovery period of the second fast-ramp experiment, a single slow-ramp 

stress relaxation experiment was performed (strain magnitude: 10%, hold: 100 s). Force data 

between the two load cells were synchronized post hoc via the peak stress from each stress 

relaxation experiment. 

B.2.2. Repeatability error quantification 

 In order to quantify the repeatability of the stress relaxation behavior, an exponentially 

weighted and non-weighted root mean-squared error [      : equation (35),     : 

equation (35) without the weighting function, respectively] was calculated between the two 

repeated experiments. The percent error [equation (37)] between these two experiments was 

also calculated. 

B.2.3. Inertial artifact quantification 

 The inertial artifact was quantified by comparing the      , the     , and the 

percent error between the upper and lower load cell readouts from the second fast-ramp and 

the slow-ramp experiments.  

B.3. Results 

B.3.1. Repeatability 

 The stress relaxation data from both load cells were highly repeatable at both the long-

term [Figure 25, (a) and (c)] and short-term [Figure 25, (b) and (d)] behavior. The quantitative 

error metrics for the upper and lower load cells are given in Table 14. 
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Figure 25: Long-term [(a) and (c)] and short-term [(b) and (d)] repeatability for the upper 
and lower load cells.  

 

Table 14: Error metrics calculated between the two repeated runs for the upper and lower 
load cells. 

    
      [kPa] 

 
     [kPa] 

  Percent error [%] 

        Median   Maximum   Minimum 

Upper load cell 

 

24.5 
 

104.1 
 

1.29 
 

52.62 
 

0.91 

Lower load cell   18.0   61.3   0.67   28.79   0.05 

 

B.3.2. Error between upper and lower load cells 

 The upper and lower load cell data from the fast-ramp and slow-ramp experiments 

demonstrated comparable behavior (Figure 26). The quantitative error metrics between the two 

load cells were similar in magnitude for both the fast-ramp and the slow-ramp protocols (Table 

15). 
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Figure 26: Comparison of the long term [(a) and (c)] and short term [(b) and (d)] upper and 
lower load cell data for the fast-ramp and slow-ramp experiments. 

 
Table 15: Error metrics between upper and lower load cell readout for the fast ramp and 
slow ramp experiments. 

    
      [kPa] 

 
     [kPa] 

  Percent error [%] 

        Median   Maximum   Minimum 

Fast ramp 

 

27.6 
 

76.9 
 

0.82 
 

70.10 
 

0.08 

Slow ramp   29.2   147.8   1.83   114.21   0.96 

 

B.4. Discussion 

 Fast- and slow-ramp stress relaxation experiments were performed to directly elucidate 

any inertial artifacts in upper load cell readout caused by the mass of the upper fixture (Figure 

23). Repeatability of the stress relaxation behavior was quantified by performing two identical 

fast-ramp experiments. For comparison, a slow-ramp experiment, which contained minimal 

inertial effects, was performed and compared to the fast ramp data via quantative error metrics.  
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 The relatively low       and      values reported for the repeatability experiments 

(maximum      = 104.1 kPa, Table 14) and low median percent error (< 1.3%) indicate a high 

degree of repeatability (i.e., similar curve shapes) for the fast-ramp loading protocol.  

 In addition, the      ,     , and percent error metrics between the upper and 

lower load cell readouts were similar in magnitude for both the fast and slow ramp experiments. 

A significant inertial artifact would have caused the fast-ramp quantities to be greatly increased 

with respect to the slow-ramp quantities.  

B.5. Conclusion 

 The similar magnitude of the error metrics between the upper and lower load cells for 

both the fast-ramp and slow-ramp experiments strongly suggests that the mass of the upper 

fixture and the acceleration rate utilized in the spinal ligament studies did not significantly affect 

the outcome of the stress relaxation data therein. 
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Appendix C: Pilot Experiments—Repeatability and 
Cross-Sectional Area Measurement 

C.1. Repeatability 

C.1.1. Materials and methods 

 In order to verify that the preconditioning protocol effectively removed the irreversible 

component of the viscoelastic behavior155,156, and that sufficient recovery time was allotted 

between each viscoelastic experiment (stress relaxation, dynamic, and creep) to recover from 

load history effects, a set of pilot repeatability experiments was performed on three ( =3) ovine 

Achilles tendon specimens. Each tendon was subjected to the initial length definition and cyclic 

preconditioning procedures outlined above (section 4.2.1, page 64), and then allowed to recover 

for 1,000 s. Thereafter, each specimen was subjected to five repeated stress relaxation 

protocols at the 6% strain magnitude. This procedure closely followed the experimental stress 

relaxation protocol used to obtain the fitted material coefficients (section 4.2.1, page 64).  

 For each specimen, force relaxation data the five repeated experiments were averaged 

at specific time points (0.1 s, 1 s, 10 s, 100 s), and the variability (standard deviation) within the 

repeated tests was calculated as a percentage of the mean. The results were compared to 

previously accepted values69. 

C.1.2. Results and discussion 

 Results indicated that the stress relaxation experiments were very repeatable (Table 

16), where the largest variability [Table 16(c), Figure 27] was similar in magnitude to previously 

accepted values69.  
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Table 16: Repeatability statistics for each of the three (a, b, and c) pilot experiments. For 
each specimen, the standard deviation between the repeated experiments was small in 
comparison to the average force. 

  

Time points 

  

0.1 s 1 s 10 s 100 s 

(a) Specimen 1 

     Average [N] 

 

1,481.62 1,432.24 1,375.28 1,274.14 

Standard deviation [N]  41.14 41.52 41.43 43.83 

% of average 

 

2.78 2.90 3.01 3.44 

 
 

    
(b) Specimen 2 

 
    

Average [N] 

 

1,503.20 1,447.02 1,394.14 1,308.86 

Standard deviation [N]  25.55 22.94 21.14 15.88 

% of average 

 

1.70 1.59 1.52 1.21 

 
 

    
(c) Specimen 3 

 
    

Average [N] 

 

978.06 932.70 875.57 805.99 

Standard deviation [N]  68.58 62.05 59.45 54.93 

% of average 

 

7.01 6.65 6.79 6.82 

 

 
Figure 27: Repeated stress relaxation curves for the specimen with the greatest amount of 
variability [specimen 3, Table 16(c)] 

C.1.3. Conclusion 

 Although there is conflicting data for and against the use of preconditioning protocols to 

obtain the viscoelastic behavior of orthopaedic connective tissues70-74, a substantial loss in 
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repeatability was observed for this tendinous tissue if no preconditioning was performed (data 

not presented). Differences in the literature may be a result of the specific tissue being tested. 

For tendon, previous studies have demonstrated that significant, irreversible preconditioning 

effects are present during loading, but these effects can be removed by static (stress relaxation) 

or cyclic preconditioning protocols which subject the tissue to strain magnitudes that are 

greater (by 1%) than the strain during the measured experiment69,155,156. Since the cyclic 

preconditioning protocol herein was observed to yield highly repeatable results that were 

comparable to previously published data, this preconditioning procedure was utilized before 

each series of experiments (stress relaxation, cyclic, and creep).  

C.2. Cross-sectional Area Measurement 

C.2.1. Materials and methods 

 In order to determine an accurate representation of the tendon’s cross-sectional 

geometry for engineering stress calculations and finite element implementation, the cross-

sectional area of each pilot specimen ( =3) was determined using two independent methods: 

(1) a custom-designed area micrometer149-151,181 and (2) post hoc digital image capture72. The 

area micrometer measured the width and height of the hydrated tendon when placed in 

rectangular slot of known width and applying a constant pressure of 0.12 MPa to a plunger 

attached to a high-resolution (0.0254 mm) micrometer (Figure 28)149-151,181. Height 

measurements from the micrometer were recorded five minutes after pressure application to 

allow for the pressure-induced creep to reach steady-state. Measurements were taken at two 

regions along the length of the tendon (proximal and distal) towards end of the tendinous 

tissue) and averaged. The cross-sectional geometry was then approximated by a circle, with a 

radius determined from the average proximal and distal areas. 
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Figure 28: Picture of tendon area measurement using the area micrometer technique.  

 Following measurement using the area micrometer technique, the tendon was carefully 

transected approximately between the proximal and distal measured regions described above 

using a scalpel. Digital images of the hydrated cross-section were then captured under a 

dissection microscope (image resolution > 85 pixels/mm) mounted perpendicular to the cross-

section, and the area was calculated from these images using ImageJ software (version 1.45s; 

National Institutes of Health; Bethseda, MD). By utilizing precision-machined block gages of 

known area, it has been previously demonstrated that this digital image capture technique is 

highly accurate (within 0.55% of the known area)72.  

C.2.2. Results and discussion 

 The areas calculated using the two methods were similar in magnitude; however, the 

area measured using the area micrometer was slightly reduced those measured from digital 

image capture (Table 17). This reduced area may be a result of the constant pressure applied to 

the tissue during the area micrometer measurement182, which is requisite in order to ensure 
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that the tissue’s cross-section has conformed to the shape of the rectangular slot. Despite this 

small (approximately 7%) reduction in area, the area micrometer closely approximated the 

shape of the cross section (Figure 29). This circular approximation is advantageous in the 

development of the finite element model because it permits a simple, cylindrical geometry to be 

utilized. The complex (and irregular) cross-section obtained using digital image capture would 

significantly complicate the mesh, and may result in poor element quality.  

Table 17: The average and standard deviation (SD) of the cross-sectional areas calculated 

using the area micrometer (   ) and digital image capture (    ) methods. 

 
    [mm2]      [mm2] Percent difference† [%] 

Average 104.81 112.50 7.08 

SD 15.00 15.19 1.26 

†The percent difference was calculated as:  
        

            
       

 
 

 
Figure 29: The circular approximation determined from the area micrometer (black dashed 
line) approximated the cross-section obtained from digital image capture (solid grey line) 
well for each of the three pilot specimens [(a), (b), and (c)]. 

C.2.3. Conclusion 

  It was observed that a circular approximation determined using the area micrometer 

was in good agreement with the actual cross-section geometry determined from digital image 

capture. Therefore, the cross-sectional area from all specimens in chapter 4 were determined 

using the area micrometer technique, and the cross-sectional geometry was assumed to be 

circular. 
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Appendix D: High Frequency (10 Hz) Cyclic Predictions 

D.1. Introduction 

 The ovine Achilles tendons were subjected to cyclical loading regimes at two peak-to-

peak strain amplitudes (3% and 6%) and two frequencies (1 Hz and 10 Hz). Post hoc data analysis 

elucidated significant errors in the lower load cell force data at the 10 Hz frequency which were 

likely caused by high-frequency vibrations induced in the experimental setup. These errors were 

consistent across all specimens and strain amplitudes. As a result, the force data was obtained 

from the upper load cell and, therefore, includes inherent inertial artifacts caused by the mass 

of the cryoclamp and the relatively fast accelerations required to achieve the 10 Hz oscillations. 

With these artifacts in mind, the specific aim of the current appendix was to interrogate the 

ability of the coefficients achieved from the stress relaxation experiments (section 4.2.1, page 

64) to predict the high frequency (10 Hz) behavior of ovine Achilles tendon. 

D.2. Materials and Methods 

 As outlined in section 4.2.2 (page 66), the fitted coefficients obtained from both stress 

relaxation fitting techniques (the CVC method and the 2.5   method) were used as input for 

both the analytical formulation [equation (28)] and the FE model in order to predict the average 

10 Hz cyclic behavior at both strain amplitudes. Within each strain amplitude, the analytical and 

FE predictions from each fitting technique were compared to the average experimental data and 

to the experimental variability (defined as one standard deviation from the experimental mean) 

via calculation of the      [equation (35) without the weighting function] and percent error 

[equation (37)]. Statistical comparisons were performed on the percent error using a Kruskal–

Wallis test (SAS; post hoc comparisons: Wilcoxon rank-sum test with Bonferroni adjustment; 

statistical significance: p<0.005). 
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D.3. Results  

 The 10 Hz frequency predictions followed trends that were similar to the 1 Hz 

predictions (section 4.3 , page 70). The peak magnitudes from the CVC method predictions were 

within the bounds of experimental variability for both the 3% (Figure 30) and 6% (Figure 31) 

strain amplitudes while the 2.5   method did not consistently capture these peaks. Statistical 

analyses indicated that the CVC method predictions of the full experimental curves (all cycles) 

were within the bounds of experimental variability for both strain amplitudes, whereas the 6% 

strain predictions from the 2.5   method were well outside of these bounds [p<0.001 for all 

significant comparisons, Table 18(a)]. No statistical difference was found between any of the 

predictions and the experimental variability when only the last cycle was considered (p≥0.168).  

D.4. Discussion 

 The data presented in this appendix indicate reduction in the predictive accuracy of the 

fitted coefficients at the 10 Hz frequency. All predictions at this high frequency were slightly out-

of-phase from the average experimental data, and the overall error metrics (Table 18) were 

larger in magnitude than the 1 Hz cyclic predictions (Table 13). This reduction in fidelity may be 

a result of the specific discrete (Prony series) formulation utilized herein [equation (29)]. In a 

previous study, Lucas et al.21 characterized the viscoelastic properties of human spinal ligaments 

under very fast strain applications (wherein strain onset was at least an order of magnitude 

faster than the ramping period of the current study) using fixed time constants that were two 

orders of magnitude smaller than those utilized herein (i.e.,    = 0.001 s,    = 0.01 s,     = 0.1 s, 

   = 1 s). Using these reduced time constants, Lucas et al. achieved a high degree of predictive 

accuracy at 2 Hz and 20 Hz frequencies. Taken together, the results from the current study and 

from Lucas et al. suggest that a continuous spectrum relaxation function may be more 

applicable to describe a very broad range of soft tissue viscoelasticity at both physiologic and 
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injurious strain rates. However, to the best of the author’s knowledge, no fully nonlinear 

viscoelastic continuous spectrum relaxation modulus has been developed for soft tissues that 

can simultaneously describe both static and dynamic temporal mechanics. 

 
Figure 30: Depiction of (a) the first five cycles and (b) the last full cycle of the 3% strain 
amplitude, 10 Hz frequency predictions.  

 
Figure 31: Depiction of (a) the first five cycles and (b) the last full cycle of the 6% strain 
amplitude, 10 Hz frequency predictions.  
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Table 18: Summary of (a) the 3% and (b) the 6% strain amplitude cyclic prediction error metrics for the 10 Hz frequency. Peak stresses 

(     ) and their corresponding time shifts for the last full cycle are provided as a reference for the magnitude of the      values and 

for phase considerations, respectively. Quantitative error metrics (percent error and     ) indicated that the analytical and FE all cycle 
predictions from the CVC method were typically within the bounds of experimental variability (defined as one positive standard 

deviation from the experimental mean) at both strain amplitudes. Conversely, error metrics for the 2.5   method analytical and FE 
predictions were typically greater than those of the CVC method at both strain amplitudes. 

  

All cycles 
 

Last full cycle 

  

Percent error [%] 
 

     [MPa] 
 

Percent error [%] 
 

     [MPa] 
 

      [MPa] 
 

Time shift 

(a) 3% strain amplitude 
 

           

Average experimental data 
 

-- 
 

-- 
 

-- 
 

-- 
 

3.94 
 

-- 

Experimental variability 
 

23.86 (21.85, 25.98)
a
 

 
1.33 

 
20.26 (5.99, 31.00)

a
 

 
0.90 

 
5.37 

 
0 

CVC method, analytical prediction 
 

7.33 (6.92, 7.65)
b
 

 
0.52 

 
7.70 (4.02, 15.83)

a
 

 
0.50 

 
3.06 

 
>   

CVC method, FE prediction 
 

8.66 (7.88, 9.56)
c
 

 
0.63 

 
10.72 (5.16, 22.91)

a
 

 
0.70 

 
2.89 

 
>   

2.5   method, analytical prediction 
 

10.77 (10.26, 11.29)
d
 

 
0.63 

 
11.73 (6.03, 19.49)

a
 

 
0.63 

 
4.50 

 
>   

2.5   method, FE prediction 
 

9.93 (9.37, 10.39)
c
 

 
0.62 

 
10.72 (5.16, 14.54)

a
 

 
0.62 

 
4.32 

 
>   

  
           

(b) 6% strain amplitude 
 

           

Average experimental data 
 

-- 
 

-- 
 

-- 
 

-- 
 

13.04 
 

-- 

Experimental variability 
 

5.84 (5.46, 6.19)
a
 

 
1.05 

 
7.15 (2.63, 13.08)

a
 

 
1.25 

 
15.10 

 
0 

CVC method, analytical prediction 
 

5.65 (5.47, 5.84)
b
 

 
1.35 

 
6.26 (2.92, 10.31)

a
 

 
1.08 

 
11.98 

 
>   

CVC method, FE prediction 
 

5.27 (4.64, 5.93)
b
 

 
1.68 

 
5.46 (2.46, 16.76)

a
 

 
1.67 

 
10.89 

 
>   

2.5   method, analytical prediction 
 

14.85 (13.52, 16.27)
c
 

 
5.92 

 
12.93 (5.86, 52.57)

a
 

 
6.13 

 
26.12 

 
>   

2.5   method, FE prediction 
 

14.91 (13.54, 16.15)
d
 

 
5.24 

 
12.47 (3.41, 40.53)

a
 

 
5.19 

 
24.40 

 
>   

Superscript letters depict statistical groupings; different letters indicate p<0.005. 
Percent error presented as: median (95% lower confidence limit, 95% upper confidence limit). 
The temporal resolution of the experiment was:    = 0.0049 s.  
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D.5. Conclusion 

 Given the relative loss in predictive accuracy for the 10 Hz cyclic predictions compared 

to the 1 Hz predictions (section 4.3, page 70), it can be postulated that the higher frequency 

predictions were near the upper bound of the temporal spectrum defined by the fixed time 

constants. These findings demonstrate the importance of either: (1) developing a continuous 

spectrum relaxation modulus that can capture a relatively large temporal spectrum, or (2) 

selecting a discrete formulation and experimental characterization procedure that are 

appropriate for the time scales of interest. 
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Appendix E: Creep Predictions 

E.1. Introduction 

 This appendix presents an introduction to the interrelationship between the creep 

compliance and the relaxation modulus for linear and fully nonlinear viscoelastic materials. The 

applicability of the fully nonlinear viscoelastic formulation is interrogated by the ability of the 

creep compliance (determined from the stress relaxation modulus fits in chapter 4) to predict 

the independent creep experiments. 

E.1.1.  Relationship between creep and stress relaxation: linear viscoelasticity 

 For a linear viscoelastic material, the relationship between the relaxation modulus      

and creep compliance      is typically achieved via a Laplace transform in order to simplify 

analysis. The Laplace transform      of the linear viscoelastic formulation [equation (15)] can be 

written as: 

 
                             

 

 

  (52) 

where   is the transformed variable and               . Utilizing the convolution property of 

the Laplace transform, equation (52) reduces to: 

                    (53) 

where             . Further simplification is provided by the derivative property: 

                         

           
(54) 

for       . Similarly, the Laplace transform of the creep formulation: 

 
            

     

  
  

 

 

 (55) 

is given by: 
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                (56) 

By re-writing the relations given by equations (54) and (56) as the ratio of stress and strain: 

     

    
       

 

     
 (57) 

a relationship between the transformed relaxation modulus and creep compliance can be 

established: 

 
         

 

  
 (58) 

By use of the convolution theorem and the inverse transform            , equation (58) can 

be transformed into the time domain, yielding the implicit relationship between the relaxation 

modulus and the creep compliance for a linear viscoelastic material94: 

 
           

 

 

              
 

 

     (59) 

Equation (59) is implicit because it does not contain explicit functions for the relaxation modulus 

nor the creep compliance. 

E.1.2. Relationship between creep and stress relaxation: nonlinear viscoelasticity 

 Laplace transforms cannot be applied to nonlinear viscoelastic formulations. However, 

Lakes and Vanderby152 recently developed an interrelation between the creep compliance and 

relaxation modulus for the nonlinear superposition formulation used throughout this 

dissertation [equation (28)].  While this formulation was successful at interrelating the 

experimental creep and stress relaxation periods for ligament152,153, its applicability towards the 

interrelating the physiologically important loading period remains largely unknown. Additionally, 

it is unknown if this relationship is valid for soft tissues other than ligament. Therefore, the 

specific aim of this appendix was to interrogate the applicability of the nonlinear viscoelastic 

creep and stress relaxation interrelationship developed by Lakes and Vanderby152 towards 
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describing the entire (ramp and creep) average nonlinear creep behavior of ovine Achilles 

tendon based on coefficients obtained from stress relaxation fits. 

E.2. Materials and Methods 

 For a nonlinear viscoelastic material subjected to a constant stress (  ), the relationship 

between the time- and strain-dependent relaxation modulus        and the time- and stress-

dependent creep compliance         can be given by152,153: 

 
                            

 

 

        

  
   (60) 

where   is time,      is the applied strain history, and   is a time variable of integration. The 

relationship in equation (60) is implicit unless specific functions are given for        and       . 

Therefore, a stress-dependent generalization for the creep compliance, which is analogous to 

the strain-dependent Prony series generalization for the relaxation modulus [equation (29)], the 

nonlinear creep compliance can be cast as183: 

 
                       

 
 
   

 

   

 (61) 

where       is the stress-dependent instantaneous (glassy) compliance and       represent the 

stress-dependent compliance components corresponding to the     time constants. For this 

study, the creep and relaxation time constants were assumed to be equivalent:    = 0.1 s,    = 1 

s,    = 10 s,    = 100 s. Analogous to the relaxation moduli formulations [equation (38)], the 

stress-dependent creep compliance components were assumed to have a quadratic polynomial 

form152,153: 

             
  (62) 

where    and    were fit for each individual component [     ,      ,      ,      ,      ]. 

Since equation (60) is in terms of a constant stress (  ), an instantaneous stress application of 

the average creep behavior from each creep experiment was assumed by using the 2.5   
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method described above (section 2.2.3, page 28)69,110,184. The average creep behavior at both 

stress magnitudes (denoted as “   ” and  “   ” for the creep experiments corresponding to 

the peak stresses the 3% and 6% displacement-controlled experiments, respectively) were 

individually determined in MATLAB (version 7.11; TheMathWorks, Inc.; Natick, MA) by 

minimizing the objective function: 

 
                                 

 

 

          

  
      

 

 

 (63) 

where   is the number of datum points and   represents the set of fitted coefficients [equation 

(62)]. One set of coefficients was determined for the     experiment and another (separate) set 

was determined for the     experiment. In order to satisfy thermodynamic restrictions94, all 

fitted coefficients were constrained (via MATLAB’s fmincon function) to ensure equation (62) 

was positive and monotonically increasing with stress magnitude. In equation (63), the explicit 

form of the relaxation modulus was determined from the corresponding set of stress relaxation 

experiments (section 4.2.2, page 66). Finally, the sensitivity of the fitted parameters to the initial 

guess required by the fitting algorithm was investigated by fixing each of the initial guesses to a 

value of 0.01, 0.1, 1, 10 or 100 and observing any differences in the resulting fitted coefficients.     

 In order to elucidate the predictive accuracy of the fitted creep model, the coefficients 

determined from the abovementioned characterization procedure were used to predict the 

entire (ramp and creep) average nonlinear creep behavior using the relation153:  

 
                   

     

  
  

 

 

 (64) 

where      is the applied stress history. Percent error [equation (37)] and       [equation 

(35)] values were calculated between the predictions and the average     and     behavior 

and compared to the experimental variability (defined as one positive standard deviation from 
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the average creep behavior). Percent error calculations were compared to the experimental 

variability using a Wilcoxon ranked sum test (SAS, statistical significance: p<0.05)154. 

E.3. Results  

E.3.1. Sensitivity of creep coefficients to the initial guess 

 The results indicated that the     creep coefficients were insensitive to the initial guess 

over a five decade range. Therefore, these fitted coefficients were deemed to be the global 

minimum of      (Table 19) and used to predict the average creep behavior.  Although the     

fitted coefficients varied slightly over the five decade range, the fitted coefficients 

corresponding to the minimum      (initial guesses of 0.1 and 10) were insensitive to the initial 

guess (Table 20). Therefore, these coefficients were deemed to be the global minimum of      

and used to predict the average     behavior. 

Table 19: Dependence of the     fitted creep coefficients on the initial guess. The fitted 
creep coefficients were independent of the initial guess over a five decade range (0.01 to 
100).  

 
Fitted coefficients  [kPa]

-1
 

 Initial guess   
 

   
 

   
    

    
    

    
    

    
    

       

100 2.45 -0.26 0.55 -0.06 0.17 -0.02 0.11 -0.01 0.20 -0.02 0.00217 

10 2.45 -0.26 0.55 -0.06 0.17 -0.02 0.11 -0.01 0.20 -0.02 0.00217 

1 2.45 -0.26 0.55 -0.06 0.17 -0.02 0.11 -0.01 0.20 -0.02 0.00217 

0.1 2.45 -0.26 0.55 -0.06 0.17 -0.02 0.11 -0.01 0.20 -0.02 0.00217 

0.01 2.45 -0.26 0.55 -0.06 0.17 -0.02 0.11 -0.01 0.20 -0.02 0.00217 

 

Table 20: Dependence of the     fitted creep coefficients on the initial guess. The fitted 

creep coefficients varied slightly over the five decade range of initial guesses (0.01 to 100). 
The coefficients from the initial guesses of 0.1 and 10 corresponded to a minimum of  
    . 

 

Fitted coefficients  [kPa]
-1

 

 Initial guess   
 

   
 

   
    

    
    

    
    

    
    

       

100 0.34 -0.01 0.08 0.00 0.02 0.00 -0.05 0.00 0.01 0.00 0.00472 

10 0.36 -0.01 0.10 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00451 

1 0.36 -0.01 0.10 0.00 0.03 0.00 -0.02 0.00 0.01 0.00 0.00456 

0.1 0.36 -0.01 0.10 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00451 

0.01 0.36 -0.01 0.10 0.00 0.03 0.00 -0.01 0.00 0.01 0.00 0.00452 
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E.3.2. Average creep prediction: entire curve 

 Analytical predictions [via equation (64)] of the entire average     and     creep 

behavior are shown in Figures 32 and 33, respectively. The percent error and       values 

indicated that the     prediction was within the bounds of experimental variability, while the 

    prediction was outside of these bounds (Table 21, p<0.001 for all percent error 

comparisons). 

 
Figure 32: Long-term (a) and short-term (b) prediction of the average     behavior. The 
skewed shape of ramping period of the average experimental data is an artifact of 
averaging creep curves with different ramp times.  

 
Figure 33: Long-term (a) and short-term (b) prediction of the average     behavior. The 
skewed shape of ramping period of the average experimental data is an artifact of 
averaging creep curves with different ramp times.  
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Table 21: Goodness-of-fit metrics for the (a)     and (b) and     creep model predictions 
compared to the experimental variability. 

    Percent error [%] 
 

      [µm/µm] 

(a)     creep 

  

 

 Model prediction 

 

26.90 (26.89, 26.92)* 
 

1.55 

Experimental variability 

 

29.70 (29.69, 29.71) 
 

1.74 

 
 

   
(b)     creep 

 
   

Model prediction 

 

17.09 (17.05, 17.11)* 
 

2.21 

Experimental variability   14.20 (14.18, 14.23) 
 

1.55 

Percent error reported as: median (95% confidence limit) 
* represents p<0.001 when compared to the experimental variability 

E.3.3. Average creep prediction: creep period only 

 In order to compare the creep predictions (Figures 32 and 33) to the results provided by 

Lakes and Vanderby152, the average     and     data and their corresponding predictions were 

plotted beginning at 10 times the average experimental ramp time, and normalized by the peak 

strain (Figure 34). The correlation ( ) between the normalized experimental data and creep 

predictions was  =0.998 for both the     and the     behavior, which is similar in magnitude 

to the correlations reported by Lakes and Vanderby152. 

 
Figure 34: Normalized creep prediction of the average (a)     and (b)     behavior 

beginning at ten times the average experimental ramp time. Data are plotted on a log-log 
scale. 
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E.4. Discussion 

 The results in this appendix represent the first attempt to predict creep behavior from 

stress relaxation using a nonlinear viscoelastic formulation based on a Prony series. It was 

observed that the goodness-of fit metrics for these creep predictions were increased from the 

displacement-controlled 1 Hz cyclic predictions using the same relaxation modulus (section 4.3, 

page 70). Some of this increased error may be due to the assumption of equivalent creep and 

relaxation time constants. Previous studies have suggested that the time constants for creep are 

greater than the corresponding relaxation time constants (i.e., creep occurs at a slower rate 

than stress relaxation)153,183. With regard to linear viscoelastic materials, several previous 

attempts have determined the creep time constants by permitting these values to be fitted 

during the characterization procedure183,185. However, we have previously demonstrated that 

fixed time constants are necessary to achieve a unique solution during fitting (Appendix A)144. 

Therefore, by permitting these values to be fitted, the coefficients determined from these 

previous studies may be non-unique59. Currently, there is no objective method to select the time 

constants for the creep compliance other than to assume that they are equivalent to the 

relaxation modulus time constants. 

 Additionally, it is important to note that the fitted creep coefficients at the     and     

stress levels were substantially different, indicating that the same coefficients could not be used 

to describe the creep behavior at both levels. The nonlinear viscoelastic creep and stress 

relaxation interrelationship proposed by Lakes and Vanderby152 was developed by use of creep 

and stress relaxation data provided by Thronton et al.74, in which the experimental stress 

relaxation and creep data at a single strain and a single stress level, respectively. Therefore, the 

interrelationship given by equation (60) was not tested at varying levels of creep and/or stress 

relaxation. Since a single set of coefficients could not be obtained to describe both constants 
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stress levels, equation (60) may not be applicable to materials wherein creep properties change 

significantly with stress magnitude. 

 Additionally, the applicability of equation (60) to related creep and stress relaxation was 

previously justified by calculating a high correlation ( ) between the predicted creep or stress 

relaxation curves and the experimental data152. It is important to note that a high correlation 

between the predicted creep curves and the average experimental data was also achieved in the 

current study for both creep stress magnitudes, despite a clear disparity between the model 

prediction at the     stress magnitude [Figure 34(b)].  

E.5. Conclusion 

 Numerical analyses were performed to interrogate the applicability of the stress 

relaxation and creep interrelationship proposed by Lakes and Vanderby152 to describe the creep 

behavior of ovine Achilles tendon. Given the significant increase in error for the creep 

predictions as compared to the displacement-controlled 1 Hz cyclic predictions, and the 

observation that a single set of coefficients could not be achieved to describe the creep 

behavior at multiple stress magnitudes, the formulation provided by equation (60) may not be 

applicable to describe tendon creep behavior based on stress relaxation coefficients. 
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Appendix F: Applied Integration Techniques  

F.1. Introduction 

 As described in detail in section 1.3 (page 12), the current stress state for linear and 

nonlinear viscoelastic materials subjected to a general strain history is represented respectively 

as convolution integrals: 

 
            

     

  
  

 

 

    (65) 

 
                   

     

  
  

 

 

    (66) 

Numerical implementation of these formulations into computational algorithms is complicated 

by the integration over the entire strain history and by the differentiation of this strain history 

because the explicit functional form of      is unknown and arbitrary. To circumvent these 

complications, many researchers approximate the applied strain history by assuming simplified 

strain profiles (e.g., an instantaneous strain application or a pure linear ramp and hold) in order 

to obtain closed-form solutions. However, as demonstrated in chapters 2, 3, and 4, such 

assumptions may have an adverse affect on the predictive accuracy of the fitted coefficients. 

Therefore, the specific aim of the current appendix is to present the application of several 

integration techniques which can be used to evaluate equations (65) and (66) in their general, 

integral forms.  

F.2. Materials and Methods 

 All fits in this appendix were performed using MATLAB (version 7.11, TheMathWorks, 

Inc.; Natick, MA). 

 Two applied numerical integration techniques are presented in the following 

subsections: (1) an adaptive Gauss-Kronrod quadrature (QUADGK) technique, and (2) a 
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convolution matrix technique. Since numerical differentiation (of the strain history) is known to 

decrease the signal-to-noise ratio of experimentally-captured data, two equivalent formulations 

within each technique were interrogated: (a) one that utilized integration by parts (IBP), in order 

to remove the differential operator from the strain history; and (b) one that differentiated the 

strain history using MATLAB’s built-in differentiation function (fnder). Each of the four 

integration techniques was implemented [in step (b) of the of the CVC algorithm] to fit the 

stress relaxation data presented in chapter 2 at two individual strain magnitudes (4% and 25%). 

The resulting fitted coefficients were compared across the four formulations using a one-way 

ANOVA (statistical significance: p<0.05).  

F.2.1. Adaptive Gauss-Kronrod quadrature (QUADGK) technique 

 Experimentally, the time-dependent stress and strain variables are represented as 

vectors wherein each element corresponds to a discrete time value. Numerically, the current 

discrete stress value within this vector is obtained through integration of the defined relaxation 

modulus multiplied by the entire (differentiated) strain history. In MATLAB, this integration can 

be performed by use of the quadgk function (which utilizes adaptive Gauss-Konrod quadrature) 

and defining: (1) the integration variable   using a MATLAB function handle, and (2) the strain 

history      as a cubic spline (using MATLAB’s spline command) that is evaluated at  . At the 

individual 4% and 25% strain magnitudes, the original integral [equation (65)] and its equivalent 

IBP formulation were evaluated using the quadgk function as outlined above. The nonlinear 

viscoelastic formulation [equation (66)] was not investigated in the current appendix because 

strain-dependence is not considered during the CVC fitting procedure (i.e., nonlinear viscoelastic 

behavior is determined after the CVC method is performed). However, strain dependence can 

be included in the integrand [e.g., for cyclic predictions] by defining the strain as a spline that is 

evaluated at  . 



130 
 

F.2.2. Convolution matrix technique 

 The convolution integral [equation (65)] can be represented as the limit of a sum94: 

 
        

    
            

     

  

 

   

    (67) 

where    is the time increment,    is the discrete history variable (analogous to the continuous 

history variable  ),      is the discrete strain history,        is the relaxation modulus, and 

  is the total number of time increments. For small (but finite) time increments, equation (67) 

can be closely approximated by the matrix equation: 
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where               are the discrete experimental time values,   is the number of discrete 

time values for the experiment, and              . An equivalent matrix representation can 

be obtained via IBP:  

 

     

     
 

     

      

 
 
 
 
 
 
 
 
  
     

  
 
  

   

      

  
 
  

      

  
 
  

  

    

      

  
 
  

      

  
 
     

       

  
 
   

 
 
 
 
 
 
 
 

 

     

     
 

     

        

     

     
 

     

   

  

  

 
  

  (69) 

For computational efficiency, the square (  x  ) matrices in equations (68) and (69) were 

developed from the experimental data by use of MATLAB’s built-in toeplitz and tril functions.  

F.2.3. Computational efficiency 

 In order to compare the computational efficiencies of the proposed integration 

techniques, the time required for each technique to integrate a single, representative stress 

relaxation curve (consisting of 6,025 datum points) was recorded.  



131 
 

F.3. Results 

 Statistical analyses indicated that there were no significant differences between the 

fitted coefficients (4% strain magnitude data shown in Figure 35, 25% strain magnitude shown in 

Figure 36) of either integration technique or their equivalent IBP counterparts (p>0.98 for all 

comparisons).  Furthermore, the convolution matrix technique was observed to be significantly 

more computationally efficient (runtime: 5.2 s) than the QUADGK technique (runtime: 66.6 s). 

F.4.  Discussion 

 Direct integration of the constitutive formulation given by equation (66) is requisite in 

order to describe the viscoelastic behavior of a material subjected to a general strain history. All 

four integration techniques investigated in this appendix (QUADGK with and without IBP, 

convolution matrix with and without IBP) were observed to yield equivalent fitted coefficients 

when used with the CVC algorithm. These findings indicate that any of the above integration 

techniques can be utilized to create the integral predictions in the CVC algorithm [step (b), page 

30].  

F.5. Conclusion 

 Based on the results of this appendix, it is suggested that the computationally efficient 

convolution matrix technique [equations (68) and (69)] be used to calculate the predicted curve 

in the CVC method.  
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Figure 35: Fitted parameters at the 4% strain magnitude determined from each of the 
integration techniques. There was no statistical difference between the fitted coefficients 
obtained using either fitting technique (No IBP) or the equivalent integration by parts (IBP) 
formulation (p>0.98 for all comparisons). Error bars represent one standard deviation. 

 

 
Figure 36: Fitted parameters at the 25% strain magnitude determined from each of the 
integration techniques. There was no statistical difference between the fitted coefficients 
obtained using either fitting technique (No IBP) or the equivalent integration by parts (IBP) 
formulation (p>0.98 for all comparisons). Error bars represent one standard deviation. 
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