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ABSTRACT 

 

 

MEIOTIC RECOMBINATION AND SYNAPSIS IN WILD-TYPE AND ASYNAPTIC MUTANTS OF 

TOMATO (SOLANUM LYCOPERSICUM)  

 

Recombination nodules (RNs) and synaptonemal complexes (SCs) are meiosis-specific 

structures that play important roles in crossing over.  During pachytene, RNs mark crossover 

sites along SCs.  MLH1, a mismatch repair protein, promotes crossing over and is a component 

of most RNs.  In wild-type tomato, each bivalent has one, two or three crossovers (=chiasmata), 

and the number and distribution of these crossovers is affected by crossover interference (the 

tendency for one crossover to reduce the likelihood of another crossover nearby).  Although the 

phenomenon of genetic interference was discovered nearly one hundred years ago, its molecular 

basis is still unknown.  SCs occur between pairs of homologous chromosomes (bivalents) during 

prophase I and consist of two parallel rod-like lateral elements held together by transverse fibers.  

Each lateral element is associated with the two sister chromatids of one of the homologous 

chromosomes.  Cohesin complexes consisting of four proteins (SMC1, SMC3, SYN1/REC8 and 

SCC3) are found in lateral elements and link sister chromatids together.  My research addressed 

the question of how synapsis (SC formation) is related to the frequency and control of crossing 

over using tomato, particularly the as1 meiotic mutant, as a model system.  Meiocytes from 

tomato plants homozygous for the mutation as1 do not complete chromosome synapsis and have 
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few chiasmate bivalents, resulting in unbalanced chromosome segregation and sterility.  We 

found a severe delay of prophase I in the as1 mutant compared to wild-type tomato using an  

in vivo BrdU labeling method, which may be related to the asynaptic phenotype.  The asynapsis 

and delay in the as1 mutant are not likely to be due to a defect in the early steps of 

recombination, since the frequency and distribution of early recombination proteins (MRE11, 

RAD50, and RAD51) are similar in wild-type and in the as1 mutant.  EM immunolabeling 

demonstrated that MLH1, a late recombination protein, is present in a subset of RNs in as1, an 

observation similar to that in wild-type.  However, RNs in as1 are larger than those in wild-type. 

Previous work by other researchers showed a normal level of crossovers in several genetic 

intervals of the as1 mutant, which was unexpected based on the high degree of asynapsis 

observed at the cytological level.  To evaluate crossing over in the as1 mutant, we examined the 

immunolabeling patterns of MLH1 foci that mark crossover sites.  In as1 meiocytes, we 

observed that most MLH1 foci were associated with SC segments between two homologous 

chromosomes.  We found that the number of MLH1 foci per micrometer is higher in the as1 

mutant compared to wild-type.  In addition, interference between MLH1 foci was lower in the 

mutant than in wild-type tomato.  The weakened genetic interference in the as1 mutant may be 

due to a defect of the medium of interference, since early events of the recombination pathway in 

as1 seem normal, and MLH1 foci representing crossovers, the last step of the recombination 

pathway, are still present in the mutant.  A good candidate to transmit interference is the cohesin 

complex that makes up a part of lateral elements.  Compared to wild-type, we observed reduced 

immunofluorescence for the cohesins SMC1, SYN1, and SCC3, but not SMC3 in the as1 mutant.  

Although we do not yet know the specific mutation of as1 in tomato, we have shown that the 

asynaptic phenotype is accompanied by alterations in cohesin proteins in AE/LEs and in the 
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distribution of MLH1 foci compared to wild-type.  To our knowledge, this is the first report of an 

association between cohesin proteins and crossover interference regulation in any organism.  

This discovery represents a significant advance in our efforts to understand the molecular basis 

of crossover interference.  
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CHAPTER 1: 

 

 GENERAL INTRODUCTION 

 

I. Meiosis and Sex: 

Meiosis is a process in which one round of DNA replication is followed by two 

successive cell divisions to produce four genetically different, haploid, daughter cells.  In the 

first division (Meiosis I), the chromosome number is reduced from diploid to haploid when 

homologous chromosomes separate.  This unique, reductional division occurs only during 

Meiosis I.  The second division (Meiosis II) is essentially the mitotic division of a haploid cell 

when sister chromatids separate.  In animals, one (egg) or all (sperm) of the meiotic products will 

become gametes.  In plants, the haploid cells resulting from meiosis form spores that will divide 

to form multicellular mega-gametophytes and micro-gametophytes that contain eggs and sperm, 

respectively.  During sex (fertilization), gametes fuse to form a new diploid cell called a zygote.  

The zygote will divide by mitosis and grow and develop into a new individual.   

Meiosis and sex alternate as two complementary processes in the life cycles of most 

multicellular eukaryotes.  The two processes generate genetically distinct individuals within a 

population due to three important factors: crossing over, independent assortment and 

fertilization.  Crossing over is the exchange of DNA fragments between two homologous 

chromosomes and results in a change of the genetic composition of the chromosomes compared 

to the parents.  Crossing over is also important to link the two homologs to ensure reductional 

segregation of homologous chromosomes at anaphase I.  Without at least one crossover, the two 

homologous chromosomes may segregate to the same pole, leaving one daughter cell with two 
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copies of the chromosome while the other daughter cell has no copies of it.  This process, called 

non-disjunction, leads to unbalanced chromosome sets as in Down syndrome (trisomy 21).  

Another source of genetic variability is independent assortment of homologous chromosomes 

(also called Mendel’s Second Law).  Independent assortment refers to the fact that each pair of 

homologous chromosome align at the metaphase I plate and then separates from its partner at 

anaphase I without regard to how the other pairs of homologs separate.  Independent assortment 

is even more important than crossing over for changing the genetic makeup of cells.  Finally, the 

random nature of fertilization, i.e., which sperm fertilizes which egg, also contributes to genetic 

variation.  Genetic variability among individuals in a population is an important factor in the 

ability of the population to adapt to changing environmental conditions.  Individuals with 

favorable genetic combinations are more likely to survive and leave more offspring than 

individuals with less favorable combinations.  Thus, the population evolves in response to 

environmental changes. 

Events that occur during Prophase I are responsible for the exceptional nature of meiosis 

I.  Prophase I is divided into five substages that are defined based on changes in chromosome 

behavior and morphology (Moses 1968; John 1990).  More recently, the molecular events 

occurring during these stages have begun to be deciphered (Roeder 1997; Zickler and Kleckner 

1998; Villeneuve and Hillers 2001; Page and Hawley 2003).  The first stage of Prophase I is 

leptotene (leptos = fine, tene = thread, Greek), and individual chromosomes begin to condense 

into long thin threads.  A protein core, called an axial element (AE), is present between the two 

sister chromatids of each chromosome.  During leptotene, meiotic recombination begins with the 

programmed formation of numerous DNA double strand breaks (DSBs) throughout the genome.  

DSB formation is important to facilitate alignment between homologous chromosomes in many 
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organisms including budding yeast, animals, and plants (Zickler and Kleckner 1999; Page and 

Hawley 2004).  Zygotene (zygon = couple, Greek) comes next.  During zygotene, a special 

structure called the synaptonemal complex (SC) begins to form between paired homologous 

chromosomes (= bivalents) in a process called synapsis.  The SC is an evolutionarily conserved, 

proteinaceous structure (Moses 1968; Zickler and Kleckner 1999; Page and Hawley 2004) that 

will be discussed in more detail below.  The next stage, pachytene (pachy = thick, Greek), is 

defined as the stage when homologous chromosomes are completely synapsed with an SC along 

their entire length.  Several important steps of meiotic recombination occur during zygotene and 

pachytene including resolution/repair of each DSB either as a non-crossover (the large majority) 

or a crossover.  Pachytene is followed by diplotene (diplos = double, Greek).  The SC begins to 

come apart during diplotene in a process called desynapsis.   The two homologous chromosomes 

remain together at crossover sites that are now visible as chiasmata, but the two homologs 

separate elsewhere along their length.  Chromosomes continue to shorten progressively through 

all these substages to the last substage of prophase I, diakinesis, when the chromosomes are the 

shortest before nuclear envelope breakdown.  Kinesis means movement in Greek.    

Pairing, synapsis, and crossing over between homologous chromosomes are unique 

events that make prophase I longer and more complicated than mitotic prophase.  These events 

also establish physical links between bivalents that are required for correct segregation of 

homologous chromosomes during anaphase I.   

II. Homologous Chromosome Pairing and the Bouquet 

Chromosomes pair with their homologous counterparts before synapsis and SC 

formation.  An outstanding question of meiosis is how do homologous chromosomes recognize 

each other?  At least two types of homologous pairing can be distinguished in different 
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organisms, recombination-dependent and recombination-independent (Page and Hawley 2003). 

This distinction is most obvious in spo11 mutants.  Spo11 was first discovered in budding yeast 

and it is a meiosis specific enzyme that generates DSBs through a topoisomerase II-like 

transesterification reaction (Keeney et al. 1997; Bergerat et al. 1997; Keeney 2001).  

Programmed DSB formation by Spo11 marks the initiation of meiotic recombination in most 

organisms.  Mutation of SPO11 causes synaptic defects in a number of organisms including 

fungi (Giroux et al. 1989; Loidl et al. 1994; Celerin et al. 2000), mammals (Baudat et al. 2000), 

and plants (Grelon et al. 2001).  However, mutations of SPO11 do not disrupt meiotic synapsis in 

two invertebrates, Drosophila melanogaster and Caenorhabditis elegans (McKim et al. 1998; 

Dernburg et al. 1998; McKim and Hayashi-Hagihara 1998).  Possibly, meiotic pairing in these 

species is related to the side-by-side alignment of homologous chromosomes in somatic cells 

from Drosophila (Page and Hawley 2003).  Bhalla and Dernburg (2008) have also suggested that 

bouquet formation and interaction between heterochromatic regions of bivalents during meiosis 

may be sufficient to allow stable interaction and pairing between homologous chromosomes in 

these organisms.  It is possible that the bouquet and heterochromatin interactions are involved in 

homologous chromosome alignment in all organisms, but if so, DSB formation is critical for the 

final establishment of homologous synapsis in recombination-dependent organisms (Bhalla and 

Dernburg 2008).  Supporting this hypothesis are observations that spo11 mutants in budding 

yeast and Coprinus cinereus still retain some homologous pairing associations even though 

synapsis is disrupted (Loidl et al. 1994; Celerin et al. 2000).  Other DNA processing steps after 

DSB induction such as end resection involving proteins of the MRE11 complex (MRE11, 

RAD50 and XRS2/NBS1) and single end invasion (SEI) are also important for pairing and 

synapsis in recombination-dependent organisms (Alani et al. 1990; Nairz and Klein 1997; 
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Gerecke and Zolan 2000; Peoples et al. 2002; Peoples-Holst and Burgess 2005; Cherry et al. 

2007).  Mutation of the PHS1 gene also causes abnormal chromosome associations in maize and 

Arabidopsis due to a defect in importing Rad50 protein into nuclei (Pawlowski et al. 2004; 

Ronceret et al. 2009).  Although recombination and synapsis are clearly inter-related in many 

organisms, significant questions remain as to the mechanisms by which chromosomes pair and 

synapse homologously during meiosis. 

The bouquet has also been suggested to have a role in homologous chromosome 

alignment (Moses 1968; Scherthan and Schönborn 2001; Hamant et al. 2006). The name bouquet 

refers to the similarity in appearance of a bouquet of cut flowers to the configuration of 

chromosomes.  The bouquet forms at the leptotene/zygotene transition when the ends of all the 

chromosomes become attached to the inner surface of the nuclear envelope then cluster together 

in one part of the nucleus.  Actin is required for the telomere clustering (Scherthan et al. 1996; 

Cowan and Cande 2002; Cowan et al. 2002; Scherthan et al. 2008).  Synapsis between 

homologous chromosomes usually begins near telomeres, and the bouquet may promote synapsis 

by bringing all telomeres together in a small region of the nucleus and making it easier for 

homologs to find one another (Moses 1968; Loidl et al. 1994).  Indeed, experimental evidence 

supporting this idea has come from studies of ndj1/tam1 (nondisjunction 1; telomere-associated 

meiotic protein 1) mutants in budding yeast and pam1 (plural abnormalities of meiosis 1) 

mutants in maize (Conrad et al. 1997; Chua and Roeder 1997; Golubovskaya et al. 2002).  Ndj1 

is a meiosis-specific, telomere-associated protein.  A null mutation of ndj1 disrupts both 

attachment and clustering of telomeres and is associated with a delay in AE and SC formation 

(Conrad et al. 1997; Chua and Roeder 1997; Trelles-Stricken et al. 2000).  A reduction in 

crossover interference has also been observed in these mutants.  In the maize pam1 mutant, 
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telomere attachment and clustering occur at the leptotene/zygotene transition, but instead of a 

single, tight cluster of telomeres as observed in wild type cells, the pam1 mutant has only small 

clusters of telomeres and a loose bouquet (Golubovskaya et al. 2002).  Both incomplete and non-

homologous synapsis have been observed in the pam1 mutant, indicating the important role of 

the bouquet in efficient homologous synapsis (Harper et al. 2004).  However, the presence of a 

bouquet does not guarantee homologous chromosome pairing and synapsis as observed for 

haploid rye (that forms SCs even though there is no homolog present - Santos and Jimenez 

1994), spo11 and rad50S mutants in budding yeast (Trelles-Sticken et al. 2005) and asynaptic 

as1 and asb mutants in tomato (Havekes et al. 1994) still have bouquets.  In addition, dipterans, 

like Drosophila, do not form a bouquet, perhaps related again to the pairing of homologs in 

somatic cells (McKee 2004).  The link between bouquet formation and homologous chromosome 

pairing therefore remains unclear (Scherthan et al. 2008).  

III. Synaptonemal complex 

The synaptonemal complex (SC) was originally identified in spermatocytes from 

crawfish and vertebrates by Moses (1956) and Fawcett (1956).  Since then, the SC has been 

observed in almost all prophase I cells from sexually reproducing organisms with only a few 

exceptions including fission yeast (Schizosaccharomyces pombe), Aspergillus nidulans and male 

Drosophila melanogaster (Zickler and Kleckner 1999).  The SC is a highly conserved physical 

structure, although its molecular components are less well conserved (Zickler and Kleckner 

1999; Page and Hawley 2004).   

The SC is a proteinaceous, ladder-like structure composed of three parts: two lateral 

elements (LEs), a central element (CE), and transverse filaments (TFs) that connect the lateral  
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Figure 1a. Diagram of meiotic stages shows synaptonemal complex behavior [modified after 

(Heyting 1996)]. 

 

 

 

Figure 1b. Model of sister chromatid cohesion complex [modified after (Petronczki et al. 2003)]. 
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and central elements (Figure 1a).  Prior to SC formation, the lateral elements are called axial 

elements (AEs).  At leptotene, an AE forms between each pair of sister chromatids and extends 

along the length of each homologous chromosome.  At the onset of zygotene, the central element 

and transverse filaments begin to polymerize between AEs of two homologous chromosomes. 

TFs lie perpendicular to and connect the longitudinally-oriented lateral elements and central 

element.  After SCs zipper up along the whole bivalent length, meiotic cells enter the stage of 

pachytene. 

Some of the protein components of SCs and proteins that interact with SC components 

have been identified in several organisms (Table 1).     

A. Axial (lateral) element components 

1. Cohesin proteins 

Proteins that are involved in sister chromatid cohesion (SCC) play an important role in 

AE formation.  Sister chromatid cohesion during meiosis involves four protein components: 

SMC1, SMC3, REC8, and SCC3 (Nasmyth 2002; Petronczki et al. 2003; Nasmyth and Haering 

2009).  Two of the proteins, SMC1 and SMC3, belong to the structural maintenance of 

chromosomes (SMC) group of proteins that function in chromosome dynamics (Jessberger et al. 

1998; Jessberger 2002).  SMC proteins have two coiled-coil domains separated by a hinge 

domain and globular domains at N- and C-termini (Figure 1b).  Each SMC protein folds back on 

itself at the hinge and the two coiled-coil domains interact and form an extended 45-nm rod-like 

structure while the N- and C-terminal domains interact to form a globular ATPase “head” 

opposite the hinge.  In a cohesin complex, SMC1 and SMC3 proteins interact at their hinge 

domains to form a V-shaped heterodimer.  The non-SMC cohesin proteins, REC8 (a member of 

the kleisin family of proteins) together with SCC3, link the heads of SMC1 and SMC3 to close  
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Table 1. List of known SC protein components with naming variations (by species/group). 

SC component Proteins Species studied in and alternative names 

Axial  

Element Proteins: 

 

1. Cohesin 

components  

1. SMC1 Eukaryotes  

    Meiosis-specific variant                          

SMC1β  

 

  

Mammals 

2. SMC3 Eukaryotes 

3. SCC1 Eukaryotes (Grasshopper = Rad21) 

    Meiosis-specific variant 

REC8  

      

Yeasts, plants, animals 

Arabidopsis = SYN1/DIF1 

Rice =RAD21-4 

Maize = AFD1 

4. SCC3 Eukaryotes (Grasshopper = SA1) 

     Meiosis-specific variants S. pombe = Rec11 

Mammals = STAG3 

 

 

2. Non-cohesin 

components  

Red1, Hop1 Budding Yeast 

SCP2/SYCP2, SCP3/SYCP3 Mammals 

HIM3, HTP1, HTP2, HTP3 C. elegans 

C(2)M Drosophila 

Hop1-like proteins:  

     ASY1, PAIR2 Arabidopsis, rice 

     HORMAD1, HORMAD2 mammals 

Transverse 

filament (TF) 

proteins: 

Zip1 Budding yeast 

C(3)G Drosophila 

SYP1, SYP2, SYP3 C. elegans 

SCP1/SYCP1 Rat/Mouse  

ZYP1 Arabidopsis 

ZEP1 Rice 

Central element 

(CE) proteins: 

SYCE1, SYCE2, TEX12 mouse 

Corona (CONA) Dosophila 
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the open-V shape of the SMC heterodimers and form a ring (Nasmyth 2001; Petronczki et al. 

2003; Losada and Hirano 2005; Onn et al. 2008; Skibbens 2009). 

 The cohesin ring structure is thought to be important for enclosing the two sister 

chromatids to provide sister chromatid cohesion, but there is still debate about how cohesins 

interact to accomplish this function (Onn et al. 2008; Nasmyth and Haering 2009).  REC8 is a 

meiosis-specific cohesin that replaces SCC1 used in mitotic cohesion (Watanabe and Nurse 

1999).  Other meiosis-specific cohesins that have been identified include SMC1β that is found 

only in mammalian meiotic cells (Hodges et al. 2005; Novak et al. 2008; Adelfalk et al. 2009) 

and STAG3 (=REC11) that is present in mammalian (and S. pombe) meiotic cells (Prieto et al. 

2001; Kitajima et al. 2003).   

Cohesin proteins are essential for the normal formation of AEs and for SC formation 

(Jessberger 2002; Schubert 2009; Nasmyth and Haering 2009).  In all species examined so far, 

cohesin proteins load first to form a meiotic chromosome core, followed by addition of meiosis-

specific AE proteins (such as SYCP2, SYCP3, Red1, HIM3) to form the functional AE (Klein et 

al. 1999; Pelttari et al. 2001; Pasierbek et al. 2001; MacQueen et al. 2002; Colaiácovo et al. 

2003; Eijpe et al. 2003; Hamant et al. 2006; Golubovskaya et al. 2006; Colaiácovo 2006).  

Mutations of REC8 are not lethal (unlike the other cohesins), so REC8 function has been 

examined in several organisms (Hamant et al. 2006; Onn et al. 2008; Peters et al. 2008; Nasmyth 

and Haering 2009).  Mutation of REC8 causes defects in AE assembly, SC formation, and 

meiotic sister chromatid cohesion (Hamant et al. 2005; Brar et al. 2006; Onn et al. 2008; Peters 

et al. 2008; Brar et al. 2009; Nasmyth and Haering 2009), except in C. elegans where two 

additional REC8-like kleisins, COH-3 and COH-4, act together with REC8 and all three must be 

mutated to get AE defects (Severson et al. 2009; Wood et al. 2010).  REC8 plays a key role in 
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many unique aspects of meiosis including roles in chromosome pairing, synapsis, recombination, 

and chromosome morphogenesis (Brar et al. 2009).  REC8 has many phosphorylation sites that 

are important for the differing functions of REC8 in these various aspects of meiosis (Brar et al. 

2009).  REC8 also has an important role in the two-step release of cohesion that is unique to 

meiosis (Brar et al. 2006).  During metaphase I – anaphase I, cohesion between sister chromatids 

is removed along chromosome arms when separase cleaves REC8.  However, cohesins remain 

between sister centromeres because shugoshin (SGO) protects REC8 from cleavage (Kitajima et 

al. 2004; Hamant et al. 2005; Watanabe 2005).  The centromeric cohesion keeps the two sister 

chromatids together as one unit so that homologous chromosome separate at anaphase I.   

2. Non-cohesin proteins 

In contrast to cohesin proteins, non-cohesin components of LEs are poorly conserved 

(Page and Hawley 2004), and, aside from their importance for SC formation, comparatively little 

is understood about their roles in meiotic pairing and recombination. 

 a. Mammals: 

The first proteins to be identified as components of AEs/LEs were SCP2 and SCP3 that 

occur in mammals (Heyting et al. 1985; Heyting et al. 1987; Moens et al. 1987; Offenberg et al. 

1991; Smith and Benavente 1992; Lammers et al. 1994; Dobson et al. 1994; Offenberg et al. 

1998; Yuan et al. 1998; Schalk et al. 1999; Tarsounas et al. 1999b; Yuan et al. 2000; Yuan et al. 

2002; Kouznetsova et al. 2005; Yang et al. 2006; Winkel et al. 2009). The original names of 

SCP2 and SCP3 have since been changed to SYCP2 and SYCP3 (presumably because of a 

naming conflict with sterol carrier protein, Liebe et al. 2004). Both are meiosis-specific proteins 

(Heyting et al. 1989; Heyting 1996), and both have coiled-coil domains near the C-termini of the 

proteins (Lammers et al. 1994; Dobson et al. 1994; Offenberg et al. 1998; Schalk et al. 1999).  



12 
 

SYCP3 is a 30 kD protein that can interact with itself through the C-terminal coiled-coil as 

demonstrated by its ability to self-assemble into fibers when it is expressed in cultured 

mammalian cells (Tarsounas et al. 1997; Yuan et al. 1998; Ollinger et al. 2005).  SYCP3 is also 

highly phosphorylated during meiosis, and additional phosphorylation occurs at the early to 

middle pachytene transition, although the function of the phosphorylation patterns is still not 

known (Lammers et al. 1995).  SYCP3 has an important role in attaching AEs to the 

chromosomes (Pelttari et al. 2001).  SYCP2 is a much larger protein (173 kD) (Offenberg et al. 

1998; Schalk et al. 1999).  The coiled-coil domain of SYCP2 interacts with SYCP3 (Yang et al. 

2006), and SYCP2 and SYCP3 form filaments together when the two proteins are co-expressed 

in cultured mammalian cells (Pelttari et al. 2001).  However, SYCP2 is not capable of self-

assembly in the same system (Pelttari et al. 2001).  SYCP2 also interacts with the C terminus of 

the mammalian TF protein, SYCP1 (Winkel et al. 2009).  The biochemical evidence plus 

cytological immunolocalization of SYCP2, SYCP3, and SYCP1 during prophase I indicate that 

SYCP2 links transverse filaments to axial elements in mammalian SCs (Offenberg et al. 1998; 

Schalk et al. 1999; Pelttari et al. 2001; Winkel et al. 2009).  

Mutations of SYCP2 or SYCP3 result in defects in AE formation, SC formation 

(synapsis), bouquet release, and chromosome compaction (Yuan et al. 2000; Pelttari et al. 2001; 

Liebe et al. 2004; Kolas and Cohen 2004; Yang et al. 2006).  For reasons that are not yet 

understood, mutation of either protein results in sterility in males (often due to apoptosis of 

pachytene spermatocytes) but only reduced fertility in females (Kolas and Cohen 2004).  In 

female mice that lack SYCP3 protein, axial elements do not form although cohesin cores do 

form, and crossing over and interference are similar to that of wild-type female mice (de Boer et 
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al. 2007). Therefore, chromosome alignment and recombination are not dependent on intact AEs, 

at least in females.   

Other AE-associated proteins in mammals include two proteins that possess HORMA 

domains (Hop1, Rev7, and Mad2) - HORMAD-1 and HORMAD-2 (Wojtasz et al. 2009; Fukuda 

et al. 2010).  The HORMA domain may recognize certain chromatin states, such as those 

associated with DSBs, and act to recruit other proteins that are involved in cell cycle 

checkpoints, chromosome synapsis, and DNA repair (Aravind and Koonin 1998).  In mammals, 

HORMAD-1 and HORMAD-2 preferentially associate with AEs of unsynapsed chromosomes 

(leptotene and zygotene), and the formation of SC (i.e., the polymerization of SYCP-1) leads to 

the displacement of HORMADs from AE/LEs. After diplotene begins, HORMAD proteins 

reassociate with desynapsed LEs, but HORMADs are mostly absent from chromosomes by the 

beginning of diakinesis (Wojtasz et al. 2009; Fukuda et al. 2010).  TRIP13 protein [related to 

budding yeast Pch2, a protein involved in the synapsis checkpoint at pachytene in both yeast and 

C. elegans (San-Segundo and Roeder 1999; Bhalla and Dernburg 2005; Wu and Burgess 2006)] 

is required for the depletion of HORMADs that accompanies synapsis (Wojtasz et al. 2009).  

Thus, mammals, like yeast, appear to have a synapsis surveillance system that utilizes 

HORMAD proteins (similar to C. elegans and plants, see below). 

 b. Budding yeast 

Red1 and Hop1 are two AE components discovered in budding yeast (Rockmill and 

Roeder 1988; Hollingsworth et al. 1990).  Hop1 dissociates from synapsed chromosomes before 

late pachytene, while Red1 remains along the bivalents (Smith and Roeder 1997).  Hop1 

physically interacts with Red1 and Mek1, a meiosis-specific, serine/threonine kinase  (Rockmill 

and Roeder 1991; Hollingsworth and Ponte 1997; Niu et al. 2005).  Hop1 and Red1 also help to 
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ensure interhomolog recombination by inhibiting DSB repair between sister chromatids (Niu et 

al. 2005; Niu et al. 2007; Carballo et al. 2008; Lin et al. 2010).  Red1, Hop1, and Mek1 are all 

critical for forming SCs (Rockmill and Roeder 1988; Rockmill and Roeder 1990; Rockmill and 

Roeder 1991; Hollingsworth and Ponte 1997; Smith and Roeder 1997; Niu et al. 2005).  AEs but 

not SCs form in hop1 mutants (Loidl et al. 1994) while both AE and SC formation are defective 

in red1 mutants (Rockmill and Roeder 1990).  In mek1 mutants, short stretches of SCs form, but 

full length SCs cannot be detected (Rockmill and Roeder 1991).  Meiotic recombination is 

reduced but not completely eliminated in these three mutants (Rockmill and Roeder 1990; 

Rockmill and Roeder 1991).  Hop1 and Red1 are also involved in the pachytene checkpoint by 

monitoring the progress of recombination and chromosome synapsis and interacting with Pch2 

(Bailis and Roeder 2000; Brar et al. 2009).   

 c. C. elegans 

Four HORMA domain proteins with important meiotic roles have been identified in C. 

elegans: HIM-3 and  HTP-1, HTP-2 and HTP-3 [him three paralogs; (Zetka et al. 1999; 

MacQueen et al. 2005; Colaiácovo 2006; Goodyer et al. 2008; Martinez-Perez et al. 2008)].  

Each of these proteins is a component of AEs and remains associated with chromosome axes 

until the metaphase I – anaphase I transition.  The association of HIM-3 with AEs is dependent 

on REC8 and HTP-3 (Zetka et al. 1999; Goodyer et al. 2008), and HTP-3 links DSB formation 

with homolog pairing and crossing over through its interactions with MRE11/RAD50 and HIM-3 

(Goodyer et al. 2008).  HTP-1/2 proteins are involved in a major remodeling of the chromosome 

axis that occurs after crossing over (Martinez-Perez et al. 2008).  HTP1/2 proteins (that are 

similar enough to be recognized by the same antibody) are initially distributed uniformly 

between bivalents, but after crossing over, HTP1/2 are lost from the portion of the bivalent that 
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remains synapsed and are enriched on the part of the bivalent that becomes desynapsed 

(Martinez-Perez et al. 2008).  The boundary between HTP1/2 enriched and SYP-1 enriched 

portions of the bivalent are located close to (and perhaps at) the position of the single crossover 

typically observed for each C. elegans chromosome (Martinez-Perez et al. 2008; Bhalla et al. 

2008).  The reorganization of HTP1/2 is dependent on crossing over and is the most obvious 

cytological example of a change in chromosome axis organization in response to crossing over 

that has been observed in any organism.  The reorganization may also provide a single defined 

position (the end of the chromosome enriched for SYP-1 protein) to act as the centromere for 

meiotic segregration of holokinetic C. elegans chromosomes and could be one reason why 

crossing over in C. elegans is limited to a single crossover.  The change in axis organization has 

also been proposed to be involved in crossover interference (Martinez-Perez et al. 2008). 

 d. Plants 

HORMA-domain proteins that have been identified in plants include ASY1 in 

Arabidopsis and Brassica and PAIR2, the ASY1 ortholog in rice (Armstrong et al. 2002; 

Nonomura et al. 2004; Nonomura et al. 2006).  Morphologically normal AEs form in mutants of 

both ASY1 and PAIR2, but SCs do not form (i.e., there is no synapsis).   Each protein is closely 

associated with AEs, but their patterns through prophase I vary in male wild-type meiocytes 

(pollen mother cells = PMCs) in the different plant species.  For example, ASY1 is associated 

with AE/LEs from leptotene though pachytene, begins to dissociate from chromosomes at the 

beginning of diplotene, and is completely removed from chromosomes by late diplotene 

(Armstrong et al. 2002).  In comparison, PAIR2 associates with AEs in leptotene and zygotene, 

but PAIR2 is depleted from areas of synapsis (SC) in zygotene and pachytene nuclei.  This 

pattern is similar to that of HORMAD-1 and -2 in mammals (above).  Small amounts of PAIR2 
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protein are retained at sister centromeres at diakinesis in wild-type rice plants, but pair2 mutants 

have no defects in the sister chromatid cohesion or centromere behavior at anaphase I 

(Nonomura et al. 2006).  

B. Transverse Filament proteins 

Transverse filament (TF) proteins share very limited homology at the amino acid 

sequence level among different organisms, but their secondary and tertiary structures exhibit 

striking similarity  [Table 1; (Page and Hawley 2004; de Boer and Heyting 2006; Wang et al. 

2010)].  All possess a long coiled-coil domain in the middle of the protein with globular domains 

at both N- and C-termini.  Biochemical and genetic studies indicate that two TF proteins interact 

through their coiled-coil domains to form a homopolymer with both N- and C- termini in parallel 

orientation (Page and Hawley 2004).  In the SC, two pairs of homodimers then interact through 

their N-termini (i.e., head-to-head) to bridge the space between the cores of homologous 

chromosomes with the C-termini of TF proteins close to the LEs.  This orientation has been 

confirmed by EM immunolocalization in budding yeast (Dong et al. 2000), mammals (Schmekel 

et al. 1996; Liu et al. 1996), and Drosophila (Anderson et al. 2005).  The C-terminal segment of 

TF proteins is required for anchoring the TFs to LEs as confirmed by deletion mutations of Zip1 

and C(3)G (Tung and Roeder 1998; Jeffress et al. 2007).  In Drosophila, C(2)M may be the link 

between the TF protein C(3)G and LE proteins (Manheim and McKim 2003; Anderson et al. 

2005) while in mammals, SYCP2 links the TF protein SYCP1 and the AE protein SYCP3 

(Winkel et al. 2009).  In addition, Ser/Thr-pro (S/T-P) motifs on carboxyl termini of TF proteins 

indicate that they can bind DNA (Heyting 1996), and SYCP1 protein purified from testicular 

extracts can bind to chromatin (although at a lower level than either SYCP2 or SYCP3 (Yang et 

al. 2006).    
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In most organisms, transverse filaments consist of a single protein, such as SCP1/SYCP1 

in mammals, Zip1 in budding yeast, C(3)G in Drosophila , ZYP1 in Arabidopsis, and ZEP1 in 

rice (de Boer and Heyting 2006; Wang et al. 2010).  However, in C. elegans, three proteins,  

SYP1, SYP2, and SYP3, make up TFs (de Boer and Heyting 2006; Smolikov et al. 2007). 

C. Central Element Proteins 

The original model for TF protein interaction suggested that the longitudinal central 

element may originate from the interaction of the N-terminal globular domains of TF proteins 

(Liu et al. 1996; Dong and Roeder 2000; Page and Hawley 2004).  However, high resolution EM 

tomography showed that the CE structure of an insect also included pillar-like protein structures 

that were unlikely to be formed simply from TF N-terminal interactions (Schmekel and Daneholt 

1995).  Subsequent work has demonstrated the presence of three additional CE components 

(SYCE1, SYCE2, and TEX12) in mouse (Costa et al. 2005; Hamer et al. 2006; Bolcun-Filas et 

al. 2007; Hamer et al. 2008).  These three proteins interact with each other and with the N-

terminal domain of the TF protein SYCP1. SC formation is disrupted in TEX12
-/- 

and SYCE2
-/-

 

mutants in which synapsis is initiated but not completed (Bolcun-Filas et al. 2007; Hamer et al. 

2008). Another likely CE protein, Corona (CONA), has been identified in Drosophila (Page et 

al. 2008).  CONA colocalizes with the TF protein C(3)G and is required for the assembly of 

C(3)G into mature SC.  CONA is not similar in sequence or structure to mammalian CE proteins. 

IV. Recombination nodules (RNs) 

Densely stained bodies observed by electron microscopy along SCs in female Drosophila 

were hypothesized to have a role in crossing over and named recombination nodules (RNs) by 

Carpenter (1975).  Subsequent work has confirmed and extended this initial report (Zickler and 

Kleckner 1999; Page and Hawley 2004; Anderson and Stack 2005).   
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RNs are protein complexes with ellipsoidal shape that are associated with AEs and SCs.  

There are two types of RNs, early (ENs) and late (LNs), that have been observed in various 

organisms (Anderson and Stack 2005).  ENs appear at leptotene and remain associated with AEs 

and SCs until early pachytene, when most ENs are lost from SC.  LNs appear in pachytene and 

persist into diplotene.  There is evidence that a subset of ENs become LNs (Plug et al. 1998; 

Anderson and Stack 2005). 

In addition to differences in the time of their appearance, ENs also differ from LNs in 

frequency, size and shape, location, and potential functions (Zickler and Kleckner 1999; Page 

and Hawley 2004; Anderson and Stack 2005).  The number of ENs per cell is typically several 

hundred (and up to several thousand in species with large genomes like lily), while the number 

of LNs is typically only 1-3 per SC (or about 20-30 per cell for most model species).  The size 

and shape of ENs are quite variable from ~50 X 50 nm to ~ 250 X 290 nm while LNs have a 

more regular ellipsoidal shape and size of 50 X 100 nm.  A small number of ENs are associated 

with asynapsed axial elements during leptotene, and additional ENs are added at synaptic forks 

(the intersection between synapsed and unsynapsed segments) when SCs are assembling.  

However, ENs do not bind to intact SC segments (Anderson et al. 2001).  ENs occur in higher 

frequencies in euchromatic than in heterochromatic SC segments (Anderson et al. 2001; Stack 

and Anderson 2002).  In comparison, LNs are observed only on SCs and are not associated with 

AEs.  Each SC has at least one LN, and LN numbers and positions on SCs closely match those 

estimated from chiasmata and linkage maps (Sherman and Stack 1995; Zickler and Kleckner 

1999; Anderson et al. 2003; Anderson and Stack 2005).  LNs are common in euchromatin, rare 

in heterochromatin, and essentially absent from kinetochores and telomeres (Sherman and Stack 

1995; Anderson et al. 2003).  Different molecular components have been immunolocalized to 
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ENs and LNs.  RAD51/DMC1, two closely related RecA-like proteins, have roles in comparing 

two DNA strands for sequence homology, and both proteins have been localized in ENs 

(Anderson et al. 1997; Moens et al. 2002; Anderson and Stack 2005).  Other proteins that have 

early roles in recombination have also been observed associated with AE/SC in zygotene nuclei 

such as BLM, RPA, and MSH4/5 (Moens et al. 2002; Moens et al. 2007).  One protein involved 

in promoting crossovers, MLH1, has been localized to LNs (Moens et al. 2002; Lhuissier et al. 

2007; Moens et al. 2007).  Both LNs and MLH1 foci show interference similar to genetic 

crossover interference (Anderson and Stack 2005; de Boer et al. 2006; Lhuissier et al. 2007; 

Falque et al. 2009).  To summarize, ENs are thought to be involved in early events in 

recombination and perhaps also in recognition and alignment of homologous chromosomes 

(Anderson and Stack 2005) while LNs are thought to mark sites on chromosomes where DSBs 

have been converted into crossovers (= chiasmata) (Zickler and Kleckner 1999; Anderson and 

Stack 2005). 

V. DNA Double-Strand-Break (DSB) Repair Model for Meiotic Recombination 

Much progress has been made in elucidating the molecular events that lead to crossovers 

between homologous chromosomes (Figure 2).   Several DNA intermediates have been isolated 

using special electrophoretic techniques and many proteins involved in DSB formation, end 

processing, and repair to form crossovers (CO) or non-crossovers (NCO) have been identified  

(Hunter and Kleckner 2001; Börner et al. 2004).  Many of the proteins involved in meiotic 

recombination are also involved in DNA repair in somatic tissues, as one might expect if  

meiotic recombination evolved from DNA repair (Zickler and Kleckner 1999).  However, some 

proteins are meiosis-specific (as discussed below), and others (no doubt) have yet to be 

discovered.  
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Figure 2. DSB repair model for meiotic recombination. The DNA helices of two non-sister chromatids 

from homologous chromosomes are shown (red and blue lines).  Newly synthesized DNA is shown in 

green. (1) Spo11 homodimer generates a DSB, and one Spo11 protein remains covalently bound at each 

5’ end of the DSB.  Resection of the 5’ end begins with removal of Spo11 (together with an attached 

oligonucleotide) by the Mre11 complex and other enzymes.  (2) Resection of the 5’ ends continues, 

resulting in overhanging 3’ ends that invade the DNA helix of a non-sister chromatid to form a single-end 

invasion (SEI) complex (3).   The invasion process is facilitated by two RecA-like recombinases, Rad51 

and Dmc1. After the SEI forms, a DSB may be repaired as a crossover (CO, 4-6) or a non-crossover 

(NCO, 7).  Crossovers may be either interfering (4-5) or non-interfering (6).  Interfering COs arise from 

double Holliday junctions (dHJs, 4) and involve the Mlh1/Mlh3 complex (5).  In this pathway, the 

displaced D-loop (3) interacts with the 3’ tail of the DSB on the other homolog by a process called second 

end capture.  Subsequent DNA synthesis and ligation give rise to a dHJ.  Theoretically, dHJs can be 

resolved as CO or NCO, but in budding yeast, dHJs lead predominantly, perhaps even exclusively, to 

COs.  Non-interfering COs (6) are generated in the Mus81 pathway and may arise through resolution of 

single HJ or aberrant joint molecules.  In the NCO pathway (7), synthesis dependent strand annealing 

(SDSA) repairs DSBs without reciprocal exchanges. In the SDSA pathway, the free 3’ tail dissociates 

from the non-sister chromatid, reanneals to the original chromatid, and is repaired by new DNA synthesis.  

Figure modified after Cohen et al. (2006). 

 

Protein Meiotic function 

SPO11  induces DSBs 

MRE11 and RAD:  5’ end resection 

DMC1 and RAD51:  formation of D-loop when scanning non-sister 

chromatid for DNA sequence homology 

BLM (mammalian)  

or Sgs1 (yeast):  

unwinding Holliday junctions  

(anti-crossover activity) 

MSH4 and MSH5:  molecular role not yet clear but ultimately involved 

in commitment to crossover 

MLH1 and MLH3:  interference type crossovers 

MUS81:  non-interference type crossovers 
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a. Programmed induction of DNA DSBs by SPO11  

Meiotic recombination initiates with the programmed induction of DSBs by Spo11 protein 

(Keeney et al. 1997; Lichten 2001).  Spo11 is a member of a novel family of type II-like 

topoisomerases, and Spo11 generates DSBS by a topoisomerase-like transesterification reaction 

rather than by endonucleolytic hydrolysis (Keeney 2001; Cole et al. 2010).  In most organisms, 

there is only one copy of SPO11, and the protein acts as a homodimer to make DSBs (Keeney 

and Neale 2006).  However, many plant species have three SPO11 genes, SPO11-1 and SPO11-2 

that act together as a heterodimer to make DSBs and SPO11-3 that has a role in endoredup-

lication (Stacey et al. 2006).  After generating DSBs, SPO11 remains covalently bound to the 5’ 

end of each DNA strand and must be removed before the DSB can be repaired as a CO or NCO 

(Neale et al. 2005; Cole et al. 2010).  

SPO11 is required for homologous synapsis in many organisms including fungi, 

mammals and plants (Giroux et al. 1989; Celerin et al. 2000; Baudat et al. 2000; Romanienko 

and Camerini-Otero 2000; Grelon et al. 2001; Keeney 2001).  However, SPO11 activity is not 

required for chromosome pairing and SC assembly in two invertebrates, Drosophila and C.  

elegans (McKim et al. 1998; Dernburg et al. 1998; McKim and Hayashi-Hagihara 1998).   

b. Role of MRE11 (MRN) complex 

The MRE11 complex (MRN) complex includes three proteins, MRE11, RAD50 and 

NBS1/Xrs2, and has an important and evolutionarily conserved role in sensing and repairing 

DSB in somatic and meiotic cells (Bannister and Schimenti 2004; Assenmacher and Hopfner 

2004; Borde 2007).  During meiosis, the MRE11 complex is required for Spo11-dependent DSB 

formation (in some but not all organisms), for subsequent resection of the 5’ ends, and for 

removal of covalently attached Spo11-oligonucleotide complexes from DSB sites (Borde et al. 
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2004; Neale et al. 2005). The MRE11 complex also has roles in DNA replication, telomere 

maintenance, genomic stability and checkpoint signaling (Borde 2007).   

  MRE11 and RAD50 are highly conserved proteins while NBS1 (Xrs2 in budding yeast) 

is less well conserved (Assenmacher and Hopfner 2004).   The core of the MRE11 complex is 

Rad50, a member of the SMC family of proteins, and each Rad50 protein has two long coiled-

coil sections that fold back on each other to form a rod with a zinc hook on one end and a 

globular structure on the other end composed of the N- and C-termini (that together form an ATP 

binding cassette). The two ATPase motifs of RAD50 interact with MRE11 and NBS1 protein 

together binds to DNA molecules (de Jager et al. 2001; Borde 2007).  The zinc hook promotes 

interactions between MRE11 complexes, which enables them to tether two or more DNA 

molecules (Wiltzius et al. 2005).   

The meiotic role of the MRE11 complex has been analyzed in several organisms.  In 

general, mre11, rad50, and nbs1/xrs2 null mutants have defects in meiotic homologous 

chromosome pairing, AE and/or SC assembly and crossing over (Alani et al. 1990; Merino et al. 

2000; Gerecke and Zolan 2000; Gallego et al. 2001; Bleuyard et al. 2004; Borde 2007; 

Waterworth et al. 2007).  In Arabidopsis, chromosome fragmentation occurs after SC breakdown 

in mre11
-/- 

mutants because Spo11-induced DSBs are not repaired (Puizina et al. 2004).  Thus, 

unlike budding yeast, MRE11 is not required for the formation of DSBs by SPO11 in plants 

(Keeney and Neale 2006).   In contrast, an mre11 null mutant in C. elegans synapses normally, 

but no crossovers are formed (Chin and Villeneuve 2001).  Analysis of the meiotic role of the 

MRE11 complex in mammals is complicated by the fact that these proteins are essential for 

viability (D'Amours and Jackson 2002).  To avoid this problem, hypomorphic mutants of NBS1 

and MRE11 (that correspond to the human disorders of Nijmegen Breakage Syndrome and 
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Ataxia-Telangictasia-Like Disorder) have been generated in mice (Cherry et al. 2007).  The 

mre11 and nbs1 hypomorphic mutants have defects in the temporal progression of meiotic 

prophase, incomplete and aberrant synapsis, abnormal persistence of DNA repair proteins, and 

alterations in both the frequency and placement of MLH1 foci (a marker for crossing over).  

Surprisingly, the number of MLH1 foci decreased in females but increased in males, an 

observation unexpected for a defect in a recombination-related protein.   

Other evidence indicates that MRE11 and RAD50 may not always work together in a 

complex.  For example, MRE11 can associate with DNA (chromatin) transiently without 

RAD50, and MRE11 can function independently in DNA repair-related activities (Usui et al. 

1998; Furuse et al. 1998; Borde et al. 2004; Borde 2007).  Mutants of mre11 affect vegetative 

growth in Arabidopsis more than rad50 mutations, also indicating MRE11 complex-independent 

functions that may also apply to meiosis (Gallego et al. 2001; Puizina et al. 2004).  

Immunolabeling studies in plant meiocytes also show a difference in localization patterns 

between Mre11 and Rad50.  Many MRE11 foci were observed associated with chromosome 

cores in tomato and Arabidopsis at leptotene – zygotene stages (Lohmiller et al. 2008). In 

comparison, fewer and larger RAD50 foci are observed at the same stages of meiosis, and 

RAD50 and MRE11 foci often do not colocalize even though they both associate with meiotic 

chromosome axes (H.Q., L.L. and L.K.A. - unpublished data).  Therefore, MRE11 and RAD50 

proteins are likely to have independent functions as well as functions in the MRE11 complex 

during meiosis. 

c. RAD51 and DMC1 recombination proteins 

RAD51 and DMC1 (disrupted meiotic cDNA 1) are two RecA homologs in eukaryotes 

that are important for meiotic recombination (Shinohara et al. 1992; Bishop et al. 1992; Sung et 
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al. 2000). RecA is a bacterial protein that coats single-strand DNA (ssDNA) to form a 

nucleoprotein filament that is capable of scanning double-strand DNA for sequence homology 

and facilitating homologous DNA-DNA interactions and DNA strand exchange (West 1992; 

Heyer 1994).   RAD51 and DMC1 share 45% identity by alignment and are highly conserved 

among most eukaryotes (Bishop et al. 1992; Masson and West 2001; Shinohara and Shinohara 

2004).  However, DMC1 is absent from Drosophila melanogaster and C. elegans, model species 

in which DSB are not required for homologous chromosome alignment and SC formation 

(Villeneuve and Hillers 2001; Masson and West 2001; Shinohara and Shinohara 2004).     

RAD51 is essential for both meiotic and mitotic recombination (Shinohara and Shinohara 

2004).  rad51 mutants are embryo-lethal in vertebrates, apparently due to the important role of 

Rad51 in repairing DNA damage during replication (Bannister and Schimenti 2004; Pawlowski 

and Cande 2005).  However, rad51 is not required for somatic growth in other species, including 

plants (Li et al. 2004; Bannister and Schimenti 2004; Pawlowski and Cande 2005; Li et al. 

2007).  Arabidopsis rad51 mutants are defective in homologous pairing, exhibit extensive 

chromosome fragmentation, and both male and female are sterile (Li et al. 2004).  In 

comparison, maize rad51 mutants have some nonhomologous synapsis, limited chromosome 

fragmentation, and complete male (but not female) sterility (Li et al. 2007).  Li et al. (2007) 

speculated that these differences between Arabidopsis and maize rad51 mutants could be related 

to a suggestion by Pawlowski et al. (2004) that maize, but not Arabidopsis, has a backup DNA 

repair mechanism that acts later in meiosis to mend chromosome breaks.  RAD51 foci are 

considered to mark DSB sites (Hayashi et al. 2007), and several maize asynaptic mutants exhibit 

reduced frequency and altered nuclear distribution of Rad51 foci (Pawlowski and Cande 2005).  

The severity of the synaptic defects was generally correlated with the degree of disruption of 
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RAD51 foci, so the reduction in RAD51 foci may reflect an alteration in the control of DSBs by 

SPO11.    

DMC1 is a meiosis-specific protein that is required for normal meiosis and crossing over 

in most eukaryotes [except Drosophia and C. elegans as noted earlier (Shinohara and Shinohara 

2004)].  Mutation of DMC1 results in synaptic defects and sterility in budding yeast, plants, and 

animals (Bishop et al. 1992; Yoshida et al. 1998; Pittman et al. 1998; Doutriaux et al. 1998).   

RAD51 and DMC1 have overlapping functions in meiotic recombination (Masson and 

West 2001).  Cytological evidence showing colocalization of RAD51 and DMC1 foci in meiotic 

nuclei also supports the interaction of these two proteins (Bishop 1994; Tarsounas et al. 1999a), 

and both proteins are thought to be components of early recombination nodules (Anderson et al. 

1997; Tarsounas et al. 1999a).  However, double mutants of rad51 dmc1 in budding yeast are 

more defective in recombination than rad51 and dmc1 single mutants (Bishop 1994; Schwacha 

and Kleckner 1997).  In addition, Dmc1 has more of a role in promoting inter-homolog 

recombination while Rad51 is more likely to facilitate recombination between sister chromatids, 

especially in the absence of AE proteins such as Red1 (Schwacha and Kleckner 1997; Hunter 

and Kleckner 2001). These differences in function may be related to differences in structure.  

RAD51 makes right-handed nucleoprotein filaments that are similar in structure to those formed 

by bacterial RecA protein (Ogawa et al. 1993; Egelman 2001) while DMC1 rather forms a ring 

of eight subunits around the ssDNA (Masson et al. 1999; Passy et al. 1999).  There is also 

evidence that RAD51 and DMC1 can assemble independent complexes in budding yeast and 

mice (Tarsounas et al. 1999a; Shinohara and Shinohara 2004).  Thus, although RAD51 and 

DMC1 are similar in structure and at least partially redundant in function, they also have distinct 

roles to play during meiosis. 
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d. Role of MLH1 protein in promoting crossing over 

Several proteins that are involved in somatic DNA mismatch repair (MMR) are also 

required for meiotic recombination (Hassold 1996; Kolodner and Marsischky 1999; Buermeyer 

et al. 1999; Svetlanov and Cohen 2004; Hoffmann and Borts 2004).  These proteins are named 

for their similarities to MutS and MutL, DNA mismatch repair proteins in E. coli and include 

MSH4 and MSH5 (Mut-S homolog) and MLH1 and MLH3 (Mut-L homolog).  Two 

heterodimers, MSH4/MSH5 and MLH1/MLH3, are especially important in promoting 

interhomolog crossing over in budding yeast, plants and animals (Villeneuve and Hillers 2001).  

In another departure from the “normal” pathway of meiosis, MSH4/MSH5 is not present in the 

Drosophila genome.  In budding yeast, Mlh1 and Mlh3 are thought to function after double 

Holliday junction (dHJ) formation in DSB repair pathway to promote crossovers (Hunter and 

Borts 1997; Wang et al. 1999).  Similarly, although synapsis is normal, null mutants of MLH1 or 

MLH3 in mammals and plants are sterile because crossing over is virtually eliminated in the 

mutants resulting in irregular disjunction at anaphase I (Edelmann et al. 1996; Baker et al. 1996; 

Jackson et al. 2006; Dion et al. 2007).  Immunogold labeling revealed that MLH1 protein is a 

component of LNs in mice and tomato (Moens et al. 2002; Lhuissier et al. 2007).  Like LNs, the 

distribution of MLH1 foci is correlated with SC length, and MLH1 foci show crossover 

interference (Anderson et al. 1999; de Boer et al. 2006).  Because MLH1/3 marks crossover 

sites, the distribution of MLH1 foci can be used to analyze crossover interference in cytological 

way (de Boer et al. 2006).  Crossover interference is a phenomenon in which one crossover 

reduces the likelihood of another crossover nearby.  MLH1 and MLH3 foci in meiotic cells mark 

about 90% of crossovers in mammals (Lipkin et al. 2002; Marcon and Moens 2003; Guillon et 



27 
 

al. 2005) and more than 70% of crossovers in plants (Jackson et al. 2006; Lhuissier et al. 2007; 

De Muyt et al. 2009).    

VI. Correspondence between recombination-related proteins and recombination nodules 

Many of the recombination proteins discussed above are expected to be components of 

early and/or late recombination nodules (Zickler and Kleckner 1999; Anderson et al. 2005).  One 

of the expected characteristics of such EN/LN components is focal immunofluorescent signals 

along or around chromosomal axes at early prophase I, which are in numbers and patterns similar 

to ENs and/or LNs.  Such patterns have been observed for several proteins including SPO11 

(Phillips et al. 2008), MRE11 (Lohmiller et al. 2008), RAD51 (Bishop 1994; Terasawa et al. 

1995; Anderson et al. 1997; Franklin et al. 1999), DMC1 (Bishop 1994), RPA, BLM, MSH4 

(Moens et al. 2002) and MLH1/3 (Moens et al. 2002; Jackson et al. 2006; Lhuissier et al. 2007).  

In some cases, immunogold labeling at the EM level has verified the presence of the proteins in 

ENs or LNs (Anderson et al. 1997; Marcon and Moens 2003; Lhuissier et al. 2007).  However, 

sometimes focal signals that are closely associated with SC components do not correspond to 

ENs.  For example, in tomato, only about 10% of the MRE11 foci observed by LM correspond to 

ENs by EM immunolabeling, and similar results have been observed for RAD50 in tomato 

(Lohmiller et al. 2008) (H.Q. and L.A., unpublished results).  Thus, the appearance of a focal 

signal associated with AEs/SCs is not sufficient evidence to verify that a protein is an EN or LN 

component.  Surprisingly, some proteins that appear as focal fluorescent signals in one species 

do not show a focal pattern in another species.  For example, MRE11 and RAD50 appear as foci 

in tomato but as a diffuse nuclear signal in mice (Eijpe et al. 2000b; Lohmiller et al. 2008).  

Whether these are true differences in function or are simply due to technical issues are not yet 
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clear.  However, it is clear that much remains to be determined about ENs and LNs and their 

protein components in different species. 

Similarly, little is known about the relationship between ENs and RNs.  One popular idea 

that has some experimental support is that a small number of ENs are somehow “selected” to 

develop into LNs and the other ENs are removed by the mechanism of crossover interference 

(Stack and Anderson 1986a; Plug et al. 1998; Zickler and Kleckner 1999; Agarwal and Roeder 

2000; Moens et al. 2002; Anderson and Stack 2005).  The “selection” process for crossovers may 

occur very early, perhaps concurrent with or even preceding SC formation [based primarily on 

evidence from budding yeast (Bishop and Zickler 2004)].  If some ENs become LNs, then one 

expectation is that some recombination-related proteins would be shared by both ENs and LNs.  

Two proteins that share this characteristic are MSH4 and RPA that co-localize with 

RAD51/DMC1 and MLH1, respectively, EN and LN protein components (Plug et al. 1998; 

Santucci-Darmanin et al. 2000; Moens et al. 2002; Neyton et al. 2004).   

Not all ENs are equally likely to become LNs.  There is a general tendency for crossing 

over to be higher in distal regions of chromosomes from plants and animals (Bishop and Zickler 

2004; Anderson and Stack 2005).  Synapsis usually begins in distal parts of chromosomes, and 

ENs would be able to bind here before more proximal regions that synapse later (Stack and 

Anderson 2002; Anderson and Stack 2005).  Perhaps, the longer association of ENs in distal 

regions facilitates the maturation of some ENs to LNs in these regions. 

VII.  Crossover interference 

 Crossover interference was first described in Drosophila (Muller 1916; Hillers 2005; 

Falque et al. 2009; Berchowitz and Copenhaver 2010) and refers to the observation that the 

occurrence of one crossover decreases the probability of other crossovers nearby.  Crossover 
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interference can be measured in different ways.  First, the classical approach to measure 

interference is to use linkage maps with at least three markers covering two adjacent intervals. 

The observed frequency of a crossover in each interval (double crossover) is divided by the 

frequency of expected double crossovers (i.e., if there were no interference) to yield the 

coefficient of coincidence (COC).  Interference is defined as one minus COC. 

COC = [# observed double crossovers] 

 __________________________ 

               [# expected double crossovers] 

   

Interference (I) = 1 – COC  

When I = 0, there is no interference between crossovers, and when I = 1, there is complete 

interference between crossovers.   

 Another method to calculate crossover interference is to use cytogenetic markers like 

chiasmata or late recombination nodules that mark all crossover sites (Laurie and Hultén 1985; 

Sherman and Stack 1995; Anderson and Stack 2005) or MLH1 foci that mark most crossover 

sites (Anderson et al. 1999; Froenicke et al. 2002; de Boer et al. 2006; Lhuissier et al. 2007).  

Each method has advantages and disadvantages.  The positions of chiasmata are often difficult to 

measure precisely because of the variability in chromosome compaction at diplotene-diakinesis 

when chiasmata are easiest to see.  In addition, individual chromosomes are almost impossible to 

identify without the use of fluorescence in situ hybridization (FISH).  The combination of both 

techniques has been useful in examining crossing over in Arabidopsis and cotton (Reyes-Valdés 

et al. 1996; Armstrong and Jones 2003).  LNs provide high-resolution cytogenetic maps, but LNs 

can be visualized only by electron microscopy, a comparatively difficult technique that limits the 

number of observations that can be made.  MLH1 foci cytogenetic maps are lower resolution 

than LNs but higher resolution than chiasmata.  However, only 70-95% of all crossovers are 
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detected using this procedure.  Recently, a new approach using MLH1 immunolabeling in 

combination with squashes of diakinesis-metaphase I chromosomes (chiasmata) has been used to 

investigate crossing over in Arabidopsis and allotriploid and allotetraploid hybrids of Brassica 

(Leflon et al. 2010; Chelysheva et al. 2010). 

 Measuring interference using cytogenetic data requires a different approach than genetic 

data.  Distances (in μm or as a percentage of SC length) between adjacent crossovers are used to 

estimate interference using a statistical gamma model that provides the best fit to the observed 

data (de Boer et al. 2006; Falque et al. 2009).  The equation for the gamma model is f(xl,ν)= 

(lνxν-1
e

-lx
)/Γ(ν) where X is the inter-event distance, l is the rate of occurrence, and ν is the level 

of interference.  When ν = 1, there is no interference.  When υ > 1, positive interference is 

detected and increasing values of ν indicate more interference.  The gamma model has been 

applied to calculate crossover interference among MLH1 immunofluorescence foci in mice, 

humans, and tomato (Lhuissier et al. 2007; de Boer et al. 2007; Lian et al. 2008) and among LNs 

in maize (Falque et al. 2009).   

VIII. Models for crossover interference 

 Several models have been proposed to explain the biological basis of crossover 

interference [recently review by (Berchowitz and Copenhaver 2010)].  Three of the most popular 

models (polymerization, mechanical stress, and counting) are reviewed below.  While each 

model has certain attractive features, none fully explains crossover interference.  (Note that the 

gamma model described above is a mathematical method to evaluate the presence and intensity 

of crossover interference and is distinct from the following models that attempt to explain how 

crossover interference is established in meiotic cells.) 
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a. Polymerization model 

  The polymerization model that has been developed in greatest detail is that of King and 

Mortimer (1990).  In that paper, they suggested that early recombination structures (possibly 

represented by ENs) are randomly distributed along AEs.  At some of these sites, polymerization 

(originally thought to be formation of central element) begins and progressively extends in both 

directions along the chromosome axes (most probably along with SC formation).  

Polymerization prevents additional ENs from binding to chromosome cores and also ejects 

bound ENs.  Ejected ENs are either degraded or bound to polymer-free AEs where they can 

initiate polymerization.  Polymerization at each site continues until another polymer is contacted 

or the centromere or telomere is reached.  In the model, early synaptic initiation sites develop 

into crossover sites (LNs), and the interference signal that is conferred by polymerization is 

strongest close to initiation sites and gradually decreases away from these sites with polymer 

growth.  The model explains how both crossover interference and crossover assurance (at least 

one crossover per bivalent) can be tied together (Martini et al. 2006).  A computerized simulation 

fit existing crossover data from Drosophila and budding yeast (King and Mortimer 1990).  While 

this model has several attractive features, the polymer, i.e. the source of the interference signal, 

has not been identified.  Several lines of evidence indicate that polymerization of the SC by 

central element formation is not the source of the interference signal (de Boer et al. 2007; 

Shinohara et al. 2008).  However, other possible sources of the “polymerization” signal have 

been suggested such as modification of cohesions or other AE components by phosphorylation, 

methylation, acetylation, or ubiquitination (Berchowitz and Copenhaver 2010).   
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b. Mechanical stress model 

(Kleckner et al. 2004) proposed a stress model in which mechanical forces associated 

with chromosome structure play a critical role in governing chromosome functions such as 

crossing over.  In this model, expansion and compression of chromatin generates mechanical 

stress along each chromosome, and stress builds until a CO is achieved.  The CO relieves stress 

locally in a bidirectional way, which prevents other crossovers from occurring nearby.  Aside 

from a lack of a mechanism to explain how stress is generated, the stress model also does not 

explain how crossovers generated by through the MLH1-type interference pathway would reduce 

stress but crossovers generated by the MUS81-type non-interference pathway would not.  Also, 

as pointed out by (Berchowitz and Copenhaver 2010), it is difficult to understand how one or 

two crossovers could relieve stress on a chromosome while the earlier presence of hundreds of 

DSBs would allow stress to build.  On the other hand, a number of studies have found a close 

link between proteins that are involved in establishing or maintaining chromosome axis structure 

(such as PCH2, HTP-3, DPY-28, HIM-3, SMC1β) and crossover distribution and interference 

(Zetka et al. 1999; Jessberger 2002; Tsai et al. 2008; Goodyer et al. 2008; Zanders and Alani 

2009; Joshi et al. 2009; Mets and Meyer 2009).   

c. Counting model 

 Foss et al. (1993) proposed a model based on the concept that successful COs are 

separated (= crossover interference) by a certain number of NCO events, and the NCO number is 

fixed for each organism.  Unlike the other two models in which chromosome structure is closely 

associated with interference, the counting model is based solely on genetic parameters.  One 

advantage of the counting model is that it can explain the large variation of interference strength 

among organisms (Stahl et al. 2004; Berchowitz and Copenhaver 2010), and it is the only model 
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in which adding non-interfering COs actually helps the model fit better (Copenhaver et al. 2002; 

Stahl et al. 2004; Lam et al. 2005a; Berchowitz and Copenhaver 2010). Recently, the counting 

model was tested in S. cerevisiae using a series of spo11 hypomorphic mutants that reduce the 

frequency of DSBs to 20%, 30%, and 80% of wild-type (Martini et al. 2006).  The counting 

model predicts that reduced levels of DSBs that are precursors of both COs and NCOs would 

result in proportionally reduced frequencies of COs and NCOs.  However, the predicted result 

was not observed.  Instead, (Martini et al. 2006) found that CO levels were maintained at the 

expense of NCOs, a phenomenon they called crossover homeostasis.  Another problem of the 

counting model is the lack of a molecular mechanism (Berchowitz and Copenhaver 2010). 

In summary, substantial progress is being made in defining the proteins and molecular 

events of recombination, but even basic aspects of how crossover frequency and distribution is 

controlled remain mysterious. 

IX. Tomato as a model system for cytogenetic study of meiotic recombination 

Tomato (Solanum lycopersicum) is native to South America and was probably 

domesticated in Central America (Spooner et al. 2005).  All members of the tomato clade are 

diploid (n = 12) although rare tetraploid forms occur (Spooner et al. 2005).  Tomato is a model 

plant for genetic, developmental, and pathologic studies with advantages that include extensive 

germplasm collections, numerous mutants (natural, induced, and transgenic), routine 

transformation technology, a dense linkage map, many cDNA and genomic libraries, a small 

genome that has been recently sequenced, relatively short life-cycle, and ease of growth and 

maintenance  (Tanksley and McCouch 1997; Mueller et al. 2009).  

We chose to use cherry tomato as model to investigate meiotic recombination for several 

reasons.  First, cherry tomatoes grow and bloom in the greenhouse all year.  Second, using 
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spreads of SCs, ENs and LNs can be distinguished at the EM level based on a number of 

morphological characteristics (Stack et al. 1993; Anderson and Stack 2002; Anderson and Stack 

2005).  In contrast, it’s difficult if not impossible to identify ENs in SC spreads from yeast, 

mammals, or birds using only morphology (Dresser and Giroux 1988).  Third, representative 

dicot, monocot, and lower vascular plants behave similarly regarding EN distribution and general 

synaptic behavior (Anderson et al. 2001).  Thus EN and LN distribution patterns from tomato 

apply to other plants.  Fourth, a detailed tomato RN (=LN) map is available (Sherman and Stack 

1995).  The RN map is useful in order to study the LNs with reference to different recombination 

pathways and genetic interference.  Fifth, antibodies to a number of tomato recombination-

related and SC proteins have been prepared, and most antibodies against Arabidopsis proteins 

also can be used for tomato spreads (Lohmiller et al. 2008).  While Arabidopsis is an excellent 

model for meiotic studies in plants (Ma 2006), SC spreads are more difficult to make, and ENs 

and LNs have been observed by EM only from sectioned primary microsporocytes, making their 

study much more difficult (Albini 1994; Armstrong et al. 2002; Ma 2006).  Therefore, tomato 

provides a good cytological model to examine the molecular events of recombination within the 

cytological framework of RNs and SCs. 

X. Tomato meiotic mutants 

A number of tomato mutants that reduce fertility have been identified (Emmanuel and 

Levy 2002; Menda et al. 2004), but only seven mutants (as1-as6, asb) that specifically affect 

meiosis have been examined using genetic and/or cytological methods (Soost 1951; Moens 1969; 

Havekes et al. 1994; Havekes et al. 1997).  All seven are spontaneous, recessive, non-allelic 

mutations, and all have various levels of meiotic asynapsis except as5 (Table 2).  The as5 

mutation should more properly have been defined as a desynaptic mutation because synapsis is 
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complete, but crossovers are not maintained.  Without crossovers, bivalents from as5 plants fall 

apart to univalents that do not segregate properly when SCs breakdown in diplotene.  The 

synaptic defects in the other mutants also affect meiotic recombination and segregation, resulting 

in reduced fertility.  We will review the phenotypes of two of the mutants (as1 and asb).   

The asynaptic mutants as1 and asb possess generally similar cytological characteristics.  

First, chromosomes pair, and the pairing is probably homologous because of the similar lengths 

of the AEs involved (Havekes et al. 1994).  SC assembly is initiated, but only short segments of 

SC are formed in each mutant.  The average percentage of synapsis (total length of LE per total 

AE/LE length for each set) is about 25% for as1 and about 6% for asb, and the amount of 

synapsis observed in different sets varies for each mutant [4 - 70% for as1 and 0 - 17% for asb; 

(Havekes et al. 1994)].  Second, the average number of pachytene bivalents (including 

chromosome pairs with even partial synapsis) is correlated with the average number of 

metaphase I bivalents in as1 and asb mutants.  Pachytene and metaphase I cells average about 6-

7 bivalents per cell in as1 and about 3 bivalents per cell for asb compared to 12 in wild-type cells 

(Havekes et al. 1994). This result indicates that even partially synapsed homologs have at least 

one crossover that is sufficient to hold the bivalent together at metaphase I (Havekes et al. 1994). 

Soost (1951) obtained a similar average of ~ 7 diakinesis bivalents per cell in as1 (range of 1-

12).  The high number of metaphase I univalents (average ~ 5 pairs per cell) that would be free to 

move independently to either pole at anaphase I would result in a high proportion of genetically 

unbalanced gametes and low fertility, the character that first brought these plants to the attention 

of researchers.  Both as1 and asb produce almost no viable pollen (Soost 1951; Moens 1969).  

However, crosses between as1 or asb using wild-type pollen yielded fruits with only about a 

50% reduction in seeds compared to wild-type fruits (Soost 1951; Moens 1969), indicating that  
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Table 2. Characteristics of two tomato asynaptic mutants [data from (Havekes et al. 1994; 

Havekes 1999)]. 

 

Mutant Average 

synapsis 

(%) 

Average No. of Bivalents RN observation Possible protein 

defect 
Pachytene Metaphase 

asb 6.1 + 5.8 

 

3.2 + 2.4 3.2 + 1.4 

 

ENs were found between 

aligned axial elements 

RAD50, RAD51, 

and DMC1 

as1 25.0 + 18.9 

 

6.4 + 3.4 

 

7.3 + 1.7 

 

ENs were found between 

aligned axial elements 

RAD50, RAD51, 

and DMC1 

Wild type 100 12  

 

12  

 

LNs are present on SCs --- 
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males are more deleteriously effected by as1 or asb mutations than females.  Third, both early 

and late RNs were observed in SC spreads from both mutants (Havekes et al. 1994; Havekes 

1999).  LNs were studied in more detail in asb, and (Havekes 1999) observed that most bivalents 

had only a single SC segment that had at least one LN.  These results are consistent with the 

correspondence between the numbers of pachytene and metaphase I bivalents noted earlier.   

They also observed that longer SC segments often had multiple LNs.  Overall, the frequency of 

LNs per μm SC was about two-fold higher in asb mutants than in wild-type (Havekes 1999). 

Soost (1951) observed that some bivalents from as1 plants lag at the metaphase I plate and do 

not separate easily, a behavior that could indicate the presence of many crossovers on those 

bivalents.  Large numbers of crossovers may be more difficult to resolve at anaphase I in order to 

allow timely chromosome separation. 

Both Soost (1951) and Moens (1969) examined crossing over in as1 and asb mutants 

using genetic markers on chromosome 2 (although the markers were originally thought to be on 

chromosome 1 by Soost (1951)).  In both studies, the asynaptic plant was used as the female 

parent.  Soost (1951) observed a small increase in the frequency of crossing over between two 

markers in the as1 mutant.  However, the increase was not statistically significant, and he was 

not able to examine genetic interference because only two markers were evaluated. Moens (1969) 

evaluated crossing over between three markers.  For as1, he found essentially the same overall 

genetic distance for each interval as observed in control plants (Interval 1 = 12 cM for both 

control and as1; Interval 2 = 16 cM for control and 19 cM for as1).  However, the frequency of 

double crossovers was 10 times higher in the as1 mutants (22/1360 = 1.6%) than in the 

backcross control (1/607 = 0.16%) corresponding to lower genetic interference in the as1 mutant 

than in control plants (interference = 0.3 versus 0.9, respectively).  For the asb mutant, crossing 
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over was elevated in both genetic intervals compared to control plants (Interval 1 = 12 cM for 

control and 18 cM for asb; Interval 2 = 16 cM for control and 36 cM for asb).  Like as1, the 

frequency of double crossovers was higher in the asb mutants (40/640 = 6.2%) compared to the 

backcross control (15/1516 = 1%) and genetic interference was lower in the asb mutant than in 

the control [interference = 0.3 versus 0.5, respectively; (Moens 1969)].  Moens (1969) also took 

advantage of heteromorphic satellites of the NOR of chromosome 2 and found that chromosome 

2 synapsed only about half the time in the as1 mutant.  Therefore, the higher frequencies of 

double crossovers in recovered offspring from as1 were observed amidst a background of greatly 

reduced chromosome pairing and synapsis.  While gamete selection for increased pairing and 

recombination in order to produce viable progeny could skew the observed genetic crossover 

frequencies, this factor would not be sufficient to explain the higher double crossover frequency 

and reduced interference observed (Moens 1969).  Moens (1969)  suggested that the process of 

genetic exchange was itself altered in these mutants, a suggestion supported by later observations 

that long SC segments from asb mutants often had higher numbers of LNs than observed in wild-

type (Havekes et al. 1999).  Therefore, as1 and asb have defects in crossover control as well as 

in synapsis, but the exact cause of the defect in either mutant is unknown. 

XI. Project outline 

Numerous studies have revealed a close correspondence between patterns of synaptic 

initiation and crossing over in a number of different organisms, and, although little is understood 

about crossover interference, interference may be imposed during synaptic initiation, at least in 

budding yeast (Zickler and Kleckner 1999; Fung et al. 2004; Bishop and Zickler 2004).  The 

tomato asynaptic mutants as1 and asb provide an opportunity to investigate the relationship 

between synapsis, crossing over and interference in a higher plant.  Spreads of SCs from tomato 
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are superior in demonstrating synaptic patterns at both the LM and EM levels, and tomato is one 

of the few plants in which patterns of ENs and LNs have been examined in detail(Stack and 

Anderson 1986a; Stack and Anderson 1986b; Sherman et al. 1992; Sherman and Stack 1992; 

Sherman and Stack 1995; Anderson et al. 2001; Anderson and Stack 2002; Chang et al. 2007; 

Lohmiller et al. 2008).  Since the earlier work on tomato asynaptic mutants (Soost 1951; Moens 

1969; Havekes et al. 1994; Havekes 1999), new molecular approaches have been developed to 

examine the role of different proteins in synapsis and meiotic recombination.   In this work, we 

take advantage of these new methods, particularly immunolocalization, to examine in more detail 

the relationship between synapsis, crossing over, and genetic interference in tomato asynaptic 

mutants, particularly as1.    
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CHAPTER 2: 

 

SEQUENTIAL LOADING OF COHESIN PROTEINS DURING  

PROPHASE I IN TOMATO PRIMARY MICROSPOROCYTES 

 

Sister chromatid cohesion (SCC) is essential for faithful chromosome segregation in both 

mitosis and meiosis.  In budding yeast, mitotic sister chromatid cohesion is established by a 

complex of four cohesin proteins (SMC1, SMC3, SCC1, and SCC3) (Onn et al. 2008; Peters et 

al. 2008; Nasmyth and Haering 2009; Uhlmann 2009).  SMC1 and SMC3 belong to the 

structural maintenance of chromosomes (SMC) group of proteins that function in chromosome 

dynamics (Jessberger et al. 1998; Jessberger 2002).   SMC proteins have two coiled-coil domains 

separated by a hinge domain and two globular domains at the N- and C-termini.  Each SMC 

protein folds back on itself at the hinge which allows the two coiled-coil domains to interact and 

form an extended 45-nm rod-like structure.  This folding allows the N- and C-terminal domains 

to interact to form a globular ATPase “head” opposite the hinge.  In a cohesin complex, SMC1 

and SMC3 proteins interact at the hinge domains to form a V-shaped heterodimer.  The non-

SMC cohesin proteins, SCC1 (a member of the kleisin family of proteins) together with SCC3, 

link the heads of SMC1 and SMC3 to close the open-V shape of the SMC heterodimers and form 

a ring (Nasmyth 2001; Losada and Hirano 2005; Onn et al. 2008; Skibbens 2009).  The ring-

structure of the cohesin complex is important to its role in sister chromatid cohesion, and one 

popular model suggests that the two sister chromatids are held together within the large ring 

formed by the four cohesin proteins (Nasmyth and Haering 2009).  However, the exact 

interaction of the cohesin complex with the two sister chromatids is still a matter of debate 

(Guacci 2007; Onn et al. 2008; Surcel et al. 2008; Skibbens 2009).   
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Cohesin proteins are highly conserved among eukaryotes [although the nomenclature of 

the proteins is rather confused – (Onn et al. 2008; Peters et al. 2008)].  Prokaryotes also have an 

SMC protein that functions in chromosome dynamics although the SMC protein acts as a 

homodimer.  The high level of evolutionary conservation in cohesin protein form and function 

has led some to suggest that cohesin-mediated chromosome structure is more ancient than 

histone-based nucleosome structure (Peters et al. 2008).   

Cohesin complexes associate with DNA in a highly regulated manner through the mitotic 

cell cycle in eukaryotes (Nasmyth and Haering 2009; Uhlmann 2009).   Sister chromatid 

cohesion is established at S-phase when cohesins load onto chromatin, and SCC is maintained 

through metaphase.  At anaphase, separase cleaves SCC1, breaking the cohesin rings and 

allowing sister chromatid separation (Nasmyth and Haering 2009).   Not all cohesin complexes 

are involved in SCC, however.  Cohesin complexes also load onto DNA at stages other than S-

phase, but these “non-cohesive” cohesins appear to be involved in responses to DNA damage 

and/or transcription functions (Waizenegger et al. 2000; Onn et al. 2008; Uhlmann 2009; 

Skibbens 2009).  

During meiosis, SCC is important both for homologous chromosome separation at 

meiosis I and sister chromatid separation at meiosis II (Petronczki et al. 2003).  SCC along 

chromosome arms is essential to maintain chiasmata that join homologous chromosomes and to 

establish monopolar orientation of sister kinetochores at metaphase I (Maguire 1978; Maguire 

1995) (van Heemst and Heyting 2000; Chelysheva et al. 2005).   At anaphase I, the action of 

separase cleaving SCC1 causes the release of cohesion along chromosome arms as well as 

chiasma resolution, allowing homologous chromosomes to separate (Kudo et al. 2006; Kudo et 

al. 2009).  However, sister chromatids remain together at centromeres because the protein 



42 
 

Shugoshin (SGO) protects the cohesin complex in this region from separase (Hamant et al. 2005; 

Nasmyth and Haering 2009).  At anaphase II, the remaining sister centromere cohesion is 

released to finally yield four haploid, unreplicated nuclei.  Thus, SCC is released by separase in 

two phases during meiosis compared to one phase during mitosis.   

Several meiosis-specific cohesin proteins have been identified in different organisms, 

which are important for adaptations of chromosome behavior through the two-step meiotic 

division.  REC8 is a meiosis-specific kleisin that replaces its mitotic orthologue SCC1 and was 

first identified in budding yeast (Klein et al. 1999).  REC8 orthologs have since been identified 

in many different groups including invertebrates, mammals and plants (Molnar et al. 1995; Parisi 

et al. 1999; Watanabe and Nurse 1999; Dong et al. 2001; Manheim and McKim 2003; Schleiffer 

et al. 2003; Bannister et al. 2004; Golubovskaya et al. 2006; Zhang et al. 2006; Peters et al. 2008; 

Nasmyth and Haering 2009).  REC8 and its protection at centromeres by SGO are required for 

accurate implementation of the two-step meiotic division.  In mammals, two meiosis-specific 

proteins, SMC1β and STAG3, can replace SMC1 and SCC3 orthologs, respectively (Pezzi et al. 

2000; Revenkova et al. 2001; Revenkova and Jessberger 2006).  SMC1β has been found to be 

important in chiasma stabilization (Hodges et al. 2005), telomere protection (Adelfalk et al. 

2009), and chromatin loop organization (Novak et al. 2008) while STAG3 plays a specialized 

role in sister arm cohesion during meiosis (Prieto et al. 2001).  So far, no meiosis-specific 

proteins comparable to SMC1β has been found in other organisms, and only one meiosis-specific 

ortholog of  STAG3, S. pombe REC11, has been found (Hirano 2002; Peters et al. 2008; 

Schubert 2009).   

During meiosis, cohesin proteins are found in protein cores called axial elements (AEs) 

that form between sister chromatids during leptotene (Zickler and Kleckner 1999; van Heemst 
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and Heyting 2000; Page and Hawley 2004).  During zygotene, homologous chromosomes 

synapse, and transverse filaments connect the two AEs of homologous chromosomes.  Once 

synapsed, attached AEs are called lateral elements. The two lateral elements (LEs), together with 

transverse filaments and a central element that runs parallel between the two LEs, forms a 

meiosis-specific structure called the synaptonemal complex (SC).  One SC runs along the length 

of each pair of homologous chromosomes during pachytene when synapsis is complete.  At 

diplotene, desynapsis begins, and the two LEs are held together at only a few sites where 

crossing over has occurred and where chiasmata form.   

While the SC is an evolutionarily conserved structure, the function of the SC in the 

unique events that occur during meiosis (including homologous synapsis and recombination) is 

still under debate (Page and Hawley 2004).  Because cohesins are an integral part of SC 

structure, investigating the behavior of cohesin proteins during the early stages of meiosis may 

shed light on SC function.   Such immunolocalization studies have been undertaken in mammals 

and grasshoppers, but the results are difficult to compare because different proteins were 

examined in the studies (Eijpe et al. 2000a; Eijpe et al. 2003; Valdeolmillos et al. 2007).   Here, 

we have examined the dynamics of four cohesin proteins [SMC1, SMC3, SCC3, and 

REC8=SYN1=DIF1; (Schubert 2009)] in early meiotic prophase I of tomato microsporocytes 

using immunolocalization.  While the tomato genome has been sequenced (Mueller et al. 2009), 

the genome has not yet been fully analyzed for cohesin genes.  For comparison, the Arabidopsis 

genome contains only one copy each of the cohesin genes SMC1, SMC3 and SCC3 and four 

paralogs of the SCC1 gene (SYN1-4), only one of which (SYN1/REC8) is meiosis-specific 

(Schubert 2009).  Given that the Arabidopsis genome has a more recent polyploidization event 

than tomato (The Arabidopsis Genome Initiative 2000; Ku et al. 2000; Stack et al. 2009), it is 
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likely that tomato is similar to Arabidopsis in the number and types of cohesin genes and the lack 

of meiosis-specific variants (such as SMC1β and STAG3 that occur in mammals).  Tomato SC 

spreads are optimal for examining cohesin protein behavior with respect to synapsis using both 

light and electron microscopy.   

 

MATERIALS AND METHODS 

Plants 

Wild type tomato (Solanum lycopersicum var. cherry, accession LA4444) seeds were 

planted and grown in a greenhouse with temperature control.  All the plants were used before 

they were 3 months old.  

Antibodies 

Antibodies against tomato SMC3, SMC1, and MLH1 proteins were raised in rabbits and 

used in previous studies (Lhuissier et al. 2007; Lohmiller et al. 2008).  To facilitate 

colocalization studies of different cohesins, we also used antibodies to tomato SMC1 that had 

been raised in chicken (Lohmiller et al. 2008).   Rabbit antibodies to Arabidopsis cohesin 

proteins SYN1/REC8 and SCC3 were used as in previous studies (Cai et al. 2003; Chelysheva et 

al. 2005). 

SC spreads, immunocytochemistry, image and data analysis 

SC spreads were prepared using a hypotonic bursting technique (Lohmiller et al. 2008; 

Stack and Anderson 2009).  SC spreads were labeled with anti-AtSCC3 serum (1:1000), anti-

SlSMC3 serum (1:200 for LM and 1:1200 for EM), anti-AtREC8/AtSYN1 serum (1:5000), 

and/or affinity-purified antibodies to SlSMC1 protein (1:25).  Secondary antibodies included 

goat anti-chicken tetramethyl rhodamine iso-thiocyanate (TRITC; Jackson Labs; diluted 1:100) 
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and goat anti-rabbit 488 (Molecular Probes; diluted 1:500). DAPI (4’, 6-diamidino-2-

phenylindole; 10µg/ml in water) was used to counterstain SC spreads, and Vectashield (Vector 

Laboratories) was used to mount coverslips.  Labeled chromosome spreads were imaged using a 

Leica 5000 fluorescence microscope equipped with a grayscale CCD camera and IP Lab (ver. 4) 

software (Lohmiller et al. 2008).  Each fluorochrome was imaged using the same settings and 

exposure times for every SC spread.  Grayscale images were assigned artificial colors in IP Lab.  

The signal intensity of each image was uniformly adjusted to increase contrast and reduce 

background using the level command of Adobe Photoshop 7.  Color images for each SC set were 

merged using Photoshop 7.  The immunogold labeling procedure for electron microscopy was 

similar to that used for immunofluorescence except that SCs were prepared using a sucrose-

spreading procedure, secondary antibodies were conjugated to 6 nm gold particles, and SCs were 

post-stained with uranyl acetate (Lohmiller et al. 2008; Stack and Anderson 2009).  SC spreads 

were examined and photographed in an AEI801 electron microscope, micrographs were scanned 

at 1200 dpi, and images were assembled in Photoshop 7. 

 

RESULTS 

Antibody assessment 

Immunolocalization of SMC1, SMC3, REC8, and SCC3 cohesin proteins revealed that 

each protein was present in AEs and LEs of SCs from leptotene into diplotene (Figures 1, 2, 3).  

For each cohesin, the fluorescence signal was discontinuous, and the intensity of the signals 

varied along the chromosomes as reported earlier by (Lhuissier et al. 2007; Lohmiller et al. 

2008).  However, the punctate signal of SCC3 was more discontinuous than for any of the other 

three cohesin proteins, a pattern that may be related to the high level of background observed for 
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this particular antibody when used in tomato [although not in Arabidopsis chromosome spreads 

(Chelysheva et al. 2005)].  Even though all of the cohesin signals were discontinuous, the linear 

nature of the AE/LEs was evident, and patterns of synapsis and desynapsis in zygotene and 

diplotene nuclei, respectively, could be discerned.   

In addition to the discontinuous labeling of cohesins along AE/LEs, we also noted that   

SMC1 does not fully co-localize at similar signal intensities with any of the other cohesins at any 

stage of prophase I (Figures 1-3), in contrast to current models for the interaction of SCC 

proteins (Nasmyth and Haering 2009).  To check whether this result was due to interference of 

the two primary antibodies during simultaneous labeling, we incubated SC spreads with one of 

the primary antibodies followed by the appropriate secondary antibody, captured images, then 

incubated the same spreads with the second antibody series and captured a second set of images 

(Figure 4).   In all single and sequential labeling combinations of SMC1 with SMC3 or REC8, 

we observed discontinuous labeling of AE/LEs.  We also found fluorescence intensities and 

exposure times for each protein, which were like those when simultaneous labeling was 

performed.  These results show that the lack of complete cohesin protein colocalization is due to 

biological factors and is not a consequence of the immunolabeling procedure.   

Electron microscopic (EM) immunogold localization of SMC3 revealed that the cohesin 

label was specific for AE/LEs (Figure 5).  In addition, the gold particles were present in clusters 

similar to the discontinuous focal immunofluorescence pattern observed by LM (Figure 2).   

Similar discontinuous immunogold labeling of AE/LEs has been observed at the EM level for 

SMC1 in tomato (Stack and Anderson 2009).   
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Figure 1.  Colocalization of REC8 (left column) and SMC1 (middle column) with merged color image (right column 

with REC8 in red and SMC1 in green) in tomato SC spreads at different stages of prophase I.  The same nucleus is 

shown in each row at (A) preleptotene, (B) leptotene, (C) zygotene, (D) early pachytene, (E) late pachytene, (F) 

diplotene.  There are more REC8 than SMC1 foci at the earliest and latest stages examined here.  Both cohesins vary 

in fluorescence intensity along AE/LEs.  The two proteins colocalize (yellow signals) most in early pachytene (D).  

However, the two proteins more-or-less alternate along AE/LEs more often than they colocalize (see 2X enlarged 

inset shown in the right column of row B).  The short arm of SC2 containing the NOR is often broken and/or 

asynapsed, as well as lightly stained (arrows) in row D.  Bar = 10 μm. 
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Figure 2. Colocalization of SMC3 (left column) and SMC1 (middle column) with merged color image (right column, 

SMC3 - red and SMC1 - green) in tomato SC spreads at different stages of prophase I.  The same nucleus is shown in 

each row at (A) preleptotene, (B) leptotene, (C) zygotene, (D) zygotene, (E) early pachytene, (F) early diplotene, (G) 

diplotene.  There are more SMC3 than SMC1 foci at the earliest and latest stages examined, and both cohesins vary in 

fluorescence intensity along AE/LEs.  Note also that the intensity of the SMC3 signal is higher than that of SMC1 in 

early diplotene nuclei (F).   In a portion of a zygotene nucleus (D), aligned AEs are shown. Bright SMC1 signals that 

are similar in intensity sometimes correspond at the same location on both AEs (arrows), in other cases the SMC1 

signals do not correspond in intensity (small arrowheads).  In addition, the SMC1 signal of one AE lacks any SMC1 

signal at all on the other AE (large arrowheads, also observed for SMC3).  SMC1 and SMC3 seem to alternate along 

AE/LEs more often than they colocalize.  SMC1 and SCM3 localized together with similar fluorescence intensity 

(yellow signals) most in early pachytene (E).  The short arm of SC2 containing the NOR is often broken and/or 

asynapsed, as well as lightly stained (arrows in E).  Bar = 10 μm for all but D, where the bar = 20 μm. 
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Figure 3.  Colocalization of SCC3 (left column) and SMC1 (left center column) with merged color image 

for both cohesins (right center column, SMC1 - red and SCC3 - green) and corresponding DAPI images 

(right column). The DAPI images are shown here because SCC3 labeling is much reduced compared to 

the other cohesins. The same nucleus is shown in each row at (A) zygotene (B) pachytene, (C) diplotene.  

Although the background is higher than for the other cohesin antibodies, the punctate SCC3 signal is 

associated with both AEs (arrowheads) and LEs (arrows) in zygotene nuclei (A).  At pachytene (B), the 

NOR (arrows) has reduced labeling for both SCC3 and SMC1.  At diplotene (C), fewer SCC3 foci remain 

in the same nucleus compared to SMC1 foci.  A tapetal cell nucleus that has only background levels of 

SCC3 and SMC1 signals can be seen just above the diplotene nucleus in the DAPI channel (open 

arrowhead in row C).  The relatively high amount of signal for SCC3 and SMC1 that appears between the 

tapetal and PMC nuclei probably represents non-specific labeling. Bar = 10 μm. 
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Figure 4. Colocalization of REC8 or SMC3 (left column) and SMC1 (middle column) with merged color 

image (right column, SMC1 - red and REC8 or SMC3 - green) on tomato pachytene SC spreads using 

sequential (Row A: REC8 first, image capture, SMC1 second.  Row B: SMC1 first, image capture, REC8 

second) (Row D: SMC3 first, image capture, SMC1 second.  Row E: SMC1 first, image capture, SMC3 

second) or simultaneous (Row C and Row F) antibody incubations.  There are no obvious differences 

among the images indicating that the discontinuous AE/LE cohesin labeling is not due to antibody 

interference. The short arm of SC2 containing the NOR is often broken and/or asynapsed (arrows in B-E). 

Bar = 10 μm. 
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Figure 5. Electron microscopic immunolocalization of SMC3 protein on a segment of a tomato zygotene 

SC that had been treated with DNase I prior to antibody incubations.  SMC3 proteins are marked with 6-

nm gold particles and are located specifically along axial and lateral elements in a discontinuous pattern 

similar to that observed by light microscopic immunofluorescence.  Bar = 0.1 μm. 
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Patterns of cohesin proteins during early prophase I 

REC8 and SMC1  

The colocalization patterns of REC8 and SMC1 proteins were evaluated from 

preleptotene to diplotene in wild-type tomato nuclei (Figure 1).  Before linear AEs were 

perceptible (preleptotene), numerous REC8 foci were observed compared to relatively few 

SMC1 foci in the same nuclei (Figure 1A).  In leptotene nuclei, REC8 foci were still separate, 

but the foci were more clearly arranged in linear elements that correspond to AEs (Figure 1B).  

Similarly, the number of SMC1 foci increased in leptotene nuclei, and linear elements could be 

recognized.  However, the SMC1 linear elements were often less distinct and shorter than those 

observed for REC8 in the same nucleus.  Both REC8 and SMC1 foci were aligned along the 

same linear elements, but the two types of foci only rarely colocalized with similar intensity (as 

defined by the presence of yellow signals).  Instead, most SMC1 and REC8 foci appeared in a 

more-or-less alternating pattern along the AEs, with minimal overlap of the two signals (Figure 

1B, inset).  At zygotene, REC8 and SMC1 signals along single AEs remained in an alternating 

pattern with relatively little colocalization (Figure 1C).  However, in synapsed regions where the 

two LEs were closely aligned, the two signals often colocalized to yield yellow signals. 

At pachytene, colocalization of REC8 and SMC1 proteins was extensive (Figure 1D).  

However, differences in relative staining intensity between the two proteins were still apparent 

with REC8 signals generally more intense than SMC1 signals.  Later in pachytene (Figure 1E), 

both REC8 and SMC1 signals became more discontinuous and punctate, and the frequency of 

colocalized foci was reduced.  This trend continued as SCs began to desynapse in diplotene.  By 

middle diplotene (Figure 1F), a few linear elements were still discernable with anti-REC8, but 

most of the REC8 and SMC1 focal signals were dispersed within nuclei. 
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SMC3 and SMC1 

The patterns of colocalization of SMC3 and SMC1 from pre-leptotene through diplotene 

were quite similar to REC8 and SMC1 through the same stages.  Like REC8, SMC3 was present 

in greater amounts than SMC1 at preleptotene, and foci that were organized in distinct linear 

elements at leptotene appeared earlier with SMC3 than SMC1 (Figure 2A-B).  The fluorescence 

intensity of SMC3 and SCM1 proteins varied so that the two proteins often appeared to be 

alternating in AEs from leptotene and zygotene nuclei (Figure 2B-D).  In zygotene nuclei in 

which two homologous AEs were aligned but not yet synapsed, it was possible to compare focal 

patterns of the punctate SMC1 signal on the two AEs (Figure 2D, center column).  SMC1 foci 

matched in some comparable locations on the two AEs (arrows), did not match in others (small 

arrowhead), and appeared to be absent altogether at some points of the aligned AEs (large 

arrowheads).  However, we were unable to compare focal patterns along the entire lengths of 

homologous AEs in these spread preparations.  The REC8 signals was more continuous than 

SMC1, but distinct regions with no REC8 signal were also observed (large arrowhead, Figure 

2D, left column). 

Colocalization of SMC1 and SMC3 at the same locations and with similar intensities was 

usually greater for SC segments than for AEs in zygotene nuclei (Figure 2C) and was greatest at 

pachytene (Figure 2E) although variation in staining intensities of the two proteins still evident.  

Most SMC1 and SMC3 foci did not colocalize in early diplotene nuclei (Figure 2F), and by 

middle-late diplotene (Figure 2G), numerous SMC3 foci and a few SMC1 foci were dispersed 

throughout nuclei with little discernable colocalization of the two proteins.   
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SCC3 and SMC1 

As mentioned above, the SCC3 antibody labeled AEs and LEs but had a generally high 

background that made some meiotic stages more difficult to interpret (Figure 3).  For example, 

we were not able to determine whether SCC3 appeared before, after or at the same time as SMC1 

protein in preleptotene nuclei.  SCC3 is present along both AEs and LEs in zygotene and 

pachytene, but in much reduced amounts and in a more punctate pattern than SMC1 (Figure 3A, 

3B).   However, it is not clear whether this pattern is real or a feature of this antibody.  In mid-

late diplotene nuclei, SMC1 is present in much larger amounts than SCC3, suggesting that SCC3 

may be released from AE/LEs earlier than SMC1 (Figure 3C).      

Cohesin proteins in heterochromatic regions of chromosomes 

Using the length of chromatin loops as a marker, we evaluated whether there was any qualitative 

difference in cohesin localization in heterochromatin compared to euchromatin in pachytene 

SCs.  All twelve tomato chromosomes have distinct blocks of pericentric heterochromatin 

(Peterson et al. 1996), and chromatin loops that are revealed by the SC spreading procedure are 

longer and extend farther from the SC in heterochromatic than in euchromatic regions from 

tomato (Lohmiller et al. 2008; Stack et al. 2009).  This differentiation is most obvious during 

pachytene (Figure 6).  In some pachytene SC spreads, we observed more intense and wider 

fluorescent signals for cohesin proteins in SC regions within pericentric heterochromatin 

compared to euchromatin (Figure 6A).  However, this pattern was not consistently observed, 

even for all SCs within the same nucleus.  Often there was little if any obvious difference in 

cohesin immunolabeling for most pachytene SC spreads from tomato (Figure 6B).  When SC 

spreads were treated with DNase I to remove most of the overlying chromatin (Figure 6C), 

cohesin labeling was still variable along the SC length, but no obvious differentiation was  
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Figure 6. Cohesin labeling in heterochromatic regions of the genome.  Colocalization of SMC3 (left 

column) and SMC1 (left center column) with merged color image (right center column, SMC3 – red, 

SMC1 - green) and corresponding DAPI images (right column).  The loops of DNA in heterochromatin 

are longer than in euchromatin (borders between euchromatin and heterochromatin have been marked for 

some SCs with white lines in Rows A and B).  (A) Some SC spreads have distinctly increased labeling of 

SMC3 in heterochromatic regions of SCs.  Increased labeling of SMC1 in heterochromatin also occurs in 

this nucleus, although to a lesser extent than for SMC3.  (B) Other SC spreads have little if any different 

cohesin labeling in heterochromatic regions of SCs. For example, the SC labeled (b) showed higher 

heterochromatic cohesin labeling but the SC labeled (a) did not.  (C) After DNase I digestion (note the 

absence of DAPI signal for this nucleus), there is no obvious differential labeling of SMC3 or SMC1 in 

heterochromatic compared to euchromatic regions, but each cohesin still varied in intensity along the 

length of each SC.  In contrast to the pericentric heterochromatin, cohesin labeling of the NOR was 

always reduced compared to the rest of the SCs.  In addition, NORs are often asynapsed and/or broken off 

from the rest of SC2 (brackets).  The cohesin signal of the NORs has been intensified and enlarged in the 

insets images.  Bar = 10 μm (20 μm for inset images). 
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observed in heterochromatic compared to euchromatic sections.  We also were unable to 

distinguish centromere positions based on the labeling patterns of the cohesin proteins. The 

nucleolus organizer region (NOR), located on the short arm of SC2, is also heterochromatic.  In 

tomato SC spreads, the NOR is often asynapsed and/or broken off from the rest of the 

chromosome (Sherman and Stack 1992; Sherman and Stack 1995).  In addition, the NOR does 

not stain well with DAPI (Figure 6).  The signals for cohesins SMC1, SMC3, and REC8 in the 

NOR region were consistently less bright than for any other portion of any pachytene SC (Figure 

6, also Figures 1, 2, and 5).  Similar observations were made for SCC3, in spite of the higher 

background associated with this antibody (Figure 3B).  The lower fluorescence intensity was not 

simply due to the fact that the NOR region was often asynapsed, as judged by comparison with 

AE labeling in leptotene and zygotene nuclei photographed with the same exposure settings 

(Figures 1, 2, 3).  The less intense NOR fluorescence was also not caused by a lack of antibody 

accessibility because SC spreads that had been treated with DNAse I to remove most overlying 

chromatin also showed the same pattern of reduced NOR cohesin labeling (compare Figure 6 A-

B with Figure 6C).  In contrast to pachytene nuclei, reduced cohesin labeling of the NOR was 

not obvious in leptotene or zygotene nuclei (Figures 1, 2). 

 

DISCUSSION 

The four cohesin proteins examined in this study displayed similar immunolocalization 

patterns during early prophase I in tomato.  Each cohesin was associated with AEs and LEs of 

SCs from leptotene through early diplotene, and cohesin signals were discontinuous and variable 

in intensity along AE/LEs (Figures 1-3).  Maximal colocalization of different cohesins was 

observed during early pachytene.  However, the degree of colocalization was low during most 



57 
 

prophase I stages, and the temporal appearance patterns of some cohesins also differed.  For 

example, SMC3 and REC8 foci were more numerous and appeared earlier in preleptotene, 

formed linear segments earlier in leptotene, and stayed longer into diplotene than SMC1 foci in 

tomato microsporocytes.  SCC3 foci may have been released from AE/LEs earlier than SMC1 in 

diplotene nuclei, although the comparatively high background associated with the SCC3 

antibody made these results less definite.  Overall these results indicate that the associations of 

cohesin proteins with AE/LEs in tomato can be largely independent of one another during early 

prophase I. 

The cytological patterns of cohesin proteins during early prophase I of meiosis have been 

examined in budding and fission yeasts, C. elegans and other invertebrates, a variety of 

mammals, and plants (Arabidopsis and maize, Klein et al. 1999; Eijpe et al. 2000a; Pasierbek et 

al. 2001; Prieto et al. 2001; Prieto et al. 2002; Kitajima et al. 2003; Pigozzi and Solari 2003; 

Eijpe et al. 2003; Cai et al. 2003; Pasierbek et al. 2003; Chan et al. 2003; Chelysheva et al. 2005; 

Lam et al. 2005b; Ding et al. 2006; Golubovskaya et al. 2006; Valdeolmillos et al. 2007; 

Severson et al. 2009; Suja and Barbero 2009).  In these organisms, cohesins were integrally 

associated with AE/LEs, although the cohesin fluorescence signals along AE/LEs often appeared 

more-or less discontinuous.  Some of the discontinuities could have been due to differences in 

preparation method (particularly the presence of detergents such as Triton X-100) and/or 

antibody interference in colocalizations both of which can affect cohesin labeling in mammals 

and Arabidopsis (Revenkova et al. 2001; Lam et al. 2005b).  In tomato, antibody interference or 

limited accessibility is unlikely to be responsible for the discontinuous staining we observed 

because 1) discontinuous cohesin staining was detected with individual antibody labeling and 

with dual colocalizations, and 2) DNase-treated SC spreads in which most if not all of the 
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chromatin was removed also revealed discontinuous cohesin labeling by both LM and EM.  

However, all of our tomato SC preparations had been treated with the non-ionic detergent (NP-

40) as part of the regular spreading procedure prior to fixation.  Detergent, specifically Triton X-

100, has been reported to extract cohesin proteins in chromosome preparations from Arabidopsis 

PMCs (Lam et al. 2005b).   Discontinuous distribution of the cohesin AFD1 (=REC8) was also 

detected along AE/LEs in maize microsporocytes using a super-high-resolution light microscopic 

technique called three-dimensional structured illumination microscopy [3-D SIM, (Schermelleh 

et al. 2008; Gustafsson et al. 2008; Wang et al. 2009)].  This method allows individual axes (AEs 

or LEs) to be followed at a resolution of ~100 nm in the XY axis and 250 nm in the Z-axis.  The 

maize microsporocytes were fixed and embedded in polyacrylamide without any detergent 

exposure, but cells were later permeabilized with Triton X-100 before immunolabeling 

(Golubovskaya et al. 2006; Wang et al. 2009).  Wang et al. (2009) observed that the 

discontinuous pattern of AFD1 localization was often mirrored on both LEs and suggested that 

underlying sequence or epigenetic information and/or AE assembly kinetics could be involved in 

the similar patterns.  Even if detergent exposure is contributing to the discontinuous appearance 

of AFD1 in maize, the observation that both LEs are affected in the same way indicates an 

underlying structural/functional basis for the discontinuous pattern. Our resolution in tomato was 

not sufficient to compare LE localization patterns and aligned AEs showed only limited 

similarities in SMC3 and SMC1 focal patterns (Figure 2D).   However, the alternating pattern of 

SMC1 with REC8 and SMC3 at all stages except early pachytene indicates that an underlying 

structural/functional cause is also likely to be responsible for the discontinuous cohesin patterns 

in tomato. 
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 Differences in the intensity of each cohesin signal along individual AE/LEs were 

consistently observed in tomato SC spreads.  Wang et al. (2009) observed that positions of SC 

twists using 3-D SIM corresponded to positions of more intense AFD1 fluorescence using 

conventional epifluorescence microscopy (see their Figure 1), and some of the varation we 

observed could be due to SC twists.  However, differences in cohesin signals were still apparent 

in single AEs from tomato leptotene and zygotene nuclei and in LEs from maize nuclei using 3-

D SIM.  These results indicate that both SC twists and differences in cohesin levels along 

individual AE/LEs contribute to variations in cohesin signal intensity.   

 We did not detect consistent differences in cohesin labeling through such chromosomal 

landmarks as pericentric heterochromatin, kinetochores or euchromatin (Figure 1-3, 5-6), but 

tomato NORs were consistently less intensely fluorescent for all four cohesins compared to the 

rest of the LE length in pachytene nuclei.  The reduced cohesin levels in the NOR may be related 

to the observation that the short arm of tomato SC#2 is often broken at the NOR (Sherman and 

Stack 1992; Sherman and Stack 1995).  Such fragmentation near the NOR is not typically 

observed in squashes of tomato pachytene chromosomes fixed in acetic ethanol (Chang et al. 

2008), so forces associated with dispersing chromatin to prepare SC spreads probably also 

contribute to the oft-observed NOR breakage.  The differential labeling of the NOR in tomato is 

only noticeable at pachytene – early diplotene, and we were unable to distinguish the position of 

the NOR in leptotene or zygotene nuclei.  Possibly the lower level of cohesins in tomato NORs 

at pachytene is due to loss of cohesins that had loaded earlier onto AEs in the NOR.  Most other 

organisms showed no difference in cohesin staining in NOR, centromeres, pericentric 

heterochromatin, or heterochromatic knobs (in maize, Valdeolmillos et al. 2007; Wang et al. 

2009; Suja and Barbero 2009) with two exceptions: reduced REC8 and SMC3 labeling through 
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pachytene SC in rDNA has also been observed in budding yeast (Klein et al. 1999), and reduced 

(or eliminated) levels of different cohesin proteins have been observed for sex chromosomes in 

animals (Pigozzi and Solari 2003; Page et al. 2006).  The low cohesin levels in yeast NORs may 

be related to cohesin-independent SCC associated with tandem rDNA repeats (Nasmyth and 

Haering 2009).  Possibly, SCC is also altered in animal sex chromosomes and tomato NORs. 

The cytological behavior of different cohesins during meiosis has been reported for plants 

(Cai et al. 2003; Chelysheva et al. 2005; Lam et al. 2005b; Golubovskaya et al. 2006; Wang et al. 

2009), but this study is the first to examine their colocalization patterns and loading/unloading 

order during different stages of early prophase I.  However, similar colocalization and/or timing 

studies for cohesin proteins during meiosis have been reported for other organisms (Eijpe et al. 

2003; Chan et al. 2003; Valdeolmillos et al. 2007).  In rat spermatocytes, REC8 proteins 

appeared as spots shortly before premeiotic S phase, and two SMC proteins (SMC3 and the 

meiosis-specific SMC1β) appeared later during leptotene along with two AE proteins, SYCP2 

and SYCP3 (Eijpe et al. 2003).   In C. elegans, SMC-1 and SMC-3 proteins loaded before and 

independently of REC-8 and SCC-3 (Chan et al. 2003).   In grasshopper spermatocytes, SMC3 

protein appeared before leptotene, and RAD21 (that is similar to SCC1) and stromal antigen 

protein 1 (SA1, that is similar to SCC3) appeared at zygotene, but only on synapsed axes 

(Valdeolmillos et al. 2007).  In tomato, SMC3 and REC8 appeared first before leptotene 

followed by SMC1, and SMC3 and REC8 formed linear segments before SMC1 in early 

leptotene.  Comparison of these results in different organisms is complicated by the fact that the 

same cohesins were not evaluated in the different studies.  Nevertheless, it is clear that cohesin 

proteins do not have to be loaded onto meiotic chromosomes at the same time or as part of the 

same complex [(Eijpe et al. 2003; Chan et al. 2003; Valdeolmillos et al. 2007; Suja and Barbero 
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2009), this study].  Studies of amphibian oocyte nuclei have demonstrated that cohesins that are 

associated with lampbrush chromosomes are highly dynamic and quickly move on and off the 

axes during dictyotene (Austin et al. 2009).  Such active interactions of cohesins with meiotic 

chromosomes may also occur earlier during prophase I and be partially responsible for the 

variety of cohesin immunolocalization patterns observed among different species. 

The differential timing and localization of cohesins during meiosis in tomato and other 

organisms suggests that cohesins have other roles in addition to sister chromatid cohesion.  

Experiments in mitotic cells demonstrated that only those cohesins loaded during DNA 

replication are effective for sister chromatid cohesion and that cohesins loaded later are not 

“cohesive” (Guacci 2007; Austin et al. 2009; Nasmyth and Haering 2009).  Similarly, in 

mammals, a large fraction of cohesin proteins are lost from chromosomes during mitotic 

prophase, and only about 10% of the total cohesins that were initially present on mitotic 

chromosomes remain into metaphase and are involved in sister chromatid cohesion (Sumara et 

al. 2000; Peters et al. 2008).   This small subset of cohesins cannot be visualized by regular 

immunolabeling and can be seen only when individual cohesin subunits are directly labeled with 

a fluorescent tag.  [The loss of easily-detectable cohesins from meiotic chromosomes in 

diplotene may be related to this mitotic prophase phenomenon (Suja and Barbero 2009)].  Based 

on this evidence, it is likely that cohesins loaded onto meiotic chromosomes during prophase I 

are incapable of providing sister chromatid cohesion. 

If only a small subset of cohesins is required to provide SCC, what could be the 

function(s) of the rest of the cohesin proteins in meiosis?  Cohesins are also involved in DNA 

repair and transcription control in somatic cells (Onn et al. 2008; Peters et al. 2008; Nasmyth and 

Haering 2009).  Given the large number of DNA double-strand breaks induced by Spo11, a role 
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in DNA repair is particularly attractive for the non-cohesive cohesins during prophase I.  Other 

possibilities include stabilization of meiotic chromosome structure, regulation of crossing over, 

or other functions related to the unique events that occur during prophase I of meiosis.  Recent 

extensive work done by (Brar et al. 2009) has shown that Rec8 has multiple distinct and 

genetically separable meiotic functions in budding yeast including roles in chromosome pairing, 

recombination, chromosome morphogenesis, and SC assembly.   So far, most work to evaluate 

the function of cohesin proteins in higher eukaryotes has examined null mutations that eliminate 

the essential role of cohesins in sister chromatid cohesion.  Future experiments like those of 

(Brar et al. 2009) using targeted mutations in cohesin proteins will be useful in determining 

whether cohesins perform additional functions during meiotic prophase I in multicellular 

eukaryotes. 
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CHAPTER 3 

 

In vivo BrdU LABELING METHOD TO STUDY THE  

MEIOTIC TIME-COURSE IN TOMATO POLLEN MOTHER CELLS 

 

The duration of meiosis has been studied in many organisms (Bennett 1977).  Even 

excluding female animals in which meiosis may be arrested for years, the time required for 

meiosis is highly variable, ranging from about six hours in budding yeast to three days in plants 

and twenty days in male animals (Bennett 1977). Meiotic duration in plants is affected by 

external factors, particularly temperature with faster meiotic progression at higher temperatures, 

and intrinsic factors including nuclear DNA content, ploidy level, and genotype (Bennett 1971; 

Bennett et al. 1973).  In general, the larger the diploid genome, the longer the time required to 

complete meiosis.  However, an increase in DNA content due to polyploidy does not cause a 

corresponding increase in meiotic duration in plants indicating that genotypic factors are also 

involved in the timing of meiosis.  Although such genotypic effects have not been explored 

thoroughly, meiotic mutations usually do not cause arrest although they may cause a delay in 

progression and/or a reduction in fertility compared to wild-type plants (Bennett et al. 1973; 

Bennett 1977; Armstrong et al. 2002; Nonomura et al. 2006; Sanchez-Moran et al. 2007; 

Schubert 2009; Wang et al. 2010).  Delays in meiotic progression can be useful in diagnosing the 

effects of a mutation as has been demonstrated in mice (Eijpe et al. 2003).  Mutations that affect 

Prophase I are of particular interest since homologous chromosomes pair, synapse and 

recombine during that distinctive meiotic stage.  Unfortunately, meiotic mutations affecting 

Prophase I are often difficult to evaluate since many of these mutations interfere with signature 
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events (such as synapsis) that are used for determining substages of prophase I.  In these cases, 

alternative methods to evaluate meiotic duration are necessary to detect any delays caused by the 

mutation. 

Several methods and techniques have been employed in plants to determine the overall 

duration of meiosis as well as the length of individual meiotic stages.  One method takes 

advantage of the fact that pollen mother cells (PMCs) from different anthers of the same flower 

are often synchronized.  The duration of different meiotic stages can be determined by 

periodically sampling individual anthers from the same flower and determining the stage of 

meiosis using cytological methods such as chromosome squashes or synaptonemal complex (SC) 

spreads (Bennett 1971; Stack and Anderson 1986b). Sampling anthers from a number of 

different flowers over a period of several days can establish the timing of individual stages from 

the beginning to the end of meiosis.  This same principle can be applied to anthers or meiotic 

cells cultured in vitro (Ito and Stern 1967; Lim et al. 2001).  However, this method is limited to 

plants with easily accessible flowers and is of limited usefulness when evaluating meiotic 

mutants.  Another method involves the incorporation of thymidine analogs such as tritiated 

thymidine (H
3
-T) or 5-Bromo-2´-deoxy-uridine (BrdU) during premeiotic S-phase using pulse 

labeling, then evaluating the cytological stage of meiosis after different time periods have 

elapsed (Lima-De-Faria 1965; Bennett 1971; Armstrong and Jones 2001).  This method can be 

applied to almost any plant species and provides a defined starting point for timing studies which 

is particularly important when evaluating meiosis in mutants.  Of the two, BrdU labeling is 

preferred because it avoids the use of radioactive components, is comparatively easy to do, and 

has good resolution (Armstrong and Jones 2001; Armstrong et al. 2003).  Several methods have 

been used to introduce BrdU (or H
3
-T) label into meiotic cells, but the easiest is to immerse the 
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cut end of a flower stem into labeling solution, (Bennett 1971) (Lima-De-Faria 1965; Armstrong 

and Jones 2001; Armstrong et al. 2003).  Unfortunately, this procedure interferes with meiotic 

progression in some species such as tomato.  Here, we describe a method that does not disturb 

meiotic development by introducing label through leaves just below the growing tip of an 

otherwise intact tomato plant.  Using this procedure in combination with two types of 

chromosome preparation techniques, we have evaluated meiotic progression during early 

prophase I in pollen mother cells (PMCs) from wild-type and two asynaptic mutants (as1 and 

asb) of tomato. 

 

METHODS AND MATERIALS 

Plant material 

Flowering tomato plants [wild-type Solanum lycopersicum var. cherry, accession 

LA4444 and asynaptic mutants, as1 and asb (Soost 1951)] were moved from a greenhouse into a 

controlled environment growth chamber with a 16-hour light cycle at constant 21
o
C temperature 

and allowed to equilibrate for seven days before BrdU labeling was initiated.  BrdU labeling and 

subsequent growth (up to 6 days after labeling) occurred in the growth chamber.  All plants were 

used before they were three months old.   

BrdU Labeling  

The following procedure was developed initially using aqueous 1% eosin (Lima-De-Faria 

1965)) as a surrogate to evaluate the movement of BrdU through the plant.  Eosin, a red dye, is 

easily observed by eye.  Preliminary experiments showed that PMCs from flower buds about 3.0 

mm long were likely to be in premeiotic S-phase.  When flower buds at the growing tip were the 

appropriate size, petioles of two leaves immediately below the shoot apex and on opposite sides 
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of the stem were cut at a 45 degree angle leaving about 3cm of the petiole attached to the stem. A 

Tygon tube filled with aqueous 2.5X10
-3

 M BrdU (Sigma-Aldrich) was immediately linked to 

each cut petiole (Figure 1).  If necessary, parafilm was wrapped around a petiole to increase its 

diameter so the tube fit better (Figure 1, arrowheads).  Grease (high vacuum - Dow Corning) was 

applied to seal the petiole-tube joint.  A small funnel was attached to the opposite end of each 

tube, and additional BrdU solution was added to bring the final volume to ~ 5 ml (Figure 1 

arrows).  Each funnel was held 5 cm higher than the two cut branches to impose a pressure and 

to facilitate introduction of BrdU solution.  After 2.5 hrs, a total of about 6ml BrdU solution had 

been taken up by the plant.  A clip was used to close each tube then the two tubes were removed 

from the petioles.  After BrdU labeling, the plants were allowed to continue growing for 6 – 129 

hours before buds were removed for chromosome preparation.     

Preparation of chromosomes from tomato PMCs 

Synaptonemal complex (SC) spreads were made using a hypotonic bursting technique 

described in detail by (Stack and Anderson 2009).  Chromosome squashes were made as 

described by (Armstrong and Jones 2001) with the following modifications.  Anthers from buds 

labeled with BrdU were fixed using 1:3 glacial acetic acid: absolute ethanol.  After being fixed 

for at least three hours at -20
o
C, the anthers were rinsed three times with distilled water.  Both 

ends of each anther were cut off using a sharp scalpel blade, and the anthers were digested for 

three hours at 37
o
C in a moist chamber using a mixture of 0.3% (w/v) of each enzyme Cellulase 

RS (Onozuka R10), Pectolyase Y23 (Sigma) and cytohelicase (Sigma) in 10 mM sodium citrate, 

pH 4.5 (Ross et al. 1996; Chang 2004; Stack et al. 2009).  After digestion, anthers were washed 

twice with distilled water and used immediately.  One anther was transferred with a small 

amount of water to a slide and broken up into very small clumps using a dissecting needle.   
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Figure 1. Method  to label tomato PMC cells with BrdU. Tubes connect two cut petioles to the BrdU 

solution that is held in the tubes and in open funnels (arrows) above the sites of the cuts. The tube-petiole 

sites are sealed with high-vaccuum grease and parafilm (arrowheads).   
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A drop of 45% acetic acid was added beside the cell mixture, and a needle was used to mix the 

acetic acid with the dissociated cells from the anther.  The slide was heated over an alcohol lamp 

for about 2 seconds, a siliconized cover glass was placed on the drop, and the cells were 

squashed.  The cover glass was removed using the dry ice method, and slides were allowed to air 

dry.  Slides were used immediately or stored at -80
o
C for several months. 

Antibodies, immunolabeling, microscopy, and image analysis 

Axial elements and lateral elements of SCs were detected using chicken antibodies to 

tomato SMC1 and rabbit antibodies to tomato SMC3, diluted 1:20 and 1:200, respectively 

(Lhuissier et al. 2007; Lohmiller et al. 2008). Goat anti-chicken tetramethyl rhodamine iso-

thiocyanate (TRITC; Jackson) and goat anti-rabbit TRITC (Jackson) were used at working 

dilutions of 1:100 and 1:50, respectively.  BrdU was detected using antibodies and solution from 

a kit (Roche) according to the manufacturer’s directions, with the following modifications.  

Chromosome squashes and SC spreads were first treated for 10 minutes with 0.1M ammonium 

chloride then blocked for 15 min. with 500 l 10% antibody dilution buffer (ADB: 10% normal 

goat serum, 3% bovine serum albumin (BSA), 0.05% Triton X-100, 0.05% sodium azide in 10 

mM Tris-buffered saline, pH 8) to reduce background (Lohmiller et al. 2008). The rest of the 

steps were done as per kit directions.  The slides were washed three times, and Vectashield 

antifade mounting medium (Vector laboratories) containing 10µg/ml 4’, 6-diamidino-2-

phenylindole (DAPI) was mounted on the slides before photographing using a Leica DRM 5000 

fluorescence microscope (Lohmiller et al. 2008).    
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RESULTS 

BrdU labeling 

We found that removing and placing the top flowering portion of a tomato plant into 

BrdU solution caused almost immediate cessation of meiotic development in tomato anthers, 

even though the cuttings appeared to remain healthy for up to two days.  To avoid this problem, 

we developed an alternative BrdU labeling method that does not disturb the development of 

tomato PMCs by introducing BrdU into the transpiration stream through the vascular systems of 

two cut leaves located immediately below the shoot apex.  Using this method, the rest of the 

plant remains intact and healthy, as do the PMCs in developing flowers.     

We used the red dye eosin to mimic the movement of BrdU through the plant because it 

can be traced easily by eye.  We found that if the eosin solution was introduced through the 

petiole of only one lower leaf, one half of each leaf and two or three anthers out of five in each 

bud around the shoot apical meristem were labeled with eosin.  However, if the eosin solution 

was introduced through two petioles on opposite sides of the stem below the apical meristem, 

entire leaves and all the anthers in every bud in the upper plant were stained red with eosin.  The 

speed of the eosin dye traveling through the transpiration system was ~0.18 cm/min, and we 

calculated that about 100 minutes would be enough time for eosin to travel from the cut petioles 

to PMC cells in most plants.  When plants were labeled with BrdU for 100 minutes, PMCs were 

indeed labeled, but only lightly.  When we increased the BrdU pulse to 2.5 hr (150 min), BrdU 

labeling was heavy, indicating that more time was necessary to allow BrdU to be taken up by 

PMCs and incorporated into replicating DNA.      

We introduced BrdU to plants with young buds at different developmental stages that 

corresponded to different bud lengths and found that a bud length of 3.0 mm (and corresponding 
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anther length of ~1.4 mm) was most likely to have PMCs in premeiotic S-phase.  However, bud 

length is only a rough indicator of anther development, and many plants exposed to the BrdU 

pulse label did not have labeled PMCs.  Because tapetal nuclei were labeled in many of these 

buds (Figure 2), BrdU was available, but the PMCs were not undergoing S-phase when exposed 

to BrdU.  This complication reduced the number of time points available to estimate meiotic 

progression.  In addition, once buds were exposed to BrdU, anthers became more sensitive to 

handling and even minor perturbations affected PMC development.  Therefore, we were unable 

to take advantage of the synchronous development of PMCs within anthers to chart meiotic 

development at different time points within a single bud.   Instead, PMCs from entire buds were 

used at each time point to make chromosome squashes or SC spreads.  Despite these problems, 

we were able to document an extended prophase I delay in two meiotic mutants compared to 

wild-type tomato. 

Patterns of BrdU labeling through early prophase I in wild-type tomato 

Defining the zero time point as immediately after the 150 minute BrdU pulse label, we 

obtained labeled wild-type tomato PMCs at 6, 7, 20, 24, and 28 hours after BrdU pulse labeling.  

These rather short time periods were chosen in order to concentrate on the timing of Prophase I 

substages. 

Two different chromosome preparation methods were used for two buds at 6 and 7 hours 

post-labeling, and both gave similar results (Figure 3).  PMCs from one bud that was fixed with 

1:3 acetic ethanol and squashed revealed that chromosomes were just beginning to condense in 

the leptotene stage of meiosis (Figure 3A).  BrdU label was found throughout the nuclear volume 

indicating that BrdU label was probably incorporated rather early in S-phase when euchromatin 

is being replicated.  PMCs from another bud on a different plant were used to prepare SC spreads  
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Figure 2. Immunofluorescent localization of BrdU (green) in two tapetal cell nuclei (bottom) but not in a 

meiotic pachytene nucleus (top).  These nuclei are from the same bud and have been counterstained with 

DAPI (white). Scale bar = 10µm 

 

Figure 3. Immunolocalization of BrdU in leptotene PMCs. The same nucleus is shown in each row with 

DAPI (left), BrdU (middle), and the merged image (DAPI - red, BrdU - green). The nucleus in the top 

row (A) was fixed in 1:3 acetic ethanol and squashed, and the nucleus in the bottom row (B) was prepared 

using the SC spreading procedure. Scale bar = 10µm 
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(Figure 3B). This method of preparation disperses the loops of chromatin that are attached along 

the axial and lateral elements (AEs, LEs) of the two homologous chromosomes and reveals SC 

spreads made from a third plant 20 hrs post-BrdU labeling were also in leptotene (Figure 4) 

based on the presence of short linear stretches of SMC1 and SMC3 (cohesin components of axial 

and lateral elements) observed at this time point.  Two distinct types of BrdU labeling patterns 

were detected from two different buds from the same plant.  BrdU was evenly distributed over 

the entire nucleus in some spreads while BrdU was more limited in other spreads (Figure 4).  The 

more limited BrdU labeling pattern also seemed to be associated with more condensed chromatin 

by DAPI staining. The latter pattern would indicate that PMCs incorporating BrdU were later in 

S-phase and BrdU was mostly incorporated into late-replicating heterochromatin.  The other 

pattern suggests that the PMCs were exposed to BrdU earlier in S-phase so that BrdU was 

incorporated into both euchromatin and heterochromatin.   

SC spreads prepared from PMCs that were 20-28 hours post-BrdU labeling were in the 

zygotene stage of prophase I (Figure 5).  SMC1 immunolabeling showed a synaptic pattern 

typical of mid-late zygotene in tomato (Stack and Anderson 1986b) in which the distal 

euchromatic portions of the bivalents were synapsed while pericentric heterochromatic segments 

were unsynapsed.  In these preparations, the BrdU signal was mostly excluded from the distal 

euchromatic portions of the chromosomes, presumably because these portions of the 

chromosomes had already replicated before BrdU was available to the cells.  However, DNA in 

the pericentric, asynapsed heterochromatic regions was heavily labeled with BrdU.  Within these 

heterochromatic regions, the BrdU signal was interrupted by unlabeled segments that probably 

correspond to previously-replicated DNA segments. In several areas, the patterns of unlabeled 

and labeled chromatin extending from AE/LEs in both unsynapsed and synapsed segments were  
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Figure 4. Coimmunolocalization of BrdU and SMC1/SMC3 in leptotene PMCs from two different buds. 

The same nucleus is shown in each row with DAPI (left), BrdU (left center), SMC1 or SMC3 (right 

center), and the merged image (right, SMC1/SMC3 - red and BrdU - green). (A) This PMC nucleus is 

uniformly stained by BrdU.  (B) BrdU may have been incorporated at a later stage of S-phase since most 

of the label is present in more condensed parts of the nucleus, that usually correspond to heterochromatin.  

Scale bar = 10µm 
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Figure 5. Coimmunolocalization of BrdU and SMC1 on tomato SC spreads at late zygotene. The overlay 

of merged signals shows SMC1 in red and BrdU in green. The same nucleus is shown in each row (A-D, 

E-H), and the position of euchromatin/heterochromatin borders for some SCs have been shown in (A). 

Both nuclei have BrdU labeling that is mostly incorporated in the heterochromatic portions of each 

bivalent, which are also usually the last parts to synapse.  Bracketed parts of (D) and (H) have been 

enlarged in (I) and (J), respectively.  (I) Distinct loops of BrdU-labeled chromatin extend from the SC 

(some indicated by white lines) and are separated from each other by sections of unlabeled chromatin.  

Arrowheads indicate unlabeled distal euchromatic region of two SCs (see borders marked in A). (J) 

Another example of distinct sections of BrdU-labeled and -unlabeled chromatin along zygotene SCs 

(some marked by white lines).  Arrows indicate an unlabeled section of chromatin that is located at the 

same corresponed location on the two unsynapsed AEs of this SC. Scale bar = 10 µm for (A-H) and 30 

µm for (I and J). 
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the same for both homologous chromosomes (Figure 5 D,H,I,J).  Such patterns indicate that 

premeiotic DNA replication patterns were essentially identical for both homologous 

chromosomes.  

Patterns of BrdU labeling in tomato meiotic mutants 

Both asynaptic mutants, as1 and asb, had substantial delays in the progression of meiosis.  

In as1, zygotene-like SC spreads were observed 40 hours after BrdU labeling.  We were not able 

to obtain labeled PMCs from as1 at later time points, so the delay may have been even longer.  

The delay in asb was even more pronounced with zygotene-like SC spreads still present 129 

hours after BrdU labeling.  Meiotic progress in wild-type tomato, in comparison, would have 

proceeded past pachytene by 40 hours post-labeling and into microspore or pollen formation at 

129 hours post-labeling [Figure 6, (Bennett 1973; Stack and Anderson 1986b). 

 

DISCUSSION 

A popular and effective method for labeling replicating DNA in pollen mother cells is to place 

the cut end of a stem with flowers in a solution containing 
3
H-T or BrdU.   This method has been 

successfully used in a number of species including cereals (wheat, rye, barley), liliaceous species 

(Lilium, Allium), and Arabidopsis (Bennett 1971; Bennett 1973; Armstrong and Jones 2001; 

Armstrong et al. 2003). We found that this method was not useful for tomato, however, because 

cutting the stem off from the plant, even at a site far from the flowers, stopped the development 

of meiotic cells almost immediately.  To avoid this arrest, we developed a method to introduce 

BrdU through cut petioles in an otherwise intact plant.  Tomato PMCs continued to develop 

through the early stages of meiosis using this method of labeling.   
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A. 

                            0                          10                         20                        30                         40                        50            125 hours 

                                        Leptotene-zygotene                                                     

                                                                                    pachytene      late meiotic stages     

                                                                                                                           meiosis completed            microspore  

B. 

       -7                 0                           10                         20                        30                         40                        50            125 hours                                                                                                   

                                        Leptotene-zygotene                 pachytene                                                                       

 BrdU pulse            ↑                                      ↑          ↑      ↑                                  *                                                        ^ 
                               WT                                                                                          as1                                                    asb            
                                                    

Figure 6. (A) Time course of meiosis in tomato using data from (Bennett et al. 1973; Stack and Anderson 

1986b). Time zero was set as the onset of leptotene. (B)  Tomato meiotic time course estimated by BrdU 

labeling of nuclear DNA (this work).  The BrdU pulse was 2.5 hours.  Bud samples were collected at the 

times indicated below the line (WT - ↑, as1 - *, asb - ^). The onset of leptotene occurs about seven hours 

after BrdU labeling.  Sampling times in the text include the seven hours before leptotene onset, but have 

been adjusted here to facilitate comparison with line A.  Samples at 33 hours (as1) and at 122 hours (asb) 

after the onset of leptotene still have PMCs in a zygotene-like stage.  
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Previous studies on the duration of meiosis in tomato have used sequential sampling of 

anthers that are synchronized within a bud.  Bennett (1973) estimated a total meiotic duration of 

24-30 hours at 20 
o
C with the majority of that time (18 hours) required to complete prophase I.  

Stack and Anderson (1986b) estimated a total meiotic duration of 47 hours at 21-24 
o
C with 

prophase I lasting about 24 hours.  It is not clear whether the differences in meiotic timing are 

due to different investigators, different plant cultivars, or some other factor(s).  Although we did 

not carefully determine the length of time required for completion of pre-meiotic S-phase to the 

initiation of meiosis (leptotene) in tomato, (Armstrong et al. 2003) estimated that S-phase and G2 

are of similar durations equal to about 5-9 hours in Arabidopsis.  If tomato required slightly 

longer times for these events [as one would expect based on the close relationship between 

genome size and meiotic stage length (Bennett 1971)], then leptotene should start no later than 

10-18 hours after BrdU incorporation.   We observed leptotene cells only 6 hours after BrdU 

incorporation, a time well within expectation.  In addition, we observed zygotene cells 24-28 

hours after BrdU incorporation (or ~ 17-21 hours after the beginning of leptotene), a time 

consistent with previous estimates [Figure 2; (Bennett 1973; Stack and Anderson 1986b)].  

Therefore, the method of incorporating BrdU through petioles of an otherwise intact plant did 

not appear to substantially alter meiotic progression in wild-type tomato. 

We applied the same BrdU labeling technique to examine the length of early prophase I 

substages in two meiotic mutants, as1 and asb.   Traditional estimates of the lengths of prophase 

I substages using synaptic extent are not possible because each mutation causes extensive and 

persistent asynapsis during prophase I.  Because of the asynapsis, the pachytene substage of 

meiosis is never observed, and cells appear to be in the zygotene substage well beyond the time 

normally required for zygotene (Figure 7).  For example, zygotene-like cells were observed for 
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as1 and asb at 33 and 122 hours after meiosis began (or 40 and 129 hours after the BrdU pulse 

label). In comparison, PMCs from wild-type tomato would have progressed at least to diplotene 

at 33 hours and would have completed meiosis and formed microspores or pollen by 122 hours 

(Figure 6).  Thus, both asynaptic mutations cause substantial delays in the progression of meiosis 

although PMCs from plants homozygous for each mutation eventually complete meiosis and 

produce pollen, most of which is non-functional. 

 The BrdU labeling patterns observed in PMCs differed to some extent depending on 

whether cells were exposed to BrdU early or later during pre-meiotic S-phase.  When BrdU label 

was incorporated in both euchromatin and heterochromatin, cells were presumably exposed to 

BrdU early in S-phase (Figure 3-4) while nuclei with BrdU label incorporated primarily, if not 

exclusively, in heterochromatic segments were probably exposed to BrdU later in S-phase 

(Figure 5).  SC spreads of nuclei with BrdU incorporated into heterochromatin revealed small, 

distinct segments of labeled DNA interspersed with unlabeled segments of DNA (Figure 5).  

These segments were the same on both homologous chromosomes, indicating that virtually 

identical patterns of replication occurred in both chromosomes prior to synapsis.  Similar 

observations have been made for meiotic cells in other organisms (Allen 1979; Latos-Bielenska 

and Vogel 1992; Guttenbach et al. 1999), but with less defined patterns and lower resolution than 

we demonstrate here.   The identical pattern of BrdU labeling on both homologous chromosomes 

during meiosis in tomato is probably related to temporal patterns of replication in somatic cells 

that are related to gene density, transcriptional activity, histone modifications, nuclear 

positioning, and AT/GC-content of particular chromosomal domains (Zink 2006).   
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CHAPTER 4: 

 

ALTERED INTERFERENCE AMONG MLH1 FOCI IS ASSOCIATED WITH  

CHANGES IN COHESIN PROTEINS IN TOMATO MEIOTIC MUTANT as1 

 

INTRODUCTION 

 Synapsis between homologous chromosomes during prophase I of meiosis is dependent 

on the formation of programmed DNA double-strand breaks (DSBs) in a number of organisms 

including budding yeast, mammals, and higher plants (Keeney 2001).  The pattern of synaptic 

initiation (synapsis = formation of the synaptonemal complex) between homologs is related to 

the distribution of crossovers in many organisms.  In general, chromosomal regions that synapse 

earlier are more likely to have crossovers than regions that synapse later (Zickler and Kleckner 

1999).  In many plants and animals, distal euchromatic chromosome segments initiate synapsis 

before more proximal chromosome segments, and a large fraction of crossovers occur in these 

distal segments (Zickler and Kleckner 1999).  Similarly, a close correspondence between 

synapsis and crossing over has been observed in maize inversion heterozygotes in which the 

frequency of inversion loops is equal to the frequency of anaphase I bridges (Maguire 1966; 

Maguire and Riess 1994).  The best evidence for a close association between synaptic initiation 

sites and crossovers comes from budding yeast where mutational analysis of ZMM proteins (Zip 

1-4, Mer3, Msh4, Msh5) has shown a direct link between the two events (Lynn et al. 2007).  

However, this close association is absent in at least two plant species, Allium fistulosum and A. 

porrum, in which synapsis begins in distal chromosome regions while crossing over occurs close 

to the centromere (Albini and Jones 1984; Albini and Jones 1988; Stack and Roelofs 1996).  
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Nevertheless, the preponderance of evidence indicates that crossing over (or a commitment to 

crossing over) occurs prior to or concurrent with synaptic initiation (Schwacha and Kleckner 

1997; Zickler and Kleckner 1999).  Interference between crossovers (in which one crossover 

reduces the likelihood of another crossover nearby) may be imposed at the time of synaptic 

initiation, at least in budding yeast, but it is not yet clear when crossover interference might be 

imposed in multicellular eukaryotes(Fung et al. 2004; Berchowitz and Copenhaver 2010).   

 In higher plants, the relationship between synapsis and crossing over has been examined 

in greatest detail in mutants that do not complete synapsis (Rhoades 1947; Miller 1963; Nel 

1979; Kitada and Omura 1984; Kaul and Murthy 1985; Sosnikhina et al. 1992; Havekes et al. 

1994; Havekes et al. 1997; Sosnikhina et al. 1999; Pawlowski et al. 2003; Pawlowski et al. 

2004).  Many of the asynaptic mutants previously studied arose spontaneously and were initially 

identified by their reduced fertility.  The reduction in fertility in these mutants is usually caused 

by the presence of univalents at metaphase I.  Univalents form when no crossover occurs 

between homologous chromosomes. Without the formation of at least one crossover (often called 

the obligate chiasma) between homologs, the univalents segregate randomly at anaphase I, and 

genetically unbalanced gametes are formed.  The frequency of univalents is related to the extent 

of asynapsis as shown by the close correspondence between the number of bivalents observed at 

pachytene and the number of chiasmate bivalents observed at metaphase I among three different 

asynaptic mutants in tomato (Havekes et al. 1994). Similar observations have been made for 

maize asynaptic mutants (Rhoades 1947; Miller 1963; Nel 1979).  The specific defect of most 

asynaptic mutants in plants is unknown, as indicated by the general as designation of the 

mutations, but disruption of synapsis is often associated with a loss of crossover control.  These 

results highlight the close relationship between synapsis and crossing over in plants.   
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 The limited synapsis and increased frequency of univalents in asynaptic mutants leads to 

the prediction that offspring recovered from these plants would have reduced levels of crossing 

over.  This expectation was observed for certain genetic intervals in the as mutant of maize (Nel 

1979).  However, studies on different intervals in the same as mutant demonstrated increased 

levels of crossing over compared to wild-type frequencies (Rhoades and Dempsey 1949).  

Similarly, both normal and increased levels of crossing over were observed for different genetic 

intervals in several asynaptic mutants of tomato (Soost 1951; Moens 1969).  More recent work 

on maize plants in which both RAD51 genes were disrupted demonstrated reduced homologous 

synapsis but near-normal levels of crossing over in offspring recovered from female gametes (Li 

et al. 2007).  In both maize and tomato, higher frequencies of double crossovers were reported 

for asynaptic mutants as compared to wild-type plants (Rhoades and Dempsey 1949; Miller 

1963; Moens 1969; Nel 1973).  One explanation for these unexpected results is that only gametes 

with higher levels of crossing over (and possibly higher amounts of homologous synapsis) 

contribute to viable progeny (Rhoades and Dempsey 1949; Soost 1951; Moens 1969).  However, 

Dempsey (1958) found no evidence to support this hypothesis using haploid and diploid gametes 

from maize asynaptic mutants.  The data on crossover frequencies in as mutants come primarily 

from offspring recovered from female gametes that are less affected by the mutations than male 

gametes.  Plants carrying the homozygous as mutation are often essentially male-sterile 

(Rhoades and Dempsey 1949; Soost 1951; Dempsey 1958; Moens 1969). 

 To evaluate the unexpectedly high levels of crossing over associated with reduced levels 

of homologous synapsis in certain asynaptic mutants, we decided to use a cytogenetic approach 

that allows crossover patterns to be analyzed in a large sample of cells, regardless of whether the 

gametes formed from these cells are competent to make viable offspring.  We chose to examine 
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the as1 mutant of tomato because it disrupts synapsis but has little or no effect on crossover 

frequency according to linkage studies (Soost 1951; Moens 1969).  In both studies, the reported 

frequency of double crossovers was higher than wild-type, also suggesting a defect in normal 

crossover interference.  Additional work on the relationship between synapsis and crossing over 

was performed in the as1 mutant using both light and electron microscopy (Havekes et al. 1994; 

Havekes et al. 1997).  Here we extend this work using immunolocalization of proteins involved 

in crossing over (MLH1) and SC structure (cohesin proteins).  MLH1 is a cytological marker for 

crossovers that are formed through the interference pathway (Anderson et al. 1999; Moens et al. 

2002; Hollingsworth and Brill 2004; Guillon et al. 2005; Lhuissier et al. 2007; Falque et al. 

2007; Berchowitz and Copenhaver 2010).  MLH1 foci associated with pachytene chromosomes 

(usually on SC spreads) have been used to examine crossover patterns and interference in both 

animals and plants (Baker et al. 1996; Anderson et al. 1999; Lhuissier et al. 2007).  MLH1 is 

found in a large subset (about 70%) of RNs in tomato (Lhuissier et al. 2007).  The remaining 

RNs are thought to mark crossovers generated through the non-interference (MUS81) pathway 

(Hollingsworth and Brill 2004; Lhuissier et al. 2007).   

In the as1 mutant, we report increased frequencies of MLH1 foci on SC segments and 

decreased interference between MLH1 foci as compared to wild-type.  These changes in crossing 

over are associated with reduced levels of cohesin proteins in SCs from as1, suggesting that 

cohesin proteins are closely involved in proper SC formation and crossover control in tomato.   
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MATERIALS AND METHODS 

Plants: Tomato (Solanum lycopersicum) plants [wild-type = var. cherry, accession LA4444 and 

as1 mutants (Soost 1951)] were grown from seed in a temperature-controlled greenhouse.  A line 

of as1 plants was maintained by cuttings from a single, homozygous plant and used for all of the 

experiments here.  Only young plants/cuttings (≤ 3 months) were used to prepare chromosome 

spreads. 

Antibodies: Antibodies to tomato SMC3, SMC1, and MLH1 proteins were raised in rabbits and 

used in previous studies (Lhuissier et al. 2007; Lohmiller et al. 2008).  To facilitate 

colocalization studies of different cohesins, we also used antibodies to tomato SMC1 that had 

been raised in chicken (Lohmiller et al. 2008).   Rabbit antibodies to Arabidopsis MRE11, 

SYN1/REC8, and SCC3 were used as in previous studies (Cai et al. 2003; Chelysheva et al. 

2005; Lohmiller et al. 2008).  We used the pQE31 vector (Qiagen) to add a 6X HIS tag and to 

express part of the C-terminus (amino acids 831-1110) of tomato RAD50 protein in E. coli. 

Expressed proteins were purified using Ni
2+

-NTA agrose beads and used to immunize rabbits to 

raise polyclonal antibodies.  MRE11, RAD50, MLH1, and SMC1 antibodies were affinity-

purified using Immuno-Pure Gentle Purification Ag/Ab procedure (Pierce) in a column 

containing the appropriate express, purified, recombinant proteins that were covalently attached 

to amino-link beads (Pierce).   

SC spreads, immunocytochemistry, BAC-FISH, image and data analysis: SC spreads were made 

from pollen mother cells (PMCs) using a hypotonic bursting technique for LM (Lohmiller et al. 

2008; Stack and Anderson 2009) and a sucrose-spreading technique for EM (Anderson et al. 

1997).  SC spreads were labeled with anti-AtSCC3 serum (1:1000), anti-SlSMC3 serum (1:200 

for LM and 1:1200 for EM), anti-AtREC8/AtSYN1 serum (1:5000) and/or affinity-purified 
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antibodies to SlSMC1 protein (1:25), SlMLH1 protein (1:200), AtMRE11 (1:500), SlRAD50 

(1:400), or SlRAD51 (1:100). Secondary antibodies were goat anti-chicken tetramethyl 

rhodamine iso-thiocyanate (TRITC; Jackson Labs; diluted 1:100) and goat anti-rabbit 488 

(Molecular Probes; diluted 1:500).  DAPI (4’, 6-diamidino-2-phenylindole; 10µg/ml in water) 

was used to counterstain SC spreads, and Vectashield (Vector Laboratories) was used to mount 

coverslips.  Labeled chromosome spreads were imaged using a Leica 5000 fluorescence 

microscope equipped with a grayscale CCD camera and IP Lab (ver. 4) software (Lohmiller et 

al. 2008).  Each fluorochrome was imaged using the same settings and exposure times for every 

SC spread.  Grayscale images were assigned artificial colors in IP Lab.  The signal intensity of 

each image was uniformly adjusted to increase contrast and reduce background using the levels 

command of Adobe Photoshop CS2.  Color images for each SC set were merged using 

Photoshop CS2.  Silver-staining was performed after immunolabeling by washing off the cover 

glass in Tris-buffered saline, air-drying, fixing in 4% paraformaldehyde (pH 8.5) for 5 minutes, 

washing in water, air-drying, and staining with 33% (w/w) silver nitrate in distilled water at 40° 

C for 15 minutes using a nylon screen (Sherman et al. 1992).  Fluorescence in situ hybridization 

(FISH) using bacterial artificial chromosomes (BACs) containing tomato DNA was performed 

on SC spreads as described by (Stack et al. 2009).  The immunogold labeling procedure for 

electron microscopy was similar to that used for immunofluorescence except that SCs were 

prepared using the sucrose-spreading procedure, secondary antibodies were conjugated to 6 nm 

gold particles (Electron Microscopy Sciences), and SCs were stained with aqueous 2% uranyl 

acetate (Lohmiller et al. 2008; Stack and Anderson 2009).  Chromosome spreads were examined 

and photographed in an AEI801 electron microscope.  Statistics were performed using Minitab 

ver. 15 software. 
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RESULTS 

Incomplete synapsis and delayed meiotic progression in the as1 mutant: 

Substages of prophase I are usually defined based on the extent of synapsis, but this 

method is not useful in as1 meiocytes in which synapsis is never completed.  However, we were 

able to distinguish “early” and “late” stages of Prophase I in SC spreads from as1 meiocytes 

using two other parameters: anther length and cell wall thickness.   In wild-type tomato, anthers 

1.5 - 1.8 mm in length contain primary microsporocytes with thin cells walls, which correspond 

to leptotene and zygotene stages in SC spreads.  Anthers 1.9 - 2.2 mm in length contain primary 

microsporocytes with uneven callose cell wall thickenings, which correspond to pachytene in SC 

spreads (Stack and Anderson 1986b).  SC spreads from as1 primary microsporocytes were 

defined as “early” (corresponding to leptotene-zygotene) if they had thin cell walls and were 

prepared from anthers ≤ 1.8 mm long and as “late” (corresponding to pachytene) if they had 

uneven cell wall thickenings and were ≥ 1.9 mm long (Figure 1).   

The amount of synapsis (SC formation) we observed in SC spreads from as1 PMCs was 

consistent with our divisions of early and late stages.  In early stage (leptotene-zygotene) SC 

spreads, most chromosomes were represented by AEs, and very few, if any, SC segments were 

observed (see examples in Figures 11 and 12).  Among late (= pachytene) stage SC spreads, SC 

segments were often observed, but the amount of synapsis varied greatly among SC sets.  A 

sample of fourteen silver-stained SC spreads from a single bud ranged from 1% to 73% synapsis 

with an overall average of 29% synapsis (Table 1; Figure 2).  These numbers are similar to those 

reported by (Havekes et al. 1994) who observed an average of 25% synapsis for the as1 mutant 

(range = 4% - 70%) in 19 SC spreads.  The synaptic extent observed for individual bivalents also 

varied greatly.  Within the same nucleus, some chromosomes were completely asynapsed, others  
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Figure 1. Phase contrast images of as1 primary microsporocytes stained with 2% aceto-orcein at 

(A) early (1.8 mm anther length) and (B) late (2.3 mm anther length) prophase I stages.  Note the 

thin, even cell walls (bright outlines) around early stage PMCs compared to the uneven cell wall 

thickenings (arrow) of late stage PMCs.  Bar = 10 μm.   

 

 

 

 

 

 

 

Table 1. Total length of axial components (AEs and LEs) in SC spreads from tomatoes of 

different genotypes.    
 

Genotype No. sets Mean % 

synapsis (SD) 

Mean total AE/LE length* 

(μm) per set (SD) 

Comparison with WT 

(Holm-Sidak pairwise 

comparison after ANOVA) 

as1 14 29.0 (19.1) 811.9 (87.0) P < 0.001 

asb 6 3.8 (2.9) 556.4 (45.5) P > 0.17 

WT 10 100 (0) 505.3 (53.4)  

* = total AE length + (total SC length * 2) 
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Figure 2. Examples of silver-stained SC spreads from a single, late-stage (pachytene) bud from as1.  The 

amount of synapsis for (A) is 1%, (B) 20%, (C) 32% and (D) 46%.  Each set except (A) has one SC that 

is completely synapsed along its length (arrows), but most are partially synapsed.  In (B) and (C), 

chromosomes that are completely asynapsed are also present (some indicated with arrowheads).  Bar = 10 

μm.   
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were partially synapsed, and sometimes a bivalent was fully synapsed (Figure 2B-D).  We were 

not able to count the number of bivalents per cell because we could not follow individual AEs 

and SC segments with confidence using LM analysis.  However, our results are consistent with 

the results of Havekes et al. (1994) who used EM analysis and found an average of six bivalents 

(defined as at least one SC segment linking two homologs) per nucleus.   

 In many plant meiotic mutants, meiosis is delayed compared to wild-type (Franklin et al. 

2006).  We observed a similar delay in meiotic progression in the as1 mutant.  Wild-type anthers 

that were 2.3 mm long contained PMCs at diakinesis-metaphase I while anthers of the same 

length from as1 plants still contained PMCs at the zygotene-like stage.  A similar delay for as1 

was observed using in vivo BrdU labeling during pre-meiotic S-phase (Chapter 3).     

Synapsis is homologous in the as1 mutant 

 In silver-stained SC spreads from as1, synapsis occurs between AEs of similar lengths 

and the ends of the chromosomes are well-matched [Figure 2, (Havekes et al. 1994)].  This 

observation suggests that synapsis is homologous in the as1 mutant.  To test this, we performed 

single-copy BAC-FISH on SC spreads from as1 using four different single-copy probes, one 

each for chromosomes 1, 2, 4, and 10 (Table 2, Figure 3).  We often observed only one signal for 

each probe, and we were frequently able to verify the presence of an SC at the signal location 

using phase images that were captured prior to the FISH procedure (Figure 3A).  We also 

observed a number of examples of two signals for one probe, and we could often verify that the 

two signals were present on non-synapsed AEs (Figure 2B).  These results demonstrate that 

synapsis is homologous in the as1 mutant and that the presence of two signals is due to 

asynapsis, not non-homologous synapsis. 
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Table 2. Frequency of single and double signals of single copy BAC-FISH probes on SC spreads from 

as1 PMCs. 

Experiment BAC SC Arm 

location* 

Total # 

obs. 

nuclei 

# obs. with 

one signal 

(%) 

# obs. with 

two signals 

(%) 

1 106H06 2 0.73L 7 6 (86) 1 (14) 

 234C10 10 0.63L 11 5 (45) 6 (55) 

       

2 130I12 1 0.86S 8 3 (38) 5 (63) 

 053M02 4 0.75L 18 15 (83) 3 (17) 

 234C10 10 0.63L 27 13 (48) 14 (52) 

 

*as a fraction of arm length from the kinetochore; L – long arm; S - short arm; data from 

tomato FISH map at http://solgenomics.net/cview/map.pl?map_id=13.  

  

http://solgenomics.net/cview/map.pl?map_id=13
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Figure 3.  BAC-FISH on SC spreads from as1 PMCs.  Each set of SCs (depicted in white using inverted 

phase image) is overlaid with the corresponding DNA image (DAPI, blue).  The positions of the single-

copy BAC-FISH probes are shown in red (R; BAC234C10 on chromosome 10 long arm), green (G; 

BAC130I12 on chromosome 1 short arm), and purple (P;  BAC053M02 on chromosome 4 long arm).  In 

SC spreads, FISH signals often extend to one or both sides of the AE/SC axis because the chromatin is 

dispersed around the axes during the spreading procedure (Chang et al. 2007; Stack et al. 2009).  (A) 

Each of the three BAC probes is present as a single signal (arrows), and each signal is associated with an 

SC segment (shown at high magnification in inset images at left).  (B) The red and green probes each are 

present at two locations (linked arrows), and both signals are associated with AEs (shown at higher 

magnification in inset image at left).  The purple probe was present as a single signal in this nucleus, but 

was not closely associated with either an SC or AE (not shown).  Bar = 5 μm for A (10 μm for inset 

images) and 10 μm for B (20μm for inset image).  
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 The relative frequency of one compared to two signals varied among the different FISH 

probes (Table 1).  Single FISH signals were observed for chromosomes 2 and 4 in > 80% nuclei 

compared to single signals in < 50% of nuclei for chromosomes 1 and 10.  Although the sample 

sizes are not large (and not all probes worked in each nucleus), there was a general tendency for 

the long arms of longer chromosomes (such as chromosomes 2 and 4) to have a single signal 

more often than the long arm of a shorter chromosome (chromosome 10) or the short arm of a 

long chromosome (chromosome 1).    

Focal patterns of MLH1 in the as1 mutant were different from wild type 

Although the as1 mutation interrupts normal synapsis, it appears to have little or no effect 

on crossover frequency (Soost 1951; Moens 1969).  To evaluate this rather unexpected finding at 

the cytogenetic level, we examined the frequency and distribution of MLH1 foci (Figures 4-6).  

The number of MLH1 foci per nucleus was more variable for the as1 mutant (range = 2 - 32 

MLH1 foci per nucleus) than for wild-type tomato (range = 10 – 21 MLH1 foci per nucleus), and 

the variation was not normally distributed (Figure 5).  Using the Mann-Whitney Rank Sum Test, 

we found that the median number of MLH1 foci per nucleus was not significantly different for 

as1 and wild-type (15.0 and 14.5, respectively, P > 0.6; Table 3). Almost all MLH1 foci were 

associated with SCs in as1, but we also observed MLH1 foci that appeared to be associated with 

AE (Figure 4C). These AE-associated foci were not common (15/86 total MLH1 foci = 15%), 

and seven of the AE-associated MLH1 foci were found in only one nucleus of the seven nuclei 

examined.  AE-associated MLH1 foci were not considered, except in the calculations of the 

number of MLH1 foci per nucleus.   

The differences between MLH1 foci in wild-type and as1 were more striking when 

considering the number of foci per SC or SC segment (Figures 4 and 6).  In wild-type tomato, 
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each SC usually had one MLH1 focus, and some SCs had two MLH1 foci.  We also occasionally 

observed SCs with zero or three foci.  In comparison, SC segments from as1 were relatively 

short and variable in length, but many short SC segments had one or two MLH1 foci and longer 

SC segments had as many as six MLH1 foci, something we never observed in wild-type tomato.  

Accordingly, as1 averaged significantly more MLH1 foci per µm SC compared to wild-type 

(Table 3).  We also determined distances between adjacent MLH1 foci on the same SC segment 

(interfocus distance) using absolute distances (μm SC) between MLH1 foci.  The average 

interfocus distance was significantly higher for wild-type tomato than for as1 (11.5 and 3.3 μm 

SC, respectively; Table 3).   Using inter-focus distances, we estimated interference between 

MLH1 foci on pachytene SCs in wild-type and late stage as1 nuclei with the gamma model (de 

Boer et al. 2006; Lhuissier et al. 2007).  The interference parameter (ν) of the gamma model 

estimates the strength of interference.  In this model, MLH1 foci have no interference if ν = 1 

while higher values of ν indicate more interference and more even spacing of foci along SCs.  

We found that ν = 4.5 for wild-type and ν = 1.7 for as1.  We did not make an adjustment to 

account for chromosome-end affects as described by (de Boer et al. 2006), because we could 

rarely follow individual partially-synapsed SCs from as1.  Such adjustments would tend to 

decrease the ν values observed (Lhuissier et al. 2007).  Nevertheless, the lower value of ν for the 

as1 mutant indicates reduced interference (and less even distribution) of MLH1 foci compared to 

wild-type, at least on synapsed SC segments.     
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Table 3. MLH1 foci characteristics in SC spreads from pachytene stage wild-type and late stage 

as1 primary microsporocytes.  

Genotype Median no. MLH1 

foci per nucleus 

(no. nuclei) 

Median no. MLH1 foci 

per μm SC 

(no. SC sgmts; no. nuclei) 

Median inter-focus 

distance in μm SC 

(no. obs.; no. nuclei) 

wild-type 14.5 (54) 0.06 (60; 5) 11.5 (26; 10) 

    

as1 15.0 (81) 0.15 (57; 7) 3.3 (49; 10) 

    

 Mann-Whitney 

Rank Sum Test  

P > 0.6 

Mann-Whitney Rank Sum 

Test  

P < 0.001 

Mann-Whitney Rank Sum 

Test  

P < 0.001 
 

 

 

 

 

 

Figure 4.  Immunofluorescent localization of MLH1 (red) and SMC1 (white) in SC spreads (A) from 

wild-type at pachytene and (B, C) from as1 at late stage (equivalent to pachytene).  In wild-type, two SCs 

have two MLH1 foci (large arrowheads), and each of the other SCs has one MLH1 focus for a total of 14 

MLH1 foci.  In the as1 mutant, MLH1 foci are mostly associated with SC, but sometimes MLH1 foci are 

associated with AE (arrow).  The total number of MLH1 foci is 21 in (B) and 10 in (C).  Portions of B 

and C are shown at higher magification at right (b and c, respectively).  (b) Five MLH1 foci (small 

arrowheads) are present on this fully synapsed SC. (c) The short SC segment of this partially synapsed 

bivalent has four MLH1 foci (small arrowheads).  Bar = 10 μm for (A-C) and 20 μm for (b-c).
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Figure 5. Plot comparing number of MLH1 foci per nucleus for wild-type (pachytene) and as1 (late 

stage).  Neither population is normally distributed, and the two medians (wild-type = 14.5; as1 = 15.0) are 

not significantly different (Mann-Whitney Rank Sum test, P > 0.6). 
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Figure 6.  Boxplot showing SC segment length for wild-type (pachytene) and as1 (late stage) as 

grouped by the number of MLH1 foci (0 – 6) per SC segment.  The number of observations in 

each class is shown at the top of the plot.  For each box, the lower boundary indicates the 25
th

 

percentile, the middle line indicates the median, and the upper boundary indicates the 75
th

 

percentile.  Vertical whisker bars indicate 10
th

 and 90
th

 percentile boundaries, and outliers are 

shown with asterisks.  For wild-type, most SCs had one MLH1 focus.  For as1, most SC 

segments had 0 – 2 MLH1 foci, but up to 6 foci were observed for longer SC segments.  In 

general, SC segments (median values) for as1 were shorter than those for wild-type.   
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MLH1 is present in a subset of RNs in the as1 mutant 

We evaluated the presence of MLH1 in RNs from as1 using EM immunogold labeling of 

SCs prepared by a sucrose-spreading procedure.  The immunogold labeling is more specific with 

less background at the EM level using the sucrose-spreading procedure, although it yields fewer 

complete sets of SCs than the hypotonic spreading procedure we typically use for LM 

immunolabeling.  At the LM level, sucrose-spread SCs labeled with MLH1 in a frequency and 

pattern similar to our usual procedure (Figure 7).  By EM, we verified that MLH1 foci in the as1 

mutant and in wild-type corresponded to RNs (Figures 8, 9).  However, not all RNs observed by 

EM in the mutant or wild-type were labeled.  About 82% of the SC-associated RNs in wild-type 

and about 72% of the SC-associated RNs in as1 were MLH1-positive (Table 4A; Figures 8, 9).  

These frequencies are similar to those reported for wild-type tomato by (Lhuissier et al. 2007).  

We also observed MLH1-labeled RNs that were associated with AEs, as observed by LM 

(Figures 9E and 4).  Other unlabeled RNs were associated with AEs, but definitively identifying 

them as RNs is more problematic, and we did not attempt to quantify MLH1-positive and MLH-

negative AE-associated RNs in as1. 

RNs in the as1 mutant were larger than RNs in wild type  

We measured the length (parallel to LE axes) and width (perpendicular to LE axes) of 

MLH1-positive RNs from as1 and wild-type SC spreads (Table 4B; Figure 10).  While as1 and 

wild-type RNs did not differ in length (132 nm and 133 nm, respectively, p > 0.9), RNs from as1 

were significantly wider than RNs from wild-type (92 nm compared to 69 nm, p < 0.001).  Both 

RN sizes are larger than the average 100 x 50 nm size previously reported for RNs (Anderson 

and Stack 2005), and the difference is likely caused by the immunolabeling procedures that  
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Figure 7.  Immunofluorescent localization of MLH1 (red) and SMC1 (white) on sucrose-spread SCs from 

wild-type (A) and as1 (B).  The labeling pattern is similar to SC spreads made using the hypotonic 

spreading procdure (as in Figure 4).  Scale bar = 10 µm. 
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Figure 8.  Electron micrograph of DNase I-treated sucrose-spread pachytene SC from wild-type 

that was labeled with anti-MLH1 and 6 nm gold-conjugated secondary antibodies.  This SC has a 

kinetochore (arrowhead) and two RNs (arrows) that are shown at higher magnfication (4x) in 

insets.  The RN to the left in the long arm is labeled while the RN to the right in the short arm is 

not labeled.  Scale bar = 1 μm for main figure and 0.25 μm for insets. 

 

 

 

Figure 9.  Electron micrograph of DNase I-treated sucrose-spread late-stage SCs from as1 that 

have been labeled with anti-MLH1 and 6 nm gold-conjugated secondary antibodies.  (A) Three 

labeled RNs (arrows) and two non-labeled RNs (arrowheads) are associated with SC segments.  

The non-labeled (B) and labeled (C, D) RNs are presented at higher magnification (4x) to the 

right. (E) Some labeled RNs were associated with AEs (arrows).   Scale bars = 1 μm for (A) and 

100 nm for (B-E). 
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Figure 10.  Electron micrographs of MLH1-labeled 

RNs from (A) wild-type and (B) as1 showing the 

larger size of RNs from as1.  Scale bar = 100 nm. 

 

 

Table 4.  Immunolabeling and size characteristics of RNs from wild-type and as1 SC spreads.   

A. Frequency of MLH1-labeled RNs 

Genotype # SCs or SC 

segments obs. 

No. RNs obs. No. MLH1-pos. 

RNs (%) 

No. MLH1-neg. 

RNs (%) 

wild-type 26 33 27 (82) 6 (18) 

as1 33 79 57 (72) 22 (28) 

 

B. Average size of pachytene (or “late”) stage MLH1-labeled RNs  

Genotype  No. RNs obs. RN length (nm) 

Mean (SD) 

RN width (nm) 

Mean (SD) 

wild-type  19 133 (24) 69 (11) 

as1  44 132 (30) 92 (23) 

t- test   P > 0.9 P < 0.001 
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expose the RNs to aqueous solutions for several hours before fixation for EM.  We also noted a 

general tendency for MLH1 foci from as1 to be larger than those from pachytene SC spreads in 

wild-type, which could be related to the difference in size observed at the EM level.   

Focal patterns of MRE11 and RAD50 in as1 were similar to those in wild type 

To evaluate whether the higher frequency of MLH1 foci in as1 is a result of a defect in an 

earlier stage of meiotic recombination, we examined immunolocalization patterns of MRE11 and 

RAD50 proteins.  Both proteins are involved in meiotic recombination shortly after DSB 

formation, and defects in either protein cause asynapsis in Arabidopsis (Bleuyard et al. 2004; 

Puizina et al. 2004).  In wild-type tomato, numerous MRE11 and RAD50 foci were associated 

with AEs and SCs in leptotene and zygotene nuclei, and RAD50 foci were brighter and more 

distinct though less numerous than MRE11 foci at these early stages [Figure 11, (Lohmiller et al. 

2008)].  In comparison, we also observed numerous MRE11 and RAD50 foci associated with 

AEs and SCs in early as1 nuclei, and the foci were similar in size and intensity to MRE11 and 

RAD50 foci in wild-type (Figure 11).  The average number of MRE11 and RAD50 foci per 

nucleus in as1 was not statistically different from that of wild-type tomato (Table 5).  Thus, the 

cytological patterns of MRE11 and RAD50 foci are similar in both the as1 mutant and wild-type 

tomato.      

RAD51 patterns in as1 and wild type were similar  

Increased numbers of DSBs (as measured by RAD51 foci) are correlated with increased 

numbers of crossovers, at least in C. elegans (Tsai et al. 2008).  To evaluate whether a similar 

situation is occurring in the as1 mutant, we examined the immunolabeling pattern of RAD51 in 

wild-type tomato at zygotene compared to early stage as1 mutant (Figure 12).  Our observations  
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Figure 11.  Immunofluorescent co-localization of (A, D) MRE11 and (B,E) SMC1 or (G, J) RAD50 and 

(H, K) SMC1 on SC spreads from wild-type at leptotene (A-C; G-I) and as1 at early stage (D-F, J-L).  In 

the merged images (C, F, I, L), MRE11 and RAD50 are in green and SMC1 is in red.  Numerous MRE11 

and RAD50 foci are present in early stages of both wild-type and as1.  Scale bar = 10 μm. 
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Figure 12. Immunofluorescent co-localization of (A, C) RAD51, (B,D) SMC1, and the merged images 

(C,E) with RAD51 in green and SMC1 in red in a zygotene SC spreads from wild-type (A-C) and an 

early SC spread from as1 (C-E).  Numerous RAD51 foci that vary in size are present in early stages of 

both wild-type and as1 nuclei.  Scale bar = 10 μm. 

 

Table 5.  Frequencies of MRE11, RAD50 and RAD51 foci in leptotene-zygotene wild-type and 

early stage as1 SC spreads. 

 

Foci type Genotype No. Nuclei 
Obs. 

Mean number of foci per 
nucleus (Std. Dev.) 

P Value 
(t-test) 

MRE11 WT 8 584 (164) 0.182 
(NS) as1 8 459 (190) 

     

RAD50 WT 10 239 (183) 0.645 
(NS) as1 10 269 (76) 

     

RAD51 WT 14 281 (113) 0.548 
(NS) as1 9 310 (112) 
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of RAD51 foci were similar for both genotypes.  RAD51 foci were variable in intensity and were 

present on AEs and SCs and in the surrounding chromatin in both wild-type and as1. In addition, 

the frequencies of RAD51 foci were similar in both wild-type and as1 nuclei (Table 5). 

Therefore, we found no obvious difference in RAD51 labeling in wild-type compared to as1. 

Cohesin immunolabeling was altered for three of the four cohesin proteins in as1  

 Four cohesin proteins (SMC1, SMC3, REC8, and SCC3) are components of AE/LEs in 

wild-type tomato primary microsporocytes [(Lhuissier et al. 2007; Lohmiller et al. 2008), 

Chapter 3).  Cohesin immunolabeling reveals synaptic patterns from leptotene through early 

diplotene stages even though the immunofluorescence signals are variable in intensity and 

sometimes discontinuous, especially along the length of AEs in wild-type tomato.  This appears 

to be a property of the AE/LEs instead of a problem with antibody accessibility since removing 

overlying chromatin with DNase does not change the discontinuity of the fluorescent signals.  

However, the more discontinuous signal for SCC3 may be related also to the higher background 

observed with this antibody compared to the other cohesin antibodies (Chapter 3).   

Cohesin immunolabeling in SC spreads from as1 revealed similarities as well as 

differences compared to wild-type tomato (Figure 13).  The SMC3 signal in the as1 mutant was 

indistinguishable from that of wild-type for both AEs and LEs of SCs (Figures 13A, 13E1).  

However, immunofluorescence signals for SMC1, SCC3 and REC8 were much reduced in the 

as1 mutant, and AE/LEs were barely, if at all, visible using standard immunolabeling procedures 

and imaging (Figure 13 F1-H1).  When the images from Figure 13 F1-H1 were equally enhanced 

using software, the SMC3 signal became overexposed, but still no clear signal was observed for 

SCC3 in the as1 mutant (Figure 13 F2 and H2).  Additional enhancement of SMC1 and REC8 

images showed that both cohesins were present along AE/LEs (albeit at reduced levels), but the  
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Figure 13. Immunofluorescent localization of SMC3 (A, E1, E2), REC8 (B, F1, F2), SMC1 (C, G1, G2), 

and SCC3 (D, H1, H2) on tomato SC spreads from wild-type (A-D) and as1 (E1 – H2).  The 

corresponding DAPI image has been superimposed over the SCC3 signal to show the outline of the SC 

spread (H1).  The images in A-D and E1-H1 were all captured with the same settings and time exposure 

and enhanced the same way.  Under these conditions, SMC3 immunofluorescence is similar for wild-type 

(A) and as1 (E1), but the signals for REC8, SMC1, and SCC3 are barely visible in as1 compared to wild-

type.  After additional enhancement was applied equally to E2-H2, the SMC3 signal was over-enhanced 

(E2), REC8 (F2) and SMC1 (G2) signals became visible along both SC and AE segments (although the 

signals remained rather spotty and discontinuous), and no definite SCC3 (H2) signal could be detected.  

Scale bar = 10 μm.  
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SMC1 and REC8 signals were still more discontinuous in the as1 mutant than in wild-type 

tomato (Figure 13F2, 13G2).  To test whether the absent/reduced fluorescence of SCC3, SMC1 

and REC8 in the as1 mutant was caused by AE/LE breakdown during the spreading procedure, 

we labeled SC spreads from as1 with both SMC1 and SMC3 (Figure 14) or silver-stained the SC 

spreads after SMC1 labeling (Figure 15).  In both cases, we observed continuous AEs and SCs 

with SMC3 labeling and with silver-staining in spite of the discontinuous SMC1 label.  In 

addition, AE/LEs of as1 SC spreads visualized by EM showed no clear difference in AE/LE 

structure compared to wild-type (Figures 8-10).  However, the central element was less 

continuous and the width of the central region between the LEs was sometimes more narrow in 

the mutant (Figures 8-10).  Lack of antibody accessibility also does not account for the reduced 

and discontinuous SMC1 labeling in as1 because treating as1 SC spreads with DNase increased 

the cohesin fluorescence signals only slightly, similar to results previously observed for wild-

type tomato SC spreads (Chapter 3). Together, these results show that the pattern of SMC1, 

REC8 and SCC3 immunolabeling observed in the as1 mutant is most likely due to reduced 

presence of these proteins in AE/LEs. 

AE/LEs are longer in the as1 mutant  

 The alteration in cohesin proteins in as1 suggested that chromosome compaction may 

also be effected in this mutant, based on similar changes in other cohesin mutants (Novak et al. 

2008).  To test this, we measured the total AE/LE length [= AE length + (SC length X 2)] in 

“late” stage SC spreads from as1 and compared them to wild-type pachytene total AE/LE length.  

We also measured total AE/LE length in the asb mutant to assess whether asynapsis, per se, 

contributes to any differences in AE length at later stages.  We found that the average length of 

AE/LE was significantly longer in as1 than in either wild-type or asb (Table 1; Figure 16; one-  
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Figure 14.  Colocalization of (A) SMC3 and (B, C) SMC1 on a late stage SC spread from as1.  The image 

in (B) was captured with the same settings and exposure time as (A). The image in (C) has been enhanced 

additionally in Photoshop to show the discontinuous SMC1 signal. Scale bar = 10 μm. 

 

 

 
 

Figure 15. Late stage SC spread from as1 immunolabeled with SMC1 (A, inverted fluorescent image) 

then stained with silver and photographed using light field microscopy (B).  The discontinuities of the 

SMC1 signal along both AE and SC segments are not caused by AE/LE breakdown as demonstrated by 

the continuous silver staining of AEs and SCs.  Scale bar = 5 μm. 
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Figure 16.  Distribution of AE lengths (total μm per nucleus) as a function of the amount (%) of synapsis 

for wild-type pachytene, as1 and asb late stage SC spreads. Both wild-type and asb are similar in total AE 

length, and each group is tightly clustered although wild-type is completely synapsed while asb SC 

spreads have < 10% synapsis.  In comparison, total AE lengths for as1 are more variable and significantly 

longer (see Table 1) than wild-type or asb.  In addition, there is no relationship between the amount of 

synapsis and AE length in as1 nuclei.   
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way ANOVA, P < 0.001).  Subsequent, pairwise multiple comparisons (Holm-Sidak method) 

showed that total AE/LE length in wild-type and asb were not significantly different (P > 0.15),  

but as1 was significantly different from both wild-type and asb (P < 0.001).  Thus, the greater 

length of AE/LEs in the as1 mutant is not simply explained by the asynaptic phenotype since the 

asb mutant averages only 4% synapsis.  We observed a high level of variability in the fraction of 

synapsis for SC spreads from as1, but there was no clear relationship between % synapsis and 

total AE/LE lengths (linear regression, R
2
=0.14; P > 0.25).   

 

DISCUSSION 

In tomato, as1 is a spontaneous, recessive, meiosis-specific mutation that causes 

incomplete synapsis and frequent univalent formation (Soost 1951).  Plants carrying the as1 

mutation are almost completely male sterile, but seed set is reduced by only half when as1 is 

used as the female parent with pollen from wild-type plants (Soost 1951).  Rather surprisingly, 

offspring from as1 mutants exhibit normal levels of crossing over, which may reflect selection 

for high levels of crossing over to produce viable eggs (Soost 1951; Moens 1969).  However, 

offspring from as1 mutants also had higher frequencies of double crossovers than expected 

(Soost 1951;  Moens 1969), suggesting that crossover interference was altered compared to wild-

type.  Such results are not unique - the maize as mutant also has an asynaptic phenotype that is 

associated with reduced crossover interference (Rhoades and Dempsey 1949; Dempsey 1958), 

although various levels of crossing over (reduced, normal, and higher) have been reported for 

different genetic intervals (Rhoades and Dempsey 1949; Dempsey 1958; Miller 1963; Nel 1979).  

Because most spontaneous mutations affecting synapsis in plants have not been characterized at 

the molecular level, the exact genetic defects responsible for the mutations have not been 
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identified.  Nevertheless, these uncharacterized mutations can be informative.  For example, 

(Pawlowski et al. 2003) found that several different maize synaptic mutants were aberrant for 

RAD51 focal localization and the severity of the synaptic defects was correlated with the extent 

of the RAD51 focal defects.  Therefore, new immunolabeling techniques can be useful in 

evaluating the relationship between recombination and synapsis, even in mutants in which the 

specific molecular defect is not known.  We applied this approach to more closely examine 

synapsis and recombination in the tomato as1 mutant. 

Because synapsis is never complete in the tomato as1 mutant, determining substages of 

prophase I using synaptic progress is not possible.  However, we were able to use anther length 

and cell wall thickness to distinguish two stages in as1 PMCs, early and late, which were 

comparable to leptotene-zygotene and pachytene, respectively, in wild-type PMCs (Figure 1).  

We found very little, if any, synapsis in early stage as1 PMCs, and substantial amounts of 

synapsis were observed only during late stage as1 PMCs (Figure 2).  Thus, synaptic initiation 

was greatly delayed in as1, which suggests that the meiotic defect occurs very early, possibly 

upon entry into meiosis.  We also documented a substantial delay in meiotic progression in as1 

compared to wild-type PMCs using BrdU labeling (Qiao and Anderson chapter 2).  Such delays 

of meiotic progression are commonly observed in plant meiotic mutants (Sanchez-Moran et al. 

2007).   

  Among late stage as1 nuclei, we verified that synapsis was homologous by using single-

copy BAC-FISH on four different chromosomes (chromosomes 1, 2, 4, 10, Figure 3, Table 2).  

For each BAC probe, we observed nuclei with either one or two signals per BAC, and, in the 

majority of cases, we were able to determine that single BAC-FISH signals corresponded to 

synapsed (SC) segments and two BAC-FISH signals corresponded to asynapsed AE segments.  
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Thus, the presence of two signals is not due to non-homologous synapsis, but to lack of synapsis 

between the two homologs at the site of interest.  We also observed that the amount of synapsis 

was highly variable both between nuclei and between different bivalents within the same nucleus 

(Tables 1 - 2, Figures 2 - 3).  Based on our BAC-FISH data, longer chromosomes were more 

likely to be synapsed than shorter chromosomes, and the long arm of each chromosome was 

more likely to be synapsed than the short arm.  For example, the long arms of two long 

chromosomes (chromosomes 2 and 4) were synapsed in more than 80% of the nuclei, the long 

arm of the shorter chromosome 10 was synapsed in less than 50% of the nuclei, and the short 

arm of chromosome 1 was synapsed in less than 40% of the nuclei (Table 2).  This data is in 

accord with previous observations of synaptic patterns in as1 (Havekes et al. 1994).   Havekes et 

al. (1994) also noted that the synaptic pattern in as1 is similar to the pattern of distribution of 

single RNs on SCs from wild-type tomato (Sherman and Stack 1995).  Sherman and Stack 

(1995) found that if an SC had only one RN, it was invariably found in the long arm of the 

chromosome, and they suggested that this distribution may reflect the location of synaptic 

initiation sites.  If so, then the pattern of synaptic initiation in as1, even though delayed, is 

similar to that in wild-type tomato. 

The presence of univalents at meiosis I indicated that crossover control was also 

disturbed in the as1 mutant (Soost 1951; Moens 1969; Havekes et al. 1994; Havekes et al. 1997).  

We evaluated crossing over in the as1 mutant using MLH1 foci as a marker of crossovers 

generated through the interference pathway and found significant differences in the frequency 

and distribution of MLH1 foci in as1.  The average total number of MLH1 foci per late stage 

nucleus was significantly lower and more variable for as1 compared to wild-type pachytene 

nuclei (Figures 4 - 5, Table 3).  We also observed considerable variability in the number of 
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MLH1 foci on SC segments from as1.  SC segments from as1 were generally shorter than SCs 

from wild-type tomato, and about 20% of these segments had no MLH1 foci.  However, many 

other short SC segments often had up to three MLH1 foci, and longer SC segments had as many 

as six MLH1 foci, something we never observed for wild-type (Figure 6).  In comparison, most 

wild-type SCs had only one MLH1 focus with two and three MLH1 foci per SC occurring much 

less frequently [this work, (Lhuissier et al. 2007)].  Thus, in spite of the reduction in the average 

number of MLH1 foci per nucleus, the average frequency of MLH1 foci per µm SC was over 

two-fold higher for as1 compared to wild-type.   

We examined the distribution of MLH1 foci by applying the gamma model to interfocus 

distances to evaluate spacing between adjacent MLH1 foci.  If foci are randomly spaced (no 

interference), ν = 1.  MLH1 foci that are less randomly (more evenly) spaced (demonstrating 

interference) have ν > 1.  We estimated ν using absolute (µm) not relative (%) distances between 

MLH1 foci because we were unable to reliably follow the entire length of partially synapsed 

chromosomes in as1.  Also due to the limited synapsis of as1, we did not adjust values of υ in 

as1 or wild-type for the limited range of interfocus distances that are experimentally observable 

(de Boer et al. 2006; Lhuissier et al. 2007).  We observed a significant difference in the 

distribution of MLH1 foci with υ = 1.7 for as1 and υ = 4.5 for wild-type.  In comparison, 

(Lhuissier et al. 2007) observed υ = 6.9 – 7.9 (unadjusted values, see their Table 2) for MLH1 

foci for the two longest chromosomes of tomato.  Part of the difference in wild-type υ values 

from our work and that of Lhuissier may be their use of relative (% of long arm) distance 

between adjacent MLH1 foci on only the two longest chromosomes while we used µm 

measurements (again because of the difficult of following as1 chromosomes) for SCs and SC 

segments of any length.  In any case, we found that interference between MLH1 foci is 
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considerably reduced for as1 compared to wild-type.  The υ values for the as1 mutant are similar 

to those for early recombination nodules (that were also calculated using absolute interfocus 

distances; (Anderson et al. 2001; Lhuissier et al. 2007)).  Thus, based on MLH1 foci, the as1 

mutation has a profound effect on the frequency and distribution of crossing over. 

Our results on MLH1 frequency and interference are consistent with previous reports of 

an elevated frequency of double crossovers in as1(Soost 1951; Moens 1969).  The data are also 

consistent with their observed “normal” level of crossing over in as1 when we combine the 

higher frequency of MLH1 foci on SC segments with the reduced chance (compared to wild-

type) that the segment will be synapsed (Table 2).  We suggest that this combination of factors 

may apply to other asynaptic mutants in which the frequency of double crossovers is elevated 

[such as as in maize, (Rhoades and Dempsey 1949; Dempsey 1958; Dempsey 1959)].  

Furthermore, differing observations of reduced, normal or enhanced levels of crossing over in 

different genetic intervals from asynaptic mutants may be a consequence of the specific interval 

examined and how frequently it synapses combined with elevated MLH1 (crossover) frequency 

and reduced interference.   

Associated with changes in MLH1 foci, the as1 mutant also showed differences in 

cohesin components of AE/LEs.  Fluorescence signals for SMC1, REC8 and SCC3 were much 

reduced in as1, but SMC3 signals were similar in both as1 and wild-type (Figure 13).  Additional 

enhancement of the fluorescent signals revealed that both SMC1 and REC8 were present along 

AEs and LEs of as1, but we did not observe any detectable labeling for SCC3 even with 

additional enhancement of the images.  The reduced signals for these cohesins could be due to 

initially reduced amounts of the proteins in AE/LEs or to enhanced extraction of the proteins 

during the chromosome spreading process such as that reported by (Lam et al. 2005b) for 
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cohesin protein SMC3 in Arabidopsis chromosome preparations in the presence of Tween 

detergent.  Chromosomes in our SC spreads are routinely prepared using the detergent NP-40 

(not Tween 20), but even if cohesins are extracted with NP-40 detergent, three of the cohesins 

are more susceptible than SMC3 in as1 or than all four cohesins in wild-type.  In either case, it is 

clear that three of the four cohesins are altered in AE/LEs of as1 compared to wild-type.  Such 

differences could lead to changes in AE length similar to those reported for deletions of SMC1β 

(and SYCP3) in mammals (Yuan et al. 2000; Yuan et al. 2002; Novak et al. 2008) and for the 

Rec8 mutant in fission yeast (Ding et al. 2006).  

Although the immunolabeling characteristics of three of the cohesins are altered in the 

as1 mutant, functional chiasmata form, and sister chromatid cohesion (SCC) remains intact 

through meiosis (Soost 1951) (Moens 1969) (Havekes et al. 1994) (our observations).  The wild-

type labeling of SMC3 in AE/LEs of as1 combined with the presence (albeit at reduced levels) of 

REC8 and SMC1 is apparently sufficient to assure meiotic SCC.  This observation is consistent 

with evidence that only a fraction of the cohesin complex is sufficient to assure mitotic SCC in 

mammalian cells and meiotic SCC in budding yeast (Peters et al. 2008; Brar et al. 2009).  Thus, 

cohesins seem to have both mitotic and meiotic roles in addition to their highly conserved 

function in sister chromatid cohesion. 

What is the defect in as1? 

  Asynapsis is a common phenotype that can be caused by a variety of defects including 

mutations in genes involved in early recombination events (e.g. SPO11, MRE11, RAD50) or  

AE/SC structure [such as REC8/SYN1/AFD1, ZIP1, ASY1, ZEP1 (Sym and Roeder 1996; 

Armstrong et al. 2002; Cai et al. 2003; Golubovskaya et al. 2006; Zhang et al. 2006; Wang et al. 

2010)].  Although the as1 mutation has not been mapped (because tomato is an inbred species 
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with few polymorphisms) and the specific defect is not known at the molecular level, Havekes et 

al. (1994) had earlier noted similarities between the asynaptic phenotypes of the as1 mutant of 

tomato and rad50s and dmc1 mutants in budding yeast, and they suggested that as1 could 

represent a mutation in one of these proteins.  If so, then one might expect to see changes in 

immunolocalization patterns of early recombination-related proteins similar to those reported by 

Pawlowski et al. (2003) who observed reductions in RAD51 foci that correlated with the severity 

of asynaptic phenotypes in maize mutants.  To test the proposal of Havekes et al. (1994), we 

examined MRE11, RAD50 and RAD51 foci in early stage nuclei from as1 compared to 

leptotene-zygotene stage nuclei from wild-type.  We observed no detectable differences in the 

frequencies or other immunolabeling characteristics of these proteins (Figure 11-12).  Based on 

this evidence, it seems unlikely that a mutation in MRE11, RAD50, RAD51 or SPO11 (that would 

also be expected to alter RAD51 focal properties) is responsible for the as1 phenotype.  

However, we cannot exclude the possibility that a small mutation has occurred in one of the 

genes, which interferes with the activity but not the nuclear localization pattern of the protein.  If 

so, then the mutation would also have to affect cohesin core deposition in as1, and so far, no 

mutant of any of the three genes has been reported to have an effect on the formation of a 

cohesin core or on the deposition of other SC-associated proteins (Gallego et al. 2001; Chin and 

Villeneuve 2001; Bleuyard et al. 2004; Puizina et al. 2004; Cherry et al. 2007; Borde 2007; 

Acharya et al. 2008).  On the other hand, an mre11 mutant in Coprinus caused defects in 

chromosome condensation (Gerecke and Zolan 2000), so perhaps this aspect has not been 

sufficiently examined in this group of mutants.     

A few other mutations (ndj1/tam1, tid1/rdh4, msh4, sgs1) that reduce crossover 

interference have been reported, particularly in budding yeast (Ross-Macdonald and Roeder 
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1994; Conrad et al. 1997; Chua and Roeder 1997; Novak et al. 2001; Shinohara et al. 2003; Wu 

and Burgess 2006; Oh et al. 2007; Getz et al. 2008).  The yeast ndj1/tam1 mutation was 

particularly regarded as a mutation similar to that of tomato as1 (Chua and Roeder 1997).  Ndj1 

is a telomere-associated protein that affects bouquet formation and chromosome synapsis 

(Conrad et al. 1997; Chua and Roeder 1997).  The ndj1/tam1 defect may be related to the maize 

pam1 mutant that has similar bouquet, synapsis and crossover deficiencies (Golubovskaya et al. 

2002).  Ndj1 has recently been shown to have a more direct effect on recombination than 

previously thought, and Ndj1 has been proposed to stabilize strand invasion intermediates that 

lead to recombination events [both crossovers and non-crossovers, (Wu and Burgess 2006)].  In 

our spreading experiments, three-dimensional organization is lost, so we were not able to 

determine whether the as1 mutant affects bouquet formation.  However, none of these mutations 

have been reported to have any effect on cohesin proteins such as that seen in as1. 

Another possibility for the as1 defect is mutation of a cohesin or a cohesin-interacting 

protein (such as cohesin loading factors or kinesins responsible for phosphorylating cohesins 

during meiosis).  Particularly attractive is a mutation specifically affecting REC8 as it is the only 

meiosis-specific cohesin in plants (Schubert 2009), and the as1 mutation affects only meiosis.  In 

wild-type tomato, REC8 is loaded onto the meiotic chromosome axis at approximately the same 

time as SMC3 and before SMC1 or SCC3 (Figure 11, Chapter 2).  Therefore, a mutation that 

affects REC8 loading could potentially affect the stable integration of SMC1 and SCC3 into AE 

structure without affecting SMC3.   

In plants, deletion (or RNAi suppression) of REC8 leads to complete asynapsis, no 

homologous chromosome alignment, chromosome fragmentation at meiosis I, and aborted pollen 

grains (Cai et al. 2003; Golubovskaya et al. 2006; Zhang et al. 2006).  Even the least severe 
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allele (afd1-4) of a mutant allele series of maize AFD1 caused disruption in AE formation, 

homologous pairing (and RAD51 foci), bouquet formation, and sister chromatid cohesion 

(Golubovskaya et al. 2006).  If the as1 mutation involves REC8, it obviously has a less severe 

phenotype than any of these null or near-null REC8 mutations in other plants. 

The as1 mutation affects the formation of the cohesin core, which in turn affects meiotic 

chromosome structure and the ability to form full-length SC, and the change in cohesin axis 

structure is associated with a reduction of interference between MLH1 foci on SC segments of 

as1.  An increasing number of studies have documented a close association between meiotic axis 

(AE/LE and/or SC) structure and crossover control (Zickler and Kleckner 1999; Kleckner 2006; 

Wood et al. 2010). Two C. elegans mutants (him-3 and dpy-28) that affect axis structure also 

have reduced crossover interference (Nabeshima et al. 2004; Tsai et al. 2008).  HIM-3 codes for 

a LE component that is reduced in the him-3 mutant.  DPY-28 codes for a condensin component 

(that also has a role in dosage compensation in C. elegans), and dpy-28 mutants are defective in 

chromosome compaction (Tsai et al. 2008).  In C. elegans, interference is usually complete so 

that only a single crossover occurs on each bivalent.  In him-3 and dpy-28 mutants, bivalents 

with two and even three crossovers have been observed. Similarly, PCH2/TRIP13 in budding 

yeast and mice coordinately influence chromosome axis structure and crossing over (Li and 

Schimenti 2007; Börner et al. 2008; Zanders and Alani 2009; Joshi et al. 2009; Roig et al. 2010).  

Mutants of pch2/trip13 in both yeast and mice alter the distribution of HOP1/RED1 

(HORMAD1/HORMAD2) on AE/LEs, reduce meiotic chromosome length, and reduce 

crossover (or MLH1 foci) interference.  In addition, synapsis is incomplete in mouse trip13 

mutants (Li and Schimenti 2007; Roig et al. 2010).  These studies illustrate the close 

correspondence between meiotic chromosome axis behavior and crossover control. 
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The role of the meiosis-specific cohesin REC8 in regulating crossing over has been 

recently addressed in an elegant study in budding yeast by Brar et al. (2009).  Brar et al. (2006) 

had earlier established the importance of REC8 phosphorylation in combination with 

recombination for establishing the step-wise loss of cohesion during anaphase I and anaphase II.  

Brar et al. (2009) found that REC8 has functions in chromosome pairing, cohesion, synapsis, and 

recombination that are at least partially genetically separable based on different levels of REC8 

phosphorylation.  The rec8-29A mutant (in which 29 phosphorylation sites of REC8 were 

mutated to alanine) is particularly interesting with regard to the tomato as1 mutant.  The rec8-

29A mutant has a severe prophase I delay, but the protein is produced at a wild-type level and 

loads on to chromosome axes during meiosis (Brar et al. 2006).  Sister chromatid cohesion and 

AE formation are normal, normal levels of DSBs occur with normal timing, and synapsis is 

homologous in rec8-29A (Brar et al. 2009).  However, synapsis is never completed in the rec8-

29A mutant, recombination is delayed, and only half the normal level of crossovers occurs (Brar 

et al. 2009).  Interference between crossovers was not examined in this mutant.  With the 

exception of the reduction in crossover frequency (that was based on recombination at only one 

site – the artificial HIS4/LEU2 hotspot) and the normal loading of rec8-29A onto chromosome 

axes, these phenotypes are remarkably similar to those of tomato as1.   

Our data on as1 together with observations from other organisms (particularly the rec8-

29A mutant of budding yeast) support the hypothesis that REC8 is a key player in the defects 

observed in tomato as1.  Whether this is a direct effect through mutation of REC8 itself or an 

indirect effect through mutation of other proteins that promote cohesin loading [such as SCC2, 

SCC4, or HTP-3, (Onn et al. 2008; Severson et al. 2009)], other proteins that influence the 

meiotic chromosome axis [such as PCH2/TRIP13, HOP1/ASY1, (Zanders and Alani 2009; Joshi 
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et al. 2009; Roig et al. 2010)] or kinases that phosphorylate REC8 (Brar et al. 2006; Brar et al. 

2009) will require detailed molecular characterization of the as1 mutation.  More importantly, 

our results show that meiotic chromosome axis structure, synapsis and crossover control are all 

intimately linked in plants. 
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CHAPTER 5: 

 

GENERAL DISCUSSION 

Findings and significance of this study  

In this study, we used an immunocytological approach to study recombination and 

synapsis in primary microsporocytes from tomato plants.  We found that cohesin proteins load 

onto chromosome cores during prophase I in wild-type tomato meiocytes (Chapter 2).  All four 

cohesin proteins showed discontinuity and variation in intensities along SCs, and two of the 

cohesins, REC8 and SMC3, loaded earlier in leptotene and persisted longer at diplotene 

compared to another cohesin, SMC1.  This study was the first to examine the dynamics of 

cohesin proteins during meiotic prophase in plants.  The different loading times and variable 

labeling intensities of cohesin proteins along AE/LEs are broadly similar to results obtained in 

other organisms.  Because the four cohesins would be expected to act together at the same time 

in an equal stoichiometry to provide sister chromatid cohesion, the results also suggest that 

cohesin proteins have additional functions during meiosis in plants. 

We also examined the relationship between synapsis and crossing-over in an asynaptic 

mutant (as1) of tomato (Chapters 3 and 4).  We developed a new in vivo method to label 

developing microsporocytes with BrdU during premeiotic S-phase and found that the asynaptic 

defect was associated with a severe delay in the progression of meiotic prophase I.  Our in vivo 

labeling method avoids the developmental arrest of tomato flowers that occurs with a different 

but commonly used method.  We found that synapsis, though incomplete, was homologous in 

as1.  Compared to wild-type, three cohesins (REC8, SCC3 and SMC1) were reduced in the SCs 

of zygotene-pachytene microsporocytes from as1, and the cohesin defects may be related to 
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another defect in chromosome condensation.  The as1 mutant also showed distinct differences in 

the MLH1 crossover pathway.  The frequency of MLH1 foci was not different from wild-type on 

a per cell basis, but the frequency of MLH1 foci per μm SC length was higher than wild-type.  

The higher frequency of MLH1 foci on SC segments was associated with a reduction of 

interference among MLH1 foci in as1 plants.  Although the mutation causing the phenotypes of 

as1 is still unknown, our results are the first in any organism to demonstrate that cohesin proteins 

are associated with crossover interference. 

In summary, our results provide a better understanding of the roles of cohesin and 

recombination proteins in relation to genetic recombination, synapsis, and crossover interference 

in a higher plant. All of the proteins we studied are evolutionarily conserved, so our experimental 

results provide insights into the control of meiotic crossing over in other organisms.  Our results 

also have implications in more practical arenas.  For example, understanding the molecular 

mechanisms of genetic recombination could lead to the development of plants with altered 

(particularly increased) recombination frequencies to speed up breeding of new plant varieties. 

A model for crossing over and genetic interference in tomato 

Based on evidence from this work and previous work on synapsis and recombination in 

tomato and other plants (Stack and Anderson 1986a, 1986b; Stack et al. 1993; Anderson et al. 

2001; Anderson and Stack 2005), I propose the following model [that is modified based on one 

previously proposed by Stack and Anderson (1986b)].  In this model, genetic interference is 

determined by two important factors, development of recombination sites (i.e., the time required 

for formation of D-loop intermediates at each DSB site and then their subsequent fates) and 

communication among recombination sites (= DSB sites) on the same chromosome. The fate of 

an individual DSB would be related to both of these temporal and spatial considerations.  
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Temporally, some recombination sites (such as those at synaptic initiation sites and/or 

recombination hotspots) would develop into crossover intermediates earlier than other 

recombination sites.  Spatially, recombination sites would “talk” to each other via interference 

signals. Once an early-developing recombination site was committed to be a designated CO, an 

interference signal would be produced from the designated CO site and spread out to cause 

adjacent later-developing recombination sites to go through NCO pathways.  Interference signals 

would fade with distance from the designated CO site, so later-developed sites that are far away 

from the generator of the interference signal would still have an opportunity to develop into a 

designated CO.  Axial elements, especially REC8 proteins, would have a key role in the 

transmission signal for interference. The interference signal in this model may be through 

modifications of cohesin proteins that would begin at the site of a designator CO.  Such 

modifications could include one or more of the following: phosphorylation, methylation, 

acetylation, ubiquitination, or SUMOylation reactions.  Possibly, similar modifications of non-

cohesin AE components could also be involved.  

Our model can account well for the phenotypes observed in the as1 mutant. 

Recombination proteins that are involved in the development of each DSB site presumably play 

important roles in both initiating and receiving interference signals. Early recombination proteins 

in as1 seem to function well, since the immunolocalization patterns of MRE11, RAD50, and 

RAD51 in as1 do not differ from the patterns in wild type.  Also, MLH1 foci that represent the 

last event of the DSBR pathway to a crossover occur in as1 nuclei. Therefore, the weakened 

interference in as1 is probably not due to defects in generators and acceptors of the interference 

signal, but to disruption of the medium of interference.  In as1, alterations in axial element 

structure (i.e., represented by observed reductions in SMC1, SCC3, and REC8 cohesin proteins) 
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disrupt transmission of the interference signal. Without the interference signal, later-developing 

recombination sites, even those that are close to CO-designated sites, are able to go through the 

CO pathway instead of being forced into the NCO pathway (as would occur in the presence of 

interference).  The reduction of interference in the as1 mutant leads to the observed reduced 

inter-focus distances among CO/MLH1 foci and increased density of CO/MLH1 foci on SC 

segments. 

Directions for further research 

Based on our analysis of as1, REC8 plays a key role in regulating meiotic recombination 

in tomato.  While we do not yet know the exact molecular defect of as1, the mutation seems 

most likely to be in REC8 itself or in a REC8-regulating protein.  In either case, REC8 protein is 

produced, but it is not incorporated into AE/LEs in the normal manner.  Thus, the as1 mutation is 

more likely to be similar to a hypomorphic type of mutation than to a null mutation.  Most 

evaluations of REC8 have involved null mutants (Klein et al. 1999; Cai et al. 2003; Puizina et al. 

2004; Bannister et al. 2004; Xu et al. 2005; Zhang et al. 2008).  Only two studies, one in maize 

(Golubovskaya et al. 2006) and one in budding yeast (Brar et al. 2009) have analyzed different 

non-null mutants of REC8.  Although neither study examined genetic interference, both showed 

varying effects of the different REC8 mutations on synapsis and recombination.  Further studies 

of REC8 using approaches such as RNAi or targeted mutation of phosphorylation sites of REC8 

(like that of Brar et al. 2009) would be useful in making rec8 hypomorphic mutants in plants and 

animals, and we predict that some rec8 hypomorphic mutants will mimic the phenotypes shown 

in the as1 mutants.  Such experiments will play an important role in better defining the role(s) of 

REC8 in controlling meiotic recombination rates and genetic interference.  
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