
THESIS

ELEMENT REARRANGEMENT FOR ACTION CLASSIFICATION

ON PRODUCT MANIFOLDS

Submitted by

Karthik Kadappan

Department of Electrical and Computer Engineering

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Summer 2013

Master’s Committee:

Advisor: J. Ross Beveridge

Anthony A. Maciejewski
Chris Peterson
Sanjay Rajopadhye

ABSTRACT

ELEMENT REARRANGEMENT FOR ACTION CLASSIFICATION

ON PRODUCT MANIFOLDS

Conventional tensor-based classification algorithms unfold tensors into matrices using the

standard mode-k unfoldings and perform classification using established machine learning

algorithms. These methods assume that the standard mode-k unfolded matrices are the

best 2-dimensional representations of N-dimensional structures. In this thesis, we ask the

question: “Is there a better way to unfold a tensor?” To address this question, we design a

method to create unfoldings of a tensor by rearranging elements in the original tensor and

then applying the standard mode-k unfoldings. The rearrangement of elements in a tensor

is formulated as a combinatorial optimization problem and tabu search is adapted in this

work to solve it. We study this element rearrangement problem in the context of tensor-

based action classification on product manifolds. We assess the proposed methods using a

publicly available video data set, namely Cambridge-Gesture data set. We design several

neighborhood structures and search strategies for tabu search and analyze their performance.

Results reveal that the proposed element rearrangement algorithm developed in this thesis

can be employed as a preprocessing step to increase classification accuracy in the context of

action classification on product manifolds method.

ii

DEDICATION

I would like to dedicate this thesis to my beloved parents Meenal and Kadappan, my

brother Jothi, and the beautiful city of Fort Collins.

iii

ACKNOWLEDGMENTS

I would like to take this opportunity to express my gratitude to the people who made

this thesis possible. I deeply thank my advisor Dr. Ross Beveridge for many things. His

patience, guidance, and support have made it possible for me to accomplish this work. I

have learned from him the importance of designing toy-problems to tackle larger problems.

I thank Dr. Anthony A. Maciejewski for providing constant encouragement and support

throughout my graduate program. He also gave me the freedom to explore my own research

interests. I am also grateful to Dr. Sanjay Rajopadhye and Dr. Chris Peterson for serving

on my thesis committee.

A special thanks to Dr. Yui Man Lui for inspiring me use manifolds for visual recognition.

Working with him taught me a lot about this field which I knew very little about. His

intuition on the matter has strongly influenced and guided my approach.

I would like to express my gratitude towards all my friends and the beautiful city of Fort

Collins for making me feel at home and keeping me sane through these years. I especially

thank my friends: Bala, Baves, Dosii, Kous, Nyiiks, Sridhar, Tanni, Tika, Tyags, and Vam.

Lastly, I thank my parents and brother for being the wonderful people they are, and

for being extremely understanding and encouraging through all the rough times I have had.

Without their love, none of this would have been possible.

iv

TABLE OF CONTENTS

1 Introduction . 1

1.1 What is action classification? . 1

1.2 Motivation . 2

1.3 Previous Work . 3

1.4 Contributions . 4

1.5 Overview of Chapters . 5

2 Action Classification . 7

2.1 Data set . 7

2.2 Subspace based methods . 8

2.3 Action Classification using Subspace Methods 10

3 Action Classification using Tensor-Based Subspace Comparison 12

3.1 Motivation . 12

3.1.1 Tensors . 12

3.1.2 Subspace Comparison . 13

3.1.3 Grassmann Manifolds . 14

3.2 Mathematical Background . 15

3.2.1 Tensor . 15

3.2.1.1 Tensor Unfolding . 15

3.2.1.2 Tensor Mode-k Product . 18

3.2.1.3 Higher Order Singular Value Decomposition 19

3.2.2 Principal Angles . 20

3.2.3 Grassmann Manifold and Geodesic Distance 21

3.2.4 Product Manifold . 24

3.3 Action Classification on Product Manifolds: A Toy Problem 26

3.3.1 Example Toy Problem 1 . 26

3.3.2 Example Toy Problem 2 . 27

4 Element Rearrangement Problem . 31

v

4.1 Why Rearrange Elements? . 31

4.2 Element Rearrangement using Local Search . 32

4.2.1 Combinatorial Optimization . 32

4.2.2 Local Search . 33

4.3 A General Algorithm . 34

4.4 Hill Climb . 37

4.5 Tabu Search . 37

4.5.1 Basic Elements of Tabu Search . 39

4.5.1.1 Fitness Landscape . 39

4.5.1.2 Memory and Search Strategy . 39

4.5.2 Algorithm . 40

4.5.3 Parameter Initialization . 42

4.5.4 Search Space and Neighborhood Structure . 43

4.5.5 Tabu Search Strategy . 48

5 Experiments . 51

5.1 Tabu Search Tuning Procedure . 51

5.2 Heuristics and Experimental Results . 52

5.2.1 RPSTS Heuristic . 52

5.2.2 EPSTS Heuristic . 54

5.2.3 EPSTS-PS Heuristic . 55

5.2.4 EPSTS-VN Heuristic . 55

5.2.5 Comparing the performance of the heuristics 57

5.3 Parameter Tuning . 58

5.4 Tensor Subspace Analysis . 60

6 Conclusion . 66

6.1 Future Work . 67

References . 69

A Symbol Glossary . 75

vi

LIST OF TABLES

3.1 Table of principal angles between the subspaces of the query video and the target
videos. Here θjk is the jth principal angle between the subspaces spanned by V(k)

and Vi
(k) computed on the Grassmann manifold Mk where i is the target gesture. 30

5.1 Parameter settings for the four heuristics. The parameters listed in this table
are: number of trials (ntrials), number of evaluations (nevals), number of sampled
pixels (npels), tabu tenure (tl), search space (S), neighborhood structure (N (s)),
Short-term Memory (STM), Long-term Memory (LTM), and Tuning set. 52

A.1 Symbol Glossary . 75

vii

LIST OF FIGURES

2.1 Example gestures from Set1 of the Cambridge-Gesture database. Each of the
nine rows correspond to a gesture. In each row seven frames out of the 32 frames
are presented for each gesture. From top the gestures are: flat leftward, flat
rightward, flat contract, spread leftward, spread rightward, spread contract, V-
shape leftward, V-shape rightward, and V-shape contract. 8

2.2 Action classification using subspace methods. Cambridge-Gesture data set is
partitioned into query set (Set1, Set2, Set3, and Set4) and target set (Set5).
Target set is the labeled data set, and query set is identified by the algorithm. . 10

3.1 Example gestures from the synthetic gesture database. Each of the ten rows
correspond to an action. From the top the gestures are: baeline (only increas-
ing brightness), top-left to bottom-right, bottom-right to top-left, top-right to
bottom-left, bottom-left to top-right, arbitrary gesture 1, left to right, top to
bottom, two-pixel left to right, arbitrary gesture 2. 25

3.2 Gray scale representation of tensor decomposition of a synthetic video A ∈
R4×4×4. First row shows the four frames of the synthetic video -A(:, :, 1), A(:, :, 2),
A(:, :, 3), and A(:, :, 4). Second row represents the three unfoldings - A(1), A(2),
and A(3). Third row represents the factors obtained from modified HOSVD -

V(1), V(2), and V(3). 28

3.3 Gray scale representation of tensor decomposition of a synthetic videoA ∈ R4×4×4

with white Gaussian noise. First row shows the four frames of the synthetic video
- A(:, :, 1), A(:, :, 2), A(:, :, 3), and A(:, :, 4). Second row represents the three
unfoldings - A(1), A(2), and A(3). Third row represents the factors obtained from

modified HOSVD - V(1), V(2), and V(3). 29

3.4 Plot of geodesic distance on Grassmann product manifold for toy problem 2. . . 29

4.1 Action classification on product manifolds. Cambridge-Gesture data set is parti-
tioned into query set (Set1, Set2, Set3, and Set4) and target set (Set5). Target
set is the labeled data set and is further randomly divided into training set and
validation set. Query set is identified by the ACOPM. 34

4.2 A general algorithm for element rearrangement for action classification on product
manifolds (ER-ACPOM). 35

viii

4.3 Pixel Sampling: Random pixel sampling (left) and edge pixel sampling (right).
The 49 pixels in red are the chosen pixels. 45

4.4 Illustration of the Pixel Add-Drop Neighborhood (PADN) 46

4.5 Illustration of the Frame Shift Neighborhood (FSN) 46

4.6 Best Move Strategy . 49

5.1 Average initial and final classification rates (averaged over 12 trials) for the four
heuristics on the three different tuning sets. 53

5.2 Best initial and final classification rates (best of the 12 trials in terms of gain) for
the four heuristics on the three different tuning sets. 54

5.3 Example gestures from Set5 of the Cambridge-Gesture database after pixel rear-
rangement. Each of the nine rows correspond to a gesture. In each row seven
frames out of the 32 frames are presented for each gesture. From top the gestures
are: flat leftward, flat rightward, flat contract, spread leftward, spread rightward,
spread contract, V-shape leftward, V-shape rightward, and V-shape contract. . . 56

5.4 Number of trials (out of the 12 trials) in which the classification rate decreased as
a result of TS. The results are shown for four the heuristics on the three different
tuning sets. 58

5.5 Classification rates for the EPSTS-VN heuristic with different values for npels.
D5 is used as the tuning set, ntrials = 12, nevals = 300, npenalty = 1, and tl = 5 . . 59

5.6 Classification rates for the EPSTS-VN heuristic with different values for nevals.
The first bar in each group corresponds to the average classification rate (aver-
aged over 12 trials), and the second bar in each group corresponds to the best
classification rate (best of the 12 trials in terms of gain). D5 is used as the tuning
set, ntrials = 12, npels = 324, npenalty = 1, and tl = 5. 60

5.7 Example gestures from Set5 of the Cambridge-Gesture database after rearrange-
ment. Each of the nine rows correspond to a gesture. In each row seven frames
out of the 32 frames are presented for each gesture. From top the gestures are: flat
leftward, flat rightward, flat contract, spread leftward, spread rightward, spread
contract, V-shape leftward, V-shape rightward, and V-shape contract. 61

ix

5.8 Tensor subspace analysis of the ACOPM method and the four heuristics. First
bar in each group gives the classification rate when the classification is performed
on the GPM. The second, third, and fourth bars of each group give the classifi-
cation rates achieved when classification is performed onM(1)

hm,M(2)
vm, andM(3)

app,
respectively. All the classification rates are averaged over 12 trials. 64

5.9 Tensor subspace analysis of the EPSTS-VN heuristic for different values of npels.
First bar in each group gives the classification rate when the classification is
performed on the GPM. The second, third, and fourth bars of each group give
the classification rates achieved when classification is performed on M(1)

hm, M(2)
vm,

and M(3)
app, respectively. All the classification rates are averaged over 12 trials. . 65

x

Chapter 1

Introduction

1.1 What is action classification?

Action classification is the task of labeling motions in a video. Given a database of labeled

videos and a query video the question to be addressed is, what is the “most probable” label

to which the query belongs? More often than not we are interested in human actions because

of the number of potential applications. Classification of human motions in a video can be

performed at different levels of abstraction. Different taxonomies have been proposed by

authors for dealing with movement at various levels of complexity. Terms such as action,

gesture, activity, and behavior are often interchangeably used. A review of the different

taxonomies is provided in [38].

A commonly used taxonomy (see reviews [38, 55]) is the one given by Moeslund et al. [50]:

action primitive, action, and activity. An action primitive is an atomic entity. Actions are

built from action primitives and activities are, in turn, built from actions. The granularity

often depends on the context of the environment. As an example, in racquetball, action

primitives could be, e.g., “run left”, “run right”, “forehand”, and “backhand”. In this

example the term action is used for a sequence of action primitives needed to successfully

return a ball. Actions could be, e.g., “kill shot”, “pinch shot”, and “ceiling shot”. The

activity is then “playing racquetball”.

The growing interest in action classification is motivated by the number of potential appli-

cations in different areas in human-computer interaction [29], robotics [8], security industry,

and entertainment industry. Moeslund et al. roughly group the applications under three

titles: surveillance, control, and analysis [50]. Surveillance applications cover problems re-

lated to detecting abnormal activities in public locations and crowd behavior or congestion

1

analysis (say, in shopping malls). Control applications cover problems where action is used

to control something. This could be used in games (e.g., Microsoft Xbox Kinect, Sony PS3

Move), virtual reality, and other human-computer interface applications. An example of an

analysis application is automatic annotation of videos for efficient content-based retrieval of

videos.

1.2 Motivation

In recent years, many action classification algorithms have been proposed. However, reli-

able action classification remains a challenge due in part to the complexity of human move-

ments. Most actions have large variation in performance. For example, running movements

can differ in stride length and speed. Issues such as invariance to viewing angle, scale, and

subject further add to the complexity of the problem. Environment parameters such as clut-

ter, occlusion, and lighting conditions are an additional source of variation. A good action

classification algorithm should be able to generalize the variations within the same action

but distinguish the variations between different actions.

Several approaches have been proposed for action classification. These methods can be

logically divided into two categories - pixel-based methods [33, 48] and feature-based meth-

ods [39, 53, 59, 72]. Feature-based methods are better suited for activity recognition and

are not considered in this work. On the other hand, pixel-based methods are better suited

for action recognition, in particular actions in controlled environments. They are sensi-

tive to background clutter, nonaligned actions, and large view point changes. Nevertheless,

the success of pixel-based methods greatly depends on reducing the correlations within the

videos.

Pixel-based methods take advantage of the fact that videos contain a significant amount

of redundant information. The redundancy is because of the spatial-temporal coherence and

structural commonalities found within videos [61]. Kersten demonstrated this redundancy

perceptually by asking human observers to restore missing pixels in an image [32]. It is

often useful to pare away with these redundancies so that the intrinsic features of the video

2

are revealed and used for action classification. The goal of subspace methods (discussed in

Chapter 2) and subspace-based methods (discussed in Chapter 3) are to perform classification

by removing correlations in the data.

A state-of-the-art example of tensor-based action classification is from a recent paper

by Liu et al. [48]. This method is called the action classification on product manifolds

method (discussed in Chapter 3). Liu [48] represents a video as a third order tensor and

applies modified higher order singular value decomposition to generate three orthogonal

matrices, one for each of the three standard unfoldings of the 3-dimensional structure into a 2-

dimensional structure. These orthogonal matrices span subspaces that capture the variations

of the row space of the three standard unfolded matrices. The success of such tensor-based

methods heavily depends on the extent to which discriminating information is captured in

the rows of the standard unfolded matrices. The work by Liu [48] assumes that the standard

unfolded matrices are the best 2-dimensional representations of 3-dimensional structures for

the purpose of classification. This observation gives rise to an important question: “Is there

a better way to unfold a tensor?”

In this work, new unfoldings of a tensor are developed by rearranging elements in the

original tensor and then applying the standard mode-k unfoldings. The goal of the element

rearrangement problem is to reduce the intra-class distance and increase the inter-class dis-

tance. The element rearrangement algorithm developed in this thesis can be employed as a

preprocessing step to increase classification accuracy in the context of action classification

on product manifolds method.

1.3 Previous Work

As mentioned in the previous section, the goal of subspace methods is to perform classifica-

tion by removing correlations in the data. Sirovich and Kirby [36] and Turk and Pentland [68]

introduced the idea of subspace methods for face recognition. Murase and Nayar [51] ex-

tended the idea to 3D Object Recognition. In Tensorfaces [70], multilinear analysis of en-

sembles of facial images is considered. All of the above methods unfold each image into a

3

vector and reduce the correlations among the different pixels. However, the long column

vectors sometimes result in degraded performance due to the curse of dimensionality and

the small-sample-size problem.

In recent years, many works [43, 73, 76, 77, 78] represent images as matrices and reduce

correlations within the image rows and columns, rather than among all the pixels in the

image. This, to an extent, reduces the curse of dimensionality and small-sample-size problem.

For image data represented in a matrix form, higher performance has been reported in [43,

78]. Similarly, for image sets represented as tensors, where correlations are removed along

the column vectors of the mode-k flattened matrices, higher performance has been reported

in [73, 76].

Yan et al. present an element rearrangement method for tensor-based subspace learn-

ing in [75]. In this method, the elements within a tensor are rearranged to maximize the

correlations along the mode-k flattened matrices, so that existing tensor-based dimension-

ality reduction techniques can effectively remove the redundancy in the tensor data. Yan

formulates the element rearrangement problem as an integer optimization problem with a

nonlinear objective function. In addition, the element rearrangement algorithm is extended

for improving the data compression performance and classification accuracy. Results are

reported for the CMU PIE data set [60].

1.4 Contributions

This section summarizes the main contributions of this thesis.

1. Presents a tutorial on the action classification on the product manifolds method.

2. Formulates the element rearrangement problem as a local search problem.

3. Defines useful search spaces and neighborhood structures.

4. Studies the relationship between the element rearrangement operation and the subspaces

spanned by the rows of the mode-k flattened matrices in the context of action classifica-

tion.

4

1.5 Overview of Chapters

This thesis is organized into six chapters. Chapter 2 introduces the Cambridge-Gesture

data set used in this work and describes the procedure for preprocessing the data set. A

thought experiment for action classification using subspace methods is presented in this

chapter.

Chapter 3 introduces tensors and Grassmann manifolds as a unifying framework for

subspace-based action classification and discusses the action classification on the product

manifolds method. Chapter 3 also reviews the necessary mathematical background on ten-

sor algebra and Grassmann manifolds. Mathematics covered in this chapter include tensor

unfolding, higher order singular value decomposition, principal angles, Stiefel manifolds,

Grassmann manifolds, product manifolds, and geodesic distance. Finally,Chapter 3 pro-

vides a tutorial on the action classification on product manifolds method with a simple toy

problem.

Chapter 4 defines the element rearrangement problem and formulates the problem as

a combinatorial optimization problem. The local search method is proposed to solve the

optimization problem and a general algorithm for local search method is discussed. Two

variants of local search, hill climb and tabu search, are applied to the element rearrangement

problem. Different search spaces and neighborhood structures are proposed for improving the

tabu search. The chapter contains further discussion on the different tabu search strategies

used.

In Chapter 5, parameters of the tabu search are experimentally determined. Four heuristics

are defined based on the tabu search strategies developed in Chapter 4. Experimental results

on the Cambridge-Gesture data set are reported for the four heuristics. This chapter ends

with a discussion on the relation between the subspaces spanned by mode-k flattened matrices

and the element rearrangement operation. Finally, Chapter 6 discusses the conclusions of

this thesis and possible future work.

5

To summarize, the main chapters in this thesis are divided into two parts. Chapters 2

and 3 integrate the known facts and set up the framework for this thesis. Chapters 4 and 5

contain the main proposal, experimental results, and analyses.

6

Chapter 2

Action Classification

This chapter introduces the data set used in this work and describes the procedure for

preprocessing the data set. We discuss a simple thought experiment for action classification

which extends the idea of Eigenimages to Eigenvideos. The thought experiment is used to

establish a platform and define terminology to be used in the rest of the thesis.

2.1 Data set

All the experiments in this study are performed on the Cambridge-Gesture database [35]1.

The database contains nine gestures generated by the combinations of three primitive hand

shapes (flat, spread, and V-shape) and three primitive motions (leftward, rightward, and

contract). Each of the nine gestures are repeated in five sets (Set1, Set2, Set3, Set4, and

Set5) of varying illuminations with ten motions for each of the two subjects giving 900 videos.

Videos are in RGB format with a frame size of 320× 240, and number of frames in a video

vary. Examples of these gestures from Set1 of the Cambridge-Gesture data set are given in

Figure 2.1.

All the videos are converted from the RGB format to the grayscale format and resized

to 20 × 20 × 32. Color information is discarded because only the intensity of the pixels

matter in the algorithms considered in this work. Video length is fixed at 32 frames for

computational convenience, and these 32 frames are collected from the middle of a video

sequence. Frame resizing is done using bilinear interpolation. Each video can be represented

by a three dimensional array.

1The database is publicly available at ftp://mi.eng.cam.ac.uk/pub/CamGesData.

7

ftp://mi.eng.cam.ac.uk/pub/CamGesData

flat
leftward

flat
rightward

flat
contract

spread
leftward

spread
rightward

spread
contract

V-shape
leftward

V-shape
rightward

V-shape
contract

Figure 2.1: Example gestures from Set1 of the Cambridge-Gesture database. Each of the nine
rows correspond to a gesture. In each row seven frames out of the 32 frames are presented
for each gesture. From top the gestures are: flat leftward, flat rightward, flat contract,
spread leftward, spread rightward, spread contract, V-shape leftward, V-shape rightward,
and V-shape contract.

2.2 Subspace based methods

Sequence of images are usually captured by a sensor, digitized, and stored in a digital

system as 2D arrays of pixels. An image of size m× n pixels can be unrolled (vectorized) so

that it represents a point in an mn dimensional Euclidean space. This space is often referred

to as the “image space”. Classification in this high dimensional image space can be done

8

using a simple distance metric such as Euclidean distance. But classification performance in

such high dimensional spaces is quite often degraded due to the curse of dimensionality and

the small-sample-size problem.

In the context of classification problems, curse of dimensionality refers to the phenomenon

of degradation of performance as the dimension of the input data grows. This in part due

to the problem of sparse or limited training samples, and the very fundamental relationship

between the number of training samples available for the machine learning algorithm and the

degrees of freedom in the space in which the learning algorithm must construct a decision

criteria. Increase the number of dimensions, and in the most general sense, one needs more

training samples. Another aspect of the curse of dimensionality is the problem of data

concentration. In [7] Beyer argues that under certain assumptions on the distribution of

data the ratio of the distances of the query point to the nearest and farthest neighbors tends

to one as dimensionality of the data increases. In such cases, the meaningfulness of nearest

neighbors and classification is diminished.

The curse of dimensionality and the ill-posed nature of the the classification problem above

can be overcome in subspace methods. Sirovich and Kirby [36] and Turk and Pentland [68]

introduced the idea of subspace methods for face recognition. Murase and Nayar [51] ex-

tended the idea to 3D Object Recognition. Since then subspace methods have been used to

approach problems in the area of visual learning and recognition. The goal of subspace based

methods is to reduce the dimensionality of the data by projecting it into subspaces while

retaining as much useful information as possible in the original data set. The challenge is to

determine under what conditions the subspace projecting an image into a subspace improve

performance. There are several choices for subspaces.

A basic algorithm for image classification using Eigenspaces is given here. Although some

of the details may vary, image classification using other subspace methods often follow the

similar procedure. Compute the Eigenspace using the training images. The basis for the

Eigenspace are called Eigenimages. Classification takes three basic steps. First, training

9

Query Set - Sets 1 to 4 Target Set - Set 5

Set 1

Set 3 Set 4

Set 2

Set 5

Query Set
Classifcation
Algorithm

Target Set

Classification Rate

Figure 2.2: Action classification using subspace methods. Cambridge-Gesture data set is
partitioned into query set (Set1, Set2, Set3, and Set4) and target set (Set5). Target set is
the labeled data set, and query set is identified by the algorithm.

images are projected into the Eigenspace. Next, the query image is also projected into the

Eigenspace. Finally, the query image is classified by comparing it to the projected training

images. In the following section the idea of Eigenimages is extended to Eigenvideos.

2.3 Action Classification using Subspace Methods

The idea of subspace methods for image classification can be extended for classifying actions.

There are several choices for subspaces. The following steps summarize a thought experiment

to classify actions using an Eigenspace as the subspace:

1. Partition the data set

The Cambridge-Gesture data set is divided into query set and target set. Let Apqr ∈

R20×20×32 represent the rth sample of the qth action from set p. The query set consists

of Set1, Set2, Set3, and Set4 and is represented by Dquery = {Apqr ∈ R20×20×32 | 1 ≤

p ≤ 4, 1 ≤ q ≤ 9, 1 ≤ r ≤ 20}. The target set consists of Set5 and is represented by

Dtarget = {Apqr ∈ R20×20×32 | p = 5, 1 ≤ q ≤ 9, 1 ≤ r ≤ 20}. The target set is the

labeled set used to identify the videos from the query set. This is shown in Figure 2.2.

2. Compute Eigenspace and Eigenvideos

Eigenspace and Eigenvideos are computed using the following steps:

(a) Unroll data: Unroll all the videos in the query set Dquery by first stacking columns

10

within the frame and then across frames to obtain a vector. Each of these vectors

reside in a 12800-dimensional space, xpqrquery ∈ R12800×1.

(b) Center data: Each vector is centered by subtracting the mean of all the vectors from

each vector. The mean centered vectors are represented by x̄pqrquery.

(c) Create video data matrix: All centered vectors are combined into a video data matrix,

D ∈ R12800×720.

(d) Compute Eigenspace and Eigenvideos: The singular value decomposition (SVD) is

computed for the the video data matrix as shown in Equation (2.1). Eigenvideos

are given by the columns of the left singular matrix, U, and form the basis for the

Eigenspace.

D = U ·D ·VT (2.1)

3. Classify target videos

Each target video is unrolled and mean centered. Both target videos and query videos

are projected into the Eigenspace as shown in Equation (2.2).

x̃pqrquery = UT x̄pqrquery,

x̃pqrtarget = UT x̄pqrtarget

(2.2)

The projected query and target videos can be compared using different metrics. The most

common metric is the L2 norm. Each projected target video is compared with each of

the projected query videos. Action of the query video is given by the action of the target

video found closest to that query video.

From this thought experiment the following conclusion can be drawn. Use of subspace

methods for image classification helped overcome the problem of curse of dimensionality

and small-sample-size problem. Although, the usefulness of subspace methods to action

classification problems is reduced due to the size of the videos. For example, an 8× 8 image

when unrolled resides in a 64-dimensional space, whereas, a 20× 20× 32 video resides in a

12800-dimensional space.

11

Chapter 3

Action Classification using Tensor-Based
Subspace Comparison

This chapter discusses the motivation behind tensor-based action classification and il-

lustrates the action classification on the product manifolds method using a toy problem.

This chapter also reviews the mathematical background on tensor algebra and Grassmann

manifolds.

3.1 Motivation

3.1.1 Tensors

Tensor and tensor decomposition originated in the late 1920, but did not receive much

attention until the work done by Tucker [65] in 1960s. Most of the early applications of

tensors was in the field of psychometrics and chemometrics. Starting in the early 2000’s

Tensor-Level thinking made its way into the field of Computer Vision [12]. Some applications

include face recognition [70], visual tracking [44], and action classification [33, 48, 69].

Visual data (images and videos) is an ensemble of multiple factors. For example, face

images are the composite consequence of multiple factors, including facial geometry, pose,

expression, and illumination. Human motion is the confluence of factors such as action

performed, speed, scene structure, viewing angle, scale, and so on. Linear algebra based

methods such as Eigenspaces (discussed in Section 2.2) are best suited for single factor

variations [70]. Multilinear algebra, the algebra of higher order tensors, offers a mathematical

framework for capturing multiple factor variations and interactions.

A video may be expressed as 3-dimensional array containing spatial and temporal infor-

mation and can be represented by a third order tensor. Useful information such as multi-

ple factor variations and interactions in a video can be extracted using tensor decomposi-

12

tion [33, 48, 69]. A survey paper on general topics of tensor decomposition and applications

may be found in [37].

3.1.2 Subspace Comparison

We often encounter linear subspace structure in image-sets and videos. For example, a

set of images of an object under varying lighting conditions can be approximated by a low

dimensional linear subspace with mild assumptions [4, 6, 56]. Other variations such as pose,

view angle, and expression can also be approximated with low dimensional subspaces.

Videos of human actions are more than just a set of images because it contains temporal

information. Such spatio-temporal data are often modeled using linear dynamical models,

and the parameters of these linear dynamical models are finite dimensional linear subspaces

of appropriate dimensions [66]. A general discussion on theoretical and empirical evidence

of subspace structure in image-sets and videos can be found in [27, 66].

In subspace methods, as discussed in Section 2.2, classification is performed by projecting

a probe vector into the subspace and comparing it with the target vectors in the subspace.

In recent years, subspaces are treated as basic elements, and classification is performed

by comparing subspaces instead of vectors [19, 28, 34, 42, 74]. Thebenefit of subspace

comparison is the focus is on appropriate variations. For example, face images indexed by

subject and illumination condition can be modeled as a collection of illumination subspaces

for each subject. Non-discriminating information of illumination condition is absorbed as a

variability within subspaces, and emphasis is on the discriminating information of subject as

variability between the subspaces. Subspace comparison is also robust to missing data since

subspaces can to an extent fill-in missing data.

We will refer to this approach of subspace comparison as subspace-based methods. It

is also referred to as subspace-based learning [28]. Motivated by this approach, several

subspace-based classification methods have been proposed [19, 28, 34, 42, 74].

13

3.1.3 Grassmann Manifolds

In the previous section the advantages of subspace-based methods is discussed. However,

there is the challenge of representing and comparing subspaces appropriately. A more funda-

mental question is - Are images and videos sampled from a linear or a nonlinear space? An

image or a video can be regarded as a collection of numbers representing the pixel intensities,

and can be identified as a point in an abstract image space. It is argued in [46, 47, 63] that

the image space is generally a non-euclidean space because the law of superposition does

not hold in the image space. For example, a simple image translation or rotation cannot be

expressed as a linear combination over the field of a Euclidean space.

To understand the challenge of classifying nonlinear data consider the example of data

lying on a 2-dimensional “Swiss Roll”. The points that are far apart on the swiss roll, as

measured by traveling along the curved surface, may appear close in the high dimensional

input space, as measured by the straight-line Euclidean distance. Therefore, performing

classification in an Euclidean space may result in poor performance.

One approach to account for the geometry of the data is to use manifold learning methods.

The goal of manifold learning is to learn a mapping from the high dimensional input space

to a low dimensional space while preserving the intrinsic properties of the data. However,

they require large amount of densely sampled training data which may not be be available

for some real world applications. Two common manifold learning methods are Isomap [63]

and Locally Linear Embedding [58].

Another school of thought is to represent visual data in an underlying parametrized space

derived from the properties of differential geometry. As one example, the Grassmann man-

ifold is the set of all d-dimensional subspaces in an n-dimensional Euclidean space, and

exploits the geometric structure of visual data. This motivates the use of nonlinear surfaces

such as Grassmann manifolds. Jihun et al. use Grassmann manifolds as common framework

for subspace-based methods [28]. A study by Turga et al. show that inference problems

over subspaces can be naturally cast as inference problems on the Grassmann manifold [66].

14

Grassmann manifolds have been exploited in many computer vision problems such as face

recognition [28, 45], action recognition [48, 66, 67], clustering [13, 26], and visual track-

ing [57, 71].

3.2 Mathematical Background

This section reviews the mathematical background needed in the remainder of the thesis.

Subjects include tensor unfolding, Higher Order Singular Value Decomposition (HOSVD),

principal angles, Stiefel manifolds, Grassmann manifolds, product manifolds, and geodesic

distance.

3.2.1 Tensor

In this section, we review some of the tensor algebra. The exposition is based on [16].

Additional references include [37, 40]. Recent survey papers of this subject can be found

in [2, 15, 37]. MATLAB Tensor toolbox [3] is used in this work.

A tensor is a multidimensional array. More formally, an order-d tensor A ∈ Rn1×···×nd is

a real d-dimensional array A (1 : n1, . . . , 1 : nd) where the index range in the k-th mode is

from 1 to nk. Scalar is a order-0 tensor, vector is an order-1 tensor, and matrix is an order-2

tensor. A video sequence can be represented using an order-3 tensor. The three dimensions

can be represented by (x, y, t), where (x, y) corresponds to the location of the pixel within a

frame and t corresponds to time or frame number.

Example 1: A third order tensor A ∈ R3×3×3 is shown below. An element (i , j , k) of a

third order tensor is denoted by aijk. For all the examples here it will be useful to think of

the tensor A as video with 3 frames each of size 3× 3 pixels.

A(:, :, 1) =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 ; A(:, :, 2) =

b11 b12 b13
b21 b22 b23
b31 b32 b33

 ; A(:, :, 3) =

c11 c12 c13
c21 c22 c23
c31 c32 c33

 ;

3.2.1.1 Tensor Unfolding

Tensor unfolding is a process of turning a tensor A in to a matrix A. More formally, a

tensor unfolding can be stated as rewriting a tensor A ∈ Rn1×···×nd as a matrix A ∈ RN1×N2

15

by arranging A’s entries into the matrix A where N1 × N2 = n1 × · · · × nd = N . There

are many possible ways to unfold a tensor. In this work, the most commonly used mode-k

family of tensor unfoldings are considered. A more detailed discussion on tensor unfolding

can be found in [37]. Some tensor algebra terms are discussed below:

1. Fiber: Higher order analogue of matrix rows and columns. A fiber of a tensor A is a

vector a obtained by fixing every index but one. A matrix column is a mode-1 fiber, and

a matrix row is a mode-2 fiber. Third order tensors have an additional fiber called a tube

(mode-3 fiber). In general a mode-k fiber is obtained by keeping everything except the

kth index fixed.

Example 2: Mode-1, mode-2, and mode-3 fibers of tensor A given in Example 1 are shown

below. Elements of mode-1, mode-2, and mode-3 fibers are denoted by a:jk, ai:k, and aij:

respectively.

Mode 1: A(:, 1, 1) =

a11
a21
a31

 Mode 2: A(1, :, 1) =

a11
a12
a13

 Mode 3: A(1, 1, :) =

a11
b11
c11



2. Slice: Two dimensional section of a tensor. A slice of a tensor A is a matrix A obtained

by fixing all but two indices. The standard method of extracting slices from a tensor is

to keep the first unfixed index of the tensor as the row index of the slice and the second

unfixed index of the tensor as the column index of the slice.

Example 3: Elements of horizontal, lateral, and frontal slices are denoted by Ai::, A:j:,

and A::k respectively. Horizontal and lateral slice of tensor A given in Example 1 is shown

below:

Horizontal Slice: A(1, :, :) =

A(1, 1, 1) A(1, 1, 2) A(1, 1, 3)A(1, 2, 1) A(1, 2, 2) A(1, 2, 3)
A(1, 3, 1) A(1, 3, 2) A(1, 3, 3)

 =

a11 b11 c11
a12 b12 c12
a13 b13 c13



Lateral Slice: A(:, 1, :) =

A(1, 1, 1) A(1, 1, 2) A(1, 1, 3)A(2, 1, 1) A(2, 1, 2) A(2, 1, 3)
A(3, 1, 1) A(3, 1, 2) A(3, 1, 3)

 =

a11 b11 c11
a21 b21 c21
a31 b31 c31


16

In mode-k unfolding, the mode-k fibers are arranged to produce a mode-k flattened matrix

of size nk ×
(

N
nk

)
. Mode-k unfolding is represented by A(k). In A(1), columns of the tensor

are arranged as the columns of the matrix. Similarly, for A(2) and A(3) the rows and tubes of

the tensor are arranged as columns of the matrix. The mode-k fibers of A can be arranged as

columns of a matrix in more than one way. Three common unfoldings are discussed below:

1. Forward-cyclic: For A(k) unfolding the rows of the matrix are indexed by k and the

columns of the matrix are indexed [k + 1 : d 1 : k − 1] with the k + 1 index repeating

most frequently and k − 1 index repeating least frequently [16]. The concept is easier to

understand using an example.

Example 4: Forward-cyclic unfolding of the tensor in Example 1 is given below:

A(1) =

a11 a12 a13 b11 b12 b13 c11 c12 c13
a21 a22 a23 b21 b22 b23 c21 c22 c23
a31 a32 a33 b31 b32 b33 c31 c32 c33


A(2) =

a11 b11 c11 a21 b21 c21 a31 b31 c31
a12 b12 c12 a22 b22 c23 a32 b32 c32
a13 b13 c13 a23 b23 c23 a33 b33 c33


A(3) =

a11 a21 a31 a12 a22 a32 a13 a23 a33
b11 b21 b31 b12 b22 b32 b13 b23 b33
c11 c21 c31 c12 c22 c32 c13 c23 c33



Interpretation: What does unfolding of tensor mean to a video sequence? For mode-1

unfolded tensor A(1), the columns of A(1) correspond to the columns within each frame of

the video sequence and the rows of A(1) correspond to the horizontal slice (captures the

relation between (x, t)). For mode-2 unfolded tensor A(2), the columns of A(2) correspond

to the rows within each frame of the video sequence and the rows of A(2) correspond

to the lateral slice (captures the relation between (y, t)). For mode-3 unfolded tensor

A(3), the columns of A(3) correspond to a particular pixel across all the frames of the

video sequence and the rows of A(3) correspond to the frontal slice (captures the relation

between (x, y)). In other words the rows correspond to the frames that are unrolled.

17

2. Backward-cyclic: Here the rows of the matrix are indexed by k and the columns of the

matrix are indexed [k − 1 : −1 : 1 d : −1 : k + 1] with the k − 1 index repeating most

frequently and k + 1 index repeating least frequently [16]. Similar to the forward-cyclic

mode, it will be useful to understand the relation between the rows and columns of the

unfolded tensor with the video.

Example 5: Backward-cyclic unfolding of the tensor in Example 1 is given below.

A(1) =

a11 b11 c11 a12 b12 c12 a13 b13 c13
a21 b21 c21 a22 b22 c22 a23 b23 c23
a31 b31 c31 a32 b32 c32 a33 b33 c33


A(2) =

a11 a21 a31 b11 b21 b31 c11 c21 c31
a12 a22 a32 b12 b22 b32 c12 c22 c32
a13 a23 a33 b13 b23 b33 c13 c23 c33


A(3) =

a11 a12 a13 a21 a22 a23 a31 a32 a33
b11 b12 b13 b21 b22 b23 b31 b32 b33
c11 c12 c13 c21 c22 c23 c31 c32 c33



3. Ordered: Here the rows of the matrix are indexed by k and the columns of the matrix are

indexed [1 : k − 1 k + 1 : d] with the first index repeating most frequently and d index

repeating least frequently.

3.2.1.2 Tensor Mode-k Product

Mode-k product is the multiplication of mode-k unfolded tensor with a matrix of appro-

priate dimension, that is, each mode-k fiber is multiplied by the matrix. Mathematically, if

A ∈ Rn1×···×nd is a tensor and Q ∈ Rmk×nk is a matrix, then mode-k matrix product is given

by P = A ×k Q, where P ∈ Rn1×···×nk−1×mk×nk+1×···×nd .

Example 6: Consider the tensor A given in Example 1 and the matrix Q given below.

Then the mode-2 product is given below:

Q =

(
q11 q21 q31
q21 q22 q23

)
P = A ×2 Q

P =

(
q11 q21 q31
q21 q22 q23

)
×

a11 b11 c11 a21 b21 c21 a31 b31 c31
a12 b12 c12 a22 b22 c23 a32 b32 c32
a13 b13 c13 a23 b23 c23 a33 b33 c33



18

Another interpretation of mode-k multiplication is a linear combination of the matrices

within a tensor. In the above example the mode-k product is a linear combination of the

lateral matrices. Row 1 is the first lateral matrix (slice), similarly rows 2 and 3 are the

second and third lateral matrix. It is important to note that the order of operands in the

actual multiplication is the reverse of the order in which they are represented in the mode-k

product formula. One of the reasons to move from normal multiplication notation to mode-k

multiplication is to avoid the use of transpose as we move to the generalized Singular Value

Decomposition (SVD) case. Below are the two equivalent notations for SVD of a matrix A.

A = U · S ·VT = S ×1 U ×2 V

3.2.1.3 Higher Order Singular Value Decomposition

Higher Order Singular Value Decomposition (HOSVD) is a method for tensor decomposi-

tion (factorization). It is analogous to the SVD factorization of a matrix. HOSVD unfolds

the tensor to a set of matrices and performs decomposition on all the unfolded matrices.

Given a tensor A ∈ Rn1×···×nd the mode-k unfolding A(k) ∈ Rnk×mk is factored using SVD

as follows:

A(k) = U(k)Σ(k)V(k)T k ∈ [1 : d] (3.1)

where Σ(k) ∈ Rnk×mk is a diagonal matrix, U(k) ∈ Rnk×nk is an orthogonal matrix spanning

the column space of A(k) associated with the non-zero singular values, and V(k) ∈ Rmk×mk is

an orthogonal matrix spanning the row space of A(k) associated with the non-zero singular

values. Then HOSVD of A is given by:

A = S ×1 U(1) ×2 U(2) · · · ×d U(d) (3.2)

where ×k denotes the mode-k product. S ∈ Rn1×···×nd is called the core tensor and is given

by:

S = A ×1 U(1)T ×2 U(2)T · · · ×d U(d)T (3.3)

Refer to [40] for a more detailed discussion on HOSVD.

19

Interpretation: What does HOSVD of a tensor mean to a video sequence? Mode-1

left orthogonal matrix U(1) provides an orthonormal basis for the column space of mode-

1 unfolded tensor A(1), so this captures the variation in the columns (the (x) dimension)

within the frames. Mode-1 right orthogonal matrix V(1) provides an orthonormal basis for

the row space of mode-1 unfolded tensor A(1), so this captures the variation in the horizontal

slices (the (y, t) dimension). Similar interpretations can be made for mode-2 and mode-3

orthogonal matrices.

3.2.2 Principal Angles

The exposition here is based on the work by Golub et al in [25]. Principal angles between

two linear subspaces gives information on how close the linear subspaces are to each other.

Consider the simple case of two 1-D linear subspaces. In this case the principal angle reduces

to the acute angle between the two vectors. Mathematically, let P ∈ Rn and Q ∈ Rn be two

one dimensional linear subspaces. Then the principal angle is given by

θ = cos−1

(∣∣P TQ
∣∣

||P || ||Q||

)
(3.4)

If θ = 0 the two 1-dimensional linear subspaces (vectors in this case) are identical, and if

θ = 1 the two linear subspaces are orthogonal. Extending this example, consider the linear

subspaces spanned by the columns of the two matrices P ∈ Rn×m and Q ∈ Rn×l, which

are subspaces in Rn. Mathematically, the two linear subspaces are given by f = span(P)

and g = span(Q). Assume that p = rank(P) ≥ rank(Q) = q ≥ 1. Extending from

the 1-dimensional case, the closeness of the linear subspaces f and g can be given by the

smallest acute angle between two vectors chosen from f and g . Instead of choosing the

minimum principal angle as a measure of closeness or any other single angle, a recursive

definition proposed by Hotelling is considered [30]. A vector in f is a linear combination

of the columns of matrix P and can be represented by a matrix-vector product Px where

x ∈ Rm. Similarly, a vector in g is given by Qy where y ∈ Rl. The principal angles θ(k) are

20

defined recursively for k = 1, . . . , q by

θ(k) = min
x∈f

min
y∈g

cos−1
(
xTy

)
= cos−1

(
x T
k yk

)
, subject to

||x|| = ||y|| = 1 (3.5)

xTxi = yTyi = 0, i = 1, . . . , k − 1

The principal vectors are given by {x1, x1, . . . , xq} and {y1, y1, . . . , yq}. An efficient algorithm

for computing the principal angles using SVD is given in [9].

Interpretation: How do principal angles for pairs of subspaces mean in the context of video

sequence? Consider two tensors A1 and A2 representing two video sequences. HOSVD of

A1 and A2 gives the following mode-k orthogonal matrices: U1
(k), V1

(k), U2
(k), and V2

(k).

Each of these orthogonal matrices span subspaces that capture the different variations in

the spatial and temporal dimensions of the video. Therefore, smaller principal angles θ(k)

between a pair of subspaces (U1
(k) and U2

(k) or V1
(k) and V2

(k)) indicates the two videos

are similar.

3.2.3 Grassmann Manifold and Geodesic Distance

In the previous section, subspaces and the measure of (dis)similarity of subspaces was

discussed. These subspaces are often given a topological structure, that is, they are expressed

as points on topological manifolds (e.g. - Grassmann Manifold). The motivation for this is

that it makes it possible to look at subspaces as instances from a continuous parameter and

define distance between a pair of subspaces.

This section only briefly introduces the necessary definitions and properties of Grassmann

manifolds from [17], and does not discuss this subject further. Refer to [14, 17, 41] for further

reading. The goal of this section is to show that geodesic distance on Grassmann manifolds

provide a measure of (dis)similarity between two subspaces.

1. Manifold - An n-dimensional manifold is a topological space which locally (on a small

enough scale) resembles a Euclidean space of dimension n.

2. Quotient Space - Space that is obtained by defining an equivalence relation on the original

21

space. Each point in the new quotient space is mapped to a group of points in the original

space. Quotient space is motivated by the fact that the closed form solutions available

for the original space can be easily extended to its quotient space.

3. Orthogonal Group On - It is a set of n × n orthogonal matrices that satisfy the axioms

of closure, associativity, identity element, and inverse element on the operation of matrix

multiplication.

4. Stiefel Manifold Vn,p - Space of p orthonormal vectors in Rn. A point on the Stiefel

manifold is stored as an n× p orthonormal matrix.

5. Grassmann Manifold Gn,p - Set of p-dimensional linear subspaces in Rn for 0 < p ≤ n. A

point on the Grassmann manifold may be represented by an n× p matrix that stores an

arbitrary orthogonal basis for a linear subspace.

Unlike the case of Stiefel manifolds, a point in Grassmann manifold cannot be represented

by a unique n × p matrix, because the same p-dimensional linear subspace in Rn can be

represented by different n× p orthogonal matrices. So, a point on the Grassmann manifold

maps to a subset of points in the Stiefel manifold and Grassmann manifold itself is a collec-

tion of such subsets. Therefore, the Grassmann manifold is the quotient space of a Stiefel

manifold, mathematically Gn,p = Vn,p/On. In a similar fashion, the Stiefel manifold can be

defined as the quotient space of the orthogonal group. Two n×n matrices in On map to the

same point in Vn,p if their first p columns are identical. With these observations, the Stiefel

and Grassmann Manifold can be re written as

Vn,p = On/On−p

Gn,p = On/
(
Op ×On−p

) (3.6)

The closeness of two points on the Grassmann manifold is measured using the geodesic

distance. It is the curve of shortest length between the two points on a Grassmann manifold.

There are several distance measures for the Geodesic distance, some using principal angles

and others using orthonormal basis of the subspace [17, 79]. In this particular work the

22

chordal distance [14] is used as a measure for the geodesic distance. The chordal distance is

given by:

dc(f , g) = ||sin θ||2 (3.7)

where θ is vector of principal angles between the two subspaces f and g given by Equa-

tion (3.5).

However, as will be shown here, the traditional HOSVD will not typically be useful for

action classification problems. According to Equation (3.1), given a tensor A ∈ Rn1×···×nd

the mode-k unfolding is A(k) ∈ Rnk×mk and the mode-k orthogonal matrix is U(k) ∈ Rnk×nk .

Because in action classification applications nk < mk, U(k) is a point on the orthogonal

group. It is shown above that the Grassmann manifold is a quotient space of the orthogonal

group, and all the points in the orthogonal group map to the same point on the Grassmann

manifold. Therefore, the distance between different mode-k orthogonal matrices is always

zero. On the other hand, V(k) ∈ Rmk×mk in Equation (3.1) is the orthogonal matrix spanning

the row space of A(k), and it spans only nk dimensions because nk < mk. Therefore, V(k) can

represented by an mk × nk orthogonal matrix and it is a point on the Grassmann manifold.

So the traditional HOSVD is modified by using V(k) instead of U(k) from Equation (3.1).

Modified HOSVD of A is given by :

A = S ×1 V(1) ×2 V(2) · · · ×d V(d) (3.8)

where ×k denotes the mode-k product, V(1), V(2), . . . , V(d) are orthogonal matrices span-

ning the row space associated with the the non-zero singular values given by Equation (3.1),

S ∈ Rn1×···×nd is called the core tensor.

Interpretation: How are points on the Grassmann manifold related to the video tensors?

What is the distance between two video tensors? Consider a 3rd order tensor A representing

a video. The modified HOSVD of A can then be expressed as:

A = S ×1 V
(1)
hm ×2 V(2)

vm ×3 V(3)
app

where V
(1)
hm, V

(2)
vm, and V

(3)
app are orthogonal matrices corresponding to the horizontal motion,

vertical motion, and appearance, respectively. Modified HOSVD of A1 and A2 gives mode-k

23

singular matrices V1
(k) and V2

(k), respectively. The mode-k orthogonal matrices V1
(k) and

V2
(k) are represented by points on the Grassmann manifold and the distance between these

subspaces are computed using the geodesic distance given in Equation (3.7).

3.2.4 Product Manifold

Modified HOSVD on a d order tensor A ∈ Rn1×···×nd generates d orthogonal matrices

V(1),V(2), . . . ,V(d), one for each of d unfoldings of the tensor. Each of the d orthogonal ma-

trices is represented by a point on d different Grassmann manifolds. Product manifolds allow

us to generalize classification problem to higher dimensional spaces. A product manifoldM

is a Cartesian product of manifolds. Formally, let M1,M2, . . . ,Md be a set of manifolds,

then the product manifold is defined as:

M =M1 ×M2 × · · · ×Md

(3.9)

where × denotes the Cartesian product [48]. A product manifold composed by a set of

Grassmann manifolds is called Grassmann Product Manifold (GPM). It has been shown

in [5, 49] that the geodesic distance in a product manifold is defined as:

dM(P ,Q) = ||sin Θ||2
(3.10)

where P and Q are order-d tensors and Θ = (θ1, θ2, . . . , θd), where θk is the set of principal

angles computed on the manifold Mk.

Interpretation: How does the geodesic distance on product manifold help in action clas-

sification? Let A and Bi be two 3rd order tensors representing query and target videos

respectively. A and Bi can be represented by points on a GPM using Equation (3.8) and

Equation (3.9). Action classification is then performed as follows:

i∗ = argmin
i∈target

dM(A,Bi) (3.11)

i∗ identifies the action of the query video.

24

baseline

top-left to
bottom-right

bottom-right
to top-left

bottom-left
to top-right

arbitrary
gesture 1

top-right to
bottom-left

left to right

top to bottom

two-pixel left
to right

Arbitrary
gesture 2

Figure 3.1: Example gestures from the synthetic gesture database. Each of the ten rows
correspond to an action. From the top the gestures are: baeline (only increasing brightness),
top-left to bottom-right, bottom-right to top-left, top-right to bottom-left, bottom-left to
top-right, arbitrary gesture 1, left to right, top to bottom, two-pixel left to right, arbitrary
gesture 2.

25

3.3 Action Classification on Product Manifolds: A Toy

Problem

This section discusses a state-of-the-art approach for action classification from a recent

paper by Lui et al. [48]. The goal of this section is to provide a tutorial level introduction to

Lui’s Action Classification On Product Manifolds (ACOPM) algorithm using a toy problem.

Lui represents videos as 3rd order tensors and computes three orthogonal matrices using the

modified HOSVD given in Equation (3.8). Each of the three matrices are represented by a

Grassmann manifold. The Grassmann manifolds are combined using Equation (3.9) to map

the videos to a single point on the GPM. Classification is performed using the geodesic dis-

tance on GPM coupled with a simple nearest neighbor classifier as shown in Equation (3.11).

The most important contribution of Liu is to show that the action classification problem can

be studied by relating tensors on a product manifold.

A synthetic data set is generated for the toy problems. Each synthetic video contains 4

frames with a fixed frame size of 4 × 4. Pixel intensity ranges from 0 (black) to 1 (white).

There are 10 synthetic gestures resulting from 10 different movements of a white pixel in a

black background. Examples of these synthetic gestures are given in Figure 3.1. In the first

toy problem a simple synthetic video is used as the query video. In the second toy problem,

white Gaussian noise is added to the synthetic video used in the first toy problem.

3.3.1 Example Toy Problem 1

The 5th gesture in the synthetic data set is arbitrarily chosen as the query video in the first

toy problem. This video can be represented using a 3rd order tensor A ∈ R4×4×4 as shown

below. The gray scale representation of the tensor, unfolded tensors, and the corresponding

mode-k orthogonal matrices are shown in Figure 3.2.

→ First Frame : A(:, :, 1) =


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

→ Second Frame : A(:, :, 2) =


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0



→ Third Frame : A(:, :, 3) =


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

→ Fourth Frame : A(:, :, 4) =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0



26

The unfolded (forward-cyclic) matrices are shown below:

A(1) =


0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



A(2) =


0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0



A(3) =


0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0


The singular matrices of the above unfolded matrices computed using Equation (3.8) are
show below:

V(1) =



0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0



V(2) =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0



V(3) =



0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0



3.3.2 Example Toy Problem 2

The query video for this toy problem is the same as from toy problem 1 except for the

addition of white Gaussian noise with a mean = 0 and variance = 0.1. The flattened

matrices and the corresponding orthogonal matrices are not printed here because of the

page size constraint. However, the grey scale representation of the flattened matrices and

the corresponding orthogonal matrices are shown in Figure 3.3. This toy video is given by

the 3rd order tensor A ∈ R4×4×4 shown below:

→ First Frame : A(:, :, 1) =


0.07 0 0.01 0.28
0.21 0 0 0
0 0.72 0.11 0
1 0 0.56 0.26

 → Second Frame : A(:, :, 2) =


0 0.05 0.31 0.47
0 0.64 0.32 0.07
0 1 0 0
0 0.01 0 0.54



→ Third Frame : A(:, :, 3) =


0.31 0.03 0.21 0
0.19 0.08 1 0
0.13 0.05 0 0
0 0 0.30 0.16

 → Fourth Frame : A(:, :, 4) =


0 0 0 1

0.19 0.20 0.67 0.31
0.12 0 0 0
0 0.18 0 0.19



27

Figure 3.2: Gray scale representation of tensor decomposition of a synthetic video A ∈
R4×4×4. First row shows the four frames of the synthetic video - A(:, :, 1), A(:, :, 2), A(:, :, 3),
and A(:, :, 4). Second row represents the three unfoldings - A(1), A(2), and A(3). Third row

represents the factors obtained from modified HOSVD - V(1), V(2), and V(3).

The singular matrices V(1), V(2), and V(3) shown in Figure 3.3 are points on the Grassmann

manifolds M1, M2, and M3, respectively. Let Bi ∈ R4×4×4 for i = 1, 2, . . . , 10 be the

target gestures. The orthogonal matrices of the ith target gesture Vi
(1), Vi

(2), and Vi
(3)

are also points on the Grassmann manifolds M1, M2, and M3, respectively. Let θjk be

the jth principal angle between the subspaces spanned by V(k) and Vi
(k) computed on the

Grassmann manifold Mk, as defined by the Equation (3.5). Each query video is compared

with each of the 10 target videos and the principal angles are shown in Table 3.1.

From Table 3.1 it can be seen that principal angles of the 5th column are relatively the

smallest indicating that the query video is very similar to the 5th target gesture. The

geodesic distance on GPM given by Equation (3.10) is computed for each of the 10 target

gestures. The plot of geodesic distances between the query video and the target videos is

28

Figure 3.3: Gray scale representation of tensor decomposition of a synthetic video A ∈
R4×4×4 with white Gaussian noise. First row shows the four frames of the synthetic video -
A(:, :, 1), A(:, :, 2), A(:, :, 3), and A(:, :, 4). Second row represents the three unfoldings - A(1),

A(2), and A(3). Third row represents the factors obtained from modified HOSVD - V(1),

V(2), and V(3).

Figure 3.4: Plot of geodesic distance on Grassmann product manifold for toy problem 2.

29

Table 3.1: Table of principal angles between the subspaces of the query video and the target
videos. Here θjk is the jth principal angle between the subspaces spanned by V(k) and Vi

(k)

computed on the Grassmann manifold Mk where i is the target gesture.

Target Gesture 1 2 3 4 5 6 7 8 9 10

θ11 0.38 0.21 1.14 1.14 0.21 0.60 0.37 0.25 0.48 0.61

θ21 0.69 0.52 1.34 1.34 0.52 1.15 0.49 1.07 0.62 1.20

θ31 1.35 0.66 1.36 1.36 0.66 1.35 1.37 1.28 0.99 1.35

θ41 1.51 0.90 1.57 1.57 0.90 1.44 1.43 1.42 1.41 1.55

θ12 0.58 1.00 0.24 1.00 0.24 0.71 0.26 0.54 0.70 0.55

θ22 1.06 1.17 0.58 1.17 0.58 1.23 1.34 1.17 0.82 1.01

θ32 1.41 1.54 0.65 1.54 0.65 1.36 1.51 1.36 1.32 1.51

θ42 1.51 1.55 0.89 1.55 0.89 1.57 1.57 1.52 1.51 1.55

θ13 0.51 1.05 1.05 0.45 0.45 0.57 0.60 0.59 0.53 0.46

θ23 0.61 1.19 1.19 0.49 0.49 1.19 1.36 1.12 0.96 0.57

θ33 1.16 1.41 1.41 0.60 0.60 1.45 1.51 1.26 1.38 0.80

θ43 1.48 1.56 1.56 0.84 0.84 1.57 1.57 1.41 1.50 1.30

shown in Figure 3.4. Using a simple nearest neighbor classifier the query video is correctly

classified as the fifth gesture.

30

Chapter 4

Element Rearrangement Problem

4.1 Why Rearrange Elements?

Conventional tensor-based classification algorithms unfold tensors into matrices using the

standard mode-k unfoldings and perform classification using established machine learning

algorithms. These methods assume that the standard mode-k unfolded matrices are the

best 2-dimensional representations of N-dimensional structures. A state-of-the-art example

of tensor-based action classification is from a recent paper by Liu et al. [48]. Liu represents

a video as a third order tensor and applies modified higher order singular value decompo-

sition to generate three orthogonal matrices, one for each of the three standard unfoldings

of the 3-dimensional structure into a 2-dimensional structure. These orthogonal matrices

span subspaces that capture the variations of the row space of the three standard unfolded

matrices. The success of such tensor-based methods heavily depends on the extent to which

discriminating information is captured in the rows of the standard unfolded matrices. The

work by Liu [48] assumes that the standard unfolded matrices are the best 2-dimensional

representations of 3-dimensional structures for the purpose of classification. This observation

gives rise to an important question: “Is there a better way to unfold a tensor?”

In this work, new unfoldings of a tensor are developed by rearranging elements in the

original tensor and then applying the standard mode-k unfoldings. The goal of the element

rearrangement problem is to reduce the intra-class distance and increase the inter-class dis-

tance, so that better classification accuracy can be achieved for action classification on

product manifolds.

To understand how element rearrangement is performed, it helps to first understand the

indexing scheme for the position of a tensor element. The position of a tensor element in

31

A ∈ Rn1×···×nd is denoted as (i1, i2, . . . , id), and its global position g is given by:

g(i1,...,id) = 1 +
d∑

s=1

(
(is − 1)

s−1∏
t=1

nt

)
(4.1)

In this work the rearrangement operator is defined as a vector R ∈ RN×1 where N = n1 ×

n2×· · ·×nd is the total number of elements in the tensor. R is also called the “rearrangement

vector” and stores the global position for all the locations in a tensor. Element rearrangement

is effected by rearranging the elements in R. This is essentially the N-permutation of N

elements in R and there are N ! possible rearrangements. For the Cambridge-Gesture data set

A ∈ R20×20×32, global index simplifies to g(i1,i2,i3) = i1+20(i2−1)+400(i3−1), rearrangement

vector R ∈ R12800×1, and there are 12800! possible rearrangements.

4.2 Element Rearrangement using Local Search

4.2.1 Combinatorial Optimization

In this section we show that the element rearrangement problem is essentially a combi-

natorial optimization problem. We now review some notions of combinatorial optimization

problems, for more detailed descriptions refer to [52, 54].

Let S be a finite set of candidate solutions and f : S 7→ R a function which assigns a value

f(s) to every s ∈ S. The goal of a combinatorial optimization problem is to find a solution

sopt ∈ S such that

f(sopt) = max
s∈S

f(s) (4.2)

S is called a search space, f(s) is called the objective function or fitness function, and the

pair (S, f) is called an instance of a combinatorial optimization problem. The sought after

sopt is called a globally optimal solution of (S, f), and the set Sopt ⊆ S all returning the same

optimal fitness value is the set of all globally optimal solutions.

The element rearrangement problem for action classification on product manifolds is de-

fined over a discrete search space S of possible rearrangements of pixels in a 3rd order tensor

A ∈ Rn1×n2×n3 . In other words, search space S is the N-permutation of N objects, where

N = n1 × n2 × n3. Therefore, S contains N ! elements. The objective function for the

32

element rearrangement problem is the action classification on product manifolds algorithm

given in [48]. Given a candidate solution s from the search space S this algorithm gives a clas-

sification rate (also called objective function value or fitness value). The goal of the element

rearrangement problem is to find the optimal rearrangement sopt given by Equation (4.2).

4.2.2 Local Search

Many algorithms have been developed for solving combinatorial optimization problems.

These algorithms can be grouped into exact and approximate algorithms. Although, exact

algorithms guarantee an optimal solution in bounded time for every finite size instance

of the problem, no polynomial time algorithm exists for NP-hard problems [52, 54]. For

finite size optimization problems, a simple exact algorithm approach is to enumerate the full

search space. For the Cambridge-Gesture data set search space S contains 12800! elements.

Therefore, a completely exhaustive method for finding the optimal solution is out of the

question. In approximate methods we trade-off the guarantee of finding an optimal solution

for finding a good solution in a significantly reduced amount of time. Approximate algorithms

can be further classified as either constructive methods or local search methods. Constructive

methods are typically fast but often return solutions inferior to local search methods [10].

In this thesis local search is adapted to solve the element rearrangement problem. Local

search methods are often prematurely dismissed because of the presence of multiple local

optima in the search space and lack of theoretical understanding. However, important ob-

servations have been made by Tovey [64] about multiple local optima and by Johnson et

al. [31] about the complexity of local search. In the last three decades local search has been

widely accepted as an effective method of solving hard combinatorial problems [1, 62].

Conceptually, local search is simple. A neighborhood structure N (s) is defined in the

search space. Formally, a neighborhood structure is a function N (s) : S 7→ 2S that assigns

to every s ∈ S a set of neighbors N (s) ⊂ S. N (s) is called the neighborhood of s. Local

search starts from some initial solution and iteratively replaces the current solution by a

better solution in the the neighborhood of the current solution until a solution is found

33

Set 1

Set 3 Set 4

Set 2

Set 5

Query Set Target Set

Training Set

Validation Set
Query Set Product

Manifolds

Training Set

Classification Rate

Figure 4.1: Action classification on product manifolds. Cambridge-Gesture data set is par-
titioned into query set (Set1, Set2, Set3, and Set4) and target set (Set5). Target set is the
labeled data set and is further randomly divided into training set and validation set. Query
set is identified by the ACOPM.

which is better than all its neighbors. In random starts local search, multiple local searches

are initiated with initial solutions randomly drawn from the search space. This approach

increases the probability of finding a near optimal solution.

4.3 A General Algorithm

In this section we present a general algorithm of the method proposed in this work. The

original ACOPM method is used as the objective function and follows the experimental

protocol given in [33]. The Cambridge-Gesture data set is divided into query set and target

set. The Query set consists of Set1, Set2, Set3, and Set4. The Target set consists of Set5

and is further randomly divided into training set (10 samples per action) and validation set

(10 samples per action) as shown in Figure 4.1. Figure 4.1 uses the same training data as

in Figure 2.2, and divides them in the manner explained above. Because ACOPM does not

require prior training the validation set is discarded. A single evaluation of ACOPM employs

five random repetitions in selecting training and validation sets in the target set. And the

output of the ACOPM is a classification rate which is the average accuracy obtained across

the five repetitions. The original ACOPM algorithm has classification rate of 88% [48]. A

complete description of the ACOPM algorithm is given in Section 3.3.

34

Training Set

Test Set

Gallery Set

Query Set Tuning Set

(a)

ER-ACOPM

Rearrangement
 Vector

Classification RateQuery Set

Training Set

Rearrangement
 Vector

Product
Manifolds

(b)

Rearrangement
 Vector

Training Set

Gallery Set

Rearrangement
 Vector

Local Search
Training CRProduct

Manifolds

Objective
Function

(c)

Rearrangement
 Vector

Validation CRTest Set

Gallery Set

Rearrangement
 Vector

Product
Manifolds

(d)

Figure 4.2: A general algorithm for element rearrangement for action classification on prod-
uct manifolds (ER-ACPOM): (a) Cambridge-Gesture data set is partitioned into query set
and tuning set. Tuning set is further randomly divided into training set, test set, and gallery
set; (b) Query set is identified by the ER-ACOPM; (c) Local search is used on the train-
ing set to find the optimal rearrangement vector; and, (d) Performance of the local search
method is evaluated the on the test set.

35

Although some of the details may vary depending on the variation of the local search being

used, a basic algorithm for rearranging elements using local search methods is given below:

1. Initialization

The Cambridge-Gesture data set is divided into query set and target set. Query set

consists of four out of the five sets and target set consists of the remaining set. Target set

is used to learn the rearrangement vector, therefore, in this context it is called the tuning

set. Tuning set is further randomly divided into training set (7 samples per action), test set

(7 samples per action), and gallery set (6 samples per action) as shown in Figure 4.2 (a).

Gallery set is the labeled set. The local search method works on the training set and

the performance of the local search method is evaluated on the test set as shown in

Figure 4.2 (c) and 4.2 (d), respectively. Neighborhood structure N (s) is defined, and

initial rearrangement vector Rinit is randomly chosen from the search space.

2. Local Search

Compute the objective function value for the current solution s and all the candidate

solutions in the neighborhood N (s). The objective function value f(s) is computed in

two steps as shown in Figure 4.2 (c). First, the videos in the training and gallery set are

rearranged using the rearrangement vector. Second, the classification rate is computed

using ACOPM algorithm explained in the beginning of this section. Depending on the

variant of local search method (e.g., hill climb, tabu search) being used choose the best

rearrangement vector.

3. Termination

Repeat step 2 till the stopping condition is reached. For a simple hill climb algorithm

the repetition stops when the current solution is better than all its neighbors. The best

rearrangement vector at the end of the local search is denoted by Rfinal.

The above 3 steps are repeated ntrials (number of trials) times, each time with a randomly

chosen initial solution. CRitrain and CRftrain denotes the classification rates on the training

set with the initial Rinit and final Rfinal rearrangement vectors, respectively. Similarly,

36

CRival and CRfval denotes the classification rate on the test set, and CRinit and CRfinal

denotes the classification rate on the query set. This is shown in Figure 4.2.

4.4 Hill Climb

A simple local search method, hill climb, is implemented to understand the terrain of

the search space. In the hill climb method, the initial solution is given by the default

configuration of the pixels. The neighbors of the current solution is obtained in three steps.

First, randomly choose two blocks of pixels within a frame. Second, swap these two blocks.

Third, swap the same blocks in all the 32 frames in the video. A greedy heuristic is used

in choosing the best neighbor, that is the first neighbor which improves the current solution

replaces the current solution. A greedy heuristic is used because the size of the neighborhood

structure is enormously large. The number of swaps is arbitrarily set to 1000.

The hill climb experiment is repeated several times, each time with a different seed for the

random number generator to generate different random numbers for the pixel swap operation.

The size of the block of pixels being swapped is also varied. Each hill climb took about eight

hours to complete 1000 evaluations. On an average only 10 swaps out of the 1000 swaps is

useful. In other words, although a greedy heuristic is used, only 10 neighborhood structures

are evaluated. For many trials there is no useful swap after 200 evaluations indicating that

the hill climb may have hit a local minimum and hence reached a dead end.

From this experiment it is clear that hill climb is massively time consuming despite using

a greedy heuristic and is not terribly effective. Therefore, there is a need to reduce the size

of the search space and adapt a local search framework which can explore the search space

beyond the local minima.

4.5 Tabu Search

A major drawback of local search is the possibility that local search might return a very

poor quality local minima. Although this problem can be offset to a certain extent using

random starts local search for small instances, the number of local minima may increase

exponentially with the increase in problem size (and therefore increase in the search space).

37

Furthermore, restarts with random initial solutions does not take advantage of the search

space structure.

In the last two decades, a new kind of local search method has emerged which aims at tack-

ling the problems encountered using the random starts local search method. These methods

are commonly referred to as metaheuristics. There is no commonly accepted definition for

the term metaheuristic. Below we quote the definition by Stützle:

“Metaheuristics are typically high-level strategies which guide an underlying,
more problem specific heuristics, to increase their performance. The main goal is
to avoid the disadvantages of iterative improvement and, in particular, multiple
descent by allowing the local search to escape from local optima. This is achieved
by either allowing worsening moves or generating new starting solutions for the
local search in a more “intelligent” way than just providing random initial solu-
tions. Many of the methods can be interpreted as introducing a bias such that
high quality solutions are produced quickly.” [62]

This class of methods include tabu search, simulator annealing, genetic algorithms, iterated

local search, and ant colony optimization.

Tabu Search (TS) is adopted in this thesis. TS is conceptually more simple than simulator

annealing and genetic algorithms as well as easier to implement. TS is the most common

metaheuristic [10], and its most distinctive feature is the explicit, systematic use of a memory

to guide the search process [62]. TS is a metaheuristic algorithm that guides a local search

to avoid pitfalls and explore the search space beyond the local optimality using the search

history. Emphasis on the explicit use of the memory is based on the assumption that a bad

strategic choice can provide more information than a good random choice. A bad strategic

choice can provide useful information for modifying the strategy to be more profitable. [24]

38

4.5.1 Basic Elements of Tabu Search

This section deals with basic theory needed for this thesis. Only those TS strategies used

in this work are reviewed here. For a more detailed discussion on different TS strategies

read [20, 22, 23, 24]. The exposition here is based on [21, 62].

4.5.1.1 Fitness Landscape

As mentioned above, TS is simply a combination of local search with explicit memory

structures. It then follows that the first three basic elements of TS are the definition of

search space S, neighborhood structure N (s), and objective function f(s). These three

elements (S,N (s),f(s)) together is referred to as the fitness landscape and their choice is

the most critical step in the design of any TS. A good understanding of the problem at

hand is necessary to choose the members of the fitness landscape. In recent years, several

researchers have addressed the problem of theoretical analysis of a search space [11, 18].

4.5.1.2 Memory and Search Strategy

The two most commonly used memories in TS are short-term memory and long-term

memory, and each memory is accompanied by its own search strategy. At each evaluation

TS makes a move from the current solution to the best solution in its neighborhood even

if it worsens the objective function value. When this happens it is important to avoid

immediately returning to the previous solution. This cycling can be prevented by declaring

tabu (forbidding) on the recent moves. This restricts the neighborhood of the current solution

s, and Ñ (s) is the admissible subset of N (s). These tabus are stored in the short-term

memory (also called tabu list). In many problems, solution components called attributes are

39

are stored in the the short-term memory instead of the entire solution. For example, if a

move is defined by swapping two elements then the labels of these two elements (attributes)

are used to enforce the tabu status.

The tabu tenure tl determines the number of evaluations for which the tabu status is active.

Alternatively, the length of the short-term memory is given by tl. It is possible that TS might

forbid attractive moves even when there is no danger of cycling. Aspiration criterion provides

an algorithmic way to revoke the tabu status. A commonly used aspiration criterion is to

drop the tabu status when the move leads to a solution better than the best-known solution.

More often than not long-term memory is needed to make TS fully effective. The two

strategies associated with long-term memory are intensification and diversification. The

goal of intensification strategies is to thoroughly explore the promising regions of the search

the space by revisiting the elite solutions. On the other hand, the goal of diversification is

to explore new regions of the search space. A common long-term memory strategy is based

on the number of times each attribute have been present in the selected moves. Such long-

term memory is called the frequency memory. In most situations the search performed by

TS is thorough enough, and sometimes they tend to be too local. Therefore diversification

is possibly more crucial then intensification in the design of TS. Some intermediate and

advanced TS strategies include candidate lists, surrogate objective functions, and allowing

infeasible solutions.

4.5.2 Algorithm

TS procedures are extremely sensitive to the parameter settings. TS procedure for the

element rearrangement problem along with a brief description of the different parameters is

40

discussed in the rest of this chapter. Chapter 5 provides a more detailed discussion on the

performance benefits of different parameter settings. Following are the four steps to solve

the element rearrangement problem using TS:

1. Initialization

In the first step several important parameters including number of random starts ntrials,

number of evaluations nevals, tabu tenure tl, and tuning set are defined (Section 4.5.3).

The search space is reduced by pixel sampling all the videos in the Cambridge-Gesture

data set (Section 4.5.4). The neighborhood structure N (s) and initial solutions for the all

the ntrials are generated (Section 4.5.4). Tuning set is partitioned as show in Figure 4.2(a).

TS method works on the training set and the performance of the TS method is evaluated

on the test set as shown in Figure 4.2 (c) and 4.2 (d), respectively.

2. Best Move Decision

The objective function value of the current solution and all its neighbors are computed

(as explained in Section 4.3). Based on the short-term and long-term memory strategies

(Section 4.5.5), aspiration criterion, and the objective function value the best move deci-

sion is made. Aspiration criterion adopted in this work is to drop the tabu status when

the move leads to a solution better than the best-known solution.

3. Best Move Execution

Current solution is replaced with best solution obtained in the previous step by executing

the appropriate move. The tabu tenure of all the tabu moves stored in the short-term

memory is reduced by one, and the current move is added to the tabu list. The long-term

memory is updated by incrementing the count of the attributes involved in the current

41

move.

4. Termination

Steps two and three are repeated till the termination criterion is reached. Two commonly

used termination criteria in TS are: first, to stop after some number of iterations without

any improvement in the objective function value and second, after a fixed number of

evaluations. Both criteria are used in experiments performed in this work. But the

second criterion is used for the majority of the experiments. This is because parallel

programming is used to reduce the run time of TS from 30 days to under 36 hours by

executing each of the ntrials simultaneously on a multi-core machine and this is partly

made possible by having a fixed number of evaluations per trial: which ensures a good

load balance.

4.5.3 Parameter Initialization

The choice of number of trials in a single TS experiment is a trade-off between probability

of a near optimal solution and run time of the experiment. All the experiments in this work

are performed on an Intel Xeon dual six-core server processor. Matlab’s parallel computing

tool box allows a maximum of twelve threads. Depending on the size of the problem the run

time of a single trial varies from seven hours to seven days. Therefore, the number trials

ntrials for all TS experiments is set to twelve. Number of evaluations nevals is varied from 25

to 1000 depending on the specific search strategy employed.

The best choice of tabu tenure is determined experimentally by studying a range of tabu

tenures (from 5 to 100). It might seem surprising that none of the values of tabu tenure

exhibited a distinctly better performance. A possible reason is that due to the large size of

42

the search space and neighborhood the probability of the TS procedure cycling is very low.

So, for all the experiments the tabu tenure tl is arbitrarily set to five.

As explained in Section 4.3 TS is performed on the tuning set. Cambridge-Gesture data set

can be divided in multiple ways to obtain the tuning set. All action classification algorithms

follow the the experimental protcol of using Set5 for the purpose of training [33, 48]. In this

work also Set5 is used as the first choice of the tuning set and is represented by D5. However,

two more choices of tuning set are used in this work to better evaluate the performance of

the TS procedure. Set1 is arbitrarily used as the second choice of the tuning set (D1). For

the third choice of the tuning set, four samples per action is randomly drawn from each of

the 5 sets. This tuning set is represented by Dcross.

4.5.4 Search Space and Neighborhood Structure

The size of the search space S of the element rearrangement problem is directly related

to the size of the video. As explained in Section 4.1, for a video tensor A ∈ Rn1×n2×n3 there

are (n1 × n2 × n3)! elements in the search space, and the rearrangement vector is given by

R ∈ R(n1×n2×n3)×1. For the Cambridge-Gesture data set there are 12800! possible solutions,

and the rearrangement vector R ∈ R12800×1. To meaningfully perform TS the size of the

search space needs to be pruned in an intelligent manner. This is done in two steps as

described below:

1. Replication

The size of the search space can be reduced by replicating the rearrangement of pixels

within a single frame across all the frames in a video. In other words, the original

rearrangement problem of considering all the possible rearrangement of the pixels in a

43

tensor is modified to consider only the rearrangement of the pixels within a frame and this

rearrangement is replicated in all the 32 frames of the video. As a result, the number of

elements in the search space reduces from 12800! to 400!, and the modified rearrangement

vector R̃ ∈ R400×1.

2. Pixel Sampling

Some pixels within a frame contribute more discriminating information than other pixels.

Therefore, we can reduce the size of the search space by dropping some pixels within a

frame and across all the frames in a video. However, it is important to retain the tensor

structure of the pixel sampled videos to take advantage of the performance benefits of

processing the videos in its original tensor form. Therefore, the number of pixels per frame

after sampling npels should be a perfect square. As a result of pixel sampling the number

of elements in the search space is further reduced from 400! to npels! and the modified-

sampled rearrangement vector is given by R̃sampled ∈ Rnpels×1. Pixel sampling is simply

choosing a subset of npel pixels from within 400 pixels in the modified rearrangement

vector R̃. The value of npels in this work varies from 49 to 324.

Two different approaches of pixel sampling is used in this work . In the first approach

pixels are randomly sampled (image space). In the second approach pixels are chosen

based on their edge strength (feature space). A simple edge detection algorithm is used

on the videos from training set to compute the edge strength of each pixel in a frame.

Higher the edge strength of a pixel greater the probability of being chosen. An example

of the two sampling methods is show in Figure 4.3. This gives rise to two different ways of

generating an initial solution. First is a random sampling of pixels and second is sampling

44

pixels based on their edge strength.

Figure 4.3: Pixel Sampling: Random pixel sampling (left) and edge pixel sampling (right).
The 49 pixels in red are the chosen pixels.

In this work the neighborhood structure is defined implicitly by the possible local changes

that may be applied to the rearrangement vector. This is more efficient when compared to

explicitly enumerating the set of possible neighbors. There are several possible neighborhood

structures for a given definition of the search space. Three neighborhood structures are

considered in this work - Pixel Add-Drop Neighborhood (PADN), Pixel Add-Drop-Swap

neighborhood (PADSN), and Frame Shift neighborhood (FSN). The motivation for these

neighborhood structures is discussed in Chapter 5.

Pixel add-drop move is used to define PADN. Neighbors are constructed by replacing each

pixel in R̃sampled with a pixel above it and below it. Therefore, there are 2npels neighbors

in PADN. Consider a solution s having 49 pixels per frame as shown in Figure 4.4(a).

Some neighbors of s are show in Figures 4.4(b)-(g). For example, pixel at location (2,2) in

Figure 4.4(a) is replaced by the pixel above it (1,2) in Figure 4.4(b) and by the pixel below

45

it (3,2) in Figure 4.4(c). In some cases the pixel being added to R̃sampled might already

be present in R̃sampled. Such neighbors are discarded. As a result the number neighbors in

PADN is usually less than 2npels.

(a) (b) (c) (d)

(e) (f) (g)

Figure 4.4: Illustration of the Pixel Add-Drop Neighborhood (PADN): (a) A solution s from
the search space S. Location of 49 pixels (light blue pixels) sampled from 400 pixels are
stored in R̃sampled; and, (b)-(g) Some examples of neighbors of s obtained by replacing a
pixel in R̃sampled with a new pixel (green pixel) either above or below the dropped pixel.

(a) (b) (c) (d) (e)

Figure 4.5: Illustration of the Frame Shift Neighborhood (FSN): (a) A solution s from the
search space S. Location of the 49 pixels (light blue pixels) sampled from 400 pixels are
stored in R̃sampled; (b) Frame shift up; (c) Frame shift down; (d) Frame shift left; and, (e)
Frame shift right;

46

PADSN is a minor variant of PADN. Along with add-drop moves this neighborhood also

allows swap moves. Consider the case where the pixel (say p̄) to replace the current pixel

(say p) is already present in R̃sampled. In such cases instead of discarding the neighbor as

done in PADN the two pixels p and p̄ are swapped. Therefore, the number of neighbors in

PADSN is always 2npels.

Unlike the previous two neighborhood definitions where the transformations are replicated

in all the frames in a video, in FSN the transformation is performed separately for each frame.

Neighbors are constructed by moving all the sampled pixels in a frame up, down, left, and

right by one position, for each frame in the video. Therefore, there are 128 (4 moves per

frame and a video has 32 frames) neighbors in FSN. Consider a solution s having 49 pixels

per frame as shown in Figure 4.5(a). Some neighbors of s are show in Figures 4.5(b)-(e). A

frame is shifted up by subtracting one from R̃sampled, shifted down by adding one to R̃sampled,

shifted left by subtracting 20 (number of rows in a frame) from R̃sampled, and shifted right

by adding 20 (number of rows in a frame) to R̃sampled. Because FSN operates on each frame

separately 32 rearrangement vectors need to be maintained one for each frame.

To summarize, three neighborhood structures are proposed in this work.

1. Pixel add-drop neighborhood

2. Pixel add-drop-swap neighborhood

3. Frame shift neighborhood

The performance benefits of these 3 neighborhood structures are discussed in Chapter 5.

47

4.5.5 Tabu Search Strategy

As discussed before, TS is based on the assumption that a bad strategic choice can provide

useful information for modifying the strategy to be more profitable. Systematic use of

memory can be used to achieve this. In this work three short-term memories (tabu lists)

are defined to store the tabu status (tabu tenure) corresponding to pixel add-drop moves,

pixel swap moves, and frame shift moves. Three long-term memories (frequency memories)

are defined to store the frequency count of each of the three moves. At the end of every

evaluation the following updates are made to the memories. First, tabu tenures of all the

tabu active moves are reduced by one. Second, current move is added to the appropriate

tabu list. Third, the frequency count corresponding to the current move is increased by one.

Once the objective function values of all the neighbors of the current solution are computed

there are several strategies to determine the best neighbor. The strategy adopted in this

work is show in Figure 4.6. Each neighbor is added to the primary, secondary or discard list.

The best neighbor is chosen from the secondary list only of the primary list is empty.

If a move is infeasible (e.g. duplication of pixels) then such a solution is discarded. The

tabu status of the move is checked by looking into the appropriate short-term memory. If

the move is tabu active (forbidden) but satisfies the aspiration criterion (the move leads to

a solution better than the best-known solution) then it is added to the primary list. On

the other hand, if the move is tabu active and does not satisfy the aspiration criterion it is

discarded. If the move is not tabu active and its objective function value is different from

the objective function value of the current solution then it is added to the primary list. On

the other hand, if the move is not tabu active but its objective function value is same as

48

Is the move feasible?

Is the move tabu
active?

Is it a non flat
land move?

Primary list Secondary list

Yes

Does the move satisfy
the aspiration criterion?

Primary List

Yes

Yes

No

No

No

Discard List

No

Yes

Figure 4.6: Best Move Strategy

the objective function value of the current solution it is added to the secondary list. This is

done to discourage walking along a plateau.

Diversification is achieved by using the counts from the frequency memories, driving the

search into new regions. The objective function values of the neighbors in the primary

and secondary lists are subtracted by an amount proportional to their respective frequency

counts. The proportionality constant is given by npenalty ∈ [0, 1]. The diversifying influence

is only restricted to cases where there are only non improving moves. Now, the move with

the largest objective function value in the primary list is selected as the best move. If the

49

primary list is empty then the move with the largest objective function value in the secondary

list is selected as the best move.

50

Chapter 5

Experiments

5.1 Tabu Search Tuning Procedure

As discussed in the previous chapter, TS has several parameters that need to be defined

before starting the search process. TS is usually very sensitive to parameter settings. Several

experiments with different parameter settings are performed. All the experiments performed

in this work are grouped into four heuristics based on their search space and neighborhood

structure definitions. Each of the four heuristics are incrementally developed based on the

analysis of results from the previous heuristics. The general procedure followed for parameter

tuning in this work is given by the following steps:

1. Define the search space S and neighborhood structure N (s) keeping in mind the problem

at hand. A strong understanding of the problem is crucial in defining S and N (s). PADN

is the first neighborhood definition used in this work.

2. Initialize all the other parameters including ntrials, nevals, npenalty, tl, tuning set, and initial

solution. Implement a simple version of the TS.

3. Collect statistics, analyze the results, and vary the parameters accordingly (Heuristic 1).

4. Reconsider the definition of the search space. Edge pixel sampling is used instead of

random pixel sampling (Heuristic 2).

5. Reconsider the definition of the neighborhood structure. Two new neighborhood struc-

tures are defined - PADSN (Heuristic 3) and FSN (Heuristic 4).

6. Reconsider diversification strategies.

7. Continue to experiment with the parameters.

51

5.2 Heuristics and Experimental Results

All the TS experiments are grouped into four heuristics. The parameters setting for these

four heuristics is given in Table 5.1, and their corresponding results are show in Figures 5.1

and 5.2. The four heuristics are described below.

Table 5.1: Parameter settings for the four heuristics. The parameters listed in this table are:
number of trials (ntrials), number of evaluations (nevals), number of sampled pixels (npels),
tabu tenure (tl), search space (S), neighborhood structure (N (s)), Short-term Memory
(STM), Long-term Memory (LTM), and Tuning set.

RPSTS EPSTS EPSTS-PS EPSTS-VN

ntrials 12 12 12 12

nevals 100 100 100 300

npels 49 49 49 49

tl 5 5 5 5

S
Random

pixels

Edge

pixels

Edge

pixels

Edge

pixels

N (s) PADN PADN PADSN PADN, FSN

STM Yes Yes Yes Yes

LTM No No No Yes

Tuning Set D1, D5, Dcross D1, D5, Dcross D1, D5, Dcross D1, D5, Dcross

5.2.1 Heuristic 1 - Random Pixel Sampled Tabu Search (RPSTS)

In this heuristic, the search space is pruned by random pixel sampling (as discussed in

Section 4.5.4) and PADN is used as the neighborhood structure. As shown in Figure 5.1, this

heuristic improves the average classification rate by about 3% when training is performed on

D5, Dcross, and about 1.5% when training is performed on D1. For the best case (best of the

12 trials in terms of performance gain), RPSTS improves the classification rate by around

8% as shown in Figure 5.2. The motivation for using random pixel sampling is that with a

good search strategy and sufficient evaluations, TS will eventually move towards the pixels

with most discriminating information.

52

Additional experiments are performed to experimentally determine the number of evalu-

ations in a TS. The number of evaluations per trial is gradually increased from 100 to 1000.

But, increasing the number of evaluations did not provide any significant trend. Few experi-

ments had a performance gain close to 4.5% and some others had performance gain of about

2%. This could possibly be due to overfitting. Another possible reason is that the search

space is very rugged with several local minima, and the search procedure continuously runs

into a local minimum. The number of evaluations is not increased above 1000 because for

1000 evaluations CRftrain is around 98%. This leaves very little room for learning, and any

further increase in number of evaluations will probably result in more overfitting.

D5 D1 Dcross

CRinit CRfinal Gain CRinit CRfinal Gain CRinit CRfinal Gain

RPSTS 39.11 42.21 3.10 38.62 40.11 1.49 43.94 47.63 3.69

EPSTS 61.94 64.37 2.43 61.92 62.33 0.41 57.36 59.40 2.04

EPSTS-PS 61.94 61.60 -0.34 61.92 60.63 -1.29 57.36 56.71 0.65

EPSTS-VN 61.94 75.03 13.09 61.92 73.10 11.18 57.36 70.21 12.85

Figure 5.1: Average initial and final classification rates (averaged over 12 trials) for the four
heuristics on the three different tuning sets.

53

D5 D1 Dcross

CRinit CRfinal Gain CRinit CRfinal Gain CRinit CRfinal Gain

RPSTS 36.44 45.83 9.39 35.69 42.88 7.19 44.38 51.86 7.48

EPSTS 61.77 69.50 7.73 55.88 60.97 5.09 56.25 63.77 7.52

EPSTS-PS 59.27 62.41 3.14 60.80 62.55 1.75 52.11 53.61 1.50

EPSTS-VN 59.27 79.11 19.84 55.88 72.25 16.37 52.97 71.72 18.75

Figure 5.2: Best initial and final classification rates (best of the 12 trials in terms of gain)
for the four heuristics on the three different tuning sets.

5.2.2 Heuristic 2 - Edge Pixel Sampled Tabu Search (EPSTS)

The assumption made in this heuristic is that for the task of action classification edge

pixels in a video provide more useful information than a random set of pixels. Therefore, the

search space in this heuristic is pruned by edge pixels, and this can result in a less rugged

search space compared to the previous heuristic. As expected the average initial classification

rates are boosted by about 20% across all tuning sets as shown in Figure 5.1. But the average

gain in performance is still only about 2% for D5, Dcross, and almost negligible for D1. For

the best case the improvement is around 7% as shown in Figure 5.2.

54

Increasing the number of evaluations did not provide any significant improvement. A

possible bottleneck for further improvement is the definition of the neighborhood structure.

It is evident from Figure 4.3 that, with edge sampling, many spatially contiguous pixels will

be present in the initial rearrangement vector. As a result, many of the neighbors constructed

using the pixel add-drop move will be discarded.

5.2.3 Heuristic 3 - Edge Pixel Sampled Tabu Search with Pixel
Swap (EPSTS-PS)

This heuristic avoids the problem of discarding neighbors by allowing pixel swap moves.

Surprisingly, this heuristic resulted in a very poor performance. Although the performance

gain for the best case is still in the positive, the average classification rate dropped by 0.34%

for D5 and 1.54% for D1. However, the performance gain on the training set is about 20%.

This clearly indicates a case of overfitting.

5.2.4 Heuristic 4 - Edge Pixel Sampled Tabu Search with Variable
Neighborhood (EPSTS-VN)

In all the previous heuristics, the pixel is used as the basic element to implement local

transformations within a frame, and all the local transformations are replicated across the

frames. This could be a possible reason to stunt further improvement in these heuristics.

In this heuristic, a new neighborhood structure FSN is used in conjunction with PADN.

PADN is used as the neighborhood structure for the first 100 evaluations. For the next 200

evaluations, FSN is used as the neighborhood structure. Within these 200 evaluations only

frame shift left and frame shift right moves are permitted for the first 100 evaluations, and

only frame shift up and frame shift down moves are permitted for the next 100 evaluations.

As shown in Figures 5.1 and 5.2 EPSTS-VN outperforms all the previous heuristics by a

large margin. The average gain in classification rate is around 12.5%, and the best case gain

in classification rate is 19.84%. Examples of gestures rearranged using the rearrangement

vector from the best trial are given in Figure 5.3. When the number of evaluations is

doubled from 300 to 600, the average gain in classification rate jumps from 13.09% to 16%,

and the best case gain jumps from 19.84% to 22.75%. Although, further increase in number

55

of evaluations did not provide any significant improvement. This could possibly be due to

overfitting.

flat
leftward

flat
rightward

flat
contract

spread
leftward

spread
rightward

spread
contract

V-shape
leftward

V-shape
rightward

V-shape
contract

Figure 5.3: Example gestures from Set5 of the Cambridge-Gesture database after pixel
rearrangement. Each of the nine rows correspond to a gesture. In each row seven frames
out of the 32 frames are presented for each gesture. From top the gestures are: flat leftward,
flat rightward, flat contract, spread leftward, spread rightward, spread contract, V-shape
leftward, V-shape rightward, and V-shape contract.

56

In the first three heuristics, frequency count based diversification strategy is not imple-

mented because the frequency count of the add, drop, or swap moves never exceeded five.

In other words, the TS procedure did not repeat any particular move sufficient number of

times to penalize the move. This is possibly because at any point there are many add, drop,

and swap moves, so the probability of repeating a move is much less. But for FSN, at any

point of the search process there are only 128 possible moves to choose from, so the chances

of a particular move repeating is higher. Initial experiments show that some of the moves

have a frequency count as large as 27.

Diversification is applied to the TS experiments where D5 and Dcross are used as the tuning

set. Values of 0.5 and 1 are used for npenalty. With this penalty, the frequency count of all

the moves is kept under 20. In some experiments the average performance gain increases by

about 2%, but in others there is no significant improvement in classification rates.

5.2.5 Comparing the performance of the heuristics

In reviewing the experimental results shown in Figures 5.1 and 5.2, the following three

conclusions can be made. Heuristics using edge pixels have higher initial classification rates.

Using variable neighborhoods, in particular FSN, results in a large gain in classification

rates, and using the pixel swap move to define neighborhood structure results in poor per-

formance. Finally, the most interesting observation is, all the heuristics except for the

EPSTS-PS heuristic, improve the classification accuracy irrespective of the choice of the

tuning set. This suggests that the element rearrangement algorithm presented here benefits

all the illumination cases in the Cambridge-Gesture data set.

Another important parameter to consider in the analysis of the heuristics is the number of

trials in a TS experiment where there is a decrease in the classification rate (nfail). This is

shown in Figure 5.4. The number of failures is shown both for the test set and the query set.

Only EPSTS-VN heuristic always results in a positive performance gain. This is important

because regardless of where the initial solution is in the search space the EPSTS-VN heuristic

always finds a solution better than the initial solution. On the other hand, almost half the

57

Figure 5.4: Number of trials (out of the 12 trials) in which the classification rate decreased
as a result of TS. The results are shown for four the heuristics on the three different tuning
sets.

trials using the EPSTS-PS heuristic result in a performance drop.

5.3 Parameter Tuning

From the discussion in the previous section it is clear that EPSTS-VN heuristic performs

the best among the four heuristics. This heuristic will be used for all the remaining experi-

ments in this work. As previously described in the TS tuning procedure in Section 5.1, the

parameters of the EPSTS-VN heuristic are further tuned. The experimental determination

of the number of sampled pixels, npels, and number of evaluations, nevals, that maximize the

classification rate are show in Figures 5.5 and 5.6, respectively.

Figure 5.5 shows the results of the EPSTS-VN heuristic for different values of npels (ranging

from 49 to 324 pixels). The higher the number of pixels used greater is the classification

rate. The best performance is achieved using the greatest number of pixels, in this case for

npels = 324. We use this as the number of sampled pixels for all the remaining experiments

in this work. The best case classification rate for npels = 324 is better than the classification

58

(a)

(b)

Figure 5.5: Classification rates for the EPSTS-VN heuristic with different values for npels.
D5 is used as the tuning set, ntrials = 12, nevals = 300, npenalty = 1, and tl = 5: (a) Average
classification rate (averaged over 12 trials) and (b) Best classification rate (best of the 12
trials in terms of gain).

rate achieved by the original ACOPM method using all pixels by 3.4%. From the Figure 5.5

it can be seen that the initial classification rate increases with the increase in the number of

sampled pixels. This is because with more pixels there is more information and this results

in better initial classification rates. However, the gain in performance decreases with the

increase in npels. Figure 5.5 shows that gain in performance for the case 324 pixels per frame

is about 8% which is half of the gain in performance for the case with 49 pixels per frame.

59

Figure 5.6: Classification rates for the EPSTS-VN heuristic with different values for nevals.
The first bar in each group corresponds to the average classification rate (averaged over 12
trials), and the second bar in each group corresponds to the best classification rate (best
of the 12 trials in terms of gain). D5 is used as the tuning set, ntrials = 12, npels = 324,
npenalty = 1, and tl = 5.

Figure 5.6 shows an experimental determination of the number of evaluations. The average

classification rate for 600 and 900 evaluations is about 1.1% more than the original ACOPM

method. The best case classification rate for 300, 600, and 900 evaluations improves the

ACOPM method by 3.4%, 3.25%, and 4.15%, respectively. It took a little over ten days to

complete an experiment with 900 evaluations on an Intel Xeon dual six-core server processor

with 12 parallel workers. To perform experiments with larger number of evaluations, it

would be important to further optimize the code. Examples of gestures rearranged using the

rearrangement vector from the best trial for the EPSTS-VN heuristic with 900 evaluations

are given in Figure 5.7.

5.4 Tensor Subspace Analysis

As discussed in Chapter 3, the ACOPM method represents videos as third order tensors

and computes three orthogonal matrices V
(1)
hm, V

(2)
vm, and V

(3)
app using the modified HOSVD

60

flat
leftward

flat
rightward

flat
contract

spread
leftward

spread
rightward

spread
contract

V-shape
leftward

V-shape
rightward

V-shape
contract

Figure 5.7: Example gestures from Set5 of the Cambridge-Gesture database after rearrange-
ment. Each of the nine rows correspond to a gesture. In each row seven frames out of the
32 frames are presented for each gesture. From top the gestures are: flat leftward, flat right-
ward, flat contract, spread leftward, spread rightward, spread contract, V-shape leftward,
V-shape rightward, and V-shape contract.

61

given in Equation (3.8). Each of the three matrices are represented as points on three different

Grassmann manifoldsM(1)
hm,M(2)

vm, andM(3)
app. The Grassmann manifolds are combined using

Equation (3.9) to map the videos to a single point on the Grassmann Product Manifold

(GPM). Classification is performed using the geodesic distance on the GPM coupled with a

simple nearest neighbor classifier as shown in Equation (3.11). This section provides some

insight into the relationship between the element rearrangement operation and the subspace

spanned by the three orthogonal matrices.

In all the previous experiments, classification is performed on the GPM, that is the sub-

spaces spanned by all the three mode-k flattened matrices is used for the task of action

classification. Classification performed independently on each of the three Grassmann man-

ifolds is considered here to understand how element rearrangement affects each of the three

subspaces spanned by the three mode-k flattened matrices. The results for classification

performed on the GPM and each of the three Grassmann manifolds are shown in Figures 5.8

and 5.9.

For all the experimental results shown in Figures 5.8 and 5.9, the parameters are initialized

as shown in Table 5.1 except that only D5 is used as the tuning set. Results in Figure 5.8

show the tensor subspace analysis for all the four heuristics, and results in Figure 5.9 show

the tensor subspace analysis for the EPSTS-VN heuristic with different values for number

of sampled pixels. The results and observations are summarized below:

1. For the ACOPM method and the RPSTS heuristic,the appearance subspace (the subspace

spanned by the columns of V
(3)
app) provides the most discriminating information.

2. In TS experiments using the edge pixel based heuristics, classification onM(1)
hm andM(2)

vm

performs better than classification on M(3)
app. This is because the edge pixels are better

suited to capture the variations in the horizontal and vertical motions rather than capture

variations in appearance.

3. In the case of the EPSTS-PS heuristic, there is a negative gain in the average classifica-

tion rate primarily due to the poor performance in the appearance Grassmann manifold

62

M(3)
app. This is because swapping pixels is synonymous to swapping columns in the mode-

3 flattened matrix, and swapping columns does not change the subspace spanned by it.

Therefore, the TS with the swap move will possibly result in overfitting and perform

poorly on the query set.

4. The EPSTS-VN heuristic is the only heuristic among the four heuristics to perform well

on all the three Grassmann manifolds.

5. For the EPSTS-VN heuristic, as number sampled pixels per frame increases (with the

exception of npels = 324), the initial classification rates and gains associated with M(1)
hm

andM(2)
vm decreases. This is possibly because with the increase in the number of sampled

pixels per frame, the weak (less useful) edge pixels are also included in the frame. This

can dampen the ability of edge pixels to capture the variations in the horizontal and

vertical motions.

6. However, the classification rate of the EPSTS-VN heuristic on GPM increases with the

increase in number of sampled pixels per frame. This is because the initial classification

rate in the appearance Grassmann manifold increases with the increase in the number of

sampled pixels per frame.

63

Initial classification rate on Grassmann product manifold

Initial classification rate on horizontal-motion Grassmann manifold

Initial classification rate on vertical-motion Grassmann manifold

Initial classification rate on appearance Grassmann manifold

Gain in classification rate

ACOPM RPSTS EPSTS EPSTS-PS EPSTS-VN
Heuristics

GPM M(1)
hm M(2)

vm M(3)
app

CRinit Gain CRinit Gain CRinit Gain CRinit Gain

ACOPM 88.91 0 66.36 0 61.27 0 82.11 0

RPSTS 39.11 3.09 24.37 2.45 27.22 2.16 31.70 0.50

EPSTS 61.94 2.42 46.70 1.19 49.97 2.14 35.03 2.80

EPSTS-PS 61.94 -0.33 46.70 -0.03 49.97 2.14 35.03 -0.58

EPSTS-VN 61.94 13.09 46.70 16.18 49.97 13.36 35.03 13.60

Figure 5.8: Tensor subspace analysis of the ACOPM method and the four heuristics. First
bar in each group gives the classification rate when the classification is performed on the
GPM. The second, third, and fourth bars of each group give the classification rates achieved
when classification is performed onM(1)

hm,M(2)
vm, andM(3)

app, respectively. All the classification
rates are averaged over 12 trials.

64

Initial classification rate on Grassmann product manifold

Initial classification rate on horizontal-motion Grassmann manifold

Initial classification rate on vertical-motion Grassmann manifold

Initial classification rate on appearance Grassmann manifold

Gain in classification rate

400 49 81 121 256 324

GPM M(1)
hm M(2)

vm M(3)
app

CRinit Gain CRinit Gain CRinit Gain CRinit Gain

400 88.91 0 66.36 0 61.27 0 82.11 0

49 61.94 13.09 46.70 16.18 49.97 13.36 35.03 13.60

81 72.01 7.84 43.75 14.80 50.73 10.88 55.41 8.47

121 76.93 5.62 39.84 12.55 52.18 8.67 66.09 5.11

256 78.54 4.10 35.69 7.92 49.79 6.13 79.03 1.33

324 80.60 6.62 41.31 16.03 51.61 11.43 81.52 2.83

Figure 5.9: Tensor subspace analysis of the EPSTS-VN heuristic for different values of npels.
First bar in each group gives the classification rate when the classification is performed on
the GPM. The second, third, and fourth bars of each group give the classification rates
achieved when classification is performed on M(1)

hm, M(2)
vm, and M(3)

app, respectively. All the
classification rates are averaged over 12 trials.

65

Chapter 6

Conclusion

In this thesis, new unfoldings of a tensor are developed by rearranging elements in the

original tensor and then applying the standard mode-k unfoldings. We study the problem of

rearranging elements in a video to achieve better classification accuracy. Tabu search is used

in this work to search for the best rearrangement of pixels in a video tensor. The usefulness

of the element rearrangement operation is demonstrated experimentally by employing it as a

preprocessing step to the action classification on product manifolds algorithm. Experimen-

tal results are reported on different tabu search heuristics. By properly choosing a search

space and a neighborhood structure for tabu search, the classification accuracy of the action

classification on product manifolds algorithm is improved from 88% to 92.15%.

A summary of the experimental results for the best heuristic, EPSTS-VN, is given below:

1. Regardless of where the initial solution is in the search space, the tabu search metaheuris-

tic always finds a solution better than the initial solution.

2. The element rearrangement algorithm is invariant to the illumination variations in the

Cambridge-Gesture data set.

3. The gain in performance due to element rearrangement decreases as the number of pixels

per frame increases.

4. The algorithm presented in this work answers an interesting question: “Which 10% of the

pixels in a video are useful for the task of action classification?” This question can be of

interest in computational-resource-constrained environments. The algorithm can identify

10% of pixels in a video that achieves a classification accuracy of 79.11%, and 80% of

pixels in a video that achieves a classification accuracy of 92.15%, as opposed to the

66

original action classification on product manifolds algorithm that achieves a classification

accuracy of 88% by using all the pixels. The most interesting observation is that by simply

dropping 20% of pixels from a video the classification accuracy increases by 4.15%.

Even though 90% of the pixels are dropped the performance drops only by 10%. One

possible reason for this behavior could be that the dropped pixels are unrelated to the class

labels sought by the classifier, then removal of such pixels is of benefit to any approach

trying to learn features needed to perform classification. A second possible reason could

be due to the curse of dimensionality. By dropping pixels, the dimensionality of the space

in which the learning must take place is reduced. This is beneficial simply because of the

fundamental relationship between the number of training samples available for the machine

learning algorithm and the degrees of freedom in the space in which the learning algorithm

must construct a decision criteria. Decrease the number of dimensions, and in the most

general sense, one needs fewer training samples. In all cases, the tabu search metaheuristic

always finds a solution better than the initial solution. This is because when different pixels

are chosen different variations are captured in the three unfoldings. Therefore, some set of

pixels tend to hold more discriminating information than others.

In summary, the element rearrangement algorithm presented in this work suggests that the

gain in performance is at best modest. In most cases, choosing a subset of pixels drops rather

than improves the performance relative to the original ACOPM algorithm. Although, in

compute-resource-constrained environments it may be beneficial to use the proposed method

to choose a subset of pixels that provides more discriminating information.

6.1 Future Work

The results reported in this thesis encourage further study of the role of element re-

arrangement as preprocessing step in tensor-based classification algorithms. Given that a

metaheuristic technique, tabu search, is used in this work there exists several untested heuris-

tics, looking into some of those heuristics is a potential direction of future work. For example,

rearrangement of pixels across different frames within a video is not considered in this work.

67

Another example is instead of replacing a pixel by only the pixel above it or below it, all the

8 neighboring pixels can be considered for replacing the current pixel.

Another possible extension of this will work be looking at other classes of data objects

that can benefit for element rearrangement. One possibility is face recognition by image-

set matching. Another direction of future work is to explore other frameworks, such as

genetic algorithms, simulator annealing, and numerical methods for solving the element

rearrangement problem.

68

References

[1] Emile Aarts and Jan K. Lenstra, editors. Local Search in Combinatorial Optimization.
John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1997.

[2] E. Acar and B. Yener. Unsupervised multiway data analysis: A literature survey.
Knowledge and Data Engineering, IEEE Transactions on, 21(1):6 –20, jan. 2009.

[3] Brett W. Bader and Tamara G. Kolda. Matlab tensor toolbox version 2.4. http:

//csmr.ca.sandia.gov/~tgkolda/TensorToolbox/, March 2010.

[4] Ronen Basri and David W. Jacobs. Lambertian reflectance and linear subspaces. IEEE
Trans. Pattern Anal. Mach. Intell., 25(2):218–233, February 2003.

[5] Evgeni Begelfor and Michael Werman. Affine invariance revisited. In Proceedings of the
2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
- Volume 2, CVPR ’06, pages 2087–2094, Washington, DC, USA, 2006. IEEE Computer
Society.

[6] Peter N. Belhumeur and David J. Kriegman. What is the set of images of an object
under all possible illumination conditions? Int. J. Comput. Vision, 28(3):245–260, July
1998.

[7] Kevin S. Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. When is
”nearest neighbor” meaningful? In Proceedings of the 7th International Conference on
Database Theory, ICDT ’99, pages 217–235, London, UK, UK, 1999. Springer-Verlag.

[8] M.A.-A. Bhuiyan, M.E. Islam, N. Begum, M. Hasanuzzaman, Chang Hong Liu, and
H. Ueno. Vision based gesture recognition for human-robot symbiosis. In Computer
and information technology, 2007. iccit 2007. 10th international conference on, pages 1
–6, dec. 2007.

[9] Aske Bjorck and Gene H. Golub. Numerical methods for computing angles between
linear subspaces. Mathematics of Computation, 27(123):pp. 579–594, 1973.

[10] Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimization:
Overview and conceptual comparison. ACM Comput. Surv., 35(3):268–308, Septem-
ber 2003.

[11] Kenneth D. Boese, Andrew B. Kahng, and Sudhakar Muddu. A new adaptive multi-
start technique for combinatorial global optimizations. Oper. Res. Lett., 16(2):101–113,
September 1994.

[12] L. Cammoun, C.A. Castao-Moraga, E. Muoz-Moreno, D. Sosa-Cabrera, B. Acar, M.A.
Rodriguez-Florido, A. Brun, H. Knutsson, and J. P. Thiran. A review of tensors and
tensor signal processing. In Santiago Aja-Fernndez, Rodrigo Luis Garca, Dacheng Tao,

69

http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox/
http://csmr.ca.sandia.gov/~tgkolda/TensorToolbox/

and Xuelong Li, editors, Tensors in Image Processing and Computer Vision, Advances
in Pattern Recognition, pages 1–32. Springer London, 2009.

[13] H.E. Cetingul and R. Vidal. Intrinsic mean shift for clustering on stiefel and grassmann
manifolds. In Computer Vision and Pattern Recognition. IEEE Conference on, pages
1896–1902, June 2009.

[14] John H. Conway, Ronald H. Hardin, and Neil J. A. Sloane. Packing lines, planes, etc.:
Packings in grassmannian spaces. Experimantal Mathematics, 5(2):139–159, 1996.

[15] L. De Lathauwer. A survey of tensor methods. In Circuits and Systems, 2009. ISCAS
2009. IEEE International Symposium on, pages 2773 –2776, may 2009.

[16] Selva di Fasano. From matrix to tensor: The transition to computational multilin-
ear algebra @ONLINE. http://issnla2010.ba.cnr.it/Course_Van_Loan.htm, June
2010.

[17] Alan Edelman, Tomás A. Arias, and Steven T. Smith. The geometry of algorithms with
orthogonality constraints. SIAM J. Matrix Anal. Appl., 20(2):303–353, April 1999.

[18] Bernd Freisleben and Peter Merz. New genetic local search operators for the travel-
ing salesman problem. In Proceedings of the 4th International Conference on Paral-
lel Problem Solving from Nature, PPSN IV, pages 890–899, London, UK, UK, 1996.
Springer-Verlag.

[19] Kazuhiro Fukui and Osamu Yamaguchi. Face recognition using multi-viewpoint patterns
for robot vision. In Paolo Dario and Raja Chatila, editors, Robotics Research, The
Eleventh International Symposium, ISRR, October 19-22, 2003, Siena, Italy, volume 15
of Springer Tracts in Advanced Robotics, pages 192–201. Springer, 2003.

[20] Michel Gendreau. Recent advances in tabu search. In C.C. Ribeiro and P. Hansen,
editors, Essays and Surveys in Metaheuristics, number 369-377. Kluwer Academic Pub-
lishers, 2002.

[21] Michel Gendreau. An introduction to tabu search. In Fred Glover and GaryA. Kochen-
berger, editors, Handbook of Metaheuristics, volume 57 of International Series in Oper-
ations Research & Management Science, pages 37–54. Springer US, 2003.

[22] F. Glover. Tabu search – Part II. ORSA Journal on Computing, 2:4–32, 1990.

[23] Fred Glover. Tabu search – Part I. ORSA Journal on computing, 1(3):190–206, 1989.

[24] Fred Glover and Manuel Laguna. Tabu Search. Kluwer Academic Publishers, Norwell,
MA, USA, 1997.

[25] Gene H. Golub and Hongyuan Z ha. The canonical correlations of matrix pairs and
their numerical computation. Technical report, Stanford, CA, USA, 1992.

[26] Peter Gruber and Fabian J. Theis. Grassmann clustering. In Proceedings of the European
Signal Processing Conference, 2006.

70

http://issnla2010.ba.cnr.it/Course_Van_Loan.htm

[27] Jihun Hamm. Subspace-based learning with Grassmann kernels. PhD thesis, University
of Pennsylvania, 2008.

[28] Jihun Hamm and Daniel D. Lee. Grassmann discriminant analysis: a unifying view on
subspace-based learning. In Proceedings of the 25th international conference on Machine
learning, ICML ’08, pages 376–383, New York, NY, USA, 2008. ACM.

[29] Md. Hasanuzzaman, T. Zhang, V. Ampornaramveth, H. Gotoda, Y. Shirai, and H. Ueno.
Adaptive visual gesture recognition for human-robot interaction using a knowledge-
based software platform. Robot. Auton. Syst., 55(8):643–657, August 2007.

[30] Harold Hotelling. Relations between two sets of variates. Biometrika, 28(3/4):pp. 321–
377, 1936.

[31] David S. Johnson, Christos H. Papadimtriou, and Mihalis Yannakakis. How easy is
local search? J. Comput. Syst. Sci., 37(1):79–100, August 1988.

[32] Daniel Kersten. Predictability and redundancy of natural images. J. Opt. Soc. Am. A,
4(12):2395–2400, Dec 1987.

[33] Tae-Kyun Kim and Roberto Cipolla. Canonical correlation analysis of video volume
tensors for action categorization and detection. IEEE Trans. Pattern Anal. Mach.
Intell., 31(8):1415–1428, August 2009.

[34] Tae-Kyun Kim, J. Kittler, and R. Cipolla. Discriminative learning and recognition of
image set classes using canonical correlations. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, 29(6):1005 –1018, june 2007.

[35] Tae-Kyun Kim, Shu-Fai Wong, and R. Cipolla. Tensor canonical correlation analysis for
action classification. In Computer Vision and Pattern Recognition, 2007. CVPR ’07.
IEEE Conference on, pages 1 –8, june 2007.

[36] M. Kirby and L. Sirovich. Application of the karhunen-loeve procedure for the character-
ization of human faces. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 12(1):103 –108, January 1990.

[37] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM
Rev., 51:455–500, August 2009.

[38] Volker Kruger, Danica Kragic, Ales Ude, and Christopher Geib. The meaning of action:
a review on action recognition and mapping. Advanced Robotics, 21(13):1473–1501,
2007.

[39] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learning realistic human actions
from movies. In Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE
Conference on, pages 1 –8, june 2008.

[40] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. A multilinear singular value
decomposition. SIAM J. Matrix Anal. Appl., 21:1253–1278, March 2000.

71

[41] John M. Lee. Introduction to Smooth Manifolds, volume 218 of Graduate Texts in
Mathematics. Springer, first edition, 2005.

[42] Kuang-Chih Lee, Jeffrey Ho, and David J. Kriegman. Acquiring linear subspaces for
face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell.,
27(5):684–698, May 2005.

[43] J Li, R Janardan, and Q Li. Two-dimensional linear discriminant analysis. Advances
in Neural Information Processing Systems, 17:1569–1576, 2004.

[44] Xi Li, Weiming Hu, Zhongfei Zhang, Xiaoqin Zhang, and Guan Luo. Robust visual
tracking based on incremental tensor subspace learning. In Computer Vision, 2007.
ICCV 2007. IEEE 11th International Conference on, pages 1 –8, oct. 2007.

[45] X. Liu, A. Srivastava, and K. Gallivan. Optimal linear representations of images for
object recognition. In Computer Vision and Pattern Recognition, 2003. Proceedings.
2003 IEEE Computer Society Conference on, volume 1, pages I–229–I–234 vol.1, June
2003.

[46] Yui Man Lui. Geometric methods on special manifolds for visual recognition. PhD
thesis, Colorado State University. Libraries, 2010.

[47] Yui Man Lui. Advances in matrix manifolds for computer vision. Image and Vision
Computing, 30(67):380 – 388, 2012.

[48] Yui Man Lui, J.R. Beveridge, and M. Kirby. Action classification on product manifolds.
In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages
833 –839, june 2010.

[49] Yi Ma, Jana Koseck, and Shankar Sastry. Optimal motion from image sequences: A
riemannian viewpoint. In In Proceeding of the Conference on Mathematical Theory of
Networks and Systems, 1998.

[50] Thomas B. Moeslund, Adrian Hilton, and Volker Krüger. A survey of advances in vision-
based human motion capture and analysis. Comput. Vis. Image Underst., 104(2):90–
126, November 2006.

[51] Hiroshi Murase and Shree K. Nayar. Visual learning and recognition of 3-d objects from
appearance. Int. J. Comput. Vision, 14:5–24, January 1995.

[52] George L. Nemhauser and Laurence A. Wolsey. Integer and combinatorial optimization.
Wiley-Interscience, New York, NY, USA, 1988.

[53] JuanCarlos Niebles, Hongcheng Wang, and Li Fei-Fei. Unsupervised learning of hu-
man action categories using spatial-temporal words. International Journal of Computer
Vision, 79:299–318, 2008.

[54] Christos H. Papadimitriou and Kenneth 1939 Steiglitz. Combinatorial optimization
algorithms and complexity. Dover Publications, 1998,1982.

72

[55] Ronald Poppe. A survey on vision-based human action recognition. Image and Vision
Computing, 28(6):976 – 990, 2010.

[56] Ravi Ramamoorthi. Analytic pca construction for theoretical analysis of lighting vari-
ability in images of a lambertian object. IEEE Trans. Pattern Anal. Mach. Intell.,
24(10):1322–1333, October 2002.

[57] Q. Rentmeesters, P-A Absil, P. Van Dooren, K. Gallivan, and A. Srivastava. An efficient
particle filtering technique on the grassmann manifold. In Acoustics Speech and Sig-
nal Processing (ICASSP), IEEE International Conference on, pages 3838–3841, March
2010.

[58] S.T. Roweis and L.K. Saul. Nonlinear dimensionality reduction by locally linear em-
bedding. Science, 290(5500):2323–2326, 2000.

[59] C. Schuldt, I. Laptev, and B. Caputo. Recognizing human actions: a local svm ap-
proach. In Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International
Conference on, volume 3, pages 32 – 36 Vol.3, aug. 2004.

[60] Terence Sim, Simon Baker, and Maan Bsat. The cmu pose, illumination, and expression
database. IEEE Trans. Pattern Anal. Mach. Intell., 25(12):1615–1618, December 2003.

[61] E. P. Simoncelli and B. A. Olshausen. Natural image statistics and neural representation.
Annual Review of Neuroscience, 24:1193–1216, 2001.

[62] T Stützle. Local Search Algorithms for Combinatorial Problems. PhD thesis, Darmstadt
University of Technology, 1998.

[63] J. B. Tenenbaum, V. Silva, and J. C. Langford. A Global Geometric Framework for
Nonlinear Dimensionality Reduction. Science, 290(5500):2319–2323, 2000.

[64] Craig A Tovey. Hill climbing with multiple local optima. SIAM Journal on Algebraic
Discrete Methods, 6(3):384–393, 1985.

[65] LedyardR Tucker. Some mathematical notes on three-mode factor analysis. Psychome-
trika, 31:279–311, 1966.

[66] Pavan Turaga, Ashok Veeraraghavan, Anuj Srivastava, and Rama Chellappa. Statistical
computations on grassmann and stiefel manifolds for image and video-based recognition.
IEEE Trans. Pattern Anal. Mach. Intell., 33(11):2273–2286, November 2011.

[67] P.K. Turaga, A. Veeraraghavan, and R. Chellappa. From videos to verbs: Mining videos
for activities using a cascade of dynamical systems. In Computer Vision and Pattern
Recognition, 2007. CVPR ’07. IEEE Conference on, pages 1–8, June 2007.

[68] Matthew Turk and Alex Pentland. Eigenfaces for recognition. J. Cognitive Neuroscience,
3:71–86, January 1991.

73

[69] M. A. O. Vasilescu. Human motion signatures: analysis, synthesis, recognition. In
Pattern Recognition, 2002. Proceedings. 16th International Conference on, volume 3,
pages 456 – 460 vol.3, 2002.

[70] M. A. O. Vasilescu and Demetri Terzopoulos. Multilinear Analysis of Image Ensembles:
TensorFaces. In ECCV ’02: Proceedings of the 7th European Conference on Computer
Vision-Part I, pages 447–460, London, UK, 2002. Springer-Verlag.

[71] Tiesheng Wang, A.G. Backhouse, and I.Y.H. Gu. Online subspace learning on grass-
mann manifold for moving object tracking in video. In Acoustics, Speech and Signal
Processing. IEEE International Conference on, pages 969–972, 31 2008.

[72] Shu-Fai Wong and R. Cipolla. Extracting spatiotemporal interest points using global in-
formation. In Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference
on, pages 1 –8, oct. 2007.

[73] Dong Xu, Shuicheng Yan, Lei Zhang, Hong-Jiang Zhang, Zhengkai Liu, and Heung-
Yeung Shum. Concurrent subspaces analysis. In Proceedings of the 2005 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’05) - Volume
2 - Volume 02, CVPR ’05, pages 203–208, Washington, DC, USA, 2005. IEEE Computer
Society.

[74] O. Yamaguchi, K.. Fukui, and K.-i. Maeda. Face recognition using temporal image
sequence. In Automatic Face and Gesture Recognition, 1998. Proceedings. Third IEEE
International Conference on, pages 318 –323, 1998.

[75] Shuicheng Yan, Dong Xu, S. Lin, T.S. Huang, and Shih-Fu Chang. Element rearrange-
ment for tensor-based subspace learning. In Computer Vision and Pattern Recognition,
2007. CVPR ’07. IEEE Conference on, pages 1–8, 2007.

[76] Shuicheng Yan, Dong Xu, Qiang Yang, Lei Zhang, Xiaoou Tang, and Hong-Jiang Zhang.
Discriminant analysis with tensor representation. In Proceedings of the 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)
- Volume 1 - Volume 01, CVPR ’05, pages 526–532, Washington, DC, USA, 2005. IEEE
Computer Society.

[77] Jian Yang, David Zhang, Alejandro F. Frangi, and Jing-yu Yang. Two-dimensional pca:
A new approach to appearance-based face representation and recognition. IEEE Trans.
Pattern Anal. Mach. Intell., 26(1):131–137, January 2004.

[78] Jieping Ye. Generalized low rank approximations of matrices. In Proceedings of the
twenty-first international conference on Machine learning, ICML ’04, pages 112–, New
York, NY, USA, 2004. ACM.

[79] Guido Zuccon, Leif A. Azzopardi, and C. J. Rijsbergen. Semantic spaces: Measuring the
distance between different subspaces. In Proceedings of the 3rd International Symposium
on Quantum Interaction, QI ’09, pages 225–236, Berlin, Heidelberg, 2009. Springer-
Verlag.

74

Appendix A

Symbol Glossary

Table A.1: Symbol Glossary

Notations Descriptions

A Tensor (upper-case letters in calligraphic font)

A Matrix (upper-case letters in bold font)

a Vector (lower-case letters)

A(k) Mode-k unfolded matrix

U(k) Mode-k singular (orthonormal) matrix

×k Mode-k product

||x|| Euclidean norm of x

Vn,p Stiefel Manifold (a set of p orthonormal vectors in Rn)

Gn,p Grassmann manifold (a set of p-dimensional linear subspaces in Rn)

ntrials Number of trials in a tabu search experiment

nevals Number of evaluations per trial in a tabu search experiment

npels Number of pixels sampled per frame

npenalty Proportionality constant used in the diversification strategy of the tabu search

tl Tabu tenure of the short-term memory used in tabu search

75

	Introduction
	What is action classification?
	Motivation
	Previous Work
	Contributions
	Overview of Chapters

	Action Classification
	Data set
	Subspace based methods
	Action Classification using Subspace Methods

	Action Classification using Tensor-Based Subspace Comparison
	Motivation
	Tensors
	Subspace Comparison
	Grassmann Manifolds

	Mathematical Background
	Tensor
	Tensor Unfolding
	Tensor Mode-k Product
	Higher Order Singular Value Decomposition

	Principal Angles
	Grassmann Manifold and Geodesic Distance
	Product Manifold

	Action Classification on Product Manifolds: A Toy Problem
	Example Toy Problem 1
	Example Toy Problem 2

	Element Rearrangement Problem
	Why Rearrange Elements?
	Element Rearrangement using Local Search
	Combinatorial Optimization
	Local Search

	A General Algorithm
	Hill Climb
	Tabu Search
	Basic Elements of Tabu Search
	Fitness Landscape
	Memory and Search Strategy

	Algorithm
	Parameter Initialization
	Search Space and Neighborhood Structure
	Tabu Search Strategy

	Experiments
	Tabu Search Tuning Procedure
	Heuristics and Experimental Results
	RPSTS Heuristic
	EPSTS Heuristic
	EPSTS-PS Heuristic
	EPSTS-VN Heuristic
	Comparing the performance of the heuristics

	Parameter Tuning
	Tensor Subspace Analysis

	Conclusion
	Future Work

	References
	Symbol Glossary

