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ABSTRACT OF DISSERTATION 

 

BREEDING SUCCESS, PREY USE, AND MARK-RESIGHT ESTIMATION OF 

BURROWING OWLS NESTING ON BLACK-TAILED PRAIRIE DOG TOWNS: 

PLAGUE AFFECTS A NON-SUSCEPTIBLE RAPTOR 

 

 Introduced pathogens such as the bacterium (Yersinia pestis) that causes plague  

can have far-reaching effects on native ecosystems that go beyond the mortality of 

infected individuals.  We investigated the effects of plague, prairie dog town dynamics, 

and rainfall on burrowing owls (Athene cunicularia) nesting in black-tailed prairie dog 

(Cynomys ludovicianus) burrows in the shortgrass steppe of northern Colorado.  We 

examined effects on prey use, nest density, and breeding success, and used mark-resight 

methods for owl population estimation.  Prairie dogs experience high mortality from 

plague, and their colonies are periodically extirpated by outbreaks.  Plague does not make 

owls sick, but they may be affected as unmaintained burrows collapse, vegetation grows 

taller, and the anti-predator benefits of prairie dog association are lost. 

 From 2005 – 2008, we monitored 322 nest attempts by 311 burrowing owl pairs  

on the Pawnee National Grassland and collected regurgitated pellets and prey remains.  

We banded owlets in 2007, and our first objective was to use a mark-resight protocol to 

estimate abundance, apparent survival, and temporary emigration.  The Poisson-log 

normal mark-resight model (McClintock and White 2009) has recently been implemented 



 iv

in Program MARK (White and Burnham 1999).  This model improves upon previous 

mark-resight models because individual identifications are not required 100% of the time, 

and individuals may die or be temporarily unobservable.  Modeling showed that owlets in 

better condition that weighed more at first capture had higher survival throughout the 

summer and were more likely to be above ground.  Our suggested improvements to field 

protocols should improve abundance estimation in the future. 

 Our second objective was to examine the effects of precipitation, nest density, and 

plague on prey use and to determine whether prey composition influenced nest or 

fledging success.  We quantified prey use and then analyzed diet composition using 

multi-response permutation procedures (MRPP) and indicator species analysis.  

Burrowing owls ate a huge variety of prey dominated by beetles, grasshoppers, ants, 

rodents, and songbirds.  Insects comprised 95% of their diet by number, but only 11% by 

biomass.  Owls in the driest year of our study and those at successful and very productive 

nests ate fewer birds and more mammals.  Owl diet was unchanged by plague outbreaks, 

except that several bird species were less commonly eaten following epizootics.  It 

appears that burrowing owls often forage outside of prairie dog towns, making town-level 

differences less relevant to owl diets. 

 Our third objective was to determine the effects of plague, prairie dog town 

dynamics, and rainfall on nest fate, fledging success, and distances from each nest to its 

three nearest neighbors.  Generalized linear modeling showed that rainfall was the 

strongest predictor of nest and fledging success, with higher rainfall associated with 

lower breeding success.  Nests were more likely to succeed when plague events were 

more recent, and they produced more fledglings on towns where any extirpation was 
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brief, and prairie dogs were otherwise resident on site for a longer time.  Nests were 

closest together on recently plagued towns where prairie dog activity had been nearly 

continuous for a long time and recolonization was rapid.  Although ubiquitous on active 

prairie dog towns, burrowing owls were nearly absent from towns that were not 

recolonized after plague epizootics. 

 Both precipitation and plague influenced population dynamics of breeding 

burrowing owls.  We found strong relationships among rainfall, prey species 

composition, and owl breeding success, and only half the owlets that emerged from 

burrows survived to fledge during the wettest July of our study.  Precipitation regimes are 

expected to become more extreme in the future, which will likely have consequences for 

burrowing owls and other dryland species and may affect the size and frequency of 

plague outbreaks (Stapp et al. 2004).  Although owls were absent from towns that were 

not recolonized after plague epizootics, it appears that burrowing owls can adapt to 

plague and even benefit in some cases.  If conservation of burrowing owls is a primary 

goal, our results suggest that it will be more useful to preserve prairie dog habitat and 

connectivity between towns at a landscape scale than to intensively manage plague.   

 

Reesa Catheline Yale Conrey 
Graduate Degree Program in Ecology 

Colorado State University  
Fort Collins, CO 80523  

Spring 2010 
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CHAPTER 1 

OVERVIEW OF DISSERTATION 

 

 Wildlife diseases are increasingly recognized as important to conservation and 

population dynamics (e.g., Pedersen et al. 2007; Hudson et al. 2001).  For example, 

chytrid fungus in amphibians (Daszak et al. 1999), parvovirus and canine distemper in 

African carnivores (Roelke-Parker et al. 1996), and chronic wasting disease in deer and 

elk (Williams and Miller 2002) have large consequences for affected species, with many 

scientific and popular news articles published on these topics.  Some of the most severe 

responses to disease occur as a result of non-native species introductions.  Parasite 

(macroparasite or microbial pathogen) spillover occurs when a novel parasite is 

introduced to a native host, while parasite spillback occurs when a native parasite is 

amplified by an abundant introduced host and then spills back in greater numbers to a 

native host (Kelly et al. 2009). 

 Disease may also have large indirect effects on non-susceptible species, but these 

get far less attention (Antolin et al. 2002).  However, several diseases of keystone species 

and ecosystem engineers, in which either the pathogen or an abundant new host is non-

native, are known to cascade through communities or ecosystems.  For example, the 

Black Death (plague) caused by the introduced bacterium Yersinia pestis killed huge 

numbers of medieval humans, resulting in agricultural decline in Europe and large-scale 

forest regrowth (van Hoof et al. 2006).  Southern sea otter (Enhydra lutris nereis) 
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populations are constrained by numerous toxins, macroparasites, and pathogens, 

including Toxoplasma gondii and Sarcocystis neurona contracted from the feces of 

introduced domestic cats and opossums, respectively (Jessup et al. 2007; Johnson et al. 

2009; Miller et al. 2010).  Sea otter declines have cascading effects that lead to decline of 

the kelp forest and associated community (Paine 1969; Estes and Duggins 1995; Power et 

al. 1996).  Modern plague-caused mortality of black-tailed prairie dogs (Cynomys 

ludovicianus) has recently been implicated in declines of mountain plover (Charadrius 

montanus) nesting (Augustine et al. 2008) and occupancy of extirpated prairie dog towns 

(Dinsmore and Smith 2010). 

 Plague was first introduced to western North America in 1899 (Dicke 1926; Link 

1955; Antolin et al. 2002) and to northern Colorado around 1948 (Ecke and Johnson 

1952).  Disease has been reported from at least 76 species of mammals in the western 

U.S., with high mortality in black-tailed prairie dogs (Barnes 1993; Cully and Williams 

2001).  Epidemics typically wipe out entire colonies, so instead of living in extensive 

towns as they once did, prairie dogs exist in metapopulations of smaller towns that 

periodically go extinct and are recolonized (Antolin et al. 2002; Stapp et al. 2004).  

Because black-tailed prairie dogs are considered ecosystem engineers and keystone 

species (Miller et al. 1994; Kotliar et al. 1999; Kotliar 2000; Miller et al. 2000; but see 

Stapp 1998), local extirpation of towns might be expected to affect many town associates 

(Antolin et al. 2002; Lomolino and Smith 2004; Smith and Lomolino 2004; Stapp et al. 

2008) in addition to mountain plovers and black-footed ferrets (Mustela nigripes: 

Williams et al. 1994; Matchett et al. 2010). 
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 We studied the effects of introduced plague on a non-susceptible avian associate 

of prairie dog towns, the burrowing owl (Athene cunicularia).  Burrowing owls are small 

ground-dwelling raptors of the prairies that can be active at any time of day, hunting a 

wide variety of insects, mammals (but not prairie dogs), birds, and other prey (Conrey 

Ch. 2).  In the northern United States and Canada, most populations are migratory, 

nesting in burrows dug by mammals such as prairie dogs and ground squirrels (Haug et 

al. 1993).  Black-tailed prairie dog burrows in Colorado are used for nesting and refuge, 

and mounds are frequently used as perches.  Plague does not make owls sick, but they 

may be affected as unmaintained burrows collapse, vegetation grows taller, and the anti-

predator benefits of prairie dog association are lost.  These may include increased 

visibility from trimming of vegetation, alarm calling, and providing an abundant alternate 

prey source (Hoogland 1995).  Burrowing owls are widely distributed on the prairies of 

North, Central, and South America, but they are a declining and protected species in 

many areas and are a state-listed threatened species in Colorado (Colorado Division of 

Wildlife 2007). 

 To our knowledge, no one has studied the effects of plague on burrowing owls, 

despite the importance of plague in structuring habitat and determining whether or not an 

area is usable for nesting.  Several studies have found that owls prefer active to inactive 

prairie dog towns (e.g., Butts and Lewis 1982; Toombs 1997; Orth and Kennedy 2001; 

Sidle et al. 2001; Tipton et al. 2008), but the effects of prairie dog extirpation and time to 

recolonization were unknown.  Count data from the U.S. Forest Service on the Pawnee 

National Grassland (PNG) of northern Colorado suggested that owl numbers were 

generally tracking the increasing area occupied by prairie dogs (Conrey, unpub. data).  
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Similarly, Desmond et al. (2000) found that owl numbers tracked prairie dog populations 

in the Nebraska panhandle with a time lag in the response of owl numbers to prairie dog 

population declines.  Burrows in Oklahoma filled within 3 years of prairie dog removal 

via cultivation and poisoning (Butts and Lewis 1982).  However, Hoogland (1995) noted 

that burrowing owls seemed common in prairie dog towns that had recently declined due 

to poisoning or plague, which mirrored our own initial observations on the PNG. 

 We studied the effects of plague on breeding owls, as measured by nest fate 

(success or failure), fledging success (fledglings per nest), and distance between nests.  

The effects of precipitation were also of interest, because rainfall was quite variable 

during our study, it is the most important environmental factor governing ecology on the 

shortgrass steppe (Lauenroth and Sala 1992), and it influences the likelihood of plague 

epizootics (Stapp et al. 2004).  In addition, high precipitation may lead to reduced 

breeding success in burrowing owls and other raptors (Village 1986; Steenhof et al. 1997; 

Wellicome 2000; Ronan 2002; Griebel and Savidge 2003) due to decreased foraging 

efficiency. 

 Our assessment of breeding success required an accurate count of owlets, but we 

knew counts would be biased low (Gorman et al. 2003) because owlets may be 

underground or otherwise undetectable during observations.  We used the Poisson-log 

normal mark-resight (M-R) model (McClintock et al. 2009; McClintock and White 2009) 

to estimate abundance (Conrey Ch. 2) in 2007, with the goal of quantifying the amount of 

bias in visual counts and accounting for it in other towns and years.  Our abundance 

estimates were unfortunately biased low, so we could not assess further bias in visual 

counts.  However, by adopting a robust design that incorporated both closed and open 
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intervals when recruitment, mortality, immigration, and emigration were permitted 

(Kendall et al. 1995; 1997), we had better success with estimation of apparent survival 

and temporary emigration (underground) of owlets.  Survival over a 4-week period, 

which is approximately the time from emergence to fledging, averaged 0.500 ± 0.079 in a 

poor (wet) year for owl reproduction.  Owlets with better body condition at first capture 

had higher survival throughout the summer, and those weighing more at first capture had 

a higher probability of remaining above ground.  This is one of the first applications of a 

new robust M-R model that is unique in allowing individuals to die or leave the study 

area, permitting < 100% individual identification of marked animals, and providing 

efficient parameter estimation in a likelihood-based framework (McClintock and White 

2009). 

 From 2005 – 2008, only two nests of 322 that we monitored were off prairie dog 

towns, and just one nest was located on a town that had been inactive (without prairie 

dogs) for > 2 years.  Owls nested on all towns that had experienced plague epizootics 

since 2004 and then been recolonized, but they nested mainly on the small portions of 

these towns with prairie dog activity.  Our next question related to the mechanism 

responsible for these patterns in owl nesting behavior.  First, vegetation is shorter with 

lower biomass on towns than off towns or on extirpated towns, with different species 

composition and more bare ground (Hardwicke 2006; Hartley 2006; Hartley et al. 2009), 

but these changes are patchy in space and time and depend on topography (e.g., location 

on hills or swales) and rainfall.  Second, although burrows eventually collapse and 

become unusable for owl nesting, more are available in the shorter term after prairie dog 

numbers have been reduced.  Burrowing owls require more than just the nest burrow; 
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mounds are used for perching, and multiple satellite burrows are used by adults and 

juveniles for rest and refuge.  Third, after epizootics, fewer prairie dogs (or none) are 

available to alarm call or feed predators like snakes, badgers, and larger raptors.  Finally, 

the changes in vegetation and digging activity that accompany prairie dog extirpation 

may lead to changes in the prey community and in owl diets.  Rodent (Stapp 2007; Stapp 

et al. 2008) and arthropod (Bangert and Slobodchikoff 2006) communities are known to 

differ on active and inactive towns. 

 We investigated this last potential mechanism for plague effects on owls.  We 

quantified owl diet and examined ecological factors related to prey use, including year, 

rainfall, plague, nest density, and breeding success (Conrey Ch. 3).  Burrowing owls in 

our sample ate at least one of almost every available prey item on the PNG, including 

almost every small rodent known to occur there, as well as insects dominated by beetles 

and grasshoppers, birds, arachnids, reptiles, amphibians, and crayfish.  There was a large 

difference in prey counts dominated by insects (95%) and prey biomass dominated by 

rodents (67%).  Grasshoppers were more commonly eaten in a dry year, and some but not 

all vertebrate species were consumed less often at nests on towns with higher nest 

density.  Owls in the driest year of our study and those at successful and very productive 

nests ate fewer birds and more mammals.  Diet was mostly unchanged by plague.  Our 

diet composition data suggest this is because owls often forage for vertebrates off towns, 

making more localized changes on towns less important. 

 Finally, we studied the effects of plague and variation in rainfall on breeding 

burrowing owls, including nest fate, fledgling counts, and average distance to the three 

nearest nests (Conrey Ch. 4).  Our study occurred in years with varying rainfall and on 
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towns with varying histories of plague and prairie dog occupation.  Rainfall was the best 

predictor of breeding success, and higher summer rainfall was associated with nest failure 

and fewer fledglings per nest.  More recent plague was associated with nest success and 

more closely spaced nests.  Older towns where prairie dogs had been absent for no more 

than 2 consecutive years since data collection began in 1981 had more fledglings per nest 

and closely spaced nests.  Apparent nest success averaged 62% in wet years and 84% in 

dry years.  Fledging success across all owl pairs averaged 2 owlets in wet years and 3.4 

owlets in dry years.  Successful pairs averaged 3 – 4.5 fledglings (range 1 – 9).  Mean 

distance to the nearest nest was 249.6 ± 588.9 m on prairie dog towns and 188.3 ± 164.7 

m on towns with more than one nest. 

 Our results have implications for conservation and wildlife management where 

climate change and disease effects are a concern.  We found strong relationships among 

rainfall, prey species composition, and owl breeding success.  In addition, only half the 

owlets that emerged from nests survived to fledge during the wettest July of our study, in 

which one storm contributed 1/5 the total mean annual precipitation.  Precipitation 

regimes are expected to become more extreme (Easterling et al. 2000; Karl and Trenberth 

2003; Goswami et al. 2006; Allan and Soden 2008; Groisman and Knight 2008; Knapp et 

al. 2008; Heisler-White 2009), with larger storms separated by longer dry periods.  On 

the shortgrass steppe, above ground net primary productivity (ANPP) should increase as 

a result (Heisler-White 2009), but our results suggest that not all dryland species will 

benefit.   Burrowing owls and other dryland species may respond in unexpected ways, 

and altered precipitation regimes may influence the likelihood of plague outbreaks (Stapp 

et al. 2004). 

 7



 Burrowing owls in our study benefited when plagued towns were quickly 

recolonized by prairie dogs, but were absent otherwise.  This suggests that intensive 

management of plague via vaccination programs or flea control is generally not needed if 

burrowing owl conservation is the primary goal and connectivity between prairie dog 

towns is adequate.  Plague management may be important for isolated towns (Cully et al. 

2010) that are unlikely to be quickly recolonized or wherever conservation of other 

species like black-footed ferrets is a priority (Williams et al. 1994; U.S. Fish and Wildlife 

Service 2009; Biggins et al. 2010; Matchett et al. 2010).  Towns in historically plague-

affected regions are smaller, farther apart, and occupy less of the available area than 

towns in regions with no plague (Cully et al. 2010).  However, connectivity on the PNG 

is high, as evidenced by the rapid recolonization of towns we observed and by the 39% 

misassignment rate observed by Roach et al. (2001); individuals that did not genetically 

assign to the town where they were captured were likely migrants or descendants of 

migrant prairie dogs. 

 We recommend that managers focus on conservation of habitat for prairie dogs 

and maintenance of connectivity among towns.  The positive effects of connectivity 

(recolonization of extirpated towns) should generally outweigh negative effects of 

increased disease transfer (Cunningham 1996) or social responses of prairie dogs to 

increased numbers of migrants, such as aggression, infanticide, stress, or vigilance 

(Hoogland 1995).  Isolation may not reduce vulnerability to plague (Stapp et al. 2004).  

However, these issues should be considered when forming management plans.  Antolin et 

al. (2002) suggested conserving complexes of towns where all towns are within 7 km of 

another town to account for movement capabilities of prairie dogs and ferrets.  Subject to 
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future changes in precipitation regimes, burrowing owls have the potential to persist and 

even increase in the presence of introduced plague as long as prairie dogs are conserved 

at a metapopulation scale. 

 

 9



 
 
 
 
LITERATURE CITED 
 
Allan, R.P. and B.J. Soden.  2008.  Atmospheric warming and the amplification of 

precipitation extremes.  Science 321:1481-1484. 

Antolin, M.F., P. Gober, B. Luce, D.E. Biggins, W.E. Van Pelt, D.B. Seery, M. Lockhart, 
and M. Ball.  2002.  The influence of sylvatic plague on North American wildlife at 
the landscape level, with special emphasis on black-footed ferret and prairie dog 
conservation.  Transactions of the North American Wildlife and Natural Resources 
Conference 67:104-127. 

Augustine, D.J., S.J. Dinsmore, M.B. Wunder, V.J. Dreitz, and F.L. Knopf.  2008.  
Response of mountain plovers to plague-driven dynamics of black-tailed prairie dog 
colonies.  Landscape Ecology 23:689-697. 

Bangert, R.K. and C.N. Slobodchikoff.  2006.  Conservation of prairie dog ecosystem 
engineering may support arthropod beta and gamma diversity.  Journal of Arid 
Environments 67:100-115. 

Barnes, A.M.  1993.  A review of plague and its relevance to prairie dog populations and 
the black-footed ferret.  Pages 28-37 in J.L Oldemeyer, D.E. Biggins, and B.J. Miller, 
Eds.  Proceedings of the Symposium on the Management of Prairie Dog Complexes 
for the Reintroduction of the Black-footed Ferret.  U.S. Department of Interior 
Biological Report 13. 

Biggins, D.E., J.L. Godbey, K.L. Gage, L.G. Carter, and J.A. Montenieri.  2010.  Vector 
control improves survival of three species of prairie dog (Cynomys) in areas 
considered enzootic for plague.  Vector-Borne and Zoonotic Diseases 10:17-26. 

Butts, K.O. and J.C. Lewis.  1982.  The importance of prairie dog colonies to burrowing 
owls in Oklahoma.  Proceedings of the Oklahoma Academy of Sciences 62:46-52. 

Colorado Division of Wildlife.  2007.  Threatened and endangered list.  
http://wildlife.state.co.us/WildlifeSpecies/SpeciesOfConcern/ThreatenedEndangeredL
ist/ListOfThreatenedAndEndangeredSpecies.htm.  Updated 10/15/2007.  Accessed 
6/15/2009. 

Cully, J.F., Jr., T.L. Johnson, S.K. Collinge, and C. Ray.  2010.  Disease limits 
populations: plague and black-tailed prairie dogs.  Vector-Borne and Zoonotic 
Diseases 10:7-15. 

 10

http://wildlife.state.co.us/WildlifeSpecies/SpeciesOfConcern/ThreatenedEndangeredList/ListOfThreatenedAndEndangeredSpecies.htm
http://wildlife.state.co.us/WildlifeSpecies/SpeciesOfConcern/ThreatenedEndangeredList/ListOfThreatenedAndEndangeredSpecies.htm


Cully, J.F. and E.S. Williams.  2001.  Interspecific comparisons of sylvatic plague in 
prairie dogs.  Journal of Mammalogy 82:894-905. 

Cunningham, A.A.  1996.  Disease risk of wildlife translocations.  Conservation Biology 
10:349-353. 

Daszak, P., L. Berger, A.A. Cunningham, A.D. Hyatt, D.E. Green, and R. Speare.  1999.  
Emerging infectious diseases and amphibian population declines.  Emerging 
Infectious Disease 5:735–748. 

Desmond, M.J., J.A. Savidge, and K.M. Eskridge.  2000.  Correlations between 
burrowing owl and black-tailed prairie dog declines: a 7-year analysis.  Journal of 
Wildlife Management 64:1067-1075. 

Dicke, W.M.  1926.  Plague in California 1900 – 1925.  Proceedings of the 41st Annual 
Meeting and Conference of State Provincial Health Authority of North America, 
Atlantic City, New Jersey. 

Dinsmore, S.J. and M.D. Smith.  2010.  Mountain plover responses to plague in Montana.  
Vector-Borne and Zoonotic Diseases 10:37-45. 

Easterling D.R., G.A. Meehl, C. Parmesan, S.A. Changnon, T.R. Karl, and L.O. Mearns.  
2000.  Climate extremes: observations, modeling, and impacts.  Science 289:2068-
2074. 

Ecke, D.H. and C.W. Johnson.  1952.  Plague in Colorado and Texas.  Part I.  Plague in 
Colorado.  Public Health Monograph No. 6.  U.S. Government Printing Office, 
Washington, D.C. 

Estes J.A. and D.O. Duggins.  1995.  Sea otters and kelp forests in Alaska: generality and 
variation in a community ecological paradigm.  Ecological Monographs 65:75-100. 

Gorman, L.R., D.K. Rosenberg, N.A. Ronan, K.L. Haley, J.A. Gervais, and V. Franke.  
2003.  Estimation of reproductive rates of burrowing owls.  Journal of Wildlife 
Management 67:493-500. 

Goswami B.N., V. Venugopal, D. Sengupta, M.S. Madhusoodanan, and P.K. Xavier.  
2006.  Increasing trend of extreme rain events over India in a warming environment.  
Science 314:1442-1444. 

Griebel, R.L. and J.A. Savidge.  2003.  Factors related to body condition of nestling 
burrowing owls in Buffalo Gap National Grassland, South Dakota.  Wilson Bulletin 
115:477-480. 

 11



Groisman P.Y. and R.W. Knight.  2008.  Prolonged dry episodes over the conterminous 
United States: new tendencies emerging over the last 40 years.  Journal of Climate 
21:1850-1862.  

Hardwicke, K.  2006.  Prairie dogs, plants, and pollinators: tri-trophic interactions affect 
plant-insect floral visitor webs in shortgrass steppe.  Ph.D. Dissertation, Colorado 
State University, Fort Collins, Colorado. 

Hartley, L.M.  2006.  Plague and the black-tailed prairie dog: an introduced disease 
mediates the effects of an herbivore on ecosystem structure and function.  Ph.D. 
Dissertation, Colorado State University, Fort Collins, Colorado. 

Hartley, L.M., J.K. Detling, and L.T. Savage.  2009.  Introduced plague lessens the 
effects of an herbivorous rodent on grassland vegetation.  Journal of Applied Ecology 
46:861-869. 

Haug, E.A., B.A. Millsap, and M.S. Martell.  1993.  Burrowing Owl (Athene 
cunicularia), The Birds of North America Online.  A. Poole, Ed.  Cornell Lab of 
Ornithology, Ithaca, New York.  Retrieved from the Birds of North America Online: 
http://0-bna.birds.cornell.edu.catalog.library.colostate.edu/bna/species/061 

Heisler-White, J.L., J.M. Blair, E.F. Kelly, K. Harmoney, and A.K. Knapp.  2009.  
Contingent productivity responses to more extreme rainfall regimes across a grassland 
biome.  Global Change Biology 15:2894-2904. 

Hoogland, J.L.  1995.  The Black-tailed Prairie Dog: Social Life of a Burrowing 
Mammal.  University of Chicago Press, Chicago, Illinois. 

Hudson P.J., A. Rizzoli, B.T. Grenfell, H. Heesterbeek, and A.P. Dobson.  2001.  The 
Ecology of Wildlife Diseases.  Oxford University Press, Oxford, United Kingdom. 

Jessup, D.A., M.A. Miller, C. Kreuder-Johnson, P.A. Conrad, M.T. Tinker, J. Estes, and 
J.A.K. Mazet.  2007.  Sea otters in a dirty ocean.  Journal of the American Veterinary 
Medical Association 231:1648-1652. 

Johnson, C.K., M.T. Tinker, J.A. Estes, P.A. Conrad, M. Staedler, M.A. Miller, D.A. 
Jessup, and J.A.K. Mazet.  2009.  Prey choice and habitat use drive sea otter pathogen 
exposure in a resource-limited coastal system.  Proceedings of the National Academy 
of Sciences 106:2242-2247. 

Karl T.R. and K.E. Trenberth.  2003.  Modern global climate change.  Science 302:1719-
1723.  

Kelly, D.W., R.A. Paterson, C.R. Townsend, R. Poulin, and D.M. Tompkins.  2009.  
Parasite spillback: a neglected concept in invasion ecology?  Ecology 90:2047-2056. 

 12

http://0-bna.birds.cornell.edu.catalog.library.colostate.edu/bna/species/061


Kendall, W.L., J.D. Nichols, and J.E. Hines.  1997.  Estimating temporary emigration 
using capture-recapture data with Pollock’s robust design.  Ecology 78:563-578. 

Kendall, W.L., K.H. Pollock, and C. Brownie.  1995.  A likelihood-based approach to 
capture-recapture estimation of demographic parameters under the robust design.  
Biometrics 51:293-308. 

Knapp A.K., C. Beier, D.D. Briske, A.T. Classen, Y. Luo, M. Reichstein, M.D. Smith, 
S.D. Smith, J.E. Bell, P.A. Fay, J.L. Heisler, S.W. Leavitt, R. Sherry, B. Smith, and E. 
Weng.  2008.  Consequences of more extreme precipitation regimes for terrestrial 
ecosystems.  BioScience 58:811-821. 

Kotliar, N.B., B.W Baker, A.D. Whicker, and G. Plumb.  1999.  A critical review of 
assumptions about the prairie dog as a keystone species.  Environmental Management 
24:177-192. 

Kotliar, N.B.  2000.  Application of the new keystone-species concept to prairie dogs: 
how well does it work?  Conservation Biology 14:1715-1721. 

Lauenroth, W.K. and O.E. Sala.  1992.  Long-term forage production of North American 
shortgrass steppe.  Ecological Applications 2:397-403. 

Link, V.B.  1955.  A history of plague in the United States of America.  U.S. Public 
Health Monograph No. 26.  Washington, D.C. 

Lomolino, M.V. and G.A. Smith.  2004.  Terrestrial vertebrate communities of black-
tailed prairie dog (Cynomys ludovicianus) towns.  Biological Conservation 115:89-
100. 

Matchett, M.R., D.E. Biggins, V. Carlson, B. Powell, and T. Rocke.  2010.  Enzootic 
plague reduces black-footed ferret (Mustela nigripes) survival in Montana.  Vector-
Borne and Zoonotic Diseases 10:27-35. 

McClintock, B.T. and G.C. White.  2009.  A less field-intensive robust design for 
estimating demographic parameters with mark-resight data.  Ecology 90:313-320. 

McClintock, B.T., G.C. White, M.F. Antolin, and D.W. Tripp.  2009.  Estimating 
abundance using mark-resight when sampling is with replacement or the number of 
marked individuals is unknown.  Biometrics 65:237-246. 

Miller, B., G. Ceballos, and R. Reading.  1994.  The prairie dog and biotic diversity.  
Conservation Biology 8:677-681. 

Miller, B., R. Reading, J. Hoogland, T. Clark, G. Ceballos, R. List, S. Forrest, L. 
Hanebury, P. Manzano, J. Pacheco, and D. Uresk.  2000.  The role of prairie dogs as 
keystone species: response to Stapp.  Conservation Biology 14:318-321. 

 13



Miller, M.A., B.A. Byrne, S.S. Jang, E.M. Dodd, E. Dorfmeier, M.D. Harris, J. Ames, D. 
Paradies, K. Worcester, D.A. Jessup, and W.A. Miller.  2010.  Enteric bacterial 
pathogen detection in southern sea otters (Enhydra lutris nereis) is associated with 
coastal urbanization and freshwater runoff.  Veterinary Research 41.  DOI: 
10.1051/vetres/2009049. 

Orth, P.M. and P.L. Kennedy.  2001.  Do land-use patterns influence nest-site selection 
by burrowing owls (Athene cunicularia hypugaea) in northeastern Colorado?  
Canadian Journal of Zoology 79:1038-1045. 

Paine, R.T.  1969.  A note on trophic complexity and community stability.  American 
Naturalist 103:91-93. 

Pedersen A.B., K.E. Jones, C. Nunn, and S. Altizer.  2007.  Infectious diseases and 
extinction risk in wild mammals.  Conservation Biology 21:1269-1279. 

Power M.E., D. Tilman, J.A. Estes, B.A. Menge, W.J. Bond, L.S. Mills, G. Daily, J.C. 
Castilla, J. Lubchenco, and R.T. Paine.  1996.  Challenges in the quest for keystones.  
BioScience 46:609-620. 

Roach, J.L., P. Stapp, B. Van Horne, and M.F. Antolin.  2001.  Genetic structure of a 
metapopulation of black-tailed prairie dogs.  Journal of Mammalogy 82:946-959. 

Roelke-Parker, M.E., L. Munson, C. Packer, R. Kock, S. Cleaveland, M. Carpenter, S.J. 
O’Brien, A. Pospischil, R. Hofmann-Lehmann, H. Lutz, G.L.M. Mwamengele, M.N. 
Mgasa, G.A. Machange, B.A. Summers, and M.J.G. Appel.  1996.  A canine 
distemper virus epidemic in Serengeti lions (Panthera leo).  Nature 379:441-445. 

Ronan, N.A.  2002.  Habitat selection, reproductive success, and site fidelity of 
burrowing owls in a grassland ecosystem.  M.S. Thesis, Oregon State University, 
Corvallis, Oregon. 

Sidle, J.G., M. Ball, T. Byer, J.J. Chynoweth, G. Foli, R. Hodorff, G. Moravek, R. 
Peterson, and D.N. Svingen.  2001.  Occurrence of burrowing owls in black-tailed 
prairie dog colonies on Great Plains National Grasslands.  Journal of Raptor Research 
35:316-321. 

Smith, G.A. and M.V. Lomolino.  2004.  Black-tailed prairie dogs and the structure of 
avian communities on the shortgrass plains.  Oecologia 138:592-602. 

Stapp, P.  1998.  A reevaluation of the role of prairie dogs in Great Plains grasslands.  
Conservation Biology 12:1253-1259. 

_____.  2007.  Rodent communities in active and inactive colonies of black-tailed prairie 
dogs in shortgrass steppe.  Journal of Mammalogy 88:241-249. 

 14



Stapp, P., M.F. Antolin, and M. Ball.  2004.  Patterns of extinction in prairie dog 
metapopulations: plague outbreaks follow El Nino events.  Frontiers in Ecology and 
the Environment 2:235-240. 

Stapp, P., B. Van Horne, and M.D. Lindquist.  2008.  Ecology of mammals of the 
shortgrass steppe.  Pages 132-180 in W.K. Lauenroth and I.C. Burke, Eds.  Ecology 
of the Shortgrass Steppe: a Long-Term Perspective.  Oxford University Press, New 
York, New York. 

Steenhof, K., M.N. Kochert, and T.L. McDonald.  1997.  Interactive effects of prey and 
weather on golden eagle reproduction.  Journal of Animal Ecology 66:350-362. 

Tipton, H.C., V.J. Dreitz, and P.F. Doherty, Jr.  2008.  Occupancy of mountain plover 
and burrowing owl in Colorado.  Journal of Wildlife Management 72:1001-1006. 

Toombs, T.P.  1997.  Burrowing owl nest-site selection in relation to soil texture and 
prairie dog colony attributes.  M.S. Thesis, Colorado State University, Fort Collins, 
Colorado. 

U.S. Fish and Wildlife Service.  2009.  Black-footed ferret spotlight species action plan.  
http://ecos.fws.gov/docs/action_plans/doc3022.pdf  Accessed 3/8/2010. 

van Hoof, T.B., F.P.M. Bunnik, J.G.M. Waucomont, W.M. Kurschner, and H. Visscher.  
2006.  Forest re-growth on medieval farmland after the Black Death pandemic – 
implications for atmospheric CO2 levels.  Palaeogeography, Palaeoclimatology, 
Palaeoecology 237:396-411. 

Village, A.  1986.  Breeding performance of kestrels at Eskdalemuir, south Scotland.  
Journal of Zoology 208:367-378. 

Wellicome, T.I.  2000.  Effects of food on reproduction in burrowing owls (Athene 
cunicularia) during three stages of the breeding season.  Ph.D. Dissertation, 
University of Alberta, Calgary, Canada. 

Williams, E.S., D.R. Kwiatkowski, E.T. Thorne, and A. Boerger-Fields.  1994.  Plague in 
a black-footed ferret.  Journal of Wildlife Diseases 30:581-585. 

Williams, E.S. and M.W. Miller.  2002.  Chronic wasting disease in deer and elk in North 
America.  Revue Scientifique et Technique de l’Office International des Epizooties 
21:305-316. 

 

 15

http://ecos.fws.gov/docs/action_plans/doc3022.pdf


 16

 

 

CHAPTER 2 

MARK-RESIGHT ESTIMATION OF APPARENT SURVIVAL, TEMPORARY 

EMIGRATION, AND ABUNDANCE FOR JUVENILE BURROWING OWLS 

 

ABSTRACT 

Quantifying the number and survival rate of juveniles is a common goal for researchers 

and wildlife managers, but many populations present challenges to unbiased estimation.  

For example, visual counts may result in underestimates for species with mobile young.  

The Poisson-log normal mark-resight model (McClintock and White 2009) is useful for 

situations when i.) individuals can be marked and then observed without recapture, ii.) 

marked and unmarked individuals are equally visible, iii.) sampling with replacement 

may occur, iv.) marks are individually identifiable but identification is < 100%, and v.) 

the number of marks may be unknown (individuals may die or leave).  Abundance, 

apparent survival, and temporary emigration are estimated.  Parameters may be shared 

among groups of individuals, and individual and environmental covariates can be 

included in models implemented in Program MARK (White and Burnham 1999).  We 

applied this method to burrowing owl (Athene cunicularia) juveniles on the Pawnee 

National Grassland, Colorado in 2007.  Owlets in better condition that weighed more at 

first capture had higher survival throughout the summer and were more likely to be above 

ground.  Although estimates of abundance were biased low, our recommended changes to 

field protocols should improve estimation in the future. 



INTRODUCTION 

Estimation of reproductive rates often requires the counting of juveniles and 

assessment of their survival until fledging.  However, juveniles can be difficult to observe 

and count accurately, particularly for those species that nest or roost in relatively 

inaccessible areas.  Burrowing owls (Athene cunicularia) have a rather unique life history 

among owls because they are diurnal and ground-dwelling.  Burrowing owl juveniles are 

relatively easy to observe on the shortgrass steppe when above ground, but owl nests are 

underground and often located in black-tailed prairie dog (Cynomys ludovicianus) 

burrows in Colorado (VerCauteren et al. 2001).  Following first emergence from the nest 

burrow at 12 – 14 days (d), owlets continue to spend time underground and retreat into 

burrow entrances to rest or when threatened.  This means that owlets are sometimes 

undetectable underground.  In addition, they run and eventually fly outside of the nest for 

more than a month before becoming independent of their parents. 

Previously, visual counts were used as a minimum abundance estimate at each 

nest, but these estimates are known to be biased low (systematic underestimation of 

unknown magnitude) with unknown probability of detecting owlets (Gorman et al. 2003).  

Knowing that owlets may sometimes be underground and undetectable, our goal was to 

more accurately count owlets, assess their survival to fledging age, and determine what 

factors influence these estimates.  Capture-mark-recapture methods (Otis et al. 1978; 

Kendall et al. 1995; 1997) are widely used to obtain unbiased estimates of abundance and 

survival by accounting for imperfect detection probabilities.  These methods may be 

modified for less handling by resighting rather than recapturing individuals after they 

have been marked with field-readable bands (Spendelow et al. 2002).  However, the 
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number of marked animals in the population and the number of resightings per marked 

individual must be sufficiently large for this approach to be useful.  Because fewer than 

20 marked juveniles were expected from each prairie dog colony in our sample and 

perfect individual identification was unlikely, a different approach was needed.  Mark-

resight methods (White and Shenk 2001; McClintock et al. 2006) incorporate data from 

unmarked individual sightings and require fewer marked individuals than previous 

approaches (e.g., Spendelow et al. 2002), but the number of marked individuals present in 

the population must be known.  Most existing mark-resight models (e.g., Bowden and 

Kufeld 1995) cannot account for an unknown number of marks, which might result from 

mortality or emigration.  Arnason et al. (1991) developed a mark-resight model for 

unknown numbers of marked individuals, but McClintock et al. (2009) described a 

number of key limitations to this model, including the necessity of 100% individual 

identifications and the inability to combine data across sampling periods. 

The Poisson-log normal mark-resight (hereafter, M-R) model (McClintock and 

White 2009; McClintock et al. 2009) was developed for situations when i.) individuals 

can be marked and then observed without recapture, ii.)  marked and unmarked 

individuals are equally visible, iii.) sampling with replacement may occur (individuals 

may be counted multiple times during secondary occasions/scans), iv.) marks are 

individually identifiable but individual identification is < 100%, and v.) the number of 

marks may be unknown (this can be estimated).  In our study, each observation consisted 

of multiple scans of the nest area and counts of observable owlets.  With the exception of 

the morning after banding, the number of marked burrowing owls is unknown because 

owlets may fledge and leave the nest area or die between observations.  Other 
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assumptions are the same as for Bowden’s estimator (Bowden and Kufeld 1995): closure 

(no birth, death, immigration, emigration, or loss of marks) between scans within 

observations, no errors in distinguishing marked from unmarked individuals, and the 

same resighting probabilities (independently and identically distributed) for marked and 

unmarked individuals. 

We used a robust design (Kendall et al. 1995; 1997): scans were repeated multiple 

times per observation and observations were repeated from the time owlets emerged from 

burrows until they fledged.  In a robust design, the population must be closed during the 

multiple scans (secondary occasions) that make up each observation (primary occasion).  

The population can be open between primary occasions.  Abundance can be estimated for 

each observation, which in our case consisted of 8 – 10 scans.  Parameters related to 

mean resighting rate for owlets and individual heterogeneity arising from individual 

differences in sightability that cannot be explained by weight, age, or any other measured 

variable are also estimated (McClintock and White 2009; McClintock et al. 2009).  The 

advantage of a robust design is that apparent survival (probability of surviving and 

remaining in the survey area) and temporary emigration can be estimated during open 

intervals, whereas previous M-R models emphasized estimation of abundance only 

(McClintock and White 2009).   

Estimates of abundance from the M-R model apply to groups of nests rather than 

to individual nests.  Individual nests do not include enough owlets to provide adequate 

sample size, and some nests on the study site may not have any marked owlets but can 

still be included in the analysis.  Estimates apply to owlets old enough to be sighted 
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above ground.  This approach has the potential for wide application in population 

demographic studies of any species where marking and individual resighting is feasible. 

 Additional motivations were conservation concerns and interest in how owl 

reproduction is affected by plague, which is caused by the introduced bacterium Yersinia 

pestis and decimates black-tailed prairie dog towns.  In the northern United States and 

Canada, most owl populations are migratory, nesting in burrows dug by mammals such 

as prairie dogs and ground squirrels (Haug et al. 1993).  Prairie dog burrows on our site 

are used by owls for nesting, satellite burrows are used for rest or refuge, and mounds are 

used as perches.  Plague does not make owls sick, but unmaintained burrows collapse, 

vegetation grows taller, and the anti-predator benefits of prairie dog association are lost.  

Burrowing owls are widely distributed on the prairies of North, Central, and South 

America, but they are a declining and protected species in many areas and are a state-

listed threatened species in Colorado (Colorado Division of Wildlife 2007).  This small 

owl may be active at any time of day or night and hunts a wide variety of vertebrates and 

invertebrates (Conrey Ch. 3). 

We had four objectives. 

1. Illustrate the use of the new Poisson log-normal M-R model for estimating 

abundance, apparent survival, and temporary emigration. 

2. Compare estimates of abundance from the M-R model to those from visual counts. 

3. Determine the effects of weight and body condition at first capture on apparent 

survival of burrowing owls and the probability of being underground and unavailable 

for resighting.  We hypothesized that larger owlets in better condition would have 

higher survival and be more likely to remain above ground. 
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4. Measure the relationship of apparent survival with owlet age.  We hypothesized that 

apparent survival would increase with owlet age until fledging and then decline as 

owlets began to leave the nest vicinity. 

 Our first hypothesis (objective 3) was based on the assumption that larger juvenile 

raptors were typically born earlier than their siblings and have a competitive advantage 

(Mock 1984; Gill 2007).  They may be healthier and more active than smaller juveniles.  

Therefore, we hypothesized that larger owlets in better condition would have higher 

survival and be able to remain more active above ground than smaller, thinner birds.  

Following first emergence from the nest, we often observed owlets swarming from the 

nest to surround adults with food.  An alternative hypothesis was that smaller owlets are 

forced to risk predation by remaining above ground more often in order to be the first to 

greet adults returning with food. 

 Our second hypothesis (objective 4) was based on our observation that nests with 

older owlets tended not to fail, particularly after owlets could fly and appeared to be more 

vigilant toward humans and predators.  Younger owlets sometimes would not flee from 

us unless their parents were nearby and vocalized to them, and we occasionally caught 

them by hand during trapping.  We thought that true survival would improve with owlet 

age while parental care continued, but apparent survival would eventually decline as 

owlets fledged and left the nest area. 
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METHODS 

Study Site 

Our study site (Fig. 2.1) on the Pawnee National Grassland (PNG) is located in 

the shortgrass steppe (SGS) of north central Colorado (Weld County).  The SGS covers 

the central and southern Great Plains, the driest and warmest part of America’s central 

grasslands (Lauenroth and Burke 1995; Pielke and Doesken 2008).  The area managed by 

the USDA Forest Service PNG consists of 78,128 ha spread over a larger 50 x 100 km 

region with a patchwork of public and private ownership.  We worked mainly in the 

northwestern PNG, which has mean elevation of 1650 m and mean annual precipitation 

of 321 mm, with > 70% of this falling as rain from April – September (National Climatic 

Data Center 2002; Pielke and Doesken 2008).  The amount, timing, and intensity of 

precipitation are the most important factors in determining the ecology of the SGS 

(Lauenroth and Sala 1992).  Most precipitation events on the PNG are small, with much 

of the water lost to evapotranspiration (Sala et al. 1992; Lauenroth and Bradford 2006).  

More than 80% of the PNG is upland steppe habitat (Hazlett 1998).  The two dominant 

species are perennial C4 warm-season grasses: blue grama (Bouteloua gracilis) and 

buffalo grass (Buchloe dactyloides).  Other common species are prickly-pear cactus 

(Opuntia polyacantha) and two dwarf shrubs: rabbitbrush (Chrysothamnus nauseosa) and 

saltbush (Atriplex canescens) (Lauenroth 2008). 

 Livestock grazing (mostly cattle) is the dominant land use across the PNG, and 

cattle were common on our study areas.  Bird-watching and recreational shooting are also 

common on the PNG.  Recreational shooting of legal and illegal targets occurred 

throughout the study period, and an 8.5 month open season (mid-June through February 
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annually) on prairie dogs was reinstituted in June 2007 after a six year moratorium.  

Extensive shooting occurred on several easily accessible towns, especially towns 51 and 

78, with moderate shooting on all towns near gravel roads open to the public, and very 

little shooting on more isolated towns. 

 In a state-wide survey of Colorado, 80% of burrowing owl locations were on 

prairie dog colonies, and 24% of locations were in Weld County (VerCauteren et al. 

2001).  Burrowing owl occupancy in Colorado was highest on active prairie dog towns, 

followed by inactive towns, and all towns had much higher occupancy than grassland or 

dryland agriculture (Tipton et al. 2008).  During three surveys of nine randomly-selected 

quarter sections (64.75 ha), we found only one nest that was not on a prairie dog town; 

another two off-town nests were discovered by chance.  This compares to 320 nests 

located on prairie dog towns, which have been mapped by the Forest Service since 1981.  

The area occupied by these towns has increased since 1981 with an exponential increase 

since the mid-1990s.  Declines in area occupied have occurred during recent plague 

epizootics, but due to rapid recolonization and the colonization of new towns, the total 

area occupied has remained around 1 – 2% of the PNG. 
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Figure 2.1.  Prairie dog towns are displayed at their maximum extent for 2006 – 2007.  In 
either year, the total area occupied by prairie dog towns was slightly less than the 
displayed area because of colonizations, extinctions, and other fluctuations in town size.  
Mark-resight occurred on the six labeled towns during 2007, but 2006 town area is 
included because owls in 2007 occasionally nested on unmapped portions of extirpated 
towns with little or no prairie dog activity.  Visual counts occurred on all sampled towns. 
 

Nest Searches 

 We searched for adult owls on prairie dog towns and then looked for nest burrows 

in the vicinity of owl sightings.  Early in the nesting season, adult males, who are not 

involved in incubation or brooding, typically perch conspicuously near the nest burrow 

during the day.  Nest burrows were identified by the presence of shredded mammal 
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manure (Levey et al. 2004), owl feathers, regurgitated pellets, and prey remains such as 

grasshopper legs, rodent tails, and passerine feathers.  A burrow was identified as the site 

of a nest attempt only if shredded manure, typically cow, prairie dog, or canid, was 

present (“nest lining”: Garcia and Conway 2009).  We conducted a minimum of three 

complete surveys on each prairie dog town so that a removal method (Hayne 1949; Otis 

et al. 1978; White et al. 1982; Rosenberg and Haley 2004) could be used to estimate nest 

abundance and probability of nest detection. 

 

Trapping and Banding 

 Juveniles were targeted for banding on six of 25 surveyed towns (Fig. 2.1) 

following their emergence from nest burrows, which first occurred on June 19, 2007.  

These six towns were randomly chosen from those with at least five nests (sufficient 

sample size identified by power analysis) in a stratified sampling procedure based on 

plague status and town size.  Trapping techniques included burrow/tube traps (Botelho 

and Arrowood 1995), cage/one-way door traps (Banuelos 1997), and noose rods and 

carpets (Winchell and Turman 1992).  Our most successful trap, capable of catching 

multiple owls at once, was designed by Dr. Brent Bibles.  This burrow trap is rectangular, 

built from a pliable mesh hardware cloth with a one-way door that is inserted into the 

burrow entrance, with fabric used to block escape around the edges of the door.  Trapping 

in the evening (especially 7 – 11 pm) was much more successful for owlets than morning 

trapping.  Owlets were easier to catch when < 28 d old, and particularly at younger ages 

before they began spreading into satellite burrows.  Trapping was not attempted in steady 

rain or high temperatures (> 27°C). 
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 All captured owls received a silver U.S. Fish and Wildlife Service numbered band 

from the Bird Banding Laboratory (now administered by the U.S. Geological Survey).  

Adults were banded on the other leg with a blue aluminum alpha-numeric coded band 

(Acraft, Inc.).  Juveniles were uniquely color banded with three plastic bands in various 

combinations of orange, yellow, black, and white.  Attempts to read alpha-numeric codes 

with spotting scopes in 2006 were unsuccessful, so color bands were used in 2007.  

Owlet ages were determined by plumage characteristics and size (Priest 1997).  We also 

recorded weight, tarsus and wing chord length, parasite load, crop fullness, and body 

condition (relative amount of fat and muscle over the keel). 

 Owlets were batch marked with non-toxic paint on the crown and upper breast so 

that marking status could be determined even when feet (and bands) were unobservable.  

We used a paint designed for marking livestock (All-weather Paintstik® livestock 

marker, LA-CO Industries, Inc.).  Dr. Bibles first tested black ink on separate study sites 

in central eastern Colorado, but ink generally did not show up well or last long on 

feathers.  Green, red, and blue paints were easily seen and lasted for over a month.  

Nearby nests were given different colors of paint, so that owlets could be identified to 

their nest, even if band codes were not readable.  It was important that the paint not 

obstruct the eyebrow or chin region, because lightening plumage in these areas was used 

to age owlets.  Only owlets were color banded and painted, because adults were not 

included in the M-R model.   
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Nest Monitoring 

Owlets were counted and aged using spotting scopes during a sequence of 8 – 10 

snapshot scans (secondary occasions) for up to 30 min.  We did not monitor nests in 

steady rain, hot (> 27°C), or windy (> 21 km/hr) conditions.  Two observers were present 

at each scan, typically positioned 150 – 250 m from the nest.  The primary observer 

conducted the scans, and the secondary observer helped to identify banded owls and 

looked for batch marks on those that were difficult to see.  For each scan, we categorized 

owlets as identified (IDd: band code was read), marked but not identified (unIDd), 

unmarked, or unknown (presence of paint batch mark could not be determined).  Owlets 

of unknown marking status cannot contribute to parameter estimation, so their presence 

creates estimation bias.  They were counted so that degree of bias could be assessed, and 

strong efforts were made in the field to determine marking status. 

Each owlet was aged according to behavior, plumage characteristics, and size 

(Priest 1997).  Maximum information was gained when all owlets were individually aged 

and when each of these ages was linked with one of the four banding categories (IDd, 

unIDd, unmarked, or unknown).  If ages were not linked to marking status of birds or if 

owlets could not be aged because our view was blocked or too brief, then owlets were 

assigned the mean age for that nest.  Presence of adults was noted, because lack of adult 

activity may indicate nest failure, as do prairie dogs in the burrow or cobwebs covering 

the entrance.  Time, temperature, cloud cover, and wind speed were also recorded.  These 

time-varying covariates may influence detectability, and their use in model-building may 

lead to a more parsimonious model as compared to calculating separate estimates for 

each primary occasion. 
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In addition to the scanning protocol required for application of the M-R model, 

we conducted visual counts to produce an estimate of minimum number known alive 

(MNA).  This protocol does not require that any individuals be marked, so we conducted 

these visual counts at all nests on all monitored towns in addition to the six towns used 

for the M-R analysis (Fig. 2.1).  We counted owlets for ≥ 15 min. at all nests and 

recorded the maximum number of owlets at each nest every 5 min., along with their ages.  

For towns with banded birds, this was done by the secondary observer at the same time 

that the primary observer conducted the snapshot scans.  If we were unsure where an 

owlet belonged, the secondary observer watched it until it moved to a nest, joined other 

owlets, or was fed by an adult.  In the few cases (fewer than five per year) where the nest 

could not be identified, the owlet was not counted.   

Nests were monitored once per week whenever possible, but the longest interval 

between observations was 13 days.  We monitored each nest until all owlets at that nest 

were considered to be older than 50 d.  Fledging of owlets at each nest may be staggered 

across a week or more, because females lay one egg every 1 – 2 days and usually begin 

incubation with the first egg (Bent 1938; Olenick 1990; Haug et al. 1993).  Following 

Haug (1985) and Desmond and Savidge (1999), we used 42 d as fledging age, within the 

range of 35 – 44 d used by others (Thomsen 1971; Landry 1979; Todd et al. 2003; Davies 

and Restani 2006; Lantz and Conway 2009).  Nests were monitored on the morning 

following evening banding, when the number of bands in the population was known.  On 

later occasions, the number of bands was estimated in the M-R model.   
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Analysis 

We used the M-R model (McClintock 2008; McClintock and White 2009) to 

estimate abundance, apparent survival, and temporary emigration throughout the 

breeding season.  We had initially planned a single analysis that would include data from 

all six towns where the M-R protocol was applied.  This would allow some parameters to 

be shared across towns, potentially leading to more parsimonious models and more 

precise estimates, while population size would be estimated separately for each primary 

occasion on each town.  However, data from all but town 78, which had the most nests 

and marked birds, were too sparse to permit this type of analysis with separate abundance 

estimates for each individual town.  Therefore, we analyzed town 78 separately and then 

conducted a site-wide analysis with all six prairie dog towns included as a single group  

and with town identity as an individual covariate.  This produced a single abundance 

estimate for each primary interval.  In each input file, the capture and resighting histories 

for IDd birds were followed by counts of unmarked, unIDd, and known marks (App. 1, 

Fig. 2.5, 2.6).  The number of marks was known only for the time occasion immediately 

following the first night of banding in each town. 

We estimated the following parameters for each closed primary occasion: number 

of unmarked owlets (U), intercept (log scale) for mean resighting rate (α), and individual 

heterogeneity (σ), which increases the variance of the derived parameters due to 

differences in resighting rate among individuals.  Derived parameters (functions of the 

above parameters) estimated for closed periods were the expected number of resightings 

(λ) and total population size (N).  For the open intervals between primary occasions, we 

estimated apparent survival (ф) and two parameters for temporary emigration: the 
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probability of transitioning from observable to unobservable (γ”) and of remaining 

unobservable (γ’).  Prior to fledging, this is the probability that owlets remain 

underground for the entire primary occasion.  U was always estimated separately for each 

primary occasion.  Each model contained six parameters: U, α, σ, ф, γ”, and γ’. 

For marked owlet s during occasion j, the number of resightings (ysj) is modeled 

as an independent Poisson log-normal random variable with ln(mean resighting rate) αj 

treated as a fixed effect and individual heterogeneity treated as a random effect with 

mean zero and variance σ2
j (McClintock et al. 2009).  The model takes the form of E(ysj | 

σj, Zsj, αj) =  λsj = exp(σjZsj + αj) where Zsj ~ N(0,1) are standard normal random variables 

that are independently and identically distributed.  Zsj represents the latent sightability of 

individual s during occasion j.  The total number of unmarked sightings is also needed for 

abundance estimation.  Additional details are given in McClintock and White (2009) and 

McClintock et al. (2009), with modifications when the number of marks in the population 

is unknown.  McClintock and White (2009) used a slightly different parameterization 

than McClintock (2008) or McClintock et al. (2009): θ for α, ψOU for γ”, and ψUO for 1 – 

γ’.   

We created an a priori model set in which parameters were modeled by time and 

as linear combinations of environmental and individual covariates (Table 2.1) with a 

separate “beta” coefficient (slope term) estimated for each factor in the linear model.  The 

“t” models allowed each parameter to be separately estimated for each primary occasion 

or interval, so one beta coefficient was estimated per time interval for each parameter.  

We also ran more efficient linear and quadratic time trend models that modeled time 

effects as linear or curvilinear, because we expected that resighting rate would increase 
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linearly with time due to seasonal effects, and both resighting rate and apparent survival 

may have leveled off or declined later in the season. 

Additional a priori models used time-varying environmental covariates or 

individual covariates to estimate parameters (Table 2.1) using linear models.  Time-

varying environmental covariates included owlet age, temperature, and wind speed.  

Individual covariates included the town where an owlet was banded, its weight and body 

condition at first capture.  Resighting rate and apparent survival may have depended on 

owlet age if older owlets spent more time above ground or if resighting rate and survival 

eventually declined as owlets fledged and began spending more time away from the nest 

area.  Although we did not do scans in poor weather, resighting rate may have been lower 

in higher temperatures or wind.  Temperature and wind speed were not included in the 

site-wide models, because different towns were sampled on different dates with different 

weather conditions and were then combined into primary occasions for analysis (App. 1, 

Table 2.7).  Town was included as a covariate because differences among towns in 

vegetation height, topography, or resident predators may have affected resighting rate or 

survival.  Owlet weight and body condition were included as individual covariates 

because they may have influenced resighting probability, apparent survival, and the 

probability of remaining above ground.  We hypothesized that heavier, healthier owlets 

would be easier to see, more likely to survive, and more often above ground.  Finally, in 

the “dot” models, all estimates of a given parameter were constrained to be equal. 
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Table 2.1.  Modeling of parameters in M-R analyses.  Parameters were modeled as 
additive combinations of several ecological factors.  U was estimated separately for each 
primary occasion.  γ” and γ’ were either modeled separately or constrained to be equal 
(random emigration). 
 
Ecological 
Factor 

Town 78 Site-wide 
Analysis Analysis 
U α σ ф γ U α ф γ t 
α T  
α ф T2  
α ф age 
α ф ф age2 
α temp  
α wind  

α ф town  
α ф α ф γ wt 

ф γ keel  
α ф γ α ф γ dot 
α σ σ t1 

 
Parameters are the number of unmarked owlets (U), intercept for mean resighting rate 
(α), individual heterogeneity (σ), apparent survival (ф), and two parameters for temporary 
emigration: the probability of transitioning from observable to unobservable (γ”) and of 
remaining unobservable (γ’).  t  = time (parameter estimated for each primary occasion), 
T = time trend (linear change with time), T2 = quadratic time trend, age = average owlet 
age (time-varying), age2 (squared age for quadratic model), temp = average temperature 
during scans (time-varying), wind = average wind speed during scans (time-varying), 
town = prairie dog town (individual covariate), wt = weight at capture (individual 
covariate), keel = body condition at capture = amount of fat or muscle over keel (poor, 
fair, good: individual covariate), dot = parameter constrained to be equal across time, t1 = 
fixed to primary 1 value (when number of marks was known).  For the site-wide analysis, 
the α for the first primary occasion (P1) was allowed to differ from subsequent α, because 
only town 74 had banded birds during P1, and the number of marks in the population was 
known. 
 

We assessed goodness of fit (GOF) of models to data by examining residuals and 

by comparing estimates from the M-R model to minimum estimates from visual counts.  

Residuals were computed for each marked owlet according to the differences in observed 

and expected counts throughout the breeding season.  Unfortunately, none of the GOF 

procedures in MARK, such as parametric bootstrapping or median c-hat (overdispersion 
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parameter) estimation, are currently implemented for mark-resight models (Cooch and 

White 2009).  Chi-squared GOF statistics cannot be calculated when many possible 

capture histories are never observed but have some expectation of occurring so that 

Σ(observed counts) > Σ(expected counts).  Data were too sparse to withhold any for 

model validation.  Therefore, we examined deviance and Pearson residuals for pattern 

and magnitude for the general model (in which all other a priori models are nested) and 

the top (minimum AIC) model.  We also compared abundance estimates to MNA and 4-

week apparent survival estimates to the number of fledged owlets (42 d) / the number of 

emerged owlets (14 d).  In addition, estimation of individual heterogeneity directly 

accounted for one important source of overdispersion (McClintock et al. 2009). 

Heterogeneity was originally underestimated because with many counts of either 

0 or 10 (the maximum number of scans), it appeared that heterogeneity was low and 

resighting rate was high (σ2 and α are negatively correlated).  When heterogeneity is 

underestimated, abundance estimates are also underestimated (McClintock and White 

2009; McClintock et al. 2009).  For this reason we used the σ estimated for the first 

primary occasion when the number of marked birds was known, from the unconstrained 

fully time-varying “t” model as a fixed value for σ in other town 78 models.  For the site-

wide analysis, we wanted to avoid underestimation of heterogeneity and abundance while 

still reflecting parameter estimate uncertainty in σ.  Because σ1 could be better estimated 

than σ from later occasions, we continued to allow estimation of σ1 but fixed later σ values 

to the town 78 σ1 from the “t” model. 

Because of the large number of parameters and possible combinations, we 

initially kept the most general structure (“t” models) on the parameters of primary 
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biological interest (U, ф, and γ), while finding the best way to model the other 

parameters.  We used Akaike’s Information Criterion (Akaike 1973) adjusted for small 

sample size (AICc: Burnham and Anderson 2002) to rank the models in the set: 26 

models for the town 78 analysis and 21 models for the site-wide analysis.  Analyses were 

run with Program MARK (White and Burnham 1999) version 5.0 by selecting the Mark-

Resight, Poisson log-normal model.  We calculated model-averaged estimates based on 

AICc weights.  Finally, we compared our abundance estimates from the M-R model to 

MNA obtained from visual counts. 

 

RESULTS 

 We banded 60 owlets at 26 nests on six prairie dog towns in 2007 (Fig. 2.1).  

These nests and the other 26 nests without banded owlets on the same towns were used in 

application of the M-R model.  Mean banding age was 24 d, ranging from 11 – 35 d.

 We estimated parameters for town 78 alone (Table 2.2) and for all towns together 

(Table 2.3).  We had six observations at town 78 with five open intervals between them; 

thus six model-averaged estimates were produced for λ and N, five estimates for ф and 

γ”, and four estimates for γ’ (Table 2.2).  One fewer estimate of γ’ is produced because 

this is the probability of being underground and unobservable for consecutive 

observations and birds could not have been marked during observation 1 if they had 

already gone underground and were not present; γ’ is first estimated during the second 

interval between observations.  Following banding of juveniles, we had six observations 

at towns 51 and 74, five at towns 54 and 82, and four at town 76.  Based on when we 
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visited each site, we grouped these observations into nine non-overlapping primary 

occasions with eight intervals between them (App. 1, Table 2.7). 

 The expected number of resightings per observation (  according to a Poisson 

model) varied from 3.22 to 9.97 (Tables 2.2 – 2.3).  The weekly survival estimate for 

town 78 from the best model was 0.822 (0.068 SE).  Therefore, the probability of an 

owlet surviving for 4 weeks ( weekly)4, which is approximately the period of time from 

emergence to fledging, was 0.456 (0.151 SE, calculated using the delta method) on town 

78.  The weekly survival estimate from the top model for all towns was 0.841 (0.033 SE), 

so across sites owlets survived from emergence to fledging with probability 0.500 (0.079 

SE).  Temporary emigration was best estimated by constraining γ” to be equal to γ’ (App. 

1, Tables 2.9, 2.11).  The probability of an owlet being underground averaged ~ 0.59, but 

varied over time (Tables 2.2 – 2.3).  Estimates of U, α, and σ (App. 1, Tables 2.8, 2.10) 

were used to calculate estimates of λ and N. 

λ̂

φ̂
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Table 2.2.  Model-Averaged Parameters: Town 78.  N was estimated separately in each  
primary occasion. 
 
Model-Averaged Parameter Estimate SE LCI UCI 
Expected # Sightings (λ1) 4.23 0.45 3.36 5.11 
Expected # Sightings (λ2) 5.42 0.40 4.64 6.21 
Expected # Sightings (λ3) 6.52 0.38 5.78 7.26 
Expected # Sightings (λ4) 9.97 0.42 9.15 10.79 
Expected # Sightings (λ5) 3.63 0.41 2.83 4.43 
Expected # Sightings (λ6) 3.22 0.49 2.25 4.18 
Total Population Size (N1) 31.43 4.60 22.41 40.44 
Total Population Size (N2) 14.49 4.61 5.45 23.53 
Total Population Size (N3) 21.68 4.50 12.85 30.50 
Total Population Size (N4) 17.56 3.05 11.59 23.54 
Total Population Size (N5) 17.23 6.24 4.99 29.46 
Total Population Size (N6) 3.80 2.68 -1.45 9.05 
Apparent Survival (ф1) 0.824 0.091 0.579 0.941 
Apparent Survival (ф2) 0.818 0.096 0.558 0.941 
Apparent Survival (ф3) 0.817 0.084 0.598 0.930 
Apparent Survival (ф4) 0.823 0.082 0.606 0.934 
Apparent Survival (ф5) 0.780 0.208 0.248 0.974 
Emigration (γ”1) 0.626 0.091 0.439 0.781 
Emigration (γ”2) 0.625 0.091 0.437 0.782 
Emigration (γ”3) 0.626 0.091 0.439 0.782 
Emigration (γ”4) 0.624 0.095 0.429 0.786 
Emigration (γ”5) 0.625 0.092 0.436 0.783 
Immigration (γ’2) 0.590 0.133 0.330 0.808 
Immigration (γ’3) 0.590 0.133 0.328 0.809 
Immigration (γ’4) 0.591 0.132 0.330 0.808 
Immigration (γ’5) 0.591 0.132 0.330 0.809 

 
Model-averaged parameters for town 78 are the expected number of resightings (λ), total 
population size (N), apparent survival (ф), and two parameters for temporary emigration: 
the probability of transitioning from observable to unobservable (γ”) and of remaining 
unobservable (γ’). 
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Table 2.3.  Model-Averaged Parameters: Site-Wide Analysis.  All sampled prairie dog towns 
were grouped together for this analysis.  N was estimated separately in each primary occasion.  
The first emigration estimate was quite high because only one town was banded prior to primary 
occasion 1, and no marked owlets were identified in that town during primary occasion 2. 
 

Model-Averaged Parameter Estimate SE LCI UCI 
Expected # Sightings (λ1) 3.75 1.20 1.40 6.10 
Expected # Sightings (λ2) 7.23 1.73 3.83 10.63 
Expected # Sightings (λ3) 4.97 1.73 1.58 8.35 
Expected # Sightings (λ4) 4.70 1.73 1.32 8.08 
Expected # Sightings (λ5) 5.52 1.73 2.13 8.91 
Expected # Sightings (λ6) 6.79 1.73 3.39 10.18 
Expected # Sightings (λ7) 4.20 1.72 0.82 7.58 
Expected # Sightings (λ8) 4.03 1.72 0.65 7.41 
Expected # Sightings (λ9) 7.07 1.73 3.68 10.47 
Total Population Size (N1) 15.32 3.34 8.76 21.87 
Total Population Size (N2) 20.44 3.03 14.50 26.38 
Total Population Size (N3) 63.97 11.87 40.70 87.23 
Total Population Size (N4) 69.76 11.49 47.24 92.28 
Total Population Size (N5) 26.82 6.08 14.91 38.73 
Total Population Size (N6) 52.94 7.90 37.46 68.42 
Total Population Size (N7) 30.40 9.20 12.37 48.44 
Total Population Size (N8) 46.83 11.50 24.29 69.37 
Total Population Size (N9) 10.74 3.23 4.41 17.07 
Apparent Survival (ф1) 0.827 0.055 0.692 0.910 
Apparent Survival (ф2) 0.833 0.037 0.747 0.894 
Apparent Survival (ф3) 0.834 0.036 0.750 0.893 
Apparent Survival (ф4) 0.838 0.033 0.764 0.893 
Apparent Survival (ф5) 0.842 0.037 0.757 0.902 
Apparent Survival (ф6) 0.845 0.041 0.747 0.910 
Apparent Survival (ф7) 0.848 0.046 0.733 0.919 
Apparent Survival (ф8) 0.849 0.049 0.727 0.923 
Emigration (γ”1) 1.000 0.004 0.993 1.007 
Emigration (γ”2) 0.775 0.092 0.551 0.906 
Emigration (γ”3) 0.317 0.110 0.146 0.558 
Emigration (γ”4) 0.786 0.093 0.553 0.916 
Emigration (γ”5) 0.569 0.124 0.329 0.780 
Emigration (γ”6) 0.798 0.099 0.543 0.929 
Emigration (γ”7) 0.170 0.206 0.012 0.780 
Emigration (γ”8) 0.628 0.253 0.168 0.934 
Immigration (γ’2) 0.774 0.096 0.539 0.910 
Immigration (γ’3) 0.319 0.110 0.148 0.559 
Immigration (γ’4) 0.793 0.096 0.550 0.923 
Immigration (γ’5) 0.575 0.119 0.343 0.778 
Immigration (γ’6) 0.794 0.100 0.537 0.928 
Immigration (γ’7) 0.149 0.163 0.014 0.684 
Immigration (γ’8) 0.613 0.266 0.150 0.935 

 
Model-averaged parameters are the expected number of resightings (λ), total population size (N), 
apparent survival (ф), and two parameters for temporary emigration: the probability of 
transitioning from observable to unobservable (γ”) and of remaining unobservable (γ’). 
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The point estimates of total population size (N) were biased low and smaller than 

MNA for the majority of primary occasions (Tables 2.4 – 2.5).  Over both analyses, all 

but three of the 95% confidence intervals included MNA, but most of the point estimates 

had to be adjusted for MNA. 

Few patterns were evident in residual plots, and most residuals appeared to be 

randomly distributed around zero.  However, the general model and the top model had 

more positive than negative residuals, and large positive residuals came from two owl 

nests on town 78: one where owls were seen early in the season and not again until the 

end of the season, and one where owls were seen many times early in the season but 

never again later.  This nest either failed or the owls moved.  Abundance estimates were 

generally smaller than MNA from visual counts, but the 4-week apparent survival 

estimate of 0.500 was reasonable in comparison with the minimum estimate from visual 

counts of 0.466 fledged owlets per emerged owlet; of 174 owlets known alive at first 

emergence at 14 d on the six M-R towns, 81 owlets remained to fledge at 42 d.
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Table 2.4.  Abundance: Town 78.  Point estimates of total population size (N) from the 
town 78 M-R analysis were biased low, and smaller than the minimum number known 
alive (MNA) for all but the first primary occasion, when the number of marked 
individuals was known and assumed to be the same as when we banded during the 
previous evening.  The 95% confidence intervals included MNA for all but the fourth 
occasion, but point estimates were adjusted for MNA. 
 
N MNA MARK Estimate Adjusted
    Estimate SE LCI UCI Estimate

30 31.43 4.60 22.41 40.44 31.43N1 
23 14.49 4.61 5.45 23.53 23N2 
26 21.68 4.50 12.85 30.50 26N3 
28 17.56 3.05 11.59 23.54 28N4 
19 17.23 6.24 4.99 29.46 19N5 

5 3.80 2.68 -1.45 9.05 5N6 
 

Table 2.5.  Abundance: Site-Wide Analysis.  Point estimates of total population size (N) 
from the M-R analysis were biased low and smaller than the minimum number known 
alive (MNA) for six of the nine primary occasions.  The 95% confidence intervals 
included MNA for all but the second and final primary occasions, but point estimates 
were adjusted for MNA. 
 
N MNA MARK Estimate Adjusted
    Estimate SE LCI UCI Estimate

18 15.32 3.34 8.76 21.87 18N1 
34 20.44 3.03 14.50 26.38 34N2 
69 63.97 11.87 40.70 87.23 69N3 
66 69.76 11.49 47.24 92.28 69.76N4 
28 26.82 6.08 14.91 38.73 28N5 
59 52.94 7.90 37.46 68.42 59N6 
26 30.40 9.20 12.37 48.44 30.40N7 
43 46.83 11.50 24.29 69.37 46.83N8 
18 10.74 3.23 4.41 17.07 18N9 
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Our analyses suggest that owlets in better condition (more fat and muscle over the 

keel) with higher weights at first capture had higher survival rates (Fig. 2.2) and were 

more likely to be above ground (Fig. 2.3).  We did not find evidence of an age effect on 

survival.  Apparent survival was constant through time (Tables 2.2 – 2.3): models with 

time effects on survival and/or time-varying covariates had weights < 5% (App. 1, Tables 

2.9, 2.11).  The top model in the town 78 analysis (Table 2.6) had model weight of 

23.9%.  The three best supported models were separated by fewer than two AICc units 

and collectively had 46.1% model weight.  ф was held constant except for model 2, in 

which ф had a positive relationship with weight at first capture.  Emigration parameters 

were held constant, except that model 3 allowed γ” to differ from γ’.  The top model in 

the site-wide analysis (Table 2.6) had model weight of 26.0%.  The three best supported 

models were separated by less than one AICc unit and had 59.9% of the weight.  ф had a 

positive relationship with body condition at first capture, and the third model also 

included a positive weight effect, although the 95% confidence intervals around the beta 

coefficient estimates overlapped zero.  The immigration and emigration parameters were 

equal to one another in these models, but differed over time.  The top model also included 

a weight effect, with birds that weighed less at first capture more likely to be 

underground. 
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Figure 2.3.  The probability of being underground (based on the top, minimum AIC model) was 
lower for owlets who were larger at first capture.  The top model also included a time effect.  
These estimates apply to time interval 3 (mid-July), when abundance peaked and most banded 
owlets had been captured within the previous week.  The trend was the same during other time 
intervals.  Standard error and 95% confidence envelopes are shown around estimates of 
temporary emigration.
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Figure 2.2.  Weekly survival rate (based on the top, minimum AIC model) was higher for owlets 
whose body condition was higher at first capture.  Body condition was quantified according to the 
amount of muscle and fat over the keel.  Only three owlets were captured in poor condition.  Bars 
are standard errors. 
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Table 2.6.  Top Three Models.  The model set was determined a priori (Table 2.1).  The top models in each analysis had the smallest 
AICc and highest model weight.  U was estimated separately in each primary occasion.  For the site-wide analysis, α was held 
constant except for the first primary occasion in which only town 74, the first town where owlets were banded, was visited.  All σ 
except the first were fixed to the σ1 for the fully time-varying “t” model on town 78.  The entire model set is included in App. 1 
(Tables 2.9, 2.11). 
 
Model AICc ∆AICc Weight Likelihood # Par Deviance
Town 78 Analysis             
{α(.) σ(fix) U(t) ф(.) γ''(.)=γ'(.)} 416.865 0.000 0.239 1.000 10 391.749
{α(.) σ(fix) U(t) ф(weight) γ''(.)=γ'(.)} 418.403 1.538 0.111 0.463 11 390.117
{α(.) σ(fix) U(t) ф(.) γ''(.) γ'(.)} 418.407 1.542 0.111 0.463 11 390.121
Site-Wide Analysis             
{α(74.) σ(fix 78) U(t) ф(keel) γ''(t+weight)=γ'(t+weight)} 919.570 0.000 0.260 1.000 23 862.530
{α(74.) σ(fix 78) U(t) ф(keel) γ''(t)=γ'(t)} 920.418 0.849 0.170 0.654 22 866.399
{α(74.) σ(fix 78) U(t) ф(keel+weight) γ''(t)=γ'(t)} 920.431 0.861 0.169 0.650 23 863.391
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Parameters are the log transformed intercept for mean resighting rate (α), individual heterogeneity (σ), unmarked population size (U), 
apparent survival (ф), and two parameters for temporary emigration: the probability of transitioning from observable to unobservable 
(γ’’) and of remaining unobservable (γ’).  



 

DISCUSSION 

Parameter Estimation 

 The Poisson log-normal mark-resight model can be used to estimate abundance, 

apparent survival, and temporary emigration for any species where individually 

identifiable marking is possible and animals can be resighted.  It is especially useful for 

situations when individual identifications are not always possible, and when the number 

of marks is unknown due to mortality or emigration.  The assumptions for this model are 

the same as for Bowden’s estimator (Bowden and Kufeld 1995): closure within primary 

intervals (no birth, death, immigration, emigration, or loss of marks), no errors in 

distinguishing marked from unmarked individuals, and the same resighting probabilities 

(independently and identically distributed) for marked and unmarked individuals. 

Our results suggest that the probability of an owlet surviving for a 4 week period 

(the amount of time from emergence to fledging) in a relatively poor year for 

reproduction (Conrey Ch. 4) was 0.500 (0.079 SE).  Although only apparent survival (the 

probability of surviving and remaining on the study area) can be estimated using this 

method, owlets are very unlikely to leave the survey area prior to fledging.  Because 

owlets begin spreading beyond the nest area when they are older than 20 d, we scanned a 

large radius around the nest (200+ m), and do not believe that young owlets left the area 

we surveyed.  Similarly, temporary emigration applies to owlets that stay underground in 

burrows throughout a survey occasion, rather than those that leave the study area entirely. 

 Our site-wide analysis suggested that owlets in better condition with higher 

weights at first capture had higher survival rates (Fig. 2.2) and were more likely to be 

above ground (Fig. 2.3) for the rest of the season.  Apparent survival in the top model 
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(Table 2.6), as assessed by AICc, had a positive relationship with body condition at first 

capture (amount of fat and muscle over the keel).  The third model, separated from the 

top model by < 1 AICc unit, also included a positive weight effect, although both of the 

95% confidence intervals around the beta coefficient estimates overlapped zero.  The top 

model included a weight effect on temporary emigration, with birds that weighed less at 

first capture more likely to be underground.  Larger owlets in better condition may have 

higher survival because they are healthier, better fed, and better able to compete with 

siblings for food.  They may spend more time above ground than smaller owlets, because 

they are better able to expend energy chasing prey and running back to burrows when 

threatened.  We did not find evidence of an age effect on survival. 

One consideration when using this method is that abundance from the M-R model 

can only be estimated for sites or groups of nests (for example, all the nests on one prairie 

dog town), because there are not enough owlets at individual nests for nest-specific 

parameters to be estimated.  Wherever nest success or nest-specific estimates of fate or 

fledging success are desired, visual counts must be used.  However, a comparison of 

MNA from visual counts to abundance estimates from the M-R model should inform 

researchers about the probability that visual counts fail to detect some owlets.  In 

addition, estimates from the M-R model apply to owlets that can potentially be sighted 

above ground.  If survival estimates for eggs or very young nestlings are desired, a video 

probe could be used, but some tunnels may be too long or tortuous for successful probing 

(Lantz et al. 2007; Conrey 2009; Lantz and Conway 2009). 
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Protocol Considerations 

 The point estimates of total population size (N) for owlets from the M-R analysis 

were biased low, and smaller than MNA from visual counts for the majority of primary 

occasions (Tables 2.4 – 2.5).  It was reassuring in both analyses that all but three of the 

95% confidence intervals included MNA, but most of the point estimates had to be 

adjusted for MNA.  One problem we encountered was that the number and success of 

nests was significantly lower than in the previous or the next year, as demonstrated by 

our reproductive data (Conrey Ch. 4) and the Forest Service’s owl counts (Humphrey and 

Bruce 2007).  Therefore, there were fewer owlets on the town to capture and resight than 

in a “good” year like 2006 or 2008. 

 Second, many owlets tended either to be observable for almost every scan, or for 

no scans, so capture histories contained more zeroes than expected in a Poisson model, 

with a somewhat bimodal distribution (Fig. 2.4).  To improve parameter estimation in the 

future, a second set of scans should be done 12 – 24 hours after the first scans, so that the 

primary interval can still be considered demographically closed.  This should result in 

fewer sightings of zero, and more intermediate numbers of sightings for birds, 

particularly for birds seen in one but not both sets of scans.  Another option would be 

altering the underlying assumption of Poisson-distributed counts during scans.  An 

increased probability of zero is not uncommon with count data, and can be modeled with 

a zero-inflated Poisson distribution.  A new parameter is added to model the increased 

zeroes using binomial probabilities.  However, such a model has not been parameterized 

for mark-resight analysis and is not included in Program MARK. 

 

 45



 

Number of Sightings per Observation 

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9 10 max

# sightings

fr
eq

ue
nc

y

 

Figure 2.4.  We conducted 8 – 10 scans per observation (primary occasion).  By far the 
most common number of marked owlet sightings per observation was 0 (marked bird not 
seen or not identified).  Most birds were sighted during every scan (maximum possible 
number of sightings), or not at all; during 45 observations, owlets were sighted 8 – 10 
times, and for 40 of these, they were sighted during every scan.  This histogram does not 
represent a good fit to a Poisson model.  If the data were more Poisson-distributed, then 
the distribution would peak at λ (expected number of resightings, with range 3.75 – 7.23 
in the site-wide M-R analysis), with smaller and larger values increasingly less probable. 
 

 McClintock et al. (2009) had a similar problem in their analysis of black-tailed 

prairie dog abundance, although it was less severe because their sample size was much 

larger.  They used the Poisson log-normal mark-resight model to estimate abundance (but 

not survival or temporary emigration) over time on some of the same study areas on the 

PNG.  Their point estimates were approximately 10% lower than estimates from other 
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methods, which the authors attributed to more marked individuals sighted zero times than 

expected under a Poisson distribution.  They believed that individual heterogeneity was 

underestimated, leading to overestimation of individual resighting rates and 

underestimation of abundance.  Simulations with high levels of heterogeneity resulted in 

negative bias in abundance, but the Poisson log-normal mark-resight model still 

performed better than other methods.  Abundance of New Zealand robins was also 

underestimated during one occasion when undetected heterogeneity was suspected to be 

high (McClintock and White 2009). 

 Estimation of individual heterogeneity (σ) presented a challenge in this study, and 

the more severe the underestimation of σ, the more severe the underestimation of 

abundance (N).  Our estimates of MNA from visual counts allowed us to assess bias in 

from the M-R model.  To alleviate this problem in the analysis of town 78, all 

estimates of σ except the first were fixed to the σ1 for the fully time-varying “t” model.  

Heterogeneity could be most accurately estimated for the first primary occasion, because 

the number of marks was known.  For the site-wide analysis, all σ estimates except the 

first were fixed to the σ1 for the fully time-varying “t” model on town 78.  Heterogeneity 

could be most accurately estimated in town 78, because more owlets were captured here 

than in any other town.  For the first primary occasion in town 78, > MNA.  In both 

analyses, when σ was not fixed in this way, bias in was much higher. 

N̂

N̂

N̂

 Out of all owlet sightings, 7% (111 of 1605 sightings) were of unknown marking 

status.  All other sightings were confirmed as either marked or unmarked birds.  Because 

these unknown individuals could not contribute to parameter estimation, a slight 

underestimation of abundance may have occurred for those occasions when unknown 
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birds were seen.  However, at this low level, unknown sightings were a minor problem in 

comparison with the issues discussed above, including sparse data and poor fit of owlet 

counts to a Poisson distribution.  Higher numbers of unknown sightings can be 

problematic; the M-R model could not be used in another study using similar methods in 

central eastern Colorado (Bibles 2007a,b), possibly due to lower visibility of nests or 

differences in techniques used by field staff (Conrey 2009).  In that study, 34% (576 of 

1686) of sightings were of owlets with unknown marking status (Conrey 2009). 

 Another complication was the difficulty in aligning the primary intervals for the 

six prairie dog towns, because we did not conduct resighting surveys for all towns at the 

same time during each week, and sometimes poor weather (wind, rain, or heat), schedule 

conflicts with other field crews, or shooters on towns prevented us from conducting 

surveys as planned.  This meant that the width of the multi-town primary period (when 

demographic closure was assumed) was sometimes larger than the open time interval 

between primary occasions.  This stretches the closure assumption during primary 

occasions; a better design would include closed primary occasions that are shorter than 

the open intervals between them.  In addition, the smallest open interval between primary 

occasions when no towns were checked was 3 d, even though individual towns were 

surveyed just once per week.  This created an apparent dichotomy between the intervals 

that had to be defined in Program MARK and those that existed in the field data.  

However, because owlets did not move between towns, they either survived or did not 

survive the period between weekly nest checks.  This explains why survival estimates 

from the town 78 analysis (open interval = 1 wk) were so similar to estimates from the 

site-wide analysis (open interval = 3 d), and suggests that our interpretation of weekly 
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rates was reasonable for both analyses.  To address this issue in the future, all sites with 

marked individuals should be visited within a period of a few days, with field crews 

visiting other sites (where the M-R protocol is not being used) or working on other 

aspects of the project for the rest of the week. 

 

Conclusion 

 We believe that the protocol improvements suggested here will make this M-R 

method useful for burrowing owls and many other species that can be marked and 

resighted.  Abundance can be estimated throughout the breeding season.  Even where 

visual counts are needed because nest- or litter-specific estimates are desired, this method 

will allow the negative bias of visual counts to be assessed.  If a robust design is used, in 

which groups of scans are conducted over time, then apparent survival and temporary 

emigration can also be estimated.  This is the first mark-resight model to allow estimation 

of apparent survival or temporary emigration.  There have been few applications thus far 

(McClintock and White 2009), but it should prove a useful approach for many species. 

 Only half the owlets that emerged from burrows survived to fledging age in a year 

when fledging peaked during a wet month.  Comparisons with other years showed that 

breeding success declined in wetter summers (Conrey Ch. 4).  Body condition at first 

capture positively influenced survival, and weight at first capture positively influenced an 

owlet’s probability of being observable above ground for the rest of the breeding season.  

Researchers should consider these and other sources of heterogeneity in the detectability 

and survival of resighted individuals, as well as the effects of annual variation on 

parameter estimation. 
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APPENDIX 1 – MARK-RESIGHT ANALYSIS IN PROGRAM MARK 
 

Table 2.7.  Primary Occasions.  Prairie dog towns were visited on nine primary occasions, but due to logistical constraints, not all 
towns could be visited during each time period.  For the town 78 analysis, the six primary occasions were renumbered P1 – P6. 

8/21 - 22 

 
 P1 P2 P3 P4 P5 P6 P7 P8 P9 
Town 6/25 - 29 7/2 - 6 7/10 - 13 7/17 - 20 7/24 - 27 7/30 - 8/3 8/6 - 10 8/14 - 17 8/21 - 28 

51   7/13 7/20 7/26 8/3  8/16 8/27 
54    7/17 7/24 7/31 8/8 8/16  
74 6/25 - 29 7/6 7/12 7/19  7/30 8/10   
76     7/25 8/1 8/6 - 9  8/22 - 24 

8/24 - 28 78  7/2 - 5 7/11 7/20  7/31 - 8/3  8/14 - 17 
8/9  82   7/10 7/17 7/27  

 

 

 



 

Input File: Town 78 Analysis 
/* PAWNEE NATIONAL GRASSLAND 2007, TOWN 78*/ 
/* BURROWING OWLS ANALYSIS, 6 primary occasions*/ 
/* ID, Nest, History, 1 Group, Weight(g)*/ 
 
/* XOOK7851*/  ..+010-0-0.. 1 115; 
/* XWKW7851*/  ..+001-006.. 1 114; 
/* OWXnone7852*/ +0+0-0-0-0.. 1 74; 
/* WXYK7852*/  ..03-010-0.. 1 110; 
/* OXYW7853*/  02-0-0-0-0.. 1 95; 
/* WKOX7853*/  03-0-00203.. 1 105; 
/* WWXK7853*/  02-004-0-0.. 1 94; 
/* WXKY7853*/  +0-0-0-0-0.. 1 85; 
/* XKWK7853*/  01-0-0-0-0.. 1 95; 
/* XWOK7853*/  01-0-0-0-0.. 1 78; 
/* KWXK7855*/  02-0-0-0.... 1 94; 
/* KWWX7859*/  070901-0-0.. 1 110; 
/* OOKX7859*/  0909-0-0-0.. 1 90; 
/* XKWY7859*/  0805-0-0-0.. 1 120; 
/* KYXnone7860*/ ..+0-0-0-0.. 1 100; 
/* OXWO7861*/  +0-0-0-0-0.. 1 85; 
/* WKXK7861*/  04-0-0-005.. 1 79; 
/* XWYK7861*/  +0-0-0-0-0.. 1 95; 
/* YKWX7861*/  09-0-0-0-0.. 1 90; 
/* WKYX7862*/  +0-0-01001-0 1 101; 
/* WXWK7862*/  +0-010100909 1 101; 
/* XOWO7862*/  +0-010-001-0 1 89; 
/* YWOX7862*/  01-010-007-0 1 109; 
/* YWWX7863*/  +0-010-0-0.. 1 118; 
 
Unmarked Seen Group=1; 
52 62 92 137 45 17; 
 
Marked Unidentified Group=1; 
31 9 27 28 3 0; 
 
Known Marks Group=1; 
20 0 0 0 0 0; 

 
Figure 2.5.  The input file for the town 78 analysis began with comments and descriptors, 
followed by data for banded individuals.  The capture history consisted of two digits for 
each primary occasion: number of scans in which an IDd bird was sighted (e.g., 08), .. if 
that nest was not observed in that primary, +0 if the IDd bird was known to be present but 
not seen (only occurred if a bird was captured the previous night), or -0 if the IDd bird 
was not seen on other occasions.  The single column of ones indicated that just one group 
was present.  Weight at first capture was an individual covariate for banded owlets.  The 
remaining rows gave the sums per primary occasion of sightings of unmarked owlets, 
unIDd owlets, and known marks.  The number of marks was known only for the morning 
following the first trapping session, when all banded birds were assumed to be alive and 
present; otherwise, a “0” was entered for known marks.  Nests were scanned via the M-R 
protocol following the first banding session on a particular site. 
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Table 2.8.  Model-Averaged Parameters: Town 78.  N was estimated separately in each 
primary occasion. 
 
Model-Averaged Parameter Estimate SE LCI UCI 
Unmarked Population Size (U1) 11.43 4.60 2.41 20.44 
Unmarked Population Size (U2) 10.33 4.60 1.32 19.34 
Unmarked Population Size (U3) 13.36 4.48 4.58 22.14 
Unmarked Population Size (U4) 13.40 3.04 7.45 19.35 
Unmarked Population Size (U5) 9.93 6.21 -2.23 22.10 
Unmarked Population Size (U6) 2.76 2.67 -2.48 7.99 
Intercept (ln) mean resighting rate (Alpha1) 1.249 0.216 0.826 1.672 
Intercept (ln) mean resighting rate (Alpha2) 1.283 0.146 0.997 1.570 
Intercept (ln) mean resighting rate (Alpha3) 1.288 0.133 1.028 1.549 
Intercept (ln) mean resighting rate (Alpha4) 1.278 0.131 1.022 1.535 
Intercept (ln) mean resighting rate (Alpha5) 1.269 0.159 0.958 1.581 
Intercept (ln) mean resighting rate (Alpha6) 1.266 0.195 0.883 1.650 
Individual Heterogeneity (Sigma1) 1.238 0.179 0.887 1.589 
Individual Heterogeneity (Sigma2) 1.365 0.002 1.360 1.369 
Individual Heterogeneity (Sigma3) 1.365 0.001 1.362 1.368 
Individual Heterogeneity (Sigma4) 1.365 0.002 1.361 1.369 
Individual Heterogeneity (Sigma5) 1.365 0.002 1.362 1.368 
Individual Heterogeneity (Sigma6) 1.365 0.002 1.361 1.369 
Expected # Sightings (Lambda1) 4.23 0.45 3.36 5.11 
Expected # Sightings (Lambda2) 5.42 0.40 4.64 6.21 
Expected # Sightings (Lambda3) 6.52 0.38 5.78 7.26 
Expected # Sightings (Lambda4) 9.97 0.42 9.15 10.79 
Expected # Sightings (Lambda5) 3.63 0.41 2.83 4.43 
Expected # Sightings (Lambda6) 3.22 0.49 2.25 4.18 
Total Population Size (N1) 31.43 4.60 22.41 40.44 
Total Population Size (N2) 14.49 4.61 5.45 23.53 
Total Population Size (N3) 21.68 4.50 12.85 30.50 
Total Population Size (N4) 17.56 3.05 11.59 23.54 
Total Population Size (N5) 17.23 6.24 4.99 29.46 
Total Population Size (N6) 3.80 2.68 -1.45 9.05 
Apparent Survival (Phi1) 0.824 0.091 0.579 0.941 
Apparent Survival (Phi2) 0.818 0.096 0.558 0.941 
Apparent Survival (Phi3) 0.817 0.084 0.598 0.930 
Apparent Survival (Phi4) 0.823 0.082 0.606 0.934 
Apparent Survival (Phi5) 0.780 0.208 0.248 0.974 
Emigration (Gamma''1) 0.626 0.091 0.439 0.781 
Emigration (Gamma''2) 0.625 0.091 0.437 0.782 
Emigration (Gamma''3) 0.626 0.091 0.439 0.782 
Emigration (Gamma''4) 0.624 0.095 0.429 0.786 
Emigration (Gamma''5) 0.625 0.092 0.436 0.783 
Immigration (Gamma'2) 0.590 0.133 0.330 0.808 
Immigration (Gamma'3) 0.590 0.133 0.328 0.809 
Immigration (Gamma'4) 0.591 0.132 0.330 0.808 
Immigration (Gamma'5) 0.591 0.132 0.330 0.809 
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Model-averaged parameters for town 78 are the unmarked population size (U), log 
transformed intercept for mean resighting rate (α), individual heterogeneity (σ), expected 
number of resightings (λ), total population size (N), apparent survival (ф), and two 
parameters for temporary emigration: the probability of transitioning from observable to 
unobservable (γ’’) and of remaining unobservable (γ’)



 

Table 2.9.  Model Set: Town 78 Analysis.  The model set for the town 78 analysis was determined a priori (Table 2.1).  The top model had the 
smallest AICc and highest model weight.  U was estimated separately in each primary occasion.  For these models, all σ except the first were fixed 
to the σ1 for the fully time-varying “t” model. 
 

Model AICc ∆AICc Weight Likelihood # Par Deviance 
{alpha(.) sigma(fix) U(t) Phi(.) Gamma''(.)=Gamma'(.) DM logit} 416.865 0.000 0.239 1.000 10 391.749 
{alpha(.) sigma(fix) U(t) Phi(weight) Gamma''(.)=Gamma'(.) DM logit} 418.403 1.538 0.111 0.463 11 390.117 
{alpha(.) sigma(fix) U(t) Phi(.) Gamma''(.) Gamma'(.) DM logit} 418.407 1.542 0.111 0.463 11 390.121 
{alpha(t1) sigma(fix) U(t) Phi(.) Gamma''(.)=Gamma'(.) DM logit} 419.665 2.800 0.059 0.247 11 391.379 
{alpha(wind) sigma(fix) U(t) Phi(.) Gamma''(.)=Gamma'(.) DM logit} 419.714 2.849 0.058 0.241 11 391.429 
{alpha(age2) sigma(fix) U(t) Phi(.) Gamma''(.)=Gamma'(.) DM logit} 419.940 3.075 0.051 0.215 11 391.654 
{alpha(.) sigma(fix) U(t) Phi(age2) Gamma''(.)=Gamma'(.) DM logit} 419.983 3.118 0.050 0.210 11 391.697 
{alpha(age) sigma(fix) U(t) Phi(.) Gamma''(.)=Gamma'(.) DM logit} 419.984 3.119 0.050 0.210 11 391.698 
{alpha(weight) sigma(fix) U(t) Phi(.) Gamma''(.)=Gamma'(.) DM logit} 420.011 3.146 0.050 0.208 11 391.725 
{alpha(temp) sigma(fix) U(t) Phi(.) Gamma''(.)=Gamma'(.) DM logit} 420.033 3.168 0.049 0.205 11 391.747 
{alpha(T) sigma(fix) U(t) Phi(.) Gamma''(.)=Gamma'(.) DM logit} 420.034 3.169 0.049 0.205 11 391.748 
{alpha(.) sigma(fix) U(t) Phi(t) Gamma''(.)=Gamma'(.) DM logit} 421.031 4.166 0.030 0.125 12 389.421 
{alpha(t1) sigma(fix) U(t) Phi(weight) Gamma''(.)=Gamma'(.) DM logit} 421.359 4.495 0.025 0.106 12 389.750 
{alpha(t1) sigma(fix) U(t) Phi(.) Gamma''(.) Gamma'(.) DM logit} 421.367 4.502 0.025 0.105 12 389.757 
{alpha(.) sigma(fix) U(t) Phi(T2) Gamma''(.)=Gamma'(.) DM logit} 422.131 5.266 0.017 0.072 12 390.521 
{alpha(T2) sigma(fix) U(t) Phi(.) Gamma''(.)=Gamma'(.) DM logit} 422.840 5.975 0.012 0.050 12 391.230 
{alpha(.) sigma(fix) U(t) Phi(t) Gamma''(.) Gamma'(.) DM logit} 423.174 6.309 0.010 0.043 13 388.074 
{alpha(.) sigma(fix) U(t) Phi(.) Gamma''(t) Gamma'(t) DM logit} 426.635 9.770 0.002 0.008 16 379.932 
{alpha(.) sigma(fix) U(t) Phi(t) Gamma''(t) Gamma'(t) DM logit} 429.898 13.033 0.000 0.002 17 378.898 
{alpha(t) sigma(fix) U(t) Phi(.) Gamma''(.) Gamma'(.) PIM logit} 436.149 19.284 0.000 0.000 16 389.447 
{alpha(t) sigma(t) U(t) Phi(t) Gamma''(t) Gamma'(t) PIM logit} 439.804 22.940 0.000 0.000 25 343.376 
{alpha(t) sigma(fix) U(t) Phi(.) Gamma''(t) Gamma'(t) PIM logit} 444.619 27.754 0.000 0.000 20 379.165 
{alpha(t) sigma(fix) U(t) Phi(t) Gamma''(.) Gamma'(.) PIM logit} 446.213 29.348 0.000 0.000 19 385.860 
{alpha(t) sigma(fix) U(t) Phi(t) Gamma''(t) Gamma'(t) DM logit} 454.708 37.843 0.000 0.000 22 378.063 
{alpha(t) sigma(t) U(t) Phi(t) Gamma''(t) Gamma'(t) PIM logit} 464.336 47.471 0.000 0.000 28 343.376 
{alpha(.) sigma(fix) U(t) Phi(.) DM logit} 526.126 109.261 0.000 0.000 9 504.035 

 
Parameters are the log transformed intercept for mean resighting rate (α), individual heterogeneity (σ), unmarked population size (U), apparent 
survival (ф), and two parameters for temporary emigration: the probability of transitioning from observable to unobservable (γ’’) and of remaining 
unobservable (γ’).
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Input File: Site-Wide Analysis 
/* PAWNEE NATIONAL GRASSLAND 2007*/ 
/* BURROWING OWLS ANALYSIS, 9 primary occasions*/ 
/* ID, Nest, History, Prairie Dog Towns are indiv covariates, Weight(g), Keel(body condition)*/ 
/* 1 Group*/ 
/* Following column of 1s, next 6 columns are for town 51, 54, 74, 76, 78, 82*/ 
/* Keel 0 = poor, 1 = fair, 2 = good*/ 
 
/* WOXY5153*/  ....0803-008..-0-0 1 1 0 0 0 0 0 117 1; 
/* XOOW5153*/  ....08-0-0-0..-0-0 1 1 0 0 0 0 0 99 1; 
/* KKXK5158*/  ......090802..05.. 1 1 0 0 0 0 0 101 1; 
/* OXWW5158*/  ....05090709..05.. 1 1 0 0 0 0 0 117 1; 
/* XKWO5158*/  ......0907-0..06.. 1 1 0 0 0 0 0 115 1; 
/* WXKK5160*/  ....+006-0-0..-0.. 1 1 0 0 0 0 0 84 1; 
/* XOOO5160*/  ....+009-0-0..-0.. 1 1 0 0 0 0 0 98 1; 
/* OOXW5451*/  ......+01008-008.. 1 0 1 0 0 0 0 117 2; 
/* WXOY5452*/  ........090810.... 1 0 1 0 0 0 0 117 2; 
/* OKWX5454*/  ......03-0-0-0.... 1 0 1 0 0 0 0 106 1; 
/* OWXO5454*/  ......03+0-0-0.... 1 0 1 0 0 0 0 117 1; 
/* WYYX5458*/  ........+0-0-0-0.. 1 0 1 0 0 0 0 130 2; 
/* OXKW7451*/  03-0-0-0..-0-0.... 1 0 0 1 0 0 0 55 1; 
/* WXYW7451*/  ..+0-010..-0-0.... 1 0 0 1 0 0 0 124 1; 
/* XWOW7451*/  03-0-0-0..-0-0.... 1 0 0 1 0 0 0 75 1; 
/* KWKX7455*/  ..+0-010..-008.... 1 0 0 1 0 0 0 124 1; 
/* WOWX7455*/  ..+0-0-0..-0-0.... 1 0 0 1 0 0 0 119 1; 
/* XKKK7455*/  02-0-010..-0-0.... 1 0 0 1 0 0 0 85 1; 
/* KOOX7457*/  08-0-010..-008.... 1 0 0 1 0 0 0 85 1; 
/* WWWX7457*/  +0................ 1 0 0 1 0 0 0 75 1; 
/* WXKW7457*/  08-0-0-0..-0-0.... 1 0 0 1 0 0 0 113 1; 
/* YWXK7457*/  +0-0-0-0..-0-0.... 1 0 0 1 0 0 0 46 1; 
/* YXWW7457*/  08-00410..-0-0.... 1 0 0 1 0 0 0 85 1; 
/* KXKK7655*/  ........04-0-0..-0 1 0 0 0 1 0 0 103 1; 
/* XKWW7655*/  ........04-002..-0 1 0 0 0 1 0 0 94 1; 
/* XWWO7655*/  ........0403-0..-0 1 0 0 0 1 0 0 97 1; 
/* XOOK7851*/  ....+010..-0..-0.. 1 0 0 0 0 1 0 115 1; 
/* XWKW7851*/  ....+001..-0..06.. 1 0 0 0 0 1 0 114 1; 
/* OWXnone7852*/       ..+0+0-0..-0..-0.. 1 0 0 0 0 1 0 74 1; 
/* WXYK7852*/  ....03-0..10..-0.. 1 0 0 0 0 1 0 110 2; 
/* OXYW7853*/  ..02-0-0..-0..-0.. 1 0 0 0 0 1 0 95 0; 
/* WKOX7853*/  ..03-0-0..02..03.. 1 0 0 0 0 1 0 105 1; 
/* WWXK7853*/  ..02-004..-0..-0.. 1 0 0 0 0 1 0 94 1; 62 /* WXKY7853*/  ..+0-0-0..-0..-0.. 1 0 0 0 0 1 0 85 1; 

 



 

/* XKWK7853*/  ..01-0-0..-0..-0.. 1 0 0 0 0 1 0 95 1; 
/* XWOK7853*/  ..01-0-0..-0..-0.. 1 0 0 0 0 1 0 78 1; 
/* KWXK7855*/  ..02-0-0..-0...... 1 0 0 0 0 1 0 94 1; 
/* KWWX7859*/  ..070901..-0..-0.. 1 0 0 0 0 1 0 110 2; 
/* OOKX7859*/  ..0909-0..-0..-0.. 1 0 0 0 0 1 0 90 1; 
/* XKWY7859*/  ..0805-0..-0..-0.. 1 0 0 0 0 1 0 120 1; 
/* KYXnone7860*/  ....+0-0..-0..-0.. 1 0 0 0 0 1 0 100 1; 
/* OXWO7861*/  ..+0-0-0..-0..-0.. 1 0 0 0 0 1 0 85 1; 
/* WKXK7861*/  ..04-0-0..-0..05.. 1 0 0 0 0 1 0 79 1; 
/* XWYK7861*/  ..+0-0-0..-0..-0.. 1 0 0 0 0 1 0 95 1; 
/* YKWX7861*/  ..09-0-0..-0..-0.. 1 0 0 0 0 1 0 90 1; 
/* WKYX7862*/  ..+0-0-0..10..01-0 1 0 0 0 0 1 0 101 2; 
/* WXWK7862*/  ..+0-010..10..0909 1 0 0 0 0 1 0 101 1; 
/* XOWO7862*/  ..+0-010..-0..01-0 1 0 0 0 0 1 0 89 1; 
/* YWOX7862*/  ..01-010..-0..07-0 1 0 0 0 0 1 0 109 1; 
/* YWWX7863*/  ..+0-010..-0..-0.. 1 0 0 0 0 1 0 118 1; 
/* WXOK8251*/  ....09-0-0..-0.... 1 0 0 0 0 0 1 112 1; 
/* OOXO8252*/  ....+0-0-0..-0..-0 1 0 0 0 0 0 1 114 1; 
/* WOXK8252*/  ....+0-0-0..-0..-0 1 0 0 0 0 0 1 103 1; 
/* WOOX8253*/  ............09..-0 1 0 0 0 0 0 1 92 0; 
/* WWKX8253*/  ............-0..-0 1 0 0 0 0 0 1 105 0; 
/* WKKX8254*/  ......+0-0..-0..01 1 0 0 0 0 0 1 112 1; 
/* WWXY8254*/  ......+0-0..-0..-0 1 0 0 0 0 0 1 68 1; 
/* KOXK8255*/  ....+002-0..-0..-0 1 0 0 0 0 0 1 109 1; 
/* WYXO8255*/  ....+0-0-0..-0..-0 1 0 0 0 0 0 1 117 1; 
/* XOWW8256*/  ....0901-0..-0..-0 1 0 0 0 0 0 1 124 1; 
 
Unmarked Seen Group=1; 
29 61 268 218 106 290 111 147 65; 
 
Marked Unidentified Group=1; 
0 50 18 35 19 37 5 9 8; 
 
Known Marks Group=1; 
8 0 0 0 0 0 0 0 0; 

 
Figure 2.6.  The input file for the site-wide analysis (towns combined into one group) began with comments and descriptors, followed by data for 
banded individuals.  The capture history consisted of two digits for each primary occasion: number of scans in which an IDd bird was sighted 
(e.g., 08), .. if that nest was not observed in that primary, +0 if the IDd bird was known to be present but not seen (only occurred if a bird was 
captured the previous night), or -0 if the IDd bird was not seen on other occasions.  Following a column of ones for the single group, the next six 63

 



 

 

64

columns included the six towns as individual covariates in binary fashion (e.g., 1 if town 51, 0 otherwise).  Weight and body condition (poor, fair, 
good) based on the keel at first capture were also individual covariates for banded owlets.  The remaining rows gave the sums per primary 
occasion of sightings of unmarked owlets, unIDd owlets, and known marks.  The number of marks was known only for the morning following the 
first trapping session, when all banded birds were assumed to be alive and present; otherwise, a “0” was entered for known marks.  Nests were 
scanned via the M-R protocol following the first banding session on a particular site. 
 



 

Table 2.10.  Model-Averaged Parameters: Site-Wide Analysis.  N was estimated 
separately in each primary occasion. 
 
Model-Averaged Parameter Estimate SE LCI UCI 
Unmarked Population Size (U1) 7.32 3.34 0.76 13.87 
Unmarked Population Size (U2) 7.91 3.02 2.00 13.82 
Unmarked Population Size (U3) 53.53 11.85 30.30 76.75 
Unmarked Population Size (U4) 45.74 11.45 23.31 68.18 
Unmarked Population Size (U5) 18.46 6.06 6.58 30.35 
Unmarked Population Size (U6) 42.50 7.88 27.05 57.94 
Unmarked Population Size (U7) 25.18 9.19 7.16 43.20 
Unmarked Population Size (U8) 35.34 11.48 12.84 57.85 
Unmarked Population Size (U9) 8.65 3.23 2.32 14.98 
Intercept (ln) mean resighting rate (Alpha1) 2.957 1.207 0.592 5.323 
Intercept (ln) mean resighting rate (Alpha2) 1.278 0.678 -0.052 2.608 
Intercept (ln) mean resighting rate (Alpha3) 1.278 0.678 -0.052 2.608 
Intercept (ln) mean resighting rate (Alpha4) 1.278 0.678 -0.052 2.608 
Intercept (ln) mean resighting rate (Alpha5) 1.278 0.678 -0.052 2.608 
Intercept (ln) mean resighting rate (Alpha6) 1.278 0.678 -0.052 2.608 
Intercept (ln) mean resighting rate (Alpha7) 1.278 0.678 -0.052 2.608 
Intercept (ln) mean resighting rate (Alpha8) 1.278 0.678 -0.052 2.608 
Intercept (ln) mean resighting rate (Alpha9) 1.278 0.678 -0.052 2.608 
Individual Heterogeneity (Sigma1) 0.686 0.283 0.143 0.966 
Individual Heterogeneity (Sigma2) 1.365 0.000 1.365 1.365 
Individual Heterogeneity (Sigma3) 1.365 0.000 1.365 1.365 
Individual Heterogeneity (Sigma4) 1.365 0.000 1.365 1.365 
Individual Heterogeneity (Sigma5) 1.365 0.000 1.365 1.365 
Individual Heterogeneity (Sigma6) 1.365 0.000 1.365 1.365 
Individual Heterogeneity (Sigma7) 1.365 0.000 1.365 1.365 
Individual Heterogeneity (Sigma8) 1.365 0.000 1.365 1.365 
Individual Heterogeneity (Sigma9) 1.365 0.000 1.365 1.365 
Expected # Sightings (Lambda1) 3.75 1.20 1.40 6.10 
Expected # Sightings (Lambda2) 7.23 1.73 3.83 10.63 
Expected # Sightings (Lambda3) 4.97 1.73 1.58 8.35 
Expected # Sightings (Lambda4) 4.70 1.73 1.32 8.08 
Expected # Sightings (Lambda5) 5.52 1.73 2.13 8.91 
Expected # Sightings (Lambda6) 6.79 1.73 3.39 10.18 
Expected # Sightings (Lambda7) 4.20 1.72 0.82 7.58 
Expected # Sightings (Lambda8) 4.03 1.72 0.65 7.41 
Expected # Sightings (Lambda9) 7.07 1.73 3.68 10.47 
Total Population Size (N1) 15.32 3.34 8.76 21.87 
Total Population Size (N2) 20.44 3.03 14.50 26.38 
Total Population Size (N3) 63.97 11.87 40.70 87.23 
Total Population Size (N4) 69.76 11.49 47.24 92.28 
Total Population Size (N5) 26.82 6.08 14.91 38.73 
Total Population Size (N6) 52.94 7.90 37.46 68.42 
Total Population Size (N7) 30.40 9.20 12.37 48.44 
Total Population Size (N8) 46.83 11.50 24.29 69.37 
Total Population Size (N9) 10.74 3.23 4.41 17.07 
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Apparent Survival (Phi1) 0.827 0.055 0.692 0.910
Apparent Survival (Phi2) 0.833 0.037 0.747 0.894
Apparent Survival (Phi3) 0.834 0.036 0.750 0.893
Apparent Survival (Phi4) 0.838 0.033 0.764 0.893
Apparent Survival (Phi5) 0.842 0.037 0.757 0.902
Apparent Survival (Phi6) 0.845 0.041 0.747 0.910
Apparent Survival (Phi7) 0.848 0.046 0.733 0.919
Apparent Survival (Phi8) 0.849 0.049 0.727 0.923
Emigration (Gamma''1) 1.000 0.004 0.993 1.007
Emigration (Gamma''2) 0.775 0.092 0.551 0.906
Emigration (Gamma''3) 0.317 0.110 0.146 0.558
Emigration (Gamma''4) 0.786 0.093 0.553 0.916
Emigration (Gamma''5) 0.569 0.124 0.329 0.780
Emigration (Gamma''6) 0.798 0.099 0.543 0.929
Emigration (Gamma''7) 0.170 0.206 0.012 0.780
Emigration (Gamma''8) 0.628 0.253 0.168 0.934
Immigration (Gamma'2) 0.774 0.096 0.539 0.910
Immigration (Gamma'3) 0.319 0.110 0.148 0.559
Immigration (Gamma'4) 0.793 0.096 0.550 0.923
Immigration (Gamma'5) 0.575 0.119 0.343 0.778
Immigration (Gamma'6) 0.794 0.100 0.537 0.928
Immigration (Gamma'7) 0.149 0.163 0.014 0.684
Immigration (Gamma'8) 0.613 0.266 0.150 0.935

 



 

Table 2.11.  Model Set: Site-Wide Analysis.  The model set for the site-wide analysis was determined a priori (Table 2.1).  The top model had the 
smallest AICc and highest model weight.  U was estimated separately in each primary occasion.  Most models held α constant except for the first 
primary occasion in which only town 74, the first town where owlets were banded, was visited.  For these models, all σ except the first were fixed 
to the σ1 for the fully time-varying “t” model on town 78. 
 
Model AICc ∆AICc Weight Likelihood # Par Deviance 
{Phi(keel) gamma'(t+weight)=gamma''(t+weight) alpha(74 .) sigma(fix 78) U(t)} 919.570 0.000 0.260 1.000 23 862.530 
{Phi(keel) gamma'(t)=gamma''(t) alpha(74 .) sigma(fix 78) U(t)} 920.418 0.849 0.170 0.654 22 866.399 
{Phi(keel+weight) gamma'(t)=gamma''(t) alpha(74 .) sigma(fix 78) U(t)} 920.431 0.861 0.169 0.650 23 863.391 
{Phi(keel+weight) gamma'(t+weight)=gamma''(t+weight) alpha(74 .) sigma(fix 78) U(t)} 922.038 2.468 0.076 0.291 24 861.916 
{Phi(weight) gamma'(t)=gamma''(t) alpha(74 .) sigma(fix 78) U(t)} 922.038 2.469 0.076 0.291 22 868.018 
{Phi(.) gamma'(t)=gamma''(t) alpha(74 .) sigma(fix 78) U(t)} 922.523 2.953 0.059 0.228 21 871.464 
{Phi(keel) gamma'(t+keel)=gamma''(t+keel) alpha(74 .) sigma(fix 78) U(t)} 922.663 3.094 0.055 0.213 23 865.623 
{Phi(age2) gamma'(t)=gamma''(t) alpha(74 .) sigma(fix 78) U(t)} 922.903 3.333 0.049 0.189 22 868.883 
{Phi(age) gamma'(t)=gamma''(t) alpha(74 .) sigma(fix 78) U(t)} 923.037 3.467 0.046 0.177 22 869.017 
{Phi(.) gamma'(t) gamma''(t) alpha(74 .) sigma(fix 78) U(t)} 924.418 4.849 0.023 0.089 24 864.297 
{Phi(.) gamma'(t)=gamma''(t) alpha(74 weight) sigma(fix 78) U(t)} 925.484 5.914 0.014 0.052 22 871.464 
{Phi(weight) gamma'(t+weight)=gamma''(t+weight) alpha(74 .) sigma(fix 78) U(t)} 929.014 9.444 0.002 0.009 22 874.994 
{Phi(Town) gamma'(t)=gamma''(t) alpha(74 .) sigma(fix 78) U(t)} 931.963 12.393 0.001 0.002 26 865.489 
{Phi(.) gamma'(t)=gamma''(t) alpha(74 Town) sigma(fix 78) U(t)} 935.537 15.967 0.000 0.000 26 869.062 
{Phi(.) gamma'(.)=gamma''(.) alpha(74 .) sigma(fix 78) U(t)} 936.003 16.434 0.000 0.000 14 904.150 
{Phi(.) gamma'(t) gamma''(t) alpha(74 .) sigma(fix 78) U(t)} 937.392 17.822 0.000 0.000 28 864.297 
{Phi(.) gamma'(.) gamma''(.) alpha(74 .) sigma(fix 78) U(t)} 937.900 18.330 0.000 0.000 15 903.456 
{Phi(.) gamma'(t)=gamma''(t) alpha(t) sigma(fix 78) U(t)} 946.548 26.978 0.000 0.000 29 870.037 
{Phi(t) gamma'(.) gamma''(.) alpha(74 .) sigma(fix 78) U(t)} 949.168 29.599 0.000 0.000 22 895.148 
{Phi(t) gamma'(t) gamma''(t) alpha(74 .) sigma(fix 78) U(t)} 957.936 38.366 0.000 0.000 35 859.299 
{Phi(t) gamma'(t) gamma''(t) alpha(t) sigma(fix 78) U(t)} 991.570 72.000 0.000 0.000 42 862.977 

 
Parameters are the log transformed intercept for mean resighting rate (α), individual heterogeneity (σ), unmarked population size (U), apparent 
survival (ф), and two parameters for temporary emigration: the probability of transitioning from observable to unobservable (γ’’) and of remaining 
unobservable (γ’). 
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CHAPTER 3 

BURROWING OWL DIET CORRELATES WITH RAINFALL AND 

BREEDING SUCCESS BUT NOT PLAGUE OUTBREAKS 

 

ABSTRACT 

Food supply often influences breeding success in predators.  Burrowing owls (Athene 

cunicularia) on the shortgrass steppe of northern Colorado nest in burrows dug by black-

tailed prairie dogs (Cynomys ludovicianus), who live in colonies periodically extirpated 

by plague outbreaks caused by the bacterium Yersinia pestis.  Our objectives were to 

quantify prey use of burrowing owls, to examine the effects of precipitation, nest density, 

and plague on prey use, and to determine whether prey composition influenced nest or 

fledging success.  We monitored 296 nests from 2005 – 2007, identified prey items from 

regurgitated pellets and prey remains, and analyzed prey species composition using 

multivariate tools.  Burrowing owls ate a large variety of prey dominated by beetles, 

grasshoppers, ants, rodents, and songbirds, in that order.  Insects comprised 95% of their 

diet by number, but only 11% by biomass.  The largest differences in prey composition 

were associated with year, rainfall, nest success, and fledging success.  Owls in the driest 

year of our study and those at successful and very productive nests ate fewer birds and 

more mammals.  Grasshopper consumption was associated with dry weather, while 

scarabs and ants were indicators of wetter summers.  Consumption of some, but not all, 

vertebrates declined at high nest densities.  Owl diet was unchanged by plague outbreaks, 
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except that several bird species were less commonly eaten following epizootics.  Based 

on habitat associations of the most commonly eaten rodents, this suggests that burrowing 

owls often forage from roadsides and fencerows outside of prairie dog towns, making 

town-level differences less relevant to owl diets. 

 

INTRODUCTION 

Prey availability and selection influence breeding success in predators, and 

predator diets may reflect environmental factors such as precipitation, temperature, and 

the presence of other predators or species that alter habitat.  Food supply may influence 

the weight and survival of young, with food-stressed individuals becoming less vigilant 

and more likely to be predated (Newton 1998).  Larger prey items may be associated with 

higher nest success (White 1996).  Bad weather limits prey availability, decreases 

foraging efficiency, and can reduce nest success and survival in raptors (Village 1986; 

Steenhof et al. 1997). 

For the burrowing owl (Athene cunicularia hypugaea), a small ground-dwelling 

owl of the western American prairies, the effects of dietary composition on nest success 

(proportion of nests fledging at least one juvenile) and productivity (number of fledglings 

per nest) were unknown.  Previous studies produced contradictory results.  Ronan (2002) 

found increased productivity for successful nests with higher rodent consumption, but 

there was no effect on nest success or productivity when all nests, failed and successful, 

were combined.  Woodard (2002) observed a marginal decline in productivity for all 

nests as prey species richness and owl predation of vertebrates increased, but no 

relationship between diet and productivity for successful nests. 
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 The effects of factors such as rainfall, nest density, and plague epizootics on diets 

of burrowing owls living on black-tailed prairie dog (Cynomys ludovicianus) towns were 

also unknown.  However, we suspected that variation in these factors influenced breeding 

success (Conrey Ch. 4), and that these responses might be mediated through dietary 

changes.  For example, precipitation is considered to be the most important 

environmental factor governing ecology on the shortgrass steppe (Lauenroth and Sala 

1992).  Ronan (2002) reported high variation in rainfall during a 3-year study in 

California, and found that owl breeding success was highest in the driest year that 

followed a very wet year.  Owlet mortality may increase during periods of heavy rain, 

especially when rainfall lasts for several days (Wellicome 2000; Griebel and Savidge 

2003).  Although some prey populations may eventually respond positively to increased 

rainfall, burrowing owls curtail their foraging in wet weather.  High density of nests has 

led to decreased nest success in some (Griebel and Savidge 2007) but not all studies 

(Rosenberg and Haley 2004).  A decline in nest success may result from competition for 

food or satellite burrows (used for rest or refuge) or other factors related to nest predators 

or parasites.  To our knowledge, no one has studied the effects of plague on nest success, 

productivity, or owl diets.  Many studies have found that owls prefer active to inactive 

prairie dog towns (e.g., Butts and Lewis 1982; Toombs 1997; Sidle et al. 2001; Tipton et 

al. 2008), but the effects of extirpation and gradual recovery of prairie dogs, with the 

accompanying changes to vegetation and potential prey species, are unknown. 

 In the northern United States and Canada, most burrowing owl populations are 

migratory, nesting in burrows dug by mammals such as prairie dogs and ground squirrels 

(Haug et al. 1993).  Black-tailed prairie dog burrows on our site were used as nests and 
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satellite burrows, and mounds were used as perches.  Plague, a disease caused by the 

introduced bacterium Yersinia pestis, is lethal to prairie dogs and was first reported in 

northern Colorado ~ 1948 (Ecke and Johnson 1952).  Plague does not make owls sick, 

but they may be affected as unmaintained burrows collapse and become uninhabitable, 

vegetation grows taller, and the anti-predator benefits of prairie dog association are lost.  

These may include increased visibility from trimming of vegetation, alarm calling, and 

providing an abundant alternate prey source (Hoogland 1995).  Burrowing owls are 

widely distributed on the prairies of North, Central, and South America, but they are a 

declining and protected species in many areas and are a state-listed threatened species in 

Colorado (Colorado Division of Wildlife 2007). 

 Even without direct observation of owl predation, diets can be studied by 

examining undigestible, identifiable prey materials regurgitated as pellets.  Bones, teeth, 

hair, feathers, claws, talons, and chitin (insect exoskeletons) are often identifiable in owl 

pellets, and unconsumed prey remains such as tails and feathers are left at nests and 

roosts.  Quantification of prey items from pellets is usually a reliable reflection of prey 

consumption (Glading et al. 1943; Mikkola 1983).  Dietary studies of burrowing owls 

throughout North and South America have found them to be generalists, consuming a 

wide variety of invertebrates and vertebrates (Marti 1974; Gleason and Craig 1979; 

Grimm et al. 1985; MacCracken et al. 1985; Thompson and Anderson 1988; Schmutz et 

al. 1991; Green et al. 1993; Plumpton and Lutz 1993; Wiley 1998; Woodard 2002; Arana 

et al. 2006; Littles et al. 2007), with insects typically the most frequently consumed but 

rodents providing greater biomass.  Nesting burrowing owl males typically hunt small 

mammals during crepuscular periods, while both adults and juveniles hunt insects during 
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the day (Poulin and Todd 2006).  Ground foraging (running after and pouncing on prey) 

is the most common hunting strategy used by burrowing owls, but owls also forage from 

perches and from the air (Thompson and Anderson 1988). 

 Our first objective was to quantify prey use of burrowing owls on the Pawnee 

National Grassland (PNG).  Burrowing owl diet in this area was described by Marti 

(1974) and Woodard (2002), but prey use may change from year to year because of 

variation in rainfall, plague, or other factors.  We examined longer term trends by 

comparison to these previous studies from 1967 – 1969 and 2000.  Our second objective 

was to examine the effects of year, precipitation, nest density, and plague on prey use, 

and to determine whether prey composition influenced nest or fledging success.  Previous 

studies of burrowing owl diet have not taken a multivariate approach to testing ecological 

hypotheses.  We tested the following hypotheses: 

1. Owl prey use will vary among years, with a proportionally lower small mammal 

component in 2007, which had heavy summer rains. 

2. Owl prey use will vary among prairie dog towns with different levels of prairie dog 

activity and time since plague.  After plague epizootics, we expected higher use of 

prey such as kangaroo rats that are not typically found on prairie dog towns. 

3. Owl prey use will vary according to the density of owl nests, with fewer large prey 

items where nest density is high. 

4. Successful nests, particularly those with high productivity (at least four fledglings), 

will use a higher proportion of vertebrate prey, especially rodents. 

 One rationale for our first hypothesis (H1) is that prey populations fluctuate over 

time, and species that consume seeds and vegetation or use thick vegetation as refuge 
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should respond to variable precipitation.  In addition, fewer small mammals were caught 

in 2007, with flooding perhaps partially responsible for the decline (Lindquist pers. 

comm.; Stapp pers. comm.).  A change in prey availability may lead to changes in prey 

use.  Another rationale for H1 is that burrowing owls and other raptors may curtail 

foraging activity in wet weather (Village 1986; Steenhof et al. 1997; Wellicome 2000; 

Griebel and Savidge 2003).  H2 follows from differences in vegetation (Hardwicke 2006; 

Hartley 2006; Hartley et al. 2009) and prey communities (Stapp 1996; Bangert and 

Slobodchikoff 2006; Stapp 2007; Stapp et al. 2008) among active prairie dog towns, 

inactive towns, and uncolonized prairie, as well as the changes that follow plague 

epizootics.  We observed variable regrowth of vegetation following plague events, which 

appeared to depend on rainfall and topography (microclimate).  These changes, plus the 

heterogeneity resulting from prairie dog recolonization of small patches of former towns 

and resumed digging and clipping of vegetation, might lead to variation in owl diets.  

Prey species like kangaroo rats that are typically uncommon on active towns might 

become more abundant following epizootics.  Competition among owl pairs for food 

might limit the availability of some prey items in high density areas (H3).  H4 follows 

from the relatively high individual biomass of rodents; a large ratio of nutritional benefit 

to foraging effort (MacArthur and Pianka 1966) might lead to healthier nestlings and 

higher breeding success (White 1996; Newton 1998; Ronan 2002). 
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METHODS 

Study Site 

Our study site (Fig. 3.1) on the Pawnee National Grassland (PNG) is located in 

the shortgrass steppe (SGS) of north central Colorado (Weld County).  The SGS covers 

the central and southern Great Plains, the driest and warmest part of America’s central 

grasslands (Lauenroth and Burke 1995; Pielke and Doesken 2008).  The area managed by 

the USDA Forest Service PNG consists of 78,128 ha spread over a larger 50 x 100 km 

region with a patchwork of public and private ownership.  We worked mainly in the 

northwestern PNG, which has mean elevation of 1650 m and mean annual precipitation 

of 321 mm, with > 70% of this falling as rain from April – September (National Climatic 

Data Center 2002; Pielke and Doesken 2008).  The amount, timing, and intensity of 

precipitation are the most important factors in determining the ecology of the SGS 

(Lauenroth and Sala 1992).  Most precipitation events on the PNG are small, with much 

of the water lost to evapotranspiration (Sala et al. 1992; Lauenroth and Bradford 2006).  

More than 80% of the PNG is upland steppe habitat (Hazlett 1998).  The two dominant 

species are perennial C4 warm-season grasses: blue grama (Bouteloua gracilis) and 

buffalo grass (Buchloe dactyloides).  Other common species are prickly-pear cactus 

(Opuntia polyacantha) and two dwarf shrubs: rabbitbrush (Chrysothamnus nauseosa) and 

saltbush (Atriplex canescens) (Lauenroth 2008). 

 Livestock grazing (mostly cattle) is the dominant land use across the PNG, and 

cattle were common on our study areas.  Bird-watching and recreational shooting are also 

common on the PNG.  Recreational shooting of legal and illegal targets occurred 

throughout the study period, and an 8.5-month open season (mid-June through February 
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annually) on prairie dogs was reinstituted in June 2007 after a six-year moratorium.  

Extensive shooting occurred on several easily accessible towns, especially towns 51 and 

78, with moderate shooting on all towns near gravel roads open to the public, and very 

little shooting on more isolated towns. 

 In a state-wide survey of Colorado, 80% of burrowing owl locations were on 

prairie dog colonies, and 24% of locations were in Weld County (VerCauteren et al. 

2001).  Burrowing owl occupancy in Colorado was highest on active prairie dog towns, 

followed by inactive towns, and all towns had much higher occupancy than grassland or 

dryland agriculture (Tipton et al. 2008).  During three surveys of nine randomly-selected 

quarter sections (64.75 ha), we found only one nest that was not on a prairie dog town; 

another two off-town nests were discovered by chance.  This compares to 320 nests 

located on prairie dog towns, which have been mapped by the Forest Service since 1981.  

The area occupied by these towns has increased since 1981 with an exponential increase 

since the mid-1990s.  Declines in area occupied have occurred during recent plague 

epizootics, but due to rapid recolonization and the colonization of new towns, the total 

area occupied has remained around 1 – 2% of the PNG. 

Compared to adjacent uncolonized prairie, PNG prairie dog towns have more 

forbs, flowers, pollinator visits, and bare ground (Hardwicke 2006; Hartley 2006; Hartley 

et al. 2009).  Total plant biomass is lower on older towns, and both young (< 7 yrs) and 

old towns have reduced grass biomass and a trend toward increasing forb biomass.   

Extirpated towns have similar plant biomass to uncolonized prairie (Hartley 2006; 

Hartley et al. 2009).  Animal species associated with prairie dog towns include burrowing 

owls, mountain plovers (Charadrius montanus: Dinsmore et al. 2005; Dreitz et al. 2005; 
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Tipton et al. 2008), horned larks (Eremophila alpestris: Stapp et al. 2008), lesser earless 

lizards (Holbrookia maculata: Kretzer and Cully 2001), northern grasshopper mice 

(Onychomys leucogaster: Stapp et al. 2008), and desert cottontails (Sylvilagus audubonii: 

Stapp et al. 2008).  Predator species including coyotes (Canis latrans), swift fox (Vulpes 

velox), and badgers (Taxidea taxus) often hunt on prairie dog towns (Stapp et al. 2008).  

We also regularly observed Swainson’s hawks (Buteo swainsoni), Northern harriers 

(Circus cyaneus), and prairie falcons (Falco mexicanus) on towns, plus the occasional 

golden eagle (Aquila chrysaetos) and ferruginous hawk (Buteo regalis). 
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Figure 3.1.  Prairie dog towns are displayed at their maximum extent for 2005 – 2008.  In 
any given year, the total area occupied by prairie dog towns was approximately half the 
displayed area because of colonizations, extinctions, and other fluctuations in town size.  
Labeled towns were the focus of pellet analyses. 
 

Nest Searches 

 We searched for adult owls on prairie dog towns and then looked for nest burrows 

in the vicinity of owl sightings.  Early in the nesting season, adult males, who are not 

involved in incubation or brooding, typically perch conspicuously near the nest burrow 

during the day.  Nest burrows were identified by the presence of shredded mammal 

manure (Levey et al. 2004), owl feathers, regurgitated pellets, and prey remains such as 
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grasshopper legs, rodent tails, and passerine feathers.  A burrow was identified as the site 

of a nest attempt only if shredded manure, typically cow, prairie dog, or canid, was 

present (“nest lining”: Garcia and Conway 2009).  Perching owls, whitewash (mutes), 

pellets, and prey remains were often seen at perch locations near a nest, but in our 

experience, shredded manure was present only at nests.  We conducted a minimum of 

three complete surveys on each prairie dog town so that a removal method (Hayne 1949; 

Otis et al. 1978; White et al. 1982; Rosenberg and Haley 2004) could be used to estimate 

nest abundance and probability of nest detection. 

 

Monitoring Reproduction 

Visual counts of the area surrounding each owl nest using spotting scopes 

produced an estimate of the minimum number of owlets known alive.  We counted 

owlets for ≥ 15 min. at all nests and recorded the maximum number of owlets at each nest 

every 5 min.  If we were unsure where an owlet belonged, we observed it until it moved 

to a nest, joined other owlets, or was fed by an adult.  In the few cases (under five per 

year) where the nest could not be identified, the owlet was not counted.  Each owlet was 

aged according to behavior, plumage characteristics, and size (Priest 1997).  For analysis, 

owlets that could not be aged because our view was blocked or too brief were assigned 

the mean age for that nest.  Presence of adults was noted, because lack of adult activity 

may indicate nest failure, as do prairie dogs in the burrow or cobwebs covering the 

entrance. 

Nests were monitored once per week whenever possible, but the longest interval 

between observations was 13 days.  We monitored each nest until all owlets at that nest 
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were considered to be older than 50 days (d).  Fledging of owlets at each nest may be 

staggered across a week or more, because females lay one egg every 1 – 2 days and 

usually begin incubation with the first egg (Bent 1938; Olenick 1990; Haug et al. 1993).  

Following Haug (1985) and Desmond and Savidge (1999), we used 42 d as fledging age, 

within the range of 35 – 44 d used by others (Thomsen 1971; Landry 1979; Todd et al. 

2003; Davies and Restani 2006; Lantz and Conway 2009).  Burrowing owl fledglings fly 

fairly well and are somewhat independent, as parental care such as feeding generally 

becomes less frequent after this age. 

Logistics required that we consider an owlet to be fledged if observed at ≥ 35 d, 

because when nests are monitored once per week, owlets that have actually reached 

fledging age of 42 d are more likely to leave the nest area and remain undetected.  Owlets 

within nests do not simultaneously reach 35 d, so while it would be ideal to count an 

owlet as fledged only if that particular individual was ≥ 35 d old, we could not age all 

owlets during each observation and considered all owlets as fledging at once from a 

particular nest with average age ≥ 35 d.   Successful nests had at least one owlet known 

alive when average owlet age was ≥ 35 d.  Fledging success per nest was equal to the 

largest number of owlets ever observed when average owlet age was ≥ 35 d. 

 

Sample Collection 

 We collected regurgitated pellets and prey remains at least twice during each 2005 

– 2007  breeding season from nests, perches, and satellite burrows: once when the nest 

was discovered in May – early June, and again in July prior to fledging of most nests.  

Additional collections were made opportunistically, but nest visits were kept to a 

 79



minimum to avoid disturbing owls.  We collected every pellet, rodent tail, foot, bird 

wing, crayfish claw or similar item, two or more of every feather type, and a sample of 

more numerous items such as grasshopper legs and beetle parts.  Any prey item with 

consumable parts remaining was left on the ground, and a digital photo was taken instead.  

A few authors have reported that pellets containing invertebrate prey may disintegrate 

faster than those containing vertebrates (Marti 1974; York et al. 2002), so we did our best 

to sample evenly by including pellets that were beginning to separate into pieces.  Pellets, 

insect parts, and feathers were stored at room temperature in sealed paper envelopes, 

while any prey items with fleshy parts were frozen in ziplock bags. 

 We subsampled our pellet collection, focusing on six prairie dog towns (Fig. 3.1) 

with varying plague histories and owl nest densities.  These towns were randomly chosen 

from a stratified set of those with adequate sample size, except that town 71 was chosen 

as the only long inactive prairie dog town ever to contain an owl nest.  A smaller number 

of additional pellets was analyzed from other towns.  We analyzed all prey remains, but 

time constraints required that we sample our pellet collection by randomly selecting three 

(if mostly intact) to four (if at least one was broken) pellets per location per sampling 

date.  We sampled all nests from those towns in 2005 and 2007, but in 2006 when the 

total number of nests was much larger, we randomly selected a subset of nests for diet 

analysis.  For the three towns where we had collections before and after plague 

epizootics, we analyzed n+1 nests in 2006, where n was the number of nests on that town 

in either 2005 (towns 80 and 82) or 2007 (town 74).  Pellets were measured by length and 

diameter and categorized as loose, broken, mostly intact, or intact. 
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Prey Identification and Quantification 

 An overnight soak in 8% (2 molar) NaOH (Degn 1978) was needed to dissolve 

keratin-based materials such as clumped hair and feather dust that obscured small bones 

and insect chitin.  Prior to soaking, we removed digestible materials that would be useful 

for identification, such as intact fur, feathers, or claws.  Following an overnight soak, we 

used small round-bottomed metal strainers to rinse samples in tap water prior to placing 

the strainers in oven-proof bowls for drying at 50°C. 

 Prey items were identified with the aid of a reference collection, field guides, 

illustrations, and in difficult cases, expert opinion.  We assembled a reference collection 

of skins, skeletons, and whole arthropods from collections owned by the Shortgrass 

Steppe Long Term Ecological Research project (specimens collected on the PNG), 

Denver Museum of Nature and Science, Colorado State University’s C. P. Gillette 

Museum of Arthropod Diversity, as well as CSU’s Mammalogy and Ornithology 

collections.  An insect guide (Eaton and Kaufman 2007) and several publications that 

provided drawings of disarticulated bits of prey organisms (Yalden and Morris 1990; 

Anderson 1993; Shiel et al. 1997) were helpful.  Jaws, dentition, femurs, humeri, and 

overall bone size were used to identify mammals.  Feathers and beaks were used to 

identify birds.  Herpetofauna were identified by the appearance of spades on hind feet 

(toads), vertebrae count (snakes), length of digits (lizards), and other skin/scale 

characteristics, because skeletons were not available.  Heads, jaws, mandibles, pronota, 

elytra, legs, and ovipositors were used to identify invertebrates. 

 Counts were conservative; typically one or fewer individual vertebrates were 

present in a pellet.  Without evidence to the contrary, we assumed that bones from the 
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same species, spread across multiple pellets from the same nest and date, came from just 

one individual prey organism.  We counted more than one individual only if we found too 

many jaws, femurs, etc. or differently aged prey apparent from tooth wear or bone size.  

Invertebrate counts were also conservative; for example, for each beetle family, a head 

and pronotum were assumed to come from the same individual.  Counts were typically 

based on heads for beetles and hymenopterans, and on mandibles or ovipositors for 

orthopterans.  Vertebrates were identified to species whenever possible, and invertebrates 

were identified to family.   

 

Biomass Calculation 

 Average small mammal weights from PNG captures were provided by Stapp 

(unpub. data).  Bird weights were reported in Birds of North America Online (Poole 

2005; App. 1).  Amphibian and reptile weights were not available from a central source, 

so we searched the primary literature for biomass measurements of the most commonly 

encountered species (App. 1).  Several invertebrate weights were taken from the primary 

literature (App. 1), but most “wet” weights were calculated from dry weights collected on 

the PNG from 1970 – 1974 (Dickinson unpub. data).  We used SYSTAT version 13 

(SYSTAT 2009) to regress wet weights for nine invertebrate families and orders from 

captures on the PNG and nearby Larimer County (Marti 1974) on the corresponding dry 

weights from the much larger set of PNG invertebrate captures by Dickinson.  Based on 

examination of a plot of these nine data points, we used a quadratic and a linear term with 

no intercept (because if dry weight is zero, wet weight should also be zero).  We used the 
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resulting regression equation (R2 = 0.827, F = 16.75, P = 0.002) to calculate biomass for 

invertebrate taxa: wet = -626.679dry2 + 39.115dry. 

 

Precipitation Data 

 We downloaded daily precipitation values from five weather stations (Fig. 3.1).  

Four were located on the Central Plains Experimental Range in the northwestern PNG.  

Three were located together: two (manual Station 11 and automatic Station 12) were 

administered by the SGS LTER, and one (CO22) was administered by the National 

Atmospheric Deposition Program.  All three were included because one station may have 

missing data while the others are functioning, and different collection methods may cause 

variation in measurements.  The fourth station on the CPER was administered by the 

USDA Agricultural Research Service and was located 5 km to the northeast.  These four 

stations were at the northwest corner of our study area.  The fifth station was located at 

Briggsdale at the southeast corner of our study area and was administered by the National 

Oceanic and Atmospheric Administration.  We based our calculations of site-wide 

average daily precipitation value on the relative locations of these stations.  Weights were 

as follows: Briggsdale (1/2), ARS (1/4), Station 11 (1/12), Station 12 (1/12), and CO22 

(1/12).  This system gave equal weight to stations at opposite corners of the study region: 

Briggsdale at one corner, and the other stations at the opposite corner, including Stations 

11, 12, and CO22 at the same location. 

 These weighted precipitation data were positively correlated (Pearson’s r = 0.899, 

t = 35.98, df = 309, P < 2.2 x 10-16) with spatially interpolated PRISM data (PRISM 

Climate Group, Oregon State University).  Breeding season precipitation totals were 
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10.15 mm higher for our data, on average, compared to PRISM totals.  However, we used 

data from four weather stations on the W PNG (1 km from the nearest prairie dog town) 

and from one station (Briggsdale) 500 m from the study area boundary (Fig. 3.1).  

PRISM used only the Briggsdale station, plus a number of more distant weather stations 

in Weld and surrounding counties.  Because the nearest of these was > 19 km from the W 

PNG boundary and > 27 km from the nearest sampled prairie dog town, our data were 

probably more accurate, and the small differences between interpolated precipitation 

values would not have changed our characterization of wet and dry years.  Spatial 

variation in rainfall across the W PNG cannot be accurately estimated until more stations 

exist with better spatial coverage. 

 Missing values led to underestimates in precipitation totals, so we filled missing 

values using average precipitation values for the nearby stations within our dataset; in 

such a dry area, many of the missing values were likely zeroes.  If ≥ 14 days had missing 

values for a particular station within a given month, then that station was not used for 

calculation of that month’s total precipitation.  We used the daily precipitation values to 

calculate monthly, seasonal, and annual totals. 

 

Prairie Dog Town Data 

 The Forest Service has mapped prairie dog towns and reported on extinctions, 

colonizations, and the area occupied by active burrows since 1981.  We classified towns 

based on their past and present prairie dog town dynamics.  Number of years since the 

most recent plague epizootic was 0 (current epizootic), 1, or ≥ 2 years.  Mean town size 

was 36.87 ha (40.37 SD) and ranged from 0.31 – 187.25 ha.  Towns were categorized as 
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extinct due to plague (no known prairie dogs), small with rapid growth, or large with 

slow growth.  Small, rapidly growing towns averaged 9.2 ha with high prairie dog 

activity pushing the town boundary and relatively large year to year changes in area.  

Large, slowly growing towns averaged 70.8 ha with relatively small year to year changes 

in area.  Owl nest density was categorized as high, medium, or low.  High density towns 

had more nests per area and smaller average distances between nests.  Mean nearest 

neighbor distance was 105.8 m for nests on high density towns, 279.8 m on medium 

density towns, and 372.8 m on low density towns. 

 

Statistical Analyses 

We recorded and analyzed prey from pellets and remains separately.  Prey items 

in pellets were consumed by owls, while items collected as remains were the “leftover” 

parts not consumed such as tails and feathers.  The time scale that we sampled with 

pellets and remains may be slightly different, because pellets may disintegrate at a 

different rate than remains decompose, blow away, or are buried, depending on the 

weather and level of prairie dog digging and scavenger activity.  Statistical analyses were 

performed only on proportions by number, because the amount of biomass consumed was 

uncertain when tails and feet were discarded and age and size of prey varied.  Proportions 

rather than raw counts were used because of unequal sampling due to asynchronous nest 

initiation and fledging dates; some nests fledged prior to the second collection, so fewer 

pellets and remains were found at these nests. 

We used multi-response permutation procedures (MRPP: Zimmerman et al. 1985; 

McCune and Grace 2002) to test for differences in prey species composition among 
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groups of nests with BLOSSOM version W2008.04.02 (Cade and Richards 2005).  

MRPP is a nonparametric test that does not assume any underlying distribution or 

homogeneity of variances.  Using the standard MRPP option within BLOSSOM, 

intragroup distances were calculated with a Euclidean distance function and compared to 

other permutations under the null hypothesis of no difference between groups.  The test 

statistic and P-value were approximated from a Pearson type III distribution with 

parameters for mean, standard deviation, and skewness.  We also ran the same tests 

without commensuration (no data standardization: “NOCOM” option within 

BLOSSOM).  The commensuration procedure was optional with our data because they 

had already been standardized and placed on the same numerical scale when we 

converted counts to proportions.  However, commensuration sometimes provides more 

powerful hypothesis tests and is the default and most commonly used option with MRPP 

(Mielke and Berry 1999, 2001; Cade and Richards 2005). 

 The response variables were the proportions of prey items at each owl nest.  

Continuous covariate data cannot be used in MRPP, so nests had to be grouped (e.g., high 

and low rainfall).  We grouped owl nests by year, rainfall, years since plague epizootics, 

town dynamics, density of owl nests on towns, nest fate, and fledging success.  Years 

were 2005, 2006, or 2007.  Rainfall was categorized as high (2005 and 2007) or low 

(2006).  Number of years since the most recent plague epizootic was 0 (current 

epizootic), 1, or ≥ 2 years.  Towns were categorized as extinct due to plague (no known 

prairie dogs), small with rapid growth, or large with slow growth.  Owl nest density on 

each town was categorized as high, medium, or low.   Nests were successful (fledged at 
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least one owlet) or failed.  Nests were divided into those fledging at least four owlets and 

those fledging fewer owlets. 

For pellets, prey species were analyzed at four taxonomic levels: vertebrate versus 

invertebrate, class (bird, mammal, insect), invertebrate family, and vertebrate species.  

Because only vertebrate prey remains were reliably sampled, vertebrate remains were 

analyzed at three taxonomic levels: vertebrate class (herpetofauna, bird, mammal), all 

vertebrate species, and bird species.  Birds were analyzed separately because this is the 

only taxon that could almost always be identified from remains such as feathers but not 

pellets.  Their hollow bones were typically broken in pellets, so beaks were usually 

required for identification.  The 91 nests for which pellets were analyzed were divided 

into two or three groups for each analysis, so the sample size per group ranged from six 

nests on extinct towns to 66 nests on towns with 2+ years since plague events.  For 

analyses of prey remains at 270 nests, the sample size per group ranged from 19 nests on 

extinct towns to 182 nests fledging fewer than four owlets.  Because identification of 

herpetofauna was often possible only to the level of order or family and these classes 

were less abundant than all others, we grouped amphibians and reptiles for analysis.  

Except for kangaroo rats, most rodents have small enough tails and legs for owls to 

consume, so they often appear in pellets rather than being discarded.  These species were 

combined into two groups for analysis of prey remains: the grasshopper mice and ground 

squirrels that live in dryer, upland sites including prairie dog towns, and all other species 

that prefer sites with higher cover such as roadsides, shrublands, and wetter sites. 

 If the MRPP analysis indicated potential differences in prey species composition 

between groups, then indicator species analysis (ISA: Dufrene and Legendre 1997; 
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McCune and Grace 2002) was used to determine which prey taxa best identified those 

groups.  The indicator value (IV: sometimes called “importance value”) was calculated 

for each taxon in each group as relative abundance*relative frequency, so a strong 

indicator had to be both abundant in samples and spread across many samples within a 

group.  Perfect indicators have IV = 1, and non-indicators have IV = 0.  The null 

hypothesis was that an observed maximum IV across groups was no larger than expected 

by chance.  Significance of indicator values was analyzed using a Monte Carlo 

randomization in which observed maximum IVs for each taxon were compared to those 

from 1000 trials in which the owl nests were randomly shuffled among groups.  We did 

not use Bonferroni corrections, because pellets and prey remains were different data sets, 

and each test evaluated a separate hypothesis (Miller 1981; Rice 1989; Cabin and 

Mitchell 2000); a rejection of the null hypothesis for one taxonomic group and one 

independent variable did not imply rejection of any global null hypothesis.  Use of the 

sequential Bonferroni procedure (Holm 1979) has been discouraged for complex and 

multivariate datasets due to the large inflation of Type II error (Saville 1990; Moran 

2003), and other authors have not used it for ISA (e.g., Scott et al. 2003; Abella and 

Covington 2004; Bangert and Slobodchikoff 2006). 

 ISA was performed in R version 2.8.1 (R Development Core Team 2008) using 

the Dufrene-Legendre Indicator Species Analysis (duleg) function within the labdsv 

package (Roberts 2007).  Owl nests were grouped with the same ecological variables and 

analyzed at the same four taxonomic levels as in MRPP.  We interpreted results of 

statistical tests by examining IVs and effect sizes (differences in proportions among 
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groups) as well as P-values (Yoccoz 1991), and by comparing results between pellets and 

prey remains and between MRPP and ISA at different taxonomic levels. 

 

RESULTS 

Prey Use 

 We analyzed a subsample of pellets, quantifying 6774 prey items in 501 pellets 

from 91 nests (out of 296 total nests).  The most common classes identified in owl pellets 

were insects, mammals, birds, and arachnids, in that order (Table 3.1).  Insects were the 

largest taxonomic group by number (95% of prey items), but small mammals were the 

largest class by biomass (67% of prey biomass: Fig. 3.2).  Ground beetles, grasshoppers, 

scarab beetles, darkling beetles, and ants were the most common insects consumed by 

owls and are also the most widespread and abundant families on the PNG (Crist 2008).  

Horned larks were the most common bird, and all but two arachnids identified in owl 

pellets were windscorpions. 

 Ord’s kangaroo rat and Perognathus pocket mice were the most common 

mammals eaten by burrowing owls, but almost all mammals known to occur on the PNG 

(Stapp 2007; Stapp et al. 2008) were identified from pellets (App. 2).  Although 

invertebrate use may reflect their relative availability on prairie dog towns and upland 

prairie, vertebrate use does not: of the commonly consumed vertebrates, only Northern 

grasshopper mice, 13-lined ground squirrels, and horned larks are common on prairie dog 

towns (Stapp 1996; Stapp 2007).  The other prey species are more common off towns in 

shrub lands and denser vegetation; many of the mammalian prey occur in the dense 

vegetation accompanying roadsides and fencerows.  Mammal use did reflect overall 
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availability across the larger shortgrass system on the PNG: counts in pellets were 

correlated (Pearson’s r = 0.764, t = 3.56, df = 9, P = 0.003) with counts from trapping 

records from 1994 – 2008 (Stapp unpub. data).  However, use was more even across 

species than expected; more voles, pocket mice, and pocket gophers were consumed, and 

fewer ground squirrels were consumed than expected based on their relative abundance.



 

Table 3.1.  Prey Found in Owl Pellets.  The most common of 6774 total prey items counted in 501 regurgitated burrowing owl pellets 
were insects, mammals, birds, and arachnids.  While invertebrates dominated prey numbers, vertebrates, especially mammals, 
dominated prey biomass.  Proportions by number of these common prey items were used in statistical analyses of invertebrate families 
and vertebrate species.  For each taxon, we calculated proportion within the class (Pclass) and proportion of total (Ptotal).  Non-rodent 
mammals and non-passerine birds were mainly unknown specimens. 
 
Latin Name Common Name Number of Indiv Biomass
    Count PClass PTotal PTotal
Class Insecta insects 6412 1.0000 0.9466 0.1132
  Order Coleoptera beetles 4447 0.6935 0.6565 0.0589
    Family Carabidae ground beetles 2369 0.3695 0.3497 0.0273
    Family Scarabaeidae scarab beetles 966 0.1507 0.1426 0.0059
    Family Tenebrionidae darkling beetles 779 0.1215 0.1150 0.0179
    Family Silphidae carrion beetles 103 0.0161 0.0152 0.0042
    Family Curculionidae weevils 83 0.0129 0.0123 0.0007
    Family Cerambycidae long-horned beetles 55 0.0086 0.0081 0.0016
    Superfamily Elateroidea click, firefly, soldier beetles 24 0.0037 0.0035 0.0005
  Order Orthoptera grasshoppers, crickets 1454 0.2268 0.2146 0.0511
    Family Acrididae short-horned grasshoppers 1243 0.1939 0.1835 0.0465
    Family Rhaphidophoridae camel crickets 201 0.0313 0.0297 0.0042
  Order Hymenoptera bees, ants 452 0.0705 0.0667 0.0025
    Family Formicidae ants 407 0.0635 0.0601 0.0022
  Order Diptera flies 25 0.0039 0.0037 0.0001
Class Arachnida arachnids 22 1.0000 0.0032 0.0005
  Order Solifugae windscorpions 20 0.9091 0.0030 0.0005
    Family Eremobatidae straight-faced windscorpions 20 0.9091 0.0030 0.0005
Class Malacostraca crabs, lobster, shrimp, pillbugs 3 1.0000 0.0004 0.0003
  Order Decapoda crabs, lobster, shrimp 3 1.0000 0.0004 0.0003
    Family Cambaridae cambarid crayfish 3 1.0000 0.0004 0.0003
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Class Mammalia mammals 243 1.0000 0.0359 0.6655
  Order Rodentia rodents 236 0.9712 0.0348 0.6463
    Family Heteromyidae pocket mice, kangaroo rats 65 0.2675 0.0096 0.1675
      Perognathus sp. small pocket mice 32 0.1317 0.0047 0.0203
      Dipodomys ordii Ord's kangaroo rat 30 0.1235 0.0044 0.1395
    Family Muridae mice and voles 97 0.3992 0.0143 0.1640
      Peromyscus maniculatus deer mouse 22 0.0905 0.0032 0.0315
      Reithrodontomys sp. harvest mice 19 0.0782 0.0028 0.0156
      Microtus sp. voles 19 0.0782 0.0028 0.0449
      Onychomys leucogaster Northern grasshopper mouse 17 0.0700 0.0025 0.0381
    Family Sciuridae squirrels 20 0.0823 0.0030 0.1669
      Spermophilus tridecemlineatus 13-lined ground squirrel 19 0.0782 0.0028 0.1586
Class Aves birds 84 1.0000 0.0124 0.2000
  Order Passeriformes passerines 70 0.8333 0.0103 0.1666
    Family Alaudidae larks 28 0.3333 0.0041 0.0650
      Eremophila alpestris horned lark 28 0.3333 0.0041 0.0650
Class Reptilia reptiles 6 1.0000 0.0009 0.0173
  Order Squamata lizards and snakes 6 1.0000 0.0009 0.0173
    Family Colubridae colubrid snakes 2 0.3333 0.0003 0.0110
    Family Phrynosomatidae phrynosomatid lizards 3 0.5000 0.0004 0.0033

0.0032Class Amphibia amphibians 4 1.0000 0.0006
0.00320.00061.0000 4frogs and toads   Order Anura 
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Prey remains were analyzed separately from pellets.  We analyzed all 1348 prey 

remains from 270 nests and their associated perches and satellite burrows over three 

breeding seasons.  Of these, 757 were insect remains, of which 517 were grasshoppers, 

whose large rear legs were rarely consumed.  The most common classes of large prey 

identified in owl prey remains were birds, mammals, crayfish, reptiles, and amphibians 

(Table 3.2).  The horned lark was the most abundant vertebrate identified from prey 

remains, and Ord’s kangaroo rat was by far the most common mammal.  Three species 

accounted for 90% of avian prey identified from prey remains (mostly feathers and 

wings): horned larks (Eremophila alpestris), lark buntings (Calamospiza melanocorys), 

and McCown’s longspurs (Calcarius mccownii).  Along with western meadowlarks 

(Sturnella neglecta), these species were the most common passerines breeding on the 

PNG from 2005 – 2008 (USGS Patuxent Wildlife Research Center 2010).  Crayfish, 

reptiles, and amphibians were far less abundant in prey remains.  Birds dominated counts 

of large prey remains (56%), but mammals had higher biomass (51%: Fig. 3.3). 
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Figure 3.2.  Most prey individuals in owl pellets were insects, but their overall biomass (# 
individuals*biomass per individual) was quite small compared to birds or mammals. 
 



 

Table 3.2.  Large Prey Identified from Owl Prey Remains.  The most common of 589 non-insect prey items counted as prey remains at 
270 nests were birds, mammals, crayfish, reptiles, and amphibians.  While birds dominated prey numbers, mammals dominated prey 
biomass.  Proportions by number of vertebrates only were used in statistical analyses; other than crayfish, invertebrates were too small 
and numerous to collect each piece.  For each taxon, we calculated proportion within the class (Pclass) and proportion of total (Ptotal).  
Burrowing owl feathers and prairie dog remains were not included in analyses, because their presence at nests and perches was 
probably not indicative of predation by owls. 
 
Latin Name Common Name Number of Indiv Biomass
    Count PClass PTotal PTotal
Class Aves birds 328 1.0000 0.5569 0.4246
  Order Passeriformes passerines 314 0.9573 0.5331 0.4065
    Family Alaudidae larks 168 0.5122 0.2852 0.2120

horned lark 168 0.5122 0.2852 0.2120      Eremophila alpestris 
    Family Emberizidae sparrows and allies 127 0.3872 0.2156 0.1699

lark bunting 85 0.2591 0.1443 0.1255      Calamospiza melanocorys 
McCown's longspur 34 0.1037 0.0577 0.0337      Calcarius mccownii 

Class Mammalia mammals 196 1.0000 0.3328 0.5141
  Order Rodentia rodents 187 0.9541 0.3175 0.4905
    Family Heteromyidae pocket and kangaroo mice 143 0.7296 0.2428 0.3617

Ord's kangaroo rat 142 0.7245 0.2411 0.3591      Dipodomys ordii 
    Family Muridae mice and voles 18 0.0918 0.0306 0.0228
      Microtus sp. voles 11 0.0561 0.0187 0.0141

northern grasshopper mouse 4 0.0204 0.0068 0.0049      Onychomys leucogaster 
    Family Sciuridae squirrels 15 0.0765 0.0255 0.0681

13-lined ground squirrel 15 0.0765 0.0255 0.0681      Spermophilus tridecemlineatus 
    Family Geomyidae pocket gophers 8 0.0408 0.0136 0.0300

N. pocket gopher 8 0.0408 0.0136 0.0300      Thomomys talpoides 
Class Malacostraca crabs, lobster, shrimp, pillbugs 27 1.0000 0.0458 0.0016
  Order Decapoda crabs, lobster, shrimp 27 1.0000 0.0458 0.0016
      Family Cambaridae cambarid crayfish 27 1.0000 0.0458 0.0016
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Class Reptilia reptiles 24 1.0000 0.0407 0.0497
  Order Squamata lizards and snakes 23 0.9583 0.0390 0.0476
    Family Colubridae colubrid snakes 11 0.4583 0.0187 0.0330
    Family Phrynosomatidae phrynosomatid lizards 7 0.2917 0.0119 0.0042
      Phrynosoma hernandesi short-horned lizard 5 0.2083 0.0085 0.0030
Class Amphibia amphibians 14 1.0000 0.0238 0.0101
  Order Anura frogs and toads 10 0.7143 0.0170 0.0044
    Family Pelobatidae spadefoot toads 5 0.3571 0.0085 0.0022
      Spea bombifrons plains spadefoot toad 5 0.3571 0.0085 0.0022
  Order Caudata salamanders 4 0.2857 0.0068 0.0057

0.0057    Family Ambystomatidae mole salamanders 4 0.2857 0.0068
0.00570.00680.2857 4tiger salamander        Ambystoma tigrinum  
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Figure 3.3.  Although birds dominated numbers of individuals identified from large prey 
remains (vertebrates and crayfish), mammals were more important prey items when 
biomass (# individuals*biomass per individual) was considered. 
 

MRPP 

 MRPP analysis of prey composition of owl pellets revealed significant differences 

(p < 0.1) associated with year, rainfall, nest success, and fledging success, marginal 

differences related to owl nest density, and no effect due to plague (Table 3.3).  

Differences in composition occurred mainly for classes and vertebrate species.  Results 

from MRPP analyses were similar whether or not commensuration was used. 
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Table 3.3.  MRPP Differences in Composition of Owl Pellets.  Multi-response 
permutation procedures revealed differences in the species composition of burrowing owl 
pellets associated with year, rainfall, nest success, and fledging success.  Owl nest density 
was associated with marginal differences in composition, and plague had no effect.  Most 
of the differences in prey composition occurred at the level of class or vertebrate species.  
Sample units were owl nests, and commensuration was used in these analyses.  Bold font 
indicates p < 0.1.   
 
Variable Taxa Level Test Stat p-value
Year VertInvert -1.286 0.105

-1.812 0.058Year Class 
Year InvertFam -1.116 0.133

-1.346 0.097Year VertSpp 
Rain VertInvert -0.857 0.150
Rain Class -1.279 0.103
Rain InvertFam -2.082 0.038
Rain VertSpp -1.159 0.126
PlagueYr VertInvert 0.126 0.445
PlagueYr Class -0.039 0.392
PlagueYr InvertFam -1.121 0.132
PlagueYr VertSpp -0.162 0.390
TownDyn VertInvert -0.612 0.214
TownDyn Class 0.434 0.596
TownDyn InvertFam 0.849 0.798
TownDyn VertSpp -0.256 0.353
Density VertInvert -1.166 0.119
Density Class -1.225 0.113
Density InvertFam -0.305 0.337
Density VertSpp 1.179 0.896
NestSucc VertInvert 0.976 1.000

-1.466 0.085NestSucc Class 
NestSucc InvertFam 1.652 0.996

-1.702 0.061NestSucc VertSpp 
Fledge 4 VertInvert -0.968 0.135

-1.533 0.079Fledge 4 Class 
Fledge 4 InvertFam 0.648 0.712
Fledge 4 VertSpp -0.699 0.220

 
Years were 2005, 2006, or 2007.  Rainfall was categorized as high (2005 and 2007) or 
low (2006).  Number of years since the most recent plague epizootic was 0 (current 
epizootic), 1, or ≥ 2 years.  Towns were categorized as extinct due to plague, small with 
rapid growth, or large with slow growth.  Owl nest density was categorized as high, 
medium, or low.   Nests were successful (fledged at least one owlet) or failed.  Nests 
were divided into those fledging at least four owlets and those fledging fewer owlets.  
Prey were analyzed at four taxonomic levels: vertebrate versus invertebrate, class (birds, 
mammals, insects), invertebrate family, and vertebrate species. 
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 MRPP analysis of composition of owl prey remains (vertebrates) revealed 

significant differences (p < 0.1, most p < 0.05) associated with year, rainfall, time since 

plague, owl nest density, and fledging success, and no effect related to prairie dog town 

dynamics or nest success (Table 3.4).  Compositional differences existed at all taxonomic 

levels.  Results from prey remains largely corresponded to those for owl pellets.  

Differences were likely related to the deposition rate and longevity of prey remains on the 

ground versus pellets, the larger sample size for analysis of prey remains (three times 

more nests), and our ability to separate bird species with feather remains but not with 

bone fragments in pellets.   
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Table 3.4.  MRPP Differences in Composition of Owl Prey Remains.  Multi-response 
permutation procedures revealed differences in the species composition of burrowing owl 
prey remains (unconsumed prey parts) associated with year, rainfall, time since plague, 
owl nest density, and fledging success.  Prairie dog town dynamics and nest success were 
unrelated to owl diet.  Sample units were owl nests, and commensuration was used in 
these analyses.  Bold font indicates p < 0.1.   
 
Variable Taxa Level Test Stat p-value

-8.275 0.000Year Class 
-7.083 0.000Year VertSpp 
-5.168 0.000Year BirdSpp 
-5.499 0.001Rain Class 
-4.654 0.001Rain VertSpp 
-3.816 0.006Rain BirdSpp 
-1.988 0.046PlagueYr Class 

PlagueYr VertSpp -0.666 0.226
-2.649 0.019PlagueYr BirdSpp 

TownDyn Class -0.410 0.278
TownDyn VertSpp 0.218 0.528
TownDyn BirdSpp -0.417 0.283
Density Class -0.544 0.243

-4.895 0.000Density VertSpp 
-1.415 0.091Density BirdSpp 

NestSucc Class 0.764 0.776
NestSucc VertSpp 0.359 0.575
NestSucc BirdSpp 0.564 0.657

-2.166 0.041Fledge 4 Class 
Fledge 4 VertSpp -1.209 0.117
Fledge 4 BirdSpp 0.741 0.756

 
Years were 2005, 2006, or 2007.  Rainfall was categorized as high (2005 and 2007) or 
low (2006).  Number of years since the most recent plague epizootic was 0 (current 
epizootic), 1, or ≥ 2 years.  Towns were categorized as extinct due to plague, small with 
rapid growth, or large with slow growth.  Owl nest density was categorized as high, 
medium, or low.   Nests were successful (fledged at least one owlet) or failed.  Nests 
were divided into those fledging at least four owlets and those fledging fewer owlets.  
Prey were analyzed at three taxonomic levels: class (herpetofauna, birds, mammals), 
vertebrate species, and bird species. 
 

Indicator Species 

 Indicator species analysis identified specific prey associations (Tables 3.5 – 3.6) 

for the ecological variables we tested after compositional differences were suggested by 

MRPP.  Several vertebrates were associated with specific years.  Insects and several 
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rodents were indicators for dry weather, while birds in particular were associated with 

wet summers.  Bird consumption was associated with nest failure and mammal 

consumption with nest success and high productivity.  There was some indication that 

fewer vertebrates were consumed where nest density was high.  There were no indicator 

taxa for plague year.  The largest indicator values (IV > 0.4) with the largest inter-group 

differences occurred for birds in wet summers and at failed nests. 
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Table 3.5.  Indicator Taxa from Owl Pellets.  Indicator species analysis was used to 
determine which prey taxa from owl pellets best identified groups of owl nests.  Perfect 
indicators have IV = 1, and non-indicators have IV = 0.  Indicator values were calculated 
whenever multi-response permutation procedures (MRPP) suggested that differences 
existed in prey species composition among groups. 
 
(a) Northern grasshopper mice were associated with 2006 and horned larks with 2007.  
Pocket mice, grasshopper mice, weevils, and grasshoppers were indicators for dryer 
weather, while flies and birds (particularly horned larks) were indicators for wetter 
weather. 
(b) Insect use was linked with moderate nest density.  Birds, particularly horned larks, 
were associated with failed nests and mammals with successful nests.  Kangaroo rats 
were indicators of productive nests. 
 
(a) Year Rain 
 Indicator Value p- Indicator Value p- 

 2005 2006 2007 value Wet Dry value 
Aves 0.2084 0.0559 0.2353 0.500 0.4033 0.0983 0.039 
Insecta 0.3205 0.3410 0.3384 0.220 0.4917 0.5083 0.148 
Mammalia 0.3665 0.2801 0.1748 0.160 0.4045 0.4294 0.797 
Herp 0.0074 0.0529 0.0289 0.687 0.0238 0.0751 0.359 
E. alpestris 0.0443 0.0054 0.2297 0.008 0.2263 0.0101 0.014 
Passeriformes 0.0492 0.1117 0.1237 0.743 0.1246 0.1641 0.656 
D. ordii 0.0398 0.0998 0.0592 0.725 0.0755 0.1439 0.399 
Perognathus 0.0511 0.1398 0.0028 0.128 0.0235 0.1769 0.041 
Microtus 0.1138 0.1074 0.0000 0.335 0.0381 0.1549 0.132 
O. leucogaster 0.0102 0.1761 0.0023 0.012 0.0072 0.2119 0.003 
P. maniculatus 0.0761 0.0746 0.0036 0.601 0.0387 0.1073 0.308 
Reithrodontomys 0.0661 0.0468 0.0514 0.936 0.0905 0.0722 0.838 
S. tridecemlineatus 0.0351 0.0943 0.0177 0.409 0.0352 0.1304 0.208 
Carabidae         0.4136 0.4739 0.502 
Cerambycidae      0.1213 0.1195 0.960 
Curculionidae      0.0552 0.2147 0.080 
Elateroidea      0.0731 0.0450 0.707 
Scarabaeidae      0.4570 0.3364 0.356 
Silphidae      0.2787 0.1342 0.464 
Tenebrionidae      0.4431 0.4293 0.881 
Diptera      0.2225 0.0060 0.023 
Eremobatidae      0.0564 0.1040 0.558 
Formicidae      0.3277 0.1231 0.162 
Hymenoptera      0.0499 0.1221 0.414 
Acrididae      0.3769 0.5774 0.031 
Rhaphidophoridae         0.1126 0.1032 0.926 

 



 

(b) Density NestSucc Fledge 4 
Indicator Value p- Indicator Value p- Indicator Value p-  

 Low Med High value 0 1 value 0 1 value 
Aves 0.2806 0.1039 0.0895 0.263 0.1088 0.018 0.3479 0.1313 0.2070.4570
Insecta 0.3197 0.3357 0.055 0.4965 0.5035 0.598 0.4971 0.5029 0.6530.3447
Mammalia 0.2967 0.1862 0.3602 0.263 0.2510 0.037 0.3560 0.5049 0.1490.5484
Herp         0.0723 0.0239 0.432 0.0407 0.0504 0.869

      0.0171 0.001 0.1328 0.0492 0.4110.3111E. alpestris 
Passeriformes       0.1574 0.1227 0.767 0.1740 0.1079 0.559

      0.0330 0.1731 0.196 0.0382 0.0140.2652D. ordii 
      0.0117 0.1583 0.132 0.0285 0.1604 0.129Perognathus 
      0.1287 0.0540 0.338 0.0476 0.1509 0.205Microtus 
      0.0119 0.1314 0.137 0.0414 0.1169 0.264O. leucogaster 
      0.0401 0.0874 0.587 0.0670 0.0652 0.948P. maniculatus 
      0.0515 0.1094 0.543 0.0646 0.1022 0.652Reithrodontomys 
        0.0345 0.1057 0.448 0.0527 0.1088 0.426S. tridecemlineatus 

 
Prey were analyzed at three taxonomic levels: class (birds, mammals, insects), vertebrate species, and invertebrate family.  
Herpetofauna were grouped for analysis, as were passerines except horned larks. 
 
(a) Years were 2005, 2006, or 2007.  Rainfall was categorized as high (2005 and 2007) or low (2006). 
(b) Owl nest density was categorized as high, medium, or low.   Nests were successful (fledged at least one owlet) or failed.  Nests 
were divided into those fledging at least four owlets and those fledging fewer owlets. 
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Table 3.6.  Indicator Taxa from Owl Prey Remains.  Indicator species analysis was used to determine which vertebrate prey taxa from 
owl prey remains best identified groups of owl nests.  Perfect indicators have IV = 1, and non-indicators have IV = 0.  Indicator values 
were calculated whenever multi-response permutation procedures (MRPP) suggested that differences existed in prey species 
composition among groups. 
 
(a) Mammal remains, especially kangaroo rats, were indicators for 2005, while mammals of dense vegetation were indicators for 2006 
when weather was dry.  Herpetofauna (reptile) and bird (lark bunting) remains were associated with 2007.  Bird (lark bunting and 
horned lark) remains were indicators of wet weather.  There were no indicator taxa for plague year. 
(b) Lark bunting and rodent remains were linked with low nest density, except that kangaroo rat remains were linked with high 
density.  There were no indicator taxa for nest success.  Mammal remains (kangaroo rats and rodents of dense vegetation) were 
associated with highly productive nests. 
 
(a) Year Rain PlagueYr 

Indicator Value p- Indicator Value p- Indicator Value p-  
 2005 2006 2007 value Wet Dry value 0 1 2 value 

Herp 0.0000 0.0389 0.007 0.0653 0.0513 0.741 0.0143 0.0532 0.0379 0.7490.1227
Aves 0.2785 0.1529 0.031 0.2421 0.001 0.1142 0.2972 0.2760 0.1430.3092 0.4716
Mammalia 0.1376 0.0433 0.020 0.1324 0.2102 0.172 0.1320 0.0493 0.1417 0.5550.1972 
Amphibia 0.0000 0.0281 0.0324 0.451 0.0166 0.0357 0.440 0.0000 0.0487 0.0164 0.194
Reptilia 0.0000 0.0192 0.010 0.0506 0.0259 0.500 0.0193 0.0184 0.0247 1.0000.0927

0.0163 0.0487 0.001 0.0714 0.093 0.0018 0.1418 0.1207 0.1470.2194 0.1739C. melanocorys 
0.0636 0.0220 0.0370 0.359 0.0754 0.0361 0.388 0.0322 0.0695 0.0252 0.340C. mccownii 
0.2262 0.0907 0.2116 0.132 0.1488 0.005 0.0903 0.1893 0.2021 0.5220.3571E. alpestris 

0.0938 0.0438 0.061 0.1193 0.1474 0.584 0.0914 0.0500 0.1106 0.6750.1519 D. ordii 
Dense rodent 0.0000 0.0004 0.000 0.0002 0.000 0.0549 0.0009 0.0099 0.1180.1015 0.1030
Upland rodent 0.0156 0.0278 0.0029 0.555 0.0109 0.0424 0.199 0.0115 0.0015 0.0262 0.687

0.0174 0.0540 0.001 0.1638 0.0784 0.163 0.0015 0.1333 0.1329 0.2020.2047C. melanocorys 
0.0669 0.0229 0.0330 0.286 0.0730 0.0377 0.441 0.0307 0.0685 0.0275 0.357C. mccownii 
0.2133 0.0993 0.2124 0.252 0.1591 0.012 0.0980 0.1759 0.2044 0.4560.3415E. alpestris 
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(b) Density NestSucc Fledge 4 
 Indicator Value p- Indicator Value p- Indicator Value p- 
 Low Med High value 0 1 value 0 1 value 

Herp               0.0588 0.0619 0.937
Aves            0.3816 0.3509 0.572
Mammalia               0.1116 0.2790 0.005
Amphibia 0.0219 0.0196 0.0074 0.856 0.0176 0.0313 0.672 0.0340 0.0138 0.557
Reptilia 0.0604 0.0117 0.0183 0.139 0.0423 0.0378 0.880 0.0297 0.0563 0.415
C. melanocorys 0.1387 0.0870 0.0330 0.090 0.1621 0.1047 0.266 0.1468 0.1039 0.511
C. mccownii 0.0177 0.0397 0.0634 0.361 0.0510 0.0661 0.734 0.0425 0.0857 0.275
E. alpestris 0.1963 0.1179 0.2121 0.274 0.3045 0.2279 0.206 0.2931 0.2169 0.333
D. ordii 0.0333 0.0937 0.1609 0.031 0.1027 0.1597 0.406 0.0841 0.2265 0.011
Dense rodent 0.0542 0.0093 0.0013 0.052 0.0055 0.0426 0.239 0.0069 0.0572 0.061
Upland rodent 0.1134 0.0012 0.0000 0.000 0.0327 0.0173 0.533 0.0432 0.0051 0.254
C. melanocorys 0.1337 0.0918 0.0326 0.112             
C. mccownii 0.0167 0.0374 0.0688 0.247           
E. alpestris 0.1852 0.1168 0.2257 0.122             
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Prey were analyzed at three taxonomic levels: class (herpetofauna, birds, mammals), all vertebrate species, and bird species.  
Amphibians were grouped for analysis, as were reptiles and mammals except kangaroo rats.  Grasshopper mice and ground squirrels 
are common in dry upland sites and prairie dog towns, while voles, gophers, pocket, deer, and harvest mice are usually associated with 
denser vegetation. 
 
(a) Years were 2005, 2006, or 2007.  Rainfall was categorized as high (2005 and 2007) or low (2006).  Number of years since the 
most recent plague epizootic was 0 (current epizootic), 1, or ≥ 2 years. 
(b) Owl nest density was categorized as high, medium, or low.   Nests were successful (fledged at least one owlet) or failed.  Nests 
were divided into those fledging at least four owlets and those fledging fewer owlets. 
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Summary and Effect Sizes 

 Overall, the largest differences in prey composition were associated with year 

(one dry versus two wet summers) and the success and productivity of nests for classes 

and vertebrate species (Tables 3.3 – 3.7; Fig. 3.4).  During the driest year of our study, 

35% of insects consumed were grasshoppers, compared to 24% in wetter years.  No 

amphibian or reptile remains were collected in 2005, but their use by owls increased 

through 2007.  Mammal use in 2007 was half the 2005 level.  While kangaroo rat 

numbers in pellets doubled after 2005, their presence as prey remains showed the 

opposite trend.  Vole use declined to zero in 2007.  Consumption of pocket and 

grasshopper mice decreased by an order of magnitude from dry 2006 to wetter 2007, with 

intermediate values in 2005.  Remains of rodents of dense vegetation were nearly absent 

at owl nests in 2005 and 2007, with their proportion in owl diets increasing by > 20 times 

in the driest year of 2006.  The rarity of birds in owl diets during 2006 seemed driven 

mainly by horned larks; the proportion of horned larks in the diet was 5 – 10 times higher 

in wetter years with lower nest and fledging success.  In contrast, lark bunting use 

increased each year and tripled from 2005 – 2007.   

 

Table 3.7.  Factors Correlated with Prey Use.  Year, rainfall, nest fate, and fledging success were 
significant covariates in MRPP analyses of prey species composition from owl pellets.  Results 
from indicator species analysis and from analysis of prey remains generally confirmed the 
importance of these relationships.  Due to time constraints, diet samples from 2008 were not 
analyzed, but overall reproductive estimates would appear low without the context of a second 
dry year.  Apparent nest success and fledging success were estimated for 322 nest attempts. 
 

Year 
Summer 
Rainfall 

(mm) 
Nest 

Success 
Fledging 
Success 

(juvs/nest) 
2005 168 59.4% 1.88 
2006   97 79.5% 3.16 
2007 150 60.0% 1.88 
2008   80 84.6% 3.77 

Overall 124 68.6% 2.48 
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Figure 3.4.  Proportion of insect, avian, and mammalian prey items in owl pellets and prey remains differed with year, nest success, 
and fledging success.  The y-axis for insects is higher because insects were a much larger class by number than vertebrates.  The sum 
over each category (e.g., 2005 nests) is slightly < 1 because rarer classes (arachnids, crayfish, reptiles, and amphibians) were not 
plotted.   
* = indicator class, ** = genus in class is an indicator taxon, *** = insect family is an indicator taxon (from Indicator Species 
Analysis, Tables 3.5 – 3.6) 
 
(a) Insect use did not vary much with year, although more remains, mainly grasshopper legs, were collected in 2006.  Some insect 
families were more common in wet years, and others (mainly grasshoppers) in dry years.  Birds were more commonly consumed in 
wet years (2005 and 2007).  As a class, mammals were used most in 2005, but specific genera were consumed most in 2006 (a drought 
year). 
(b) Insect use was not significantly different at failed and successful nests.  Bird consumption was associated with failed nests and 
mammal consumption with successful nests.  Nests were successful (fledged at least one owlet) or failed. 
(c) Only mammalian prey items were linked to productivity.  Nests were divided into those fledging at least four owlets and those 
fledging fewer owlets.



 

Vertebrate consumption, as quantified by prey remains but not pellets, decreased 

with increasing nest density for lark buntings and all rodents except kangaroo rats (Table 

3.6b).  These species were 20% more common at owl nests in low density towns, while 

kangaroo rats were 14% more common at nests in high density towns. 

Owls at successful and highly productive nests ate fewer birds and more 

mammals (Tables 3.4 – 3.6; Fig. 3.4).  Pellets at successful nests contained half the birds, 

and a 5-fold decline in horned larks, but 1/3 more mammals than those at failed nests, 

although proportions by count for both were small compared to insects.  Highly 

productive nests had 10% more mammal remains than less productive nests, and 

kangaroo rats were the most important indicator of productivity.  

We found no indicator taxa related to plague year (Tables 3.5 – 3.6).  However, 

MRPP suggested differences related to avian prey remains (Table 3.4).  Horned lark 

remains increased steadily as time since plague and prairie dog occupancy within towns 

increased, from 33% to 44% of remains at the average nest.  Lark bunting remains were 

an order of magnitude proportionally less common on extinct towns: 2% on extinct 

versus 20% on active towns.  Longspur consumption showed no trend. 

 

DISCUSSION 

Prey Use 

 Burrowing owls are known to be generalist predators, and our sample of pellets 

and prey remains contained at least one of almost every known potential prey item on the 

PNG (App. 2).  Based on previous studies, we expected that many insects would be 

consumed with lower proportional contribution to biomass, but the magnitude of the 
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difference was unexpected: 95% of prey items in pellets were insects (Table 3.1), but 

insects comprised only 11% of prey biomass (Fig. 3.2).  Based on the sizes of fragments 

found in our samples, many of the ground beetles consumed were very small (2 - 3 mm 

long), although large Pasimachus elongatus were also frequently eaten.  Aside from 

Orthoptera, the only other insect order that was frequently consumed was Hymenoptera, 

especially ants.  Other authors hypothesized that ants (Longhurst 1942; Grimm et al. 

1985) and other small arthropods (Schlatter et al. 1980) were incidentally consumed 

while crawling on larger prey items, because their tiny size should not warrant a 

concerted effort at foraging for them.  However, the high numbers of ants and small 

beetles we observed in our prey samples suggest that juveniles, who are unable to easily 

catch vertebrate prey, and adults without other tasks to occupy them at midday, may be 

targeting ants and other small insects found near the nest that are easy to catch. 

 Compared to insects, mammals were rare in terms of number (Table 3.1), but they 

were the most important taxonomic group in terms of biomass (67%: Fig. 3.2).  Ord’s 

kangaroo rats and the smaller Perognathus pocket mice were most important, but almost 

every small mammal known to occur on the PNG was consumed.  Although invertebrate 

use may reflect their relative availability on prairie dog towns and upland prairie, 

vertebrate use did not: of the commonly consumed vertebrates, only Northern 

grasshopper mice, 13-lined ground squirrels, and horned larks are common in these 

habitats (Stapp 1996; Stapp 2007).  The other prey species are more common off towns in 

shrublands and denser vegetation; many of the mammalian prey occur in the dense 

vegetation accompanying roadsides and fencerows (Stapp and Lindquist 2007).  This 

suggests that burrowing owls commonly forage for vertebrates off prairie dog towns, 
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especially at roadsides and fencerows where perches are available and used by other owls 

and raptors (Marti 1974; Zimmerman et al. 1996).  These foraging preferences may 

provide one explanation for the pattern observed by Orth and Kennedy (2001), in which 

owls seemed to prefer more fragmented landscapes, particularly given that owls in this 

and other studies (Toombs 1997; Ekstein 1999; Griebel 2000; Teaschner 2005) often 

nested near the edges of prairie dog towns (Fig. 3.1).  Owls may also select prey based on 

their size and factors that make them more or less vulnerable to predation.  

 Horned larks, lark buntings, and McCown’s longspurs were common prey items 

(Table 3.2; App. 2), but other bird species were not.  The only species of concern found 

in diet samples (five individuals) was the mountain plover (Charadrius montanus).  More 

were certainly consumed beyond those that we sampled, but it seems unlikely that owl 

predation is playing a large role in recent plover population declines.  Other taxa were 

consumed at much lower frequency (Tables 3.1 – 3.2; App. 2), but were important for 

some pairs.  Crayfish were uncommon across most of the normally dry PNG, but were 

often used by several pairs that lived near a water source.  A variety of snakes and lizards 

were predated, including some rather large individuals.  We did not find evidence of 

rattlesnake consumption.  Owls did not make much use of amphibians, and many that we 

sampled were the largely unconsumed dried husks of spadefoot toads, suggesting that 

owls may find them unpalatable (Schlatter et al. 1980; Green et al. 1993). 

 We examined long term trends and year to year variation in burrowing owl diet by 

comparing our results to those in the same area from 1967 – 1969 (Marti 1974) and 2000 

(Woodard 2002).  Long term steep declines in the consumption of deer mice and voles 

were apparent in both this study and Woodard (2002), compared to the high frequency of 
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these prey species in Marti (1974).  We found 1/9 the Microtus and 1/12 the Peromyscus 

that Marti (1974) counted in owl pellets.  For many prey taxa, a comparison of these three 

studies suggests that either long term changes or year to year variation may be occurring, 

because proportions in our study were quite different from either of the earlier studies.  

We found higher frequencies of darkling beetles (2 – 6 times higher), grasshoppers (4 

times higher), ants (2 – 12 times higher), kangaroo rats and pocket mice (3 – 12 times 

more Heteromyidae), and birds (1.5 – 3 times higher), and fewer crickets (almost none 

versus 5 – 8% of owl diets) than either Woodard (2002) or Marti (1974).  For the 

remaining taxa, our results were similar to Marti (1974) but quite different from Woodard 

(2002), which suggests high variation but no long term changes.  Compared to Woodard 

(2002), we found half the frequency of scarabs, 1/9 the long-horned beetles, 1/3 the 

camel crickets, 1/6 the Arachnids, and 1/8 the pocket gophers. 

 Overall, the proportion of insects in our burrowing owl diets was the same as 

Woodard (2002) and 4% lower than Marti (1974).  We found 1.5 times the frequency of 

mammals as Woodard (2002) but half the frequency as Marti (1974).  We counted more 

birds than either study: 1.5 times higher than Woodard (2002) and triple the frequency 

compared to Marti (1974).  These data indicate that the same prey items continue to be 

consumed, but their proportions in owl diets on the PNG vary widely over time.  Because 

burrowing owls are generalist predators, large changes in their diets probably do reflect 

changes in the actual abundance of prey taxa.  Insects in particular can show large year to 

year fluctuations (Pfadt and Hardy 1987; McIntyre 2000; Crist 2008), but too much 

uncertainty exists to advocate a quantitative interpretation of these data (but see Johnson 

1981; Marti 1987).  The impact of burrowing owl predation on prey populations and the 
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larger ecosystem are also unknown, but grasshopper predation may be important.  

Grasshoppers are considered the most important above ground insect herbivores in 

rangelands (Watts et al. 1982; Crist 2008) and may remove up to 25% of above ground 

biomass (Mitchell and Pfadt 1974; Hewitt and Onsager 1983). 

 

Ecological Factors Associated with Prey Use 

 Owl diets responded strongly to rainfall, and breeding success was related to the 

relative proportions of mammals versus birds consumed.  Results from prey remains 

largely corresponded to those for owl pellets, and indicators were found that explained 

the differences suggested by MRPP.  Our first hypothesis was that owl prey use would 

vary among years, with a proportionally lower small mammal component in 2007 due to 

heavy summer rains.  This hypothesis was supported, with large effects due to rainfall, 

which alternated between years during this study (Table 3.7).  Spring rainfall showed the 

same alternating pattern as summer rainfall and they were highly correlated (Conrey 

unpub. data).  During the driest year of our diet study (2006) when nest success and 

productivity were highest, more grasshoppers, more of many mammal species, and fewer 

birds were eaten, particularly horned larks (Tables 3.5a, 3.6a).  Mammal consumption 

was particularly low in 2007, and it is possible that some small mammals may have 

drowned in burrows during large storm events in 2007, resulting in decreased abundance.  

However, changes in horned lark consumption seem unlikely to be related to their 

abundance, because their populations were relatively stable across wet and dry years 

(USGS Patuxent Wildlife Research Center 2010).   
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 Some yearly patterns emerged that were not fully explained by rainfall: indicator 

taxa from the wetter years of 2005 and 2007 did not entirely correspond to one another 

(Tables 3.5a, 3.6a).  We studied only the effects of spring – summer precipitation, at the 

time when owls are arriving and breeding, but some of the unexplained annual 

differences in owl diet might be accounted for if other climatic variables were examined.  

More years of data would help in understanding the role of winter precipitation, lag 

effects from previous years’ precipitation (the dry years of our study both followed much 

wetter years: Table 3.7), and large storm events.  During May – July in our study, storms 

showed a high correlation with total summer rainfall, so our wet/dry categories were 

unchanged by the addition of storm data: 2005 and 2007 each had five storms of which 2 

– 3 were large (> 30 mm), while 2006 had three storms of which one was large.  One 

storm in 2007 dropped 40 – 80 mm of rain across the western PNG, which is ~ 1/5 the 

total precipitation in an average year.  Although precipitation is thought to be the primary 

climatic factor structuring shortgrass steppe ecology (Lauenroth and Sala 1992), the 

effects of temperature, which varies less than precipitation does from year to year, could 

also be examined if more years of data were available. 

 The importance of summer rainfall to burrowing owl breeding ecology was 

confirmed by our analyses of nest and fledging success (Conrey Ch. 4).  Rainfall was the 

most important variable in both analyses.  Burrowing owls do not hunt during large 

rainfall events, and raptors are generally less active in wet weather (Village 1986; 

Woodard 2002).  One would expect fewer captures of prey that live farther from nests in 

wet weather.  If off-town vertebrates are an important prey source, then nestlings might 

starve or at least show declining body condition during extended wet periods (Wellicome 
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2000; Griebel and Savidge 2003).  More years of data might show annual patterns 

independent of rainfall, but our breeding success data did not support yearly differences 

when rainfall levels were similar among years. 

Second, we hypothesized that owl prey use would vary among prairie dog towns 

with different levels of prairie dog activity and time since plague.  This hypothesis was 

not supported for any prey taxa except possibly for birds (Tables 3.3 – 3.6).  Horned larks 

are most abundant in areas with heavy summer grazing (Giezentanner 1970; Wiens 

1973), and in our study, consumption of horned larks increased with time since plague as 

prairie dog numbers recovered.  Although lark buntings prefer lightly grazed or ungrazed 

areas (Wiens and McIntyre 2008), consumption by owls was very low on extinct towns.  

It is possible that burrowing owls do not travel as far from the nest to forage for birds, so 

town-level effects such as plague might be more relevant for avian prey.  Prey 

availability differs on active and inactive towns (Bangert and Slobodchikoff 2006; Stapp 

2007), probably because prairie dogs change the vegetation, including its height, species 

composition, and biomass (Hardwicke 2006; Hartley 2006; Hartley et al. 2009).  Plague 

did influence the density and success of burrowing owl nests (Conrey Ch. 4).  However, 

our prey composition data suggested that these differences were not associated with 

dietary changes, except possibly for avian prey.  The lack of an effect on other prey taxa 

is probably related to how often owls forage off prairie dog towns, making town-level 

differences less important. 

 Third, we hypothesized that owl prey use would vary according to the density of 

owl nests, with fewer large prey items used where nest density was high.  This hypothesis 

was supported only for prey remains (not pellet samples) for lark buntings and some 
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mammals, excluding kangaroo rats (Table 3.6b).  Perhaps there was more competition for 

rodents on upland sites and nearer nests, so owls nesting at higher densities spent more 

time foraging for kangaroo rats off towns.  Overall, there is little evidence that owl nest 

density creates food limitation that might affect owl breeding success on the PNG 

(Conrey Ch. 4). 

Fourth, we hypothesized that successful nests, particularly those with high 

productivity (at least four fledglings), would use a higher proportion of vertebrate prey, 

especially rodents.  This hypothesis was supported for rodent prey, but we did not predict 

that birds would be associated with nest failure (Tables 3.4, 3.5b, 3.6b; Fig. 3.4b, c).  

Although insects were not associated with owl breeding success, grasshoppers were 

consumed more during 2006 when owl productivity was high.  Owls probably took 

advantage of grasshopper abundance in 2006 and benefited from foraging on this 

accessible, and compared to other insects, high biomass food source.  Vertebrates may 

have higher moisture and protein content than invertebrates (Pezzolesi 1994).  Mammals 

made up 67% of the biomass consumed by burrowing owls in our sample (Table 3.1), 

and they have high individual biomass compared to insects (Fig. 3.2) or birds (Fig. 3.3).  

One possible explanation for our findings comes from optimal foraging theory, which 

predicts that predators will choose prey with the highest ratio of energetic benefit to 

foraging cost (MacArthur and Pianka 1966).  It is possible that some pairs focused on 

avian prey with a lower nutritional reward per foraging effort compared to mammals, and 

that these pairs tended to be unsuccessful in fledging offspring. 

However, it is also likely that burrowing owls turn to avian prey when mammals 

are harder to find in years when nest and fledging success are low.  Of the three bird 
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species commonly eaten by owls, only lark bunting abundance increased in wetter years 

(USGS Patuxent Wildlife Research Center 2010) when owls had poorer breeding success, 

so birds were more abundant only relative to mammals.  Nevertheless, the relationship 

between bird consumption and decreased nest success may be correlative rather than 

causative.  Most of the nest failure and owlet mortality that we observed could not be 

traced to a cause, but was likely a result of starvation, adult abandonment, shooting, non-

badger predation, and collisions with vehicles.  Of the 296 nest attempts we monitored 

from 2005 – 2007 (Table 3.7), two failed nests were dug out by badgers, one was 

flooded, one was trampled by cows, and one was disturbed by shooters who camped near 

the nest and shot for 3 days.  One adult and three owlets at different nests were found 

after being shot, and one owlet was hit by a vehicle. 

 

Considerations with Multivariate Analysis 

 Several considerations in this study included how to group samples and prey taxa 

and which multivariate analyses to use.  One decision related to the level of specificity 

used in prey identification and analysis.  We did not have the time or resources to go 

beyond the family level for invertebrate identifications, while identification to species 

was usually possible for vertebrates.  Differences among insects could have been washed 

out by lumping genera or species into family-level groups if members of that family 

responded very differently to the independent variables being tested.  However, we did 

find differences between invertebrate families that were correlated with year and rainfall.  

Numbers of many of the vertebrates in our samples were too small to allow them to be 

tested separately as species.  We did our best to group species appropriately for analysis, 
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for example, summing numbers of mammals that commonly live on upland prairie and 

prairie dog towns separately from those that do not.  Differences among these groupings 

of vertebrate taxa were apparent for many of the variables that we tested, as were 

differences for classes and invertebrate families. 

 Entire textbooks (e.g., McCune and Grace 2002) have been written on 

multivariate analysis, and a large number of analytical methods have been developed.  

These tools are a natural choice for testing ecological hypotheses about prey species 

composition, because the composition data do not have to be lumped into such broad 

categories, such as rodents versus all other prey, as they would for univariate analysis.  In 

addition, statistical tests are available that recognize the inherent lack of independence 

that exists when proportions of various items in the diet must sum to one, and these tests 

do not assume an underlying distribution or homogeneity of variances.  We paired MRPP 

with indicator species analysis because they are easily interpreted and pair naturally: 

MRPP determined that prey species composition differed between groups organized 

according to ecological factors of interest, and ISA identified the prey taxa associated 

with each factor.  MRPP and ISA had enough power to find differences between groups 

and identify taxa responsible for group differences.   

 

Conclusion 

 Dietary information for owls is relatively easy to gather, although identification of 

small prey fragments is not easy.  For any species, such information gives a greater 

understanding of community-level dynamics, and can be extended beyond lists of prey 

species consumed (fairly common in owl literature) to an exploration of ecological 
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relationships among diet, abiotic factors, non-predatory interactions, and population 

dynamics (less common in the literature).  Our results confirm the importance of 

precipitation in shortgrass steppe ecology, focusing on burrowing owls, a species 2 – 3 

steps removed from primary production.  However, the relationship was not as simple as 

might be expected; increased precipitation did not universally result in higher abundance 

of all species that consume vegetation and seeds (M. Lindquist pers. comm.; P. Stapp 

pers. comm.), nor did it lead to higher breeding success for burrowing owls (Table 3.7; 

Conrey Ch. 4).  Some prey may have drowned, at least one owl nest was lost due to 

flooding, and owls were less active in wet weather.  Overall, our results emphasize the 

wide variety of prey used by burrowing owls and the important relationships among 

rainfall, prey species composition, and owl breeding success. 
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APPENDIX 1 – SOURCES OF INDIVIDUAL BIOMASS ESTIMATES 
 
Table 3.8.  Individual biomass estimates came from the literature and unpublished data.  Sources were located as close as possible to 
our study site in northern Colorado. 
 
Taxon Citation Location Comments 
Class Amphibia       

Feder (1988) unknown       Ambystoma tigrinum  
Gray and Smith (2005) Southern High Plains of TX April - Sept. 1999 - 2000; adults     Ambystoma tigrinum  
Gray and Smith (2005) Southern High Plains of TX April - Sept. 1999 - 2000; adults     Spea bombifrons  

Class Arachnida       
  Family Eremobatidae Dickinson (unpub. data) Pawnee National Grassland, Weld County, CO June 1973 
Class Aves       

Baldwin and Boyd (1973) CO May - Aug.     Calamospiza melanocorys 
Giezentanner (1970) Pawnee National Grassland, Weld County, CO breeding adults     Calcarius mccownii 
Maher (1972) Matador, Saskatchewan, Canada       Eremophila alpestris 
Oberholser (1902) unknown       Eremophila alpestris 
Wiens and Rotenberry 
(1980) 

Jackson County, SD; Larson County, TX; Benton 
County, WA; Lake County, OR; Pershing County, NV 1970 - 1977, all seasons     Eremophila alpestris 

Class Insecta       
  Family Rhaphidophoridae     

Studier et al. (2002) Carlsbad Caverns National Park, NM May 1989     Ceuthophilus longipes 
Studier et al. (2002) Carlsbad Caverns National Park, NM May 1989     Ceuthophilus conicaudus 
Studier et al. (2002) Carlsbad Caverns National Park, NM May 1989     Ceuthophilus carlsbadensis 
Cyr et al. (1991) Mammoth Cave National Park, KY April 1986 - March 1987     Hadenoecus subterraneus 

  All other families Dickinson (unpub. data) Pawnee National Grassland, Weld County, CO April - Dec. 1970 - 1974 
Class Malacostraca       

Riggert et al. (1999) St. Francis River drainage, MO Oct. 1996 - March 1998     Orconectes peruncus 
Riggert et al. (1999) St. Francis River drainage, MO Oct. 1996 - March 1998     Orconectes quadruncus 
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Class Mammalia       

    All species Stapp (unpub. data) Pawnee National Grassland, Weld County, CO 

Sept. 1994 - 2008; averaged 80% adults, 10% 
subadults, 10% juveniles if weights available; 
otherwise, 85% adults and 15% subadults or 
100% adults 

Class Reptilia       
    Coluber constrictor  Walton et al. (1990) unknown   
    Heterodon nasicus  Hill and Mackessy (2000) AZ, CO 1997 
    Holbrookia maculata  Bonine and Garland (1999) AZ and NM near Portal, AZ 1991, 1996 

    Holbrookia maculata  Bonine et al. (2001) southern AZ and western NM near Portal, AZ; U.S. 
nationwide May - early Aug. 1996 - 1997 and 1999; males 

    Phrynosoma hernandesi Mathies and Martin (2008) Pawnee National Grassland, Weld County, CO June - Dec. 2005; adults 
June - Aug. 1988 - 1990; adult females and 
juveniles NM, AZ Sherbrooke and 

Middendorf III (2001)     Phrynosoma hernandesi 
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APPENDIX 2 – OWL DIET COMPOSITION 
 
Table 3.9.  We identified 6774 prey individuals in owl pellets and 1348 prey individuals 
as remains, not counting 182 burrowing owl remains (mainly feathers) and 14 prairie dog 
remains (mainly toes and claws).  These were unlikely to be prey, but were instead shed 
owl feathers, several owls that had been shot or died of other causes, and remains of 
prairie dogs that had probably died from plague or non-owl predation.  Counts of higher 
level taxa are inclusive of taxa below them; for example, the six Squamata are the same 
six individuals listed as Class Reptilia.  Items in owl pellets were consumed, while prey 
remains were unconsumed parts of prey individuals such as feathers, legs, or tails. 
 

# in # inLatin Name Common Name 
Pellets Remains

Class Amphibia amphibians 4 14
  Order Anura frogs, toads 4 10
    Family Pelobatidae spadefoot toads 0 5

plains spadefoot toad 0 5      Spea bombifrons 
  Order Caudata salamanders 0 4
    Family Ambystomatidae mole salamanders 0 4

tiger salamander 0 4      Ambystoma tigrinum 
Class Arachnida arachnids 22 2
  Order Araneae spiders 2 2
  Order Solifugae windscorpions 20 0
    Family Eremobatidae straight-faced windscorpions 20 0

sun spiders, windscorpions 6 0      Eremobates 
Class Aves birds 84 328
  Order Caprimulgiformes frogmouths 0 2
    Family Caprimulgidae nightjars 0 2

common nighthawk 0 1      Chordeiles minor 
common poorwill 0 1      Phalaenoptilus nuttallii 

  Order Charadriiformes plovers, terns 0 6
    Family Charadriidae plovers 0 6

mountain plover 0 5      Charadrius montanus 
killdeer 0 1      Charadrius vociferus 

  Order Passeriformes passerines 70 314
    Family Alaudidae larks 28 168

horned lark 28 168      Eremophila alpestris 
    Family Emberizidae sparrows and allies 8 127

Cassin's sparrow 0 3      Aimophila cassinii 
lark bunting 6 85      Calamospiza melanocorys 
McCown's longspur 2 34      Calcarius mccownii 
vesper sparrow 0 2      Pooecetes gramineus 
Brewer's sparrow 0 3      Spizella breweri 

    Family Icteridae blackbirds 0 5
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Brewer's blackbird 0 2      Euphagus cyanocephalus 
brown-headed cowbird 0 2      Molothrus ater 
western meadowlark 0 1      Sturnella neglecta 

  Order Strigiformes owls 2 0
    Family Strigidae typical owls 2 0

burrowing owl 2 0      Athene cunicularia 
Class Insecta insects 6412 757
  Order Coleoptera beetles 4447 224
    Family Carabidae ground beetles 2369 93

blue-margined ground beetle 104 20      Pasimachus elongatus 
    Family Cerambycidae long-horned beetles 55 6

cactus long-horned beetle 13 0      Moneilema annulatum 
    Family Chrysomelidae leaf beetles 2 0

potato beetles 1 0      Leptinotarsa 
    Family Cicindelidae tiger beetles 1 0
    Family Curculionidae weevils 83 2
    Superfamily Elateroidea click, firefly, soldier beetles 24 0
    Family Histeridae clown beetles 13 0
    Family Meloidae blister beetles 3 1
    Family Scarabaeidae scarab beetles 966 54

rainbow scarab 8 0      Phanaeus vindex 
    Family Silphidae carrion beetles 103 6
    Family Tenebrionidae darkling beetles 779 57
    Family Trogidae hide beetles 4 1
  Order Diptera flies 25 0
  Order Hemiptera true bugs, cicadas, hoppers, aphids 12 0
    Family Cicadellidae leafhoppers 1 0
    Family Coreidae squash bugs 10 0
    Family Naucoridae creeping water bugs 1 0
  Order Hymenoptera bees, ants 452 3
    Family Formicidae ants 407 2
    Family Halictidae sweat bees 1 0
  Order Lepidoptera butterflies, moths 17 1
    Family Pyralidae pyralid (micro) moths 13 0
    Family Sphingidae sphinx moths 0 1
  Order Neuroptera lacewings 1 0
    Family Mantispidae mantisflies 1 0
  Order Odonata dragonflies, damselflies 2 0
  Order Orthoptera grasshoppers, crickets 1454 529
    Family Acrididae short-horned grasshoppers 1243 517
    Family Gryllidae true crickets 3 1
    Family Rhaphidophoridae camel crickets 201 11
Class Malacostraca crabs, lobster, shrimp, pillbugs 3 27
  Order Decapoda crabs, lobster, shrimp 3 27
    Family Cambaridae cambarid crayfish 3 27
Class Mammalia mammals 243 196
  Order Lagomorpha rabbits, hares, pikas 1 4
    Family Leporidae rabbits, hares 1 4
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  Order Rodentia rodents 236 187
    Family Geomyidae pocket gophers 6 8

Northern pocket gopher 6 8      Thomomys talpoides 
    Family Heteromyidae pocket mice, kangaroo rats 65 143

hispid pocket mouse 2 0      Chaetodipus hispidus 
Ord's kangaroo rat 30 142      Dipodomys ordii 
small pocket mice 32 1      Perognathus 
plains pocket mouse 2 0      Perognathus flavescens 
silky pocket mouse 13 0      Perognathus flavus 

    Family Muridae mice, voles 97 18
voles 19 11      Microtus 
prairie vole 11 7      Microtus ochrogaster 
meadow vole 1 3      Microtus pennsylvanicus 
house mouse 2 0      Mus musculus 
Northern grasshopper mouse 17 4      Onychomys leucogaster 
deer mouse 22 1      Peromyscus maniculatus 
harvest mice 19 1      Reithrodontomys 
Western harvest mouse 6 0      Reithrodontomys megalotis 
plains harvest mouse 2 1      Reithrodontomys montanus 

    Family Sciuridae squirrels 20 15
black-tailed prairie dog 1 0      Cynomys ludovicianus 
ground squirrels 19 15      Spermophilus 
13-lined ground squirrel 18 15      Spermophilus tridecemlineatus 

Class Reptilia reptiles 6 24
  Order Squamata lizards, snakes 6 23
    Family Colubridae colubrid snakes 2 11

racer 0 2      Coluber constrictor 
Western hognose snake 0 3      Heterodon nasicus 

    Family Phrynosomatidae phrynosomatid lizards 3 7
common earless lizard 2 1      Holbrookia maculata 
short-horned lizard 0 5      Phrynosoma hernandesi 

Total   6774 1348
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CHAPTER 4 

PLAGUE AND RAINFALL INFLUENCE BREEDING SUCCESS 

AND NEST DENSITY IN BURROWING OWLS 

 

ABSTRACT 

Introduced pathogens such as plague (Yersinia pestis) can have far-reaching effects on 

native ecosystems that go beyond the mortality of infected individuals.  We investigated 

the effects of introduced plague on burrowing owls (Athene cunicularia) nesting in black-

tailed prairie dog (Cynomys ludovicianus) burrows in northern Colorado.  Prairie dogs 

experience high mortality from plague, and their colonies are periodically extirpated by 

outbreaks.  Plague does not make owls sick, but they may be affected as unmaintained 

burrows collapse and become uninhabitable, vegetation grows taller, and the anti-

predator benefits of prairie dog association are lost.  From 2005 – 2008, we monitored 

311 burrowing owl pairs on the Pawnee National Grassland.  We analyzed the effects of 

rainfall, prairie dog town, and plague dynamics on nest fate, fledging success, and 

distances from each nest to its three nearest neighbors.  Rainfall was the strongest 

predictor of nest and fledging success, with higher rainfall associated with lower breeding 

success.  Nests were more likely to succeed when plague events were more recent, and 

they produced more fledglings on towns where any extirpation was brief, and prairie dogs 

were otherwise resident on site for a longer time.  Nests were closest together on recently 

plagued towns where prairie dog activity had been nearly continuous for a long time and 
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recolonization was rapid.  Although ubiquitous on active prairie dog towns, burrowing 

owls were nearly absent from towns that were not recolonized after plague epizootics.  If 

conservation of burrowing owls is a primary goal, our results suggest that it will be more 

useful to preserve prairie dog habitat and connectivity between towns at a landscape scale 

than to intensively manage plague.   

 

INTRODUCTION 

 Introduced pathogens have the potential for far-reaching effects on native 

ecosystems that go beyond the mortality of infected individuals.  Plague caused by 

Yersinia pestis, a bacterium that is endemic to the semi-arid grasslands and plateaus of 

Asia and Africa, was introduced into western ports of the United States in 1899 (Dicke 

1926; Link 1955; Antolin et al. 2002).  Plague was first reported in northern Colorado 

around 1948 (Ecke and Johnson 1952).  Disease has been reported from at least 76 

species of mammals in the western U.S., with high mortality in black-tailed prairie dogs 

(Cynomys ludovicianus: Barnes 1993; Cully and Williams 2001).  Epidemics typically 

wipe out entire colonies, so instead of living in extensive towns as they once did, prairie 

dogs exist in metapopulations of smaller towns that periodically go extinct and are 

recolonized (Antolin et al. 2002; Stapp et al. 2004). 

 Flea-borne transmission is involved in epizootics (Cully and Williams 2001; Gage 

and Kosoy 2005), and flea load on black-tailed prairie dogs of the Pawnee National 

Grassland (PNG) of northern Colorado peaked in February – March and again from 

September – October, coinciding with epizootics (Tripp 2007; Tripp et al. 2009).  The 

progression of plague seems to slow in summer, possibly because higher temperatures are 
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associated with lower flea survival and transmission potential of Y. pestis (Tripp 2007; 

Tripp et al. 2009).  Plague moves through larger towns as coterie (family group) after 

coterie is infected, dies out, and its territory is absorbed by surviving coteries who are 

themselves infected (Tripp 2007).  Prairie dog towns naturally expand in number and area 

in May when juveniles emerge, sometimes doubling in size mainly from births but also 

from the arrival of immigrants.  They retract again in fall and winter (Hoogland 1995; D. 

Tripp pers. comm.). 

 Black-tailed prairie dogs are widely considered to be ecosystem engineers and 

keystone species (Miller et al. 1994; Kotliar et al. 1999; Kotliar 2000; Miller et al. 2000; 

but see Stapp 1998), and often support a unique and diverse community of plants and 

animals (Lomolino and Smith 2004; Smith and Lomolino 2004; Hardwicke 2006; Stapp 

et al. 2008).  The effects of plague on most prairie dog associates are unknown.  

However, black-footed ferrets (Mustela nigripes), obligate predators of prairie dogs and 

residents on towns, can be extirpated by plague, either through loss of prey or directly 

from the disease if not vaccinated (Williams et al. 1994; Matchett et al. 2010).  Mountain 

plovers (Charadrius montanus), avian associates of prairie dog towns in Colorado, 

showed quickly declining nest numbers (Augustine et al. 2008) and occupancy of towns 

(Dinsmore and Smith 2010) following plague epizootics. 

 Burrowing owls (Athene cunicularia) are small ground-dwelling raptors of the 

prairies.  They can be active at any time of day, hunting a wide variety of insects, 

mammals (not typically prairie dogs), birds, and other prey (Conrey Ch. 3).  In the 

northern United States and Canada, most populations are migratory, nesting in burrows 

dug by mammals such as prairie dogs and ground squirrels (Haug et al. 1993).  Black-
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tailed prairie dog burrows in Colorado are used for nesting and refuge, and mounds are 

used as perches.  Plague does not make owls sick, but they may be affected as 

unmaintained burrows collapse and become uninhabitable, vegetation grows taller, and 

the anti-predator benefits of prairie dog association are lost.  These may include increased 

visibility from trimming of vegetation, alarm calling, and providing an abundant alternate 

prey source (Hoogland 1995).  Burrowing owls are widely distributed on the prairies of 

North, Central, and South America, but they are a declining and protected species in 

many areas and are a state-listed threatened species in Colorado (Colorado Division of 

Wildlife 2007).  Our primary goal was to investigate the effects of plague on breeding 

burrowing owls. 

 We identified three parameters that were key to understanding and quantifying 

breeding owl populations: nest fate, fledging success, and nest density.  We studied nest 

abundance and density in addition to nest and fledging success, because overall 

productivity is higher when high breeding success per nest accompanies high abundance 

and density of nests on the landscape.  Fledging is often defined as the time when fully-

feathered juveniles first leave the nest (Steenhof and Newton 2007).  However, the term 

is sometimes used in the literature to describe the age at first sustained flight or when 

some level of independence from parents has been attained.  Nest density on prairie dog 

towns has been variously defined as the number of nests per town area (Hughes 1993; 

Desmond and Savidge 1996) or as its inverse, the spacing between nests.  Distance to the 

nearest neighbor has been most commonly reported (Desmond and Savidge 1996; 

Griebel 2000; Woodard 2002).  Following the consensus within the burrowing owl 

literature, we define fledging age as 35 – 42 d.  At this age, owlets can fly reasonably 
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well and feed themselves, although parents may still feed and defend them.  Nest fate is 

binary: 1 (success) or 0 (failure).  Success means that at least one owlet fledges from a 

given nest.  Apparent nest success refers to the proportion of nests in a sample or 

population that are known to be successful.  Fledging success is the number of fledglings 

per nest.  Nest distance is the distance between neighboring nests.  We analyzed distances 

from each nest to its three nearest neighbors. 

 We focused our analyses at the scale of prairie dog towns.  Other studies have 

examined nest-level aspects of site selection, including vegetation, burrow lengths, 

numbers, density, and proportion of active to inactive burrows (e.g., MacCracken et al. 

1985; Green and Anthony 1989; Hughes 1993; Plumpton and Lutz 1993; Desmond et al. 

1995; Toombs 1997; Desmond and Savidge 1999; Ekstein 1999; Restani et al. 2001; 

Woodard 2002; Lantz et al. 2007).  One of the most important mechanisms producing 

variation in owl nesting habitat across the PNG of northern Colorado is plague, because 

the loss of prairie dog towns changes both plant and animal community structure and 

unattended burrows eventually collapse.  Precipitation was also quite variable during our 

study, with noticeable effects on plant growth that differed from year to year, and climate 

is known to influence the likelihood of plague epizootics (Stapp et al. 2004).  In addition, 

it was important to account for the effects of precipitation in a multi-year study because 

precipitation is considered to be the most important environmental factor governing 

ecology on the shortgrass steppe (Lauenroth and Sala 1992), and it typically varies more 

from one year to the next than temperature (Doesken and McKee 1999; Pielke and 

Doesken 2008). 
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 Bad weather limits prey availability, decreases foraging efficiency, and can 

reduce nest success and survival in raptors (Village 1986; Steenhof et al. 1997).  Ronan 

(2002) reported high variation in rainfall during a 3-year study in California, and found 

that burrowing owl breeding success was highest in the driest year that followed a very 

wet year.  Owlet mortality may increase during periods of heavy rain, especially when 

rainfall lasts for several days (Wellicome 2000; Griebel and Savidge 2003).  Some prey 

populations may respond positively to increased rainfall, but burrowing owls curtail their 

foraging in wet weather.  We investigated the effects of both spring (March – May during 

arrival and nest establishment) and summer (May – July during breeding) precipitation on 

nest fate, fledging success, and nest distances. 

 Several studies have found that owls prefer active to inactive prairie dog towns 

(e.g., Butts and Lewis 1982; Toombs 1997; Orth and Kennedy 2001; Sidle et al. 2001; 

Tipton et al. 2008), and conflicting results have been found regarding town size 

(Plumpton 1992; Hughes 1993; Plumpton and Lutz 1993; Pezzolesi 1994; Desmond and 

Savidge 1996; Toombs 1997; Griebel 2000; Woodard 2002).  However, the effects on 

breeding owls of town age, town extirpation by plague, and time to recovery of prairie 

dogs are unknown.  The U.S. Forest Service PNG has conducted owl counts since 1998, 

in addition to mapping prairie dog towns since 1981.  Those data suggested that owl 

numbers across the PNG were generally tracking the increasing area occupied by prairie 

dogs (Conrey, unpub. data).  Similarly, Desmond et al. (2000) found that owl numbers 

tracked prairie dog populations in the Nebraska panhandle.  They observed a time lag in 

the response of owl numbers to prairie dog population declines due to control.  Burrows 

in Oklahoma filled within 3 years of prairie dog removal via cultivation and poisoning 
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(Butts and Lewis 1982).  However, Hoogland (1995) noted that burrowing owls seemed 

common in prairie dog towns that had recently declined due to poisoning or plague, 

which mirrored our own initial observations on the PNG. 

 To our knowledge, no one has studied the effects of plague on owl breeding 

success or nest density.  We were interested in comparing the effects of current prairie 

dog town dynamics with past town history.  Current dynamics included whether a town 

was active or inactive and slow or fast-growing, as well as its size.  Town history 

included the time since the most recent plague epizootic and the time since the town was 

first colonized by prairie dogs.  We reset the clock on a town if it was extirpated and 

remained extinct for ≥ 2 years. 

 Finally, we were interested in how owl nest density might affect breeding success.  

High density of nests has led to decreased nest success in some (Griebel and Savidge 

2007) but not all studies (Rosenberg and Haley 2004).  A decline in nest success might 

result from competition for food or satellite burrows, used for rest or refuge, or other 

factors related to nest predators or parasites. 

 To summarize, our objective was to examine the effects of rainfall, prairie dog, 

and plague dynamics on nest fate, fledging success, and nest density (indexed by mean 

distance to the three nearest nests).  We tested the following hypotheses: 

1. Nest fate, fledging success, and nest distance will vary from year to year, with lower 

nest and fledging success in wetter summers and higher nest distance in wetter 

springs.  An alternative hypothesis is that breeding success will increase and nests 

will be closer together during wetter weather (if some prey respond positively: 

Conrey Ch. 3). 
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2. Plague epizootics will lead to increased nest and fledging success and decreased nest 

distances if towns are quickly recolonized by prairie dogs.  Relative to younger 

towns, breeding success will be lower and nest spacing will be higher in towns that 

have been active for longer periods of time, and will be lowest in extinct towns, 

especially those that have had no prairie dogs for multiple years.  An alternative 

hypothesis is that only current town dynamics matter.  Regardless of when towns 

were colonized by prairie dogs or last experienced plague, towns that are smaller and 

fast growing (whether brand new or recently recolonized by prairie dogs) will have 

higher breeding success and more closely spaced nests than towns that are larger and 

more stable. 

3. Owls nesting close to their neighbors will have lower breeding success. 

 If foraging and prey accessibility decline in wet weather, burrowing owls might 

be less likely to nest in wet springs and they may have nestlings in poorer condition 

during wet summers (Hypothesis 1: H1).  Alternatively, if some prey respond positively 

to wet weather (Conrey Ch. 3), then the opposite pattern could occur (A1).  Because 

burrowing owls prefer active towns, we expected extinct towns to have reduced nest 

density and breeding success (H2), especially after 2 years of inactivity (Butts and Lewis 

1982).  However, burrowing owls may prefer more heterogeneous environments (Orth 

and Kennedy 2001) and have higher nesting activity immediately after epizootics 

(Hoogland 1995).  We predicted that recently plagued and recolonized towns would be 

preferred for nesting (more closely spaced nests) with high breeding success (H2).  An 

alternative is that only current dynamics matter (A2), because both new and recently 
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recolonized towns have similar dynamics.  Competition may reduce breeding success in 

high density areas (H3). 

 

METHODS 

Study Site 

Our study site (Fig. 4.1) on the Pawnee National Grassland (PNG) is located in 

the shortgrass steppe (SGS) of north central Colorado (Weld County).  The SGS covers 

the central and southern Great Plains, the driest and warmest part of America’s central 

grasslands (Lauenroth and Burke 1995; Pielke and Doesken 2008).  The area managed by 

the USDA Forest Service PNG consists of 78,128 ha spread over a larger 50 x 100 km 

region with a patchwork of public and private ownership.  We worked mainly in the 

northwestern PNG, which has mean elevation of 1650 m and mean annual precipitation 

of 321 mm, with > 70% of this falling as rain from April – September (National Climatic 

Data Center 2002; Pielke and Doesken 2008).  The amount, timing, and intensity of 

precipitation are the most important factors in determining the ecology of the SGS 

(Lauenroth and Sala 1992).  Most precipitation events on the PNG are small, with much 

of the water lost to evapotranspiration (Sala et al. 1992; Lauenroth and Bradford 2006).  

More than 80% of the PNG is upland steppe habitat (Hazlett 1998).  The two dominant 

species are perennial C4 warm-season grasses: blue grama (Bouteloua gracilis) and 

buffalo grass (Buchloe dactyloides).  Other common species are prickly-pear cactus 

(Opuntia polyacantha) and two dwarf shrubs: rabbitbrush (Chrysothamnus nauseosa) and 

saltbush (Atriplex canescens) (Lauenroth 2008). 
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 Livestock grazing (mostly cattle) is the dominant land use across the PNG, and 

cattle were common on our study areas.  Bird-watching and recreational shooting are also 

common on the PNG.  Recreational shooting of legal and illegal targets occurred 

throughout the study period, and an 8.5-month open season (mid-June through February 

annually) on prairie dogs was reinstituted in June 2007 after a six-year moratorium.  

Extensive shooting occurred on several easily accessible towns, especially towns 51 and 

78, with moderate shooting on all towns near gravel roads open to the public, and very 

little shooting on more isolated towns. 

 In a state-wide survey of Colorado, 80% of burrowing owl locations were on 

prairie dog colonies, and 24% of locations were in Weld County (VerCauteren et al. 

2001).  Burrowing owl occupancy in Colorado was highest on active prairie dog towns, 

followed by inactive towns, and all towns had much higher occupancy than grassland or 

dryland agriculture (Tipton et al. 2008).  During three surveys of nine randomly-selected 

quarter sections (64.75 ha), we found only one nest that was not on a prairie dog town; 

another two off-town nests were discovered by chance.  This compares to 320 nests 

located on prairie dog towns, which have been mapped by the Forest Service since 1981.  

The area occupied by these towns has increased since 1981 with an exponential increase 

since the mid-1990s.  Declines in area occupied have occurred during recent plague 

epizootics, but due to rapid recolonization and the colonization of new towns, the total 

area occupied has remained around 1 – 2% of the PNG (Fig. 4.1). 

Compared to adjacent uncolonized prairie, PNG prairie dog towns have more 

forbs, flowers, pollinator visits, and bare ground (Hardwicke 2006; Hartley 2006; Hartley 

et al. 2009).  Total plant biomass is lower on older towns, and both young (< 7 yrs) and 
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old towns have reduced grass biomass and a trend toward increasing forb biomass.   

Extirpated towns have similar plant biomass to uncolonized prairie (Hartley 2006; 

Hartley et al. 2009).  Animal species associated with prairie dog towns include burrowing 

owls, mountain plovers (Dinsmore et al. 2005; Dreitz et al. 2005; Tipton et al. 2008), 

horned larks (Eremophila alpestris: Stapp et al. 2008), lesser earless lizards (Holbrookia 

maculata: Kretzer and Cully 2001), northern grasshopper mice (Onychomys leucogaster: 

Stapp et al. 2008), and desert cottontails (Sylvilagus audubonii: Stapp et al. 2008).  

Predator species including coyotes (Canis latrans), swift fox (Vulpes velox), and badgers 

(Taxidea taxus) often hunt on prairie dog towns (Stapp et al. 2008).  We also regularly 

observed Swainson’s hawks (Buteo swainsoni), Northern harriers (Circus cyaneus), and 

prairie falcons (Falco mexicanus) on towns, plus the occasional golden eagle (Aquila 

chrysaetos) and ferruginous hawk (Buteo regalis). 
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Figure 4.1.  Prairie dog towns are displayed at their maximum extent for 2005 – 2008.  In 
any given year, the total area occupied by prairie dog towns was approximately half the 
displayed area because of colonizations, extinctions, and other fluctuations in town size.   
 

Nest Searches 

 We searched for adult owls on prairie dog towns and then looked for nest burrows 

in the vicinity of owl sightings.  Early in the nesting season, adult males, who are not 

involved in incubation or brooding, typically perch conspicuously near the nest burrow 

during the day.  Nest burrows were identified by the presence of shredded mammal 

manure (Levey et al. 2004), owl feathers, regurgitated pellets, and prey remains such as 
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grasshopper legs, rodent tails, and passerine feathers.  A burrow was identified as the site 

of a nest attempt only if shredded manure, typically cow, prairie dog, or canid, was 

present (“nest lining”: Garcia and Conway 2009).  Perching owls, whitewash (mutes), 

pellets, and prey remains were often seen at perch locations near a nest, but in our 

experience, shredded manure was present only at nests.  Nest locations were recorded 

using UTM coordinates (Universal Transverse Mercator zone 13 NAD1983) with 

specified accuracy of 15 m but < 4 m accuracy of marked waypoints typical in the field. 

 We conducted a minimum of three complete surveys on each prairie dog town so 

that a removal method (Hayne 1949; Otis et al. 1978; White et al. 1982; Rosenberg and 

Haley 2004) could be used to estimate nest abundance and probability of nest detection.  

Positive bias (systematic overestimation of unknown magnitude) in apparent nest success 

(Mayfield 1960; 1961; 1975) is likely to be small when most nests are discovered early in 

the breeding season and nests are easy to detect (Lantz and Conway 2009).  Our 

probability of detecting a nest in three surveys was > 95%, and we are confident that 

most if not all nests were discovered on monitored prairie dog towns.  The removal 

method required a closed population of nests, so we began our surveys in mid-May after 

most owls had arrived and established, or begun to establish, their nests.  We estimate 

that most nests were found during incubation, with smaller numbers found during the 

nestling (post-hatch) or egg-laying stage.   

 The number of nests per town was a covariate in our analyses of nest fate and 

fledging success.  We predicted that pairs with more neighbors would have lower 

breeding success.  We also tested a quadratic term because we thought the decline in nest 

and fledging success would level off with increasing nest numbers. 
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Monitoring Reproduction 

Visual counts of the area surrounding each owl nest using spotting scopes 

produced an estimate of the minimum number of owlets known alive.  We counted 

owlets for ≥ 15 min. at all nests and recorded the maximum number of owlets at each nest 

every 5 min.  If we were unsure where an owlet belonged, we observed it until it moved 

to a nest, joined other owlets, or was fed by an adult.  In the few cases (under five per 

year) where the nest could not be identified, the owlet was not counted.  Each owlet was 

aged according to behavior, plumage characteristics, and size (Priest 1997).  For analysis, 

owlets that could not be aged because our view was blocked or too brief were assigned 

the mean age for that nest.  Presence of adults was noted, because lack of adult activity 

may indicate nest failure, as do prairie dogs in the burrow or cobwebs covering the 

entrance.  Owl activity and visibility declined in poor weather, so we did not attempt to 

monitor nests in steady rain, hot (> 27°C), or windy (> 21 km/hr) conditions. 

 Nests were monitored once per week whenever possible, but the longest interval 

between observations was 13 days.  We monitored each nest until all owlets at that nest 

were believed to be older than 50 days (d).  Fledging of owlets at each nest may be 

staggered across a week or more, because females lay one egg every 1 – 2 days and 

usually begin incubation with the first egg (Bent 1938; Olenick 1990; Haug et al. 1993).  

Following Haug (1985) and Desmond and Savidge (1999), we used 42 d as fledging age, 

within the range of 35 – 44 d used by others (Thomsen 1971; Landry 1979; Todd et al. 

2003; Davies and Restani 2006; Lantz and Conway 2009).  Burrowing owl fledglings fly 

fairly well and are somewhat independent, as parental care such as feeding generally 

becomes less frequent after this age. 
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Logistics required that we consider an owlet to be fledged if observed at ≥ 35 d, 

because when nests are monitored once per week, owlets that have actually reached 

fledging age of 42 d are more likely to leave the nest area and remain undetected.  Owlets 

within nests do not simultaneously reach 35 d, so while it would be ideal to count an 

owlet as fledged only if that particular individual was ≥ 35 d old, we could not age all 

owlets during each observation and considered all owlets as fledging at once from a 

particular nest with average age ≥ 35 d.   Successful nests had at least one owlet known 

alive when average owlet age was ≥ 35 d.  Fledging success per nest was equal to the 

largest number of owlets ever observed when average owlet age was ≥ 35 d. 

We calculated apparent nest success rather than daily nest survival (Mayfield 

1960; 1961; 1975; Johnson 1979; Stanley 2000; 2004; Dinsmore et al. 2002; Jehle et al. 

2004) because we had imperfect knowledge of nest fate, and without a video probe, we 

could not always determine the stage of a nest or when a nest had failed prior to the end 

of the season.  Lantz and Conway (2009), the only study of which we are aware that 

estimated daily nest survival for burrowing owls, found that positive bias in apparent nest 

success was only 3 – 6%.  Based on our high probability of nest detection, we expect that 

positive bias was small in our study as well and likely balanced by a small amount of 

negative bias if fledged owlets were sometimes undetected. 

Nest fate and fledging success were two of the three response variables modeled 

in this study.  Each nest was considered a sampling unit. 
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Quantifying Nest Distance 

 Previous studies of spatial use by nesting burrowing owls (e.g., Hughes 1993; 

Desmond and Savidge 1996; Desmond et al. 2000; Griebel 2000; Woodard 2002) used 

either number of nests per study area to measure density or distance to the nearest 

(single) neighbor as an index inversely proportional to density.  We did not estimate nest 

density with number of nests/prairie dog town area, because it was unclear what study 

area to use.  The Forest Service’s mapping of prairie dog towns did not necessarily 

correspond with the owl breeding season, and towns were constantly shrinking and 

expanding.  It is difficult to accurately map prairie dog town boundaries from the ground, 

because edge burrows are easily missed, and most nests were near town edges (Fig. 4.1; 

Conrey, unpub. data).  In addition, the Forest Service mapped only active burrows, and 

the town area they reported was zero for plagued towns.  Following a plague event, 

inactive portions of towns might remain usable by burrowing owls, and the activity of 

just a few prairie dogs might be missed.  For these reasons, some burrowing owl nests 

appeared to be outside of prairie dog town polygons. 

 The appropriateness of nearest neighbor statistics has been challenged in cases 

when other neighbors (aside from the nearest) have important interactions (Moilanen and 

Nieminen 2002).  Because burrowing owl nests are clustered in space on prairie dog 

towns (Desmond et al. 1995; Desmond and Savidge 1996), nests may be relatively close 

to multiple neighbors (Fig. 4.1) and we wanted to quantify these potential interactions.  

We could not simply measure distances to all neighbors on a town, because solo nests do 

not have neighbors and averaging in a different number of neighbors for each nest would 

introduce unequal variances.  Counting the number of neighbors within some radius of 

 151



the focal nest just substitutes the choice of radius for the choice of number of neighbors.  

By averaging distances to the three nearest neighbors, we have accounted for the 

possibility of interactions with the majority of neighbors on an average town, which 

contained 6.06 nests.  For towns with fewer than four nests, one or more of the measured 

distances connects to a neighbor on a different town.  This greatly increases the average 

distance value but reflects the low density environment experienced by the focal nest. 

 We imported our nest locations into ESRI ArcGIS version 9 (ArcMap version 

9.3.1: Environmental Systems Research Institute 2009) and created a separate point layer 

for each year.  The distance from each nest to the three nearest nests was calculated using 

Hawth’s Analysis Tools version 3.27 (Beyer 2006).  This tool works within ArcMap to 

calculate distances among points within a dataset.  It creates a full matrix of distances 

between points and can also be used to identify and measure distances from focal points 

to a user-selected number of nearest neighbors (up to 100). 

 Our measure likely has an inflated tail, with large distances for the most isolated 

nests because we did not attempt to find every nest on the PNG.  Several nests on towns 

with fewer than four nests total may have had closer neighbors on private land than the 

ones that we identified on federal land.  Eight nests (of 311) on four towns may have had 

closer neighbors on the few towns we could not survey.  However, even if we mapped 

every owl nest on the western PNG, nests with few neighbors would have large mean 

distance values, because distances among towns occupying 1 – 2% of the PNG (Fig. 4.1) 

are very large relative to distances among nests within towns.  We validated the 

robustness of our distance measure by testing for effects of number of neighbors: nests 

with at least three neighbors on a town vs. nests with fewer neighbors. 
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Nest distance was the third response variable modeled in this study.  Each nest 

was considered a sampling unit.  Nest distance was also used as a covariate in models of 

nest fate and fledging success.  We tested a quadratic term, predicting that the benefit of 

being farther from neighbors would level off as distance increased. 

 

Precipitation Data 

 We downloaded daily precipitation values from five weather stations (Fig. 4.1).  

Four were located on the Central Plains Experimental Range in the northwestern PNG.  

Three were located together: two (manual Station 11 and automatic Station 12) were 

administered by the SGS LTER, and one (CO22) was administered by the National 

Atmospheric Deposition Program.  All three were included because one station may have 

missing data while the others are functioning, and different collection methods may cause 

variation in measurements.  The fourth station on the CPER was administered by the 

USDA Agricultural Research Service and was located 5 km to the northeast.  These four 

stations were at the northwest corner of our study area.  The fifth station was located at 

Briggsdale at the southeast corner of our study area and was administered by the National 

Oceanic and Atmospheric Administration.  We based our calculations of site-wide 

average daily precipitation value on the relative locations of these stations.  Weights were 

as follows: Briggsdale (1/2), ARS (1/4), Station 11 (1/12), Station 12 (1/12), and CO22 

(1/12).  This system gave equal weight to stations at opposite corners of the study region: 

Briggsdale at one corner, and the other stations at the opposite corner, including Stations 

11, 12, and CO22 at the same location.   
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 These weighted precipitation data were positively correlated (Pearson’s r = 0.899, 

t = 35.98, df = 309, P < 2.2 x 10-16) with spatially interpolated PRISM data (PRISM 

Climate Group, Oregon State University).  Breeding season precipitation totals were 

10.15 mm higher for our data, on average, compared to PRISM totals.  However, we used 

data from four weather stations on the W PNG (1 km from the nearest prairie dog town) 

and from one station (Briggsdale) 500 m from the study area boundary (Fig. 4.1).  

PRISM used only the Briggsdale station, plus a number of more distant weather stations 

in Weld and surrounding counties.  Because the nearest of these was > 19 km from the W 

PNG boundary and > 27 km from the nearest sampled prairie dog town, our data were 

probably more accurate, and the small differences between interpolated precipitation 

values would not have changed our characterization of wet and dry years.  Spatial 

variation in rainfall across the W PNG cannot be accurately estimated until more stations 

exist with better spatial coverage. 

 Missing values led to underestimates in precipitation totals, so we filled missing 

values using average precipitation values for the nearby stations within our dataset; in 

such a dry area, many of the missing values were likely zeroes.  If ≥ 14 days had missing 

values for a particular station within a given month, then that station was not used for 

calculation of that month’s total precipitation. 

 We used the daily precipitation values to calculate monthly, seasonal, and annual 

totals.  Spring precipitation totals were used to model nest distances, because owls arrive 

on the PNG and choose nest locations from March – May.  Spring and summer breeding 

season (May – July) precipitation totals were both tested in models of nest fate and 

fledging success.  In addition, we tested a binary variable (wet vs. dry), which 
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constrained the wetter years (2005 and 2007) and the dryer years (2006 and 2008) to be 

equal.  We hypothesized that higher rainfall would lead to lower breeding success and 

higher distances between nests. 

 

Prairie Dog Town Data 

 The Forest Service has mapped prairie dog towns (Fig. 4.1) and reported on 

extinctions, colonizations, and the area occupied by active burrows since 1981.  We 

classified towns based on their past and present prairie dog town dynamics.  Current 

prairie dog town dynamics were categorized as extinct due to plague (no known prairie 

dogs), small with rapid growth, or large with slow growth.  Small, rapidly growing towns 

averaged 9.2 ha with high prairie dog activity pushing the town boundary and relatively 

large year to year changes in area.  Large, slowly growing towns averaged 70.8 ha with 

relatively small year to year changes in area.  Alternate models constrained all active 

towns to be equal while allowing an offset for extinct towns, or constrained extinct and 

active towns to be equal while allowing an offset for growing towns.  We predicted that 

growing towns would have the highest breeding success and lowest nest spacing, 

followed by long active and extinct towns. 

 We hypothesized that in addition to current town dynamics, plague and prairie 

dog colonization history would influence burrowing owl dynamics.  We tested models 

that included the number of years since the most recent plague event and the number of 

years since the town was first initiated by prairie dogs, as early as 1981 when data were 

first collected.  Our town initiation variable was the number of years in which a town had 

theoretically been continuously inhabitable by burrowing owls, meaning that prairie dogs 
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had not been missing from the site for > 2 consecutive years since the town was initiated.  

Butts and Lewis (1982) reported that owls no longer nested on poisoned colonies after 3 

years and were extremely reduced in number after 2 years.  In wetter years on the PNG, 

we observed significant vegetative regrowth and exclusion of owls where vegetation was 

tall following just one year of extinction.  We tested a quadratic term on plague year, 

predicting that the effects of plague would level off as time passed.  We tested for 

quadratic and cubic effects of initiation year, predicting that nest spacing would initially 

shrink as owls began using a new town, and eventually increase and then level off as 

towns grew.  We thought that breeding success might initially increase on new towns but 

would then decline or level off as time passed. 

 Finally, we tested the effect of town size.  We attempted to account for the area 

actually usable by owls by using the maximum of the current and previous year’s area.  

Towns may shrink or expand between the time that owls arrive and the Forest Service 

maps towns, and burrows may remain usable by owls even if they are not currently 

active.  Inactive (no prairie dog use) portions of towns are not included in the Forest 

Service’s size estimate, but they may remain usable by owls for a year or more before 

burrow systems begin to collapse.  Our method accounted for this possibility in the year 

following a plague epizootic.  We tested for quadratic effects of town size and cubic 

effects on breeding success, predicting that success would initially increase as small 

towns grew, but that this effect would be reversed or level off as towns became large and 

old.  Nest distances were expected to be higher on larger towns, with this effect 

eventually leveling off due to the clustering tendencies of burrowing owls. 
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Generalized Linear Models 

 We built an a priori model set that included the precipitation, prairie dog town, 

and owl population variables described above.  Because of the large number of variables 

being tested, we first ran single variable models.  If these variables had some explanatory 

value, then we combined them into additive models.  Models in the set were ranked using 

Akaike’s Information Criterion (AIC: Akaike 1973) and coefficients were evaluated by 

examining their 95% confidence intervals.  Because our sample size was large relative to 

the number of parameters in models, AICc (Burnham and Anderson 2002) produced 

almost identical results to AIC and only AIC is reported.  We thought that rainfall might 

interact with other variables related to plague and prairie dog town dynamics.  For 

example, plague might have a lower impact on habitat in a dry year than in a wet year 

when vegetation could grow quickly in the absence of prairie dogs.  Similarly, 

differences between 1-year and 10-year old towns might partly depend upon climate, due 

to differential plant growth and interactions with prey species that might prefer wet or dry 

weather (Conrey Ch. 3). 

 We used generalized linear models (GLMs) to regress nest fate, fledging success, 

and nest distance on the explanatory variables of interest using the glm function in R 

version 2.8.1 (R Development Core Team 2008).  GLMs are a class of models that 

generalize linear regression, allowing other error formulations if data are not normally-

distributed.  The linear model of explanatory variables is related to the response variable 

using an appropriate link function.  In order to determine what form of GLM to use, we 

produced histograms of our data, considered what statistical processes produced the data, 

and chose the most appropriate link functions.  Because each owl nest either succeeds 
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with probability p or fails with probability 1 – p,  each nest represents a Bernoulli trial 

and the nest fate data are binomially distributed.  We ran GLMs of the binomial family 

(logistic regression) with a logit link function. 

 The fledging success data are counts of fledglings per nest, so these are integer 

values with minimum value of zero.  A histogram of the number of fledglings per nest 

appeared to be Poisson distributed, but with many more zero values than predicted by a 

Poisson model.  The shape was a skewed bell curve peaking around 3, but with a second 

much higher peak at zero.  Because Poisson distributions are bound by zero, it is common 

for count data to have inflated zero values.  Our strategy with the fledging success data 

was to first fit a count model using a GLM of the Poisson family with a log link function.  

We then added a zero-inflation term that fit the excess zero counts using a binomial 

model with a logit link function.  After modeling nest fate (zero fledglings vs. at least one 

fledgling), it became clear that a precipitation variable would be needed to adequately 

model the excess zeroes in the zero-inflated Poisson regression.  Therefore, after some 

preliminary fitting of the count data, we added a zero-inflation term before continuing to 

run additive and interaction models on the count data.  Zero-inflated poisson regressions 

used the zeroinfl function (Zeileis et al. 2008) in the pscl package (Jackman 2008) in R. 

 The nest distance data are continuous and bound by zero.  The data appeared to be 

gamma distributed, with a very long tail of distances for the most isolated nests.  We ran 

GLMs of the Gamma family with both inverse and log link functions.  We had initially 

planned to use just the inverse link function, but five models failed to converge with the 

inverse link, and the signs on all beta coefficients were reversed (positive effects were 

negatively signed and vice versa).  For models that converged with both link functions, 

 158



results were very similar.  After running all the models in our set, we checked the validity 

of our results by adding one additional variable.  We knew that nest distances would be 

highly related to the number of nests on a town; if four nests occurred on a town, then all 

three nearest neighbors would be present on the same town and the mean distance would 

be smaller than on towns with fewer nests.  We added a dummy variable for 4+ nests vs. 

fewer nests to determine whether our results would change significantly or if the top 

models would change position. 

 Several pairs failed and then renested in known locations nearby.  For these pairs, 

only the renesting attempts were used in our breeding success models, because the 

eventual success or failure of these pairs depended on the fate of their renesting attempts.  

Only the original locations were used in models of nest distance, because the renest 

locations did not yet exist when owls were arriving on site and establishing nests.  We 

could not use both locations in a given model, because two attempts by a single pair 

within a breeding season cannot be considered independent, especially when the first 

attempt always ended in failure. 

 We ran 29 nest fate models, 30 zero-inflated Poisson fledging success models, 26 

nest distance models, and 5 validation models.  We assessed goodness of fit by plotting 

residuals for the best-ranked model in each set and the general model in which it was 

nested.  A sample of our R code is included in Appendix 1.  The data are available at 

http://sgslter.colostate.edu/data_search.aspx. 
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RESULTS 

Nesting and Plague 

 Burrowing owls were ubiquitous on active prairie dog towns, even in the first year 

following colonization of a new site.  Only twice (two different towns in 2006) did we 

survey active towns with no burrowing owls.  We surveyed five inactive towns, in which 

prairie dogs had been absent for ≥ 10 years as of 2005, on 11 occasions (and three 

surveys each) from 2005 – 2007.  This yielded just one owl nest in an area where burrows 

had been kept open by badgers: a badger was seen and many burrow entrances were 

enlarged.  In contrast, owls frequently nested on towns that had only recently experienced 

plague epizootics, in which prairie dogs had been absent for ≤ 1 year.  Two towns 

plagued out in 2004 just prior to our study, nine plagued prior to the owl breeding season 

between 2005 and 2008, and one was poisoned by the Forest Service and then likely 

plagued but still had some prairie dogs as of summer 2008.  All of these towns were 

recolonized by prairie dogs in ~ 1 year or less, and owls nested on all of them.  This was 

true whether prairie dogs were present in early May when nests were established, or 

whether prairie dogs reoccupied the town later.  However, the three towns that were 

extinct when owls established nests in May 2007 all lost nests relative to 2006.  Towns 

that had already been recolonized by May (this occurred in each year of the study) gained 

nests on average over the previous year, and most owl nests were clustered in the small 

portions of the towns where prairie dogs were active. 

 Mean town size was 36.87 ha (40.37 SD) and ranged from 0.31 – 187.25 ha (Fig. 

4.1).  The mean number of owl nests on towns was 6.06 (4.44 SD: App. 2, Table 4.7).  

For towns that were surveyed in consecutive years, the mean change in nest number was 
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2.42 nests (3.80 SD, n = 12) gained from 2005 – 2006, 0.29 nests (3.59 SD, n = 24) lost 

from 2006 – 2007, and 3.00 nests (4.24 SD, n = 2) gained from 2007 – 2008.  This annual 

change varied from a loss of nine nests to a gain of eight nests on two different towns.  

More nesting occurred during the dryer years when nest and fledging success were higher 

(2006 and 2008) relative to the wetter years when breeding success was lower (2005 and 

2007).   

 We monitored 311 burrowing owl pairs nesting on 21 prairie dog towns (and two 

nesting off towns) over four years.  Eleven pairs failed and renested in known locations, 

resulting in 322 total nest attempts.  From 2005 – 2008, owlets were sighted in 1177 of 

1989 total observations.  The number of owlets counted per nest observation ranged up to 

twelve.  Their ages varied from 8 – 85 d.  Over four years, the date when the first owlets 

emerged from their nest burrows varied from the first to the third week of June.  Most 

owlets fledged from late July to early August, but owlets from several renesting attempts 

did not fledge until September. 

 

Nest Fate 

 Rainfall was by far the strongest predictor of nest fate (Table 4.1).  Higher rainfall 

in 2005 and 2007 was associated with 62% nest success, compared to ~ 84% nest success 

in drier 2006 and 2008 (Table 4.2).  Spring rainfall was highly correlated with summer 

rainfall, but summer rainfall was a better predictor of nest success.  Rainfall levels were 

very similar in alternate years (Table 4.2), and performance of the binary variable (wet 

vs. dry) was quite close to that of the continuous variable.  
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Table 4.1.  Nest Fate Models.  Rainfall and years since the most recent plague event were 
the best predictors of nest fate. 
 
Model AIC ∆AIC Wt Deviance df #Par 
WetxPlagYr 355.60 0.00 0.25 347.60 300 4 
Wet+PlagYr 356.05 0.45 0.20 350.05 301 3 
Wet+PlagYr2 356.64 1.04 0.15 348.64 300 4 
WetxPlagYr2 357.15 1.55 0.11 345.15 298 6 
WetxPlagYr+Grow 357.34 1.74 0.10 347.34 299 5 
Wet+Grow+PlagYr 357.78 2.19 0.08 349.78 300 4 
Wet 360.07 4.47 0.03 356.07 309 2 
Rain 360.73 5.13 0.02 356.73 309 2 
Wet+Grow 360.88 5.28 0.02 354.88 308 3 
WetxGrow 361.09 5.49 0.02 353.09 307 4 
SprRain 361.71 6.11 0.01 357.71 309 2 
Rain+SprRain 361.92 6.32 0.01 355.92 308 3 
Y2005+Y2007 362.06 6.46 0.01 356.06 308 3 
Year 363.57 7.97 0.00 355.57 307 4 
PlagYr2 368.01 12.42 0.00 362.01 301 3 
PlagYr 368.18 12.58 0.00 364.18 302 2 
YrInit2 371.07 15.47 0.00 365.07 305 3 
YrInit 371.43 15.83 0.00 367.43 306 2 
YrInit3 372.01 16.41 0.00 364.01 304 4 
Grow 374.14 18.54 0.00 370.14 309 2 
Size3 375.84 20.24 0.00 367.84 307 4 
Dyn 376.12 20.52 0.00 370.12 308 3 
Dist3 376.66 21.06 0.00 372.66 309 2 
Active 377.61 22.01 0.00 373.61 309 2 
NumNests 377.82 22.22 0.00 373.82 309 2 
Dist3_2 377.88 22.28 0.00 371.88 308 3 
Size 378.19 22.59 0.00 374.19 309 2 
Size2 378.78 23.18 0.00 372.78 308 3 
NumNests2 379.76 24.16 0.00 373.76 308 3 

 
Wet = wet (2005=2007) or dry (2006=2008).  Rain = summer rainfall (mm).  SprRain = 
spring rainfall.  Year = 2005, 2006, 2007, or 2008.  PlagYr = years since most recent 
plague event.  PlagYr2 = PlagYr2.  Dyn = current town dynamics (extinct, growing, or 
stable).  Grow = growing or not (extinct=stable).  Active = active or not.  YrInit = years 
since town was initiated.  YrInit2 = YrInit2.  YrInit3 = YrInit3.  Size = town size.  Size2 = 
Size2.  Size3 = Size3.  Dist3 = mean distance to three nearest nests.  Dist3_2 = Dist32.  
NumNests = number of nests on town.  NumNests2 = NumNests2. 
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Table 4.2.  Breeding Success.  Modeling of apparent nest success and fledging success 
for 311 owl pairs suggested that rainfall during the breeding season was the most 
important factor explaining differences among nests.  The top models constrained the two 
wetter years to be different from the two dryer years (2005 = 2007 and 2006 = 2008).  
Fledging success is the number of owlets per nest.  Means (SD) are shown.  
 

Year 
Summer 
Rainfall 

(mm) 
Nest 

Success 
Fledging 
Success 

(all nests) 

Fledging 
Success 
(fate = 1) 

Pairs 

2005 168 62.3% 1.97 (2.08) 3.16 (1.78) 61 
2006   97 82.4% 3.28 (2.56) 3.98 (2.27) 108 
2007 150 61.5% 1.92 (2.12) 3.13 (1.88) 117 
2008   80 88.0% 3.92 (2.18) 4.45 (1.71) 25 

Overall 124 71.1% 2.56 (2.39) 3.61 (2.06) 311 
 

 Years since the most recent plague event also helped to explain the fate of nests 

on prairie dog towns (Table 4.1).  On its own and in additive models, the plague year 

variable had a negative coefficient, meaning that nests on towns with more recent plague 

events were more likely to be successful (App. 3, Table 4.8).  However, plague year was 

not significant in the interaction model (the top model: Table 4.1), and the 95% 

confidence intervals (CIs) overlapped zero for all models in the set (Table 4.3; App. 3, 

Table 4.8).  Nevertheless, all models with ∆AIC < 2 included plague year, and models 

containing rainfall but not plague year had model weights < 4%.  The effects of rainfall 

(Table 4.2) appeared to be stronger than any of the prairie dog town variables.  The 

quadratic effect was not supported (Table 4.1), so plague effects on nest fate did not 

appear to level off with time. 

 None of the other town-level variables adequately modeled nest fate (Table 4.1; 

App. 3, Table 4.8).  Distances from nests to their three nearest neighbors had no effect on 

their fate.  Residuals from the top model (WetxPlagYr) and the more general model 

(WetxPlagYr2) were fairly small with no apparent trend except that the negative residuals 

associated with failures were somewhat larger in magnitude for the dry years.



Table 4.3.  Coefficients of Top Models.  Coefficients and 95% confidence intervals are shown for the top models in the analyses of 
nest fate (binomial), fledging success (count and zero-inflation coefficients), and nest distance (gamma). 
 
Model Type Coeff Estimate SE z_val p LCI UCI

Binomial (Intercept) 1.428 0.271 5.265 0.000 0.918 1.988
Binomial wet -0.726 0.352 -2.066 0.039 -1.429 -0.046
Binomial plagyr 0.034 0.035 0.969 0.333 -0.027 0.118

WetxPlagYr 

Binomial wetxplagyr -0.055 0.038 -1.440 0.150 -0.142 0.013
Count (Intercept) 1.214 0.095 12.826 0.000 1.029 1.400
Count wet -0.289 0.077 -3.738 0.000 -0.441 -0.138
Count yrinit 0.015 0.007 2.250 0.024 0.002 0.028
Zero (Intercept) -1.538 0.299 -5.151 0.000 -2.123 -0.953
Zero wet 0.647 0.391 1.653 0.098 -0.120 1.414
Zero plagyr -0.039 0.042 -0.942 0.346 -0.121 0.042

Wet+YrInit_zWetxPlagYr 

Zero wetxplagyr 0.062 0.044 1.388 0.165 -0.025 0.149
Gamma (Intercept) 7.416 0.347 21.349 0.000 6.779 8.106
Gamma dynext 0.157 0.373 0.422 0.674 -0.583 0.950
Gamma dyngrow -0.316 0.209 -1.508 0.133 -0.733 0.082
Gamma plagyr 0.017 0.010 1.789 0.075 -0.002 0.037
Gamma yrinit -0.212 0.039 -5.498 0.000 -0.289 -0.140

Dyn+PlagYr+YrInit2 

Gamma yrinit2 0.007 0.002 4.430 0.000 0.004 0.010
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Wet = wet (2005=2007) or dry (2006=2008).  PlagYr = years since most recent plague event.  Dyn = current town dynamics (extinct, 
growing, or stable).  YrInit = years since town was initiated.  YrInit2 = YrInit2. 
 



 

Fledging Success 

 As with nest fate, rainfall was the strongest predictor of fledging success (Table 

4.4).  Increased rainfall in 2005 and 2007 was associated with fewer fledglings per nest 

compared to  2006 and 2008 (Table 4.2): 3.4 fledglings overall and 4 fledglings at 

successful nests in dry years versus 2 fledglings overall and 3.1 fledglings at successful 

nests in wetter years.  Summer rainfall was a better predictor of fledging success than 

spring rainfall (Table 4.5).  Again, performance of the binary variable (wet vs. dry) was 

almost identical to that of the continuous summer rainfall variable.  In addition to 

explaining fledgling counts (Tables 4.3 – 4.5), rainfall also helped to model the excess 

zero counts associated with failed nests (Tables 4.3 – 4.4). 
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Table 4.4.  Fledging Success Zero-Inflation Count Models.  Rainfall and the number of 
years since towns were initiated by prairie dogs were the best predictors of fledging 
success.  The first set of variables (e.g., Wet+YrInit) modeled fledgling counts, and the 
second set (e.g., zWetxPlagYr) modeled the excess zero counts. 
 
Model AIC ∆AIC Wt df #Par 
Wet+YrInit_zWetxPlagYr 1225.42 0.00 0.19 296 7 
Wet+YrInit_zWet+PlagYr 1225.91 0.48 0.15 297 6 
Wet+PlagYr+YrInit_zWet 1225.98 0.56 0.14 297 6 
WetxYrInit_zWetxPlagYr 1226.93 1.51 0.09 295 8 
Wet+PlagYr+YrInit_zWetxPlagYr 1226.98 1.56 0.09 295 8 
Wet+PlagYr2+YrInit_zWet 1227.23 1.81 0.08 296 7 
WetxYrInit_zWet+PlagYr 1227.39 1.97 0.07 296 7 
Wet+PlagYr+YrInit_zWet+PlagYr 1227.44 2.02 0.07 296 7 
Wet+PlagYr2+YrInit_zWetxPlagYr 1228.11 2.69 0.05 294 9 
Wet+PlagYr2+YrInit_zWet+PlagYr 1228.69 3.26 0.04 295 8 
Wet_zWetxPlagYr 1230.43 5.00 0.02 298 6 
Wet_zWet+PlagYr 1230.84 5.42 0.01 299 5 
Wet+PlagYr2_zWetxPlagYr 1231.14 5.72 0.01 296 8 
Wet+PlagYr_zWetxPlagYr 1231.72 6.30 0.01 297 7 
PlagYr2_zWet 1240.54 15.12 0.00 299 5 
PlagYr_zWet 1241.73 16.31 0.00 300 4 
Wet+YrInit_zWet 1248.88 23.46 0.00 303 5 
Wet+YrInit_zWet+Grow 1249.93 24.51 0.00 302 6 
WetxYrInit_zWet 1250.20 24.78 0.00 302 6 
Wet+YrInit_zWet+YrInit 1250.37 24.95 0.00 302 6 
Wet+YrInit_zWetxGrow 1250.56 25.14 0.00 301 7 
Wet_zWet 1259.84 34.42 0.00 307 4 
YrInit_zWet 1262.00 36.58 0.00 304 4 
YrInit2_zWet 1263.68 38.26 0.00 303 5 
Size3_zWet 1268.37 42.95 0.00 305 6 
Size2_zWet 1270.96 45.54 0.00 306 5 
NumNests2_zWet 1271.70 46.28 0.00 306 5 
NumNests_zWet 1271.82 46.40 0.00 307 4 
Size_zWet 1272.41 46.99 0.00 307 4 
Grow_zWet 1274.90 49.47 0.00 307 4 

 
Wet = wet (2005=2007) or dry (2006=2008).  PlagYr = years since most recent plague 
event.  PlagYr2 = PlagYr2.  Grow = growing or not (extinct=stable).  YrInit = years since 
town was initiated.  YrInit2 = YrInit2.  Size2 = Size2.  Size3 = Size3.  NumNests = 
number of nests on town.  NumNests2 = NumNests2. 
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Table 4.5.  Fledging Success Count Only Models.  Summer rainfall was the best predictor 
of fledgling counts. 
 
Model AIC ∆AIC Wt Deviance df #Par
Wet 1409.88 0.00 0.38 742.55 309 2
Rain 1409.94 0.06 0.37 742.61 309 2
Year 1411.50 1.62 0.17 740.13 307 4
SprRain 1412.80 2.92 0.09 745.46 309 2
PlagYr2 1422.10 12.22 0.00 769.72 301 3
PlagYr 1428.79 18.92 0.00 778.42 302 2
Size3 1447.00 37.12 0.00 775.65 307 4
YrInit2 1447.40 37.52 0.00 780.73 305 3
YrInit 1448.60 38.72 0.00 783.91 306 2
Size2 1462.70 52.82 0.00 793.40 308 3
NumNests 1466.50 56.62 0.00 799.22 309 2
NumNests2 1466.90 57.02 0.00 797.61 308 3
Grow 1467.00 57.12 0.00 799.63 309 2
Dyn 1468.90 59.02 0.00 799.60 308 3
Dist3 1469.40 59.52 0.00 802.03 309 2
Dist3_2 1469.90 60.02 0.00 800.60 308 3
Size 1470.30 60.42 0.00 803.00 309 2
Active 1472.00 62.12 0.00 804.70 309 2

 
Wet = wet (2005=2007) or dry (2006=2008).  Rain = summer rainfall (mm).  SprRain = 
spring rainfall.  Year = 2005, 2006, 2007, or 2008.  PlagYr = years since most recent 
plague event.  PlagYr2 = PlagYr2.  Dyn = current town dynamics (extinct, growing, or 
stable).  Grow = growing or not (extinct=stable).  Active = active or not.  YrInit = years 
since town was initiated.  YrInit2 = YrInit2.  Size = town size.  Size2 = Size2.  Size3 = 
Size3.  Dist3 = mean distance to three nearest nests.  Dist3_2 = Dist32.  NumNests = 
number of nests on town.  NumNests2 = NumNests2. 
 
 

 Older towns that had been initiated by prairie dogs a longer time ago had nests 

with higher fledgling counts on average (Tables 4.3 – 4.4).  As parameterized, a town 

was continuously inhabitable by owls during this time because any inactive periods were 

< 2 years in duration.  None of the other prairie dog town variables adequately modeled 

fledging counts (Tables 4.4 – 4.5; App. 3, Tables 4.9 – 4.10).  The excess zeroes 

associated with nest failures were best modeled in the same way as in the nest fate model; 

both used binomial probabilities.  Distances from nests to their three nearest neighbors 
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had no effect on fledging success.  No patterns were apparent in the residuals for either 

the top model (Wet+YrInit_zWetxPlagYr) or the more general model 

(WetxYrInit_zWetxPlagYr) when the data were sorted by plague or initiation year.  The 

largest positive residuals were associated with the most productive nests, and the most 

negative residuals were associated with failed nests in dry years, but most were within 

four units of zero. 

 

Nest Distance 

 Mean distance to the three nearest neighbors was 563.68 m (987.62 SD, range 

61.41 – 7971.81 m) for nests on prairie dog towns and 308.91 m (348.59 SD, range 61.41 

– 3647.93 m) for nests on towns containing at least four nests (where all three nearest 

neighbors were on the same town).  Mean distance to the nearest neighbor was 249.61 m 

(588.92 SD, range 16.49 – 7567.66 m) for nests on prairie dog towns and 183.69 m 

(160.58 SD, range 18.18 – 1117.25 m) for nests on towns containing at least four nests.   

 Spring rainfall was unimportant in modeling the mean distance from each nest to 

its three nearest neighbors (Table 4.6).  Year was a better predictor of nest distances than 

rainfall, but none of these variables produced good models (Table 4.6; App. 3, Table 

4.11). 
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Table 4.6.  Nest Distance Models.  Years since the most recent plague event, time since 
prairie dog town initiation, and current town dynamics were the best predictors of nest 
spacing. 
 
Model AIC ∆AIC Wt Deviance df #Par 
Dyn+PlagYr+YrInit2 4302.71 0.00 0.67 257.72 297 6 
Dyn+PlagYr2+YrInit2 4304.71 2.00 0.25 257.72 296 7 
PlagYr+YrInit2 4307.39 4.68 0.06 264.30 299 4 
PlagYr2+YrInit2 4309.34 6.63 0.02 264.26 298 5 
Dyn+PlagYr2+YrInit 4329.18 26.46 0.00 278.26 297 6 
Dyn+PlagYr+YrInit 4337.21 34.49 0.00 286.43 298 5 
PlagYr2+YrInit 4354.18 51.47 0.00 302.45 299 4 
PlagYr+YrInit 4354.72 52.01 0.00 304.65 300 3 
Dyn+PlagYr2 4365.23 62.52 0.00 293.64 299 5 
Dyn+YrInit2 4391.26 88.55 0.00 263.47 303 5 
Dyn+PlagYr 4397.51 94.79 0.00 323.71 300 4 
PlagYr2 4400.71 97.99 0.00 328.50 301 3 
YrInit2 4416.64 113.93 0.00 286.47 305 3 
YrInit3 4417.66 114.95 0.00 285.68 304 4 
PlagYr 4419.54 116.83 0.00 348.33 302 2 
YrInit 4456.39 153.67 0.00 322.22 306 2 
Dyn 4573.21 270.50 0.00 376.97 308 3 
Size2 4574.25 271.54 0.00 378.03 308 3 
Active 4576.41 273.70 0.00 382.33 309 2 
Size 4578.83 276.11 0.00 384.85 309 2 
Grow 4587.76 285.05 0.00 394.27 309 2 
Year 4592.76 290.05 0.00 395.34 307 4 
SprRain 4593.10 290.39 0.00 400.00 309 2 
Wet 4595.29 292.58 0.00 402.37 309 2 
Y2005+2007 4595.43 292.71 0.00 400.35 308 3 
Y2005 4597.99 295.28 0.00 405.31 309 2 

 
PlagYr = years since most recent plague event.  PlagYr2 = PlagYr2.  Dyn = current town 
dynamics (extinct, growing, or stable).  Grow = growing or not (extinct=stable).  Active 
= active or not.  YrInit = years since town was initiated.  YrInit2 = YrInit2.  Size = town 
size.  Size2 = Size2.  Year = 2005, 2006, 2007, or 2008.  Wet = wet (2005=2007) or dry 
(2006=2008).  SprRain = spring rainfall.   
 

 Nests were closer together on towns that had experienced more recent plague 

events (Tables 4.3, 4.6).  The opposite trend occurred for the number of years since towns 

were initiated by prairie dogs.  The distance between nests was smallest for nests on 

towns that had existed and been inhabitable by owls for a longer period of time, with a 

significant quadratic effect leading to a leveling off of this trend as years since town 
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initiation increased (Tables 4.3, 4.6; App. 3, Table 4.11).  The 95% CI around the 

coefficient for plague year slightly overlapped zero until either town dynamics (Dyn) or 

the quadratic term on initiation year (YrInit2) was removed from the model.  However, 

both time since plague and town initiation were important explanatory variables: ∆AIC 

was > 60 whenever either town history variable was removed from the model. 

 In addition to variables describing prairie dog town history, current town 

dynamics were included in the two best models in the set, which had 92% of the model 

weight (Table 4.6).  However, the coefficients that represented the offsets for growing 

and extinct towns from active towns were not significant in these two models, and their 

95% CIs overlapped zero (Table 4.3).  In higher AIC models, it appeared that nests were 

closer together on fast-growing towns and farther away on extinct towns, compared to 

older and more stable towns (Table 4.6; App. 3, Table 4.11). 

 These effects persisted when the binary variable differentiating nests with fewer 

than three neighbors on a town was included in models (App. 4, Table 4.12).  The 

variables included in the top model did not change.  The effect of town initiation date was 

not significant when the 4+ nest town variable was included in the model, but AIC 

increased by > 18 points and model weight declined to near zero when any of the town 

dynamics variables were removed from the model (App. 4, Table 4.12).  Results for the 

inverse link function were generally parallel to those for the log link (App. 4, Table 4.13). 

 No other variables, including town size, were useful in modeling nest distances 

(Table 4.6; App. 3, Table 4.11).  No trends associated with any of the independent 

variables that we tested were apparent in the residuals from the top or second-ranked 

more general model, although the residuals were larger for the most isolated nests.  The 
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tail of the distribution was too long for good model fit for these isolated nests with very 

large mean distance to the three nearest neighbors.  To summarize, nests were closest 

together on recently plagued towns where prairie dog activity had been nearly continuous 

for a long time, apart from a brief absence prior to recolonization. 

 

DISCUSSION 

Influence of Precipitation 

 Our objective was to determine how climate and prairie dog – plague dynamics 

influence burrowing owl population dynamics.  Summer rainfall was by far the strongest 

predictor of nest fate and fledging success (Tables 4.1 – 4.5).  Apparent nest success was 

~ 22% lower in wetter years, and fledging success dropped by ~ 1.4 owlets overall and 

one owlet at successful nests (Table 4.2).  Our hypothesis that rainfall during the breeding 

season would reduce breeding success was supported over the alternative hypothesis that 

spring or summer rainfall would be beneficial.  Summer rainfall was a better predictor of 

breeding success than spring rainfall (Tables 4.1, 4.4, 4.5), and the effects of increased 

rainfall were universally negative.  More years of data might show annual patterns 

independent of rainfall, but our data showed that breeding success was similar among 

years with comparable summer rainfall. 

 Burrowing owls do not hunt during large rainfall events, and raptors are generally 

less active in wet weather (Village 1986; Woodard 2002).  Nestlings may starve or at 

least show declining body condition during extended wet periods (Wellicome 2000; 

Griebel and Savidge 2003).  Consumption of grasshoppers and some mammals was much 

higher in 2006 (a dry year) than in 2005 or 2007 (normal to wet years: Conrey Ch. 3).  
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Mammal consumption was associated with higher nest and fledging success, while bird 

consumption, which increased in wetter years, was associated with nest failure.  Our prey 

use data indicated that foraging opportunities for mammals off prairie dog towns were 

probably important to productive nests, and owls may be unwilling to fly far from the 

nest in wet conditions.  Only one nest was known to fail in 2007 as a direct result of 

flooding.  Large portions of one prairie dog town flooded, and the water level was up to 

burrow entrances. 

 In contrast to our breeding success results, spring rainfall was unimportant in 

modeling the mean distance from each nest to its three nearest neighbors (Table 4.6).  

Year was a better predictor of nest distances than rainfall, but none of these variables 

produced good models (Table 4.6; App. 3, Table 4.11).  However, nest numbers did 

change between wet and dry years.  For towns that were surveyed in consecutive years, 

nest number per town declined from dry 2006 to wetter 2007, while the dryer years of 

2006 and 2008 gained nests over the previous wetter years (App. 2; Table 4.7). 

 We studied only the effects of spring and summer precipitation, at the time when 

owls are arriving and breeding.  This was likely the most important time of year to study, 

and most precipitation falls from April – September.  However, additional years of data 

would help in understanding the role of winter precipitation or lag effects from previous 

years’ precipitation; the dry years of our study both followed much wetter years.  Large 

storm events might be particularly important to analyze, especially if one could model 

daily nest survival.  During May – July in our study, storms showed a high correlation 

with total summer rainfall, so our wet/dry categories were unchanged by the addition of 

storm data: 2005 and 2007 each had five storms of which 2 – 3 were large (> 30 mm), 
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while 2006 and 2008 each had three storms of which 0 – 1 were large.  One storm in 

2007 dropped 40 – 80 mm of rain across the western PNG, which is ~ 1/5 the total 

precipitation in an average year.  Although the amount, timing, and intensity of 

precipitation are thought to be the primary climatic factors structuring shortgrass steppe 

ecology (Lauenroth and Sala 1992), the effects of temperature, which varies less than 

precipitation does from year to year, could also be examined if more years of data were 

available.  Summer temperature and precipitation tend to be negatively correlated on the 

shortgrass steppe (Pielke and Doesken 2008). 

 

Influence of Prairie Dog and Plague Dynamics 

 Colonization and extinction dynamics of prairie dog towns influenced burrowing 

owl use of towns, nest fate, fledging success, and nest distances.  Only once did a pair 

nest on a town that had been inactive for many years.  With only two exceptions in 2006, 

owls used every active prairie dog town that we surveyed as well as towns that had gone 

extinct due to plague within the past year.  When beginning our field work, it appeared 

that owls nested at higher density and abundance on recently plagued and recolonized 

towns than on older, active towns.  We therefore hypothesized that distances between 

nests would be lower on such towns.  Frequent nesting on these post-plague towns 

suggested that breeding success might be higher relative to older, active towns that had 

not experienced plague events for a long time, although habitat use does not necessarily 

indicate habitat quality (Van Horne 1983). 

 This hypothesis was partly confirmed.  The number of years since the most recent 

plague event helped to explain nest fate and nest distances (Tables 4.1, 4.3, 4.6; App. 3), 
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but not fledgling counts (Tables 4.4 – 4.5).  Nests were more likely to succeed and be 

closer to their neighbors on towns with more recent plague events.  On its own and in 

additive models of nest fate, the plague year variable had a negative coefficient, meaning 

that nests on towns with more recent plague events were more likely to be successful 

(App. 3, Table 4.8).  Although the 95% CIs for plague year overlapped zero (Table 4.1, 

4.3; App. 3, Table 4.8), all models with ∆AIC < 2 included plague year, and models 

without this variable had model weights < 4%.  Effect sizes suggest that the negative 

effects of rainfall were stronger than any of the prairie dog town variables in influencing 

breeding success. 

 Nests may be closer together after plague epizootics because owls want to occupy 

active portions of plagued and recolonized towns, and this portion has been reduced.  

Most owl nests were clustered in the small portions of towns where prairie dogs were 

active.  However, the closer nest spacing observed after plague events was not entirely 

caused by the same number of nests packing into a smaller space; on average, plagued 

and recolonized towns gained 2.53 nests (4.05 SD) from the previous year, while all other 

towns either lost nests (extinct towns), remained stable (older active towns), or gained 

fewer nests (new towns). 

 When towns experience plague epizootics, heterogeneity on the town increases.  

Previous studies have found a positive relationship between breeding owls and landscape 

heterogeneity (Orth and Kennedy 2001), and nests tend to be close to colony edges 

(Toombs 1997; Ekstein 1999; Griebel 2000; Griebel and Savidge 2003; Teaschner 2005).  

One study cited higher owlet body condition (Griebel and Savidge 2003) near edges, but 

another found lower nest success (Ekstein 1999).  We observed differential rates of 
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vegetation regrowth within towns after epizootics, depending on rainfall and whether an 

area was in a hill or a swale.  Heterogeneity was particularly pronounced when small 

numbers of prairie dogs were active in some parts of the town but not others, and we 

thought that a wider variety of prey might become available and benefit owls.  However, 

we found little evidence that plague affects prey use (Conrey Ch. 3). 

 We did not predict the direction of the effect of town initiation year on fledging 

success and nest distances.  On average, more owlets fledged from nests on towns where 

prairie dogs had been on site for a longer time (Tables 4.3 – 4.4), and nests were closer 

together (Tables 4.3, 4.6).  There was no effect on nest fate.  Years since town initiation 

was different from years since plague, because we did not reset the clock on a town 

unless prairie dogs were absent for 2 years.  Older towns have more available burrows 

and more developed tunnel systems than younger towns, which may provide more 

potential nest locations, perches, satellite burrows, and refugia from predators or 

parasites.  Following plague outbreaks, more of these burrows are empty and accessible 

to owls. 

 Increased burrow availability may be an important reason why owl nests tend to 

succeed on recently plagued towns and fledge more young on long occupied sites.  We 

often observed adult owls successfully defending nests or perch mounds from prairie 

dogs who apparently wanted to reoccupy a burrow.  One of the first signs that a nest had 

failed was the rapid reoccupation and digging activity of prairie dogs.  However, owlets 

usually appeared uncertain of dominance relationships, so their use of satellite burrows 

may be curtailed where prairie dogs are abundant and actively using the majority of 

burrows. 
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 Current town dynamics had some explanatory value for nest distances, but not for 

breeding success.  These variables were included in the top ranked nest distance models 

with 92% of the model weight in the set (Table 4.6), but the 95% CIs around the 

coefficients for the top two models overlapped zero (Table 4.3).  In other models, it 

appeared that nests were closer together on fast-growing towns and farther away on 

extinct towns, compared to older and more stable towns (Table 4.6; App. 3, Table 4.11).  

Given the explanatory power of the plague and initiation year variables, one reason that 

current town dynamics were not more helpful was the combination of new and recently 

recolonized towns into one class.  Like plagued towns, brand new towns have less space 

available for nesting relative to older active towns, but fewer pairs may be aware of a 

new town and choose to nest there.  In addition, new towns have fewer burrows overall, 

and therefore these nests may have fewer than three neighbors sharing the town and 

larger mean distance to the three nearest neighbors.  If a plague epizootic occurs, a 

burrow system is already in place when prairie dogs reoccupy an existing site.  This 

makes plagued and recolonized towns different from brand new towns or sites that were 

inactive for many years before recolonization.  Prairie dog history on a site matters for 

nesting owls. 

 None of the other prairie dog dynamics variables were useful in modeling 

breeding success or nest distances.  The lack of correspondence of town size with nest 

distances was surprising.  Burrowing owls cluster their nests on prairie dog towns 

(Desmond et al. 1995; Desmond and Savidge 1996), so the correlation between nest 

distances and town size is not as tight as it would otherwise be.  However, several studies 

have reported higher nest density on small colonies than large colonies (Hughes 1993; 
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Desmond and Savidge 1996; Woodard 2002).  Although Stapp et al. (2004) found that 

small and large towns were more vulnerable to extinction than intermediate towns, the 

positive relationships that we observed between breeding owls, plague, and town age 

were unrelated to town size.  Distances from nests to their three nearest neighbors had no 

effect on their fate or fledging success, nor did the total number of nests on a town. 

 Taken together, this suggests that burrowing owls are generally able to cluster 

their nests on the PNG without the penalty to their breeding success that might be 

expected from competition with neighbors (e.g., Griebel 2000).  The reasons for 

clustering are unclear and may result from differential habitat quality across prairie dog 

towns or other habitat preferences.  For example, the tendency to nest near edges of 

prairie dog towns may bring adults closer to prey that live off towns (Conrey Ch. 3).  In 

addition, more burrows may be available near town edges when owls arrive in spring 

before prairie dogs have expanded back into foraging burrows and “summer homes” dug 

during the previous year (M. Antolin pers. comm.; D. Tripp pers. comm.).  Clustering 

may also have a social benefit.  It was not uncommon to observe association of owlets 

from different nests, especially for the youngest owlets late in the season when parental 

care was waning and both adults and older juveniles were spending more and more time 

farther from the nesting area.  Several times we observed cooperation of adult owls who 

mobbed badgers. 

   

Estimates of Breeding Success and Nest Distance 

Most of the nest failure and owlet mortality that we observed could not be traced 

to a cause, but was likely a result of starvation, adult abandonment, shooting, non-badger 
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predation, and collisions with vehicles.  Of the 322 nest attempts we monitored from 

2005 – 2008, two failed nests were dug out by badgers, one was flooded, one was 

trampled by cows, and one was disturbed by shooters who camped near the nest and shot 

prairie dogs and other targets for 3 days.  Nest destruction by badgers was ruled out as the 

cause of failure in all other nest attempts, because their digging and major expansion of 

the burrow entrance is quite noticeable and easy to diagnose.  One adult and three owlets 

at different nests were found after being shot, and one owlet was hit by a vehicle.  

Although debris from recreational shooting such as appliances and broken glass was 

common on some sites, and shot prairie dogs were found within 25 m of several owl 

nests, the effect of this disturbance on owls was difficult to determine in many cases. 

 Our estimates of apparent nest success were within the range reported by other 

researchers and were most similar to those from other prairie dog towns.  We found 62 – 

88% nest success (mean 71%) over 4 years.  For studies of owls nesting on prairie dog 

towns, apparent nest success averaged ~ 74% and ranged from 52 – 92% (Plumpton 

1992; Ekstein 1999; Lutz and Plumpton 1999; Griebel 2000; Restani et al. 2001; 

Woodard 2002; Griebel and Savidge 2007; Lantz and Conway 2009).  For owls nesting 

elsewhere in other types of mammal burrows, agricultural areas, and urban areas, 

apparent nest success averaged ~ 58% and ranged from 41 – 85% (Haug 1985; Green and 

Anthony 1989; Olenick 1990; James et al. 1997; Mealey 1997; Wellicome et al. 1997; 

Lehman et al. 1998; Millsap and Bear 2000; Holmes et al. 2003; Conway et al. 2006)  

Nest success appears generally to be higher on prairie dog towns than in other habitats. 

 Our fledging success estimates were also within the range reported by other 

researchers.  We counted 1.9 – 3.9 fledglings per nest (mean 2.6) over 4 years, and 3.1 – 

 178



 

4.5 fledglings per successful nest (mean 3.6).  In previous studies on prairie dog towns, 

fledging success averaged ~ 2.6 owlets per nest (range 1.9 – 3.8), and 3.8 owlets per 

successful nest (range 3.5 – 5.3: Ekstein 1999; Lutz and Plumpton 1999; Desmond et al. 

2000; Griebel 2000; Restani et al. 2001; Woodard 2002; Griebel and Savidge 2007).  

Fledging success in other habitats averaged ~ 3.0 owlets per nest (range 1.5 – 4.6) and 3.6 

per successful nest (range 2.9 – 5.3: Wedgewood 1976; James et al. 1997; Mealey 1997; 

Conway et al. 2006).  Although apparent nest success appears to be higher on prairie dog 

towns, fledgling counts are similar among habitats. 

 Much of the variation among studies likely has an environmental or biological 

cause, but some may also relate to differences in methods and frequencies of nest 

monitoring, unequal sightability of owlets (Conrey Ch. 2), and different definitions of 

fledging age.  To facilitate comparisons with other studies and other species, we have 

presented results for the four owlet ages most commonly referenced in the literature as 

well as their behavioral progression (App. 5, Table 4.14). 

 Other studies have reported distances to the nearest single neighbor, but not to 

multiple neighbors.  Desmond and Savidge (1996) measured mean nearest neighbor 

distance of 105.1 m on small prairie dog towns, and 125 m within nest clusters on large 

towns in Nebraska.  Griebel (2000) found mean nearest neighbor distances of 266.7 – 

296.3 m on towns in South Dakota.  Nearest neighbor distance on active PNG prairie dog 

towns in 1999 – 2000 was 170.7 m (Woodard 2002); there was some overlap in sampled 

towns between our study and Woodard (2002).  In our study, mean distance to the nearest 

neighbor was 249.6 m (588.9 SD, range 16.5 – 7567.7 m) on prairie dog towns and 188.3 
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m (164.7 SD, range 16.5 – 1117.3 m) within prairie dog towns containing more than one 

nest. 

 

Summary and Implications 

 To summarize, rainfall was the strongest predictor of nest and fledging success.  

Nests were more likely to succeed when plague events were more recent, and they 

produced more fledglings on towns where prairie dogs had been resident for a longer 

time.  Nests were closest together on recently plagued towns where prairie dog activity 

had been nearly continuous for a long time, aside from a brief absence following 

epizootics. 

 We observed a strong negative association of total summer rainfall with 

burrowing owl breeding success.  However, it is likely that some nest failure and owlet 

mortality was caused by large storm events (acute rather than chronic effects: Village 

1986; Wellicome 2000; Woodard 2002; Griebel and Savidge 2003).  Climate scientists 

expect precipitation regimes to become more extreme in the future, with larger rainfall 

events separated by more extended dry periods (Easterling et al. 2000; Karl and 

Trenberth 2003; Goswami et al. 2006; Allan and Soden 2008; Groisman and Knight 

2008).  The consequences would extend beyond primary production (Knapp et al. 2008; 

Heisler-White 2009), and animal species may be affected in unexpected ways.  Wildlife 

managers should be aware of potential impacts on burrowing owls and other dryland 

species. 

 Black-tailed prairie dogs provide the vast majority of nesting habitat for 

burrowing owls in Colorado (Orth and Kennedy 2001; VerCauteren et al. 2001; Tipton et 
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al. 2008).  Plague, an introduced pathogen that now occurs throughout much of the 

American shortgrass steppe, causes extirpation of prairie dog towns (Barnes 1993; Cully 

and Williams 2001; Antolin et al. 2002).  Burrowing owls were ubiquitous on active 

prairie dog towns of the PNG, but were absent from towns that were not recolonized after 

plague epizootics.  However, our results suggest that intensive management of plague is 

not advisable if the primary goal is burrowing owl conservation.  As long as connectivity 

between towns is high enough to ensure high likelihood of rapid recolonization by prairie 

dogs, burrowing owls can adapt to plague and even benefit in some cases.  Plague 

management via dusting for fleas or vaccination programs might be important on isolated 

prairie dog towns or when conservation of black-footed ferrets or mountain plovers is a 

priority.  In other areas, it will be more useful to preserve prairie dog habitat and 

connectivity between towns at a landscape scale.   
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APPENDIX 1 – R CODE 
 
################################################ 
### RUNNING BINOMIAL NEST FATE ANALYSIS ### 
################################################ 
success <- read.csv("regressiondata_success.csv", header=TRUE) #reads in data 
head(success) #shows headers and first six rows 
attach(success) #can now call column headings without naming variables 
 
#Running Binomial Models# 
SprRain = glm(fate ~ sprrain, family=binomial) #logistic regression 
summary(SprRain) #displays output 
AIC(SprRain) 
confint_SprRain <- confint(SprRain) #95% confidence interval based on profile 
likelihood 
# Make .csv Tables of Coeffs and Conf Ints # 
outcoef_SprRain <- summary(SprRain)$coefficients 
write.csv(outcoef_SprRain, "outcoef_SprRain.csv", row.names=T) 
write.csv(confint_SprRain, "confint_SprRain.csv", row.names=T) 
 
 
####################################################### 
### RUNNING POISSON FLEDGLING COUNT ANALYSIS ### 
####################################################### 
success <- read.csv("regressiondata_success.csv", header=TRUE) #reads in data 
head(success) #shows headers and first six rows 
attach(success) #can now call column headings without naming variables 
 
#Adding new columns modified from raw data# 
plagyr2 <- plagyr^2 #creates new data 
success <- cbind(success, plagyr2) #appends onto data frame 
 
#Running Poisson Models# 
PlagYr2 = glm(fledge ~ plagyr + plagyr2, family=poisson) #poisson regression 
summary(PlagYr2) #displays output 
AIC(PlagYr2) 
confint_PlagYr2 <- confint(PlagYr2) #95% confidence interval based on profile 
likelihood 
# Make .csv Tables of Coeffs and Conf Ints # 
outcoef_PlagYr2 <- summary(PlagYr2)$coefficients 
write.csv(outcoef_PlagYr2, "outcoef_PlagYr2.csv", row.names=T) 
write.csv(confint_PlagYr2, "confint_PlagYr2.csv", row.names=T) 
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#Zero-Inflated Poisson Models# 
# Count terms still modeled as Poisson with log link 
# Zero inflation terms modeled as Binomial with logit link 
 
#Running Zero-Inflated Poisson Models# 
PlagYr2_zWet = zeroinfl(fledge ~ plagyr + plagyr2 | wet) #zero-inflated poisson 
regression 
summary(PlagYr2_zWet) #displays output 
AIC(PlagYr2_zWet) #displays AIC value 
confint_PlagYr2_zWet <- confint(PlagYr2_zWet) #95% confidence interval 
# Make .csv Tables of Coeffs and Conf Ints # 
countcoef_PlagYr2_zWet <- summary(PlagYr2_zWet)$coefficients$count 
zerocoef_PlagYr2_zWet <- summary(PlagYr2_zWet)$coefficients$zero 
write.csv(countcoef_PlagYr2_zWet, "countcoef_PlagYr2_zWet.csv", row.names=T) 
write.csv(zerocoef_PlagYr2_zWet, "zerocoef_PlagYr2_zWet.csv", row.names=T) 
write.csv(confint_PlagYr2_zWet, "confint_PlagYr2_zWet.csv", row.names=T) 
 
 
################################################### 
### RUNNING GAMMA NEST DISTANCE ANALYSIS ### 
################################################### 
density <- read.csv("regressiondata_density.csv", header=TRUE) #reads in data 
head(density) #shows headers and first six rows 
attach(density) #can now call column headings without naming variables 
 
Dyn = glm(dist3 ~ dynext + dyngrow, family=Gamma(link="log")) #gamma regression 
summary(Dyn) #displays output 
AIC(Dyn) #displays AIC value with more precision 
gamma.shape(Dyn) #displays MLE of shape parameter 
confint_Dyn <- confint(Dyn) #95% confidence interval based on profile likelihood 
# Make .csv Tables of Coeffs and Conf Ints # 
coef_Dyn <- summary(Dyn)$coefficients 
write.csv(coef_Dyn, "coef_Dyn.csv", row.names=T) 
write.csv(confint_Dyn, "confint_Dyn.csv", row.names=T) 
 
 
################## 
### RESIDUALS ### 
################## 
WetxPlagYr = glm(fate ~ wet + plagyr + wetxplagyr, family=binomial) #runs model 
resid_WetxPlagYr <- WetxPlagYr$residuals #names residuals 
write.csv(resid_WetxPlagYr, "resid_WetxPlagYr.csv", row.names=T) #outputs to file
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APPENDIX 2 – OWL NESTS ON PRAIRIE DOG TOWNS 
 
Table 4.7.  Nests Per Year on Prairie Dog Towns.  The number of burrowing owl nests on 
prairie dog towns varied by year.  In several cases, the U.S. Forest Service Pawnee 
National Grassland assigned new numbers to towns that were recolonized after many 
years of inactivity, while we continued to use the original town number.  We began 
monitoring two new towns before the Forest Service named them.  The Forest Service 
did not survey prairie dog towns after three years of inactivity.  We had more resources in 
2006 and 2007 and were able to survey more towns.  NS = not surveyed.   
 

Pdog Town # of Nests 
Conrey FS 2005 2006 2007 2008

51 51 9 13 10 NS
53 NS NS 0 0 NS
54 54 2 5 8 NS
62 62 9 9 2 NS
66 66 NS 0 4 NS
68 NS 0 0 0 NS
69 72 NS 4 5 NS
70 70 NS 0 5 NS
71 NS 1 0 1 NS
73 NS NS 0 0 NS
74 74 10 15 6 6
75 NS NS 0 0 NS
76 76 6 3 8 NS
77 92 NS 4 2 NS
78 78 8 12 13 19
79 79 5 2 2 NS
80 80 3 11 9 NS
81 81 NS NS 17 NS
82 82 5 13 6 NS
83 83 2 6 5 NS
84 84 NS 2 5 NS
85 90 NS 3 1 NS
86 87 NS 1 2 NS
AN 99 NS 3 2 NS
EL 56,96 NS 1 4 NS



 

 
 
APPENDIX 3 – GLM COEFFICIENTS 
 
Table 4.8.  Binomial Nest Fate Analysis.  Coefficients and 95% confidence intervals are shown for the analysis of nest fate (binomial) 
with a logit link function. 
 
Model Coeff Estimate SE z_val p LCI UCI
Year (Intercept) 0.00328 0.00110 2.98568 0.00306 0.93266 3.43341
Year y2005 -0.00201 0.00113 -1.77684 0.07658 -3.00678 -0.29670
Year y2006 -0.00134 0.00114 -1.17443 0.24113 -1.95719 0.73822
Year y2007 -0.00170 0.00113 -1.50650 0.13297 -3.00298 -0.39172
          
Rain (Intercept) 3.20154 0.60515 5.29049 0.00000 2.05622 4.43737
Rain rain -0.01725 0.00431 -4.00632 0.00006 -0.02594 -0.00900
          
SprRain (Intercept) 3.15070 0.60215 5.23242 0.00000 2.00558 4.37395
SprRain sprrain -0.02624 0.00668 -3.92859 0.00009 -0.03965 -0.01339
          
Wet (Intercept) 1.61849 0.23337 6.93516 0.00000 1.18224 2.10165
Wet wet -1.13752 0.27975 -4.06618 0.00005 -1.70311 -0.60251
          
Dyn (Intercept) 0.62509 0.20100 3.10995 0.00187 0.23770 1.02823
Dyn dynext -0.08610 0.51632 -0.16675 0.86757 -1.08014 0.97242
Dyn dyngrow 0.49550 0.26433 1.87456 0.06085 -0.02419 1.01417
          
Grow (Intercept) 0.61218 0.18512 3.30688 0.00094 0.25486 0.98259
Grow dyngrow 0.50841 0.25247 2.01379 0.04403 0.01357 1.00510
          
Active (Intercept) 0.53900 0.47559 1.13331 0.25708 -0.37160 1.52748
Active active 0.38450 0.49297 0.77995 0.43542 -0.63375 1.33050
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PlagYr (Intercept) 1.08008 0.16881 6.39830 0.00000 0.75637 1.41942
PlagYr plagyr -0.02267 0.01216 -1.86429 0.06228 -0.04643 0.00136
          
PlagYr2 (Intercept) 1.27614 0.21859 5.83803 0.00000 0.85809 1.71706
PlagYr2 plagyr -0.12428 0.06959 -1.78591 0.07411 -0.26043 0.01362
PlagYr2 plagyr2 0.00385 0.00259 1.48451 0.13767 -0.00130 0.00891
          
YrInit (Intercept) 0.66329 0.26977 2.45875 0.01394 0.14040 1.20116
YrInit yrinit 0.02357 0.02254 1.04568 0.29571 -0.02037 0.06822
          
YrInit2 (Intercept) 1.04647 0.37975 2.75572 0.00586 0.32706 1.82543
YrInit2 yrinit -0.07452 0.06961 -1.07047 0.28441 -0.21707 0.05759
YrInit2 yrinit2 0.00464 0.00316 1.46607 0.14263 -0.00121 0.01134
          
YrInit3 (Intercept) 1.38102 0.51199 2.69734 0.00699 0.42114 2.44442
YrInit3 yrinit -0.26158 0.19620 -1.33324 0.18245 -0.65504 0.11708
YrInit3 yrinit2 0.02458 0.01970 1.24773 0.21213 -0.01378 0.06369
YrInit3 yrinit3 -0.00055 0.00054 -1.03059 0.30273 -0.00161 0.00050
          
Dist3 (Intercept) 0.98419 0.14389 6.84010 0.00000 0.70662 1.27153
Dist3 dist3 -0.00014 0.00011 -1.25728 0.20865 -0.00035 0.00008
          
Dist3_2 (Intercept) 0.89509 0.17539 5.10342 0.00000 0.55350 1.24275
Dist3_2 dist3 0.00014 0.00034 0.40713 0.68391 -0.00050 0.00084
Dist3_2 dist3_2 0.00000 0.00000 -0.85823 0.39077 0.00000 0.00000
          
NumNests (Intercept) 0.75249 0.26583 2.83074 0.00464 0.23755 1.28208
NumNests numnests 0.01599 0.02595 0.61644 0.53761 -0.03453 0.06746
          
NumNests2 (Intercept) 0.66161 0.45628 1.44999 0.14706 -0.21594 1.58151
NumNests2 numnests 0.04023 0.10253 0.39235 0.69480 -0.16406 0.23928
NumNests2 numnests2 -0.00122 0.00499 -0.24438 0.80693 -0.01087 0.00877197

 



 

Size (Intercept) 0.90623 0.18301 4.95192 0.00000 0.55297 1.27168
Size size -0.00014 0.00245 -0.05905 0.95291 -0.00488 0.00478
          
Size2 (Intercept) 0.72372 0.23589 3.06810 0.00215 0.26920 1.19646
Size2 size 0.00868 0.00782 1.11015 0.26693 -0.00667 0.02403
Size2 size2 -0.00005 0.00004 -1.19329 0.23276 -0.00014 0.00003
          
Size3 (Intercept) 1.08307 0.29524 3.66840 0.00024 0.52060 1.68273
Size3 size -0.02450 0.01707 -1.43534 0.15119 -0.05852 0.00858
Size3 size2 0.00047 0.00024 1.92099 0.05473 0.00000 0.00096
Size3 size3 0.00000 0.00000 -2.16731 0.03021 0.00000 0.00000
          
Rain+SprRain (Intercept) 3.16000 0.61838 5.11016 0.00000 1.98697 4.42227
Rain+SprRain rain -0.05346 0.04160 -1.28497 0.19880 -0.14067 0.02347
Rain+SprRain sprrain 0.05682 0.06466 0.87881 0.37951 -0.06375 0.19135
          
Y2005+Y2007 (Intercept) 1.61849 0.23337 6.93516 0.00000 1.18224 2.10165
Y2005+Y2007 X2005 -1.11640 0.35250 -3.16706 0.00154 -1.81408 -0.42675
Y2005+Y2007 X2007 -1.14848 0.30096 -3.81612 0.00014 -1.75240 -0.56861
          
Wet+Grow (Intercept) 1.41643 0.29493 4.80264 0.00000 0.85711 2.01716
Wet+Grow wet -1.07363 0.28567 -3.75834 0.00017 -1.65002 -0.52614
Wet+Grow dyngrow 0.28772 0.26362 1.09139 0.27510 -0.23106 0.80430
          
Wet+PlagYr (Intercept) 1.64007 0.24519 6.68907 0.00000 1.18003 2.14546
Wet+PlagYr wet -1.04772 0.28896 -3.62586 0.00029 -1.63023 -0.49346
Wet+PlagYr plagyr -0.01073 0.01278 -0.83963 0.40112 -0.03563 0.01460
          
Wet+Grow+PlagYr (Intercept) 1.49432 0.37159 4.02139 0.00006 0.78812 2.25010
Wet+Grow+PlagYr wet -1.03446 0.29010 -3.56593 0.00036 -1.61903 -0.47777
Wet+Grow+PlagYr dyngrow 0.16953 0.32816 0.51662 0.60542 -0.48267 0.80828
Wet+Grow+PlagYr plagyr -0.00593 0.01579 -0.37591 0.70698 -0.03696 0.02514198

 



 

WetxGrow (Intercept) 1.85630 0.48088 3.86018 0.00011 1.00352 2.92982
WetxGrow wet -1.61335 0.52522 -3.07176 0.00213 -2.75494 -0.65736
WetxGrow dyngrow -0.32006 0.55021 -0.58171 0.56076 -1.49753 0.70077
WetxGrow wetxdyngrow 0.82245 0.63246 1.30040 0.19346 -0.37170 2.13859
          
WetxPlagYr (Intercept) 1.42822 0.27125 5.26532 0.00000 0.91850 1.98794
WetxPlagYr wet -0.72641 0.35162 -2.06590 0.03884 -1.42947 -0.04593
WetxPlagYr plagyr 0.03420 0.03529 0.96894 0.33258 -0.02661 0.11770
WetxPlagYr wetxplagyr -0.05492 0.03814 -1.44012 0.14983 -0.14236 0.01272
          
WetxPlagYr+Grow (Intercept) 1.28440 0.38951 3.29748 0.00098 0.54316 2.07599
WetxPlagYr+Grow wet -0.71377 0.35255 -2.02460 0.04291 -1.41848 -0.03127
WetxPlagYr+Grow dyngrow 0.16795 0.32944 0.50981 0.61019 -0.48842 0.80793
WetxPlagYr+Grow plagyr 0.03883 0.03641 1.06644 0.28622 -0.02483 0.12383
WetxPlagYr+Grow wetxplagyr -0.05480 0.03810 -1.43829 0.15035 -0.14218 0.01279
          
Wet+PlagYr2 (Intercept) 1.78920 0.27850 6.42446 0.00000 1.26432 2.36000
Wet+PlagYr2 wet -1.02394 0.28971 -3.53438 0.00041 -1.60764 -0.46789
Wet+PlagYr2 plagyr -0.09461 0.07135 -1.32604 0.18483 -0.23400 0.04685
Wet+PlagYr2 plagyr2 0.00316 0.00264 1.19536 0.23195 -0.00209 0.00832
          
WetxPlagYr2 (Intercept) 1.67826 0.34985 4.79713 0.00000 1.02075 2.40089
WetxPlagYr2 wet -0.79203 0.45564 -1.73829 0.08216 -1.70213 0.09167
WetxPlagYr2 plagyr -0.12982 0.13693 -0.94811 0.34307 -0.39027 0.15644
WetxPlagYr2 plagyr2 0.00685 0.00564 1.21465 0.22450 -0.00463 0.01818
WetxPlagYr2 wetxplagyr 0.02499 0.16079 0.15543 0.87648 -0.30317 0.33405
WetxPlagYr2 wetxplagyr2 -0.00373 0.00643 -0.57972 0.56210 -0.01650 0.00918

 
Wet = wet (2005=2007) or dry (2006=2008).  Rain = summer rainfall (mm).  SprRain = spring rainfall.  Year = 2005, 2006, 2007, or 
2008.  PlagYr = years since most recent plague event.  PlagYr2 = PlagYr2.  Dyn = current town dynamics (extinct, growing, or stable).  
Grow = growing or extinct=stable.  Active = active or not.  YrInit = years since town initiated.  YrInit2 = YrInit2.  YrInit3 = YrInit3.  
Size = town size.  Size2 = Size2.  Size3 = Size3.  Dist3 = distance to three nearest nests.  Dist3_2 = Dist32.  NumNests = number of 
nests on town.  NumNests2 = NumNests2. 
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Table 4.9.  Zero-Inflated Poisson Fledgling Count Analysis.  Coefficients and 95% confidence intervals are shown for the analysis of 
fledging success.  Count coefficients are poisson (log link function) and zero-inflation coefficients are binomial (logit link). 
 
Model Type Coeff Estimate SE z_val p LCI UCI
Wet_zWet Count (Intercept) 1.38562 0.04890 28.33566 0.00000 1.28977 1.48146
Wet_zWet Count wet -0.29487 0.07643 -3.85810 0.00011 -0.44467 -0.14507
Wet_zWet Zero (Intercept) -1.73617 0.25885 -6.70717 0.00000 -2.24351 -1.22883
Wet_zWet Zero wet 1.11199 0.31027 3.58389 0.00034 0.50386 1.72012
           
Grow_zWet Count (Intercept) 1.23658 0.06175 20.02485 0.00000 1.11555 1.35762
Grow_zWet Count dyngrow 0.02436 0.07738 0.31478 0.75293 -0.12730 0.17602
Grow_zWet Zero (Intercept) -1.81806 0.27803 -6.53906 0.00000 -2.36299 -1.27313
Grow_zWet Zero wet 1.25283 0.32146 3.89731 0.00010 0.62278 1.88289
           
PlagYr2_zWet Count (Intercept) 1.34595 0.05780 23.28567 0.00000 1.23266 1.45923
PlagYr2_zWet Count plagyr -0.04512 0.02411 -1.87156 0.06127 -0.09237 0.00213
PlagYr2_zWet Count plagyr2 0.00156 0.00086 1.80605 0.07091 -0.00013 0.00326
PlagYr2_zWet Zero (Intercept) -1.81310 0.27909 -6.49654 0.00000 -2.36010 -1.26610
PlagYr2_zWet Zero wet 1.21959 0.32321 3.77339 0.00016 0.58611 1.85307
           
PlagYr_zWet Count (Intercept) 1.30306 0.04690 27.78602 0.00000 1.21115 1.39498
PlagYr_zWet Count plagyr -0.00656 0.00401 -1.63720 0.10159 -0.01441 0.00129
PlagYr_zWet Zero (Intercept) -1.75829 0.27289 -6.44309 0.00000 -2.29315 -1.22342
PlagYr_zWet Zero wet 1.18810 0.31837 3.73180 0.00019 0.56410 1.81209
           
YrInit_zWet Count (Intercept) 1.08570 0.08301 13.07954 0.00000 0.92301 1.24840
YrInit_zWet Count yrinit 0.01471 0.00630 2.33321 0.01964 0.00235 0.02707
YrInit_zWet Zero (Intercept) -1.82391 0.28163 -6.47636 0.00000 -2.37589 -1.27193
YrInit_zWet Zero wet 1.22275 0.32534 3.75842 0.00017 0.58510 1.86040
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YrInit2_zWet Count (Intercept) 1.12965 0.11231 10.05820 0.00000 0.90953 1.34978 
YrInit2_zWet Count yrinit 0.00488 0.01798 0.27125 0.78620 -0.03037 0.04012 
YrInit2_zWet Count yrinit2 0.00041 0.00069 0.59819 0.54971 -0.00094 0.00176 
YrInit2_zWet Zero (Intercept) -1.82622 0.28229 -6.46930 0.00000 -2.37949 -1.27294 
YrInit2_zWet Zero wet 1.22423 0.32592 3.75619 0.00017 0.58543 1.86302 
           
NumNests_zWet Count (Intercept) 1.12312 0.08240 13.62966 0.00000 0.96161 1.28462 
NumNests_zWet Count numnests 0.01364 0.00762 1.79013 0.07343 -0.00129 0.02857 
NumNests_zWet Zero (Intercept) -1.80149 0.27367 -6.58270 0.00000 -2.33787 -1.26511 
NumNests_zWet Zero wet 1.23095 0.31802 3.87069 0.00011 0.60765 1.85425 
           
NumNests2_zWet Count (Intercept) 1.29685 0.14143 9.16940 0.00000 1.01965 1.57405 
NumNests2_zWet Count numnests -0.02996 0.03015 -0.99357 0.32043 -0.08905 0.02914 
NumNests2_zWet Count numnests2 0.00210 0.00139 1.51070 0.13087 -0.00062 0.00482 
NumNests2_zWet Zero (Intercept) -1.79939 0.27313 -6.58808 0.00000 -2.33471 -1.26407 
NumNests2_zWet Zero wet 1.22867 0.31754 3.86936 0.00011 0.60631 1.85104 
           
Size_zWet Count (Intercept) 1.18581 0.05629 21.06679 0.00000 1.07549 1.29613 
Size_zWet Count size100 0.11816 0.07270 1.62542 0.10407 -0.02432 0.26065 
Size_zWet Zero (Intercept) -1.82686 0.28006 -6.52308 0.00000 -2.37577 -1.27795 
Size_zWet Zero wet 1.26176 0.32296 3.90681 0.00009 0.62876 1.89476 
           
Size2_zWet Count (Intercept) 1.09642 0.07549 14.52349 0.00000 0.94846 1.24438 
Size2_zWet Count size100 0.54640 0.24445 2.23523 0.02540 0.06729 1.02551 
Size2_zWet Count size100_2 -0.26929 0.14815 -1.81768 0.06911 -0.55967 0.02108 
Size2_zWet Zero (Intercept) -1.81527 0.27683 -6.55732 0.00000 -2.35785 -1.27269 
Size2_zWet Zero wet 1.24180 0.32081 3.87088 0.00011 0.61303 1.87057 
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Size3_zWet Count (Intercept) 1.20272 0.08844 13.59940 0.00000 1.02939 1.37606 
Size3_zWet Count size100 -0.39780 0.50286 -0.79108 0.42890 -1.38339 0.58778 
Size3_zWet Count size100_2 1.16820 0.68752 1.69915 0.08929 -0.17932 2.51572 
Size3_zWet Count size100_3 -0.55034 0.25894 -2.12534 0.03356 -1.05785 -0.04282 
Size3_zWet Zero (Intercept) -1.82179 0.27872 -6.53620 0.00000 -2.36808 -1.27550 
Size3_zWet Zero wet 1.23385 0.32326 3.81687 0.00014 0.60027 1.86743 
           
Wet+YrInit_zWet Count (Intercept) 1.22838 0.08955 13.71686 0.00000 1.05286 1.40389 
Wet+YrInit_zWet Count wet -0.29519 0.07658 -3.85445 0.00012 -0.44530 -0.14509 
Wet+YrInit_zWet Count yrinit 0.01397 0.00631 2.21542 0.02673 0.00161 0.02634 
Wet+YrInit_zWet Zero (Intercept) -1.73540 0.26091 -6.65139 0.00000 -2.24678 -1.22403 
Wet+YrInit_zWet Zero wet 1.07081 0.31361 3.41451 0.00064 0.45616 1.68547 
           
WetxYrInit_zWet Count (Intercept) 1.27947 0.10787 11.86084 0.00000 1.06804 1.49090 
WetxYrInit_zWet Count wet -0.41867 0.16861 -2.48310 0.01302 -0.74914 -0.08821 
WetxYrInit_zWet Count yrinit 0.00964 0.00820 1.17534 0.23986 -0.00644 0.02572 
WetxYrInit_zWet Count wetxyrinit 0.01054 0.01279 0.82442 0.40970 -0.01452 0.03560 
WetxYrInit_zWet Zero (Intercept) -1.73070 0.25990 -6.65915 0.00000 -2.24009 -1.22131 
WetxYrInit_zWet Zero wet 1.06048 0.31337 3.38409 0.00071 0.44628 1.67468 
           
Wet+YrInit_zWet+PlagYr Count (Intercept) 1.21491 0.09453 12.85166 0.00000 1.02962 1.40019 
Wet+YrInit_zWet+PlagYr Count wet -0.28835 0.07734 -3.72814 0.00019 -0.43995 -0.13676 
Wet+YrInit_zWet+PlagYr Count yrinit 0.01474 0.00659 2.23768 0.02524 0.00183 0.02764 
Wet+YrInit_zWet+PlagYr Zero (Intercept) -1.77328 0.27541 -6.43859 0.00000 -2.31309 -1.23348 
Wet+YrInit_zWet+PlagYr Zero wet 1.00701 0.32221 3.12534 0.00178 0.37549 1.63853 
Wet+YrInit_zWet+PlagYr Zero plagyr 0.01150 0.01392 0.82674 0.40838 -0.01577 0.03878 
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Wet+YrInit_zWetxPlagYr Count (Intercept) 1.21414 0.09466 12.82585 0.00000 1.02860 1.39968 
Wet+YrInit_zWetxPlagYr Count wet -0.28914 0.07735 -3.73832 0.00019 -0.44074 -0.13755 
Wet+YrInit_zWetxPlagYr Count yrinit 0.01483 0.00659 2.24996 0.02445 0.00191 0.02775 
Wet+YrInit_zWetxPlagYr Zero (Intercept) -1.53758 0.29851 -5.15089 0.00000 -2.12265 -0.95252 
Wet+YrInit_zWetxPlagYr Zero wet 0.64685 0.39133 1.65294 0.09834 -0.12015 1.41385 
Wet+YrInit_zWetxPlagYr Zero plagyr -0.03912 0.04154 -0.94167 0.34636 -0.12055 0.04230 
Wet+YrInit_zWetxPlagYr Zero wetxplagyr 0.06168 0.04444 1.38796 0.16515 -0.02542 0.14877 
           
Wet+YrInit_zWet+Grow Count (Intercept) 1.22738 0.08971 13.68175 0.00000 1.05156 1.40321 
Wet+YrInit_zWet+Grow Count wet -0.29398 0.07657 -3.83931 0.00012 -0.44405 -0.14390 
Wet+YrInit_zWet+Grow Count yrinit 0.01401 0.00632 2.21828 0.02654 0.00163 0.02639 
Wet+YrInit_zWet+Grow Zero (Intercept) -1.53783 0.32677 -4.70619 0.00000 -2.17829 -0.89738 
Wet+YrInit_zWet+Grow Zero wet 1.01285 0.31996 3.16559 0.00155 0.38575 1.63995 
Wet+YrInit_zWet+Grow Zero dyngrow -0.28522 0.29268 -0.97451 0.32980 -0.85885 0.28842 
           
Wet+YrInit_zWetxGrow Count (Intercept) 1.22914 0.08954 13.72656 0.00000 1.05364 1.40465 
Wet+YrInit_zWetxGrow Count wet -0.29514 0.07657 -3.85440 0.00012 -0.44522 -0.14506 
Wet+YrInit_zWetxGrow Count yrinit 0.01392 0.00631 2.20498 0.02746 0.00155 0.02629 
Wet+YrInit_zWetxGrow Zero (Intercept) -1.96429 0.54486 -3.60514 0.00031 -3.03219 -0.89638 
Wet+YrInit_zWetxGrow Zero wet 1.53544 0.59269 2.59061 0.00958 0.37378 2.69710 
Wet+YrInit_zWetxGrow Zero dyngrow 0.30697 0.61921 0.49574 0.62007 -0.90666 1.52060 
Wet+YrInit_zWetxGrow Zero wetxdyngrow -0.80291 0.71053 -1.13003 0.25847 -2.19552 0.58969 
           
Wet+YrInit_zWet+YrInit Count (Intercept) 1.23423 0.08959 13.77585 0.00000 1.05863 1.40983 
Wet+YrInit_zWet+YrInit Count wet -0.29508 0.07654 -3.85515 0.00012 -0.44510 -0.14506 
Wet+YrInit_zWet+YrInit Count yrinit 0.01352 0.00633 2.13510 0.03275 0.00111 0.02593 
Wet+YrInit_zWet+YrInit Zero (Intercept) -1.53319 0.37983 -4.03654 0.00005 -2.27764 -0.78874 
Wet+YrInit_zWet+YrInit Zero wet 1.06476 0.31295 3.40231 0.00067 0.45139 1.67814 
Wet+YrInit_zWet+YrInit Zero yrinit -0.01813 0.02545 -0.71240 0.47622 -0.06802 0.03176 
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Wet_zWet+PlagYr Count (Intercept) 1.39081 0.04969 27.98741 0.00000 1.29341 1.48821 
Wet_zWet+PlagYr Count wet -0.29508 0.07718 -3.82324 0.00013 -0.44636 -0.14381 
Wet_zWet+PlagYr Zero (Intercept) -1.75929 0.27204 -6.46694 0.00000 -2.29249 -1.22609 
Wet_zWet+PlagYr Zero wet 1.01787 0.31825 3.19828 0.00138 0.39410 1.64163 
Wet_zWet+PlagYr Zero plagyr 0.01158 0.01382 0.83837 0.40182 -0.01550 0.03866 
           
Wet_zWetxPlagYr Count (Intercept) 1.39147 0.04962 28.04325 0.00000 1.29422 1.48872 
Wet_zWetxPlagYr Count wet -0.29621 0.07717 -3.83835 0.00012 -0.44747 -0.14496 
Wet_zWetxPlagYr Zero (Intercept) -1.52750 0.29587 -5.16273 0.00000 -2.10740 -0.94761 
Wet_zWetxPlagYr Zero wet 0.66422 0.38750 1.71411 0.08651 -0.09527 1.42371 
Wet_zWetxPlagYr Zero plagyr -0.03734 0.04030 -0.92639 0.35424 -0.11633 0.04166 
Wet_zWetxPlagYr Zero wetxplagyr 0.05977 0.04324 1.38228 0.16688 -0.02498 0.14452 
           
WetxYrInit_zWet+PlagYr Count (Intercept) 1.26408 0.11576 10.91940 0.00000 1.03719 1.49098 
WetxYrInit_zWet+PlagYr Count wet -0.40270 0.17722 -2.27234 0.02307 -0.75003 -0.05536 
WetxYrInit_zWet+PlagYr Count yrinit 0.01068 0.00867 1.23229 0.21784 -0.00631 0.02767 
WetxYrInit_zWet+PlagYr Count wetxyrinit 0.00955 0.01329 0.71862 0.47237 -0.01650 0.03561 
WetxYrInit_zWet+PlagYr Zero (Intercept) -1.76798 0.27440 -6.44316 0.00000 -2.30579 -1.23017 
WetxYrInit_zWet+PlagYr Zero wet 0.99663 0.32195 3.09562 0.00196 0.36562 1.62764 
WetxYrInit_zWet+PlagYr Zero plagyr 0.01148 0.01393 0.82369 0.41012 -0.01583 0.03878 
           
WetxYrInit_zWetxPlagYr Count (Intercept) 1.26242 0.11602 10.88143 0.00000 1.03503 1.48981 
WetxYrInit_zWetxPlagYr Count wet -0.40124 0.17743 -2.26134 0.02374 -0.74900 -0.05347 
WetxYrInit_zWetxPlagYr Count yrinit 0.01086 0.00868 1.25100 0.21093 -0.00615 0.02787 
WetxYrInit_zWetxPlagYr Count wetxyrinit 0.00936 0.01331 0.70340 0.48181 -0.01672 0.03544 
WetxYrInit_zWetxPlagYr Zero (Intercept) -1.53396 0.29761 -5.15419 0.00000 -2.11727 -0.95065 
WetxYrInit_zWetxPlagYr Zero wet 0.63796 0.39135 1.63016 0.10307 -0.12907 1.40499 
WetxYrInit_zWetxPlagYr Zero plagyr -0.03857 0.04115 -0.93736 0.34857 -0.11922 0.04208 
WetxYrInit_zWetxPlagYr Zero wetxplagyr 0.06112 0.04408 1.38672 0.16553 -0.02527 0.14752 
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Wet+PlagYr+YrInit_zWetxPlagYr Count (Intercept) 1.23329 0.09871 12.49445 0.00000 1.03983 1.42675 
Wet+PlagYr+YrInit_zWetxPlagYr Count wet -0.27859 0.07892 -3.53002 0.00042 -0.43327 -0.12391 
Wet+PlagYr+YrInit_zWetxPlagYr Count plagyr -0.00269 0.00409 -0.65912 0.50982 -0.01070 0.00532 
Wet+PlagYr+YrInit_zWetxPlagYr Count yrinit 0.01445 0.00660 2.18913 0.02859 0.00151 0.02739 
Wet+PlagYr+YrInit_zWetxPlagYr Zero (Intercept) -1.53093 0.29790 -5.13916 0.00000 -2.11480 -0.94707 
Wet+PlagYr+YrInit_zWetxPlagYr Zero wet 0.65241 0.38964 1.67439 0.09405 -0.11127 1.41609 
Wet+PlagYr+YrInit_zWetxPlagYr Zero plagyr -0.04081 0.04269 -0.95605 0.33905 -0.12448 0.04286 
Wet+PlagYr+YrInit_zWetxPlagYr Zero wetxplagyr 0.06222 0.04545 1.36904 0.17099 -0.02686 0.15130 
           
Wet+PlagYr2+YrInit_zWetxPlagYr Count (Intercept) 1.29352 0.11947 10.82738 0.00000 1.05937 1.52768 
Wet+PlagYr2+YrInit_zWetxPlagYr Count wet -0.27337 0.07911 -3.45534 0.00055 -0.42843 -0.11831 
Wet+PlagYr2+YrInit_zWetxPlagYr Count plagyr -0.02703 0.02748 -0.98356 0.32533 -0.08089 0.02683 
Wet+PlagYr2+YrInit_zWetxPlagYr Count plagyr2 0.00093 0.00099 0.93935 0.34755 -0.00101 0.00286 
Wet+PlagYr2+YrInit_zWetxPlagYr Count yrinit 0.01246 0.00700 1.78114 0.07489 -0.00125 0.02617 
Wet+PlagYr2+YrInit_zWetxPlagYr Zero (Intercept) -1.53143 0.29836 -5.13284 0.00000 -2.11620 -0.94666 
Wet+PlagYr2+YrInit_zWetxPlagYr Zero wet 0.64649 0.39044 1.65579 0.09777 -0.11876 1.41174 
Wet+PlagYr2+YrInit_zWetxPlagYr Zero plagyr -0.04288 0.04430 -0.96784 0.33313 -0.12970 0.04395 
Wet+PlagYr2+YrInit_zWetxPlagYr Zero wetxplagyr 0.06453 0.04687 1.37670 0.16860 -0.02734 0.15641 
           
Wet+PlagYr_zWetxPlagYr Count (Intercept) 1.40992 0.05411 26.05572 0.00000 1.30387 1.51598 
Wet+PlagYr_zWetxPlagYr Count wet -0.28256 0.07879 -3.58611 0.00034 -0.43699 -0.12813 
Wet+PlagYr_zWetxPlagYr Count plagyr -0.00341 0.00409 -0.83426 0.40413 -0.01143 0.00461 
Wet+PlagYr_zWetxPlagYr Zero (Intercept) -1.51962 0.29514 -5.14889 0.00000 -2.09808 -0.94117 
Wet+PlagYr_zWetxPlagYr Zero wet 0.67086 0.38553 1.74007 0.08185 -0.08478 1.42649 
Wet+PlagYr_zWetxPlagYr Zero plagyr -0.03936 0.04157 -0.94680 0.34374 -0.12084 0.04212 
Wet+PlagYr_zWetxPlagYr Zero wetxplagyr 0.06039 0.04438 1.36096 0.17353 -0.02658 0.14737 
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Wet+PlagYr2_zWetxPlagYr Count (Intercept) 1.46742 0.06563 22.36039 0.00000 1.33880 1.59605 
Wet+PlagYr2_zWetxPlagYr Count wet -0.27411 0.07909 -3.46571 0.00053 -0.42913 -0.11909 
Wet+PlagYr2_zWetxPlagYr Count plagyr -0.04229 0.02575 -1.64205 0.10058 -0.09276 0.00819 
Wet+PlagYr2_zWetxPlagYr Count plagyr2 0.00149 0.00093 1.60459 0.10858 -0.00033 0.00331 
Wet+PlagYr2_zWetxPlagYr Zero (Intercept) -1.52330 0.29639 -5.13955 0.00000 -2.10421 -0.94239 
Wet+PlagYr2_zWetxPlagYr Zero wet 0.66003 0.38756 1.70303 0.08856 -0.09958 1.41963 
Wet+PlagYr2_zWetxPlagYr Zero plagyr -0.04242 0.04381 -0.96844 0.33282 -0.12828 0.04343 
Wet+PlagYr2_zWetxPlagYr Zero wetxplagyr 0.06393 0.04639 1.37805 0.16819 -0.02700 0.15487 
           
Wet+PlagYr+YrInit_zWet+PlagYr Count (Intercept) 1.23496 0.09871 12.51048 0.00000 1.04148 1.42843 
Wet+PlagYr+YrInit_zWet+PlagYr Count wet -0.27830 0.07871 -3.53599 0.00041 -0.43256 -0.12404 
Wet+PlagYr+YrInit_zWet+PlagYr Count plagyr -0.00277 0.00408 -0.67724 0.49825 -0.01077 0.00524 
Wet+PlagYr+YrInit_zWet+PlagYr Count yrinit 0.01434 0.00659 2.17449 0.02967 0.00141 0.02726 
Wet+PlagYr+YrInit_zWet+PlagYr Zero (Intercept) -1.76343 0.27462 -6.42126 0.00000 -2.30169 -1.22518 
Wet+PlagYr+YrInit_zWet+PlagYr Zero wet 1.00683 0.32147 3.13195 0.00174 0.37676 1.63690 
Wet+PlagYr+YrInit_zWet+PlagYr Zero plagyr 0.01039 0.01409 0.73714 0.46104 -0.01723 0.03801 
           
Wet+PlagYr2+YrInit_zWet+PlagYr Count (Intercept) 1.29138 0.11973 10.78561 0.00000 1.05671 1.52605 
Wet+PlagYr2+YrInit_zWet+PlagYr Count wet -0.27367 0.07880 -3.47284 0.00051 -0.42812 -0.11922 
Wet+PlagYr2+YrInit_zWet+PlagYr Count plagyr -0.02530 0.02707 -0.93433 0.35014 -0.07836 0.02777 
Wet+PlagYr2+YrInit_zWet+PlagYr Count plagyr2 0.00086 0.00097 0.88247 0.37752 -0.00105 0.00277 
Wet+PlagYr2+YrInit_zWet+PlagYr Count yrinit 0.01246 0.00699 1.78166 0.07480 -0.00125 0.02617 
Wet+PlagYr2+YrInit_zWet+PlagYr Zero (Intercept) -1.76846 0.27531 -6.42347 0.00000 -2.30806 -1.22886 
Wet+PlagYr2+YrInit_zWet+PlagYr Zero wet 1.00799 0.32258 3.12473 0.00178 0.37574 1.64024 
Wet+PlagYr2+YrInit_zWet+PlagYr Zero plagyr 0.01048 0.01408 0.74447 0.45659 -0.01712 0.03809 
           
Wet+PlagYr+YrInit_zWet Count (Intercept) 1.23749 0.09858 12.55377 0.00000 1.04429 1.43070 
Wet+PlagYr+YrInit_zWet Count wet -0.27825 0.07866 -3.53739 0.00040 -0.43242 -0.12408 
Wet+PlagYr+YrInit_zWet Count plagyr -0.00315 0.00408 -0.77180 0.44023 -0.01113 0.00484 
Wet+PlagYr+YrInit_zWet Count yrinit 0.01432 0.00659 2.17335 0.02975 0.00141 0.02724 
Wet+PlagYr+YrInit_zWet Zero (Intercept) -1.70470 0.26072 -6.53837 0.00000 -2.21571 -1.19369 
Wet+PlagYr+YrInit_zWet Zero wet 1.05579 0.31403 3.36205 0.00077 0.44030 1.67128 



 

Wet+PlagYr2+YrInit_zWet Count (Intercept) 1.29326 0.11951 10.82096 0.00000 1.05901 1.52750 
Wet+PlagYr2+YrInit_zWet Count wet -0.27356 0.07874 -3.47422 0.00051 -0.42788 -0.11923 
Wet+PlagYr2+YrInit_zWet Count plagyr -0.02548 0.02709 -0.94069 0.34686 -0.07858 0.02761 
Wet+PlagYr2+YrInit_zWet Count plagyr2 0.00085 0.00097 0.87539 0.38136 -0.00106 0.00276 
Wet+PlagYr2+YrInit_zWet Count yrinit 0.01247 0.00699 1.78480 0.07429 -0.00122 0.02616 
Wet+PlagYr2+YrInit_zWet Zero (Intercept) -1.70952 0.26182 -6.52941 0.00000 -2.22267 -1.19636 
Wet+PlagYr2+YrInit_zWet Zero wet 1.05820 0.31512 3.35810 0.00078 0.44058 1.67582 

 
Wet = wet (2005=2007) or dry (2006=2008).  PlagYr = years since most recent plague event.  PlagYr2 = PlagYr2.  Grow = growing or 
not (extinct=stable).  YrInit = years since town was initiated.  YrInit2 = YrInit2.  Size = town size.  Size2 = Size2.  Size3 = Size3.  
NumNests = number of nests on town.  NumNests2 = NumNests2. 
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Table 4.10.  Poisson Fledgling Count Analysis.  Coefficients and 95% confidence intervals are shown for the analysis of fledging 
success (poisson with log link function). 
 
Model Coeff Estimate SE z_val p LCI UCI
Year (Intercept) 1.36609 0.10102 13.52362 0.00000 1.16134 1.55775
Year X2005 -0.68947 0.13615 -5.06402 0.00000 -0.95552 -0.42102
Year X2006 -0.17893 0.11414 -1.56754 0.11699 -0.39817 0.04979
Year X2007 -0.71217 0.12103 -5.88418 0.00000 -0.94598 -0.47096
          
Rain (Intercept) 2.03587 0.13903 14.64319 0.00000 1.76169 2.30686
Rain rain -0.00874 0.00111 -7.85213 0.00000 -0.01093 -0.00656
          
SprRain (Intercept) 2.05419 0.14559 14.10954 0.00000 1.76765 2.33854
SprRain sprrain -0.01377 0.00181 -7.61810 0.00000 -0.01733 -0.01024
          
Wet (Intercept) 1.22333 0.04704 26.00842 0.00000 1.12970 1.31412
Wet wet -0.56157 0.07149 -7.85523 0.00000 -0.70219 -0.42184
          
Dyn (Intercept) 0.83411 0.06312 13.21484 0.00000 0.70779 0.95531
Dyn dynext 0.02812 0.16188 0.17370 0.86210 -0.30165 0.33446
Dyn dyngrow 0.17301 0.07733 2.23735 0.02526 0.02265 0.32593
          
Grow (Intercept) 0.83833 0.05812 14.42333 0.00000 0.72220 0.95012
Grow dyngrow 0.16879 0.07331 2.30244 0.02131 0.02593 0.31343
          
Active (Intercept) 0.86222 0.14907 5.78414 0.00000 0.55510 1.14084
Active active 0.08376 0.15346 0.54580 0.58521 -0.20434 0.39867
          
PlagYr (Intercept) 1.03971 0.04486 23.17759 0.00000 0.95064 1.12651
PlagYr plagyr -0.01307 0.00382 -3.41691 0.00063 -0.02068 -0.00568

208

 



 

 

PlagYr2 (Intercept) 1.14353 0.05630 20.31044 0.00000 1.03190 1.25265
PlagYr2 plagyr -0.07552 0.02212 -3.41481 0.00064 -0.11968 -0.03295
PlagYr2 plagyr2 0.00240 0.00084 2.87166 0.00408 0.00079 0.00407
          
YrInit (Intercept) 0.71873 0.08041 8.93779 0.00000 0.55916 0.87439
YrInit yrinit 0.02045 0.00625 3.27305 0.00106 0.00819 0.03268
          
YrInit2 (Intercept) 0.85841 0.10920 7.86064 0.00000 0.63881 1.06713
YrInit2 yrinit -0.01032 0.01809 -0.57027 0.56849 -0.04531 0.02566
YrInit2 yrinit2 0.00129 0.00071 1.80814 0.07058 -0.00013 0.00267
          
Dist3 (Intercept) 0.97639 0.04081 23.92601 0.00000 0.89568 1.05568
Dist3 dist3 -0.00006 0.00004 -1.65120 0.09870 -0.00014 0.00001
          
Dist3_2 (Intercept) 0.94126 0.05057 18.61440 0.00000 0.84108 1.03934
Dist3_2 dist3 0.00005 0.00010 0.49881 0.61792 -0.00015 0.00025
Dist3_2 dist3_2 0.00000 0.00000 -1.16436 0.24428 0.00000 0.00000
          
NumNests (Intercept) 0.77740 0.07781 9.99153 0.00000 0.62312 0.92816
NumNests numnests 0.01740 0.00721 2.41492 0.01574 0.00323 0.03148
          
NumNests2 (Intercept) 0.91775 0.13345 6.87689 0.00000 0.65095 1.17425
NumNests2 numnests -0.01853 0.02904 -0.63806 0.52344 -0.07490 0.03899
NumNests2 numnests2 0.00175 0.00137 1.27636 0.20183 -0.00097 0.00441
          
Size (Intercept) 0.88718 0.05235 16.94796 0.00000 0.78338 0.98861
Size size 0.00097 0.00068 1.43078 0.15249 -0.00038 0.00228
          
Size2 (Intercept) 0.74113 0.07244 10.23137 0.00000 0.59676 0.88078
Size2 size 0.00766 0.00229 3.34691 0.00082 0.00320 0.01217
Size2 size2 -0.00004 0.00001 -3.02931 0.00245 -0.00007 -0.00001209

 



 

 

Size3 (Intercept) 0.93818 0.08287 11.32174 0.00000 0.77252 1.09746
Size3 size -0.00968 0.00467 -2.07166 0.03830 -0.01881 -0.00049
Size3 size2 0.00022 0.00006 3.50779 0.00045 0.00010 0.00035
Size3 size3 0.00000 0.00000 -4.18536 0.00003 0.00000 0.00000

 
Wet = wet (2005=2007) or dry (2006=2008).  Rain = summer rainfall (mm).  SprRain = spring rainfall.  Year = 2005, 2006, 2007, or 
2008.  PlagYr = years since most recent plague event.  PlagYr2 = PlagYr2.  Dyn = current town dynamics (extinct, growing, or stable).  
Grow = growing or not (extinct=stable).  Active = active or not.  YrInit = years since town was initiated.  YrInit2 = YrInit2.  Size = 
town size.  Size2 = Size2.  Size3 = Size3.  Dist3 = mean distance to three nearest nests.  Dist3_2 = Dist32.  NumNests = number of 
nests on town.  NumNests2 = NumNests2. 
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Table 4.11.  Gamma Nest Distance Analysis.  Coefficients and 95% confidence intervals are shown for the analysis of nest distance 
(gamma with a log link function). 
 
Model Coeff Estimate SE z_val p LCI UCI
Year (Intercept) 5.72017 0.33493 17.07858 0.00000 5.12843 6.45707
Year X2005 0.94960 0.39769 2.38780 0.01755 0.11660 1.69652
Year X2006 0.52585 0.37168 1.41479 0.15814 -0.26775 1.20752
Year X2007 0.72773 0.36898 1.97226 0.04948 -0.06175 1.40271
          
Y2005 (Intercept) 6.30787 0.10952 57.59520 0.00000 6.10062 6.53049
Y2005 X2005 0.36190 0.24729 1.46345 0.14436 -0.10152 0.87318
          
Y2005+2007 (Intercept) 6.16603 0.14913 41.34565 0.00000 5.88732 6.47330
Y2005+2007 X2005 0.50373 0.26596 1.89403 0.05916 -0.00370 1.04503
Y2005+2007 X2007 0.28187 0.21800 1.29298 0.19699 -0.14508 0.71273
          
SprRain (Intercept) 5.54192 0.41819 13.25215 0.00000 4.74088 6.38053
SprRain sprrain 0.00991 0.00486 2.03700 0.04250 0.00036 0.01943
          
Wet (Intercept) 6.16603 0.15078 40.89475 0.00000 5.88439 6.47686
Wet wet 0.36356 0.19930 1.82420 0.06909 -0.03202 0.75174
          
Dyn (Intercept) 6.43949 0.16689 38.58439 0.00000 6.12930 6.78545
Dyn dynext 0.93271 0.43318 2.15316 0.03208 0.15477 1.88264
Dyn dyngrow -0.27734 0.21082 -1.31555 0.18930 -0.69930 0.13011
          
Grow (Intercept) 6.64553 0.15594 42.61703 0.00000 6.35471 6.96755
Grow dyngrow -0.48338 0.20328 -2.37785 0.01802 -0.88785 -0.08831
          
Active (Intercept) 7.37220 0.39803 18.52162 0.00000 6.68166 8.26844
Active active -1.09733 0.41078 -2.67136 0.00795 -2.01241 -0.37483
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PlagYr (Intercept) 5.99906 0.12018 49.91904 0.00000 5.76371 6.25093
PlagYr plagyr 0.03062 0.00922 3.32068 0.00101 0.01163 0.05078
          
PlagYr2 (Intercept) 5.75779 0.13430 42.87208 0.00000 5.51672 6.01576
PlagYr2 plagyr 0.15226 0.04639 3.28239 0.00115 0.07298 0.23619
PlagYr2 plagyr2 -0.00471 0.00174 -2.70233 0.00728 -0.00789 -0.00171
          
YrInit (Intercept) 6.84148 0.18336 37.31120 0.00000 6.54888 7.15254
YrInit yrinit -0.05689 0.01494 -3.80690 0.00017 -0.07984 -0.03349
          
YrInit2 (Intercept) 7.47334 0.22719 32.89409 0.00000 7.04927 7.94555
YrInit2 yrinit -0.21026 0.03948 -5.32536 0.00000 -0.28889 -0.13663
YrInit2 yrinit2 0.00652 0.00166 3.92791 0.00011 0.00352 0.00979
          
YrInit3 (Intercept) 7.35813 0.29059 25.32101 0.00000 6.85176 7.93448
YrInit3 yrinit -0.14314 0.11348 -1.26134 0.20815 -0.35541 0.05951
YrInit3 yrinit2 -0.00055 0.01137 -0.04847 0.96137 -0.02103 0.02040
YrInit3 yrinit3 0.00019 0.00031 0.62129 0.53487 -0.00036 0.00074
          
Size (Intercept) 6.65389 0.13226 50.30802 0.00000 6.41277 6.91091
Size size -0.00567 0.00178 -3.19049 0.00157 -0.00880 -0.00236
          
Size2 (Intercept) 6.79440 0.17627 38.54463 0.00000 6.49226 7.12359
Size2 size -0.01358 0.00577 -2.35296 0.01925 -0.02398 -0.00345
Size2 size2 0.00005 0.00003 1.51722 0.13024 -0.00001 0.00012
          
4Nests (Intercept) 7.97207 0.11652 68.41524 0.00000 7.75206 8.20950
4Nests X4nesttown -2.32021 0.12414 -18.68981 0.00000 -2.57143 -2.08408
          
Dyn+PlagYr (Intercept) 5.77162 0.26482 21.79411 0.00000 5.34045 6.23274
Dyn+PlagYr dynext 1.13562 0.45264 2.50890 0.01264 0.35738 2.04524
Dyn+PlagYr dyngrow 0.08507 0.25963 0.32767 0.74339 -0.35637 0.51446212 Dyn+PlagYr plagyr 0.03951 0.01239 3.18891 0.00158 0.01742 0.06259

 



 

Dyn+PlagYr2 (Intercept) 5.21497 0.24543 21.24839 0.00000 4.72050 5.69871
Dyn+PlagYr2 dynext 1.50277 0.38623 3.89085 0.00012 0.79187 2.29944
Dyn+PlagYr2 dyngrow 0.30130 0.21709 1.38789 0.16620 -0.11460 0.72469
Dyn+PlagYr2 plagyr 0.21501 0.04443 4.83914 0.00000 0.12961 0.30789
Dyn+PlagYr2 plagyr2 -0.00644 0.00160 -4.03212 0.00007 -0.00971 -0.00341
          
Dyn+YrInit2 (Intercept) 7.90827 0.24968 31.67314 0.00000 7.46371 8.38095
Dyn+YrInit2 dynext -0.21913 0.32273 -0.67898 0.49767 -0.84331 0.49433
Dyn+YrInit2 dyngrow -0.58299 0.14852 -3.92517 0.00011 -0.87215 -0.29893
Dyn+YrInit2 yrinit -0.23918 0.03642 -6.56661 0.00000 -0.31047 -0.17123
Dyn+YrInit2 yrinit2 0.00785 0.00152 5.15344 0.00000 0.00492 0.01093
          
PlagYr+YrInit (Intercept) 6.48033 0.20283 31.94960 0.00000 6.11955 6.86326
PlagYr+YrInit plagyr 0.02163 0.00825 2.62332 0.00915 0.00487 0.03929
PlagYr+YrInit yrinit -0.04400 0.01504 -2.92562 0.00370 -0.06778 -0.02002
          
PlagYr+YrInit2 (Intercept) 7.17733 0.22065 32.52833 0.00000 6.74728 7.64447
PlagYr+YrInit2 plagyr 0.02592 0.00686 3.77701 0.00019 0.01254 0.03984
PlagYr+YrInit2 yrinit -0.21511 0.03677 -5.85003 0.00000 -0.28856 -0.14606
PlagYr+YrInit2 yrinit2 0.00716 0.00152 4.70237 0.00000 0.00439 0.01013
          
PlagYr2+YrInit (Intercept) 6.32406 0.25246 25.04940 0.00000 5.87324 6.80125
PlagYr2+YrInit plagyr 0.07037 0.05026 1.40028 0.16247 -0.02206 0.16575
PlagYr2+YrInit plagyr2 -0.00184 0.00188 -0.97668 0.32952 -0.00539 0.00158
PlagYr2+YrInit yrinit -0.03845 0.01590 -2.41928 0.01615 -0.06413 -0.01246
          
PlagYr2+YrInit2 (Intercept) 7.15285 0.28880 24.76714 0.00000 6.63505 7.70126
PlagYr2+YrInit2 plagyr 0.03262 0.04421 0.73767 0.46130 -0.04679 0.11459
PlagYr2+YrInit2 plagyr2 -0.00026 0.00167 -0.15362 0.87802 -0.00335 0.00273
PlagYr2+YrInit2 yrinit -0.21333 0.04054 -5.26224 0.00000 -0.28961 -0.14113
PlagYr2+YrInit2 yrinit2 0.00711 0.00161 4.41364 0.00001 0.00430 0.01014
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Dyn+YrInit2+4Nests (Intercept) 7.84772 0.15953 49.19427 0.00000 7.54557 8.16390
Dyn+YrInit2+4Nests dynext -0.33082 0.19253 -1.71823 0.08678 -0.69629 0.06544
Dyn+YrInit2+4Nests dyngrow 0.06988 0.09109 0.76713 0.44361 -0.10933 0.24757
Dyn+YrInit2+4Nests yrinit 0.01748 0.02395 0.72994 0.46599 -0.03211 0.06607
Dyn+YrInit2+4Nests yrinit2 -0.00067 0.00097 -0.68948 0.49105 -0.00262 0.00133
Dyn+YrInit2+4Nests X4nesttown -2.32498 0.14537 -15.99362 0.00000 -2.62200 -2.03842
          
PlagYr+YrInit2+4Nests (Intercept) 7.77990 0.16640 46.75363 0.00000 7.46587 8.11447
PlagYr+YrInit2+4Nests plagyr 0.00933 0.00426 2.18930 0.02935 0.00119 0.01768
PlagYr+YrInit2+4Nests yrinit 0.00621 0.02405 0.25803 0.79656 -0.04393 0.05476
PlagYr+YrInit2+4Nests yrinit2 -0.00015 0.00097 -0.15330 0.87826 -0.00209 0.00186
PlagYr+YrInit2+4Nests X4nesttown -2.25359 0.15428 -14.60746 0.00000 -2.57996 -1.94420
          
Dyn+PlagYr+YrInit (Intercept) 6.44348 0.28768 22.39836 0.00000 5.97097 6.95708
Dyn+PlagYr+YrInit dynext 1.00160 0.38902 2.57466 0.01052 0.29212 1.78553
Dyn+PlagYr+YrInit dyngrow -0.00419 0.21568 -0.01941 0.98452 -0.40054 0.37821
Dyn+PlagYr+YrInit plagyr 0.02699 0.01036 2.60426 0.00967 0.00730 0.04690
Dyn+PlagYr+YrInit yrinit -0.05195 0.01338 -3.88324 0.00013 -0.07465 -0.02982
          
Dyn+PlagYr2+YrInit (Intercept) 5.94630 0.34195 17.38961 0.00000 5.31395 6.57953
Dyn+PlagYr2+YrInit dynext 1.29984 0.39828 3.26362 0.00123 0.58087 2.08824
Dyn+PlagYr2+YrInit dyngrow 0.15235 0.20964 0.72674 0.46796 -0.25571 0.56449
Dyn+PlagYr2+YrInit plagyr 0.13851 0.04807 2.88130 0.00425 0.04561 0.23684
Dyn+PlagYr2+YrInit plagyr2 -0.00397 0.00170 -2.33492 0.02021 -0.00738 -0.00073
Dyn+PlagYr2+YrInit yrinit -0.04045 0.01406 -2.87765 0.00430 -0.06410 -0.01644
          
Dyn+PlagYr+YrInit2 (Intercept) 7.41617 0.34738 21.34865 0.00000 6.77870 8.10562
Dyn+PlagYr+YrInit2 dynext 0.15728 0.37298 0.42167 0.67357 -0.58329 0.94971
Dyn+PlagYr+YrInit2 dyngrow -0.31580 0.20943 -1.50791 0.13264 -0.73322 0.08214
Dyn+PlagYr+YrInit2 plagyr 0.01726 0.00965 1.78933 0.07458 -0.00213 0.03656
Dyn+PlagYr+YrInit2 yrinit -0.21247 0.03865 -5.49761 0.00000 -0.28891 -0.13987
Dyn+PlagYr+YrInit2 yrinit2 0.00696 0.00157 4.42998 0.00001 0.00395 0.01014214

 



Dyn+PlagYr2+YrInit2 (Intercept) 7.41589 0.51473 14.40722 0.00000 6.44390 8.40401
Dyn+PlagYr2+YrInit2 dynext 0.15750 0.44824 0.35138 0.72555 -0.74809 1.10571
Dyn+PlagYr2+YrInit2 dyngrow -0.31570 0.23363 -1.35124 0.17765 -0.79423 0.15799
Dyn+PlagYr2+YrInit2 plagyr 0.01730 0.05583 0.30991 0.75685 -0.08822 0.12855
Dyn+PlagYr2+YrInit2 plagyr2 0.00000 0.00195 -0.00074 0.99941 -0.00381 0.00362
Dyn+PlagYr2+YrInit2 yrinit -0.21245 0.04888 -4.34632 0.00002 -0.30537 -0.12250
Dyn+PlagYr2+YrInit2 yrinit2 0.00696 0.00185 3.76145 0.00020 0.00343 0.01067
          
Dyn+PlagYr+4Nests (Intercept) 7.49909 0.17330 43.27289 0.00000 7.15759 7.86062
Dyn+PlagYr+4Nests dynext 0.18403 0.20906 0.88030 0.37940 -0.22278 0.60969
Dyn+PlagYr+4Nests dyngrow 0.46644 0.11766 3.96440 0.00009 0.21546 0.71269
Dyn+PlagYr+4Nests plagyr 0.02429 0.00561 4.33186 0.00002 0.01268 0.03589
Dyn+PlagYr+4Nests X4nesttown -2.35066 0.13943 -16.85900 0.00000 -2.63453 -2.08369
          
Dyn+PlagYr+YrInit2+4Nests (Intercept) 7.29133 0.21865 33.34656 0.00000 6.87990 7.72417
Dyn+PlagYr+YrInit2+4Nests dynext 0.19829 0.22424 0.88429 0.37726 -0.24179 0.65481
Dyn+PlagYr+YrInit2+4Nests dyngrow 0.51953 0.12897 4.02828 0.00007 0.25404 0.77705
Dyn+PlagYr+YrInit2+4Nests plagyr 0.02534 0.00581 4.36542 0.00002 0.01357 0.03704
Dyn+PlagYr+YrInit2+4Nests yrinit 0.03928 0.02484 1.58109 0.11493 -0.01188 0.08919
Dyn+PlagYr+YrInit2+4Nests yrinit2 -0.00140 0.00099 -1.41638 0.15772 -0.00337 0.00063
Dyn+PlagYr+YrInit2+4Nests X4nesttown -2.41681 0.15113 -15.99155 0.00000 -2.72689 -2.11996
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Wet = wet (2005=2007) or dry (2006=2008).  SprRain = spring rainfall.  Year = 2005, 2006, 2007, or 2008.  PlagYr = years since 
most recent plague event.  PlagYr2 = PlagYr2.  Dyn = current town dynamics (extinct, growing, or stable).  Grow = growing or not 
(extinct=stable).  Active = active or not.  YrInit = years since town was initiated.  YrInit2 = YrInit2.  YrInit3 = YrInit3.  Size = town 
size.  Size2 = Size2. 
 



 

 
 
 
 
APPENDIX 4 – NEST DISTANCE MODELS 
 
Table 4.12.  Nest Distance Models: Nest Number.  Years since the most recent plague 
event, time since prairie dog town initiation, and current town dynamics were the best 
predictors of nest spacing, with or without the binary variable differentiating towns with 
4+ nests from those with fewer nests.  Ranking of other variables did not change when 
this variable was added to the top models. 
 
Model AIC ∆AIC Wt Deviance df #Par 
Dyn+PlagYr+YrInit2+4Nests 4023.82 0.00 1.00 110.30 296 7 
PlagYr+YrInit2+4Nests 4042.71 18.89 0.00 118.43 298 5 
Dyn+PlagYr+4Nests 4044.77 20.95 0.00 112.57 299 5 
Dyn+YrInit2+4Nests 4128.42 104.60 0.00 120.18 302 6 
4Nests 4187.69 163.87 0.00 124.82 309 2 

 
PlagYr = years since most recent plague event.  PlagYr2 = PlagYr2.  Dyn = current town 
dynamics (extinct, growing, or stable).  YrInit = years since town was initiated.  YrInit2 = 
YrInit2.  4Nests = towns with ≥ 4 nests vs. those with fewer. 
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Table 4.13.  Nest Distance Models: Inverse Link.  Model rankings in the analysis of nest 
distance (gamma) did not change significantly when an inverse link function was used in 
place of a log link function.  However, five models failed to converge with the inverse 
link function, and signs on all coefficients (not shown) were reversed. 
 
Model AIC ∆AIC Wt Deviance df #Par 
Dyn+PlagYr2+YrInit2 4285.90 0.00 1.00 243.94 296 7 
PlagYr2+YrInit2 4311.37 25.47 0.00 265.82 298 5 
Dyn+PlagYr2+YrInit 4318.60 32.70 0.00 269.89 297 6 
PlagYr+YrInit 4328.72 42.82 0.00 282.75 300 3 
PlagYr2+YrInit 4329.34 43.44 0.00 281.62 299 4 
Dyn+YrInit2 4382.53 96.62 0.00 256.95 303 5 
Dyn+PlagYr 4396.94 111.04 0.00 323.19 300 4 
PlagYr2 4397.45 111.55 0.00 325.49 301 3 
YrInit3 4416.54 130.63 0.00 284.76 304 4 
YrInit2 4419.79 133.88 0.00 289.04 305 3 
PlagYr 4423.13 137.23 0.00 351.85 302 2 
YrInit 4435.74 149.84 0.00 304.08 306 2 
Size2 4566.53 280.63 0.00 370.17 308 3 
Dyn 4573.21 287.31 0.00 376.97 308 3 
Size 4573.43 287.53 0.00 379.25 309 2 
Active 4576.41 290.51 0.00 382.33 309 2 
Grow 4587.76 301.86 0.00 394.27 309 2 
Year 4592.76 306.86 0.00 395.34 307 4 
SprRain 4593.05 307.15 0.00 399.95 309 2 
Wet 4595.29 309.39 0.00 402.37 309 2 
Y2005+2007 4595.43 309.53 0.00 400.35 308 3 
Y2005 4597.99 312.09 0.00 405.31 309 2 
PlagYr+YrInit2 did not converge      
Dyn+PlagYr2 did not converge      
Dyn+YrInit did not converge      
Dyn+PlagYr+YrInit did not converge      
Dyn+PlagYr+YrInit2 did not converge         

 
Wet = wet (2005=2007) or dry (2006=2008).  SprRain = spring rainfall.  Year = 2005, 
2006, 2007, or 2008.  PlagYr = years since most recent plague event.  PlagYr2 = PlagYr2.  
Dyn = current town dynamics (extinct, growing, or stable).  Grow = growing or not 
(extinct=stable).  Active = active or not.  YrInit = years since town was initiated.  YrInit2 
= YrInit2.  YrInit3 = YrInit3.  Size = town size.  Size2 = Size2. 
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APPENDIX 5 – MINIMUM ESTIMATES OF OWLETS PER AGE 
 
Table 4.14.  Breeding Success per Age and Stage.  These four ages are frequently 
referenced in the burrowing owl literature.  Not all studies define fledging in the same 
way, and other stages may be of interest.  The percentage of nests with at least one owlet 
observed at each age are shown, as well as means (SD) for the number of juveniles per 
nest and the number per nest for just those nests with at least one owlet reaching this age. 
 

# Juvs per nest Age Stage % Nests # Juvs per nest (successful) 
14 d emerged from nest 85.85% 3.95 (2.45) 4.60 (2.01) 
28 d using satellite burrows, attempts flight  79.74% 3.14 (2.44) 3.94 (2.08) 
35 d flies fairly well 71.06% 2.56 (2.39) 3.61 (2.06) 
42 d ranging farther from nest 56.59% 1.89 (2.26) 3.35 (2.05) 
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