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ABSTRACT

THREE-DIMENSIONAL ELASTICITY MODELS FOR BUCKLING OF

ANISOTROPIC AND AUXETIC BEAMS AND PLATES

The three-dimensional elasticity model is developed to determine the critical buckling

load for isotropic, anisotropic, and auxetic beams and plates. Different beam theories are

studied and compared to the elasticity theory. The study was based on the assessment

of those beam theories using different beam cross-sections and boundary conditions.

The elasticity theory for anisotropic beams obtained well results for large slenderness

ratios when it compared with Euler-Bernoulli theory which is considered in this study the

main area of comparison study. For small values of slenderness ratio the elasticity theory

obtained significant difference than the Euler-Bernoulli theory, which means that Euler-

Bernoulli is weaker when it is used for short beams than long beams. The orientation

of the anisotropy behavior is also studied and has showed how the buckling load can be

changed due to the orientation of the elasticity modulus.

The auxetic beams behave different than the anisotropic behavior, it gives results higher

and lower than the Euler-Bernoulli theory according to the slenderness ratio and the

Poisson’s ratio values. A significant behavior was noticed in using beams with negative

Poisson’s ratio which can be useful in structure mechanics field.
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CHAPTER 1

INTRODUCTION

The size of structures members change according to the demand and the location, for

instance, Spacecraft enhances the opportunity to observe and study the earth and planets.

With the increasing for sea transport, ships are designed to carry heavy cargo mass on

its board, and the demand for lightweight structure for this purpose is of importance

to achieve it. Therefore, a significant demand for alternative material have come to the

surface.

Cold-formed steel or aluminum thin-walled is considered as the first generation of thin-

walled structures used extensively in buildings, it can be traced back to the 1850s [1].

Since steel and aluminum are isotropic materials, it is not surprising that, up to the last

couple of decades, most of the research activity dealing with the analysis and behavior

of thin-walled structures did not take into consideration the effect of orthotropy. The

only exception is related to members containing longitudinally and/or transversely stiff-

ened walls [2], its behavior has been modeled using the ”equivalent orthotropic plate”.

With the advent of usage of thin-walled structures made of composite materials, it be-

came indispensible to account for the material orthotropy, which is due to the properties

and orientation of the constituents (matrix, fibres, laminae,particles, etc.) and leads to

mechanical characteristics quite different from those of isotropic materials.

The main advantages of composite material,when compared with lightweight metals is

the capability to achieve similar strength values with considerably less weight, an aspect

that makes them ideally suited for aeronautical and aerospace applications. Composite
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materials has been started to use in the 1950s and it develops according to the demand

and the discovering of new materials. In civil engineering, composite has been widely used

in the last few years when their well known as structural efficiency, excellent behavior

under aggressive environmental conditions, and sufficiently low fabrication costs [1]. In

particular, the combination of these three features is responsible for the growing demand

for thin-walled composite structural members. Composite material often exhibits local

and global instability in addition to brittle collapse modes, therefore, mastering these

two aspects is of importance to achieve safe and economical designs, engineers should be

aware of the suitable numerical and analytical tools to be able to model and study the

structural behavior and load carrying capacity of thin-walled composite members.

With the development in composite structures and the continuously demand for new

materials, auxetic materials is of interesting type of material, it is well known that the

material will become longer as it is stretched but also become thinner in cross-section.

The behavior of the material under deformation is governed by one of the fundamental

mechanical properties of material is Poisson’s ratio. Poissons ratio (ν) of a material is

the ratio of the lateral contractile strain to the longitudinal tensile strain for a material

undergoing tension in the longitudinal direction; that is, it shows how much a material

becomes thinner when it is stretched.Therefore,most of the materials have a positive ν.

In case of counterintuitive behavior of auxetic material, it undergoes lateral expansion

when stretched longitudinally and becomes thinner when compressed.
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CHAPTER 2

LITERATURE REVIEW

Buckling and post-buckling of thin-walled structures subjected to static load have been

studied by many scientists about hundred years ago. The precursors that should be

mentioned in almost every paper discusses stability of thin-walled structures are a group

of Bernoulli and Euller [3], Timoshenko [4] and Volmir [5]. There are numerous papers

dealing with linear and nonlinear stability of thin-walled structures subjected to different

kind of loads. Nowadays, the presence of software packages based on FEM, make it

easier to calculate the critical load for most structures and even more to determine the

post-buckling behavior. The broad development of research on stability of thin-walled

structures took place in the 1970s and the 1980s [6]. The ideal papers dealing with local

buckling are papers written by Davis and Hancock [7] , Graves-Smith [8] , or Mulligan

and Pekoz [9] .

Analyzing the behavior of isotropic material was introduced by some authors, for example,

Graves-Smith [8] , Grimaldi and Pignataro [10] , Koiter [11] Krolak [12]. Interactive

between different types of buckling (local, global or deformation) are discussed by many,

Koiter and Pignataro [13] presented a theoretical basis for the interaction of local and

global buckling. Koiter and van der Neut [14] proposed an analysis of the interaction

between global and two local buckling. Byskov and Hutchinson [15] discussed the in

interactive buckling of cylindrical shells.
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More reviews discussed the interaction of buckling analysis of an isotropic materials can

be found, in Ali and Sridharan [16], Benito and Sridharan [17], Byskov [18], Koiter and

Pignataro [19], Kolakowski [20], Manevich [21], Moellmann and Goltermann [22].

There are numerous papers dealing with nonlinear problems of stability of thin-walled

structures made of orthotropic materials. The pioneer works on this subject were pub-

lished about 80 years ago. Sydel [23], and Smith [24] dealt with orthotropic plate buckling.

Reissaner and Stavsky [25] published a study on evaluating the stress for anisotropic lam-

inated plates with arbitrarily stacked layers. The theoretical background for buckling of

anisotropic plates was published by Lekhnitskii [26], Ambartsumyan [27], Ashton and

Whitney [28] or Vinson and Chou [29]. There is also many works on anisotropic plates,

for instance, March [30] in his work he determined the critical buckling load subjected to

a plywood with angles 0, 15, 30, 45, 60, 75, and 90 to the face grain of the plate, he pre-

sented a graph to determine the effective width of plate to estimate the critical buckling

load. Fraser and Miller [31] used Ritz method to determine the critical buckling load of

orthotropic plates. An experimental studies on buckling of anisotropic rectangular plates

with simply supported or clamped edges introduced by Mandell [32]. Noor [33] used a

three-dimensional plate theories when applied to the stability analysis of multi-layered

composite plates with large numbers of layers, to assess the accuracy of the classical and

shear-deformation plate theories. Post-buckling analysis of orthotropic rectangular plates

of symmetric cross-section presented by Chandra and Raju [34], they used Von Karman

large deflection equation to estimate the load caused shortening of edges, and compared

their results to previous published works.
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Prahakara and Chia [35] also studied the same problem by carried out a theoretical

analysis of the post-buckling behavior of orthotropic, rectangular plates with supported

edges and subjected to biaxial compression. Instability for orthotropic plates subjected

to pure shear was looked by Massey [36] and Brunelle and Oyibo [37].

In the 1980s and the 1990s, finite strip and finite elements approaches have been used to

solve stability problems, finite strip method developed by Cheung [38] is used to study

the linearity and nonlinearity of buckled structures. Dawe and others [39] developed a

finite strip method based on the use of classical plate theory and first-order shear defor-

mation plate theory to predict the post-local-buckling behavior of laminated composite

plate structures subjected to uniform end shortening. Kasagi and Sridharan [40] studied

the stability and the post-buckling behavior of multi-layered composite plates subjected

to shear using finite strip method. They employed a trigonometric function to describe

deflection along the plate and assumed a very long plates to decrease the boundary con-

ditions influence. Mahendran and Murray [41] presented an application of the finite strip

method to the elastic buckling analysis of thin-walled structures under combined loading

of in-plane loading such as longitudinal compression, transverse compression, shear and

bending. Elastic nonlinear response of locally buckled thin-walled beam-columns is also

studied using the finite strip method by Davids and Hancock [42], they combined the strip

method with the influence coefficient method of nonlinear analysis of beam-columns. A

similar work presented by Eccher [43], he presented the elastic buckling analysis of thin-

walled structures by the isoparametric spline finite strip assuming linear fundamental

state.

The finite element method used by Hu and Tzeng [44] to analyze the stability of rect-

angular plates with elastic fibrous composite laminates with different arrangement of
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layers. They employed the commercial software ABAQUS to analyzed simply supported

or clamped plates subjected to eccentric compressive load. Bao et al. [45] used the FEM

to analyze the critical stress for flat rectangular orthotropic thin plates with different

boundary condition. He also investigated the beam-columns made of anisotropic ma-

terials. Barbero and Tomblin [46] used the Southwell method to determine the critical

buckling load about the strong and weak axes, they compared the experimental results

with the theoretical ones receiving a good agreement with a difference percentage less than

6.2% Gupta and Rao [47] studied the stability of a thin cantilever beam with a Z-cross-

section made of two (45/-45) or three (0/45/0) layered laminates. The authors employed

the finite element method to analyze the model. In the last decade, Awrejcewicz and

co-authors have published monographs [48–50] devoted to dynamics ad statics of plates

and shells made of isometric and orthotropic materials. They have presented a broad

spectrum of analytical and numerical methods applied to solve problems of static stabil-

ity and vibration of thin-walled structures.Despite the fact that since the first work on

stability of the thin-walled structures, has passed more than century, stability and critical

load subjected to the thin-walled structures is still an active topic. Recently there are

some papers discussing the same problem from different views, some of these publication

are mentioned below.

There are some published works that should be mentioned, Szymczak and Chroscielewski

from the Gdansk University of Technology, Tomski and others from the Czestochowa

University of Technology, Teter from the Lublin University of Technology, Garstecki,

Magnucki and Zielnica from the Poznan University of Technology, and Humer from Jo-

hannes Kepler University. Szumczak [51] study the stability of the construction of halls

modelled as thin-walled frames. It has revealed that the obtained bifurcation point is
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unsymmetrical and unstable, which can lead to a reduction of critical loads due to some

geometrical and loading imperfections. Chroscielewski et al. [52] discussed the effect

of initial deflection on torsional buckling load of the thin-walled I-beam column. The

authors have observed and analyzed the localization of the local buckling modes, he com-

pared the numerical results obtained using the theory of thin-walled members with the

non-linear 6-parameter theory of shells. Tomski [53–55] studied the stability of the slender

geometrically nonlinear system supported at the loaded end by a spring of linear charac-

teristic and subjected to non-conservative (generalized Becks) loading. Tomski [56] also

dealt with problem of global instability of slender systems with imperfections subjected

to Euler load, he presented the results of analytical, numerical and experimental for his

model. Teter and Kolakowski [57, 58] investigated the instability behavior of thin-walled

beam-columns with intermediate stiffeners, they analyzed the interaction between the

local and global buckling and the influence of this interaction on buckling load. Rezeszut

and Garstecki [59, 60] proposed a method to represent the initial imperfections as linear

superposition of a limited number of buckling Eigen modes, in their work the studied

the linear and non-linear stability analyses of double sigma members in the elastic range.

They also came with a result that the interaction between the global and local buckling

can result in excessive sensitivity to imperfections and in unstable behavior. Magnucki

with his team [61–63] have published a few papers devoted to global and local stability

of cold-formed thin-walled channel beams with open or closed flanges. They presented a

simple analytical description and calculations, and the FEM analysis of selected beams.

The main area of Zielnicas interest are sandwich conical and cylindrical shells. In his lat-

est papers, Zielnica et al. presents a derivation of the stability equation and the method

of solution for an elastic-plastic open conical shell made of orthotropic materials [64].
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They take into consideration a bi-layered open conical shell subjected to longitudinal

force and lateral pressure. The solution for a freely supported sandwich cylindrical shell

with unsymmetrical faces, loaded by longitudinal forces, transversal pressure and shear,

can be found in [65]. Paper [66] presents a buckling analysis and equilibrium stability

paths of the sandwich conical shell with unsymmetrical faces subjected to combined load.

Based on Ressiner theory for plane deformation, Humer [67] investigated the buckling and

post-buckling behavior of beams subjected to axial compressibility and shear deforma-

tion. He derived the equilibrium equation for statically determinate and indeterminate

combinations of boundary conditions representing the four fundamental buckling cases.

The bifurcation load is determined and the influence of shear on the buckling behavior

is investigated. Kolakowski et al. [68–70] have used the asymptotic Koiter theory for

conservative systems to analyze the interactive buckling and the post-buckling behavior

of thin-walled columns with different cross-sections. In [68], Kolakowski and Kowal-

Michalska analyse an influence of the axial extension mode on the interactive buckling of

thin-walled channel subjected to uniform compression. Multi-cell thin-walled columns of

triangular and rectangular cross-sections have been investigated for load carrying capac-

ity by Krolak [71–73]. He compared the theoretical and experimental investigations with

FEM calculation results.

Thin-walled beam-columns with open and closed cross-sections subjected to compression

or pure bending have been widely discussed as well. Loughlan et al. have conducted

a numerical analysis and experimental tests on lipped cross-section [74], I-section and

box-section [75] struts. He employed the FEM package software ANSYS to analyze the

numerical analysis. They have examined the buckling and post-buckling behavior and the

failure mode of thin-walled struts assuming the elastic-plastic material behavior. They
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have proposed FEM models and procedures for determine the coupled local-distortional

interactive response of thin-walled lipped channel sections [74]. Ovesy have employed the

finite strip method [76] to carry out a numerical analysis and have compared the obtained

results with the FEM and experiments. The post-buckling behavior, the load carrying

the capacity estimation and the failure mode of stainless steel stub columns [77] and

multilayered plate structures have been analyzed by Kotelko, Kowal-Michalska, Rodes

and others. Rhodes and Macdonald [78, 79] presented a summary of the recent research on

stability, post-buckling behavior and load carrying capacity of cold-formed steel members

and structures, in [78] they studied the behavior of thin-walled members under various

loading. Rhodes and his students in [79] have studied the effects of end fixity on plain

channel column behavior, the effects of transverse impact on struts and the damaged strut

capacity and the large deflection behavior of slender rings under diametrically opposed

point loads.

The significant development in computational methods has allowed to determine the buck-

ling and post-buckling analysis of thin-walled structures. In recent years, two competitive

software codes allowing to determination of critical load for uncoupled and coupled buck-

ling have been developed. They enable also analyzing the post-buckling behavior of

thin-walled beam-columns. GBT [80] one of these methods, is based on the generalized

beam theory. The second one is called CFSM, has been developed by Shafer [81] and is

based on the constrained finite strip method.

Auxetic materials has opened the door towards inventing new type of materials that could

have negative Poissons ratio. This unusual property was rst reported in 1944 when iron

pyrites single crystals were described as having a negative Poissons ratio, a phenomenon,

which was regarded as an anomaly and attributed to twinning defects [82], since then
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and most particularly in the last two decades, auxetic behavior was introduced in various

materials ranging from molecular level systems [83–87], metals [88], silicates [89] and

zeolites [90] to micro-structured materials such as foams (35-39), and micro-structured

polymers [91, 92].

Lakes was the first one who manufactured auxetic foams, in [93], he studied the behavior

of the stress concentration factor when the material components exhibit a negative Pois-

son’s ratio, he found that the stress concentration factors are reduced in some situations

and unchanged or increase in others. Lakes [94], discussed the negative Poisson’s ratio

for anisotropic materials, he has claimed that the value of Poisson ratio bounds between

(−∞ < v < ∞) than in isotropic materials that bounds between (−1 < v < 0.5), and

he discussed how the stack of the cells can affect the behavior of the material. In [95],

Lakes introduced the auxetic material and its behavior when it subjected to external

loads, for instance, honeycombs with inverted cells, anisotropic materials including a few

natural single crystals, some synthetic off axis composite laminates have all reported to

have a negative Poisson’s ratio when subjected to axially loads in some direction. He

also presented the useful aspects of having negative Poisson’s ratio for some materials.

Evans and Alderson [91] presented some examples of auxetic materials, and the effect of

negative Poisson’s ratio on their mechanical properties and how these new materials can

be used in applications.

H. Obrecht [96] studied the properties of auxetic materials, such as, Shear modulus which

depends inversely on 1+ and thus tends to infinity as ν approaches its negative limit of

-1, therefore, such a dramatic increase must also effect the load carrying behavior. He has

found out that the bifurcation stresses increase dramatically as approaches -1. He has also

concluded that the angle of the cell wall plays the major role in estimating the bifurcation
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stress values. Pozniak et al. [97] studied the deformation of a two-dimensional isotropic

material forming a square sample with two sides fixed and the other two remaining under

uniform compression load. It revealed that for negative Poissons ratio, at the corner of

the sample model, it behaves in a counterintuitive way, the material in those domains

moves in the direction opposite to the pressure applied which considered as a locally

negative compliance.

Grima et al. [98] presented a new explanation for achieving auxetic behavior in foam

cellular materials, they called it’s ”rotation of rigid units” mechanism, the cellular struc-

ture is volumetrically compressed and then frozen in the compressed conformation, this

deformation results in auxeticity behavior. Wadee et al. [99] investigated the behav-

ior of tubes subjected to pure bending using Timoshenko theory, the tubes material is

constructed either of orthotropic materials or of different Poissons ratio. The revealed

results show that for certain values of ν the interaction between buckling modes reduces

the moment significantly. Moreover it is found that post-buckling behavior is more severe

and may lead to kinking failure if the material is stressed beyond its elastic limit. Kar-

nessis and Burriesci [100] also studied the mechanical properties of auxetic tubes based

on hexagonal honeycombs. They showed that using of auxetic structures can result in

significantly improved buckling behavior compared to similar non-auxetic arrangements.

They solved the problem with matching the analytical with numerical approaches.

Buckling and vibration of isotropic circular auxetic plates under various boundary condi-

tions discussed by Lim [101], he showed that as the Poisson’s ratio negativity increases,

the critical buckling load gradually reduced. In the case of vibration the decrease in

Poisson’s ratio not only decreases the fundamental frequency, but the decrease becomes

very rapid as the Poisson’s ratio approaches its lower limit. Auxetic behavior into thin
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walled discussed by Weller [102], in his study he examined the feasibility of inducing

auxetic behavior into thin-walled structures, and the shear stiffness enhancement. For

a membrane plate, he revealed the following results, it is possible to induce an auxetic

behavior in thin-walled structures by out-of-plane corrugations, and using the geometric

parameters it is possible to change, and in some cases to optimize to some extent, the

resulting effective elastic properties. Shufrin et al. [103] presented a study for materials

composed of hollow spheres. It is shown that the negative Poisson’s ratio in this material

is due to the high ratio between tangential (shear) to normal stiffness of a thin-wall hollow

sphere. It has been shown that the structural parameters of the assemblies, such as the

wall thickness to sphere radius ratio and the contact area between the spheres control

the mechanical properties of the hollow sphere materials.

It has also been found that a decrease in the contact area between the spheres, which cor-

responds to weak connection signicantly enhance the auxetic property, while not affecting

the relation between the shear and Youngs modulus.

Brighebti [104] in his paper has used the phrase smart structures as the significant fea-

tures of auxetic behavior, he studied the response of layered plates, and presented the

mechanical characteristic. He showed that the plates bending stiffness can be accurately

designed by simply varying the Poisson’s coefficient of only one thin ply of the layered

plate, without changing its thickness and mechanical properties. He also proposed the

values to measure the geometrically nonlinear stiffening effect behavior in presence of

auxetic layer.
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Abdul-Aziz, Limbert, Young, and Beresford-west [105] have used ABAQUS to present

the behavior of auxetic materials, they introduced a new approaches in generating the

mesh for their models, the approach was to generate mesh directly from 3D images which

is considered to provide fast and accurate values to explore the structure properties.
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CHAPTER 3

THEORETICAL DEVELOPMENT

Convergence study is conducted to determine the critical buckling load for isotropic and

anisotropic materials using ABAQUS software. Humer [67] studied the behavior of thin-

walled beam under shear deformable using two-dimensional elasticity theory, in his paper

he investigated the influence of shear on the buckling behavior for different beam configu-

ration. Heyliger [106] proceed through the work of Humer to study the three-dimensional

elasticity theory, he used Ritz model approximation to introduce the generalized eigen-

value matrix. Mohammad and Archibald [107] studied the elastic local instability of

anisotropic composite beams buckling under nonlinear varying, uni-axial compressive

forces. they used Galerkin method to introduce the plate equilibrium equations.

3.1 Three-Dimensional Elasticity

In order to study the elastic behavior of a body subjected to different kind of loads, we

shall determine the entire stress and strain components of it and understand the stress-

strain relation. There are nine components define the stress tensor at any given point on

the body having the Cartesion system (x,y,z) Figure1,components of stress acting on an

area normal to the x-axis σx, τxy, τxz,components of stress acting on an area normal to

the y-axis σy, τxy, τyz and components acting on an area normal to the z-axis σz, τzz, τyz.
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If we know the stresses in three mutually perpendicular areas, we can determine the stress

acting on any area passing through the same point.

T n
x = σxex + τxyey + τxzez (3.1)

T n
y = τxex + σxyey + τxzez

T n
z = τxex + τxyey + σxzez

where T n
x , T

n
y , T

n
z are components of stress which act on an area with the arbitrary normal

direction.

To present the anisotropic material Hooke’s law is assumed that such materials are ho-

mogeneous in which the directional properties at a specific point in the material represent

the directional properties of the whole element. Stress and strain relation are applied to

an anisotropic body will result in linearly components of strain. There are nine stress

terms σij where i,j refer to the global coordinate system x,y,z. Referring to the x,y,z

directions in terms of integers 1,2,3, the generalized Hooke’s law may be written as:

σij = Cijklǫkl (3.2)

where Cijkl form are termed the material stiffness, and ǫkl is the mathematical strain

tensor. Similarly the stress-strain tensor is given by:

ǫij = Sijklσkl (3.3)
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where the Sijkl are referred to as the material compliances. the tensors Cijkl and Sijkl

contains 81 terms, and from the definition of the components of the stress and strain

tensors, the number of independent terms reduces to 36:

Cijkl = Cijlk, Cijkl = Cjikl

For isotropic material, symmetry is introduced and the system can be reduced signifi-

cantly. When strains are infinitesimal, the Cauchy strain components are linked with the

three displacement components u,v and w in the x,y and z direction as

ǫ1 = ǫ11 =
∂u

∂x
ǫ2 = ǫ22 =

∂v
∂y

ǫ3 = ǫ33 =
∂w

∂z
(3.4)

ǫ4 = γ23 =
∂v

∂z
+
∂w

∂y
ǫ5 = γ13 =

∂u
∂z

+ ∂w
∂x

ǫ6 = γ12 =
∂u

∂y
+
∂v

∂x

The general constitutive relation can be shown in matrix form as follow















































































σ1

σ2

σ3

σ4

σ5

σ6















































































=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

C11 C12 C13 0 0 0

C21 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣















































































ǫ1

ǫ2

ǫ3

ǫ4

ǫ5

ǫ6















































































(3.5)

This relation will be used later in this study to determine the critical buckling load for

orthotropic materials.
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3.2 Euler-Bernoulli Beam Theory

The Euler-Bernoulli is considered the simplest theory to to determine the deformation

of beams. It only considers the transverse displacement of the beam, beside neglecting

the Poisson’s ratio effect assumes that the cross-section remains perpendicular to the

neutral axis and allows for the reduction to one dimension. The displacement field of the

Euler-Bernoulli beam is given by

u(x, y, z) = −z
∂w

∂x
(3.6)

v(x, y, z) = 0 (3.7)

w(x, y, z) = wx (3.8)

where u,v, and w represents the displacement in the x,y, and z directions, respectively.

The transverse displacement is represented by the variable w. Now consider a straight

elastic beam with linearly elastic end constraints. LetK1, K2 refer to the elastic constants

for the rotational springs, and k1, k2 refer to the elastic constants for the extensional

springs. let an axial compressive load P be applied to the both ends supports.

The column remain straight until the value of the compressive load increase to a critical

value at which any small lateral disturbance will cause the column to buckle.

For a Beam subjected to axial load and under specific boundary conditions, the equation

given by Euler [4] to determine the minimum load that initiates a buckled state which is

referred to as the critical buckling load or Euler buckling load is given by

PE =
π2EI

L2
e

(3.9)

17



where Le is the effective length which is depend on the applied boundary conditions. In

Euler equation derivation, it assumes that the only non-zero are the axial strain along the

beam length. This formula is considered significantly accurate for beams with sufficiently

large slenderness ratio, which means the length of beam is relatively large compared with

its cross-section.

3.3 Timoshenko Beam Theory

For relatively short beams, adjustment can be made to predict the critical buckling

load. Humer [67] has recently given an adjustment formula where shear deformation

is incorporated into the displacement field. He used the constitutive equations to link the

resultant stress to the generalized strain measures, extensional stiffness, shear stiffness,

and bending stiffness are adopted as proportionally coefficients.

N = Dǫ (3.10)

Q = SY (3.11)

M = BK (3.12)

The proportionality coefficient D,S and B are referred to as extentional stiffness, shear

stiffness, and bending stiffness. In cases that the shear stiffness is greater than the

extensional stiffness, i.e., η > 1 the material is considered as auxetic material. On the

other hand, when the extensional stiffness exceeds the shear stiffness, this case represent

most of the conventional materials. Later these concepts will be discussed in more details.

Humer provides a one-dimensional formula that include the elastic longitudinal modulus

E, the shear modulus G, the cross-sectional area A, and the second moment of the area
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about the bending axis I. He also used the shear-correction factor ks, which depends on

Poisson’s ratio ν. For different types of boundary conditions, Humer provided a number of

exact results. for instance, for simply supported beam he provides the following equation

Pcr

Pe

=
1

2

η

η − 1

λ2

π2
±

√

(
η

η − 1
)2
λ4

4π4
− n2

η

η − 1

λ2

π2
n = 1, 2, 3, .... (3.13)

For clamped-clamped beam

Pcr

Pe

=
1

2

η

η − 1

λ2

π2
±

√

(
η

η − 1
)2
λ4

4π4
− 4n2

η

η − 1

λ2

π2
n = 1, 2, 3, .... (3.14)

where λ is the slenderness ratio and is given by

λ = L

√

A

I

The relationship between the bending stiffness and the shear stiffness µ is given by

η =
KsG

E

and finally n refers to the mode number associated with the buckling load, which is

typically associated with the sine shape function given by

v(x) = A sin
nπz

L
(3.15)

Here v(x) is the transverse displacement of the beam centroid along the length of the

beam in the z direction. For both support conditions, the behavior of Timoshenko beam

model prediction is shifted as the parameter η tends to unity. Humer in his work [67] he
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explained that in more details and it is noted that when η = 1 the critical load changes

in behavior for auxetic materials. In this work, we consider a three-dimensional solid

whose cross-section coordinates are defined in the (x, y) direction and with length in the

z direction. As mentioned before, the solid material is assumed to be orthotropic. An

approximately solutions according to the energy method, for a beam under an axial force

P the total potential energy can be written as

Π = U −W (3.16)

where U is the strain energy and W is the potential energy of the body force vector f ,

the surface traction vector T excluding the axial force, and the applied axial force P ,

with

U =

∫

V

1

2
σijǫijdV W =

∫

A

P

A
∆Ldxdy +

∫

V

fiuidV +

∫

S

tiuidS (3.17)

Here ui are the components of displacement, A is the cross-sectional area of the solid

perpendicular to P, and ∆L is the distance over which the axial force P moves. i,j

represent the indicial notation for the Cartesian coordinates (x1 = x, x2 = y, andx3 = z)

where the z-direction is the long direction of the solid.
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The axial force P is assumed to act through a uniform compressive normal traction P/A

over the entire face of the beam cross-section, which means that the axial force (P/A)dxdy

moves an amount that varies with the cross-section coordinates (x,y). The distance for

a specific loaction within the cross-section (x,y) can be written as

∆L =

L
∫

0

(ds− dz) =

L
∫

0

{[(dz)2 + (du)2 + (dv)2]1/2 − dz} =

L
∫

0

{[1 + (
du

dz
)2 + (

dv

dz
)2]1/2 − 1}dz ≃

1

2

L
∫

0

[(
du

dz
)2 + (

dv

dz
)2]dz (3.18)

Three-Dimensional Elasticity Equation

The governing equations used for this study are the three-dimensional equations of linear

elasticity with an orthotropic constitutive tensor. For solid beam with axial compressive

applied load only, and with neglecting the body forces, the formula is expressed by

0 =

∫

V

[σijδǫij − P
∂v

∂x

δ∂v

∂x
− P

∂u

∂x

δ∂u

∂x
]dV (3.19)

Here P is the compressive buckling load, V is the volume of the beam, and δ is the

variational operator.

3.4 Finite Element Models

The solution to the three-dimensional elasticity solutions utilizes Ritz-based approxima-

tions. The general form for the three displacements and their variations as required by
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virtual work can be expressed as

u(x, y, z) =
n

∑

p=1

cpΨ
u
p(x, y, z) δu(x, y, z) = ψu

i (x, y, z)

v(x, y, z) =
n

∑

p=1

dpΨ
v
p(x, y, z) δv(x, y, z) = ψv

i (x, y, z) (3.20)

w(x, y, z) =
n

∑

p=1

epΨ
w
p (x, y, z) δw(x, y, z) = ψw

i (x, y, z)

where cp, dp, ep are unknown constants and ψp is the approximation function for each

respective direction. For accurate solutions large number of these approximation terms

for each displacement component. polynomial series are used for the cross-section and the

axial length of the beam then they combined together. General formula was introduced

by Visscher and co-workers [108], which is given as

ψu
p (x, y, z) = xiyjzk (3.21)

By substitution the general Ritz approximations into virtual work, it leads to the gener-

alized eigenvalue problem that can be represented in matrix form as

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[K11] [K12] [K13]

[K21] [K22] [K23]

[K31] [K23] [K33]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣































{c}

{d}

{e}































= P

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[B11] [0] [0]

[0] [B22] [0]

[0] [0] [0]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣































{c}

{d}

{e}































(3.22)

with

[K11]ij =

∫

V

[C11

∂ψu
i

∂x

∂ψu
j

∂x
+ C55

∂ψu
i

∂z

∂ψu
j

∂z
+ C66

∂ψu
i

∂y

∂ψu
j

∂y
]dV (3.23)
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[K11]ij =

∫

V

[C12

∂ψu
i

∂x

∂ψv
j

∂y
+ C66

∂ψu
i

∂y

∂ψv
j

∂x
]dV (3.24)

[K13]ij =

∫

V

[C13

∂ψu
i

∂x

∂ψw
j

∂z
+ C55

∂ψu
i

∂z

∂ψw
j

∂x
]dV (3.25)

[K22]ij =

∫

V

[C22

∂ψv
i

∂y

∂ψv
j

∂y
+ C44

∂ψv
i

∂z

∂ψv
j

∂z
+ C66

∂ψv
i

∂x

∂ψv
j

∂x
]dV (3.26)

[K23]ij =

∫

V

[C23

∂ψv
i

∂y

∂ψw
j

∂z
+ C44

∂ψv
i

∂z

∂ψw
j

∂y
]dV (3.27)

[K33]ij =

∫

V

[C33

∂ψw
i

∂z

∂ψw
j

∂z
+ C44

∂ψw
i

∂y

∂ψw
j

∂y
+ C55

∂ψw
i

∂x

∂ψw
j

∂x
]dV (3.28)

[B11

ij ] =

∫

V

∂φu
i

∂x

∂φu
j

∂x
dV (3.29)

[B22

ij ] =

∫

V

∂φv
i

∂y

∂φv
j

∂y
dV (3.30)

This study has conducted to determine the validity and the accuracy for some of the

buckling theories, ABAQUS software based on finite element theory which is used the

elastic constitutive law for the stress-strain relation. the linear elasticity in an orthotropic

material can be defined by giving the nine independent elastic stiffness parameters as
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follows






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












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C1111 C1122 C1133 0 0 0

C2222 C2233 0 0 0

C3333 0 0 0

C1212 0 0

sym C1313 0

C2323
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
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
















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

The engineering constants defined as follows

C1111 = E1(1− ν23ν32)Υ

C2222 = E2(1− ν13ν31)Υ

C3333 = E3(1− ν12ν21)Υ

C1122 = E1(ν21 + ν31ν23)Υ = E2(ν12 + ν32ν13)Υ

C1133 = E1(ν31 + ν21ν32)Υ = E3(ν13 + ν12ν23)Υ

C2233 = E2(ν32 + ν12ν31)Υ = E3(ν23 + ν21ν13)Υ

C1212 = G12

C1313 = G13

C2323 = G23

where Υ =
1

1− ν12ν21 − ν23ν32 − ν31ν13 − 2ν21ν32ν13
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ABAQUS manual provides restrictions on the elastic constants due to the material sta-

bility as follows

C1111, C2222, C3333, C1212, C1313, C2323 > 0

|C1122| < (C1111C2222)
1/2

|C1133| < (C1111C2222)
1/2

|C1133| < (C1111C3333)
1/2

|C2233| < (C2222C3333)
1/2

det(C)ǫl > 0
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 Isotropic beam

The study of the behavior of anisotropic material for thin-walled beam is the main target

of this study, however, initially it is important to validate the used method by applying it

on solid isotropic material. Rectangular beam has been chosen for this convergence study.

The beam has 1 m x 1 m cross-section and the length varied from 10 m to 50 m, since it

is important to consider shorter beams as well as long beams. Euler Formula equ. 3.9 in

which the beam is considered as a slender beam and perfectly elastic, the beam remain

straight untill the compressive force reach the critical load. Humer [67] derived two beam

configuration equations, the hinged-hinged beam and the cantilever beam equation 3.13,

3.14 as a ratio between the critical load taking into account both the influence of axial

compressibility and shear deformation and the Euler buckling load.

In this study ABAQUS software is adopted as a convergence study for Humer equations

and other beam theories that will discussed later.

The boundary conditions used for various configuration are varied according to the

adopted theory. In the classical and Timoshenko beam theories, hinged supports are

associated with zero transverse displacement and zero resultant end moments. For elas-

ticity theory, the transverse displacement is zero as well and the axial traction components

Tz at the end are zero. For the cantilever beam, the classical beam theory specifies that

the transverse displacement and its first derivative are both zero. In the Timoshenko

theory, the displacement and the section rotation are specified to be zero. In elasticity
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theory, all three of the displacement components are specified to be zero but none of their

derivatives. For the free end, the beam theories enforce zero resultant shear and moment.

For the elasticity model, the free end is traction free and hence all components of the

stress traction Tx, Ty, Tz vector are equal to zero as shown in Table 4.1 and 4.2, where w

is the transverse displacement, Vx,Mxx the resultant shear and moment, respectively .

Table 4.1: Boundary condition configuration for simply-supported beam

Theory Pinned-end Pinned-end
Transverse
Displacement

Resultant
shear/Mo-
ment

Transverse
Displacement

Resultant
shear/Mo-
ment

Classical w=0 Mxx = 0 w=0 Mxx = 0
Timoshenko w=0 Mxx = 0 w=0 Mxx = 0
Elasticity w=0 Tz = 0 w=0 Tz = 0

Table 4.2: Boundary condition configuration for cantilever beam

Theory Fixed-end Free-end
Displacement/
Rotation

Resultant
shear/Mo-
ment

Displacement/
Rotation

Resultant
shear/Mo-
ment

Classical w=0,
∂w

∂x
= 0 — — Vx,Mxx = 0

Timoshenko 0,
∂φ

∂x
= 0 — — Vx,Mxx = 0

Elasticity u, v, z = 0 — — Tx, Ty, Tz = 0

4.2 The Hinged-Hinged Beam

Timoshenko and Gere [4] refer to the case of simply supported beam as the fundamental

case of buckling. As mentioned before, in Timoshenko theory the boundary conditions at

the end supports associated with zero bending moment, therefore, the derivative of the

angle rotation is zero at the supports.

[
∂φ

∂x
]x=0 = 0 [

∂φ

∂x
]x=L = 0
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By applying the boundary conditions, Humer [67] derived equation 3.13 to represent the

critical buckling load for simply supported beams, it is assumed that the shear stiffness

is smaller than the extensional stiffness, η < 0.5, which represents the most common

situation for conventional types of structures or in other meaning, those materials that

have a positive Poisson’s ratio. For these values of η, the expression under the root always

remains greater than zero regardless of the choice of n. The results for different values

of Poisson’s ratio shown in Table 4.3. As shown in Figure 4.1 it is obvious that the

generalized elastica buckles at lower intensities of the compressive force if the stiffness

ratio is η < 1. The critical loads of the first three buckling modes are plotted against the

slenderness for a poisson ratio of ν = 0.5. the dotted lines represent the corresponding

results of the classical elastica. For an increasing length of the beam, the slenderness

increases, the critical loads approach those of Euler’s classical elastica.

Table 4.3: Critical loads Pcr/Pe of a simply supported beam using ABAQUS

n ν = 0.5 ν = 0.3 ν = 0.1
λ/π 11 λ/π 22 λ/π 33 λ/π 11 λ/π 22 λ/π 33 λ/π 11 λ/π 22 λ/π 33

1 0.808 0.936 0.969 0.852 0.953 0.978 0.894 0.969 0.985
2 2.37 3.24 3.58 2.61 3.41 3.69 2.90 3.58 3.79
3 4.10 6.20 7.28 4.64 6.71 7.67 5.30 7.27 8.05
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Figure 4.1: Critical loads corresponding to the first three buckling modes of a simply
supported beam against the slenderness for ν = 0.3 [computed using 3D FEM]
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Now, suppose that the shear stiffness exceeds the extensional stiffness, i.e., η > 1 this

correspond with negative value of Poisson’s ratio. In Figure 4.2, for smaller values of

η which correspond with positive Poisson’s ratio, the critical load is smaller than the

classical elastica, and it increases for bigger values of η. Consequently, for structure

that are very soft in shear, the critical loads are significantly reduced compared with the

classical elastica.
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Figure 4.2: Critical loads corresponding the first buckling mode of a simply supported
beam against the stiffness ratio η (λ/π = 11)[computed using 3D FEM]

4.3 The Cantilever Beam

The same methodology used to determine the critical load for simply supported beam is

used for the cantilever beam. At the clamped end,there is no rotation, while the bending

moment is zero at the free end.

φ(x = 0) = 0,
∂φ

∂x
= 0 (4.1)
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By applying these boundary conditions, the final equation 3.14 presented by Humer to

determine the critical load. As in the simply supported beam, the cantilever has the same

behavior, if the shear stiffness is lower than the extensional stiffness, the critical loads

are below those of Euler’s elastica. However, the reverse behavior is observed if the shear

stiffness is higher than the extensional stiffness, in which the critical loads are increased.

4.4 Convergence Study

To assess the method of Humer in determining the critical load for simply supported

and cantilever beam, a study using ABAQUS software has been conducted, three models

were created using the same material used by Humer, the first beam is modeled using 2x2

mesh along the cross-section of the beam, for more accuracy the other models had 4x4

and 8x8 mesh size, respectively, Figure 4.3a shows that the results converge as increasing

the mesh size along the cross-section for a simply supported beam. The same analysis

have done for the cantilever beam as well in Figure 4.3b.
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Figure 4.3: Critical loads corresponding the first buckling mode against the slender-
ness ratio (a)S-S Beam (b)C-F Beam [computed using 3D FEM]
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4.5 Anisotropic Beams

4.6 Solid rectangular cross-section Beam

Loja and Barbosa [109] developed a finite element model to predict the linear buckling

behavior of anisotropic thick and thin beams, using a higher order discrete model (HSDT)

in which they assumed a non-linear variation for the displacement field. The developed

two-dimensional composite model which is based on a single layer Lagrangean four node

straight beam element and 14 degrees of freedom per node, considering bi-axial bending

and stretching. they studied different symmetric and asymmetric layups for various cross-

sections. Loja and Barbosa introduced the eigenvalue equation to determine the critical

buckling load as

Kq = QKqi + λiK
Gqi = 0 (4.2)

where Q is the system load vector, K and KG are the system stiffness and geometric ma-

trices, q is the vector of generalized displacements, representing the appropriated Taylors

series terms defined along the x-axis and z=0 and y=0, and λi is the eigenvalue which is

a function of the applied loading and the smallest λi corresponds to the critical buckling

load parameter. By solving these equations with applying the boundary conditions of the

system, it can easily obtain the buckling load. Firstly, as a validation study for ABAQUS

analysis, a simply-supported rectangular beam has been studied for the buckling behavior

of anisotropic beams using ABAQUS software and compared to Euler-Bernoulli (EBT)

and Timoshenko beam theory (TBT), the beam cross-section is 1x1m and has the fol-

lowing properties
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E1=20.632 GPa; E2=E3= 4.433 GPa;

G23=G13=G12=1.985 GPa

ν13=ν23=ν12=0.318

Table 4.4, shows the results obtained by ABAQUS and Euler-Bernoulli theory. It is

well known that as the slenderness ratio increases the Euler-Bernoulli almost coincide

the elasticity theory results (ELT), the analysis has been conducted for 3 layups with 0◦

orientation.

The clamped-free anisotropic beam is also considered as a case study in this section.

Table 4.5, shows the critical buckling loads for different slenderness ratios with layups

orientation of 0◦.

Table 4.4: Critical buckling load for simply-supported rectangular composite beam
of stacking sequence [0]3

Slenderness
Ratio

ELT EBT Ratio
(EBT/ET )

17 522000 678077 1.3
85 18968 27123.10 1.1
150 3543.8 6780.7 1.1
346 1540 1695.2 1.1

Table 4.5: Critical buckling load for cantilever rectangular composite beam of stacking
sequence [0]3

Slenderness
Ratio

ELT EBT Ratio
(EBT/ET )

17 140000 169519.4 1.3
85 6123 6780.8 1.1
150 1534 1695.2 1.1
346 383.6 423.8 1.1

4.7 Open cross-section (I-Beam)

The same material properties for the rectangular beam are used here. Table 4.6 shows the

buckling load for a simply supported I-beam using different theories, all the cross-sections
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studied in this section have 0◦ layups orientation.

Table 4.6: Critical buckling load for simply-supported I-beam cross-section
102x102x6.4mm

Slenderness
Ratio

HSDT
(KN)

ELT
(KN)

EBT
(KN)

70 26.09 25.58 77.10
105 11.60 10.99 34.11
188 – 4.367 10.70
236 – 2.94 6.84
283 – 2.13 4.76
354 – 1.93 3.04
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Figure 4.4: Critical loads corresponding to the first buckling mode of an anisotropic
simply supported I-section beam against the slenderness ratio [computed using 3D

FEM]

There is many studies of the buckling of anisotropic beams, Kim et al. [111] in their paper

discussed the flexural-torsional buckling loads for spatially coupled stability analysis of

thin-walled composite beams, they present the exact element stiffness matrix theory that

can be used in analyzing the stability problems of thin-walled composite I-beam made

from fiber-reinforced laminates. they studied the coupling effect of a beam subjected to

lateral load, some assumptions were introduced to derive the spatially coupled stability

analysis of thin-walled composite beam, such as, the strains are assumed to be small, the

beam is linearly elastic, and the cross-section is assumed to maintain its shape during
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deformation. The equation was obtained to determine the buckling load as follows

Fcr =
1

2

√

{
1

R2
p

(JG+
π2Iφ
L2

) +
π2I3
L2

}2 −
4

R2
p

(
π4I3Iφ
L4

+
π4JGI3

L2
− 1) +

1

2R2
p

(JG+
π2Iφ
L2

) (4.3)

To demonstrate the accuracy of the stiffness matrix Kim et al. used two finite element

methods to validate the stiffness matrix, the Hermitian beam elements and ABAQUS’s

shell element. In this study, 3D beam modeled using ABAQUS brick elements to assess

the stiffness matrix method (SMM), and to compare it with the ABAQUS shell elements

results introduced by Kim. Symmetric I-section is adopted for this study with flange

width b=5 cm and height h=5 cm, and thickness t=0.316 cm. The material of beams

used is glassy-epoxy and its material properties as follows:

E1=53.78 GPa, E2 = E3=17.93 GPa,

G12 = G13=8.96 GPa, G23=3.45 GPa,

ν12 = ν13=0.25, ν23=0.34

where subscripts ’1’ and ’2’ correspond to directions parallel and perpendicular to fibers,

respectively. Two boundary conditions configurations are applied at the end supports of

the I-beam, clamped-free beam (C-F) and simply supported beam (S-S).

It can be found that the results from SMM are in an excellent agreement with the

ABAQUS’s solution and Hermitian beam elements, however, it is noticeable that the

results obtained by ABAQUS are smaller than the stiffness matrix ones, since the elas-

ticity theory allows for more flexibility. For length L = 100cm the first eigenvalue was

determined for C-F beam using two types of laminate orientation, [0◦] and [90◦] using 16

laminates, Figure 4.5. The Eigenvalues are obtained for the two orientations as shown in

Table 4.7.

34



The critical buckling load for S-S configuration is also determined using the same ori-

entation that used before, Table 4.8 shows that the results are almost coincide with the

results determined by SMM and Hermitian beam elements.

Table 4.7: Buckling Loads (N) of C-F beam with doubly symmetric I-section
(L=100cm)

Stacking
Sequence

SMM Hermitian Beam Elements 3D ABAQUS Model

[0]16 5755.2 5755.2 5718.0
[0/90]4S 3857.8 3857.8 3742.3

Table 4.8: Buckling Loads (N) of S-S beam with doubly symmetric I-section
(L=400cm)

Stacking
Sequence

SMM Hermitian Beam Elements 3D ABAQUS Model

[0]16 1438.8 1438.8 1394.4
[0/90]4S 964.4 964.4 893.5

More analysis has conducted using the classical Euler buckling formula, for anisotropic

material with Ex, Ey, and Ez where Ex, Ey are the modulus of elasticity lie in the plane

of the cross-section, and Ey is modulus of elasticity parallel to the longitudinal length of

the beam. In Euler Equation, Ez will be used to determine the critical buckling load. A

hollow beam is adopted to demonstrate that Results obtained using Euler Equation are

plotted with the results obtained from ABAQUS against the slenderness ratio in Figure

4.6.

In the following example, a three-dimensional elasticity model is created and parametric

studies were conducted to provide the effects of variation in material characteristics of

laminated composite plates on their buckling characteristics. The orthotropic cantilever

beam were considered, as mentioned before that the elastic modulus in the z− direction

is used to determine the buckling load, the angle with respect to x3 − direction is varied
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Figure 4.5: Laminates orientation for symmetric I-section with total thickness
0.312cm [(0/90)4S ,(0)16]
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Figure 4.6: Critical loads corresponding to the first buckling mode of an anisotropic
simply supported beam against the slenderness ratio [computed using 3D FEM]

between 0◦ and 90◦, where the 0◦ is along the z − direction and the 90◦ is along the

cantilever cross-section. Table 4.9 shows the results of the buckling load with the variation

in the angle of the elastic modulus along the length direction for different angles between

0◦ and 90◦.

Table 4.9: Buckling load of C-F beam with variation in the angle of the laminate

θ 0 10 20 30 40 50 60 70 80 90
Buckling load (∗10−3) 4.3 3.7 2.7 1.9 1.5 1.3 1.2 1.1 1.1 1.1
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Figure 4.7: Buckling loads (KN) of C-F beam corresponding to different ply-angles
[computed using 3D FEM]

4.8 Closed cross-Section (Hollow-rectangular Beam)

T.P. Vo, J. Lee [112] studied the flexural-torsional behavior for thin-walled compos-

ite beams beams subjected to axial load. they developed a displacement-based one-

dimensional nite element model to predict the critical loads and corresponding buckling

modes for a thin-walled symmetric and un-symmetric composite bar. The hollow rect-

angular cross-section is adopted in this section to compare their results with the ones

computed by ABAQUS. The beam cross-section is (2x1)m with length 40m, The beam

material properties can be defined as follow

E1=144 GPa, E2=E3=9.65 GPa

G12=G13=G23=4.14 GPa

ν12=ν13=ν23=0.3
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The eigenvalue developed by T.P. Vo, J. Lee [112] can be expressed by

([K] = λ[G])∆ = 0 (4.4)

where [K] and [G] are the element stiffness matrix and the element geometric matrix,

respectively. ∆ is the eigenvector of nodal displacement corresponding to an eigenvalue,

the matrices form can be found in T.P. Vo, J. Lee [112] . Table 4.11 shows the results

for the critical buckling load obtained by the 3D elasticity model (ELT) and the one-

dimensional finite element model (ODFE). From Table 4.11 it can be seen that the results

using the one-dimensional are match the ones by 3D model except for [45,-45,-45,45], that

because zero plain stress Ez = 0 is considered for the first theory, therefore the model

only consider the linearity of the elastic modulus Ex or Ey in which 0◦ and 90◦, and will

deviate of the exact solution for diagonal orientations (45◦).

Now let consider the buckling behavior corresponding to different lengths and compare

Table 4.10: Buckling loads with different stacking sequences and boundary conditions

Boundary
Conditions

Stacking Sequence ODFE ELT

S-S Beam [0/0/0/0] 5.196 5.43
[0/90/90/0] 2.770 3.04
[45/-45/-45/45] 0.541 1.47

C-F Beam [0/0/0/0] 1.299 1.36
[0/90/90/0] 0.694 0.76
[45/-45/-45/45] 0.135 0.37

it with the Euler-Bernoulli equation for the same hollow section. Table 4.12 shows the

buckling loads for the simply-supported and the cantilever hollow beam, and the results

are plotted in Figure 4.8.
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Table 4.11: Buckling loads with different slenderness ratio and boundary conditions

Boundary
Conditions

Stacking Sequence ODFE ELT

S-S Beam [0/0/0/0] 5.196 5.43
[0/90/90/0] 2.770 3.04
[45/-45/-45/45] 0.541 1.47

C-F Beam [0/0/0/0] 1.299 1.36
[0/90/90/0] 0.694 0.76
[45/-45/-45/45] 0.135 0.37

Table 4.12: Buckling loads with different slenderness ratio and boundary conditions

Boundary
Conditions

Slenderness Ratio ELT EBT

S-S Beam 6.79 0.00153 0.001899669
13.58 0.000416 0.000474917
20.37 0.000187 0.00021254
27.16 0.000106 0.000118729
40.75 0.0000475 0.0000528
67.91 0.0000171 0.0000189

C-F Beam 6.79 0.000413 0.000474917
13.58 0.000106 0.000118729
20.37 0.0000475 0.000053
27.16 0.0000267 0.000029
40.75 0.0000119 0.000013
67.91 0.00000429 0.0000047

4.9 Auxetic Beams

4.10 Solid rectangular cross-section beam

As it mentioned before, Humer [67] gave an exact solution to predict the critical load. It

was found that for value of η < 1 the buckling load will be less than the classical Euler

results, and it matches for η = 1. For values of η > 1 which is described as an auxetic

material with negative Poisson’s ratio. The first studies proposed a micro-structure of

the material can be modeled using hexagonal [113, 114] and diamond shape [115]. Lakes

[93] studied a compressed foam with the properties E = 72KPa and ν = −0.7,which cor-

responds to η = 1.163 for the square section. In this section, the solid rectangular beam
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Figure 4.8: Critical loads corresponding the first buckling mode of a simply supported
anisotropic hollow-beam against the slenderness ratio (a)S-S Beam, (b)C-F Beam [com-

puted using 3D FEM]

is studied for negative Poisson’s ratio using Lakes properties [93] and plotted against the

ratio λ/π as depicted in Figure 4.9. The theory of Humer [67] concludes that the critical

buckling loads are above than the Euler-Bernoulli values for eta > 1, the elasticity theory

gives values below the Euler-Bernoulli for eta < 1 as depicted in Figure 4.9. For η > 1

the elasticity theory gives values above the Euler-Bernoulli.
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Figure 4.9: The first buckling mode of the Simply-supported beam [computed using
3D FEM]

In Figure 4.10 various values of Poisson’s ratio were inserted for the case of λ = 5 which

is considered a short beam, it can be seen that the change in behavior changes at much
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lower negative value for the elasticity model.
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Figure 4.10: The second buckling mode of the Simply-supported beam with the
properties of Lakes [93] (λ/π = 5) [computed using 3D FEM]

Open Section Beams

The auxetic behavior of open sections has been studied in this section, the I-section beam

102x102x6.4mm is adopted, and the material properties is E = 72KPa and ν = −0.3.

The Euler-bernoulli was applied to determine the critical buckling load and compared

with the results obtained by the elasticity theory for different beam lengths. In Figure

4.11 the buckling load ratio is plotted against the slenderness ration. The same analysis

has conducted to study the cantilever behavior due to buckle, Figure 4.12 shows the

buckling load ratio against the slenderness ratio [computed using 3D FEM]

Closed section Beams

The hollow rectangular beam is of interest in this section, the auxeticity behavior for

the hollow cross-section is discussed by Lim [112], he discussed the buckling load for
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Figure 4.11: Critical buckling load for a Simply-supported I-beam (ν = −0.3).
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Figure 4.12: Critical buckling load for a clamped-free I-beam (ν = −0.3) [computed
using 3D FEM]

a shell cylinder with negative Poisson ratio, and he plotted a graph for the buckling

load with changing in the ratio between the length to the cylinder radius. The hollow

rectangular cross-section 200x100mm with thickness 25mm, E = 72KPa,is analyzed

using Euler-Bernoulli equation and elasticity based using ABAQUS for λ/π = 8 and

λ/π = 42. In Figure 4.13(a-b) which shows the buckling ratio against the Poisson ratio

for each slenderness ratio, the figure concludes that as the increasing of the slenderness the

intersection between the elasticity theory and the Euler-Bernoulli theory move towards
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positive values of Poisson ratio.
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Figure 4.13: Critical buckling load of the first mode for a Simply-supported Hollow
rectangular beam.(a) λ/π = 8, (b)λ/π = 42 [computed using 3D FEM]

The same analysis has been done for the cantilever of the hollow rectangular beam for

the same slenderness ratios, as depicted in Figure 4.14.
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Figure 4.14: Critical buckling load of the first mode for a cantilevered Hollow rect-
angular beam.(a) λ/π = 8, (b)λ/π = 42 [computed using 3D FEM]

4.11 Other Geometries

Lim [101] studied the elastic stability of circular plates made from auxetic materials

under various boundary conditions. He determined the critical buckling load factors

using Bessel functions for isotropic materials with Poisson’s ratios values range between

−1 to 0.5. Results for elastic stability reveal that as the Poissons ratio of the plate

becomes more negative, the critical bucking load gradually reduces.
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Figure 4.15: Cyilinder plate with clamped edge

For the cylinder plate shows in Figure 4.15, has the following properties as E = 2.6,

h = 0.25 and R = 1, Lim derived the critical buckling load equation as

Ncr = N̄
D

R
(4.5)

where D is the flexural rigidity of the circular plate and is given by

D =
Eh3

12(1− ν2)
(4.6)

Here h and R is the thickness and radius of the plate, respectively. N̄ is the buckling

load factors and can be obtained using the empirical model as follows

N̄ = n̄0 + n̄1ν − n̄2ν
2 (4.7)
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where β is the rotational stiffness, its value depends on the boundary condition config-

Table 4.13: List of computed critical buckling load factor for rotational restraint of
S-S and C-F model and Poissons ratio ranges between −1 and 0.5

Rotational restraint,β
Region ν 0 ∞
Auxetic -1.0 0.000 14.6819

-0.9 0.3934 14.6819
-0.8 0.7738 14.6819
-0.7 1.1415 14.6819
-0.6 1.4969 14.6819
-0.5 1.8404 14.6819
-0.4 2.1722 14.6819
-0.3 2.4927 14.6819
-0.2 2.8023 14.6819
-0.1 3.1013 14.6819

Conventional 0.0 3.3900 14.6819
0.1 3.6687 14.6819
0.2 3.9379 14.6819
0.3 4.1978 14.6819
0.4 4.4487 14.6819
0.5 4.691 14.6819

urations, for simply supported (β = 0), while for clamped edge (β = ∞). In this study,

clamped edge will only be considered to be evaluated using 3D ABAQUS model. By de-

termining the critical buckling load using equation 4.5, the results are obtained for each

value of Poisson’s ratio 4.13 and plotted in Figure 4.16. ABAQUS model is also created

45



Table 4.14: Critical buckling load for a clamped plate corresponding to Lim and
elasticity theory

Buckling loads (KN)
Region ν Lim Theory Elasticity Theory
Auxetic -0.9 0.2616 0.1700

-0.8 0.1381 0.0921
-0.7 0.0975 0.0657
-0.6 0.0777 0.0529
-0.5 0.0663 0.045
-0.4 0.0592 0.0407
-0.3 0.0546 0.0377
-0.2 0.05178 0.0357
-0.1 0.0502 0.0344

Conventional 0 0.0497 0.0338
0.1 0.0502 0.0339
0.2 0.0518 0.0346
0.3 0.0546 0.036
0.4 0.0591 0.0395
0.5 0.0663 0.0500
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Figure 4.16: Critical buckling load plotted against the Poissons ratio [computed using
3D FEM]

as depicted in Figure 4.15 for a clamped cylinder and subjected to uniform load at the

edge surface, the ABAQUS results which is based on the elasticity theory are obtained

Table 4.14 and plotted with Lim equation in Figure 4.16.
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CHAPTER 5

CONCLUSIONS

A continuum finite element study based on 3D elasticity theory using ABAQUS software

was conducted to assess the accuracy of beam theories for thin-walled beams of isotropic,

anisotropic and auxetic beams. The following highlights were observed

Isotropic Beams

• The elasticity-based loads obtained by ABAQUS were approximately 5 % less than the

Humer [67] results for positive Poisson ratio and λ/π > 5 .

• Beams with large slenderness ratios coincide with the critical buckling loads determined

by Euler-Bernoulli theory, the elasticity to Euler-bernoulli ratio approach its maximum

value for λ/π < 10 in case of simply supported rectangular beams.

Anisotropic Beams

• The elasticity based loads are about 20% less than loads obtained by the Euler-Bernoulli

theory for λ/π < 5 for simply supported and cantilever beam.

• For open cross-section beams the elasticity theory is about 1% less than the HSDT

derived by Loja and Barbosa [109], and for values of λ/π = 100 it matches the values

obtained by Euler-Bernoulli theory.

• For closed cross-section beams, the elasticity theory has a good match with the results

obtained by Lee [112], and it matches the Euler-Bernoulli for λ/π = 700 which is consid-

ered beams with large slenderness ratio.
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• The elasticity-based theory results using ABAQUS were within 3 % less than the buck-

ling load predicted by stiffness matrix derived by Kim [111].

• The critical buckling load using the elasticity theory for beams with Young modulus

parallel to the longitudinal cross-section is four times larger than its value when the

Young modulus is perpendicular to the longitudinal cross-section.

Auxetic Beams

• For values of µ > 1 which correspond to negative Poisson’s ratio, the critical buckling

load using the elasticity theory is approximately 40 % larger than the buckling load

determined by Euler-Bernouuli, and it is significantly reduced for µ < 1.

• The elasticity-based loads obtained by ABAQUS were 20% less than Euler-Bernoulli

and Timoshenko beam theories for λ/π < 5 for S-S and C-F beams.

• For the solid cross-section beams, the elasticity theory is about 40 % larger than the

Euler-bernoulli buckling load for −0.9 > ν > −0.2 and λ/π = 5 for S-S and C-F beams.

• For open cross-section beams, the elasticity theory results were approximately 20 %

less than the Euler-Buckling Load for λ/π > 10 for S-S and C-F beams.

• For S-S closed cross-section beams, as the slenderness ratio increases the intersection

between the elasticity and Euler-Bernoulli theory moves towards to the positive values of

Poisson ratio.

• For C-F closed cross-section beams for values of λ/π between 8 and 42, the elasticity

theory was below the Euler-Bernoulli buckling load for values of −0.7 > ν > 0.5.
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• The results obtained by Lim [116] suggest that beam deflection error arising from the

use of Euler-Bernoulli beam theory is reduced if the beam material is auxetic, and the

error diminishes as the Poisson’s ratio approached a value of −1 for the square cross-

sectional beams.
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