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ABSTRACT OF DISSERTATION

MODEL SELECTION BASED ON EXPECTED SQUARED HELLINGER

DISTANCE

This dissertation is motivated by a general model selection problem such that the 

true model is unknown and one or more approximating parametric families of mod­

els are given along with strategies for estimating the parameters using data. We 

develop model selection methods based on Hellinger distance that can be applied to 

a wide range of modeling problems without posing the typical assumptions for the 

true model to be within the approximating families or to come from a particular 

parametric family. We propose two estimators for the expected squared Hellinger 

distance as the model selection criteria.

In particular, the use of expected squared Hellinger distance is studied in 

ANOVA model selection problems where approximating models are typically sub­

models of the full factorial model. The properties of the expected squared Hellinger 

distance are explored under balanced model structure assuming independent and 

identically distributed normal error terms. A model selection strategy specific to 

ANOVA model selection problems based on one of the estimated expected squared 

Hellinger distance is proposed. This strategy is illustrated using a real data set and 

its performance is tested by simulation studies. An example of ANOVA model se­

lection problem with non-normal error terms that follow two-parameter exponential 

distribution is discussed.

iii
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Model selection method based on estimated expected squared Hellinger dis­

tance is also applied to modeling the p-values from the microarray data analysis. 

The problem of estimating false discovery rate (FDR) from the distribution of p- 

values arising from statistical tests of differential gene expression in a microarray 

experiment is considered. A finite mixture model is studied in which one compo­

nent is uniform on [0,1] corresponding to equally expressed genes and one or more 

additional components correspond to differentially expressed genes. Two different 

mixture families are explicitly investigated for estimating false discovery rate -  a 

mixture of Beta densities and a mixture of Uniform densities. In both cases, the 

Minimum Hellinger distance is used to provide robust estimates of the mixture com­

ponents. For the Beta mixture model we choose the number of Beta components 

by comparing the estimated expected squared Hellinger distance. The performance 

of the proposed methods is illustrated through a case study involving data from a 

published microarray experiment.

Xiaofan Cao 
Department of Statistics 
Colorado State University 
Fort Collins, Colorado 80523 
Fall 2007
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C h a p te r  1

IN T R O D U C T IO N  TO M ODEL SELECTION

Model Selection is a process that a statistician would face routinely, such as 

deciding which of several candidate distributions fits the data well or which sub­

set of the variables should be used as predictors in a linear regression problem. 

There is extensive literature on model selection. In their book titled “Model Selec­

tion” (Linhart and Zucchini, 1986), Linhart and Zucchini discussed general methods 

of model selection in different situations and provided detailed explanations and 

examples. Burnham and Anderson (2002) also gave a thorough review on latest 

developments in model selection in their book “Model Selection and Multi-Model 

Inference” . McQuarrie and Tsai (1998) discusses model selection techniques for 

univariate and multivariate regression models, univariate and multivariate autore­

gressive models, nonparametric (including wavelets) and semi-parametric regression 

models, and quasi-likelihood and robust regression models in their book “Regression 

and time series model selection” .

A model is an abstract mathematical representation of a process. We assume 

that there is a true model governing a process. If one is asked to select among com­

peting candidate models the “best” one that represents a given process, one would 

naturally hope to choose the model that is the most similar to or the least different 

from the true model. This motivated researchers to consider approaches - among
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which there’s no ultimate “best” one - to measure the similarity or discrepancy 

between the true model and a candidate model.

The idea described above, model selection based on Discrepancies, is the one 

that Linhart and Zucchini focused on in their book (Linhart and Zucchini, 1986) and 

is also the one that we will explore in detail in the following chapters. This strategy, 

according to Linhart and Zucchini, selects the model which is estimated to be the 

“most appropriate” in the circumstances, namely, the background assumptions, the 

sample size, and the specific requirements of the user. To be more specific, the 

candidate model family which minimizes the expected discrepancy is selected. It is 

not necessary to assume that this family contains the true model. There are many 

discrepancy measures to choose from, among which are Kullback-Leibler discrepancy 

(Kullback, 1959), Hellinger distance (also known as M atusita’s distance; Matusita, 

1955, LeCam, 1970, and Beran, 1977), Kolmogorov-Smirnov discrepancy (Darling, 

1957), Cramer-von Mises discrepancy, Pearson chi-squared and Neyman chi-squared 

discrepancies (for discrete data or grouped data), and Gauss discrepancy.

Kullback-Leibler discrepancy is a commonly-used and well-explored one, which 

often leads to simple criteria. For instance, it can be shown that the AIC crite­

rion, originally proposed by Akaike (Akaike, 1973), is related to an estimate of the 

expected Kullback-Leibler discrepancy. AIC consists of two terms, a log-likelihood 

term and a penalty term penalizing on the number of parameters in the approximat­

ing model that need to be estimated. Many competitors and variants of AIC were 

in tro d u c e d  s in ce  th e  7 0 ’s. A IC c  (H u rv ic h  a n d  T s a i,  1989) a n d  A lC b  (C a v a n a u g h  a n d  

Shumway, 1997) were proposed to decrease the bias in small-sample applications. 

TIC (Takeuchi, 1976) is basically AIC but with a different penalty term, which does
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not require the assumption that the true model is within the candidate model fami­

lies. Schwarz (1978) proposed BIC and SIC based on a Bayesian approach. Ishiguro 

and Sakamoto (1991) proposed WIC and Ishiguro et al proposed EIC (1997), both 

of which are extensions to AIC utilizing bootstrap methods. Mallows Cp method 

(Mallows, 1966) for model selection in regression problems may also be viewed as a 

discrepancy based model selection procedure.

Bootstrap methods (Efron, 1979), cross-validatory methods (Mosteller and 

Tukey, 1968), and other Monte Carlo methods are also receiving more attention 

in model selection lately. These resampling methods are often used in conjunction 

with model selection based on discrepancy and help circumvent the technical prob­

lems sometimes encountered in deriving the expected discrepancy and an estimator 

for it. The idea of using the bootstrap to improve the performance of a model selec­

tion rule had been suggested and investigated by Efron (1983). Chung et al (1996) 

explored the application of bootstrap methods on estimating expected Kullback- 

Leibler discrepancy. Shao (1996) applied bootstrap methods and cross-validation 

methods to model selection in linear regression scenario.

Another common approach to fitting a model is to “select the simplest approx­

imating family which is not inconsistent with the data” . This approach predates 

discrepancy based methods and is based on H y p o th esis  Tests. The application of 

this strategy in many situations has been thoroughly explored and experience has 

been accumulated. However, in practice, people tend to forget the assumption of 

this method, “Assuming that the selected family of models holds (and there is no 

evidence to suggest that it does not)” (Linhart and Zucchini, 1986). Model selection 

in linear regression is the area where practitioners are generally interested and much 

research has been done.
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M odel Selection Based on Discrepancy

We define a model selection problem as follows. Choose the one from the 

approximating (candidate) models that is the closest to the true model. The idea 

“the closest” is conveyed by the smallest discrepancy between the true model and the 

approximating model. Discrepancy is also referred to as “distance” in the literature. 

This term “distance” is somewhat misleading since many discrepancies are in fact 

not distances or metrics. We will follow Linhart and Zucchini's definition of a 

discrepancy (Linhart and Zucchini, 1986).

Suppose that we have n independent observations on d variables and that each 

observation can be regarded as a realization of a d-dimensional random vector having 

distribution function F.  Let M  be the set of all d-dimensional distribution functions. 

Each member of M  is a fully specified model. Let G be an approximating model. 

Then a discrepancy between the true model F  and the approximating model G is a 

functional, A, on M  x M  which has the property

A (F, G) > A(F, F) for G ,F  e  M,

with equality if and only if G  =  F  almost everywhere with respect to the Lebesgue 

measure. In many cases approximating models are given as a family of models, Gg 

with 6 E 0 , which is a subset of M  whose individual members are identified by the 

vector of parameters 8 =  ( 8 ^ \  . . . ,  8 ^ ) T . We will use A (8) to represent A(F, Gg). 

A fitted model, G§, is a member of a family of models Gg , 8 G 0 , which is associated 

with a prescribed estimator of the parameters using the observations. The overall 

discrepancy is defined as A (F,G§).

Since A(F, G§) is a random variable due to the randomness of 8, it is the 

expected overall discrepancy, Ef A.(F,G§), that one wishes to compare among the
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candidates. In practice, the true distribution F  is unknown and E f A(F,  Gg) is thus 

unknown. We are interested in finding an estimate for the true expected discrepancy. 

The estimation for the expected discrepancy is not necessarily straightforward. One 

may need to resort to bootstrap or cross-validation methods. Asymptotic methods 

is another option when the properties of 6 are known, which leads to criteria that 

are estimates of E f A(F,  Gg) and are usually easy to compute.

Several questions need to be answered before solving a model selection problem. 

They are:

a. W hat are the approximating models.

b. W hat is the estimating method that we should use when the parameters of 

the approximating models are not fully specified.

c. W hat discrepancy should we use.

In this dissertation, we will assume that the answers to the first two questions are 

given. That is, the approximating models are given with prespecified estimation 

methods. Some examples of the these estimation methods are maximum likelihood 

method, minimum discrepancy method, least squares method, and method of mo­

ments. Some of the discrepancy measures that we can consider in the last question 

are listed below:

Kullback-Leibler D iscrepancy

A k _l (6) =  E f log
9e(x)

G auss D iscrepancy

Discrete : AG(0) =  T,x( f(x)  -  ge(x))2
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Continuous : A a (6) =  /  ( f(x) — gg(x))2dx
J X

K olm ogorov-Sm irnov D istance

&K-s(0) = su p \F(x) -  Ge(x)\
X

Among the above mentioned discrepancies, Kolmogorov-Smirnov distance is a met­

ric, in other words, it has the following properties:

(M l)  A (F,G) > 0 and A (F,G)  =  0 if and only if G =  F a.e. (non —

negativity),

(M 2) A(F, G) = A (G , F) (symmetry),

(M 3) A (F, G) < A (F, H)  +  A (H, G) (triangle inequality).

Different discrepancies define similarity/dissimilarity from different angles. Choos­

ing different discrepancies may lead to different results and there is no right or

wrong to that. The motivation behind our answer to the last question is based on a

review of the limitation of the Kullback-Leibler (K-L) discrepancy, one of the most 

commonly used discrepancies.

The K-L discrepancy is related to log likelihood ratio and Fisher information, 

which makes it not only easy to be estimated but also favorable when it comes to 

derivation of asymptotic properties. The easy calculation of its estimate was quite 

appealing, especially before the recent development in computer sciences and Monte 

Carlo methods.

Note, however, that the K-L discrepancy (although often referred to as the 

K-L distance) is not a metric. Moreover, the K-L discrepancy is defined for two 

probability measures that dominate each other and oo otherwise. That is, the K-L
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discrepancy between two distributions that has different supports will be infinity. 

Thus, the K-L discrepancy is good at discrimination, but not necessarily a good 

tool for approximation. For instance, the K-L discrepancy will discriminate two 

distributions instantly if the approximating distribution G has a different support 

than that of the true distribution F, no matter how closely shaped they are. As 

shown in Example 1, this may not necessarily be a favorable property.

E x a m p le  1 Let the true distribution /  be an Exponential distribution with 

the scale parameter 7 being 1. Suppose we have two candidate models: is two

parameter Exponential distribution with the location parameter g being 0.1 and 

scale parameter 7 being 1; is Exponential distribution with scale parameter 

being 2. Now, the K-L discrepancy between /  and g^  is found to be 0.1931 and the 

K-L discrepancy between /  and g^  is 00 according to the definition. Therefore, if we 

choose the “best” model based on minimum K-L discrepancy, we would choose g ^ . 

However, Figure 1.1 featuring the three density functions shows that g ^  actually 

has more similarity in shape with / .

Unlike the K-L discrepancy, the Hellinger distance is indeed a distance and is 

defined for densities that have different supports. In this dissertation, we choose to 

use the Hellinger D istance. The Hellinger distance has been applied to density 

estimation by many researchers. Relatively fewer attention has been paid to the 

application of the Hellinger distance in model selection. Mandal (2006) considered 

distinguishing between competing models based on pairwise Hellinger distance in 

experimental design with applications of global optimization. Birge (2004) considers 

model selection for Gaussian regression with random design and uses the Hellinger 

distance between two Gaussian distributions as the loss function instead of the 

typical loss function of the squared £2 distance. In this dissertation, however, we
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E x p ( 1 )
E xp(0.1,1)
Exp(2)

0 2 4 6 8 10

x

Figure 1.1: Three Density Curves: Exp(l), Exp(0.1,l), and Exp(l/2)

develop model selection methods based on expected squared Hellinger distance for 

general model selection problems. We do not assume any parametric distribution 

for the true model and the approximating models can come from any parametric 

families with any prespecified parameter estimation strategies.

This dissertation is organized as follows. In Chapter 2, we will introduce the 

Hellinger distance as the discrepancy that we choose to use in model selection and 

study the properties of the expected squared Hellinger distance. Also in this chap­

ter, two estimators of the expected squared Hellinger distance are introduced and 

their large sample property is studied. In Chapter 3, simple illustrative examples 

of model selection using the estimated expected squared Hellinger distance are pro­

vided and the large sample property of the estimators is examined by simulation 

study. In Chapter 4, we study the model selection problem for balanced factorial 

ANOVA models and develop a model selection strategy based on theoretical con­

siderations. The properties of the proposed strategy are examined using statistical
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simulation. The method is also illustrated using real data. In Chapter 5, we consider 

the estimation of false discovery rate in Microarray data analysis, where the esti­

mated expected squared Hellinger distance is used to select the best Beta mixture 

model to approximate the distribution of the p-values. Some concluding remarks 

and thoughts on future research direction are provided in Chapter 6.
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C h a p te r  2

HELLINGER D ISTAN C E A N D  E X PE C TE D  SQ U A R ED  

H ELLINGER DISTAN C E

The Hellinger distance is also known as the M atusita’s distance (Matusita, 1955, 

LeCam, 1970, and Beran, 1977). According to LeCam (1970), let V  and Q be two 

probability measures on a cr-field a. Let g = V  + Q and let /  and g be the densities 

f  =  dV/dp  and g =  dQ/dfi. The Hellinger distance H(V, Q) is the square root of 

the squared Hellinger distance defined by

H2(V, Q) = J  ((dP)i -  ( d Q ) l / = J ( p - p ) 2dp = 2\ \ -p(T, Q) ] ,  (2.1)

where

p(V, Q) = J (dVdQ)s =  j  J j g d g  (2.2)

is also called the Hellinger affinity between V  and Q. Note that 0 < J  \ f jg d n  < 1 

with equality on the left if and only if /  and g are mutually singular and equality 

on the right if and only if /  and g assign the same probability to each measurable 

set (Kraft 1955). That is, 0 <  H 2(V , Q) < 2, with the equality on the left if and 

only if V  — Q except for some set A such that g(A) = 0 and the equality on the 

right if and only if V  and Q are disjoint. The squared Hellinger distance between 

two probability distributions with density functions /  and g can also be written as

w 2(/.9 ) =  l l d - 9 ' i l 2 =  / ( /= ( « )  (2.3)
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where || • || denotes the C,2 norm (Beran, 1977). We will use this form in this thesis. 

The Hellinger affinity can also be written as < f ^ , g ^  >, where < • > denotes the 

inner product.

The Hellinger distance is also defined in some literature (LeCam, 1973) as

H 2(P,Q) = I(dP)i -  (dQ)512 =  [1 -  P(V, Q)],

so that the distance is now a value between 0 and 1. Some author also refer to 

the squared Hellinger distance as the Hellinger distance (Lu, Hui, and Lee, 2003). 

For the purpose of minimization, this makes no difference. The Hellinger distance 

is indeed a metric. The nonnegativity and symmetry of the Hellinger distance is 

straight forward from the nature of the C2 norm and the distance is 0 if and only if 

the two distributions are equal almost everywhere //. The triangle inequality of the 

Hellinger distance also follows from the property of the norm. Let / ,  g , and h be 3 

probability density functions,

#(./,<?) =  I I / ' - w  II

=  II( /* -  ^*) +  (h* ~ 9 *)II

<l l / * - f c * l l  +  l | fc*-0*ll

=  H (f ,  h) +  H(h, g)

The Hellinger distance is invariant under transformation. Let X  =  

{X(i), . . . ,  X(fc)} G A  C lZk be a A;-dimensional random variable with probability 

density function /  and Y (Tp) , . . . ,  Vp)} G B  c  7lk with density g. Define a one-to- 

one continuous differentiable map function T(-) : 1Zk i— > 7Zk. Let

T X  = { t1( X ) , . . . M X ) }  and T Y  =  { ^ ( F ) , . . . ,  tk(Y)},
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where T X  £ T A  and T Y  G T B .  The distributions of the transformed variables are 

denoted as /*  and g*, respectively. Let Dx =  [tij(x)\ =  [§̂ -] and Dy = [Uj(y)} = [ |^ ] 

be the Jacobian matrices and let J(x) = det£>x and J(y)  =  det Dy be the Jacobian 

determinant. Suppose J(x)  7̂  0 and J(y)  7̂  0. Now, by Theorem 17.2 (Billingsley, 

1995),

H(.f, g) = 2 - 2  [  v7 f i u)g(u)du
JAr\B

=  2 - 2  [  V f * ( T u ) \J(u)\9 *(Tu) \J(u)\du
JArB

= 2 - 2  [  V f*(Tu)g*(Tu) \J(u)\du
J AnB

= 2 - 2  f  V7f*(t)g*(t)dt
JTAnTB

= H ( f , g * )

Note tha t y/f*g* is non-negative.

A lot of work has been done in parametric estimation using Hellinger distance, 

namely, finding minimum Hellinger distribution estimators. It can be seen as a 

special case of model selection. After all, finding the minimum Hellinger distance 

estimator for a parametric model is equivalent to finding the model gg0 among a 

given parametric model family {gg ,  6  G 0} that is closest to the true model in 

Hellinger space. Beran defined MHDE, the minimum Hellinger distance estimator 

9n, as follows

6n = argm in{H ( f ,  ge)}

where /  is a suitable nonparametric estimator of the true density (Beran, 1977).

Beran mentioned that the estimator MHDE is related heuristically to the max­

imum likelihood estimator of 9 if the true density is in fact some gg0 , that is, if 

there’s no misspecification. He proved that under certain regularity conditions

9n 9a
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and found the limiting distribution of the MHDE. Beran made a comment on the ef­

ficiency of the MHDE: “The minimum Hellinger distance estimator may be regarded 

as a particular minimum distance estimator that is distinguished by being asymp­

totically efficient in regular models” . Beran also studied the robustness property 

of MHDE. A lot of research has been done built on Baran’s work. Some of these 

examples are: “Minimum Hellinger Distance Estimation for Finite Mixture Mod­

els” (Cutler and Cordero-Brana, 1996); “Minimum Hellinger Distance Estimation 

for Multivariate Location and Covariance” (Tamura and Boos, 1986); “Minimum 

Hellinger-Type Distance Estimation For Censored Data” (Ying, 1992); and etc.

2.1 E xpected Squared H ellinger D istance

In a typical model selection problem, we are supposed to choose from ap­

proximating families rather than fully specified models with given parameters. In 

this case, model parameters need to be estimated from the data by some estima­

tion method either prespecified or deemed appropriate for the problem. Thus, the 

Hellinger distance between the true distribution with density /  (operating model) 

and the approximating model with density g and data-based estimator 6 becomes 

H ( f , g§), where 0 is p x 1 vector and p > 1. This distance is then a random variable 

due to 6. As pointed out by Linhart and Zucchini (1986), the distribution of the 

distance under the operating model determines the quality of a given procedure and 

“thus constitute the basis for comparing different fitting procedures” . Instead of 

estimating the complete distribution of the distance, which is not always possible, 

one can estimate some characteristic of it such as the expectation. For the purpose 

of comparing among different approximating models, it satisfies to use the expected 

squared Hellinger distance in place of the expected Hellinger distance.
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As the dimension of the approximating family increases, the approximation gets 

better while the estimation error increases. The distance between the true distribu­

tion and the approximating one based on any given data set does not penalize on 

the approximating dimension and thus is possible to be smaller for the approximat­

ing model that has more parameters than necessary. The expected distance, on the 

other hand, does penalize on the increased number of parameters that need to be 

estimated and thus balances between the approximation and estimation error.

Define the expected squared Hellinger distance as:

E H 2 =  EsH 2( f ,g t ) = ESJ  L f W )  ~ s f i H ) )  i t  (2-4)

where 9 is under the true distribution F. After the expectation, E H 2 is a real 

number between 0 and 2 that depends on sample size n only. I t ’s easy to see that 

E H 2 is also invariant under transformation. Note that E H 2 can be written as:

E H 2 =  2 - 2  E dt, (2.5)f ( t )g§{t)dt = 2 - 2 J  y / f J t jE  y g§(t)

given that the expectation and the integral exist. Note that in our discussion, the 

expectation E[-} is with respect to the true distribution F  unless otherwise specified. 

Define the model that has the smallest E H 2 as the true best model, which is the 

model that is expected to be the “closest” in Hellinger metric to the true model.

2.1.1 D ecom position and A pproxim ation of E H 2

Now, we will study one way of decomposing and approximating E H 2 as defined
/•, p

in equation (2.4). Assume that 9 — 9q — ► 0. Then the squared Hellinger distance 

9§) between the true distribution /  and the approximating distribution can 

be written as:

H 2(f,g§) =  H 2(f,goQ)+ H 2(geo,g§)+2 J  (y /J t f )  -  v W * ) )  (V ^ o W  -  dt

(2 .6 )
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In this section we will show, under regularity conditions given in Assumptions Al- 

A2, that the second term H 2(ge0,g§) is Op(^) and the last term

J  (v7/^ - vW*)) (V̂oW - dt
is Op(-j^). This is formally stated in Theorem 1.

Let X  = { X i , X 2, X n} be a data set of size n where A j’s are i.i.d. random 

variables with distribution function F. Let g§ be the approximating model where 6 

is a data-based choice for the unknown parameter 9 = (9 ^ \  . . . ,  9 ^ )  E 0 . Suppose 

that ge(t) has a second derivative at each point of an open set S  in 7Zp for every t 

and denote, for 9* E 0  and t e T:

n ' ( t \  -  ( d g e d 9 e ( t ) \ T  .
9 d \  ddM ’ "  ' ’ ddW )  '9~B*

• (A _  ( fly/goC*) d y / g $ ) \ T
9f)rO  ^  d6W 09W J

X u\  _  ( ° 2V 9 e ( t ) \  , . . _  n o
" ^ 00(O00(j)J  l0=0*’z’J

Let g'g*\t) denote the ith element of g'g*(t), g${t)  denote the ith element of ge*(t), 

and ggd\ t )  denote the (i , j ) th element of ge*{t).

For any given t E T ,  expanding y/g§(t) around 90 gives:

\J9§(t) =  y/9e0(t) + (9 — 90)Tgeo(t) + R  =  \ / ge0(t) + -  9 ^ ) g ^ ( t )  +  R
i

The remainder term R  is

R  =  (l/2)(0  -  90)Tg§(t)(9 -  60) = (1/2) (t)(0(i) -  0{̂ ) ( 9 U) -  9{0j))i i
where 9 is a point on the line segment joining 9 and 90 (Apostol, 1974) for all t.
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Moreover, define the following quantities:

Bi = "5
: i Q

b
o

b 2 = 1
o

b 3 = 1
o

C i = 1 Qb o

c 2 = ( 9 -d o )

9 eo(t)g0o(t)dt ( d - d  0

9e0(t)(d -  d0)Tgd(t)dt (d -  d0)

' m(t)(d -  do)(d -  d0)Tgs(t)dt (d -  d0)

d - d o f  J  ( v 7 ( i )  -  V  9e0 (£)) ge0(t)dt

J  [ y rW )  -  V g e j t ) )  9e(t)dt (d ~  d0)

We use the convention that the integral of a matrix is the matrix of the integrals 

of the elements. The following Assumptions Al through A2 will be used in our 

discussion:

• (Al) Assume y/n(9 — do) converges in distribution to a real random variable 

Y.

•  (A2) Assume \gg'j \ t ) \  < Mi(t)  for all t if d G O^(d0) or 6 G {9 : \9 — 90\ < 5'}, 

where M\(t)  is a finitely integrable function, i, j  = I , . . .  ,p. Assume further 

that Mi belongs to /V space and g ^ g ^  is finitely integrable for i, j  = 1 , . . .  ,p.

T h eo rem  1 . Assuming Assumptions A l  and A2,

H 2(ge0,g§) =  o p(^ )

J  iy W )  -  v W * ) )  ( V 9e0(t) -  dt = Op(-j=)

and,

The proof of Theorem 1 follows Lemmas 1 and 2.

L em m a 1. Assuming that Assumptions A l  and A2 hold, then (i), Bi =  Op(n”1); 

(ii), Ci =  Op(n~1/2).
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Proof, (i). From Assumption Al,

^ ( 6  -  9o) Y,

where Y  is a random variable. Hence, y/n(Q — 90) is bounded in probability, i.e.,

§ - e 0 = o p( - ^ ) .
y f l

Moreover, since function h(X)  =  X TA X  is a continuous function with A  being a 

square constant matrix,

(v^(<9 -  d0)T) A (v ^ (0  -  d0)) Y TA Y

where A = J  gg0(t)gj0(t)dt is a finite square matrix that does not depend on data 

or n by Assumption A2, thus

Bi =  (0 - 0o)r A (< ? -0o) =  Op(^).

(ii). Note that by the Cauchy-Schwarz inequality,

( y  (v T W  “  V ® 5 )  9B0(t)dtj  < l l v ^ - v ^ l H l ^ o l !2 < 2| | ^ | | a

where ||fl'e0||2 is finite by Assumption A2. And thus J  ^y/ f ( t )  — 9 e0(t)) g$0(t)dt is

finite. Since

y / n ( d - d ) T J  ( y / f t f j -  y/ge0 (tj) goo(t)dt —  ̂Y T J  (v T W  -  v W * ) )  9e0(t)dt,

Ci =  ( e  -  d0) J  ( y j t f j  -  \fgeQ{t)) ge0(t)dt =  Op(-j=).

□

L em m a 2. Suppose that Assumptions A l  and A 2 hold, then (i), C2 =  Op(n_1); 

(ii), B2 =  Op(n~3/2); (tii), B3 =  Op(n~2) .
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Proof, (i). Note from the proof of Lemma 1, we have by Assumption A l that

1
0 - 0,

which implies that (0 — 0O) is op(l) and thus 9 converges to 90 in probability. Fix a 

S such that 0 < 5 < 5' and for any given e > 0, there exists an Ne such that for any

n > Ne,

|0 - 0O| < 5 > 1 -  e.

Note further that since 9 is a point on the line segment joining 9 and 90 for each t,

0o| =  |0 - 0| +  |0 - 0o | > | 0 - 0o|.

Thus for all f,

P  [|0 — 0o| <<y] > p  \ 9 - 9 0\ < 5 > 1 — e.

for all n > Ne. Define

A  = {u  : \9 -  0O| < 5}; B = {u  : \gg’J\ t ) \  < M x(t), Vi}

where *, j  =  1, . . .  ,p. By Assumption A2, A  C B. Therefore, for any n > N e

P  [B] > P [A] > 1 -  e.

Let

C =  {||0S‘J')||a < ||M 1||2}

where i , j  =  Then B C C since if < Mf( t )  for all t,

f  dt < J  Mf( t )dt  where f  Mf ( t )dt  is assumed to be finite by Assumption

A2. This in turn implies that for any e > 0, choose an M  such that M  =  11 AAx 112 

and

P
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for all n > Ne. That is, | |^ lJ^||2 is bounded in probability for all i , j  = l , . . . , p .  

Moreover, by the Cauchy-Schwarz inequality,

( y  ( v 7 ( 0  -  y / g e M )  9§'3)(t)dtj  < II v 7 -  \\9§'J)\\2 < 2 ||^ ’J ) ||2

Therefore, J  (^y/.f{t) — y/gej j^ j  g ^ \ t ) d t  is also bounded in probability.

Secondly, n(6—do)^(9—60) ^  converges to yMyC?) in distribution by continuous 

mapping, and is thus bounded in probability. Therefore,

c 2 =  (e -  e0y J  ( y / m  -  V ® * ) )  g§(t)dt ( 0 - e o

=  J 2(8- O o){i)0 - 0o){j) J  ( V m  -  v W * ) )  g§’J\ t ) d t
l)J

=  (B e )  o „ ( i )o p(i)

=

(ii). We show in the proof of part (i) that by Assumptions A l and A2, \\g^’k  ̂||2 =  

Op( 1) for j, k — 1, . . .  ,p. Moreover,

( /  s g w s r ’w * ) 2 s  m s h 2 n # « f

where | | ^ | | 2 is finite by Assumption A2. Therefore, f g ^ ( t ) g (jji'k\ t ) d t  is also 

bounded in probability. We also have from Assumption A l and continuous mapping 

that for i, j, k = 1 ,p,

n l(9  -  e0){{](9 -  90){j\ 9  -  90y k) y(0yU)y(*).

Thus,

b 2 =  (9 -  eQf 9o0(t)(d -  90)Tg§{t)dt 0 -  90)

= J 2 0  -  9 ^ 0  -  90) ^ ( 9  -  90)M / g V ( t ) g f k\ t ) d t
i,jik

=  (3p)(n_2)Op(l)Op(l)

=  0 P(n "2)
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(iii). As shown in the proof of part (i), ||^*’̂ | |2 =  Op( 1) by Assumptions Al 

and A2. It implies that

J  9o0j ) (t)g§s’l)(t)dt = Op(l)

where i , j ,  k, I — 1, . . .  ,p, since

( /  s f ’(osfhi)*)2 < ii95J,ii2 iisAf

By Assumption Al,

n20  -  6 ^ 0  -  do){j)0  -  do)ik)0  -  e0){l) yW y(j)y(fc)y(0

where i , j , k , l  = l , . . . , p .  Thus,

b 3 =  (e -  e0 y g§(t)(B -  e0)(e -  e0) gs (t)dt 0 - O o)

=  £  (0 -  ~ 9^ ik)(§ -  9°)W I  9 s ( t ) 9 F l\ t ) d t

=  (4p)(n”2)Op(l)Op(l)

=  Op(n~2)

We now give the proof of Theorem 1.

Proof. Assuming A1-A2, based on Lemmas 1 and 2,

H 2(ge0, 9j) =  J  f v W t )  -  *

= J 0 - WT®.M + <«

=  B, +  B2 +  j B3

= oP(i)

□
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Similarly,

J  ( y w )  -  vwoo) -  \[g§{t)^ dt
=  J  ( V W )  -  y / d e j f } )  ((0 -  Bo)Tge0{t) +  R )  dt
= { d - 9 0)T J  ( v m  -  V t o f i )  g M d t

J  ( v 7 5 )  -  v ® 5 )  9 §(t)dt+  (^)(^ _  *o)r (0 - 0 0

=  Cr +  ^C 2

=  o P(4 = )  +  4 = o P(4 = )A/n v/n J n

This completes the proof. □

R em ark  1. In the case where f  =  gg0 except for the sets with Lebesgue measure 

0, the first term H 2(f,gg0) and the cross product term on the right hand side of 

Equation (2.6) are both equal to zero. Otherwise, the second term H 2(gg0,gg) and 

the cross product term vanish as sample size increases while the first term becomes 

dominant. In either case, the cross product term is either zero or almost zero when 

n is large enough.

So E H 2 can be approximated by:

EH 2  ~  H 2( f ,g d0) + E[H2(geo,g§)} (2.7)

The first term on the right hand side of Equation (2.7) can be thought of as rep­

resenting the “approximation error” , denoted as the model error term, while the 

second term as representing the expected “estimation error” , denoted as the penalty 

term.
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Proposition 1. Assuming Assumptions A1-A2, assuming further that E ( Y Y T) 

S, then

nE  [H2(geQ,g§)] — ► J g J 0(t)Ygeo(t)dt

as n goes to infinity.

By Lemmas 1 and 2,

Therefore,

n(H(ge0,g§) - B j )  =  op( 1)

nE  [H(gg0,g§)} -  E  [nBi] — > 0.

Moreover, by Assumption A l and the continuous mapping,

nB x = n(6 -  0Q)r  A{6 -  0O) Y TA Y

where A =  f  ge0(t)gj (t)dt is a finite square matrix by Assumption A2. Then

E  [nBi] = E  n{9 -  90)TA(6> -  0O) — > E {Y TAY).

Thus.

E ( Y A Y t ) =  E y  /  90o(t)9o0(t)dt  V

trace < E YT [ J  9 o0(t)gJ0( t )d t ) Y

= j  trace [gJQ( t )E (Y Y T)gdo(t)] dt 

= [ 9 jo(t)Yg0o{t)dt

This completes the proof. □
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2.2 E stim ation of EH2

One of the tasks we are faced with in estimating the expected squared Hellinger 

distance E H 2 is to find an estimator of the unknown true distribution / .  Unless oth­

erwise stated, we choose to use kernel density estimator, a nonparametric estimator. 

A kernel density estimator is given as

f(x) =  (nhn)_1 J 2  K h Xl )  (2-8)

Here, A is a function satisfying J  K(x)dx  =  1, which we call the kernel, and hn is 

a positive number depending on n, usually called the bandwidth or window width. 

A slightly more compact formula for the kernel estimator can be obtained by intro­

ducing the re-scaling notation Khn{u) — h ^1 K (u /hn). Equation (2.8) can be also 

written as the following

f i x )  =  n~l Y ^ K hn{x -  Xi )  = {nhn)-1 ^ 2  K  ( X , X%
i = 1 i = 1 '  n

Usually K  is chosen to be a unimodal probability density function that is symmetric 

about zero. This ensures that /  is itself also a density.

The estimated squared Hellinger distance H 2( f ,g §) is then given by

H 2( f , g §) =  J i f H t )  -  g ] ( t ) ) 2dt

The task remains in finding the distribution of and the expectation of the squared 

Hellinger distance. When a close form solution can not be derived, this can be 

approximated by bootstrap method. In the following subsections, we will introduce 

two estimators: B E E H 2 as an estimator for E H 2 in the form of equation 2.5 and 

P E E H 2 as an estimator of approximated E H 2 in the form of equation 2.7.
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2.2.1 BEEH2

In this section, we will introduce an estimator, B E E H 2, of the E H 2 in the form 

of equation 2.5. Let X_ =  {X1; X 2, ..., Xn} be a data set of size n where XVs are i.i.d. 

random variables that follow unknown distribution function F  and X  € X  C R k. 

Let m  be a fraction of n and X* — {Xj1, X£, X y} where X*’s are i.i.d. random 

variables that follow Fn(- |x), which is the empirical distribution based on x, such 

that:
1 "

Fn(t\X  = x) = P r { X  < t \ X  = x} = - J 2  h-oo,t](xi). (2.9)Tl . z=l

Let 0(-) be an estimation function for the parameter 9 corresponding to an 

approximating density gg. Denote 9 — 0(X), and 9* — 9(X*). Then the underline 

distribution for 9 is F  while that for 9* is Fn given x. While the true density /  is

estimated by kernel density estimator / ,  a natural estimator of E§(y/gg(t)) for all t 

is the bootstrap mean

E t

where E*[-] denotes the expectation with respect to the joint empirical distribution 

function and X)*(') represents the summation over all possible bootstrap samples 

of size m, x* given x. Note that E * (\fg§* (t)) is a random variable due to the 

randomness of X_. Theoretically, E*(y/g$(t)) for all t can be calculated exactly by 

enumerating the nm possible samples of size m  from Fn. We therefore propose an 

estimator EEH 2,  of EH2:

E E H 2 = E, H 2(f,g§*) = 2 - 2  f  JJiftE+yJg§(t)dt

where /  is a kernel density estimator. E E H 2  depends on data and thus is a random 

variable. In our following discussion, we will consider the case where m  =  n  unless

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25

otherwise specified. In situations where n is large, we can take m  < n for efficient 

computation.

However, enumerating all possible samples under Fn is not realistic except when 

n is considerably small. One will have to resort to generating a large number, say, 

M, of bootstrap samples of size n under Fn. Then the bootstrap samples can be 

obtained efficiently by re-sampling with replacement from the original data. For each 

bootstrap sample, x*, one can find 0* and the corresponding value a /g§, (t) for all t. 

Then E^(y/gg(t)) for all t can be approximated by the average ^  YjiLi {y^9g*W (<)) 

where M  is the number of bootstrap samples generated and 6*^ is the estimated 

parameter from the /th bootstrap sample.

We thus propose the Bootstrap Estimated Expected Squared Hellinger Distance, 

B E E H 2 based on Bootstrap methods as follows

M

B E E H 2 =  2 -  2 { / H f( t )
M <=i
1 7 E ( \ A ho CO dt V (2.10)

2.2.2 Penalty Term Estim ated E xpected  H ellinger D istance, P E E H 2

Analogous to E E H 2, we expect the distribution of (y/g§(t) — \ /g 0*(t)), where 

0* = 9{X*) is the estimator of the parameter from bootstrap sample under empirical 

distribution Fn, approximate that of ( \Jge0(t) — \ fg 0(t)) and thus propose a natural 

estimator of the approximated E H 2 in the form of Equations (2.7), E E H 2 B ,  as:

E E H 2 B  =  H 2( f , g §) +  E* [ H 2(gd, g§.)] =  H 2( f , g §) +  - L  ^  g§,)
*

where /  is the kernel density estimator, £*[•] and are 85 defined in Section

2.2.1. Note that m  — n  unless otherwise specified. Again, since it is not practi­

cal to exhaust all the possible bootstrap samples, we propose an approximation of
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E E H 2 B , Penal ty  term Est imated Expected Squared Hel linger distance  or P E E H 2, 

as follows:
1 M

P E E H 2  =  +  77  »„-.<■>) (211)
I- 1

where #**'  ̂ is based on the Ith bootstrap sample taken by re-sampling with replace­

ment from the data, M  is the number of bootstrap samples. The first and second 

term of Equation (2.11) estimate the model error term and penalty term in Equation 

(2.7), respectively.

2.2.3 C onsistency of th e estim ators B E E H 2  and P E E H 2

In this section, we will discuss the consistency property of the estimators along 

with the conditions required. We will first introduce a set of assumptions D1-D4:

• (Dl) K  is nonnegative Borel measurable function on R d with J  K{x)dx  =  1.

• (D2) lim„— fin 0, lim^— nh^ oo.

• (D3) Assume yAjgf and \ / J  are finitely integrable.

• (D4) Assume that for any 8 > 0, P  supt \E*y/g^(t) — y/ge (t)\ > 8  —> 0 as 

n —» oo.

Lemma 3. Assuming Assumptions D l  and D2,

0.

Proof.

f ( t ) -  f{t)
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as n —> oo under Assumptions D l and D2 (Devroye, 1983). Therefore,

0

due to Steerneman (1982), H( f ,  f )  < J  \ f ( t ) — f(t)\dt.

To facilitate the following proof, define E H 2 =  E* [H 2( f , g£„)]. 

L em m a 4. Assuming Assumptions D3 and D4,

E*H2{ge0,g§*) 0,

and

E H 2 ^ H 2( f , gd0),

Observe that

\E *H {.96oi9q*) El (<?g0, 98q)| 2 v W * )  ( E *\/9§*(t) -  ) dt

E *\/9g*(t) -  V ^ f ) dt

By Assumption D4, for any 5 and e, 3 A^>e such that

P sup
t E *\Jge*{t) -  y/go0(t) < 5 > 1 — e

for any n > Ns,e. Let

A  = < u> : sup E *\/9g*{t) -  V 960(1) < 8

and

B = \ u :  /  y / g 0o(t) E * \ J g § E A ) -  V 9 e 0(t) d t  < 5  I gg0( t )d t
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Note that f  y/ggQ (t )dt  is finite by assumption D3. Then A  C B. Thus, let £ 

d /  V9e0( t )dt , for any 5 > 0 and e > 0,

V9e0{t) E*yjg§,(t) -  y/geo(t) > 1 — e

for all n > Â ae. Therefore,

[ # 2(5<9.,50o)] =  E* [H2(g§*,gdo)] -  H 2(geo,gdo) 0.

Similarly, Observe that

E H 2 -  tf2( /,50o) = |£?, [i/2(/, <?*.)] -  # 2(/,

2 J  y / W )  ( E* \ / g § * ( t )  -  >/go0( t ) )  dt

< 2  [  y f W ) E*yjg§*( t )  -  V 9 e 0(t) dt

let

dt <  5 y / f { t ) d t  \  .E*^Jg§*(t) -  v W * )

Note that J  y / f ( t ) d t  is finite by assumption D3. Then A  C C. Thus, let £' 

<5 J y / f ( t ) d t ,  for any <5 > 0 and e > 0,

P V W )  E ,y /g §.(t) -  y/ge0(t) d t < ? > P[A} > 1 -  e

for all n > Ng)t. Therefore,

EH 2  — H 2( f , g9o) — > 0.

Lem m a 5. Assuming Assumpt ions  D1-D3,  then

E H 2 -  E E H 2 - A  0.
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Proof. Observe that \EH2 — EEH2\ < J  

Cauchy-Schwarz inequality,

E* [a/g§Af)] dt, and by

E, yjg§»(t) dt < H 2( f J )  J  yE* y/gs.(t)

< H \ f J )  [  E ,\gd.(t) \d t

dt

g§* (t)dt

It is shown in Lemma 3 that H( f ,  / )  — > 0 by Assumptions D l and D2. By 

continuous mapping, H 2(f,  / )  0. Therefore, it follows that EH 2 — E E H 2  0.

□

T h eo rem  2. Assuming Assumptions A1-A2 and Dl -Df ,  then E E H 2  — EH 2  0 

as n goes to oo.

Proof. Note that the Hellinger distance is a metric and thus by triangle inequality,

\ H ( f , g §) - H ( f , g do) \ < H ( g eo, g§)

By Theorem 1, H(gg0,g§) =  Op(l /n)  under Assumptions A1-A2. It is easy to show 

that H(gg0,gff) =  op(l) under the same set of conditions. Thus,

H( f , g § )  H ( f , g e0),

which means that the distribution of H 2(f,  gjf) degenerates to that of H 2(f,ge0) by 

continuous mapping theorem. By Theorem 8.8 (page 58, Lehmann, 1998),

By Lemma 4,

EH2  = E*[H2( f , glh)\ H 2(f,
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under Assumptions D3 and D4. Therefore, E H 2 — EH2  0. Moreover, EH2  — 

E E H 2  0 by Lemma 5. Theorem 2 follows since E E H 2  — EH 2  =  ( EH2 — 

EH2)  -  (EH2  -  EEH2). □

L em m a 6 . Assuming Assumptions A1-A2 and D1-D3, then

H ( f , g §) - ^ H ( f , g eo)

as n goes to oo

Proof. By triangle inequality of the Hellinger distance, we have

H ( f , g §) < H ( f , g eo) + H(g6o,g§) < H ( f , g Bo) + H ( f J )  + H(ge0,g§)

At the same time,

H(f ,  geo) < H( f ,  g§) + H(g0Q,g§) < H( f ,  g§) + H ( f , / )  +  H(g0o,g§)

Thus, by Theorem 1 and Lemma 3,

H ( f , g 6) - ^ H ( f , g 6 0) 

under Assumptions A1-A2 and D1-D4. □

p
T h eo rem  3. Assuming Assumptions A1-A2 and D1-D4, then E E H 2 B  — EH 2 — > 

0 as n goes to oo.

Proof. Recall that

E E H 2 B  = H 2( f , g§) +  E ,H 2(g§. , geo)

By Lemma 6,

H 2(f,g§) H 2( f , g6o).
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By Lemma 4,

E*H2(g§t,g6o) 0.

Moreover, as shown in the proof of Theorem 2,

EH 2 = E [ H 2( f , g§)] — H 2( f , geo).

Therefore,

E E H 2 B  -  EH 2  0
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C h a p te r  3

M ODEL SELECTION B A SED  ON E H 2 - ILLUSTRATIVE  

EXAM PLES

The problem that we are interested in is a general one: competing approximat­

ing models are given with specified estimation methods, and we want to choose the 

one that is the “closest” to the true model based on a prespecified distance between 

distributions. We are required to make our decision based on an i.i.d. sample of 

size n, X  =  {Xl5 X 2, ..., X n}, that comes from the true distribution. As discussed 

in Chapter 2, the distance we are interested in is the Hellinger distance. The ap­

proximating model that is the “closest” in terms of the Hellinger distance is the one 

that has the smallest E H 2, which is termed “true best model” . In general, the true 

best model can be estimated by the approximating model for which the estimated 

expected squared Hellinger distance, B E E H 2 or P E E H 2 as proposed in Chapter 2, 

is the smallest among all approximating models. In this chapter, we will study a few 

simple examples using B E E H 2 as the model selection criterion. In chapter 4, we 

will propose a model selection strategy based on P E E H 2 specifically for factorial 

ANOVA model selection problems, where often times the approximating models are 

“nested” or sub-models of other approximating models. In Chapter 5, we will study 

model selection problems in modeling p-values from Microarray data, using mixture 

distributions with various number of Beta components and applying B E E H 2 to 

estimate the true best model.
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3.1 Exam ple 1: D ensity M odeling

One example of model selection is density estimation. An interesting case is 

when the competing approximating distributions are different only in the estima­

tion methods, for instance, when the approximating models are N (0 ,a 2) with the 

estimators of a being M H D E  and M L E  respectively. The B E E H 2’s can be cal­

culated for the approximating distributions using each estimator based on the data 

and the one with the smallest B E E H 2 will be chosen. As mentioned in Chapter 2 

, the estimator MHDE is related heuristically to the maximum likelihood estimator 

of the parameter (vector) 9 if the true density is in fact some ge0, that is, if there’s 

no model misspecification. In this section, we consider one example to see if the 

MLE is the one that minimizes the expected squared Hellinger distance.

Suppose we have i.i.d. data set X  =  { X x, X 2, . . . ,X n} from some distribution 

F. Suppose we know the true distribution: F  = N (0,1). Let the candidate model 

be G = N(0,  a2) where the variance is estimated by k2S 2. Let S 2 = , the MLE

of a2. We constrain ourselves to the cases where n > 1. We would like to find the k 

that minimizes the expected squared Hellinger distance. Now, the squared Hellinger 

distance is:

H 2(f,  g) =  2 - 2  J  y j f ( x ) g ( x ) d x
=  2 ~ 2 / v i b ex p H "  w & ) d x

The k that minimizes the expected squared Hellinger distance, k* = 

argminfc{E[LT2(d>o,i, 0o,fc252)]} where <fi denotes the Normal density, can be approx­

imated by numerical methods. Note that, n S 2 follows a y 2 distribution with n
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degrees of freedom. Generate m values u from a x 2(n ) distribution and let s2 = 

j  =  1 , m. Let k =  {k \ , . . . ,  Aqooo} be a real value sequence from 0 to 2. Approxi­

mate E H 2 for each ki using

m U \ \Z(kiSj)2 +  1J  ’ 

Then the £W2 is approximately minimized at

for i =  1 , 1 0 0 0

=  argminj— y ^(2 — 2- ^  ^zSj
k m  ^ = )}•

j = 1 V  { k i Sj ) 2 +  1

A simulation with n =  10 and m  = 50 shows that the k is approximately 1.05. 

Figure 2 shows the approximated E H 2 against k and the vertical line locates where 

the the numerical minimization lies. We can see that, although close, MLE is not 

exactly the one that minimizes the expected squared Hellinger distance.

EH2 p

0.0 0 .5 1.0 1 .5 2.0

Figure 3.1: Example 1: Whether MLE Minimizes the E H 2. The true distribution 
is 4?(0, 1) and the approximating distribution is 4>(0, k2SP). E H 2 is calculated, based, 
on 50 simulated values from x 2(10) f or every k value from 0 to 2.
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E xam ple  2: M odel Selection  A m ong Two A p p ro x im a tin g  Fam ilies of D is­
tr ib u tio n s

A common model selection scenario is that for a given data set that comes from 

some unknown distribution, one needs to choose one from two (or more) compet­

ing approximating (candidate) distributions based on a prescribed criterion. Our 

selection strategy is to calculate B E E H 2,  for each distribution, from the data and 

choose the one with the smallest B E E H 2. In this section, two simulated examples 

of such model selection problems will be discussed. In each of the two examples, 

S  = 1000 data sets of size n=10, 30, 50, 80, and 150 are simulated from a true dis­

tribution (Lognormal or Exponential). Two approximating parametric families of 

models are given with specified estimators for the parameters. In both cases, kernel 

density estimators are fitted to the log-transformed data to avoid possible bound­

ary problems near zero. B E E H 2’s are calculated for the approximating models 

for every simulated data set. For each given sample size and each simulated data 

set, one of the models would be chosen based on the comparison of BE EH 2's ,  de­

noted as Choice.B E E H 2.  For a given sample size, the 1000 choices by B E E H 2, 

Choice.BEEH2, are compared with the true best model given by EH 2 ( E H 2 is 

calculated from 200 data sets simulated from the true distribution) and the success 

rate for a given n (Suc.BEEH2n) is the percentage of the times that the choices 

are the true best model:

Number of Choice.!?-EEH2 matching the true best model
buC.-DDDii 2^ — ”

O

Case 1: D ata From L ognorm al(0,l)

In this example, data sets are generated from Lognormal(0,l) and the two ap­

proximating models are Gamma(2, (3) and Weibull(l, A) where the scale parameter
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/3 for Gamma is estimated by X / 2  and the scale parameter A for Weibull is esti­

mated by sample mean X .  Note that when the shape is 1, Weibull distribution is 

simply the Exponential distribution with the same scale parameter. The number of 

Bootstrap samples M  for the calculation of B E E H 2 is 1000. Figure 3.2 shows the 

density curves of lognormal(0, 1), Gamma(2,1.7/2), and Weibull(l,1.7), where 1.7 

is the sample mean of a data set of size 150 generated from lognormal(0,l). In this 

example, H 2(f ,gg) is also used as a criterion for comparison purposes. The success 

rates of choosing the true best model by both criteria are summarized in Table 3.2.

—  Lognorm al(0,1) 
 G am m a(2 ,1.7/2)
- - E xp(1/1.7)

o

LOo

oo'
0 2 4 6 8 10

Figure 3.2: Three Density Curves: Lognormal(0,l), Gamma(2,1.7/2), and
Weibull(l,1.7)

Distribution n=10 n=30 n=50

OOOII n=150
Gamma(2, X / 2 ) 

Weibull(l, X )
0.1067
0.0809

0.0754
0.0554

0.0720
0.0517

0.0682
0.0493

0.0654
0.0470

Table 3.1: E I I 2 Approximated from 200 Data Sets Generated from the true distri- 
but ion Lognormal (0,1)
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Estimator n=10 n=30

OLOII oooII >—1 OLOT“HII

B E E H 2 0.563 0.686 0.738 0.801 0.859
H 2(f,  g§) 0.564 0.680 0.733 0.794 0.857

Table 3.2: Success Rates of Choosing The True Best Model Based on B E E H 2  and 
H 2(f,gg).  The true distribution is Lognormal(0,l), the two approximating families 
are Gamma(2, X / 2 )  and Weibull/1, X ) .

For all sample sizes, the true best model is the Weibull(l,A) distribution (Table 

3.1). We can see that the percentages of the time that the true best model is chosen 

increase as the sample size increases for both criteria. In this example, both B E E H 2 

and H 2(f,gg)  perform reasonably well. In more complicated problems, especially 

when many of the approximating models are sub-models of other approximating 

models, H 2( f , g§) tends to favor larger models that contain the true model. More 

examples can be found in Chapter 4.

C ase 2: D a ta  F rom  E x p o n e n tia l  1)

In this example, data sets are generated from Exp(l) and the two approximating 

families of models are Normal)p., a2) and Lognormal (p0. ctq). All the parameters are 

estimated by maximum likelihood method. The number of bootstrap samples M  for 

the calculation of B E E H 2  is 1000. The density curves of Exp(l), Normal(1.03,0.99), 

and Lognormal(-0.50, 1.18) (the parameters of the approximating distributions are 

estimated from a random sample of size 150 from EX P(l)) is plotted in Figure 

•3.3. This is a case where one of the approximating distributions (Lognormal) is 

obviously closer to the true model than the other. Table 3.3 lists the E H 2’s for both 

approximating distributions and all sample sizes. Not surprisingly, the percentage 

of choosing the true best model by B E E H 2 is very high for even very small sample 

size and is 100% when sample size increases to 80. The success rates are summarized 

in Table 3.4.
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Exponential(l) 
Normal(1.03,0.99) 
Lognormal(-0.5,1.1

o

00
o

<£>
O

O

CNo'

o
o

-4 - 2 0 2 4

Figure 3.3: Three Density Curves: Exp(l), Normal(1.03,0.99), and Lognormal(-0.50, 
1.18)

Distribution n—10 n=30 n=50 n=80 n—150
Normal

Lognormal
0.2797
0.0910

0.2649
0.0694

0.2603
0.0547

0.2577
0.0520

0.2585
0.0485

Table 3.3: EH 2  Approximated from 200 Data Sets Generated from the true distri­
bution Exp(l)

Estimator n=10 n—30 n=50

OOOIIi n=150
B E E H 2 0.943 0.997 0.999 1 1

Table 3.4: Success Rates of Choosing The True Best Model Based on B E E H 2. The 
true distribution is Exp(l), the two approximating families are Normal (/a, a2) and 
Lognormal(hq, aq), with the parameters being estimated by MLE.

3.2 S im ulation  E xam ple  For E xam in ing  C onvergence of B E E H 2

In Chapter 2, we show that E E H 2 — E H 2 converges to zero in probability 

under some regularity conditions. In this section, we will check this result by a 

set of simulation examples. Since it not feasible to calculate E E H 2 exactly, we 

will compute B E E H 2 instead with the number of bootstrap samples being 200.
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Let the true distribution be Lognormal(0,1) and the approximating distributions 

be Exponential, Gamma, Weibull, and Normal, respectively. We choose a series of 

sample sizes n =  10,20, ...,500. For each sample size, 100 data sets are generated 

from the true distribution. Thus, for each sample size, we have one EH 2  and 100 

B E E H 2’s. These quantities are plotted against the sample sizes. Note that the 

bandwidths for fitting kernel density estimators are set to be depending on sample 

size n only.

Exam ple 1: Lognorm al(0,1) vs. Exp(A)

Let the approximating distribution be Exp(A) with the rate parameter being 

estimated by A =

M T r u e

@i TOO R e p l ic a t io n s

• • •

if

\  V ' \  '
-  ^ .  '• ' . ! \ ■ \  . . . •

1----------- 1----------- 1------------1----------- 1------------1—
O 100 200 300 400 500

n

Figure 3.4: Convergence of B E E H 2 to E l i 2. The true distribution is Log- 
normal(0,l) and the approximating family is E xp(l/X );  Sample size n  =  
10, 20, . . . ,  500; B E E H 2  values are calculated for 100 data sets generated from the 
true distribution at each sample size.

Figures 3.4 features E H 2 and 100 realizations of B E E H 2 and Figure 3.5 plots 

the mean and one standard deviation bounds of the B E E H 2 values for sample sizes 

n =  10, 20,..., 500. These figures show that B E E H 2 values are oscillating around
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a
OJ

E3 Mean and Sd o1 100 rep

0 1 oo 200 300 500

Figure 3.5: The Mean and 1 Standard Deviation Bounds of B E E H 2 Values. The 
true distribution is Lognormal(0,l) and the approximating family is E x p ( l /X ); Sam­
ple size n  =  10, 20, . . . ,  500; B E E H 2 values are calculated for 100 data sets gener­
ated from, the true distribution at each sample size.

the E H 2 value and the spread of the B E E H 2  values is getting smaller as sample 

size increases. In fact, the 1 standard deviation interval contains the true E H 2 even 

at small samples sizes and the width of the interval within the bounds shrinks as 

the sample size increases. The mean of the B E E H 2 values is also getting closer to 

E H 2 as sample size increases.

Exam ple 2: L ognorm al(0,l) vs. G am m a(2, /?)

Let the approximating distribution be Gamma(2, (3) with (3 =  y .

We can see from Figures 3.6 and 3.7 that the patterns are similar to those in 

the first example.

Exam ple 3: L ognorm al(0,l) vs. Norm al(/x,l)

Let the approximating distribution be Normal(p.,1) with (i = X .

Figures 3.8 and 3.9 show that the results are similar to those in the above 

examples, although the true E H  values are higher since a Normal distribution is
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I M True

* m  100 Replications

VI, , ; v V v /

■ " *

O 100 200 300 400 500

n

Figure 3.6: Convergence of B E E H 2 to E H ‘2. The true distribution is Lognor- 
mal(0,l) and the approximating family is Gamma(2, X/ 2) ;  Sample size n — 
10, 20, . . . ,  500; B E E H 2 values are calculated for 100 data sets generated from the 
true distribution at each sample size.

CM m True
and Sd o1 100 rep

8

o

500o 1 00 200 300 400

Figure 3.7: The Mean and 1 Standard Deviation Bounds of B E E H 2 Values. The
true distribution is Lognormal(0,l) and the approximating family is Gamma(2, 
X/ 2) ;  Sample size n =  10, 20, . . . ,  500; B E E H 2 values are calculated for 100 data 
sets generated from the true distribution at each sample size.

obviously further away from the true distribution as compared to other approximat­

ing families.
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Figure 3.8: Convergence of B E E H 2 to -Ei/2. The true distribution is Log- 
normal(0,1) o,nd the approximating family is Normal(X, 1); Sample size n =  
10. 20, . . . ,  500; B E  E H  2 values are calculated for 100 data sets generated from the 
true distribution at each sample size.

CO
CD

CO
O

Figure 3.9: The Mean and 1 Standard Deviation Bounds of B E E H 2 Values. The 
true distribution is Lognormal(0,1) and the approximating family is Normal(X, 1); 
Sample size n  =  10,20, . . . ,  500; B E E H 2 values are. calculated for 100 data sets 
generated, from the true distribution at each sample size.

These simulation results confirm the convergence theorem in Chapter 2. Sim­

ulation studies on the convergence of P E E H 2 — E H 2 will be provided in Chapter 

4.

■  T rue 
Hi M ean and S d  o1 100 rep

True

100 Replica1lon8
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C h a p te r  4

M ODEL SELECTION B A SE D  ON E H 2 - A PPLIC A TIO N  IN  ANOVA  

M ODELS  

4.1 Introduction

ANOVA model selection problems are particularly interesting in that the ap­

proximating models are often “nested” models, that is, some or all of the effects in 

one approximating model may be sub-models of other approximating model(s). The 

more effects a model has, typically, the better is the approximation. The decision as 

to whether a given effect should be included is often based on a test of the hypoth­

esis that all levels of this effect are zero. More systematic procedures based on the 

F  test, such as Forward Selection, Backward Elimination, and Stepwise selection 

(Hocking, 1996) have been proposed to decide which effect(s) should be kept in the 

model. The forward selection method adds one variable at a time, stopping when 

it is determined that the remaining factors will not make a significant improvement 

in the model. The backward elimination method begins with the full model with 

all possible factors, and eliminates the factor th a t’s considered to make the small­

est contribution. The stepwise selection method is an improvement to the forward 

or backward method alone and a combination of these two. These methods were 

popular largely due to the fact that they involved little computation. These meth­

ods imply an order of importance on the variables that is generally meaningless. 

(Hocking, 1996).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



44

Mallows (Mallows, 1966) proposed the statistic

Cp =  ^  +  2p - N  (4 .1)
(Tz

for each subset of the combinations of the effects, where RSSk  is the residual sum 

of squares associated with a subset model that has k effects, a2 is an estimator 

of a2 (usually the residual mean square for the full model), and p — k +  1, equal 

to the total number of parameters. The subset that minimizes Cv is considered 

the best subset. He also pointed out that, those models with Cp-values that are 

approximately equal to the corresponding number of parameters usually have small 

prediction bias. Information based criteria such as AIC and AICc are also used.

The ANOVA models considered here are balanced fixed effects factorial models 

as defined in Hocking (1996). By ba lanced  we mean that the numbers of observa­

tions in every cell are the same. In general, let T  — {Fi, F2, ■ ■ ■ Fk} be the k factors 

(k denotes the number of factors) with a1; a2, . . . ,  a*, being the corresponding levels 

and cij > 1 for i =  1, • • • ,k. Let n  be the collection of fc-tuples

7T =  (7Tx, 7T2, . . • , 7Tfc),

where 7ij E {1, 2 , . . . ,  aj},  and j  =  1 , . . . , k .  Each element ix E n  represents a 

particular combination of the levels of the k factors which may be viewed as a cell 

in a k-way table corresponding to the k factors. The response variable associated 

with rth replication in the cell 7r, denoted can be expressed as

Y-k,t Mtt T ?̂r,r

where /j,n is the cell mean, and r  — 1, • • • , npi (for balanced design, n\ =  n2 =  • • • =  

nPi =  n). The error term, en>r, is often assumed to be normally and independently
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distributed with mean 0 and variance c 2. Specially chosen contrasts of the cell means 

are referred to as Factorial Effects. Different ANOVA models considered here 

reflect different structures of the means, which can be expressed as combinations 

of some or all of the factorial effects. For simplicity, all the ANOVA models we 

consider in this chapter include the intercept.

Here, we propose model selection methods based on the expected squared 

Hellinger distance and apply these methods to ANOVA model selection problems. 

These methods are developed based on theoretical considerations under the assump­

tions that the true distribution is normal and the variance is known. This chapter is 

organized as follows. In Section 4.2, the properties of the expected squared Hellinger 

distance are studied and the model selection problem in ANOVA is discussed in de­

tail. An estimator of the expected squared Hellinger distance, P E E H 2, is proposed 

in Section 4.3, and the rationale behind the selection method based on P E E H 2 is 

discussed. Section 4.4 displays the simulation results for checking the performance 

of this strategy in terms of choosing the “true best” model. In Section 5.4, this 

model selection method is applied to a real data problem for illustration. Section 

4.7 deals with an example of a model selection problem in ANOVA models with 

error terms that follow two-parameter exponential distribution, in which case A1C 

and its variants can no longer be interpreted as the estimators of expected K-L 

discrepancy (since it does not exist).

4.2 ANOVA M odel Selection w ith EH2

The selection among different ANOVA models can be interpreted as the se­

lection among the approximating probability distributions. In a typical ANOVA
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model selection problem, the approximating models are some or all possible facto­

rial ANOVA models that include the full model and its sub-models. Each of the 

approximating model is associated with an approximating distribution for each cell 

7T, namely, a normal distribution N(jl7r, a2) (density </>/;„,5-2) with being the corre­

sponding mean structure estimated from data {K-j, Y )̂2, ■ • • , Yn,n} and a2 being the 

MSE from the analysis of variance table. For the true distribution, we assume that 

the random variables Y„tr’s in the cell 7T are independently distributed with density 

function fe„(%) — ,f(% ~  $tt)> a family of densities with a location shift parameter. 

The Hellinger distance between the true model and the approximating model for cell 

7T is thus denoted as ,a2)- The corresponding expected squared Hellinger

distance, denoted as E H 2, is given by

EH2{-K) = E[H2{fê < t> ^)}-  (4-2)

There are various ways to define the overall discrepancy between the true model and 

approximating model based on the cell-wise EH2{tv), e.g., the summation (equiv­

alently, the average) and the product. Let a = n t= i denote the number of all 

cells.

D efin ition  1. We name 4 J2„GnEH2(n) as the overall expected squared Hellinger 

distance, the average of the model error term in Equation (2.7) for all cells as the 

overall model error, and the average of the penalty term in Equation (2.7) for all 

cells as the overall penalty.

4.2.1 A n illustrative exam ple of two-way ANOVA

In a two-way ANOVA model with factors F\ and F2, the response or

simply denoted as Yijr, for the rth trial of the ith factor level in Fi and the j th factor
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level in  F2 c a n  b e  s t a t e d  as:

F'l j /• f l- i j “1“ ^ij r i

where ^  is referred to as the cell mean, while eyr is the random error associated with 

Yijr. For this example, assume that eijr is normally distributed for all approximating 

models. Let p.. denote the overall mean, pi, denote the average of the cell means 

over all levels of factor F2 for the iih level of factor F\ and /i 7 denote the average of 

the cell means over all levels of factor F\ for the j th level of factor F2.

The Row effect, Column effect and Interaction are defined as following

i — th row effect 
j  — th column effect 

(i , j)  — th interaction

—  f t i .  ft., 
ftj — fi.j ~~ ft..
( o i f l f j  Hi j  /ij, / i  j  T  fi,,

Observing the convention that an interaction effect is in a model only when all

corresponding main effects are also in the model, all possible two-way ANOVA

models and their corresponding mean structures are shown in Table 4.1.

Null model: /Uy = /2 .
Row Effect model: =  fi.. +  a,:

Column Effect model: -I- [3j
Main Effects model: /iy =  /i.. +  + (3j

Full Model: =  p.,, +  a 7; +  + (a/3)y

Table 4.1: Mean structures of all possible two-way ANOVA models

Assume that the data come from a column effect model with a known common 

variance a2 and that the levels of the two factors ai =  a2 =  2. And

N ( ^ , a 2), iV(/i2, a 2), i = 1,2 r  =  l , . . . , n .

The limit (in probability sense) of the estimated cell means for cell (1,1) under five 

approximating models are illustrated in Table 4.2, assuming the true model is the 

column model. Recall that 6q is what 6 converges to in probability. The estimated
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cell means by the column effect model (true model), the main effects model, and 

the full model all converge to the true parameter, which implies that /  =  gg0 and 

therefore H 2(f ,g g0) =  0 for all three models. It can be shown that this is true for 

all cells.

Pi; E[/qy ] 9q

Cell ( 1,1)
Null Model 
Column Effect Model 
Row Effect Model 
Main Effects Model 
Full Model

Y... P i /2  +  /J-2 /  2 p i /2  +  p 2/2
y,1. p  1 p i
Yi.. P 1 /2  +  P 2 /2  P 1 /2  +  P 2 /2

Y\.. +  y. 1. -  y... P i P i
Yu. P i P i

Table 4.2: Expected Cell Means and 90 for cell (1,1) When the True Model is the 
Column Effect Model

Now let us take a look at the penalty term in Equation (2.7) for those three 

models that has zero model error term. The squared Hellinger distance for cell (1,1) 

between ggQ and g$ is:

=  2 -  2 e x p { - (/ill8~ / ‘l)2} (4.3)

where P(i,i) is estimated cell mean from the data based on the mean structure 

prescribed by the approximating model. Since all observations are independently 

distributed with identical distribution except for location shift, the sample means 

can be re-written as:

Y i j .  =  P j  H 7 =  Z i j  I 
v »

where Z i j  iV(0,1). The estimated cell means for cell (1,1) according to the three 

models are therefore:

Column Effect Model : Y x. =  = ^  +
Main Effects Model : Y1.. +  Y L -  T  . =  /xx +  .

Full Factorial Model : Yn. =  pi +
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where (Z n  + Z21)/V 2  and (3Zn +  Z21 +  Z 12 ~  Z22)/VV2  both have standard nor­

mal distribution. The penalty term in Equation (2.7) corresponding to cell (1,1), 

E[H 2{4>lllt(r2, (/>/xlua2)\, f°r the three models are listed below in increasing order:

Column Effect M odel: E[H2(<f)^a2 , v )] =  2 -  2^ ^ j - 2

Main Effects M odel: <j)?l +ya _y...^2)] = 2 -

Full Factorial M odel: E[H 2( ^ ltCT2 , <f>yn ^ ) ]  = 2 -

Note that this is also true for all other cells. In Theorem 5, we show this pattern 

holds in general.

R em ark  2. Observe that assuming that the true model is the column effect model 

and a known, the column effect model, the main effects model and the full model 

have zero overall model error term. Among these three models, the column effect 

model has the smallest overall penalty term.

Further illustration of the relationship among the approximating models is pro­

vided in a lattice diagram shown in Figure 4.1. In a lattice diagram for all possible 

ANOVA factorial models, a model is contained by its ancestors and has the same 

number of effects as all the models at its level. The root of the lattice diagram is 

the simplest model, i.e., the null model. All other models contain the null model 

and thus are its ancestors. The full factorial model contains all other models and 

is at the top. In Figure 4.1, there are two paths that start from the top (the full 

factorial model) and end at the root (the null model).

In Section 4.2.2, we will show that the results seen in this example hold more 

generally.
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Full Model 

Main Effects Model 

Column Effect Model Row Effect Model 

Null Model

Figure 4.1: Lattice Diagram of 2-way ANOVA Models 

4.2.2 Properties o f the E H 2 in Balanced ANOVA problem s

In this section, we will follow the set of notation for factorial models used 

in Hocking (1996). Assume the design underlying the data vector is balanced 

with cell sample size n. Define T  as the set of nonempty subsets of the set 

of factors T  — {Fi, F2, . . . ,  Ffc}, with the { a i , . . . , a fc} being the corresponding 

levels. In the example shown in Section 4.2.1, T  — { F i,F 2}, k =  2, and 

T  =  {{i7!}, {F2}, {Fi, F2}}. Any ANOVA model can be denoted as a subset of 

T  plus 0. Note that by default all models V  include the empty subset 0 and if 

t e V, so are all the subsets of t. Thus, V \ = {0, {Fi}, {F2}, {F\ , F2}} represents 

all effects of a full 2-way factorial model while V 2 = {0} represents the null model. 

(Table 4.3).

Models V
Null Model 

Column Effect Model 
R ow  E ffec t M o d e l 

Main Effects Model 
Full Model

{0}

R { F i} }  
{0,{ F 1},{F2}} 

{0,{F1},{F2},{F1,F 2}}

Table 4.3: 2-way ANOVA models denoted by subsets of {0,T}
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For any t  £  T ,  £_t denotes the vector of effect parameters. In order to define 

the factorial effects, we need the following notation. For any t E T , we first define 

matrix as:
k

H t =  0 £ i  (4.4)
i = 1

where

B,  =  +  (1 -  I t (Fi ) )  i 4di

where Sa. denotes the sum of squares matrix Sfli =  Ia; — (l/a j)U ai with the last row 

deleted, J  is a vector of l ’s with length a*, U ai is a matrix of l ’s with dimension 

di x di, and It{Fi) =  1 if F) G t and 0 otherwise.

Define the parameter vectors of the effects by

£ t =  H  tfi, (4.5)

where /r denotes the cell mean vector according to the full model. The estimated 

effect vector is

Lt =  H  tfi, (4.6)

where A =  (0 ? l ai 0  i l n Y v -  

Denote
k

X t =  0 Z i ,  (4.7)
i=l

with

where A a; — ( I ai- i |  — J.a i- 1)- Note that H* is a matrix of dimension Y [{ i -F i£ t} (a i ~

1) x a and X t is of dimensions a x ri{rFie<}(ai — -*■)■ More details of the notation

can be found in Hocking (1996).
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D efin ition  2. Data is said to follow model D if  £_t =  0, for all t €  T>c  C  T . 

R em ark  3. The cell mean vector according to model V  is

= + (4-8)
tev

where J  has length a and £ denotes the overall mean, the null effect or the effect 

parameter associated with the empty set. According to Definition 2, none of the 

effects {t € V c } contribute to the cell means specified by model V .

D efin ition  3. V q C T  is said to be the true model if  V  o is the set o f t  such that

£*¥> o.

Observe that for any t G T , X t is a full rank matrix since

k

r(X,) = n> '(Z ,)=  I ]  t®*-1)’
i { i \ F i & }

due to the fact that r(Aai) =  a* — 1. Also note that if t\ 7̂  t2, then XfX* =  0 , i.e., 

X tl and X<2 are orthogonal to one another (Hocking, 1996). Suppose there are s 

elements in S  and let denote the ith element in S  € T . Define

A 5 =  [X5(1)| . . . | X 5W], and £ s  =  [£^w  \ ■ ■ ■ \£Ts(s)]T

A s  is thus a full rank matrix with all the columns being linearly independent and 

(A'S)T’A ‘S is then non-singular.

Lem m a 7. Let V q be the true model. I f  S  C P 0, then

^ 0 .
tes
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Proof. This lemma can be proved by showing that if t ~  -> then S  C T>q .

In fact, if

J 2 x tS t = A s £ s = 0,

then

(A s )t A s £ s  = 0 =* £ 5 =Q  =» 5 C P 0c

The last implication is a consequence of definition 3. □

R em ark  4. The result of Lemma 7 can be extended to

Y 'X t d t S j ?  0
tes

if  S  E I V  where dt is a real number for t E S  and dt ^  0 for at least one t E S. 

The proof of the Remark 4 is similar to that of Lemma 7, only letting

£S =  [d5( i ) ^ (i) |- - - |d 5(.)^(.)]T.

Note that in this case, it is also true that £ s = 0 if and only if S  C .

L em m a 8. Let <Si and S 2 be subsets of the true model XV Then

Y , X tS t = J 2 X t£t (4.9)
t€itSl t(~S2

if and only if S x = S 2

Proof. The sufficiency part is straightforward. The necessity part follows from

Lemma 7 and Remark 4. In fact, if equation (4.9) holds, then

x <£.+ E  x <£<= E  x *£i+ E  x ‘£i-
t€.SiC\S2 t^SinSrf t€SiDS2

which implies that one of the following must be true
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• Conclusion A. Either the set (Si fl S 2 ) U (S f fl S2) is empty, or

• Conclusion B. Otherwise,

x t d t £ t =  0
te(5in5f )u(5pn52) 

where d t = 1 for t e  Si fl S 2 and d t — — 1 for t e  S f  fl S2.

Conclusion B implies that

(Si n s 2c) u (S f n s 2) c v %

by Remark 4. But this result contradicts with the condition that <Si and S 2 are 

subsets of the true model V 0. Therefore, the set (Si fl S 2 ) U (S f fl S 2) must be 

empty, i.e.,

=  = « ■  s , = s 2
t£.S\ t$zS2

□

Now, the cell mean in cell ir € II according to any given model V  can be written

^  =  £ +  ^ X ' £ t =  £ +  ^ x JHifr (4.10)
tev tev

where XJ1’ denotes the row corresponding to cell 7r in matrix X*. Specifically, the 

row number in X* corresponding to cell 7r =  {7rj, . . . ,  7Tfc} is
k —1 k~ ̂  n a3+7Tk
i=  1 j —i-k 1

Denote ftv 'Di) as the vector of parameters that jiv  converges to in probability.

L em m a 9. Let the true distribution of the YnjT, where r =  1 ,2 ,...  ,n  and tt £ II, 

be i.i.d. N(pdf0, cr2). For any given approximating model V,

[£v , v 0 = = £ j +  ^  X t £ t .

tevnVo
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Proof. It is well known that the least squares estimates of the cell means are unbi­

ased:

E(ft) =  p.

And thus by the weak law of large numbers,

Lt = Htfi Htp = £ v

By definition, £ t is non-zero if t G T>0 and zero otherwise. Now, for any given model 

indexed by V  € T,

=  E  x ^ +  E  x £ t  =  £ i +  E  x & -
□

tev tev nv0 tevnvf tev nv0

P ro p o sitio n  2. Let the true distribution of the Ynir, where r =  1,2, . . . , n  and 

7T € II, be i.i.d. N(p%°,a2). The corresponding distribution of an approximating 

model indexed by T> is given by N(jT^, a2), supposing a2 is known. Then the overall 

model error for model V  is zero if and only if T>0 C V.

Proof. The overall model error is zero if and only if the model error term in Equation 

(2.7) is zero for all cells ir € II. The model error term for cell 7r € II is

(uv ° — nv,v °)2
= 2 -  2exp{~ s f '  > (“ -U)

The value of Equation (4.11) is zero if and only if, for any 7r 6 II

P ° = P ' Vo. (4 .12)

D u e  to  L e m m a  9, E q u a t io n  (4 .12) im p lie s  th a t

£ J + ' £ x t£ t = £ J +  E  Xi^ ’ (4-13)
tev o tevnvo

which in turn implies that V  C\T>o — T>q, or V q C P ,  due to Lemma 8. □
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It follows naturally from the proof of Proposition 2 that the model error term

will be greater than zero for an approximating model V  which does not include all 

the effects in the true model T>q.

P ro p o sitio n  3. Using the setting of Proposition 2, the model error terms of Equa­

tion (2.7) in any cell 7r G II for two approximating models T>\ and V 2 are equal if 

and only if T>\ fl T70 — T>2 H T>q .

Proof. The model error term of Equation (2.7) in any cell 7r G II for the approxi­

mating model Vi, z =  1, 2, is

C oro lla ry  4. Using the setting of Proposition 2, the overall model errors for two 

approximating models T>\ and V 2 are equal if  V \ fl Vq =  V 2 fl T>q .

(4.14)

The difference between the two model error terms is

'tePinPp■usr>2nr>o

=  2 exp{—

2 exp{

(4.17)

Equation (4.17) is zero if and only if

E  x & =  E  x <£<-
tev inr>o tev2nv0

By Lemma 8, Equation (4.2.2) is true if and only if

(T>2 D T>0) — (T>i fl T>0)

□
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Corollary 4 follows immediately from Proposition 3.

P ro p o sitio n  4. Using the setting of Proposition 2, the overall model error for V 2 

is greater than that for T>i if  (V2 Cl T>q) C (T>\ C V 0).

Proof. For simplicity of notation in this proof, denote <Si =  ViDVq and S 2 = V 2r)Vo. 

If S 2 C  Si, then

due to the fact that X< is orthogonal to one another. Note that terms

Si — S 2 U ((Si n  S 2 )

where (Si fl S 2 = T>i C T>2 C T>0. Observe that

( x W )  f  X
\tes2 /  \teSinsg

T

and

(Yltev0 ~ Yht^s- X-t£-t)2 f°r ce^s 7T € II are the diagonal terms of the square

matrix
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where i = 1,2. Furthermore, based on the above observations

T

E x<£ - E x>£i) (E x<£> - E x<£<)
t ^ D  o t£ .S i J \ t € . U  o t(~S i /

(e ^ - E 3̂ ) -  E x<£«) ((Ex-£.-Ex<£«)- E
\t(zT >o  t(zS2 )  /  \  \ t € T >o ie>S2 )  t £ 5 i f l c

“(e ^ - E ^ )  (Ex‘£<-Ex‘£‘) + ( E x>£«) I E x*£
\<eP0 te52 /  vePo te52 /  yeSinsJp /  \te5in52c

- (Ex-£.-Ex«£<) f E x*£<) -(  E x<£<') (e  x<£ - E x<£
\ t e v  o t e s 2 /  y t e ^ n s f  /  \ t g S i n S f  /  \< e P 0 te>s2

=  ( E x <£>- E x >£>) ( E x <£<- E x ' & )  - (  E  x <&) (  E  x <£
\ t e v o t e s 2 /  \ te V o  t e s 2 /  \ t e S i n s ?  /  V t e S in s ?

T

x t£
teSinSf

T

2

Thus, the diagonal terms of ( E tGp0 x ^  “  EteS: X *^) ( E iG7>0 X ^ t  “  E te *  X * ^ ) J 

can be written:

( E x ' £ . - E x '£ < )  = ( E x r £ . - E x ?£«') -  (  E  x ? £
\«er>o t e 5 i  /  \te z > 0 i e 5 2 /  \ t e S i n s f  >

Since E teSinsc x t£t 7̂  2) f^e following inequality holds for 7r € II:

( E  x r£« -  E  x ?£«) S  { E  x *£< -  E  x ?£<) .
\t(z'Do t(~Si / o ££<̂2 /

with strict inequality holds for at least one cell. Thus, the value of the right hand 

side of Equation (4.17) is either zero or negative for every cell 7r G II. It follows that 

the overall model error for model X>2 is greater than that for model Xh. □

R em ark  5. I f  the overall model errors for two models at the same level in a lattice 

diagram are zero, the true model is a descendent of both models.
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Remark 5 follows from Proposition 2. If the overall model errors for two models, 

say T>i and V 2, at the same level in a lattice diagram are zero, they must both contain 

the true model due to Proposition 2. Moreover, neither model can be contained by 

the other since they are on the same level. Therefore, the true model must be at a 

lower level and thus a descendent of both models V 1 and P 2.

R em ark  6 . The overall model errors along any path from the full factorial model 

to the null model in a lattice diagram are non-decreasing.

Remark 6 follows directly from Proposition 3. In fact, the overall model errors 

will be all zeros along any path if the true model is the null model but will be strictly 

increasing if the the true model is the full factorial model.

For the following discussion, we need the definition below.

D efin ition  4. A set of models is said to be intersection-closed if  the intersection of 

any two models in the set is also included in the set.

D efin ition  5. The set of all the models for which the overall model error is zero is 

referred to as the unbiased group.

R em ark  7. The unbiased group is intersection-closed.

Remark 7 follows from Proposition 2. In fact, suppose two models V i and 

V 2 are in the unbiased group, then both models contains the true model. Their 

intersection T>i fl P 2 is therefore also in the unbiased group since it contains the true 

model and thus has zero overall model error. The unbiased group can be thought 

as the group of all the models that contain the true model.
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T h eo rem  5. Using the setting of proposition 2, for any given sample size n and 

approximating model V , the penalty term in cell tv € II is

In particular, the overall penalty depends on the number of parameters in model T> 

only.

Proof. The squared Hellinger distance between <f 2 and a2 in cell 7r € n  is

can be written

where

t £ V

Recall that a =  Jli=i a*- Now, the mean and variance of fi® with respect to the true 

model are

The following random variable Z  has standard normal distribution:

The expected squared Hellinger distance thus becomes
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F u r th e rm o re ,

( S Y S  =  \ l T l  + -  £  x ? h ,  j  + - Y ,  i T n j  (X ’ f  +  ( J 2  x . ' h , ) ( £  x - h ,)t
CL CL *•" CL 'tev tev tev tev

(4.1.9)

Note that the first term on the right hand side of the above Equation (4.19) becomes

7=4—- while the second and third term become 0, since 
(IIN)

H t l  = l T Hf = 0

due to the fact that Sa. J a. =  J.ai- \  ~  i , - i  =  0- Observe that for any t 6 T ,

X ,H , =  0  (/,(F .)A jS ,,, +  4 (1  -  u m s M ) ■
i  '

W ithout loss of generality, if t ^  t*, there exists at least one i such that Fj is in t 

but not in t* and

( w ) A ja , ,  +  F i  - i . m s d l )  + - h i  -  '
\  /  \

=  A lS „ ..-W . J l—dli ~ —Q’iHi

= 0

Therefore, if t ^  t*,

(X ,H ,) (X , .H  t. f

( « « K s ,  +  4 (1  -  i m u + z )  + 4 ( i  -

0
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The last term in Equation (4.19) for all n  G II are the diagonal terms of the following 

square matrix

t e v  t e v  t e v  t * e v  i
( £ X ‘ H > X E X <H ‘ ) T  =  £  £  < g >  + r *1 -

  \  Cio
' t * e v  % v
' / , . ( « )§ £  A„, +  1 (1  -  / , . ( F .) ) i , iT ,)

k

= £®[x(r.)A;s.1.sr.Aa. + (i -
t e v  i 

k

= £  <8 h / , ( « ) 1 ( « a , - u . )  +  ( i - / « ( R ) ) 1 u oi]
t e v  i

The diagonal terms of the above matrix are

n (“i - 1). ^ e n ­
ter? {i-.Fiet}

Therefore, Equation (4.19) is simplified into

n\  t e v  {i-.Fiet

(c£ )TqZ = -  | 1 +  > J  j ]  (di -  1) ] ,
i- .Fiet}

in

and the penalty term in cell n G n  becomes

E[H2((p -D.Vo a, <Pav,a*)} =  2 - 2   — -----
’ \ ‘l n + i ( l  + E , eI> n ii:f',e,)(“' - 1)

Observe that 1 +  Y l t e v  Y \{ i-F ie t} (a i ~  ■*■) the number of linearly independent pa­

rameters and the overall penalty increases as this number increases. □

An example with 2-way ANVOA models is given in Section 4.2.1, where penal­

ties for the column effect model, the main effects model, and the full model are 

calculated.

R em ark  8 . The overall penalty for any approximating model converges to 0 as 

n —> oo.
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R em ark  9. The true model has the smallest penalty term and thus the smallest

overall approximated E H 2 on the right hand side of Equation (2.7) among the un­

biased group.

Observe that the true model is the smallest model among the unbiased group, 

in which all the models have zero overall model errors. It follows from Theorem 5 

that it has the smallest overall penalty among the group.

T h eo rem  6 . Under the setting of Proposition 2, let V  be any model including the 

intercept and T>0 be the true model. Then the overall approximated E H 2 on the right 

hand side of Equation (2.7) for V  fl V Q is smaller than or equal to that for V , with 

equality i f  and only if V  f] V 0 = V .

Proof. The result of the theorem is straightforward if V  = V 0. If V  ^  V 0, the 

intersection of model V  and the true model V 0,V r \V 0, has less linearly independent 

parameters unless T> fl V q = V. Then,

1. By Corollary 4, model V  fl V q has the same overall model error as model V

2. By Theorem 5, the overall penalty for model V  fl V q is either the same as (if 

and only if V  fl T>0 =  V )  or otherwise smaller than that for model V.

Therefore, the overall approximated expected squared Hellinger distance for model

T h eo rem  7. Using the setting of proposition 2, for any given sample size n and 

approximating model T>, let

does;

V  D V q  is either smaller than or equal to that for model V q . □
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then
4 n

4 n +  £
exp{- n(fi.V,Vo ^ ° ) 2

2a2 (An +  £)

Proof. The squared Hellinger distance between a2 and (p/ix>>C72 in cell tt € n  is

h w )  =  2 - 2  exp{> = - A £ } .

Note from the proof of Theorem 5 that the mean and variance of pff with respect 

to the true model are

The following random variable X  has normal distribution with mean n f 'D° — fi%° 

and variance 1:

( A ?  -  r f ” )

And X 2 follows a non-central chi-square distribution with 1 degree of freedom and 

non-centrality parameter A:

A

The expected squared Hellinger distance thus becomes

2 ( v \ t  v  
= 2 -  2 A [exp {-----

=  2 - 2

=  2 -  2 .

=  2 - 2

(cv )Tcv  1 — 2(—-
8 n

X 2}]

- 1 / 2

exp{-
(£?)r £?

8n
(1 +  2^ )

4n
4n +  (c£)Tc£

4n
4n +  £

exp{-

/ V,V0 _  UV0\2
exD/  ^ ^   ̂ \

P t 2er2(4n +  (c^)Tc^)

}■
-  /i^ ) 2

2cr2(4n +  £)
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i(i+£ n\  t € V  {i-.Fie

(a* -  1) >

where

from the proof of Theorem 5. □

Note that when the squared difference between /i®’Vo and is less than 

or equal to 4cr2, E H 2 is an increasing function in £. Otherwise, for fixed dif­

ference between and /i^° and any given n, E H 2 will decrease in £ until
/  X>q  %2

£ =  2n((tin 2~f"" ’— 2) and then increase. In general, we observe that the expected 

squared Hellinger distance has a built-in penalty in the sense that there exists a 

number of parameters beyond which the expected squared Hellinger distance will 

increase (unless the number of parameters is bounded). Where the changing point 

occurs depends on the sample size and the amount of lack of fit.

T h eo rem  8 . Under the setting of Proposition 2, for any approximating model V ,

EH 2(n) — > H 2 ($ i v0'(T2,<t>i v,T>0'(r2Sj

as n  —> oo for n € n .

Proof. Theorem 8 directly follow from Theorem 7. As n —> oo

B f f 2 W  =  2 _ 2 / ^ exp{_ h A ^ > f }
v ’ V 4n +  £ 2a2 (An +  £) ;

f U V ,V 0 _  / ,T’o')2
> 2 — 2 exp{—

=  H 2

□

R em ark  10. Under the setting of Proposition 2, the true best model will become 

the true model as n —> oo.
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Remark 10 is a direct consequence of Theorem 8.

R em ark  11. For practical purposes, the true best model is unique.

We can, however, construct examples where more than one model has the same 

smallest E H 2.

D efin ition  6 . The union of the unbiased group and the set of models that has 

smaller EH 2 than the true model, if any, is said to be the target group.

Note that if the true best model is the true model itself, the target group is 

just the unbiased group and is thus intersection-closed. The true best model can 

be other than the true model only when the decrease in the overall penalty exceeds 

the increase in the overall model error for the true best model as compared to the 

true model. As sample size increases, the overall penalty will vanish and the overall 

model error becomes dominant. Therefore, when sample size increases, not only the 

target group will approach the unbiased group, the E H 2’s for all the models in the 

target group will be close to zero and thus close to one another. Based on these 

properties, we propose a two-step procedure described in Section 4.3 to estimate the 

true best model by choosing the model that has the smallest overall penalty among 

the estimated target group.

All results in this section are based on the assumption that the variance of the 

true distribution is known. Although this assumption is not realistic in practice, 

these results motivate us to propose the model selection strategy described in the 

following section.
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4.3 M odel Selection  S tra teg y  B ased  O n P E E H 2

As noted earlier, all the models on any path from the full model to the true best 

model have E H 2 that are close to one another when sample size is large enough. The 

error in estimating the E H 2, i.e. the difference between E H 2 and the estimated 

E H 2, may mask the differences in E H 2 between the true best model and other 

models in the target group. This motivates us to consider a group of models with 

estimated E H 2 not significantly higher than the smallest estimated E H 2. It is 

expected that when sample size is large enough, this group captures the feature of 

the unbiaed group. Within this group, the model with the smallest penalty term 

will be selected as our estimated true best model.

Based on the above comments, a two-step model selection procedure will be 

studied in this chapter:

1. Find the estimated E H 2 for all the approximating models;

2. Estimate the target group by finding the group of model(s) whose estimated 

EH 2 are not significantly higher than the smallest among all approximating 

models. Include the models that are necessary to make the group intersection- 

closed. The one that has the smallest penalty term among the models in the 

estimated target group is the estimated true best model.

4.3.1 M odel Selection  B ased  on  P E E H 2

In this chapter, we develop a set of model selection strategy using P E E H 2, of 

which the first and second term estimate the model error term and penalty term 

in Equation (2.7), respectively. Note that P E E H 2  is a random variable. To find 

the group of models for which the estimated E H 2 are not significantly higher than
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the smallest among the approximating models, we need to quantify the variation 

of P E E H 2 for all the models. We thus propose to use the bootstrap variation 

of P E E H 2 to approximate the variation of P E E H 2. There are several possible 

ways to identify the target group. In this chapter, we consider both to compare 

the bootstrap confidence intervals of the models (Procedure Group Identification 

I)  and to find the models of which P E E H 2 is not more than some multiple of 

bootstrap standard deviations away from the smallest P E E H 2 (Procedure Group 

Identification II). The model that has the smallest penalty term among the target 

group is then our best model. Our proposed strategy using P E E H 2 to do model 

selection in ANOVA model problems is described in procedure Selection as follows: 

Procedure Selection

1. Calculate the sample cell means y7rv and compute the residuals {r e s = 

yKr} ~  ?/{7r,.} : v — 1, 2, • • • , nn, V 7r € II}. Fit the kernel density estimator f  

on the residuals;

2. Calculate P E E H 2

• For each 7r e  II, find 9^ (Sv )2) according to the approximating

model V  and thus estimate the overall model error term by averaging the 

following quantity over all cells n € II:

• Generate M  bootstrap samples by re-sampling with replacement from 

{ re s ^ ^ j}  M  times and adding back the corresponding cell sample means 

V{7r,.},7r € II. Estimate the overall penalty by averaging the following
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quantity over all cells 7r € II:

1 M
M ^ n 2 ( ^ ? , ( ^ ) 2> ^ « , ( ^ ( 0)2) ;

1=1

3. Generate M2 bootstrap samples by re-sampling with replacement. For each 

of the bootstrap samples, repeat the previous step and get M2 P E E H 2*’s

4. Find the model that has the smallest quantity of P E E H 2 among all the 

approximating models and denote it as Z?0;

5. Estimate the target group according to Procedure Group Identification I  or 

Group Identification II.

6. Among the models found in the previous step, the model that has the smallest 

penalty term will be chosen as the best model.

The approaches considered in this chapter to identify the target group are 

described below:

Procedure Group Iden tifica tion  I

1. For each approximating model, find the (1 — a)%  bootstrap confidence interval 

by locating the (o:/2)th and (1 — a /2 )th percentiles of P E E H 2*’s;

2. Identify all the models of which the intervals overlap with that of model T>0\

3. Include models that are necessary for this group of model to form a 

intersection-closed set from the full model downwards;

Procedure Group Iden tifica tion  I I

1. Find the standard deviation, SD ^°, of P E E H 2*’s;
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2. Identify all the models of which P E E H 2 is within c(5£)I)o) away from that 

of model T>o, where c is a prespecified constant scaler;

3. Include models that are necessary for this group of models to form a 

intersection-closed set from the full model downwards;

The methods trying to identify the group of models that has the smallest 

P E E H 2’s are based on heuristics and thus remain open for discussion.

4.4 Sim ulation Study: M odel Selection Perform ance

In this section, performance of the model selection procedure using P E E H 2 

as described in Section 4.3.1 will be evaluated using statistical simulation. That is, 

we will see how often the true best model (the one that has the smallest E H 2) is 

chosen by this strategy. We also calculate AIC for comparison.

4.4.1 Plan for the Sim ulation Study

2 x 2 x 2  ANOVA models will be considered in our simulation study. We will 

study three different situations:

1. The true model is within the set of approximating models and is indeed the 

true best model;

2. The true model is within the set of approximating models but is NOT the true 

best model;

3. T h e  t r u e  m o d e l is n o t  w ith in  th e  s e t  o f  a p p ro x im a tin g  m o d e ls .

In each of the above situations, our simulation plan is as follows:

1. For every approximating model P ,
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(a) Calculate E H 2(tt) =  2 — 2 f  y / fgn ( x ) E y J (x)dt for all cells ir € II 

by Monte Carlo approximation, respectively;

(b) Find the average E H 2 over all cells EH2(n)\

2. Find the true best model, denoted as T B M ,  by locating minimum E H 2;

3. Simulate S  samples of a given sample size n  from the true distribution. For 

every sample Y it i =  1, • • ■ ,S,

(a) Choose the best model B M t according to Procedure Selection which in­

corporates either Procedure Group Identification I  or Group Identifica­

tion II  described in Section 4.3.1;

(b) Let Matchi assume value 1 if BM i =  T B M  and 0 otherwise;

4. Table the frequency of M atch  for each model.

The simulation setting is 2 x 2 x 2 balanced design with cell sample size n 

while the true distribution is a normal distribution with common variance for all 

cells. The cell means and variance are hijk and a2, while the density for each cell is 

where L j, k =  1,2. The effects of the 3-way full factorial model are:

0̂ -i hi" h--  ̂— 1; ^
' h.j. /'... .7 =  1,2

7 k = h . . k ~ h . . .  A; =  1,2

(a P)ij hij. hi- h.j. T h-- h j  L 2
(«7)ik = hi.k -  hi.. -  h-k +  h... i, k = 1, 2
{Pl)jk  =  h.jk -  h.j. -  h..k + h -  j , k  =  1,2
(CT/?7) A: hijk hij. hi.k h-jk T hi.. T h.j. T h-k h... i ifi  k — 1, 2

We consider simulation from mean structures that reflect the 3 situations mentioned 

at the beginning of this section. All 19 approximating models we are considering 

here are listed in Table ??, where the effects included in each of the models are
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checked accordingly. We will refer to the model index used in this Table. Figure 4.2

gives the relationship among all the approximating models.

0 {Fi} {Fs} {Pi, M {Fl.F-A {Pli.pa} {Pi, e2, p3}
Model 1 X
Model 2 X X
Model 3 X X
Model 4 X X
Model 5 X X X
Model 6 X X X
Model 7 X X X
Model 8 X X X X
Model 9 X X X X

Model 10 X X X X
Model 11 X X X X
Model 12 X X X X X
Model 13 X X X X X
Model 14 X X X X X
Model 15 X X X X X X
Model 16 X X X X X X
Model 17 X X X X X X
Model 18 X X X X X X X
Model 19 X X X X X X X X

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Model 2 Model 3 Model 4 

Model 1

Figure 4.2: Lattice Diagram of .3-way ANOVA Models in Table ??
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4.4.1.1 Sim ulation R esults

Situation 1: Sim ulation from M odel 8

Data for each cell was independently simulated from normal distribution with 

cell mean structure described in Table 4.4:

k =  1 k ~ 2
3 = 1 3 = 2 3 = 1 3 = 2

i = 1 h /r +  B h p, +  B
i = 2 fi +  A /v. + A  +  B  +  (AB) /i, +  A fi +  A  +  B  +  (AB)

Table 4.4: Mean Structure for Model 8

This mean structure corresponds to that of model 8 described in Section 5.4. 

Now, let /r =  0, a — 1, A — 0.9, B  = 0.4, and (AB)  — 2.2. Let the numbers of 

bootstrapped sample M  be 300 and M2 be 100, and the number of simulated data 

set S  be 100. The true best model is also Model 8.

From Table 4.5 we can see that the true best model is indeed the true model. 

Among the descendants of the true best model, the E H 2 for model 5, which is con­

tained in model 8, is the closest to that of the true best model. The true best model 

is chosen 75 times out of 100 by AIC, while the best performance of our methods, 

using procedure Group Identification II  with c =  1.5, chooses the true best model 

90 out of 100. In general, procedure Group Identification II  outperforms procedure 

procedure Group Identification /, which is due to fact that the P E E H 2*’s tend 

to be screwed to the right and not symmetric around the corresponding P E E H 2 

when sample size is small. It is not surprising that when the confidence level or c 

increases, model 5 is chosen more often. This is especially the case with procedure 

Group Identification I.

In order to assess the performance of H (figfi) in this situation, as mentioned 

in Chapter 3, the frequency of the time that any of the approximating models is
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Model EH 2

Frequency

AIC

PEEH2
Group Identification I Group Identification II

50% Cl 80% Cl 95% Cl c =  0.5 c =  1.0 c =  1.5
1 0.32890 0 0 0 0 0 0 0
2 0.18986 0 0 0 1 0 0 0
3 0.26056 0 0 0 0 0 0 0
4 0.33039 0 0 0 0 0 0 0
5 0.08368 6 1 20 59 0 1 2
6 0.19161 0 0 0 0 0 0 0
7 0.26212 0 0 0 0 0 0 0
8 0.01684 75 79 78 40 73 89 90
9 0.19368 0 0 0 0 0 0 0
10 0.26369 0 0 0 0 0 0 0
11 0.08575 3 0 0 0 0 0 0
12 0.01932 9 8 1 0 6 2 2
13 0.08815 2 0 0 0 0 0 0
14 0.08786 0 0 0 0 0 0 0
15 0.02221 9 3 0 0 6 2 1
16 0.02188 5 4 1 0 4 1 1
17 0.09026 2 0 0 0 0 0 0
18 0.02477 2 1 0 0 0 0 0
19 0.02826 4 4 0 0 11 5 4

Table 4.5: Frequency of Choosing Any Approximating Model by Different Methods

N o te:  Data is simulated from model 8, A  =  0.9, B  =  0.4, and (AB)  =  2.2. Cell 
sample size n  =  10, numbers of bootstrapped samples M  =  300 and M2 =  100, 
total number of simulated data S  =  100. EII2  is approximated by Monte Carlo 
method.

chosen is also calculated. It turns out that the true best model, model 8, is never 

chosen out of the 100 times. The models that are chosen are model 16 (1 time), 

model 18 (5 times), and model 19 (94 times). The trend is clear that using H ( f , g $) 

as the model selection criterion will much more likely prefer larger models.

Situation 2: Sim ulation from M odel 19
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In this case, data comes from model 19 but for some arrangement of the param­

eters, the true best model, however, is not the true model itself. Cell mean structure

of the model from which the data were simulated is described in Table 4.6:

A: =  1 k = 2

3 =  1 3 =  2 j  =  1 J' =  2
i = 1 A4 fi +  B fi fi + B  + C +  (B C )
i = 2 H +  A fi + A + B + {AB) fi +  A  +  C T  (MO) fi-\-A-\-B-\-(J-\- 

(.A B ) + (AC) + {BC) + {ABC)

Table 4.6: Mean Structure for Model 19
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Frequency
PEEH2

Group Identification 1 Group Identification 11
Model E H 2 AI.C 50% Cl 80% Cl 95% Cl c =  0.5 c. =  1.0 c =  1.5

n  =  10
1 0.33298 0 0 0 0 0 0 0
2 0.23526 0 0 0 0 0 0 0
3 0.32509 0 0 0 0 0 0 0
4 0.20379 0 0 0 1 0 0 0
5 0.22483 0 0 0 0 0 0 0
6 0.05185 0 12 47 86 1 7 17
7 0.19093 0 0 0 0 0 0 0
8 0.22335 0 0 0 0 0 0 0
9 0.04270 6 6 10 1 7 7 9
10 0.19299 0 0 0 0 0 0 0
11 0.03253 9 32 34 12 16 30 29
12 0.0,3024 6 8 3 0 9 10 8
13 0.02318 16 24 5 1 20 21 20
14 0.03585 2 1 0 0 0 0 1
15 0.02103 39 7 1 0 28 11 10
16 0.03.368 2 0 0 0 1 0 1
17 0.02664 4 0 0 0 3 3 0
18 0.02459 5 4 0 0 4 2 1
19 0.02884 11 6 0 0 11 9 4

n  =  100
1 0.33044 0 0 0 0 0 0 0
2 0.23006 0 0 0 0 0 0 0
3 0.32095 0 0 0 0 0 0 0
4 0.19878 0 0 0 0 0 0 0
5 0.21795 0 0 0 0 0 0 0
0 0.04170 0 0 0 0 0 0 0
7 0.18398 0 0 0 0 0 0 0
8 0.21469 0 0 0 0 0 0 0
9 0.02979 0 0 0 0 0 0 0
10 0.18418 0 0 0 0 0 0 0
11 0.01976 0 0 0 23 0 0 0
12 0.01443 0 0 0 4 0 0 0
13 0.00737 0 5 60 65 3 4 11.
14 0.02005 0 0 0 0 0 0 0
15 0.00193 80 94 40 8 86 94 88
16 0.01472 0 0 0 0 0 0 0
17 0.00768 0 0 0 0 0 0 0
18 0.00224 11 1 0 0 6 2 1
19 0.00257 9 0 0 0 5 0 0

Table 4.7: Frequency of Choosing Any Approximating Model by Different Methods

Note :  Data was simulated from model 19, A  =  1, B  = 0.3, C =  1.5, (AB) = 0.6, 
(AC) =  0.9, (BC) = 0.01, and (ABC) = 0.015. Cell sample size n =  10,100, num­
bers of bootstrapped samples M  — 300 and M2 — 100, total number of simulated 
data S = 100.
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Now, let fj, = 0, a  =  1, A  =  1, B  =  0.3, C  =  1.5, (AB) = 0.6, (AC) = 0.9, 

(BC) — 0.01, and (ABC) — 0.015. Let the numbers of bootstrapped sample M  be 

300 and M2 be 100, cell sample size be 10 and 100 and the number of simulated 

data set S  be 100. For this particular set of parameters, the true best model that 

has the smallest E H 2 is model 15 rather than the true model itself for both sample 

sizes. Results of the simulation are in Table 4.7. When cell sample size is 10, none 

of the methods performs well. When cell sample size is 100, the performance of all 

methods improves a lot. In particular, when cell sample size is 100, method Group 

Identification II  with confidence level 50% and method Group Identification II  with 

all three choices of c outperform AIC.

Situation 3: Sim ulation from M odel 4

In this situation, the data is simulated from model 4, which is not one of the 

approximating models. We choose the approximating models to be models 1, 3, 7, 

11, 14, 17, 18 and 19. These approximating models form a path from the full model 

(model 19) to the null model (model 1) that does not include the true model (model 

4). On this path, the nearest ancestor of the true model is model 7. That is, model 

7 has the least number of effects among the approximating models that contains the 

true model. Table 4.8 describes the cell mean structure of the true model.

k = 1 k = 2
2 =  1 3 = 2 j  =  i 2 = 2

i = 1 V V /j +  C /i A C
i = 2 n [i H + C fi +  c

Table 4.8: Mean Structure for Model 4
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Frequency
PEEH2

Group Identification I Group Identification II
Model EH2 AIC 50% Cl 80% Cl 95% Cl c. = 0.5 c =  1.0 c =  1.5

n=10
1 0.13385 0 0 0 5 0 0 0
3 0.13580 0 0 0 0 0 0 0
7 0.01155 65 69 97 95 63 83 93
11 0.01421 15 9 2 0 11 8 3
14 0.01703 7 8 1 0 8 2 1
17 0.02019 6 4 0 0 7 2 0
18 0.02290 4 7 0 0 6 2 2
19 0.02613 3 3 0 0 5 3 1

it O o
1 0.13051 0 0 0 0 0 0 0
3 0.13074 0 0 0 0 0 0 0
7 0.00121 68 94 100 100 80 89 97
11 0.00148 10 4 0 0 2 0 2
14 0.00182 11 0 0 0 5 7 1
17 0.00211 2 2 0 0 4 0 0
18 0.00235 6 0 0 0 2 0 0
19 0.00274 3 0 0 0 7 4 0

Table 4,9: Frequency of Choosing Any Approximating Model by Different Methods

N ote: Data is simulated from model 4, C — 1.5. Cell sample size n = 10,100, num­
bers of bootstrapped samples M  — 300 and M2 =  100, total number of simulated 
data S — 100. EII2  is approximated by Monte Carlo method.

Now, let /i =  0, o =  1, C  =  1.5. Let the numbers of bootstrapped samples 

M  be 300 and M2 be 100. Let the number of simulated data sets S  be 100. Two 

different cell sample sizes, 10 and 100, are considered. From Table 4.9 we can see 

that the true best model is model 7 for both sample sizes. Note that model 1 

and 3, the only descendants of the true model among the approximating models, 

are quite far away from the target group in terms of E H 2. That explains why 

higher confidence level and larger c result in model 7 being more often chosen in
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this case. The performance of both our procedures exceeds that of AIC, with that 

of procedure Group Identification I  being the best. The performance of both AIC 

and our methods improves as the sample size increases.

4.4.1.2 D iscussion

In each situation considered in Section 4.4.1.1, the performance of our proposed 

model selection strategy with both grouping procedures improves as the cell sample 

size increases. Within each grouping procedure, as the confidence level or c in­

creases, our model selection strategy tends to more often choose the smallest model 

among the approximating models for which the E H 2 are not far away from the 

smallest. Between the grouping procedures, Group Identification I  with the three 

prespecified confidence levels tends to favor the smallest models among the approxi­

mating models for which the E H 2 are not far away from the smallest. In two of the 

three simulation studies, procedure Group Identification II outperforms procedure 

Group Identification /, especially when sample size is small. It is not surprising that 

in the last situation, where the smaller approximating models outside of the target 

group have relatively very large E H 2’s, procedure Group Identification I  has better 

performance. Note that, procedure Group Identification II also gives satisfactory 

performance in the last situation.

4.5 Sim ulation Study: Convergence o f P E E H 2  to  E H 2

In this section, we check Theorem 3 in Chapter 2 using simulation under the 

framework of balanced factorial models. Since E E H 2 B  is not practical to be ob­

tained exactly, we will calculate P E E H 2 instead and let the cell sample size and 

bootstrap sample size both increase in 2 x 2 ANOVA model setting.
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4.5.0.3 General P lan o f The Sim ulation

Continued from the setting described at the beginning of this chapter, we con­

sider simulation from mean structures that represent possible 2 x 2  factorial ANOVA 

models with cell sample size n. Table 4.10 displays the mean structures for each 

cell associated with each of the 5 models. It can be shown that for any given cell, 

the Hellinger distances between the true model and the approximating models are 

independent of the parameters /x and a themselves. Therefore, without loss of gen­

erality, we let /i =  0 and a = 1. Table 4.11 shows the values of A, B , and (AB)  we 

choose for each model that we simulate data from. All together, we simulate data 

from 1 null model, 4 column effect models, 9 main effects models, and 6 full models.

Cell
(1,1) (2,1) (1,2) (2,2)

Null Model fi V V
Row Effect Model V ft H~ A. ix fi +  A
Column Effect, Model fi fi // +  B fi + B
Main Effects Model /r fi +  A. fx +  B fi- ~f~ B
Full Model \x fi "f" Ax jx 4- B fi ~b B  +  (/!.£?)

Table 4.10: Models That Data Are Simulated From

4.5.0.4 Sim ulation R esults

The simulation setting is as follows:

• The approximating models are all 5 possible models described in Section 4.2.1;

• S  — 100 data sets were generated from the true model;

• Let h, the bandwidth of the kernel density estimator be a function of n only, 

namely, h = (10n)~0,2;
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A / a B / a (.A B ) /a
Null Model

Model 1 0 0 0
Column Effect Model

Model 1 0 0.1 0
Model 2 0 0.5 0
Model 3 0 1.0 0
Model 4 0 2.0 0
Model 5 0 5.0 0

Main Effects Model
Model 1 0.1 0.1 0
Model 2 0.1 1.0 0
Model 3 0.1 2.0 0
Model 4 1.0 0.1 0
Model 5 1.0 1.0 0
Model 6 1.0 2.0 0
Model 7 2.0 0.1 0
Model 8 2.0 1.0 0
Model 9 2.0 2.0 0

Full Model
Model 1 -1 -3 7
Model 2 -3 1 1
Model 3 0 0 -3
Model 4 -3 3 1
Model 5 1 0 -2
Model 6 3 1 -4

Table 1.11: Choices of the Simulation Parameters

• Let the increasing sequences of cell sample size n  and number of Bootstrapped 

samples M  be n =  100, 500,1000 and M  = 300,1500,3000, respectively.

True M odel: N ull Each plot in Figure 4.3 depicts the trend of P E E H 2 val­

ues relative to E H 2 values as both n and M  increase for one of the 5 approximating 

models, respectively. 100 P E E H 2 values as well as their mean and standard devi­

ations are plotted for n — 100 k  M  — 300, n = 500 k  M  = 1500, and n  =  1000 

k  M  — 3000. The E H 2 values were also plotted in red for every cell sample size.
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In the plots, the numbers 1 through 3 on the horizontal axis represents n 

(.M  = 300), n = 500 (M =  1500), n =  1000 (M  =  3000), respectively.

100

M o d e l
1

M o d e l
2

1.0 1.5 2.0 2.5 3.0

3

1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0

Sample and Bootstrap size

M o d e l
4

Sample and Bootstrap Size

M o d e lS

Sample and Bootstrap Size

1.0 1.5 2.0 2.5 3.0

§
1.0 1.5 2.0 2.5 3.0

Sample and Bootstrap Size Sample and Bootstrap Size

Figure 4.3: Convergence of P E E H 2 to EH2  True Model Null

A p p r o x i m a t i n g  N u l l A p p r o x i m a t i n g  R o w A p p r o x i m a t i n g  C o l u m n

Sample and Bootstrap Size

A p p r o x i m a t i n g  M a in

Sample and Bootstrap Size

A p p r o x i m a t i n g  F u l l

Sample and Bootstrap Size

Sample and Bootstrap Size Sample and Bootstrap Size

Figure 4.4: Boxplots of the Absolute Difference Between P E E H 2 and E H 2 True 
Model Null

Multiple boxplots of the absolute differences between P E E H 2 and E H 2 are 

plotted for each approximating model in Figure 4.4 where the horizontal axis indexes
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the sample size/bootstrap size. We can see that the difference is getting close to 

zero while the variation is decreasing as the sample size and the number of bootstrap 

samples increase. Note that all the approximating models contain the true model 

and therefore their E H 2’s are relatively small and close to one another. As shown 

in Table 4.12, the E H 2 value for the null model is the smallest and increases as 

the the number of parameters increases for any given sample size. Meanwhile, the 

E H 2 value between the true model and a given approximating model decreases as 

the sample size increases. For any given approximating model, the mean difference 

between E H 2 and P E E H 2 decreases as sample size and bootstrap size increases. 

For any given sample size, the P E E H 2 values for different approximating models 

are close to one another, with the true best model - the Null model - not necessarily 

having the smallest mean P E E H 2.

EH2
Null Row Column Main Full

n =  100 0.001498 0.001933 0.002165 0.002599 0.003164
n =  500 0.000255 0.000396 0.000387 0.000527 0.000652

n = 1000 0.000115 0.000180 0.000172 0.000237 0.000290
Mean of 100 P E E H  2’s

Null Row Column Main Full

oorHII£ 0.006736 0.006741 0.006771 0.006779 0.006901
n =  500 0.001934 0.001957 0.001969 0.001939 0.001954

n = 1000 0.001158 0.001160 0.001165 0.001167 0.001164

Table 4.12: P E E I l 2 and E l i 2 True Model Null
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T rue M odel: C o lum n Effect Each plot in Figures 4.5 through 4.8 depict the 

trend of P E E H 2 values relative to E H 2 values as both n and M  increase for one 

of the 5 approximating models when the true models that the data are simulated 

from are models 1 through 5 described in Table 4.11 under column effect models, 

respectively. In the plots, the numbers 1 through 3 on the horizontal axis represent 

n =  100 (M =  300), n = 500 (M  =  1500), and n =  1000 (M  =  3000), respectively. 

It is shown from the figures that the sample mean of P E E H 2 values does get close 

to E H 2 while the variation of those decreases as the cell sample size and number 

of bootstrapped samples increase. Since the true model is the column effect model, 

we can see that the patterns of the models that do ont contain the true model 

(null model and row effect model) are alike while that of the other three models are 

similar.
M o d e l

3

o

1.0 1.5 2.0 2.5 3.0 1.0 1.5 2.0 2.5 3.0

o

1.0 1.5 2.0 2.5 3.0

Sample and Bootstrap Size

M o d e l
4

Sample and Bootstrap Size

M o d e l5

Sample and Bootstrap Size

s

1.0 1.5 2.0 2.5 3.0

S

1.0 1.5 2.0 2.5 3.0

Sample and Bootstrap Size Sample and Bootstrap Size

Figure 4.5: Convergence of P E E I I 2  to EH2  True Model Column Effect Model 1

Let us take a look at the first model that we simulated data from. The difference 

between the two cell means of the two columns is very small (0.1) relative to the
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Figure 4.6: Convergence of P E E H 2 to E H 2 True Model Column Effect Model 2
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Figure 4.7: Convergence of P E E H 2 to E H 2 True Model Column Effect Model 3

variance of 1. This makes it hard to distinguish among the approximating models. 

Table 4.13 lists the E H 2 values and the mean of 100 P E E H 2 values for the 5 

approximating models for the three sample sizes, respectively. We can see that as a 

result of this setting of parameters, E H 2 values are relatively close to one another 

among the approximating models for any given sample size. The differences between
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Figure 4.8: Convergence of P E E H 2 to E H 2 True Model Column Effect Model 4
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Figure 4.9: Convergence of P E E H 2  to E H 2 True Model Column Effect Model 5

E H 2 and P E E H 2  for any given approximating model decreases as the sample size 

and bootstrap size increase.

T rue  M odel: M ain  Effects Each plot in Figures 4.10 through 4.18 depicts 

the trend of P E E H 2  values relative to E H 2 values as both n and M  increase for one 

of the 5 approximating models when the true models that the data are simulated
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EH2
Null Row Column Main Full

n =  100 
n =  500 
n =  1000

0.001862
0.000886
0.000739

0.002544
0.001022
0.000810

0.001762
0.0004

0.000176

0.002446
0.000537
0.000246

0.002995
0.000647
0.000306

Mean of 100 P E E H  2’s
Null Row Column Main Full

n =  100 
n =  500 

n = 1000

0.007877
0.002443
0.001702

0.007931
0.002416
0.001713

0.007205
0.001902
0.001115

0.007260
0.001875
0.001126

0.007347
0.001904
0.001120

Table 4.13: P E E  112 and EI12 Values For True Model Column Effect and The 
Column Difference B=0.1

from are models 1 through 9 described in Table 4.11 under main effects models, 

respectively. In the plots, the numbers 1 through 3 on the horizontal axis represents 

n =  100 (M  =  300), n — 500 (M =  1500), and n = 1000 (M  =  3000), respectively.
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Figure 4.10: Convergence of PEEI12  to E H 2 True Model Main Effects Model 1
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Figure 4.11: Convergence of P E E H 2 to EH2  True Model Main Effects Model 2
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Figure 4.12: Convergence of P E E H 2 to EH2  True Model Main Effects Model 3
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14: Convergence of P E E H 2 to EH 2  True Model Main Effects Model 5
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Figure 4.15: Convergence of P E E H 2  to E l i 2 True Model Main Effects Model 6
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Figure 4.16: Convergence of P E E H 2 to EH2  True Model Main Effects Model 7
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.17: Convergence of P E E H 2  to E H 2 True Model Main Effects Model 8
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Figure 4.18: Convergence of P E E H 2 to E 112 True Model Main Effects Model 9
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Now let us take a look at two cases. One is that when the data is simulated 

from the third model listed in Table 4.11 under main effects models. The multiple 

boxplots of the absolute differences between E H 2 and P E E H 2 values for each 

approximating model are plotted in Figure 4.19. Again, the horizontal axis indexes 

the sample size/bootstrap size. Once again we can see the trend of the differences 

getting close to zero and the variation decreasing as the sample size and number of 

bootstrap sample increase.

A p p r o x i m a t i n g  N u l l

s  _r
A p p r o x i m a t i n g  R o w A p p r o x i m a t i n g  C o l u m n

m  1

Sample and Bootstrap Size

A p p r o x i m a t i n g  M a in

1 2 3

Sample and Bootstrap Size

A p p r o x i m a t i n g  F u l l

: B  ,

“ - i -

Sample and Bootstrap Size

- 1 f~

Sample and Bootstrap Size Sample and Bootstrap Size

Figure 4.19: Boxplots of the Absolute Differences Between EH2  and P E E H ‘2 
True Model Main Effects Model 3 and All Approximating Models

Another particular case is when the approximating model is the null model, 

Figure 4.20 plots the absolute differences between E H 2 and P E E H 2 values for 

each of the 9 true main effects models listed in Table 4.11. The same convergence

t r e n d  is o b se rv e d  ac ro ss  a ll t r u e  m o d e ls  fro m  w h ich  th e  d a t a  is s im u la te d .
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Figure 4.20: Boxplots of the Absolute Differences Between EH2  and P E E H 2  
True Model All 9 Main Effects Models and Approximating Model Null
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T rue M odel: Full Each plot in Figures 4.21 through 4.26 depicts the trend 

of P E E H 2 values relative to E H 2 values as both n and M  increase for one of the 

5 approximating models when the true models that the data are simulated from are 

models 1 through 6 described in Table 4.11 under full models, respectively. In the 

plots, the numbers 1 through 3 on the horizontal axis represents n = 100 (M  =  300), 

n — 500 (M  =  1500), and n  =  1000 (M =  3000), respectively.
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Figure 4.21: Convergence of P E E H 2 to EI12 True Model Full Model 1
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Figure 4.2.3: Convergence of P E E H 2  to E H 2 True Model Full Model 3
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Figure 4.24: Convergence of P E E H 2  to EH2  True Model Full Model 4
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Figure 4.25: Convergence of P E E H 2 to EH2  True Model Full Model 5
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Figure 4.26: Convergence of P E E H 2 to EH2  True Model Full Model 6
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In summary, both mean and variance of the difference between E H 2 and its 

estimator P E E H 2 values decrease as both sample size and bootstrap size increase. 

The tendency of this difference converging to zero is observed.

4.6 Illustrative Exam ple

Use a 2 x 2 x 2 example from page 943 in “Applied Linear Statistical Model” 

(Neter et al, 1996). The effects of gender of subject (factor E\), body fat of subject 

(measured in percent, factor F2), and smoking history of subject (factor F3) on 

exercise tolerance (Y) were studied in a small-scale investigation of persons 25 to 35 

years old. Exercise tolerance was measured in minutes until fatigue occurs while the 

subject is performing on a bicycle apparatus. Three subjects for each gender-body 

fat-smoking history group were given the exercise tolerance stress test. Each factor 

has two levels and there are three replications (n=3) for each treatment. The data 

and the ANOVA table are displayed in Table 4.14 and 4.15, respectively.

Gender Body Fat Smoking History Data
Male Low Light 24.1 29.2 24.6

Heavy 17.6 18.8 23.3
High Light 14.6 15.3 12.3

Heavy 14.9 20.4 12.8
Female Low Light 20.0 21.9 17.6

Heavy 14.8 10.3 11.3
High Light 16.1 9.3 10.8

Heavy 10.1 14.4 6.1

Tabic 4.14: 3-way ANOVA Example Data

We can see from Table 4.15 that all three main effects and one interaction 

term between Fat and Smoking are significant at a significance level of 0.05, which 

suggests model 14 listed in Table ??.
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Analysis of Variance
Source Sum Of Squares DF Mean Square F Ratio P Value
Gender 176.584 1 176.584 18.915 0.000
Fat 242.570 1 242.570 25.984 0.000
Smoking 70.384 1 70.384 7.539 0.014
Gender*Fat 13.650 1 13.650 1.462 0.244
Gender*Smoking 11.070 1 11.070 1.186 0.292
Fat* Smoking 72.454 1 72.454 7.761 0.013
Gender*Fat*Smoking 1.870 1 1.870 0.200 0.660
Error 149.367 16 9.335

Table 4.15: .3-way ANOVA Example Analysis of Variance

All the approximating models are listed in Table ??. It is assumed that all ran­

dom variables Y{jkr are independently and identically distributed with only different 

location parameters. Therefore, we can first find kernel density estimator /  using 

all the residuals resijfcr — Vijkr — Vijk. and then adding back to the grid to get 

f ( t  — yijk.)- The approximating models for the (i jk ) th cell are N(fiijk, d2) with fi^k 

being estimated sample mean reflecting the approximating model and <r2 being the 

MSE associated with the model.

Let M  be 500, the kernel be Epanechnikov and the bandwidth selected ac­

cording to the the statistical software package R (R Development Core Team, 2006), 

default “to 0.9 times the minimum of the standard deviation and the interquartile 

range divided by 1.34 times the sample size to the negative one-fifth power (Silver­

man’s “rule of thumb” , Silverman (1986, page 48, eqn (3.31)) unless the quartiles 

coincide when a positive result will be guaranteed.”

The P E E H 2’s of all the approximating models are listed in the parenthesis in 

Figure 4.27. As discussed before, model 14 might be a naturally choice according 

to the analysis of variance table. Model 14 is chosen as the best model according to 

our model selection method based on procedure Selection incorporated with either
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Model 19 
(0.13742)

Model. 13 
(0.12529)

Model 15 Model 16 Model 17
(0.20674) (0.12578) ( 0 . 1 2 9 4 1 )

(0.20862) (0.21211) (0.13192)

Model 8 Model 9 Model 10 Model 11
(0.27913) (0.42564) (0.32899) (0.21458)

Model 5 Model 6 Model 7
(0.28367) (0.42527) (0.37769)

Model 2 Model 3 Model 4
(0.45833) (0.41060) (0.51565)

Model 1
(0.52880)

Figure 4.27: Lattice Diagram of 3-way ANOVA Models in Table ??

procedure Group Identification I  (50%C7) or Group Identification II  (c=0.5 and 

c= l). In fact, the target group is estimated to be {14,16,17,18,19} in these cases. 

Model 14 is also the best model according to AIC and AICc. However, model 11 is 

chosen by our method with procedure Group Identification I  with confidence level 

80% and by procedure Group Identification II  with c =  1.5; model 5 is chosen by 

procedure Group Identification I  with confidence level 95%. Note that model 11 is 

a direct descendent to model 14, so is model 5 to model 11.

4.7 ANO VA M odels W ith  Two-param eter Exponential D istribution

In the previous sections, we discussed ANOVA models assuming normal dis­

tribution for the random error term and thus for the response. In many cases, 

however, this assumption does not hold true. For example, if we are modeling the
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life-span or failure time of some electronic part, the distribution of the response 

maybe appropriately modeled by a two-parameter exponential distribution (Varde,

where 7 > 0. It is clear that the mean is 7 +  77 while the variance is 72. When 77 > 0, 

the above distribution is also referred to as the left truncated exponential density 

function (Evans et al, 1980). This is especially meaningful when an individual has 

an unknown starting time. For instance, if a component is not used until a certain 

number of days after shipping out of the factory, then this number of days will be 

the location shift 77 when modeling the failure time.

In this section, we will continue with the fixed effects factorial design, with 

the responses in each cell following the same exponential distribution with possibly 

different location parameters. The r th observation in cell 7r can be expressed as:

where e ^ ’s are assumed to be independently exponentially distributed with one 

parameter 7. The distribution of Y is thus a two-parameter exponential with 

parameters 7 and 77̂ . Thus, the distributions in different cells are identical except 

for possibly different location parameters.

In this scenario, the Kullback-Leibler discrepancy is no longer well-defined since 

the approximating distribution may have different support than the unknown true 

distribution. Nonetheless, criteria such as AIC and AICC can still be calculated 

based on the maximum likelihood. But the interpretation of these criteria as the 

estimators of the expected K-L distance is no longer valid. On the other hand, 

model selection method based on expected squared Hellinger distance continues to 

be meaningful.

1969):

(3(x|7,j7) =  i e (x ri)hI[v,oo]{-1 ) (4.20)

(4.21)
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4.7.1 A n Exam ple o f a 2-way Structure

In a simple balanced 2 x 2 ANOVA example, define 77.., 77*., rjj, and 77̂  such

that:

A. =  V.. +  7

Hi. = Vi.+ 7

Aj =  V.j + 7

Hij Vij A 7

Then the main effects and the interaction effects are

z — th  row effect : a* =  Hi. ~  A. =  Vi. ~~ V..'i 
j  — th  column effect : /3j =  H.j — fl.. — V.j ~  V..'i

(■i , j ) -  th interaction : (af3)ij =  ^  -  Hi. -  H.j +  A. =  Vij ~  Vi. -  V.j +  V..'i 

where i , j  =  1,2 with the constraints that

J ^ ( a / 3)y =  0, * =  1,2; = 0 , j  = 1,2; and =  0.

Note that with the 2 x 2 structure,

- a x = a 2 = a; - j 31 = j32 = P) and {a(3)n  = - (a /? )2i =  - ( a ( 3) u  =  (ck/3)22 =  (<7

These effects are not involved with the parameter 7. Thus, the differences among 

the models are reflected by the different linear combinations of r/.., 77*., rjj, and 77̂ .

In this simple model setting, we can find the maximum likelihood estimator 

(MLE) analytically.
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4.7.1.1 Finding MLE

Define the following quantities for i, j  =  1, 2: 

niij — min(?/jji, . . . ,  yijn)j rnin(yni, . . . ,  yum 2/211 • ■ • > y2ini yi2i i • • ■ iUi2ni 2/221 • • • > 2/22n)

mj. =  min(ym , . . . ,  yiln, yi21, . . . ,  yi2n); m mJ = min(ylji , . . . ,  yljn, y2j 1, • • •, y2jn)

In general, the likelihood of data Y_ — {Tjjr ; i, j  — 1, 2; r =  1 , . . . ,  n} is:

£({»?«; *.J =  ^ I w l? / )  =  7 _4nexp {—  (y... — 77..)} ' \ \ I \r,i],<x>}{rnij),
^  i,i

where 77.. =  |  7fr ^or fixed 77̂ ’s that satisfy hva M ^ i r )  =  tlie likelihood 

is maximized at

7 = y... -  v..

The solution of the maximization over parameters depends on the specific model 

structure. We will study the solution in the 5 possible approximating models one 

by one.

Null M odel In case of the null model, the location parameter in all cell are 

the same:

Vij = V.., h j  = 1,2 

Thus, the likelihood function becomes:

L(rj..,l\y) =  7 _ahne x p { i(4 n) (y... -  7..)}/[„..l0o](m„)

and thus is maximized at 77.. =  m,, and 7 =  (y... — m,).  The estimators of the 

location parameters thus become: 77̂  =  m.. for i , j  =  1, 2.

Row Effect M odel In case of the row effect model, the location parameter in 

the same row are the same:

7n  =  712 =  7i. =  7.. -  ot, 7721 =  722 =  72. =  7.. +  «
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Thus, the likelihood function becomes

L{Vi.,V2.:l\y) = 7 ofcnex p { i(4 n ) (y... -  77..)} V,oo](rHi.)
i

and thus is maximized at 7^ — r)i, = m*. and 7 =  y... — |  JT  m i■ for z =  1, 2.

Colum n Effect M odel In similar argument as above, the MLE’s are found to

be:

j
M ain Effects M odel The case of main effects model needs more care. The 

location parameters are now 7^ =  77.. +  a* +  (3j, which can be written in the forms 

as shown in Table 4.16. The likelihood now becomes

hj

In order to maximize the likelihood, the parameters 77 ., a  and (3 must satisfy:

7 .. ~ ( a  + (3) < ran; 7 . -  (a -  (3) < m U]

rj., +  (a -  f3) < m 2\ ; 7.. + (a + (3) < m 22.

The above constrains can be written

7.. — m \ \  <  ( a  +  0 )  <  m 22 — 7 .., 7 .. — m 12 < ( «  — / ? ) <  m 2i — rj.,.

To maximize the likelihood, we need:

7.. -  rnn  <  m 22 -  7.., V.. ~  m u  <  m 2 1 -  rj...

3 = 1  3 = 2
i =  1 7.. -  (a + j3) 7.. -  (a  -  /I)
i =  2 rj., + (a — 0) rj.. + (a + /3)

Table 4.16: Location Parameters for Main Effects Model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



106

The likelihood is thus maximized at 77., =  min ((m n -|-m 22) / 2, (m i2 +  m2i)/2). 

When {mn  +  ra22)/2  =  (mi2 +  m21)/2, the solution of a  and /? is unique. Oth­

erwise, the solution is on a line segment of a  +  (3 = (m22 — m n ) / 2  between (m n +  

m 22) /2 - m i 2 < a - / 3  < m2i - ( m n  +  m22)/2 if (mn +  m22)/2 < (mi2 +  m21)/2, or on 

a - ( 5  =  (m2i —m i2)/2 between (mi2 +  m 2i ) / 2 - m n  < a + (3 < m22-  (mi2+  m2i )/2 

if (m n + m 22)/2 > (m i2+  m21)/2. We will use the middle point on the line segment. 

The MLE for the scale parameter is then

ij

where rjij — ?)., +  cq +  (3j for i , j  = 1, 2 is determined as discussed above.

Full Factorial M odel In this case, the MLE’s are:

rjij =  rriij i ,  j  =  1, 2, 7 =  y... -  ^ my
hj

4.7.1.2 Num erical Exam ple

Let the true model be a 2 x 2 row effect model and data follows an Exponen­

tial distribution with the scale parameter being 7 and the location parameters as 

described in Table 4.17.

j  = 1 J -  2
i = 1 0 0
i = 2 ci a

Table 4.17: Location Parameter

Let 7 = 1  and a =  1. Let the numbers of bootstrap samples be M  — 300 and 

M2 = 100 and the number of simulated data sets be 100. For comparison purposes, 

we also calculated AIC, AICc, and BIC. The results for cell sample size 10, 30, 50, 

and 100 are listed in Table 4.18
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Model

Frequency

EH2 AIC AICc BIC
Group Id I Group Id II

50% 80% 95% 0.5 1.0 1.5
n = 10

1 0.42677 0 0 0 100 100 100 42 90 99
2 0.16609 47 73 91 0 0 0 58 10 1
3 0.42224 0 0 0 0 0 0 0 0 0
4 0.20240 9 5 1 0 0 0 0 0 0
5 0.23469 44 22 8 0 0 0 0 0 0

n = 30
1 0.42091 0 0 0 6 36 95 0 0 1
2 0.10864 60 62 98 94 64 5 100 100 99
3 0.41943 0 0 0 0 0 0 0 0 0
4 0.12367 9 9 0 0 0 0 0 0 0
5 0.13884 31 29 2 0 0 0 0 0 0

n = 50
1 0.42249 0 0 0 1 1 21 0 0 0
2 0.07481 61 62 99 99 99 79 100 100 100
3 0.42149 0 0 0 0 0 0 0 0 0
4 0.08994 9 10 1 0 0 0 0 0 0
5 0.10174 30 28 0 0 0 0 0 0 0

n = 100
1 0.41969 0 0 0 0 0 0 0 0 0
2 0.05575 53 55 100 100 100 100 100 100 100
3 0.41922 0 0 0 0 0 0 0 0 0
4 0.06664 14 14 0 0 0 0 0 0 0
5 0.07275 33 31 0 0 0 0 0 0 0

Table 4.18: Frequency of Choosing Any Approximating Model by Different Methods

N ote :  Data was simulated from row effect model, a — 1. a =  L Cell sample size 
n =  10,30, 50,100, numbers of bootstrapped samples M  =  300 and M2  =  100, total 
number of simulated data S  =  100.

For all 4 sample sizes, the true best model is the true model, the row effect 

model. The performance of our methods incorporated with both group identification 

procedures increases dramatically as the cell sample size increases from 10 to 30, 

except for Group Identification I  with 95% confidence level. In general, our methods
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with either procedure work reasonably well at larger sample sizes, for instance, n > 

30. Smaller confidence interval as well as smaller c leads to better performance in 

the corresponding group identification procedure. Between the group identification 

procedures, Group Identification I I  works better in smaller sample sizes, due to the 

fact that the bootstrap confidence intervals are not centered at the original P E E H 2 

for small sample sizes. In particular, at sample size 50, our method with Group 

Identification II  with all three choices of c chooses the true best model 100%. We 

also calculated AIC, AICc, and BIC. The overall best performance is given by BIC, 

which chooses the true best model 91% of the time at sample size of n =  10 when our 

methods largely prefer the null model. AIC and AICc, on the other hand, did not 

show a consistent improvement as sample size increases. In fact, the performance 

of AICc decreases, or stay the same, as sample size increases. Their performance is 

better than that of ours when sample size is small but falls far behind as it increases.
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C h a p te r  5

M ICRO ARRAY DATA ANALYSIS -  F D R  ESTIM ATIO N A N D

M ODEL SELECTION

5.1 Introduction

Microarrays allow scientists to monitor gene expression for thousands of genes 

simultaneously and help identify genes that are expressing differently under two or 

more conditions. The primary goal of many microarray experiments is to identify 

a group of differentially expressed genes. This is typically achieved by conducting 

appropriate statistical tests.

The dimension of the data resulting from microarray experiments provides some 

unique challenges and opportunities for data analysis. Typically, we test each gene 

for differential expression. Hence for even a simple experiment comparing two groups 

or treatments, thousands of tests will be performed and thousands of p-values will 

be generated. This can lead to a high number of false discoveries unless appropriate 

multiple testing adjustments are implemented. A well accepted method of multiple 

testing adjustment is through the control of the false discovery rate (FDR). The FDR 

is defined as the expected ratio of false positives to total positives (Benjamini and 

Hochberg, 1995). Let V  be the number of false positives and R  be the total number 

of rejected hypotheses. Then FDR is defined as E(V /R )  if R  > 0 and is defined 

to be zero otherwise. Benjamini and Hochberg (1995) recommended a sequential
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multiple testing adjustment to control FDR assuming independence of the individual 

tests. Later, they proposed an adaptive technique for controlling FDR based on the 

estimated number of true null hypotheses (Benjamini and Hochberg, 2000).

Various approaches to estimating F D R  from the observed (empirical) distribu­

tion of p-values have been reported in the literature. The large number of hypotheses 

tested in microarray experiments provides us an opportunity to model the distribu­

tion of p-values. Allison et al (2002) fitted a mixture of beta distributions plus a 

uniform (which itself belongs to the beta family) using maximum likelihood estima­

tion. Pounds and Morris (2003) also fit a mixture of a beta plus a uniform (BUM) 

using maximum likelihood estimation. Dalmasso et al (2005) propose a location 

based estimator for estimating FDR.  Broberg (2005) suggests a poisson regression 

approach to estimate FDR.  Storey (2002) and Storey and Tibshirani (2003) in­

troduce positive false discovery rate (p F D R  =  E ( V /R \R  > 0)) and the q -value 

as an FDR based measure of significance. Tadesse et al (2005) propose controlling 

the pFDR using a Bayesian approach. Pounds and Cheng (2004) propose the spac- 

ings LOESS histogram method for estimating the conditional FDR (cFDR) where 

cFDR is defined as the expected proportion of false positives conditioned on having 

k “significant” findings. Liao et al (2004) recommend using a mixture model for 

estimating local FDR.  Local FDR was defined by Efron et al (2001) and Efron and 

Tibshirani (2002) as a measure of a specific gene’s “significance” based on its specific 

p-value or test statistic. Tsai et al (2003) compare five different FDR measures and 

present a framework for modeling their distributions. Still more authors have con­

centrated on estimating the proportion of true null hypotheses, which is important 

for FDR estimation. See Nguyen (2004), Langaas and Lindqvist (2005), and Lai 

(2006). Broberg (2005) provides a good review and comparison of methods. Among
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methods that fit mixture models to the p-value data, the BUM method, which uses 

a maximum likelihood approach, has been mentioned as performing competitively 

(at least for some of the scenarios considered) relative to the methods compared 

by Broberg (2005). The ultimate goal of these procedures is to take the observed 

/>values from a microarray experiment and select a group of genes identified as 

differentially expressed while maintaining a prespecified FDR.

Alternative approaches for fitting finite mixture models are also available in the 

general statistical literature. Several authors have shown that estimators obtained 

by minimizing the Hellinger distance between the theoretical and the empirical dis­

tributions possess certain robustness properties. However, Hellinger distance based 

methods have not been applied to estimation of FDR in microarray data analysis 

or other situations where a large number of hypotheses are being tested. In this 

chapter we propose two procedures for estimating the proportion of differentially 

expressed genes and FDR based on Hellinger distance as the measure of lack of fit 

between a theoretical mixture model and the data.

The first procedure considers the class of densities that are a mixture of a 

uniform [0,1] density plus one or more beta densities as candidate models (i.e. 

BUM models). The number of beta densities to include in addition to a uniform 

[0,1] density is determined using a model selection procedure that is also based on 

the Hellinger distance. The second procedure considers an approximating family 

of densities that are mixtures of a uniform [0,1] distribution and M  other uniform 

distributions on prespecified subintervals of [0,1]. The parameters in this mixture 

model are also estimated using Hellinger distance. In each case, the fitted mixture 

model then provides an estimate of FDR for any given p-value threshold for declaring 

differential expression.
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We apply both methods to the p-values resulting from analysis of data from 

Spira et al (2004) in which the effects of cigarette smoking on the human airway 

epithelial cell transcriptome have been studied. We focus on a subset of the data 

and compare current smokers versus healthy subjects who have never smoked. The 

histogram of p-values resulting from t-tests for comparing these two groups is shown 

in Figure 5.1. The shape of the distribution suggests that the mixture model of one 

uniform plus one or more beta distributions can provide a reasonable approximation.

This chapter is organized as follows. The next section discusses how one can 

obtain an estimate of FDR from a fitted mixture density model. Section 5.3 discusses 

the usage of B E E H 2  as a criterion to decide on the number of beta components 

when working with beta mixture models. An algorithm for fitting a mixture of 

uniform densities involving one uniform [0,1] density and M  other uniform densities 

on disjoint subintervals of [0,1] is also provided in this section. The microarray data 

from Spira (2004) is considered in Section 5.4 to illustrate how the methods work 

in practice. The final section provides simulation study results, including the use 

of Efron’s suggested empirical distribution for the p-values of the non-differentially 

expressed genes instead of the theoretical uniform distribution.

5.2 E stim ating F D R  from a M ixture D ensity  M odel

The use of mixture densities for modeling the distribution of p-values is based 

on the observation that the distribution of p-values from independent tests corre­

sponding to true null hypotheses is uniform over the interval [0,1] whereas each p 

value corresponding to a differentially expressed gene will follow a distribution that 

has more mass close to zero. The theoretical non-null distribution of a p-value from 

a differentially expressed gene will be determined by the magnitude of differential
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expression as well as variability of this differential expression and is therefore unique 

to each differentially expressed gene. Nevertheless, a mixture model with a small 

number of components, one of which is the uniform density on [0,1], has been found 

to be generally adequate to model the empirical distribution of the p-values resulting 

from microarray data analysis (Allison et al, 2002). The uniform [0,1] component 

is viewed as the component corresponding to equally expressed genes and its asso­

ciated mixing proportion is viewed as the proportion of equally expressed genes in 

the study.

Let /  and F  be the true probability density function and cumulative distribution 

function (cdf) of p-values respectively. The cdf F  can be written as

F(x) = q0Go(x) + ( l - q 0)W(x),  (5.1)

where G0 is the cdf of the uniform [0,1] component that corresponds to the genes 

that are equally expressed, and W  is the cdf corresponding to the genes that are 

differentially expressed. Moreover, it is assumed that W  has [0,1] as its support. 

The F D R  for a given test threshold level a  is

FDR(a)  =  (5.2)
F(a)

The theoretical quantile F(a)  is generally unknown. We propose to approximate it 

by A{a),  where A(-) is a cdf with density a(-), an element from an approximating 

family of mixture models with one component being a uniform distribution. W ith­

out loss of generality, we assume that the density of a(x) is a mixture of uniform 

d is t r ib u t io n  and u n o n u n ifo rm  c o n tin u o u s  d e n s itie s  g j ( - )  , j  = 1, ■ . . , v, w ith  [0, 1] 

(or subintervals of [0,1]) as their support; that is,

a(x) = p 0 + ^ 2 PjPjix), for x <E [0,1] (5.3)
3 = 1
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a n d  zero  e lsew h ere . T h e  p j  a re  th e  m ix in g  p ro p o r t io n s  s a tis fy in g  )T~)j_n Pi  =  1 a n d  

0 < Pj < 1 for all j  =  0,1, • • • , v. Thus, the F D R  can be approximated by

p0a/A(a) .

The accuracy of this approximated FDR will depend on how close the approximating 

mixture density a(-) is to the true density /(•). A plug-in estimator for the FDR is 

given by

FDR(a)  = -----------^ — ;------ , (5.4)
Pou + Y^Uj=iPjGj(a)

where p j , j  — 0 , . . . , v  are the estimated mixing proportions and Gj(-) is the esti­

mated cdf corresponding to the fitted density function gj(-).

In this chapter, we consider two approximating families a beta mixture family 

in Section 5.2.1 and a uniform mixture family in Section 5.2.2.

5.2.1 E stim ating F D R  from a M ixture of Uniform  and B etas

Here, each mixture component gj{x) is taken to be a beta probability den­

sity function with unknown parameters (a*,&j), say p{x\a^bi). Thus, a(x) can be 

expressed as
V

a(x) =  pa + ^2pjP(x-, aj: bj), x  E [0,1], (5.5)

It can be seen that the family of approximating densities is not identifiable. The 

reason is that different choices of the mixing probabilities and beta densities can 

result in the same density a(-). As a result, the value of the approximated F D R  

depends on the particular choice for the mixing proportions. Note that a mixture 

representation of A(-) that has the largest value for p a  among all mixture representa­

tions of A(-) will result in the largest value for the approximated FDR. We therefore
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propose to use this representation since it will result in a conservative estimate of 

FDR.

Another important issue is the choice of the number of beta components (in 

addition to the uniform component) in the mixture model, i.e. the value of u. In 

Equation (5.4), the estimated values of the parameters of the mixture components 

are used to estimate G(-). One needs to determine the number of beta components 

needed to model the p-value distribution adequately. Allison et al (2002) propose 

an approach that is based on hypothesis testing for the number of beta components. 

For this, they consider a forward selection approach. For k — 0 ,1 ,. . . ,  they test if a 

model with k +  1 nonuniform beta components provides a better fit than a model 

with k nonuniform beta components. If the test favors the larger model, then they 

proceed to compare that model with the model with an additional component, and 

so on, until the test accepts the smaller of the two models being compared. These 

authors used a parametric bootstrap method for conducting such tests. They report 

that, in their experience with several data sets, they have “yet to need more than 

one beta beyond the uniform” .

5.2.2 E stim ating FD R  from a Uniform  M ixture M odel

As an alternative to the beta mixture approach, we can also approximate the 

unknown density function by a mixture of one uniform [0,1] density and M  other 

uniform densities f =  1, • • •, M, where 0 — bo < h  < • • • < 5m =  1 and

di =  h — 6j_i, M  and 6* i =  1 , . . . ,  M  are prespecified, and I ^ iSj(x) is an indicator 

function that takes the value 1 if re belongs to interval (r, s] and 0 otherwise. That 

is, we approximate f ( x )  by a mixture density a(x) of the form

M

a(x)  = p 0 +  ^ 2 p i g i ( x ) ,  for x  G [0,1], (5.6)
i - 1
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with Qi{x) =  When the subintervals are equally spaced on [0,1],

di =  1/M  for all * =  1, 2 , ,  M.  On the other hand, di s may be different if we 

consider subintervals that are equally spaced on some transformed scale, such as 

square root of the p-values, to account for the fact that many distributions of the 

p-values have a large proportion of values close to zero.

The nonidentifiablility problem may also arise here. However, as in the case of 

beta mixtures, use of a mixture representation that has the largest value for p0 will 

lead to a conservative estimate for F D R  and this is the representation we propose 

to use.

For mathematical convenience, the approximating family of densities in Equa­

tions (5.5) and (5.6) are denoted as ag, where 6 is the vector of parameters. In the 

beta mixture family of Equation (5.5), 0 is a vector of mixing proportions and the 

parameters associated with u beta components; whereas, in the uniform mixture 

family of Equation (5.6), 0 is the vector ( p o , p \ ,  ■ ■ ■ , P m )-

In the following section, we will review the concept of Hellinger distance and 

discuss the procedures for estimating the parameter vector 6 of the approximating 

families discussed above.

5.3 Hellinger D istance and M ixture M odel Estim ation

The discrepancy between the empirical distribution of a set of data values and 

a theoretical distribution that is being used to model the data may be measured 

using any one of several distance measures between distributions. Such measures 

include the Kolmogorov-Smirnov distance the Kullback-Leibler (KL) distance , and 

the Hellinger distance . Donoho and Liu (1988) and Cao et al (1995) pointed out that 

minimum distance (discrepancy) estimators (MDEs) occupy an outstanding place
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among the robust alternatives to the classical maximum likelihood (ML) method 

for point estimation. They explored MDEs for general finite mixture models. Be- 

ran (1977) studied the MHDE and its asymptotic properties and concluded that 

the MHDE was asymptotically efficient as well as robust. Tamura and Boos (1986) 

applied minimum Hellinger distance estimation for multivariate location and covari­

ance, and stated that the robustness of the MHDE as measured by the breakdown 

point compares favorably against the previously studied M-estimators. Cutler and 

Cordero-Brana (1996) considered MHDEs for finite mixture models when the exact 

forms of the component densities are unknown in detail but are thought to be close 

to members of some parametric family. In particular, they studied examples where 

the component densities are approximated by normal densities. They addressed 

the issues of identifiability, existence, consistency and asymptotic normality of the 

MHDEs for finite mixture models and showed that the MHDEs are asymptotically 

efficient if the data come from a member of the parametric family and are robust to 

certain departures from the parametric family. Because of such robustness proper­

ties associated with MHDEs we propose to use them for modeling the distribution 

of p-values from microarray data analysis.

5.3.1 M inim um  Hellinger D istance E stim ation for B eta M ixture M odel

A MHDE of 0 is defined as follows (Beran, 1977):

O m h d  =  argm in{H (/, a<j)}. (5.7)0

where /  is a suitable density estimator. In this chapter, a kernel density estimator 

is used in the beta mixture approach, and a histogram density estimator is used in 

the uniform mixture approach.
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Considerable effort has been devoted by many authors for deciding the number 

of beta components in addition to the uniform component corresponding to equally 

expressed genes. Parker and Rothenberg (1988) determined the number of beta 

components by assessing the goodness-of-fit of each model using the Cramer-von 

Mises statistic, and stopping at the smallest value of v that provided an “adequate” 

fit for the data. As discussed earlier, Allison and Gadbury et al (2002) proposed 

an approach based on hypothesis testing of a sequence of mixture models with 

increasing numbers of beta components.

In this chapter, we apply the model selection method based on the expected 

squared Hellinger distance. Specifically, we determine the value v for which a model 

with v nonuniform beta components has the smallest B E E H 2. Let the fitted density 

be ag with v nonuniform beta components. B E E H 2, as discussed in Chapter 2, is 

thus:
1 BBEEH2 = - Y , H 2{f,aK(l)).

;=i
where B  denotes the number of bootstrap sample here. The value of v that yields 

the smallest B E E H 2 may be chosen as the number of nonuniform beta components. 

A more practical approach for choosing the number of beta components is discussed 

below.

If two mixture models are close to one another, their Hellinger distances to den­

sity /  will also be close to each other. We use this fact in our proposed method for 

selecting the number of nonuniform beta components where we use the estimated 

expected squared Hellinger distance as the criterion of goodness of fit. To avoid 

choosing a mixture model that has v beta components but is not in fact different 

from a mixture model with v — 1 or smaller number of beta components, we intro­

duce a further step that favors the mixture model with the smallest number of beta

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



119

c o m p o n e n ts . T h is  is a c c o m p lish e d  b y  ch o o sin g  th e  m ix tu re  m o d e l w h o se  B E E H 2

is not significantly different from the minimum of all B E E H 2 values correspond­

ing to different numbers of beta components. More specifically, we approximate 

the distribution of B E E H 2 by bootstrapping B'  samples from the original data 

and calculating B'  realizations of B E E H 2 for each approximating mixture model. 

The mean and the standard deviation of the bootstrap distribution of B E E H 2 are 

calculated for each candidate model. The model with the smallest number of beta 

components whose mean B E E H 2  value is within one standard error of the smallest 

mean B E E H 2 value will be chosen as the model to approximate the distribution of 

the p values. A similar approach has been used by Hastie et al (2001, page 216) in 

the context of model selection and referred to as the one-standard error rule.

5.3.2 M H D E for the Uniform  M ixture M odel

For any given integer M, we divide the interval [0,1] into M  prespecified inter­

vals as in (5.6). The corresponding histogram density estimator of ./(■) is given by

M

/ m W  = (5.8)

where

and Fn is the empirical cdf of / .  The squared Hellinger distance between /m  and 

the approximating uniform mixture density function a# in Equation (5.6) can be

w r i t te n  as:

(5.9)
i= 1

The mixing proportions p, are estimated by minimizing H 2(fM,ae).
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For each fixed p0 in the interval [0,1], the minimization problem in (5.9) is 

accomplished using the Lagrange Multiplier method for which the objective function 

is
M  2 M

= ^ 2  [ v ^ ~  VPodi+Pi  (5-10)
i =  1 i = 0

For the time being we have not considered the nonnegativity constraints on the p., 

and we will return to this point later. For i = 1 , ,  M, candidate values of pi that 

minimize the function in (5.10) may be obtained by equating to zero the partial 

derivatives of T ( p i , . . .  ,Pm ,^ )  with respect to the p^s and A. In addition to the 

constraint P> =  ̂ this êa^s to the equations

\  + l = for i = 1 , . . . , M.
+  Pi

Multiplying the ith of the above equations by p, on both sides, we get

(A +  l )Pi = - M ^ = ,  i = l , . . . , M ,  (5.11)
y/Podi  +  Pi

from which it follows, by summing over i =  1 , . . . ,  M, that

A +  (5.12)
1 ~  Po vP odi +  Pi

Using Equations (5.11) and (5.12) we get

P i\ /C i  / r  1 q\
Pi =  >;-y . (5 -13)

a  V P o d i  +  Pi

where
1 M r~.

A* =  A +  1 =  -rJ — %=■ <514>1 ~  P° vP odi +  Pi 

We thus propose the following algorithm for determining the values of pi , i —

1, . . . ,  M,  corresponding to a specified value for the mixing proportion p0.
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5.3.2.1 A lg o rith m  1: F ind ing  {pt} for A ny G iven  p0

1. (Initialization) Select initial values for p*, say {pf^ : i =  1 , . . . , M} .  These 

initial values must be nonnegative and must sum to 1 — p0. Define

M  (0)

“SSfO*) =  po +
i=1 *

2. (rj-Update) For t > 0, given that {pf^ : i =  1 , . . . ,  M }  are already available, 

calculate

vlt](Po) = —rPi ^  * =
yjp0di + p f

3. (p r  Update) Calculate

Define

(t+i) _  ( l - P o ) h f ( p o )  . M
P i (i)/ n ’

£ i = l » 7 i  ( P o )

M  ( t+1)

i=1

and compute

4. Repeat steps (2) and (3) until convergence; that is, until the changes in the 

values of pf'* are smaller than a prespecified tolerance. Suppose this occurs
( f *  _i_ -I N

when t =  t*. At this point stop and report p\ as the MHDE for p̂  and 

mh = as minimum Hellinger distance achieved. Note that,

given feasible starting values, the updated values for p f +1') in the iteration 

steps in Algorithm 1 are automatically nonnegative and sum to 1 — p0.

While Algorithm 1 gives us the MHDEs for p* corresponding to a specified value 

of po, there is no guarantee that the resulting estimated mixture distribution will fit
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the data well. Values of p0 that lead to mixture density solutions that do not fit the 

data well are deemed unacceptable. This leads to the question of how one might 

test the goodness of fit of a proposed mixture solution. The following algorithm 

suggests one possible method of testing the goodness of fit.

5.3.2.2 A lgorithm  2: Testing C onsistency W ith  the D ata

To test the adequacy of the model obtained in the previous section, we use the 

estimated minimum Hellinger distance as a test static. The null distribution of this 

test statistic is approximated by conducting a parametric bootstrap as follows.

1. Generate B  random samples Y =  {yi, ■ ■ ■ ,yn} from the following proposed 

density
M .

, W'i

where p\, . . Pm are the MHDEs of p i , . . .  ,pm obtained from Algorithm 1.

2. For the bth random sample (1 < b < B),  determine the empirical distribution

I m M  =  • # { j  : yj  G (6j_i,&<]}, xe(6i_i ,6i] ,  i =  l , . . . , M

and calculate the Hellinger distance, denoted by MH£,  between Jm.Ii and the 

proposed density.

If

B

is smaller than a predetermined significance level a 0 then conclude that the specified 

value of the mixing proportion p0 does not lead to a solution that adequately fits 

the data.
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As noted before, the mixing proportion p0 is not uniquely determined. If p(j 

denotes the minimum among Cj/dj, * =  1, . . . ,  M,  then it is easily verified that every 

value of po in the interval (0, pg] results in zero as the minimum value for ag).

However, a value of po that is larger than p(* may lead to a value of //2(,/m, ag)  that 

is not significantly different from zero. Our goal is to provide the largest such value 

for p0. We implemented the golden section method, described below, to calculate 

such upper bound:

1. (Initialization) Denote f  , a — and 6 = 1 ;

2. ( Update) For the ith chosen candidate value of p0, pQ>i =  a + (b — a)4>, the 

goodness-of-fit test as described in Algorithm 2 is carried out. If the value 

Po = Po,i is rejected, let 6 =  p0)i; otherwise, denote a =  p0>i.

3. Repeat Step 2 for i =  1, 2 , . . . ,  until convergence occurs; that is, the value b — a 

is sufficiently small. The largest candidate value such that the null hypothesis 

Po =  Po,i is not rejected is denoted by pu and is reported as a 1 — ao upper 

confidence bound for the mixing proportion po and the corresponding pi as 

the MHDEs for p  = (pi , . . .  ,Pm)- The corresponding value of F D R  obtained 

from Equation (5.4) is reported as an upper confidence bound for F D R  with 

confidence coefficient 1 — ao-

In the next section, we will illustrate the methods proposed in this chapter by 

applying them to the microarry experiment of Spira et al (2004).

5.4 Real D ata Exam ple

Spira et al (2004) studied the effects of cigarette smoking on the human airway 

epithelial cell transcriptome and found a large number of genes whose expressions
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are altered by cigarette smoking. There were 75 arrays (of type Affymetrix HG- 

U133A) corresponding to 75 different subjects. Out of the 75 subjects, 34 are current 

smokers and 23 are healthy persons who have never smoked. Each array consisted 

of 22283 probe sets. Each probe set can be roughly thought of as representing a 

single gene. The normal large-airway transcriptome was defined by the genes whose 

median probability of detection (P(detection)) value was less than 0.05 across all 23 

healthy never-smokers. More information above the way the microarray data was 

acquired can be found in Spira et al (2004). We obtained the data from Gene 

Expression Omnibus (GEO, internet site, 2007) and used the statistical software 

package R (R Development Core Team, 2006) for data analysis. Data were read and 

normalized using the functions ReadAffy and mas5 (Irizarry et al, 2006) provided 

by the R package Bioconductor (Gentleman et al, 2004). Spira et al (2004) filtered 

the data according to the definition of normal large-airway transcriptome and found 

7119 genes that are expressed across the majority of the healthy subjects. There is a 

difference between the set of genes selected by Spira et al (2004) and the set used here 

due to the use of different software packages and presumably different normalization 

and background correction algorithms. To closely match their filtering, we worked 

with the 6708 genes that are marked as “Present” for at least 11 of the 23 never 

smokers.

Independent two sample /.-tests between current smokers and never smokers 

were conducted for each of the 6708 genes without assuming equality of variances. 

T h e  h is to g ra m  o f th e  p -v a lu es  is p lo t te d  in  F ig u re  5.1. T h e  s h a p e  o f th e  d is t r ib u t io n  

suggests that the mixture model of one uniform plus one or more beta distributions 

may provide a reasonable approximation. We fitted mixture models with uniform
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Figure 5.1: Histogram of the p-values and the fitted mixture density (solid line type) 
with Uniform plus two Beta components

plus 0 to 4 beta components respectively and the B E E H 2 values were computed 

using B  =  500 bootstrap samples. These B E E H 2 values are listed in Table 5.1.

Mixture II o s! II II to II C
o II

B E E H 2 0.1001 0.00377 0.00058 0.00076 0.00063

Table 5.1: B E E H 2 for the mixture models with uniform component plus u nonuni­
form beta components where v ranges from 0 to 4

The mixture model with two beta components has the smallest B E E H 2, which 

is significantly smaller than that of the mixture model with one beta component 

based on our bootstrap results. The mixture model with one uniform and two beta 

components is therefore the chosen best model and the proportion of the uniform is 

estimated to be 0.6211. Table 5.2 lists all the estimated parameters.

Figure 5.1 shows a plot of the estimated mixture density against the density 

histogram of all p-values. The estimated F D R  corresponding to each possible sig­

nificance threshold for p-values, i.e. a  in Equation (5.2), is plotted as solid line 

type in Figure 5.2 where the horizontal line in the graph represents an FDR of 0.05.
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Uniform Beta Component 1 Beta Component 2
Po Pi a i &i P2 a2 b2

Estimator 0.6211 0.0767 0.1586 1.00000004 0.3022 0.5521 4.0559

Table 5.2: Estimated parameters of the mixture density with 2 nonuniform Beta 
components

The FDR at significance level of 0.05 is estimated to be 0.1492. The significance 

level that ensures a FDR of 0.05 is found to be 0.00674 and 537 genes were found 

differentially expressed at this FDR level.

F D R  toy B e t a  M ix tu re  
F D R  toy U n ifo rm  M ix tu re  
q —v a l u e

p —v ali

0.6 0.8 1 .O0.0 0 .2 O . A

Figure 5.2: A graphical illustration of the estimated FDR using beta mixture (solid 
line), uniform mixture (dashed line) and q-values (dotted line) versus various thresh­
olds for p-values (a:-a.xis)

Next, we applied the uniform mixture method to this data. Due to the tendency 

of the p-value distribution to have higher density close to zero we used equally-spaced 

subintervals on the square root scale rather than on the original scale. The choice 

of the number of subintervals M  requires some care. Too small an M  obviously will 

lead to biased approximations while too large an M  will result in undersmoothed 

approximation of the true density. To choose a proper M,  we followed the procedure
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suggested by Linhart and Zucchini (1986, page 14) and applied it to the square root 

transformed p-values. The best choice of M  according to the Linhart and Zucchini 

procedure was found to be M  =  75. The subinterval widths in the original scale 

become =  (i/75)2 — ((* — l)/75 )2, for i = 1, 2 , . . . ,  75 and are therefore unequal.

The estimated upper bound of the mixing proportion po was found to be 0.723, 

the estimated upper bound for the FDR when a gene is claimed to be differentially 

expressed between current smokers and non-smokers at a p -value less than 0.05 was 

found to be 0.1947, and the a  was estimated to be about 0.00436 in order for the 

FDR to be no greater than 0.05. If we take the a  level to be 0.00436, 461 genes 

will be identified as differentially expressed. The dashed line in Figure 5.2 provides 

a plot of the estimated FDR versus the significance threshold for p-values.

We also calculated q -values (Storey, 2002) using the R package siggenes (Schwen- 

der, 2006). The q-value associated with a p-value can be interpreted as the minimum 

FDR if we reject the null hypothesis at that particular p-value. The dotted line in 

Figure 5.2 is a plot of the q-values against the p-value threshold for significance. This 

is based on 0.5501 as the estimate, provided by siggenes, for the mixing proportion 

P q .  The maximum p-value corresponding to q - values that are less than or equal to 

0.05 was found to be 0.00769 and 568 genes were found differentially expressed at 

this threshold.

Using the same f-test between current and never smokers, Spira et al (2004) 

found 97 differentially expressed genes at a p-value threshold of 1.06 x 10~5. Accord­

in g  to  th e m , th is  th re s h o ld  w as se le c te d  “b a se d  o n  a  p e r m u ta t io n  a n a ly s is  p e rfo rm e d  

to address the multiple comparison problem inherent in any microarray analysis” . 

They also noted that they “chose a very stringent multiple-comparison correction”
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and p-value threshold to “identify a subset of genes altered by cigarette smoking 

with only a small probability of having a false positive” (Spira et al, 2004).

Both of our proposed procedures result in a larger number of significant genes 

than what is reported in Spira et al (2004) and are closer to the results obtained 

using q values. Not surprisingly, the uniform mixture approach yielded a smaller 

number of significant genes than the beta mixture approach since the former is 

essentially a nonparametric procedure. Both procedures yielded a smaller number 

of significant genes than the q-value approach since they used the largest value of po 

that is consistent with the data. It is expected that, in general, the q-value approach 

would be the most liberal, the beta-mixture approach would be somewhat more 

conservative, and the uniform-mixture approach would be the most conservative 

among these three methods.

It has been reported in the literature that, due to various practical issues as­

sociated with the conduct of microarray experiments, the distribution of p-values 

of equally expressed genes may not be uniform. Efron (2004) and Nguyen (2004) 

suggest approaches for estimating the nonuniform p-value distribution associated 

with equally expressed genes. Both of the methods proposed here, the beta-mixture 

approach and the uniform-mixture approach, are easily generalized to this case. In 

place of the uniform [0, 1] component one simply needs to use the estimated nonuni­

form null p-value distribution and the proposed algorithms can be applied with very 

little change.

5.5 Sim ulation Study

In this section, our proposed methods in both beta mixture model and uni­

form mixture model are tested through simulation study. Uncorrelated array data
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is simulated from mixture of uniform and beta distribution(s), the performance of 

the estimator B E E H 2 of the E H 2 and the MHDE for the beta mixture model 

parameters are studied, the uniform mixture model is also fitted. The empirical dis­

tribution of the p-values under null hypothesis suggested by Efron (2004) is applied 

in place of the theoretical uniform distribution.

5.5.1 B eta  M ixture M odel

M odel Selection U sing B E E H 2  -  Single D ate Set:

We first generate a data set of size 1000, U =  (it*, 112, • • • un), of which 700 data 

points are generated from Uniform[0,1] and the other 300 are from Beta(0.5,2). 

Thus, this data set resembles a set of p-values from a group of genes of which 30% 

are indeed differentially expressed while the other 70% are not. The histogram of 

the data set is in Figure 5.3. To find the MHDE for the beta mixture model, we 

need to first find a kernel density estimator of the data. Fitting kernel density 

estimator directly is inappropriate due to the boundary issue especially near 0. We 

thus transform the data from U G [0,1] to Z  G 1Z by means of Z  — r(U)  =  <f>~1(u5) 

and fit the kernel density estimator after the transformation. Figure 5.4 depicts 

the the fitted kernel estimator on the transformed data. We can then fit the beta 

mixture model by minimum Hellinger distance and calculate B E E H 2 from the 

transformed data. In fact, it can be shown that Hellinger distance is invariant 

under the transformation (Chapter 2).

Let B  = 500, B E E H 2 is calculated for each model. Table 5.3 shows that the 

true model and also the true best model, the mixture model with 1 beta component, 

has the smallest B E E H 2 and thus was selected by our method. The B E E H 2 for 

the distribution with only the uniform component is by far the largest. The rest
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Figure 5.3: Histogram of the p-values with the fitted mixture density of one uniform 
plus one beta component. The true distribution is f{u)  =  0.7 +  0.3fl{u\ 0.5, 2).
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Figure 5.4: Histogram of the transformed p-values with the fitted kernel density 
estimator. The true distribution is f (u )  — 0.7 +  0.3,8(u] 0.5. 2).

4 B E E H 2 ’s a re  n o t  t h a t  fa r fro m  e ach  o th e r , w h ich  is n o t  in c o n s is te n t  w ith  th e  

fact that the fitted mixture densities with different numbers of beta components are 

pretty close.
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Mixture 0 Beta 1 Beta 2 Beta 3 Beta 4 Beta
B E E H 2 0.03486 0.00256 0.00259 0.00285 0.00290

Table 5.3: B E E H 2  of the Mixture Models with 0-4 Beta Component(s). The true 
distribution is f (u )  =  0.7 +  0.3P(u; 0.5, 2).
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FDR by Uniform Mixture
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Significance Level

Figure 5.5: FDR respectively estimated from beta mixture model (1 uniform plus 1 
beta), uniform mixture model, and from the true distribution. The true distribution 
is f(u)  =  0.7 +  0.3/?(u; 0.5,2).

The fitted model with one beta plus uniform from the initial data set is g§ (u ) =  

0.7059+  0.2941/?(u; 0.5056,1.9463) for u € [0,1]. Figure 5.3 plots the above density 

on top of the histogram of the p-values. We can calculate the estimated FDR based 

on the above model for different a , the test significance level or the “threshold” of 

the p-values for us to claim a significant difference. The estimated FDR is plotted in 

dashed line against the p-value threshold in both Figures 5.5 As shown in the plot, 

we can see that the estimated FDR curve is very close to the one according to the 

true distribution of the p-values (solid line). The corresponding p-value threshold 

for FDR of 0.05 is about 0.0012 by the true model and about 0.0011 according to 

the estimated one beta mixture model. If we set our test significance level at lower
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than, say, 0.328, then about 51% or more of the significance results from the tests 

are estimated to be false positive, which is close to the percentage according to the 

true model (50%).

M odel Selection U sing B E E H 2  — B ootstrap D istribution of BE E H 2:  

Now, consider a case in practice where the B E E H 2 based on data for the 

mixture model with two beta components is slightly lower than that for the mixture 

model with one beta component. Do we have enough evidence to choose the former 

over the latter? To answer this question, we can implement the bootstrap interval 

discussed at the end of Section 5.3.1. For illustration purposes, we generate a data 

set from a 2 beta mixture model: f (u )  =  0.7 +  0.18/3(u; 0.5,2) +  0.12/?(«; 0.98,1.02), 

where the second beta component is close to the uniform distribution on [0,1]. 

50 samples are bootstrapped from the data set. For every bootstrapped data set, 

B E E H 2 values are calculated for each of the mixture models with up to 4 beta 

components. The model with only the uniform component has much higher B E E H 2 

than others and thus is not of our interest. The means and one bootstrap standard 

deviation intervals of the 50 B E E H 2 values for each of the other 4 mixture models 

are plotted in Figure 5.6. All the intervals include the minimum of mean B E E H 2 

values and therefore we chose the mixture model with one beta component since it 

has the smallest number of beta component(s).

M odel E stim ation by M inim izing Hellinger Distance:

To assess how well the estimators perform in terms of estimating the proportion 

of the equally expressed genes as well as the FDR for a = 0.05, we simulated 

500 data sets of p-values from the mixture distribution employed at the beginning 

of this session, 70% Uniform(0,l) and 30% Beta(0.5,2). The true FDR when the 

significance level is 0.05 is found to be 0.2613. The mixture model with one beta
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Figure 5.6: Bootstrap B E E H 2  Intervals. B' =  50, the true distribution is f ( u ) =  
0.7 +  0.18/3(u: 0.5, 2) +  0.120(u\ 0.98,1.02).

component is fitted on the data sets. In addition to minimum Hellinger distance 

estimation, maximum likelihood method is also used. Table 5.4 gives the summary 

of the simulation. The averages of the estimators for p0 and FDR for a = 0.05 from 

both methods are quite reasonable and close to one another. It is noticed that the 

MHDE of the parameters and the corresponding estimated FDR have relatively less 

variation than the MLE and the corresponding estimated FDR.

Estimator Po FDR, for a = 0.05
Mean Standard Dev. 0.025 Quantile Mean 0.975 Quantile

MHDE 0.7142 0.0399 0.2384 0.2586 0.2736
MLE 0.6902 0.097 0.1622 0.2570 0.3235

Table 5.4: Simulation Results From 500 Data Stes For Both MHDE and MLE. The 
true distribution is f (u )  = 0.7 +  0.3/3(w; 0.5,2) and the true FDR for o: =  0.05 is 
0.2613
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5.5.2 U niform  M ixture M odel

We also apply the algorithms introduced in Section 5.3.2 to the same data 

set generated in the beginning of Section 5.5.1 (the true distribution is f (u )  — 

0.7 +0.3(3(u; 0.5, 2)). For the reasons we discussed in the previous section, we choose 

to divide the square root transformed p-values into M  equally spaced subintervals 

(bins). And thus the bin widths on the original scale is unequal. W ith M  =  20, 

the 95% upper bound of the mixing proportion p0 is estimated to be 0.9093. The 

estimated FDR is plotted as the dotted line in Figures 5.5.

5.5.3 Efron’s M ethod on the N ull D istribution of Equally Expressed  
Genes

Efron (2004) considers the choice of the distribution for the p-values under null 

distribution. Instead of the theoretical uniform distribution, an empirical distribu­

tion can be fitted in two steps on the inverse standard normal (<3>~1) transformed 

p-values:

Zi =  $ -1(p — value*), i = 1 , 2 ,n.

First fit f ( z )  to the histogram count of the z ’s by Poisson regression. And then the 

empirical distribution of the Z  is estimated to be a normal distribution with mean 

and standard deviation, say /j0 and o{], where p0 and a0 are obtained by the center 

and half-width of the central peak:

Ho = a rg m a x /^ )  and a0
'2

-^pog/e) (5.15)
MO

The corresponding empirical distribution of the p-values can thus be found. 

Since the z ’s corresponding to the genes that are not differentially expressed are 

expected to be concentrated around 0 and the extreme 2 values are more likely to
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come from the differentially expressed genes, a truncation window is also considered 

when estimating the spread for empirical distribution. That is, only the set {zi : 

\zi\ < w ,i — 1 ,2 , . . .  ,n}  will be used to determine a0, where w is the truncation cut 

off point.

Now, applying the above mentioned method to the same data set we used in the 

beginning of Section 5.5.1. The empirical distribution of the 4>-1 transformed data is 

found to be 1V(—0.325,1.09342) with w =  2. Figure 5.7 plots the fitted distribution 

on the histogram of the z values and Figure 5.8 plots both the empirical distribution 

(solid line) and the theoretical distribution (dashed line) of the p-values under null 

hypothesis against all the p-values.

o

vq
<z>

CO
o
■nT
o

CNJ
o

o

o

- 4 - 2 0 2 4

z  v a lu es

Figure 5.7: Histogram of the 2 values with the fitted empirical null density. The 
true distribution is f(u )  =  0.7 +  0.3/3(u; 0.5, 2).

We then fit a mixture model with the empirical distribution plus one beta 

distribution. The proportion of the p-values under null hypothesis is estimated to 

be 0.976. The estimated FDR is plotted as the dotted line in Figures 5.9 and 5.10 

(in finer scale). The p-value threshold corresponding to an FDR of 0.05 is about
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Figure 5.8: Histogram of the p-values with the fitted empirical null density and 
the theoretical uniform density for all p-values. The true distribution is f (u )  =  
0.7 +  0.3/3(1/,; 0.5, 2).

0.00035. If we use a threshold of 0.05, then about 67% of the time the null hypothesis 

is wrongly rejected, according to this model.
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Figure 5.9: FDR respectively estimated from beta mixture model (1 uniform plus 1 
beta), uniform mixture model, and mixture model with 1 empirical distribution for 
the null plus 1 beta. The true distribution is f (u )  =  0.7 +  0.3(5{u\ 0.5, 2)
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Figure 5.10: FDR respectively estimated from beta mixture model (1 uniform plus 1 
beta), uniform mixture model, and mixture model with 1 empirical distribution for 
the null plus 1 beta finer scale. The true distribution is f(u )  =  0.7 +  0.3/?(u; 0.5, 2)
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Correlated D ata Sets

We also consider the cases where the genes might be correlated. In stead of sim­

ulating p-values as done previously, we simulate 6708 standardized gene expressions 

for each of the 57 arrays, with 23 of them from control group and 34 from treatment 

group. Let Ygi represent the gene expression for the gth gene and the ith array, where 

g =  1, 2, • • • , 6708 and i =  1, 2, • • • , 57. We set up the simulation in a way so that 

the gene expressions for all 23 arrays in the control group independently come from 

a normal distribution with mean being p +  Ai and a gene-specific variances a 2 while 

that for all 34 arrays in the treatment group independently come from a normal 

distribution with mean being p. +  Dg +  and the same gene-specific variances a2. 

Of all {Dg : g = 1, 2, • • • , 6708}, 80% of the randomly chosen Dg s take the value of 

0 while the other 20% being Dg = T  • ag/ \/5T. This means that 20% of all the genes, 

or 1342 genes, are truly differentially expressed between the two groups. The array 

noise Ai} i = 1,2, • • • ,57 follows a normal distribution N(0, er2/ 20) and a2 =  a2 ■ Ug 

where /  • Ug follows a chi-square distribution with degrees of freedom / .

Case I: T  = 5

Let /i =  0, a = 1, T  =  5, and f  =  30. A data matrix with 6708 rows (genes) 

and 57 columns (arrays) are simulated and independent two-sample t-tests assuming 

unequal variances are conducted for each gene. Figure 5.11 plots the histogram of 

the p-values associated with the 80% equally expressed genes (EEG) on the top and 

that of the p-values for truly differentially expressed genes (DEG) on the bottom. We 

can see that the distribution on the upper panel resembles the uniform distribution 

on [0,1] while that on the lower panel can be approximated by a beta distribution 

with a mass near zero.
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Figure 5.11: Histogram of the p-values of the equally expressed genes (EEG, up­
per panel) and for that of the differentially expressed genes (DEG, lower panel). 
Correlated data with T  =  5.

We fit a mixture model with one uniform distribution and one beta distri­

bution by minimizing Hellinger distance. The proportion of the the uniform dis­

tribution, po, which can also be interpreted as the proportion of the equally ex­

pressed genes is estimated to be 0.8131 and the beta distribution is estimated to 

be Beta(0.4092,16.6610). Figure 5.12 plots the estimated mixture density over all 

p-values and Figure 5.13 plots the estimated FDR over the significance levels. In 

order to achieve an estimated FDR of 0.05, we need to set the significance level at 

approximately 0.0047. 531 genes are identified as differentially expressed using this 

threshold.

We then apply Effron’s method to get the distribution of the p-values of EEG’s. 

The empirical distribution fitted on all 2 values within the truncation window of 

[—1.5,1.5] is estimated to be ,/V(0.075,1.15962). The truncation windows of [—2,2] 

and [—3,3] are also tried and the differences among the estimated variances are very 

small. Figure 5.14 plots the empirical distribution of the z values under null hypoth-
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Figure 5.12: Histogram of all the p-values with the estimated mixture density of one 
theoretical null distribution and one beta distribution. Correlated data with T  = 5.
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Figure 5.13: Estimated FDR based on the fitted beta mixture model with the 
theoretical null distribution and one beta distribution against the p-value threshold. 
Correlated data with T  =  5.

esis on top of the histogram of all z values. Figure 5.15 is Figure 5.14 transformed 

back into original p-values. We can see from the histogram that the distribution of 

the z values is considerably asymmetric. After fitting the mixture model with the
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Figure 5.14: Histogram of all the 2 values and the fitted empirical null density for 
the EEG. Correlated data with T  =  5.
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Figure 5.15: Histogram of all the p-values with the fitted empirical null density for 
the EEG. Correlated data with T =  5.

empirical null distribution, the proportion of the EEG is estimated to be 0.5473 and 

the beta density is estimated to be Beta(0.3631,1.0083). Figure 5.16 plots the esti­

mated mixture density and Figure 5.17 plots the estimated FDR over corresponding 

significance levels. According to this model, we need to conclude significant differ­
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en ce  for a  p a r t ic u la r  g en e  b e tw e e n  c o n tro l and. t r e a tm e n t  g ro u p s  o n ly  w h e n  th e

corresponding p-value is less than 0.0013, if we want to control the FDR at 0.05. 

And 303 genes are found differentially expressed using this threshold.

CO

o

1
0 .0  0 .2  0 .4  0.6  0.8 1.0

p - v a l i j e s

Figure 5.16: Histogram of all the p-values with the fitted mixture density of the 
empirical null distribution and one beta distribution. Correlated data with T  =  5.

C ase II: T  =  1.8

Now change T  into 1.8 so that the true average fold change for those truly 

differentially expressed genes gets smaller and thus harder to detect. Figure 5.18 

displays the histogram of the p-values under null hypothesis (upper penal) and that 

of the p-values under alternative hypothesis (lower penal). Again, it is plausible 

to approximate the former distribution with a uniform distribution on [0,1] and 

the latter with a beta distribution. The fitted mixture density is plotted in Figure 

5.19. The proportion of the uniform is estimated to be 0.9643 and the estimated 

beta distribution is Beta(0.9999, 91.7611). The estimated FDR is plotted against 

significance level in Figure 5.20. W ith this data set, the estimated FDR is relatively 

high for any given significance level. The threshold associated with the FDR of 0.05
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Figure 5.17: Estimated FDR based on the fitted mixture model with the empirical 
null distribution and one beta distribution against the p-value threshold. Correlated 
data with T  = 5.
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Figure 5.18: Histogram for the p-values of the equally expressed genes (EEG, tip­
per panel) and for that of the differentially expressed genes (DEG, lower panel). 
C o rre la te d  d a t a  w ith  T  = 1.8

is estimated to be 1 x e”12 and no genes are found to be differentially expressed 

using this significance level. If we choose the significance level to be 0.05, on the
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Figure 5.19: Histogram for all the p-values with the estimated mixture density of 
one theoretical null distribution and one beta distribution. Correlated data with 
T  = 1.8
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Figure 5.20: Estimated FDR based on the estimated mixture density with one 
theoretical null distribution and one beta distribution against the p-value threshold. 
C o rre la te d  d a t a  w ith  T  = 1.8

other hand, 412 genes are identified as differentially expressed among which about
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74 p e rc e n t  a re  e x p e c te d  to  b e  a c tu a lly  e q u a lly  e x p re sse d  b e tw e e n  th e  c o n tro l g ro u p  

and the treatment group according to this model.

a«"tmn
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Figure 5.21: Histogram for all the z values and the fitted empirical null density for 
the EEG. Correlated data with T  = 1.8
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Figure 5.22: Histogram for all the p-values with the fitted empirical null density for 
the EEG. Correlated data with T  = 1.8
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Applying Efron’s method, the empirical distribution of the <f>-1 transformed 

p-values for EEG is found to be N ( —0.075,1.01872) with a truncation window of 

[—1.5,1.5]. Figures 5.21 and 5.22 plot the empirical distribution over all z values and 

all p-values respectively. It is interesting to notice that the empirical distribution 

that is supposed to be of the p-values for EEG only seems to fit the overall p-value 

quite well. After fitting the mixture model, p0 is estimated to be 0.9980 and the 

fitted mixture density is plotted in Figure 5.23. Figure 5.24 plots the estimated FDR 

over the significance level. This curve of the estimated FDR first goes downwards for 

a short while at the left end and then climbs back upwards. Note from Figure 5.22 

that the empirical distribution of the p-values under null hypothesis has a mass near 

zero. This contributes to the contra-intuitive part of the curve that goes downwards 

at the beginning. The estimated FDR is very high for all significance levels. The 

minimum estimated FDR is found to be around 0.8976.

i
0.0
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0 . 2

—!------------ ,—

0 .4  0.6
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Figure 5.23: Histogram for the p-values with the fitted mixture density of the em­
pirical null distribution and one beta distribution. Correlated data with T  =1 .8 .
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Figure 5.24: Estimated FDR based on the fitted mixture density with the empirical 
null distribution and one beta distribution against the p-value threshold. Correlated
data with T  = 1 .8 .
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C h a p te r  6

CO NCLUSIO NS A N D  FU T U R E  W ORK

6.1 Conclusions

In this dissertation, we considered general model selection problems. In these 

problems, the true model is unknown (and is not assumed to come from a paramet­

ric family) and one or more approximating parametric families of models are given 

along with strategies for estimating the parameters using data. We are required 

to select a parametric family and a corresponding estimating method (if more than 

one estimation method is considered) that results in an approximating model that is 

closest, in some sense, to the true model. Our decision is based on a set of observed 

data. The model selection methods we develop follow the principles of model selec­

tion based on distances or discrepancies. The Hellinger distance is the discrepancy 

we choose to use and “true best model” is the one among the approximating models 

tha t has the smallest expected squared Hellinger distance.

Two bootstrap-based estimators of the expected squared Hellinger distance, 

B E E H 2 and P E E H 2, are proposed in Chapter 2 and their large sample properties 

were investigated. Limited simulation studies were conducted to examine their small 

sample behavior and we concluded that the performance of the proposed methods 

are satisfactory in the situations examined.

Our model selection strategy was applied to problem of model selection among 

ANOVA models, where typically some of the approximating models are sub-models
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of others. The properties of expected squared Hellinger distance under balanced 

ANOVA model settings where the error terms are independently and identically 

normally distributed with known variance were studied. This led to a specific model 

selection strategy using P E E H 2. Limited simulation studies were carried out to 

evaluate the small sample performance which was deemed satisfactory in the settings 

considered.

In Chapter 5 we applied our model selection method to modeling the p-values 

from microarray data analysis. We considered two different mixture models for mod­

eling the distribution of the p-values for differential expression. The first mixture 

model is one that uses a single Uniform [0,1] density and one or more nonuniform 

Beta densities. The second mixture model is a mixture model with a Uniform [0,1] 

distribution and M  other uniform distributions on disjoint subintervals of [0,1]. 

Here we implement Hellinger distance estimation, instead of the often used method 

of maximum likelihood, in fitting such mixture models. For the Beta mixture model 

we compare B E E H 2 to decide for the number of Beta components. Once the num­

ber of components is determined the parameters associated with these components 

are estimated and the false discovery rate (FDR) for any given significance level 

a  can be computed from the estimated mixture Beta distribution. In the second 

approach with a mixture of uniform densities, we provide an iterative algorithm and 

a bootstrap testing procedure using which one can compute an upper confidence 

bound for the mixing proportion associated with the uniform component. This in 

turn leads to an upper bound on the FDR associated with any prespecified signif­

icance level a  for declaring genes as differentially expressed. We have illustrated 

the application of the procedures by using a published microarray data set down­

loadable from GEO. Simulation studies are also carried out to test the performance
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of the procedures. Finally, we implement the empirical distribution of p-values for 

equally expressed genes proposed by Efron (Efron, 2004) in fitting the mixture Beta 

distribution.

Our proposed model selection method based on estimated expected squared 

Hellinger distance is motivated by general model selection problems and can be ap­

plied to a wide range of specific modeling problems with minor adjustment. In fact, 

our method does not require the typical assumptions such as the true model being 

within the approximating family. Our simulation study shows that the performance 

of our proposed model selection method and procedures is satisfactory.

6.1.1 Future Work

Currently, the distribution of H(f,g§)  is approximated by the bootstrap distri­

bution of H(f,g§»). The computation is challenging and time-consuming with large 

sample sizes. It is necessary to look at the application of other efficient approaches 

in approximating the distribution of H(f,g§). Two examples of such approaches 

that we can consider are the cross-validation method and the jackknife method.

In Chapter 4, we proposed our model selection strategy along with two grouping 

procedures. These grouping methods, which attem pt to identify the group of models 

that are not far away from the one with the smallest E H 2, are heuristic. It remains 

to explore more tools to identify such a group of models.

The application of our model selection method in survival analysis is also an 

interesting area yet to be explored. One attractive property of the Hellinger distance 

is that, unlike the K-L discrepancy, it is not subject to the constraint that the 

approximating distributions must have the same support as the true model. In 

survival analysis, it is not unusual to assume two-parameter Exponential distribution
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m o d e ls  a n d  th u s  th e  a p p ro x im a tin g  d is t r ib u t io n  m a y  h av e  d iffe re n t s u p p o r t  th a n  th e  

underlying true distribution. The Exponential distribution example in Chapter 4 is 

exploratory in this nature and more work on both the theoretical front and practical 

applications is needed. It should also be interesting to look at other non-Normal 

error terms besides the exponential case.

Finally, in this dissertation we considered balanced factorial ANOVA models 

with fixed factors. Expanding our investigations to more general mixed models is 

also a topic for future work.
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