
DISSERTATION

A SYSTEMATIC APPROACH TO TESTING UML DESIGNS

Subm itted by 

Trung T. Dinh-Trong 

Departm ent of Computer Science

In partial fulfillment of the requirements 

for the Degree of Doctor of Philosophy 

Colorado State University 

Fort Collins, Colorado 

Spring 2007

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: 3266387

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3266387 

Copyright 2007 by ProQuest Information and Learning Company. 

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



COLORADO STATE UNIVERSITY

August 14, 2006

WE HEREBY RECOMMEND THAT THE DISSERTATION PREPARED UN

DER OUR SUPERVISION BY TRUNG T. DINH-TRONG ENTITLED A SYSTEM

ATIC APPROACH TO TESTING UML DESIGNS BE ACCEPTED AS FULFILL

ING IN PART REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOS

OPHY.

Committee on Graduate Work

immittee

ommitteelommittee Member: Dr Yashwant K. Malaiya

dmmittee Member: Dr. James M. Bieman

[. A ,Ma £ v \  L U  A a
'ommittee Member: Dr. Chn

cUp-fp
Chuen-mei Fan

Co-Adviser: Dr. Sudipto Ghosh

Adviser: Dr. Robert B. France 

Department/Head: Dr. L. Darrell Whitley

u

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ABSTRACT OF DISSERTATION 

A SYSTEMATIC APPROACH TO TESTING UML DESIGNS

In Model Driven Engineering (MDE) approaches, developers create and refine 

design models from which substantial portions of implementations are generated. 

During refinement, undetected faults in an abstract model can traverse into the refined 

models, and eventually into code. Hence, finding and removing faults in design models 

is essential for MDE approaches to succeed.

This dissertation describes a testing approach to finding faults in design mod

els created using the Unified Modeling Language (UML). Executable forms of UML 

design models are exercised using generated test inputs that provide coverage with 

respect to UML-based coverage criteria. The LTML designs that are tested consist of 

class diagrams, sequence diagrams and activity diagrams.

The contribution of the dissertation includes (1) a test input generation technique, 

(2) an approach to execute design models describing sequential behavior with test 

inputs in order to detect faults, and (3) a set of pilot studies that are carried out to 

explore the fault detection capability of our testing approach.

The test input generation technique involves analyzing design models under test to 

produce test inputs tha t satisfy UML sequence diagram coverage criteria. We defined 

a directed graph structure, named Variable Assignment Graph (VAG), to generate 

test inputs. The VAG combines information from class and sequence diagrams. Paths

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



are selected from the VAG and constraints are identified to traverse the paths. The 

constraints are then solved with a constraint solver.

The model execution technique involves transforming each design under test into 

an executable form, which is exercised with the generated inputs. Failures are re

ported if the observed behavior differs from the expected behavior. We proposed an 

action language, named Java-like Action Language (JAL), th a t supports the UML 

action semantics. We developed a prototype tool, named UMLAnT, th a t performs 

test execution and anim ation of design models.

We performed pilot studies to evaluate the fault detection effectiveness of our 

approach. M utation faults and commonly occurring faults in UML models created 

by students in our software engineering courses were seeded in three design models. 

Ninety percent of the seeded faults were detected using our approach.

Trung T. Dinh-Trong 
Department of Computer Science 
Colorado State University 
Fort Collins, Colorado 80523 
Spring 2007

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ACKNOWLEDGEMENTS

I owe a special note of gratitude to my advisor, Dr. Robert France, and my 

co-advisor, Dr. Sudipto Ghosh, for their invaluable guidance and friendship. They 

patiently supported and encouraged me during every moment, good or bad. My ap

preciation also goes to my advisory committee members, Dr. James Bieman, Dr. Yash- 

want, Malaiya, and Dr. Chuen-mei Fan, and my former advisory committee member, 

Dr. Daniel Turk, for taking the time to give me valuable feedback. I thank the entire 

Computer Science Department staff, especially Carol Calliham, Sharon Van Gorder, 

and our former accountant, Susan Short, for always smiling when they helped me 

with paperwork.

I extend many thanks to my friends and fellow graduate students. I appreciate 

Nilesh Ivawane’s problem solving skills and thank him for his sense of humor when 

we worked together on the prototype tool implementation. I appreciate the time and 

effort that Eunjee Song, Devon Simmonds, and Raghu Reddy spent helping me with 

my pilot studies by seeding faults into many design models.

Thanks are also due to Thanh Nguyen, Hong Pham, Son Nguyen, and Hang 

Nguyen, who helped me apply for admission to Colorado State University and cared 

for me when I came to the LIS. They are like family to me.

I thank my dearest wife, Linh, for her love, patience, companionship, and under

standing. I thank my son, Toon, for being my source of joy. I am grateful to my 

sister, Trang, who always loves me and looks after me. I thank my parents, who

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



always gave priority to  their children’s education and constantly encouraged us to  be 

inquisitive.

Finally, I would like to thank my sponsors for their support. The research was 

supported in part by the National Science Foundation and two IBM Eclipse Innovation 

Grants.

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This dissertation is dedicated to my parents. My father was the first to show me 

a computer and explain to me the meaning of “information technology” . My mother 

sacrificed her career for her children’s well-being.

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

1 Introduction

1.1 P ro b le m ..........................................................................

1.2 Overview of the solution and the research challenges

1.2.1 Scope of the re sea rch .......................................

1.3 Dissertation organization.............................................

2 Background

2.1 Software te s t in g .............................................................

2.2 The Unified Modeling Language................................

2.2.1 Class D iagram ...................................................

2.2.2 Sequence d iagram .............................................

2.2.3 Activity d iagram s.............................................

3 Related Work

3.1 Program test input generation ...................................

3.1.1 LTML-based test input g e n e ra tio n ................

3.1.2 Path-oriented test case generation ................

3.2 Testing UML d esig n s ....................................................

3.3 Model execution.............................................................

4 Approach

4.1 Generating Test In p u ts ................................................

4.2 Generating the Executable Form .............................

4.3 Generating the Testable F o r m ...................................

viii

1

1

2

4

5

6

6
I-?i

9

10

11

12

12

12

14

16

17

20

21

22

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.4 Executing Tests and Detecting F a ilu res ................................................... 23

4.5 Animating the ex ecu tio n ............................................................................  24

5 Generating Design Test Inputs 25

5.1 Generating the Variable Assignment G rap h ............................................  29

5.2 Selecting Complete Paths .......................................................................... 36

5.3 Generating Path C onstraints......................................................................  38

5.4 Solving C onstra in ts......................................................................................  41

6 Java-Like Action Language 45

6.1 An overview of JAL s ta te m e n ts ................................................................ 46

6.2 JAL control sta tem en ts ................................................................................ 47

6.3 JAL single statement and e x p re ss io n ......................................................  48

6.4 Compound s ta te m e n ts ................................................................................  51

7 Test Execution 53

7.1 Generating the E D U T ................................................................................  53

7.1.1 Transforming class diagrams into EDUT c o d e .......................... 54

7.1.2 Generating the TFactory class ....................................................... 58

7.1.3 Generating EDUT  method bodies from JAL specifications . . 58

7.2 Generating the T D U T ................................................................................  61

7.2.1 Generating code to check the initialization of variables . . . .  63

7.2.2 Generating code to check for existence of target objects . . . .  64

7.2.3 Generating code to validate pre- and po st-co n d itio n s ............. 64

7.2.4 Generating code for automation of test e x e c u tio n ...................  67

7.3 Executing T e s ts ............................................................................................. 69

8 Tool Support 71

8.1 Model specification......................................................................................  72

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8.2 Generation of the testable f o r m ................................................................ 73

8.3 Test execution and failure rep o rtin g .........................................................  77

8.4 Model a n im a tio n .........................................................................................  77

8.5 Testing U M L A nT .........................................................................................  79

9 Pilot Studies 81

9.1 Test input generation ...................................................................................  83

9.2 Test execution resu lts ...................................................................................  86

9.3 D iscussion......................................................................................................  88

10 Conclusions and Future Work 89

10.1 Summary of the contribution......................................................................  89

10.2 D iscussion......................................................................................................  90

10.3 Future w o rk ...................................................................................................  93

A Java like Action Language Specification, Version 1.1 94

A .l In troduction ...................................................................................................  94

A.2 G ra m m a r ......................................................................................................  94

A.3 JAL s y n t a x ...................................................................................................  96

A.3.1 Id en tifie rs ..........................................................................................  96

A.3.2 K ey w o rd s ..........................................................................................  96

A.3.3 Primitive and Pre-defined T ypes...................................................  97

A.3.4 Condition s ta tem en ts ....................................................................... 97

A.3.5 Loop statements .............................................................................  97

A.3.6 Atomic a c t i o n s ................................................................................  98

A.3.6.1 Create object expression.................................................  98

A.3.6.2 Destroy object statement .............................................. 99

A.3.6.3 Read link expressions ....................................................  99

A.3.6.4 Create link statement ....................................................  100

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A. 3.6.5 Delete link sta tem en t....................................................... 101

A.3.6.6 Call operation expression .............................................  102

A.3.6.7 Return s ta tem en t.............................................................  103

A.3.6.8 Read attribute ex p ress io n .............................................  103

A.3.6.9 Write attribute s ta te m e n t .............................................  104

A.3.6.10 Calculation expression ...................................................  105

A.3.6.11 Accessing variab les .......................................................... 106

A.3.7 Compound s ta tem en t....................................................................... 106

B UMLAnT User Guide 107

B.l Creating a DUT  ......................................................................................... 108

B.2 Generating T D U T .....................................................................................  110

B.3 Writing test c a se s ........................................................................................  I l l

B.4 Launching the test r u n n e r ......................................................................... 112

B.5 Running test c a s e s .....................................................................................  113

B.6 Animating the ex ecu tio n ............................................................................ 114

References 115

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF TABLES

5.1 Variables Defining the Start Configuration for the Path 0-1-2-3-5-10. . . 39

7.1 Rules to transform JAL creation expressions and destruction statements

into J a v a ................................................................................................. 60

9.1 Sizes of systems under test..........................................................................  81

9.2 Number of test cases generated from the models to satisfy the criteria. . 84

9.3 Fault detection data.....................................................................................  87

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF FIGURES

4.1 Test Approach.......................................................................................................

5.1 Test Input Generation Process...........................................................................

5.2 UML Design Model for Product-Catalog Management.................................

5.3 A VAG Example....................................................................................................

5.4 Transformation Rule for Sequence Diagram Loop Structures......................

5.5 The Constraints for the Path 0-1-2-3-5-10.......................................................

5.6 A Part of the Constraint for the Path 0-1-2-3-5-10 in Alloy Language. . .

5.7 Start Configuration for the Path 0-1-2-3-5-10.................................................

6.1 The Product-Catalog System: addProduct JAL Specification...................

6.2 ReplyAction in UML 2 .0 ...................................................................................

6.3 Example of Combination of Atomic Actions in UML 2 . 0 ..........................

7.1 A template DITT class d ia g ra m .......................................................................

7.2 The EDUT  TObject class generated from a class diagram..........................

7.3 The EDUT C l class..............................................................................................

7.4 The EDLIT ClCollection class............................................................................

7.5 A TFactory class...................................................................................................

7.6 EDUT generated from addProduct JAL Specification................................

7.7 Test Execution Packages......................................................................................

7.8 The TDLTT code generated from an attribute.................................................

7.9 The TFactory class with code to interact with USE......................................

xiii

20

26

28

29

36

40

42

44

46

48

52

54

55

56

57

59

61

62

64

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7.10 The _set_A() method that has code inserted to interact with USE.............  67

7.11 EDUT generated from addProduct JAL Specification................................  68

7.12 Sample Test Case..................................................................................................  69

8.1 UMLAnT Architecture......................................................................................... 71

8.2 The Design Class Diagram of the Model Managem,ent Sub-System. . . .  72

8.3 UMLAnT Input Screen........................................................................................  73

8.4 The Design Class Diagram of the ED U T/TD U T Generator Sub-System. 74

8.5 UMLAnT Classes tha t Play the Roles of Elements in the Visitor pattern. 75

8.6 Sequence diagram for transforming a class into TDUT................................. 76

8.7 LTMLAnt Animation Screen................................................................................. 78

9.1 Relationship between Path Length and Constraint Size...............................  85

10.1 A modeling process that includes model testing.............................................  93

A .l Create Object Action Meta-Class Diagram [56].............................................. 98

A.2 Destroy Object Action Meta-Class Diagram [56]............................................ 99

A.3 Read Link Action Meta-Class Diagram [56]....................................................  99

A.4 Create Link Action Meta-Class Diagram [56].................................................. 100

A.5 Destroy Link Action Meta-Class Diagram [56]................................................ 101

A.6 Call Operation Action Meta-Class Diagram [56]............................................  102

A.7 Reply Action..........................................................................................................  103

A.8 Read Structural Feature Action Meta-Class Diagram [56]............................ 104

A.9 Write Structural Feature Actions Meta-Class Diagram [56].........................  104

A.10 Value Specification Actions Meta-Class Diagram [56]...................................  105

B .l DUT  Class Diagram of the Product Management System...........................  107

B.2 OCL Constraint for the “Demo” project..........................................................  109

B.3 JAL segment for P ro d u ctC a ta lo g :: addCategoryO .....................................  109

xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



B.4 JAL segment for Category:: se tID () ..............................................................  110

B.5 JAL segment for Category: :getID ()..............................................................  110

B.6 JAL segment for ProductCatalog: :addCategoryO ..................................... 110

B.7 JAL segment for ProductCatalog: :addProductO ....................................... 110

B.8 JAL segment for Product:: se t ID ( ) ................................................................  110

B.9 JAL segment for ProductCatalog: : f indCategoryO ..................................  I l l

B.10 The Code for the “testOne” method................................................................ 112

xv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 1 

Introduction

1.1 Problem

Model Driven Engineering (MDE) approaches tackle the complexity of developing 

large software systems by raising the level of abstraction at which developers build 

software. In MDE approaches, developers focus on creating and evolving design mod

els. Abstract logical models (e.g., Platform Independent Models) are systematically 

transformed to detailed design models (e.g., Platform Specific Models) [54]. Even

tually, substantial portions of implementations are automatically generated from the 

models. If a design model contains faults tha t are not removed before transformation, 

those faults are passed to the generated code where they can be more expensive to 

remove. For MDE approaches to succeed, practical techniques for validating design 

models are needed.

MDE approaches require tha t models be precisely described using a modeling lan

guage. The Unified Modeling Language (UML) [56] is an OMG standard language for 

modeling object-oriented systems. Software developers can use the UML to describe 

designs at different levels of abstraction, from conceptual to detailed design [8]. UML 

design models consist of a variety of diagrams. Each diagram describes a view of the 

design. For example, a class diagram describes a structural view and sequence and 

activity diagrams describe behavioral views.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UML designs are typically evaluated using walkthroughs, inspections, and other 

types of design review techniques that are largely manual. Reviewers need to manually 

track and relate a large number of concepts across various diagrams. These manual 

tasks can quickly become tedious when the designs are complex, which is the case in 

many MDE projects.

1.2 Overview of the solution and the research chal
lenges

This dissertation describes an alternative, systematic and automatable approach to 

validating design models. Executable forms of UML design models consisting of 

class, interaction, and activity models are exercised with test inputs. During test 

execution, the states of the system under test and the communication between objects 

are visualized using UML sequence and object diagrams.

This dissertation describes an approach to derive test inputs from design models, 

an approach to execute the tests on the design models, and an approach to animate 

the execution. The test input generation technique aims at deriving test inputs that 

satisfy a set of predefined test adequacy criteria. The test input generation requires 

both structural and behavioral information that is modeled in the designs under test. 

This information is scattered across different views of UML design models. For exam

ple, class models specify structural aspects of the modeled system, sequence models 

specify the interactions between objects, and operation pre- and post-conditions cap

ture the effects of the operations. Hence, the test input generation requires analyzing 

different views of the design models. To ease the analyzing process, we developed a 

mechanism that integrates information from different views of a model into one view.

Executing a UML design model and animating the execution require tha t sys

tem behaviors be specified formally. In UML models, behaviors are specified using 

sequence diagrams, statecharts and activity diagrams. A sequence diagram only cap-

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



tures the interactions between objects. W hat happens inside an object (e.g., the 

modification of attribute values) is not described in a sequence diagrams. Statecharts 

and activity diagrams can provide more complete descriptions of behavior. However, 

both statechart and activity diagram views require a language to specify the actions 

that take place in states and activities. The UML 2.0 standard [56] includes the 

action semantics for this purpose but does not provide a surface notation for action 

languages. This dissertation provides an action language, called Java-like Action 

Language (JAL), which is based on the LTML action semantics.

Test results are externally visible outputs generated during testing. Expected 

results, determined by oracles, are externally visible outputs that are generated by a 

correct system. If test results differ from expected results, then the test has detected 

a failure. The approach can also detect failures caused by inconsistencies across the 

UML diagrams in the model. For example, the behavior described by an activity 

diagram may produce a configuration that violates the constraints given in the class 

diagram. To detect such a failure, test execution is observed in terms of the actions 

performed by the system under test and the sequence of states that the execution 

passes through.

We also present a technique to provide support for visualizing the behavior of 

models during testing. The execution of a model is visualized using two types of 

views — object and sequence diagrams. The views get updated when developers 

step through the execution of operations. The animated object diagrams show the 

creation and deletion of objects and links, as well as the modification of attribute 

values. The animated sequence diagrams show the messages exchanged between ob

jects during execution. Novice modelers and students learning the UML can use the 

animation technique to get visual feedback that can be used to help them identify 

problems with the modeled behaviors. Software developers in industry can use the 

approach for rigorously testing their models before the models are transformed into

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



code. Animation can also be used to help a developer understand design models that 

are created by other developers.

We implemented the test execution and visualization technique in a prototype tool 

called UMLAnT. It is an Eclipse plugin and works in conjunction with the Eclipse 

Modeling Framework (EMF).

We conducted pilot studies to investigate the effectiveness of our testing approach. 

The studies used a set of fault types obtained from an analysis of design models 

developed by students in senior and graduate level software engineering courses at 

Colorado State University, and from mutation analysis of UML designs [14]. The 

studies demonstrate the cost of testing in terms of the number of test inputs and the 

size of each input, and identify the fault types that are likely to be found using this 

testing technique.

1.2.1 Scope o f the research

The work described in this dissertation focuses on validating UML design models. 

Testing code implementations is outside the scope of the dissertation.

The tesing technique is used to detect semantic faults in well-formed UML design 

models. Well-formedness checks can be performed by existing L1ML drawing tools 

(e.g. Together [9] and Rational Rose [28]), and hence, is outside the scope of the 

dissertation.

In our approach, a UML design model under test consists of class diagrams in 

which each operation is associated with an activity diagram describing the operation’s 

behavior, and sequence diagrams that describe the scenarios to be tested. Specifica

tions for the operations that is called in the sequence diagrams must also be available 

to the testers. The specifications consist of pre- and post-conditions expressed in the 

OCL. These specifications are used to produce test inputs and to determine whether

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



executed operations satisfy their specifications. OCL is also used to describe class 

invariants.

The design models under test are assumed to describe sequential behaviors only. 

This assumption guarantees that the state of the system under test is always known 

when an execution of an atomic action is completed.

1.3 D issertation organization

The rest of the dissertation is organized as follows:

• Chapter 2 presents background on software testing and UML, and defines the 

terminology that is used in the dissertation.

• Chapter 3 discusses related work in software testing.

• Chapter 4 provides an overview of our approach.

• Chapter 5 describes our technique for generating test inputs from UML design

models.

• Chapter 6 describes JAL.

• Chapter 7 explains our technique for executing design models and detecting test 

failures.

• Chapter 8 presents the design of UMLAnT.

•  Chapter 9 discusses the results of our pilot studies.

• Chapter 10 concludes the dissertation and outlines directions for future work.

• Appendix A describes the JAL grammar and syntax.

• Appendix B is a user’s guide to UMLAnT.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2 

Background

The following sections describe the concepts and principles that are relevant to the 

dissertation. Section 2.1 discusses software testing terminology. Section 2.2 summa

rizes the description of UML diagrams that are used in our approach.

2.1 Software testing

According to Myers [45], testing is the process of executing a program with the intent 

of finding faults. In the testing approach described in this dissertation, testing is 

done by executing the design models. Adrison et al. [2] define a program under test 

as any object that can be executed. Using this definition, executable design models 

can be viewed as programs. We use the same program testing terminology, such as 

test adequacy criteria, test inputs, test oracles, test cases, test drivers, test failures, 

and faults in this dissertation.

A program under test is usually viewed as a representation of a function that maps 

input elements to output elements [2], During testing, testers select input elements, 

determine the expected results, execute the program with the selected inputs, observe 

the actual results, and finally compare the actual results with the observed results. 

The actual results are produced by the program when test inputs are applied to it. 

The expected results specify the outputs tha t the program under test should produce

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



from test inputs. A result is an observable behavior of the program during execution. 

An oracle is a mechanism to  produce expected results.

An automated oracle can make a pass/ fail evaluation. If the expected and actual 

results agree after the execution of each test input, the test is said to pass; otherwise 

it is a failure [6]. A failure indicates tha t there is a fault in the program. A fault 

is a missing or an incorrect component of the program. A single fault can result in 

various failures, and the same failure can be caused by different faults.

It is commonly known that testing a program with all possible inputs (exhaustive 

testing) is infeasible. During testing, only a subset, named test input set, of the set of 

all input elements, is chosen to execute the program. The test input set must be “large 

enough to span the domain” [2], yet small enough that the testing process can be 

completed within an acceptable timeframe. The selection of a test input set is usually 

guided by test adequacy criteria. Weyuker [61] defines a test adequacy criterion as 

a rule to determine when testing may terminate. For example, the All statem,ent 

coverage criterion states tha t testing can terminate when all program statements are 

executed at least once during testing. A test adequacy criterion is used as a guideline 

to select a finite set of test inputs. During testing, new test inputs are generated until 

the selected test adequacy criterion is satisfied.

If a program under test is part of a larger system, executing the program during 

testing usually requires auxiliary software, such as drivers and stubs [2]. A driver 

sets up an appropriate environment and invokes functions of the program using the 

selected input sets. In our approach, test drivers are used to bring a system into a 

particular state before testing begins, and to evaluate the test results.

2.2 The Unified M odeling Language

UML 2.0 is specified using two complementary specifications: infrastructure [55] and 

superstructure [56]. The infrastructure defines the foundation language constructs

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



required for UML 2.0. The superstructure defines the user level constructs. As 

in the previous versions, UML 2.0 is defined by (1) a metamodel consisting of an 

abstract syntax, (2) a set of well-formedness rules and (3) an informally described 

semantics. The abstract syntax is defined by UML class diagrams supported by a 

natural language description. The well-formedness rules are expressed in the Object 

Constraint Language (OCL), a language for expressing side-effect free constraints [57]. 

The semantics are informally described using natural language.

UML defines various graphical diagrams including use cases, class diagrams, stat- 

echarts, activity diagrams, sequence diagrams, component diagrams, and deployment 

diagrams. To be tested, a model needs to be executable. An executable UML model 

needs at least a class model tha t describes the structural aspects of the system under 

test, and another model, such as a state model or an activity model, tha t describes 

the behavioral aspects of the system. Researchers have developed several state-based 

testing approaches [12, 48]. Statecharts are useful modeling tools in certain domains, 

such as embedded software development, but may not be suitable for use in other 

domains [37]. For example, it can be more convenient to model a library check- 

in/check-out, system using class, sequence, and activity models instead of statecharts. 

Hence, there is a need for an approach to testing design models tha t contain diagrams 

other than statecharts.

We require that the models under test contain class diagrams that specify the 

structural aspects of the system under test. OCL is used to describe class invari

ants and operation pre- and post-conditions. Our approach aims at testing different 

scenarios, several of which may be specified by one sequence diagram. Hence in our 

approach, the models under test must contain sequence diagrams for the scenarios 

tha t will be tested. Sequence diagrams only capture the interactions between objects, 

and cannot be used to specify what happens inside each object (e.g., the modification

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of attribute values). Our approach requires that the behavior of every operation in 

the class model be specified using an activity model.

2.2.1 Class Diagram

A class diagram captures information about classes and interfaces using attributes 

and operations, as well as the relationships between classes using associations and 

generalizations. A class characterizes a set of objects that share the same set of 

features, constraints, and semantics. An instance of a class is called an object. The 

class features include attributes and operations. The attributes of a class specify 

its data structure, and are represented by instances of properties that are owned 

by the class. Some of the attributes may represent the navigable ends of binary 

associations. The operations represent the common behavior of the class. A class 

diagram characterizes the set of valid object configurations.

A property has a name, which is unique among property names in the same class, 

and a type. A property relates an instance of the class to a value or a collection 

of values of the type of the property. A property can also have an optional initial 

value. Whenever an instance of a class is created, the properties are assigned with the 

corresponding initial values. A property can have a multiplicity constraint, specifying 

the bounds of the cardinality of the collection of values that can be associated with 

the property.

An operation specifies a method tha t every instance of the class can be requested 

to execute. It has a name, a return type, and an optional list of arguments. Each 

argument has a name and a type.

A binary association represents a relationship between two classifiers. It models 

how peer instances of classifiers relate to each other. Each end of an association 

connects to a classifier via a property. An end property of an association can belong 

to the set of owned attributes of the end class, indicating that the association is

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



navigable from the opposite ends. Otherwise, the association is not navigable from 

the opposite ends.

A generalization structure defines the relationship between a more general super

class and a more specific sub-class that is fully consistent with the super-class but 

has more properties. A sub-class defines a subset of the instances of the super-class. 

Any instance of the sub-class is also an instance of the super-class.

OCL can be used in the class diagram to specify class invariants, as well as pre- 

and post- conditions of operations. A pre-condition is a constraint on the state of the 

modeled system when the operation is invoked. A post-condition is the constraint on 

the state of the system when the operation is complete.

2.2.2 Sequence diagram

A sequence diagram models system behavior by specifying how objects interact to 

complete a particular task. An interaction is expressed by messages between lifelines. 

A lifeline is a participant in an interaction. A lifeline represents a class instance.

In this dissertation, a message can represent a method invocation, a reply message, 

and creation or deletion of a class instance. When a message representing a method 

invocation is sent, the corresponding operation is executed. When the execution of 

the invoked operation is complete, a reply message is sent from the called lifeline to 

the calling lifeline. Upon receiving the reply message, the calling lifeline will proceed.

A set of messages can be grouped into a CombineFragment. This dissertation 

restricts a CombineFragment to be either a Loop or an A lte rn a tiv e s  fragment. A 

loop fragment specifies an iteration of messages. An alternatives fragment represents 

conditional interactions.

In our approach, each sequence diagram models the interaction between objects 

wThen a system operation is executed. A system operation is an operation of the

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



system th a t executes in response to  an external input event generated by an actor to 

the system [40].

2.2.3 A ctiv ity  diagrams

In this dissertation, activity diagTams are used to describe behavior needed to imple

ment operation specifications. A formal language is needed to specify the actions that 

take place in activities described by activity diagrams. The UML 2.0 standard [56] 

includes the action semantics for this purpose, but does not provide a standard sur

face notation for action languages. This dissertation includes the description of a 

Java-like Action Language in Chapter 7.

An activity diagram models behavior by specifying the sequence of actions and 

the conditions for coordinating actions. An action is a fundamental unit of behavior 

specification. It takes a set of inputs and converts them into a set of outputs (both 

sets can be empty). Some actions also modify the state of the system in which the 

action executes. The following types of actions are included in the activity diagrams 

used in our approach: call operation actions, calculation actions, create and destroy 

object actions, create and destroy link actions, read and write link actions, and read 

and write variable actions.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 3 

Related Work

In this chapter, we discuss related work in software testing. We summarize existing 

work on generating inputs for testing programs in Section 3.1. Work on validating 

design models is discussed in Section 3.2. Testing UML designs requires a mecha

nism to execute the design models. Section 3.3 discusses the status of various UML 

execution techniques.

3.1 Program test input generation

Test inputs for programs can be derived either from the specifications (black-box 

testing) or from the structure of the programs (white-box testing). Existing black- 

box testing techniques that generate test inputs from UML models are discussed in 

Section 3.1.1. Path-oriented test case generation, a widely used white box-testing 

technique, is reviewed in Section 3.1.2.

3.1.1 UM L-based test input generation

Offutt and Abdurazik [48] describe how to generate test inputs from a restricted form 

of UML state-charts and defined four levels of test coverage: transition coverage, full 

predicate coverage, transition-pair coverage and complete sequence. These coverage 

levels require test sets to cover every transition, every clause of transition predicates, 

every pair of transitions and a complete sequence of transitions, respectively. The

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



authors also provide algorithms to generate test input sets that satisfy these cov

erage criteria. A limitation of the approach is that it supports only simple states, 

enable transitions and change events. Briand et al. [12] enhance the test generation 

approach to support call and signal events, as well as five types of actions: call, 

send, assignment, create, and destroy. In this approach, the transition guards, and 

pre- and post-conditions are expressed using the OCL. These OCL expressions are 

normalized and then analyzed to provide guidance to generate test inputs. Kim et 

al. [34] describe an approach to generate tests from UML state-charts tha t contain 

composite states. LTML state-charts are transformed into extended finite state ma

chines (EFSM). Two sets of coverage criteria were defined based on control flow and 

data flow on the generated EFSMs.

Continuing their work on generating tests from design specifications, Abdurazik 

and Offutt [1] describe a set of test requirements based on collaboration diagrams for 

both static and dynamic evaluation. Model artifacts that must be evaluated during 

static checking are classifier roles, collaborating pairs, messages and local variable 

definition-usage link pairs. These artifacts are described using the definition of link 

types where objects are created, defined, used, and destroyed. Abdurazik and Offutt 

also define a test criterion which requires tha t all messages in collaboration diagrams 

must be sent at least once. However, the authors do not discuss how to generate test 

inputs that satisfy the criterion.

Scheetz et al. [52] describe an approach to generate system test inputs from UML 

class diagrams. The class diagrams are restricted to contain only classes, associations 

and specification structures. Scheetz et al. first identify test objectives for every single 

class. A test objective describes a set of objects in terms of the states they can take 

on. Test objectives are derived from defining desired states of class instances after the 

test is executed. A state of an object is defined based on its attribute values and links 

to other objects. Test objectives for a complete class diagram can be aggregated from

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the test objectives for each individual class specified in the class diagram. Finally, 

an Al planner is used to convert the test objectives into test input sets. The planner 

identifies a test input as a sequence of actions tha t bring the system from an initial 

state to a desired goal state.

Instantiating every possible number of instances of each class, and aggregating 

every possible test objective of every class in a class diagram may make the total 

number of class diagram level test objectives large. Scheetz et al. [52] did not describe 

how to select a desirable subset of test objectives for class diagrams.

Briand and Labiche [13] propose the TOTEM system test methodology. Test 

requirements are derived from UML analysis artifacts such as use cases, their corre

sponding sequence and collaboration diagrams, class diagrams and OCL expressions 

across these artifacts. Test cases, test oracles, and test drivers are then developed 

using these test requirements and more detailed design information. Currently, the 

authors focus on deriving test requirements from use cases and sequence diagrams 

only. The other tasks, such as generating test requirement from class diagrams and 

generating test cases, test oracle and test drivers are to be addressed in future work.

The approaches to generate test inputs from class and state models (see Briand 

et al. [12], Kim et al. [34], Offutt et al. [48], and Scheetz et al [52]) can be extended 

to complement our approach, which derives test inputs that satisfy interaction model 

based criteria. The approaches presented by Offutt et al. [1] and Briand et al. [13] de

scribe test objectives that are derived from different design model artifacts. However, 

they do not describe how test inputs are generated from these objectives.

3.1.2 Path-oriented test case generation

Path-oriented test case generation involves selecting a set of execution paths and 

deriving program inputs that execute the paths. The execution paths are selected to 

satisfy a certain test adequacy criterion. Two types of methods have been proposed to

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



identify program inputs that cover a selected path: execution-oriented and symbolic 

execution based test data generation.

Execution-based test generation [17, 25, 38] involves analyzing the execution of 

programs with actual inputs and iteratively refining the input values until a desired 

path is traversed. The program is first executed with an arbitrary input, and the 

program execution flow is monitored. When an undesired branch is executed, function 

minimization search algorithms [17, 38] are used to find an input value so that the 

desired branch is traversed. An undesired branch is a branch tha t does not belong 

to the chosen path. Gupta et al. [25] use an iterative relaxation method to replace 

the minimization search algorithm. If the branch conditions on a path are non-linear 

functions, the relaxation method can find a desired input faster than the minimization 

algorithms.

Execution-based approaches require executing programs under test in order to find 

test inputs. These approaches cannot be applied to our work, which aims at deriving 

test inputs from the combination of class and interaction diagrams. Interaction mod

els only specify the interaction between objects and do not have enough information 

to be executable. Class models specify behaviors declaratively using OCL pre- and 

post-conditions. To date, there is no approach to execute a model that only contains 

class and sequence diagrams.

Boyer et al. [10] proposed a technique to find inputs to cover a given path by 

executing tha t path using the symbolic execution technique [35, 36]. Programs are 

executed using symbolic values of variables instead of actual values. As a result, 

every branch predicate along the path is expressed in terms of the input symbols. 

Symbolic evaluation is used to generate a set of equalities and inequalities of the 

program input values, which must be satisfied for the path to be traversed. Several 

techniques, such as Benders [4] algorithm, Gomory [24] algorithm, Tsang’s consistency 

algorithm [59], and Hentenryck’s interval programming method [27] can be used to

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



solve the inequalities and find a desired input solution. Nguyen and Deville [58] 

extend the symbolic execution approach to deal with arrays and procedure calls.

Current symbolic execution based test generation approaches are only applicable 

for programs with primitive type variables. These techniques lack a mechanism to 

model objects and links, which are usually present in branch predicates of a UML 

design model. Hence, current symbolic execution approaches cannot be directly used 

to derive inputs in our approach. In our approach, we symbolically represent object 

configurations using sets and relations.

3.2 Testing UML designs

Andrews et al. [3] define two sets of LIML design test adequacy criteria tha t are based 

on coverage of elements of class diagrams and collaboration diagrams. The first set is 

defined based on the structural aspects of the system, and consists of Association-End 

Multiplicity Criterion, Generalization Criterion and Class Attribute Criterion. These 

criteria were based on category-partition and boundary value analysis technique [49].

The second set of design test adequacy criteria is based on control flow, and is 

defined for collaboration diagrams [3]. A collaboration diagram based test adequacy 

criterion defines a set of collaboration diagram elements that need to be covered 

during testing:

• The Condition coverage (Cond) criterion: requires that every condition in the 

collaboration diagrams must be evaluated to both TRUE and FALSE at least once.

• The Each Message on Link (EML) criterion: requires that each message on a 

link connecting two objects in the collaboration diagram must be sent at least 

once.

• The All Message Paths (AMP) criterion: requires that every possible message 

path in the collaboration diagrams must be exercised. A message path is a 

sequence of messages tha t are sent when a collaboration diagram is executed.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Ghosh et al. [21] describe a testing approach that utilizes the above criteria to 

generate test inputs. The authors also demonstrate in a case study tha t test inputs 

tend to cover multiple coverage elements. The authors, however, do not provide a 

systematic approach to derive test inputs.

Pilskalns et al. [50] propose a graph-based approach to combine the information 

from structural and behavioral diagrams (class diagrams and sequence diagrams). In 

this approach, each sequence diagram is transformed into an Object-Method Directed 

Acyclic Graph (OMDAG). Each node in an OMDAG represents a method call or a 

return action, as well as the class of the object that initiates the call. The directed 

arcs represent control flow. OMDAGs can be used to generate the execution paths in 

the sequence diagram that satisfy different test adequacy criteria, such as Cond, EML, 

and AMP. The sequence of method calls corresponding to each test case is generated 

and recorded in a table called Object-Method Execution Table (OMET), which is 

used to track test execution. The authors propose a framework tha t generates test 

inputs and executes tests. However, the framework is described at a high level and 

the details need to be worked out before it can be validated.

Gogolla et al. [23] present an approach to validate UML class diagrams and OCL 

models using snapshots. A snapshot is an object diagram that represents system 

states at a certain time with objects, attribute values, and links. Test cases are used 

to demonstrate that snapshots can be constructed to obey constraints in the model. 

Also, invariants can be dynamically loaded and checked against the snapshots. Our 

approach utilizes the LISE tool to (1) check if the runtime state of a system under test 

conforms to the specification, and (2) validate operation pre- and post-conditions.

3.3 M odel execution

A number of UML design execution techniques exist. Riehle et al. [51] propose an 

architecture of a LIML virtual machine. The LIML virtual machine has UML as its

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



instruction set and the memory management facilities of an existing Java Virtual 

Machine as its memory model. The advantage of such an approach is tha t UML 

models can be directly executed without being transformed into any other format 

(such as a program in code generation approach). There are currently no publicly 

available virtual machines that cover the UML diagrams we are targeting in our work, 

and thus, we had to investigate other approaches to executing design models.

Mellor and Balcer [42] present an action language to make LIML executable. They 

use domain-specific model compilers to execute the UML models. Their technique 

is part of a system development approach based on the Model Driven Architecture. 

There are also industrial tools that support model execution using action semantic 

languages. BridgePoint [43] uses BridgePoint Action Language (AL), Ivabira [31] uses 

Kabira Action Semantics (AS), and iUML [33] uses Action Semantic Language (ASL). 

All of the above languages model software behavior using state machines. They, as 

well as our action language, JAL, are based on the same set of semantics, which is 

described in the UML 2.0 specification. However, our language has a syntax that is 

similar to Java. Thus, a developer who is familiar with Java will find it easy to learn 

JAL.

Another approach for executing LIML designs is code generation, where a pro

gram (e.g., a Java program) is generated from a given UML design model. Assuming 

tha t the program represents exactly the information in the design model, executing 

the code is the same as executing the model. For execution purposes, both struc

tural and behavioral aspects (modeled using interaction diagram, activity diagram 

or statechart) of the model need to be transformed into code. Harel and Gery [26] 

describe how to generate code from UML models that consist of class diagrams and 

state charts. Engels et al. [16] present a set of rules to transform LIML class diagrams 

and collaboration diagrams into code. Extending this idea, Dinh-Trong [15] defines 

a set of rules to generate code from a UML models consisting of class, collaboration

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and activity diagrams. Dinh-Trong [15] also extends the UML notation for the col

laboration diagram, allowing one to model condition and iteration structures that are 

applied to a set of multiple messages.

The FUJABA tool [46] translates UML models into Java programs and vice versa. 

FUJABA represents UML models using class diagram notation and a new notation 

called the Story Diagram, which is a combination of the Statechart with the Col

laboration Diagram. The Collaboration Diagram, however, is represented using a 

of non-UML notation, which is based on a rewrite-graph technique. There are also 

industrial tools that can generate code from both class diagrams and collaboration 

diagrams, such as Together [9].

To use any of the above approaches in our work would require extending the code 

generation mechanisms to support generation of the test infrastructure. We chose to 

extend the approach used by Dinh-Trong because we had access to code generation 

mechanisms.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 4 

Approach

Test design model

UML
DUT

Test
result

Oracle

Animated
diagrams

-►I fExecute! I -  
j^ p ith e te sn * ^

Test
inputs

Testable
DUT

(TDUT)

Set of test 
adequacy 

criteria

Add test 
scaffolding

Executable
DUT

(EDUT)

Animate
the

.execution.

''Generate' 
executable 

form of 
I DUT

Generate test 
inputs to 

satisfy the 
test adequacy 

criteria

Figure 4.1: Test Approach.

Figure 4.1 summarizes the testing approach. Testing begins when a tester provides 

the UML design model under test, DUT, to the testing system and selects a set of test 

adequacy criteria that were described in Andrews et al. [3]. These criteria are used to 

create test objectives for test input generation and to assess test adequacy once testing 

is completed. The DUT  is first transformed to an executable form, E D U T , and then 

into a testable form, T D U T , that also contains the test infrastructure. Testing is 

performed by executing the T D U T  on the generated test inputs. An oracle defines

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the expected behavior of the system. Test execution is visualized using animated 

object and sequence diagrams.

4.1 Generating Test Inputs

The test case generation technique aims at deriving test inputs that satisfy sequence 

diagram based test adequacy criteria. Originally, these criteria were defined in terms 

of collaboration diagram elements [3]. We restate the criteria for the more popular 

sequence diagrams. A sequence diagram based test adequacy criterion defines a set 

of sequence diagram elements that need to be covered during testing:

1. All Message Coverage (Mesg) criterion: Testing must cause each message in a 

sequence diagram to be sent at least once.

2. Condition Coverage (C'ond) criterion: Testing must cause each condition in each 

decision to evaluate to both TRUE and FALSE.

3. All Message Path Coverage (Path) criterion: Testing must cause each possible 

message path in the sequence diagram to be traversed at least once.

A test input, L, is generated using information from the class model and one 

sequence diagram, sd. The test case t is used to test one of the scenarios that is 

specified by sd. A set of inputs generated from sd is used to test a variety of scenarios 

specified by sd.

A test input is a pair consisting of a start configuration, S. and an operation 

call event with a set of parameter values, P. Before a test is performed, the system 

must be brought to the start configuration, S. The start configuration contains the 

set of objects and links necessary to make the system operation call that starts test 

execution. The system operation takes P  as its arguments.

The generation of test inputs is accomplished by processing a representation, called 

a Variable Assignment Graph (VAG), that describes the conditions under which paths

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



in a sequence diagram are executed. The information found in a VAG is obtained 

from the class diagram and the sequence diagram describing the scenarios that are 

the target of the tests.

4.2 Generating the Executable Form

The testing system transforms the DUT  into an executable form, EDUT, which is a 

program that simulates the behaviors modeled in the DUT. The EDUT  utilizes infor

mation from structural (class diagrams) and dynamic (activity diagrams) descriptions 

of the design to simulate modeled behavior. The EDUT  contains two parts: a static 

structure representing the runtime configuration of the DUT, and a simulation en

gine. The static structure generated from class diagrams can create and maintain 

runtime configurations of the D U T  A configuration contains objects, their attribute 

values, and the links between them. The simulation engine is generated from activity 

models, which are represented using a Java-like Action Language, JAL, specifica

tions. This engine decodes system events, triggering sequences of actions according 

to the information in the activity diagrams, and sends a sequence of signals to the 

EDUT  static structure to update the configuration. The update involves adding and 

removing objects and links, as well as modifying attribute values.

4.3 Generating the Testable Form

The TDUT  is obtained by adding test scaffolding to the EDUT  to automate test 

execution and failure detection. To automate test execution, code is inserted into the 

EDUT  to facilitate the creation of initial configurations and the application of test 

inputs to the TD U T  Failure detection is done by executing a set of checks for failure 

conditions. Code is inserted to performed the following checks:

1. Are the variables in conditions (such as transition guards in activity diagrams) 

initialized?

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. Are the parameters passed in operation calls initialized?

3. Does the target object of an operation call exist?

4. Does the pre-condition hold before operation execution?

5. Does the post-condition hold after operation execution?

6 . Does the configuration produced by the execution of system events conform to 

constraints expressed in class diagrams? The set of constraints includes the 

association-end multiplicity constraints and any other constraints expressed in 

OCL. These constraints must hold after the execution of every system operation 

call.

7. Are the user-defined oracle constraints satisfied?

4.4 Executing Tests and D etecting Failures

Testing is performed by executing the TDUT  with provided test inputs. During test 

execution, the effects of system behaviors modeled by activity diagrams are recorded 

and observed in terms of changes in the system state, where a system state is repre

sented as an object configuration. As the test is executed, the runtime configuration 

is updated to reflect changes in the system state. The changes include creation and 

destruction of objects and links, as well as the modification of object attribute values.

During test execution, the TDUT  detects failures by checking the failure condi

tions described in the previous section. The TDUT  reports a failure if any of the 

above checks return a negative answer. Possible causes for test failures are given 

below:

1. Failing checks 1 - 3  indicates that there may be a fault in the activity diagram. 

Because of the fault, some variable is used before its value is defined.

2. Failing checks 4 or 5, indicates tha t the activity diagrams, the pre-conditions, 

and/or the post-conditions may be faulty.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3. Failing check number 6 indicates that the class diagrams or the activity diagrams 

may be faulty.

4. Failing check number 7 indicates that the design models under test do not 

capture the intended behaviors.

4.5 Anim ating the execution

For animation purposes, an execution observer is used. Whenever there is any change 

in the system configuration or some action is executed, the observer is notified. The 

observer then interacts with a graphical user interface, and the changes are displayed 

to the user with the help of animated object and sequence diagrams. During an

imation, an object diagram shows the current object configuration of the system. 

Sequence diagrams show the interaction between objects during test execution.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5 

Generating D esign Test Inputs

The activity diagram in Figure 5.1 expands on the activity “Generate test inputs” in 

Fi gure 4.1. Information in the class model and a sequence diagram is used to derive a 

directed graph called the Variable Assignment Graph (VAG), which is used to analyze 

execution paths in the sequence diagram. In order to produce test inputs, a VAG  

needs to contain information on (1) the order in which messages are sent, (2) how 

variables are changed when sequence diagram messages are received and handled, and

(3) what objects and links need to exist when each message is sent.

To obtain test inputs that satisfy a sequence diagram (SD) based criterion, we first 

select a set of paths in the VA G  representing execution paths that cover the sequence 

diagram elements referred to by the criterion. For each selected path in a VAG, we 

determine the constraint on the test input that needs to be satisfied to execute the 

path. This constraint is the conjunction of (1) the class diagram invariant, (2) the 

pre-condition of the system operation that initiates the sequence diagram, and (3) the 

path constraint.

The class diagram invariant defines the set of valid configurations. In our ap

proach, a system under test needs to be in a valid configuration both before and after 

the execution of any operation system. Hence, during test input generation, the class 

diagram invariant is taken into consideration to ensure that the generated start con

figuration is valid. We are not concerned about the validity of the final configuration

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Generate 
test input

Test
adequacy

criteria
UML model under test

M/
Integrate UML class and sequence diagrams 

'  ’I VAS I—y
*  ^ ^Select paths^^

[Still have \  /
unselected
path(s) to try] Paths

DL
ints^^—Generate path constraints

c ^
Solve constraint satisfaction problem

[Cannot find 
a solution]

[All the paths 
have been 
selected] [Found a solution]

Cannot find test 
inputs

\ /

Test inputs

Figure 5.1: Test Input Generation Process.

at this point because the final configuration is validated during test execution and it 

plays a role in determining if a test passed or failed.

The UML specification [56] states tha t developers of an operation can assume 

that the pre-condition of the operation is satisfied before the operation is called.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Our approach ensures that the generated start configuration and parameters satisfy 

the pre-condition of the system operation tha t initiates the sequence diagram under 

test. On the other hand, the pre-conditions of the other operations tha t are called 

during the execution of this sequence diagram are not considered during the test input 

generation process. Instead, they are checked during test execution as part of failure 

detection.

A path constraint is the condition on test inputs that is derived from the path using 

symbolic execution [10]. The path constraints, along with the class diagram invariant, 

and the pre-condition of the operation that initiates the sequence diagram under test, 

are solved using a constraint satisfaction solver. If the solver finds a solution, that 

solution is the generated test input. If the solver cannot find a solution, the path is 

discarded and a set of alternative paths is selected to satisfy the chosen criterion. It 

is possible tha t all the paths may have been selected but a set of inputs tha t satisfy 

the criterion cannot be found.

In practice, a sequence diagram, sd, of a system operation may refer to another 

sequence diagram, rd. In such cases, we require that rd be integrated with sd before 

the test inputs for sd are generated. Also, if rd is referred to by two sequence diagrams, 

sdi and sdj, and the test inputs generated from sdj, cover all messages (or conditions) 

in rd, then these elements of rd do not need to be covered again when test inputs are 

generated from sdj.

The rest of this section discusses each activity in the test input generation pro

cess. We illustrate the activities using a UML design model for a product-catalog 

management feature (see Figure 5.2) of an online shopping system, OSHOP. The 

class diagram in Figure 5.2(a) shows that the Products are grouped into various Cat

egories, which are managed using a ProductCatalog. A new Product can be added to 

the system by invoking the operation ProductCatalog: :addProduct(int cID, in t  

pID). The ProductCatalog searches the set of Categories to find an instance that has

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-categories

Category

-ID : int

+ g e tlD (): int

1..5 -category

ProductCatalog

+addProdu<
+findCateg<

;t(in clD : int, in pID : in t ) : B oolean 
>ry(in clD : in t ) : C ategory

0..1

-product

Customer

Shop

Product

-ID : int

+setlD(in p ID : int)

Account

0..1

(a) Class Diagram

SD a P
d c  : P roductC atalog c f i l : C ategory Drd : Product

addProduct(clD , pID)

for(i = 0, tID = - 1; (i < categories.s ize)8 (tl{ ) != clD); i++] J

2: tID = getlD() '
“cat^Jo ries"

3:return  ID j 
^ ------------------------------------ ,

alt J
[tlD=clD] K-----

[tlD!=clD]

alt ) [ctg != null]

9: return true
  _
[ctg = null]

10:return false 

£---------------

. ctg = findCategory(clD):

4: return c[i]

5: return null

6: p rd= crea te

7: setlD(plD)

8: return

(b) Sequence Diagram

Figure 5.2: UML Design Model for Product-Catalog Management.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the attribute, ID, matching the parameter, clD. If such an instance is found, a new 

Product object is created. The attribute, ID, of the new object is assigned the value, 

pID. This scenario is specified in the sequence diagram in Figure 5.2(b).

5.1 Generating the Variable Assignm ent Graph

A number of existing graph-based path selection approaches have been developed to 

generate code test inputs that satisfy control flow based criteria [53], which are similar 

to the test adequacy criteria used in this paper. In order to utilize these existing path 

selection approaches, we transform UML sequence diagrams into directed graphs, 

VAGs. For example, Figure 5.3 shows the VAG that is generated from the sequence 

diagram that is shown in Figure 5.2.

(c) 
i := i+1

( 1)
Condition

ProductCatalog.alllnstance->include(pc)
Control Action 

pc.findCategoryxlD := pc.addProductxID

nI'
(a) 

i := 0
c.findCategoryitlD := -1 j  !{i<pc.categories.size

& pc.findCategory.tID != pc.findCategoryxlD)

(0)
Condition

ProductCatalog.alllnstance->indude(pc) 
Control Action 

pc.addProductxID  := clD 
pc.addProductipID := pID

pc.addProduct:tlD !=pc.addProductxlD

A  kpc.catedories.size
& pc.findCategoryflQ j  pc.findCategoryxlD

(2 )
Condition

Category.alllnstance->include(c[i]) 
pc.categories->indude(c[i])

pc.addProduct:tlD=pb.addProductxlD
V

(4) (5)
Effect Effect
pc.addProductxtg:=c[i] pc.addProduct:ctg:=null

(3)
Effect
pc.findCategory:tlD:=c[i].ID

(6 )
Effect

Product.alllnslance->include(prd)

3z:
(7)

Condition
Product.alllnstance->include(prd) 

Control Action 
prd.setlDipID := pc.addProduct:plD

(8) (9)
Effect — > Effect

prd.lD= prd.setlD:plD@ pre„7 [...]

X  <e>
pc.addProduct:ctg!=nul! \w  pc.addProduct:ctg=null

 — — Cm

Figure 5.3: A VAG Example.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Just like code blocks are represented as nodes in program control flow graphs, 

each sequence diagram message is transformed into a VAG message node (e.g., nodes

(0), . . . ,  (10) in Figure 5.3 are generated from messages 0, . . . ,  10 in Figure 5.2). A 

message node records (1) how variables are changed when the corresponding message 

is received and handled, and (2) the objects and links that need to exist wThen the 

message is sent. A message node is composed of three parts: Condition, Control 

action, and Effect. The Condition part of a node records the links and objects that 

need to exist to enable the sending and receiving of the corresponding message. The 

Control action part records the assignment of the actual parameter values to the 

formal parameters. The Effect part records the changes to variable values after the 

execution of the action associated with the corresponding message. Any part of a 

node can be empty.

A VAG also has control nodes, which are used to represent (1) merging and 

branching of paths, (2) loop control, and (3) termination of execution. For example, in 

Figure 5.3, nodes (d) and (f) represent branching of paths, nodes (e) and (g) represent 

merging of paths, and nodes (b) and (c) represent loop control. A directed edge from 

a node, AA, to a node, Ar2, indicates that the changes recorded in node Ay occur 

before the changes recorded in node V2. An edge can be associated with a predicate, 

which is the branching predicate in the sequence diagrams. In a UML sequence 

diagram, branching predicates include message conditions, conditions associated with 

alternative fragments, and conditions associated with loop fragments. The branch 

predicates in a VAG are shown by text enclosed in square brackets.

In sequence diagrams, different variables in different namespaces can have the 

same name. The namespaces of a variable can be determined based on the message 

in which the variable is used. For example, clD in message 1 in Figure 5.2 is used 

within the context of message 0 , indicating tha t the name refers to the parameter 

clD of the operation p c . addProduct O . On the other hand, clD in the loop condi-

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



tion is used within the context of message 1, indicating that this name now refers to 

the parameter of the operation pc.findCategoryO. When sequence diagram vari

ables are transformed into VAG variables, they need to be fully qualified to avoid 

confusion. For example, the name clD in the sequence diagrams is transformed into 

pc.addProduct:cID in node (1) and pc.findCategory:cID in control node (a) in 

Figure 5.3.

We find test inputs by analyzing the relationship between the variables that are 

used in the sequence diagram. To do this, we need to know how and when variables 

are changed. We store the information about the changes of variables in the VAG 

nodes. Information about the changes in variable values is gathered from sequence 

diagrams and operation pre- and post-conditions:

1. When call operation and create messages are received, actual parameters are 

assigned into formal parameters. This assignment is stored in the Control part 

of the corresponding VAG message nodes. For example, the Control action part 

in node (1) records tha t the value of the actual parameter, p c . addProduct: clD, 

is assigned to the formal parameter pc . f  indCategory: clD. When the call op

eration message does not have any parameter, the Control action, part is empty.

2. When create and destroy messages are received, the associated actions are ex

ecuted, resulting in the creation and destruction of objects and links. When a 

destroy object action is executed, we assume that all the links associated with 

the destroyed object are also destroyed. The changes are stored in the Effect 

part of the corresponding VAG message nodes. For example, message node (6) 

in Figure 5.3 records that object of the class Product, prd, is created as a result 

of the execution of the create action associated with message 6 in Figure 5.2.

3. When a return message is received, the execution of the operation associated 

with the corresponding call operation message is finished, and the effect of the 

operation is completely realized. The effect of the operation, which is specified in

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the operation post-condition, is recorded in the Effect part of the corresponding 

VAG message node. For example, message node (8) records the effect of the 

operation that is executed in response to the receipt of message 7. The effect 

is the assignment of the value of variable, pID, when message 7 is sent to the 

attribute, prd.ID.

Also, when a return message is received, the return value may be assigned into 

the appropriate variable as indicated in the call operation message. This effect 

is also recorded in the Effect part of the message node. For example, message 

node (6) records the assignment of the return value, c [ i ] , to the variable, 

p c .findCategory:tID.

4. The values of loop index variables are changed when execution iterates through 

loops. Information about the changes is stored in VAG control nodes. For 

example, the loop structure in Figure 7 is represented using control nodes (a),

(b), and (c). Node (a) represents the initialization of the loop index variables, i  

and tID. Node (b) represents the evaluation of the loop condition, and node (c) 

represents the modification of index variable i.

The start configuration in a test input tha t exercises an execution path must 

contain a set of objects and links that enable all messages in the path to be sent. In 

our approach, we gather the constraint on the required objects and links that enable 

the sending of each message and store the constraint in the Condition part of the 

corresponding VAG message node. The constraint includes statements specifying the 

existence of the recipient of the message and the link between the sender and the 

receiver objects. For example, the Condition part of node (1) states tha t message 1 

can be sent if object pc exists. The Condition part is empty if the message is a 

return message, because it is known that the recipient object and the link exist. For 

example, the Condition part of node (8) is empty, because message 8 is only sent after 

message 7 is sent, implying that both objects pc and prd, and the link between them

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



exist. The Condition part is also empty if the message is a create message (because 

the recipient object is created after the message is sent) or a call message associated 

with a static (class) operation. For example, see node (6), which corresponds to 

message 6 .

We now describe the rules to generate a VAG  from a class diagram and a sequence 

diagram.

1. The variables in a VAG are used to store object references, attributes values, 

association ends, operation parameters, and values of local variables. VAG 

variable names are fully qualified to avoid naming ambiguities as follows:

•  VAG variables representing objects use the name of the corresponding 

objects in the sequence diagram. For example, c [i]  in node (2) refers to 

object c [i]  in the sequence diagram.

•  Consider a variable, v, tha t is used within a method m() of a class C. If the 

name of v is the same as the name of an attribute of C (or a parameter 

of m), then v represents that attribute (or that operation parameter). For 

example, in message 3, ID represents attribute c [i] . ID. If the name of v, 

is different from the names of all attributes and parameters, then v is a 

local variable.

•  An attribute, or an association end, a, in an object, o, is referred to by 

a variable named o .a  in the VAG. For example, c [ i ] . I D  in node (2) 

represents attribute ID of the object c [ i ] .

•  A parameter, p, of a method, m, in an object, o, is referred to 

by a variable named o.m:p in the VAG. An example is the variable 

pc.findCategoryrcID in node (1) .

•  A local variable, v, in a method, m of an object, o, is referred to by a 

variable named o.m:v in the VAG. An example is the variable 

pc.findCategoryrtID in node (3).

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. Each message, M,;, in the sequence diagram that is sent from an object, os, to 

an object, or, is transformed into a VAG node, N{. If M,; is sent via an instance 

of an association between os and o,., the Condition part of Ar,: records tha t the 

link must exist. In this case, we require tha t A7,: be annotated with the name of 

the corresponding association end at or . For example, message 2 is annotated to 

indicate that it is sent via an instance of an association that has the association 

end, ProductCatalog::categories. This assumption is needed because two 

objects can be linked using different association instances.

If M; is a call or destroy message, the Condition part of JV* also records that or 

must exist. The contents of the other parts of A7,; are produced as follows:

•  If Mi is a create message, the Effect part of Nj records the initialization of 

the attributes of the created object and the definition of the variable that 

holds the object handle. The initial values of attributes are obtained from 

class diagrams.

•  If is a destroy message, the Effect part of AT, records the definition of 

the variable that holds the object handle, which is set to n u ll.

•  If Mi  is a return message of a call message Mj ,  the assignment of the vari

able that holds the return value is stored in the Effect part. The assignment 

is denoted with the notation “:=” to distinguish it from “= ” used in post 

conditions. Also, the Effect part of Ar?: records any other variable updates 

required by the post-condition of the called operation. If a variable, v, 

is expressed in Mj as v@pre, it will be denoted as v@pre-j in the N{ to 

indicate that it refers to the value of v before Mj was sent. For example, 

variable setID:pID in node (8) is renamed to setID:pID@pre-7, because 

it refers to the value of se t  ID :pID in node (7). We assume that there is no 

parameter that has the same name as an attribute in the associated class.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



•  If Mi is a call message, the Control Action part records the assignment of 

the actual parameters to the formal parameters. Actual parameters are 

specified in sequence diagrams while formal parameters are specified in 

class diagrams.

3. If a message, Mj+i, is sent right after the message, Mj, an edge from Ni to 

is created.

4. If a message M, is followed by a condition structure that contains a set of 

predicates, (pi,pa, • • -Pj), and a set of corresponding messages, (Mi+1, . . .  Mi+j), 

(i.e., Mi+k is sent after M,- when pk evaluates to true), then the following actions 

are performed:

• Create a control node, C',:, and an edge from N., to Cj.

•  Create j  edges from the node C,: to Ni+1, . . . ,  Ni+j. Each edge (Nh Ni+k) 

is associated with the predicate, pk.

•  Create a control node Cl and j  edges from 

Ar,:+i, • • • 5 Ni+j to Cl.

•  If the condition structure does not explicitly model an else predicate, create 

an edge from C,: to C\. This edge is associated with the else predicate and 

models the case when pi A p? A - • ■ A pj = False.

5. If a message, Mi, is followed by a loop structure that matches the pattern 

shown in Figure 5.4(a), the loop is transformed into the structure shown in 

Figure 5.4(b).

The above transformation rules are based on two assumptions: (1) all objects in 

the sequence diagram have names, and (2) all return messages are shown. The first 

assumption is needed for the renaming of variables. In practice, an unnamed object 

can always be assigned an arbitrary name. The second assumption allows one to 

determine when the effect of an operation is completely realized.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Loop (pre-loop-action; loop-condition;iteration-action

(a) Loop structure

Jl loop-condition]

[ loop-condition]

(b) Corresponding VAG structure

Figure 5.4: Transformation Rule for Sequence Diagram Loop Structures.

5.2 Selecting Com plete Paths

The goal of the path selection process is to derive a set of complete execution paths 

in a VAG  tha t satisfy a test adequacy criterion. A complete path in a VAG  is a path 

from the node (0) to the termination node.

Suppose we have a set of complete paths, S, such that every node in the VAG  

belongs to a path in S. Since each message in a sequence diagram is transformed into 

a VAG  message node (transformation rule number 2), a test set that covers S  will 

force each message to be sent at least once. Hence, such a test set will satisfy the “All 

Message Coverage” criterion. Similarly, a test set tha t covers a set of complete paths 

tha t include all VAG  edges satisfies the “ Condition coverage” criterion because each 

decision branch in a sequence diagram is transformed into a VA G  edge (transforma

tion rules number 4 and 5). A test set that covers all VAG  complete paths satisfies 

the 11 All Message Paths” criterion.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Finding the set of complete paths tha t covers all VAG  nodes or edges is similar to 

finding paths that cover all statements or branches, respectively, in a program. Re

searchers have proposed various path selection techniques with different goals. Krause 

et al. [39], Miller et al. [44], Ntafos and Hakimi [47], and Wang et al. [60] aim at mini

mizing the number of generated paths. Krause et al. repeatedly choose the next most 

effective path that covers most of the remaining uncovered elements. Miller et al. 

use a heuristic procedure where programs are decomposed into decision-to-decision 

paths, which are then combined to form an optimal path. Ntafos et al. discuss a 

network-theory approach and demonstrated that the size of the minimum path can 

be determined by applying a minimum flow method or a maximum matching method. 

Wang et al. formulate the path selection problem as a zero-one integer programming 

problem and provided a generalized optimal model. Instead of attempting to generate 

a set of minimum paths, Bertolino et al. [5] utilize dominance and implication graphs 

to generate paths that are likely to be feasible. They assume that the smaller the 

number of predicates in a path, the more likely the path is to be feasible.

Any of the above path selection techniques can be used in our approach. A tester 

can use knowledge about the model to choose an appropriate path generation ap

proach. For example, if the tester knows that most of the paths in a model are 

feasible, a technique aiming at a minimal set of complete paths is preferred. Other

wise, it is better to choose a path selection technique that generates complete paths 

tha t are more likely to be feasible.

When a model contains an unbounded loop, the “All Message Paths” criterion 

cannot be satisfied because the number of paths is infinite. In practice, testers may 

set a finite bound or apply Binder’s iteration coverage criterion [7] to relax the 11 All 

Message Paths” criterion. For the iteration coverage criterion, each loop is required 

to be executed zero, one, and a large number of times. In such cases, the technique

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



described by Pilskalns et al. [50] can be used to generate complete paths tha t satisfy 

the l'All Message Paths” criterion.

5.3 Generating Path Constraints

Our path constraint generation technique is based on symbolic execution [10]. In 

existing symbolic execution techniques, the test inputs are either program parameters 

or variables that are defined using input statements. In our approach, inputs are

(1) the parameters of the system operation tha t initiates the sequence diagram, and

(2) the variables that are used to define the start configuration. These variables 

contain values representing class instances, attribute values, or association instances.

Variables that define a start configuration are those that are used without being 

defined (i.e., assigned a value) within the VAG. The values of these variables are set 

before the sequence diagram is executed because the start configuration must exist 

before the corresponding system operation is called. In other words, the values of these 

variables are set when the start configuration is built. Hence, in our approach, we 

consider a variable, v, as an input that defines a start configuration if (1) v represents 

class instances, attribute values, or association instances, and (2) v is used before 

being defined in the VAG.

For example, the inputs for the path 0-1-2-3-5-10 in the VAG shown in Figure 5.3 

include the parameters cID and pID, as well as the variables listed in Table 5.1. The 

first column of the table lists the inputs; the second and the third columns list the 

edges, nodes, and node parts in which the variables are first used. These variables 

are all used before they are defined in the VA G, and thus, they are considered input 

variables.

To facilitate generation of path constraints, each selected path is transformed into 

an equivalent static single assignment (SSA) form [11]. In an SSA form, there is only 

one assignment for each variable. Hence, if twro variables have the same name, they

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 5.1: Variables Defining the Start Configuration for the Path 0-1-2-3-5-10.
Variable First use Compartment
pc
pc.categories.size  
pc.categories, c [i]  
c [ i ] . ID

Node 1 
Edge b-2 
Node 2 
Node 3

Condition  
Branch condition  
Condition  
Effect

contain the same value. The transformation of a path into an SSA form can be clone 

as follows:

1. Whenever a variable, v, is set to a new value, we state that v is redefined. In 

VAGs, all variables in the Effect part, except those that appear in the right hand 

side of an assignment operator ( “:=” ) and those denoted with @pre notations, 

are considered newly defined. Also, the variables appearing in the left hand side 

of the operator (“:=”) in the Control Action parts are also considered newly 

defined. For example, in Figure 5.3, variables p rd . pID and p c . addProduct: c tg  

are redefined in nodes (8) and (4), respectively.

2. For every definition of a variable, v, generate a new SSA variable, v_j, where 

j is a unique number. Replace v with v_j in the definition. For example, the 

SSA form for the node (c) in the path 0-1-2-3-5-10 in Figure 5.3 is shown in 

line 12 in Figure 5.5:

i_ l  = i_0 + 1

3. For every subsequent use of v before v is redefined, replace v with v_j. For 

example, the SSA form for the variable j in the edge that connects nodes (b) 

and (d) in the path 0-1-2-3-5-10 in Figure 5.3 is i_ l as shown in line 13 in 

Figure 5.5.

4. A variable u@pren denotes a value of the variable u at node n of the VAG. Hence 

u@pre,n is replaced by the SSA form of the variable u at node n. For example, 

prd.setID:pID@pre_7 in node (8) refers to the value of prd.setID:pID in

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



node (7). In node (7) of the path 0-1-2-3-4-0-7-8-9, the SSA form of this 

variable is prd.setID:pID_0. Thus, prd.setID:pID@pre_7 is replaced by the 

SSA form, prd.setID:pID_0.

An important property of the SSA form is that all assignments can be treated 

as conditions (i.e., boolean expression). Prom the SSA form of a path, the path 

constraints can be constructed by forming the conjunction of the following conditions:

1. All the conditions in the Condition part.

2. All the branch predicates.

3. All variable definitions in the Control Action and Effect parts.

A part of the constraints for the path 0-1-2-3-5-10 is shown in Figure 5.5.

[1] ProductCatalog.allInstan.ee -> include (pc)
[2] pc.addProduct:cID = cID
[3] pc.addProduct:pID = pID
[4] ProductCatalog.a llln stan ce-> in clu d e(p c)
[5] pc.findC ategory:cID = p c .addProduct:cID
[6] i_0=0
[7] pc.findCategory:tID_0 = -1
[8] i_ 0 < p c .ca teg o r ies .s ize  & pc.findCategory:tID_0 !=

p c .findCategory:cID
[9] C ategory.alllnstance -> include (c [ i_ 0 ])
[10] p c .ca tegories -> include (c [i_ 0 ])
[11] pc.findCategory:tID_l = c [i_ 0 ].ID
[12] i_ l  = i_0 + 1
[13] ! ( i_ l  < p c . ca teg o r ie s . s iz e  & pc.findC ategory:tID _l !=

pc.findC ategory:cID)
[14] pc.addProduct:tID_l != p c . addProduct:cID
[15] p c . addProduct. ctg  = n u ll
[16] pc.addProduct.ctg=null 
[ . . . ]

Figure 5.5: The Constraints for the Path 0-1-2-3-5-10.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5.4 Solving Constraints

The path constraints produced in our test generation approach contain numerical 

symbols (e.g., i_0) as well as symbols tha t represent system configurations (e.g., pc 

and pc.categories). Hence, our constraint satisfaction problem cannot be solved 

by pure numerical constraint solvers (e.g., the e-box consistency based constraint 

solver [58]).

We use the constraint solver, Alloy [29], which allows the specification of con

straints tha t contain integer, set and relation symbols. We use the Alloy constraint 

language to express the full set of constraints tha t contains the path constraints, the 

pre-condition of the system operation and the class diagram invariant. If Alloy finds 

a solution for the full set of constraints, this solution is transformed into a test input.

We extend the rules proposed by Massoni, Gheyi, and Borba [41] to transform 

UML class diagrams and OCL constraints into Alloy. Massoni et al. transformed a 

UML class, c, into an Alloy signature, s, which represent a set. The properties are 

transformed into Alloy relations. An instance, o, of c is transformed into an element, 

e, of the set represented by s.

Figure 5.6 shows a part of the Alloy script tha t is generated from the class diagram 

in Figure 5.2 and the OCL constraint shown in Figure 5.5. The start configuration 

must conform to the constraints specified in the class diagram and the system opera

tion pre-condition. Intermediate configurations tha t are created during test execution 

do not need to conform to these constraints because we assume that the class dia

gram constraints only hold after the execution of a system operation call. We are not 

concerned about the validation of the final configuration at this point because the 

final configuration will be validated during test execution. Hence, in Alloy we only 

specify constraints on entities that play a role in the initial configurations (as shown 

in rule number 2 below). We now describe the rules to transform class diagrams into 

Alloy:

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



/ /L is t  of c la sses
[1 ]s ig  ProductCatalogO

[2]s ig  Category-Q

[3]//The objects in  the i n i t i a l  configuration

[4]//C la ss  ProductCatalog
[5] one s ig  ProductCatalogO in ProductCatalog {
[6] categories: se t  CategoryO
[7] }

//C la ss  Category
[8] s ig  CategoryO {
[9] catalog: one ProductCatalogO,
[10] products: s e t  ProductO,
[11] ID: one Int
[12] >
[.  • •]
/ ^Associations*/
[13] fa c t defineCatalogCategory{
[14] a l l  p c:ProductCatalogOI

a l l  c :CategoryOI(pc in  c .ca ta lo g )
<=>(c in p c .ca tegories)

[15] >
[ . . . ]

/*Path constrain t*/
[16] fa c t path_constraint{
[ . . . ]
[17] c_i_0 in pc.category  
[ . . . ]
[18] >

Figure 5.6: A Part of the Constraint for the Path 0-1-2-3-5-10 in Alloy Language.

1. Each class C is transformed into a signature S. The Alloy signature S  rep

resents the set of all instances of UML class C  that is created during testing. 

For example, lines 1 and 2 in Figure 5.6 specify the set of all objects of class 

ProductC atalog and Category, respectively.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. For each UML class C, an Alloy signature, So, is created to represent instances 

of class C in the initial configuration. For example, segments 4-7 and 8-12 in 

Figure 5.6 specify the instances of ProductC atalog and Category in an initial 

configuration. The rules to create ,S'0 are described in Massoni et al.:

•  A UML class, C, is transformed into an Alloy signature, So-

•  A UML attribute, A, which is restricted to have the type integer, in a class, 

C. is transformed into an Alloy relation, R, which relates the corresponding 

signature S0 to the set Integer. For example, line 11 in Figure 5.5 represents 

the attribute, Category: :ID.

•  Suppose two UML classes, C\ and C2, are transformed into two Alloy 

signatures, Sot and So,, respectively. A UML association, AS between C\ 

and Co is transformed into two Alloy relations, f?i and R 2. R\ and R 2 are 

defined in the signatures, So, and So,, respectively. Even though in general, 

R x and R2 can refer to two different relationships, in this case they describe 

the same relation between S0l and So,. For example, lines 6 and 9 represent 

the association between classes ProductC atalog and Category. We define 

an Alloy fact to indicate tha t i?i and R 2 refer to the same relationship (e.g., 

lines 13-15 in Figure 5.5 specify that P roductC atalogO .categories and 

C ategoryO .catalog refers to the same association):

f a c t  defineAS{

a l l  s i :S_1 I a l l  s2:S_2 I 

( s i  in  s2.R_2)<=>(s2 in  s l .R _ l)

>

The path constraints, the class diagram invariants, and the pre-condition, all rep

resented using OCL, are transformed into Alloy using the rules described in Massoni 

et al. For example, line 17 is an Alloy invariant that is generated from line 10 of the 

OCL constraint shown in Figure 5.5.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Generally, the domain of configurations tha t a constraint solver needs to search 

is infinite. However, Alloy can solve the constraint problems if we restrict the search 

range by setting a maximum total number of objects in the solution. In such cases, 

Alloy will either give us a solution or report tha t there is no valid solution within the 

range.

pH ■ Prnriimt

P C : ProductC atalog clO l: Category

ID : int = 3

Figure 5.7: Start Configuration for the Path 0-1-2-3-5-10.

Alloy solutions are given in terms of sets and relations. We extract a start config

uration from a solution as follows:

1. We first find all the sets, So, that represent the initial configuration. For each 

instance, s, in a set So, we create an instance, c, of class C.

2. If s has a relation, R, tha t represents an attribute, C .A ,  we set the attribute 

value, c.A, according to the value of s.R.

3. Suppose tha t there are two sets, Sj and 52, that represent two classes, Cj and 

Co- There are two elements, si of set Si and s2 of set S2, that represent two 

instances, Ci of Cj and c2 of C2, respectively. If Si and s2 relate to each other 

via two relations itj and i?2, which represent the same association, A S ,  between 

two classes Ci and C j,  we create a link between c* and c.j.

When we use Alloy to solve the constraints for the path 0-1-2-3-5-10 in Figure 5.3 

with the maximum number of objects set to 5, wTe get a solution with (cID, pID) =  

(0, 0), and a start configuration as shown in Figure 5.7.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 6 

Java-Like A ction Language

The Java-like Action Language (JAL) can be used to specify actions within the con

text of a UML activity diagram. In our approach, JAL is used to describe the sequence 

of actions performed by a class instance during the execution of an operation call. The 

following types of actions can be described using JAL: call operation actions, calcula

tion actions, create and destroy object actions, create and destroy link actions, read 

and write link actions, read and write attribute actions, and read and write variable 

actions. Developers can use JAL to express an activity diagram in a textual format. 

The current version of JAL supports only synchronous operation invocations.

JAL provides access to the data described by class diagrams. Identifiers tha t are 

defined in class diagrams, such as class, operation, attribute names, and parameter 

names can be used in a JAL specification.

JAL follows the UML standard’s recommendation for action languages and pro

vides constructs for describing control structures. These are loops and conditions, 

which have the same syntactic structures as the ‘if’ and ‘while’ statements in Java, 

respectively.

Figure 6.1 shows an example of the JAL specification of the operation 

ProductCatalog::addProduct(int cID, in t pID). Class ProductCatalog be

longs to the class diagram that is shown in Figure 5.2. When the operation is called, 

the target object of the call searches for a Category instance, ctg, with the attribute

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



value ctg.ID  that matches the parameter, cID. If such an instance is found, an ob

ject, prd, of the type, Product is created. Object prd is then linked to ctg before 

the operation returns TRUE. If there is no Category instance tha t matches cID, the 

operation returns FALSE.

[1] Category ctg;
[2] ctg = th is.findC ategory(cID );
[3] i f ( c t g  != n u ll){
[4] Product prd;
[5] prd = _create_object.Product();
C6] prd.setlD (pID );
[7] _create_link_product_category(ctg, prd);
[8] return true;
[9] >
[10] e ls e f
[11] return fa lse ;
[12] >

Figure 6.1: The Product-Catalog System: addProduct JAL Specification

The following sections describe the syntax of JAL. For a complete specification of 

JAL, please refer to the Appendix A.

6.1 An overview of JAL statem ents

A JAL segment specifies the sequence of actions executed within an operation. It 

consists of a number of JAL statements. A JAL statement can be a simple statement 

(e.g., an operation call action), a loop, or condition statements. A simple statement 

can be an expression, a single statement, or a compound statement. A simple state

ment ends with a semicolon ( “;”)• An expression represents an action tha t returns a 

value. A simple statement represents an atomic action that does not return a value. 

A compound statement represents a combination of atomic actions.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



JAL statements are composed of keywords, logical and arithmetic operators, and 

identifiers. Identifiers can be defined in class diagrams (e.g., names of classes, at

tributes, associations, operations, and operation parameters) or in JAL segments as 

local variables.

JAL identifiers must conform to the following rules:

• Identifiers are case sensitive.

• Identifiers may only contain the characters [a — ■•], [A — Z], and [0 — 9].

• Identifiers must not start with a numeric character [0-9].

• Identifiers must not be the same as the keywords. JAL has the following key

words: if, when, return, _get_, ..set , _create_object_, _delete_object_, 

_createJink_, _delete_link_, _get_At, _get_Total, _add, and .remove.

A JAL variable needs to be declared before use. A variable can have a pre-defined 

type or be an object handle. JAL currently supports the following pre-defined types: 

integer, real, boolean, String, and collection.

In the following sections, we describe condition and loop statements, simple state

ments and expressions, compound statements, and the use of collections in JAL.

6.2 JAL control statem ents

JAL control statements consist of condition statements and loop statements. Condi

tion statements have the following syntax:

i f  ( boolean_expression) {

<SEQUENCE_0F_STATEMENTS_1>

}

[e lse  {

<SEQUENCE_0F_STATEMENTS_2>

>]

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



If boolean_expression evaluates to true, <SEQUENCE_0F_STATEMENTS_1> is exe

cuted, otherwise, <SEQUENCE_0F_STATEMENTS_2> is executed. The e lse  branch can 

be omitted if <SEQUENCE_0F_STATEMENTS_2> is empty.

Loop statements in JAL have the following syntax:

w h ile( boolean_expression ){

< SEQUEN CE_ OF _ STATEMENTS >

>

The body of the loop, <SEQUENCE_0F_STATEMENTS>, is executed when the loop 

guard, boolean_expression, is true.

6.3 JAL single statem ent and expression

-value

value

-replyToCall
replyValue-replyToCall

+replyValue

-returnlnformation

-returnlnformation

(a) Met,a-Class Diagram 
for ReplyAction

(b) Meta-Object Diagram for 
Line 7 in Figure 1(b)

: CallEvent

: ValuePin

: InputPin

CallEvent

Reply Actlpin InputPin

value : Boolean = true

-v a lu e : Boolean

LiteralBoolean ValueSpecification

ActionlnputPin ValuePin

Figure 6.2: ReplyAction in UML 2.0

A UML atomic action is represented using a JAL single statement or expression. 

For example, line 8 in Figure 6.1 is a JAL return statement, which represents an

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



atomic reply action. A reply action returns a value to tire caller of the previously- 

accepted call action, and terminates the call. Figure 6.2(a) shows the ReplyAction 

and its associated meta-classes as specified in UML 2.0. Reply Action.reply Value de

notes a type of InputPins that contain returned values. ReplyAction.replyToCall 

denotes the trigger specifying the operation whose call is being replied to. Reply

Action.returnlnformation is an InputPin that contains information that is used to 

determine the caller of the previously accepted action call, who receives the return 

values. In JAL, a reply action is represented as a return statement (e.g., re tu rn  

retV alue).

The keyword, re tu rn , represents the return statement and re tV alue is an ex

pression representing the value to be returned. We assume that a reply action never 

returns more than one value. Thus, we can easily transform a return statement into 

a Java return statement, which also returns one value.

The above example illustrates tha t the JAL return statement conforms to the 

semantics of the reply action as specified in the UML standard. A detailed descrip

tion of JAL’s conformance to the other actions is available in the JAL specification 

document (see appendix A).

JAL call operation, computation, read variable, and add variable value actions 

have the same syntax as Java method invocation, computation expression, variable 

expression and variable assignment statements, respectively. An expression is evalu

ated into a value and can be used as a parameter to another expression or a statement. 

A statement does not return a value and thus cannot be used as a parameter. JAL 

also supports the following primitive actions:

• The Create Object Action is represented by the JAL create object expression, 

_create_object_<ClassName>().

The expression instantiates an object of the class with the name, <ClassName>, 

and returns the handle of the newly created object.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



• The Destroy Object Action is represented by the delete object statement, 

_delete_object_(<ob j ectHandle>).

The <objectHandle> is an expression th a t evaluates to the handle of an object,

o. When the statement is executed, o gets destroyed along with all its links. 

However, the owned objects are left unchanged.

• The CreateLinkAction is represented by the create link statement, 

_create_link_<Associat ionName>(<obj ectHandle 1>, <objectHandle2>). 

The statement creates a link, which is an instance of the association with the 

name, <AssociationName>. This link connects two objects which are repre

sented by two expressions, <objectHandlel> and <objectHandle2>.

• The Destroy Link Action is represented by the delete link statement, 

_delete_link_<Associat ionName>(<obj ectHandle 1>, <objectHandle2>). 

The statement delete the link that connects two objects represented by the 

expressions <objectHandlel> and <objectHandle2>. The link is a instance of 

the association with the name, <AssociationName>.

• The ReadLinkAction is represented by an association navigation expression, 

[ObjectHandle. ] <AssociationEndName>.

This expression evaluates into a read-only collection of objects tha t as

sociate with the object, ObjectHandle, with the association-end named, 

As sociationEndName.

• The ReadAttributeAction is represented by the JAL read attribute expression, 

[Ob j ectHandle. ] _get_<AttributeName> 0 .

• The Write Attribute Action is represented by the JAL write attribute statement, 

[Ob j ectHandle. ] _set_<AttributeName> (<value>).

JAL supports ordered collections. A JAL ordered collection can contain only 

objects of the same type. The following ordered collection operations are supported:

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



• <CollectionExpression>._getT ota l(): Get the number of items in the col

lection.

• <CollectionExpression>._getAt(<index>): Get an item at the <index> po

sition in the collection.

•  <CollectionExpression>. _add(<Expression>): Add an item to the end of 

the collection.

• <CollectionExpression>. -remove(<index>) Remove an item at the <index> 

position in the collection.

6.4 Compound statem ents

A JAL compound statement represents a combination of atomic actions and consists 

of an expression or a single statement that uses another expression as a parameter. 

For example, line 5 in Figure 6.1 shows a JAL compound statement that describes two 

atomic actions: a create object action and an add variable value action. Figure 6.3(a) 

shows the meta-classes that associate with Create Object Action and AddVariableValue. 

The CreateObjectAction instance associates with the instantiated Classijier and an 

OutputPin tha t holds the handle of the newly created object. The AddVariableValue 

instance associates with the updated variable and an InputPin tha t holds the new 

value. In UML 2.0, an InputPin can be an ActionlnputPin, which can take the output 

from another action.

Figure 6.3(b) shows a meta-object diagram representing actions tha t are repre

sented in line 5 of Figure 6.1. The meta-object diagram is an instance of the meta-class 

diagram shown in Figure 6.3(a). In Figure 6.3(b), the CreateObjectAction instantiates 

the class Product. The result of the CreateObjectAction is used in the AddVariable- 

ValueAction, which assigns the result to the variable, prd. In line 5 of Figure 6.1, the 

CreateObjectAction is represented using the expression _create_object_Product(). 

The assignment part (prd = .. .)  represents the AddVariableValueAction.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Action

-fromAction

CreateObjectAction

0..1

+classrfier

Classifier
nam e: String

-result

_ y _
O utpu tP In

WrlteVariableActlon -variable Variable

1

AddVarlableValueActlon -value InputPin
•isReplaceAli: Boolean :

0..1 1

0..1
I

A ctlon lnpu tP In

(a) Partial Meta-Class Diagram 
for Action Semantics

product: Classifier
name : String = Product

fromAction

; ActionlnputPin

value

: A ririV a riah lftV a lu ftA c tio n

isReplaceAli: Boolean a true

variable

o : Variable

classifier

: CreateObjectAction

y
A .

•result

: OutputPin

(b) Meta-Object Diagram for 
Line 3 in Figure 1(a)

Figure 6.3: Example of Combination of Atomic Actions in UML 2.0

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 7 

Test Execution

In this chapter, we describe a technique for executing a design under test, DUT, by 

transforming it into a Java program. First, we discuss the transformation of the DUT  

into an executable form, EDUT. We then describe how the TDUT  is obtained from 

the EDUT. We show how the code is used to execute a test.

7.1 Generating the EDUT

Information from class and activity models is used to create Java programs tha t simu

late the behavior specified in a model under test. UML class, attribute, and operation 

notations are transformed into Java class, attribute, and method declarations, respec

tively. For each class, C, in a DUT , a collection class, CCollection, is generated. An 

instance of C C ollection maintains a collection of instances of C. The C C ollection 

class is needed to represent association ends. The C C ollection class has methods 

to add (or remove) instances of G to (or from) the collection. Association ends are 

transformed into Java attributes with collection class types.

A singleton class named TFactory is generated from the class diagram. This class 

has public methods to create and destroy instances of every class and association in 

the class diagrams. The TFactory class is used to handle JAL create and destroy 

links and objects actions. Activity models, represented using JAL, are transformed 

into Java method bodies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7.1.1 Transforming class diagram s into E D U T  code

We now describe the rules to transform class diagrams into EDUT code. The rules 

are illustrated using' an example shown in Figures 7.1, 7.2, 7.3, and 7.4. Figure 7.1 

shows a class diagram with two classes, Cl and C2. Cl has an attribute, A, and 

an operation, O p t(p l:T l, p2:T2) : ReturnType. Cl and C2 are associated via an

association, C1C2. Figures 7.2, 7.3, and 7.4 shows EDUT  code generated from the 

class diagram.

C1 ' c1 C 1C 2  "c2 C 2

- A : T

+O pt(in  p1 : T 1 , in p2  : T 2 ) : R e tu rnT ype

Figure 7.1: A template DUT class diagram

1. For each class model, we create an abstract class TObject, as shown in Fig

ure 7.2. Every DUT  class is transformed into a sub-class of TObject. TObject 

has a method, generateUniqueNameO, which creates a unique id for each ob

ject in the system. TObject also has an abstract method -d e s tru c to r () which 

is redefined in sub-classes of TObject.

2. A UML class, Cl, is transformed into a Java class with the same name, as shown 

in line 1 in Figure 7.3. Cl extends the TObject class.

3. A UML attribute, A, is transformed into a Java state variable as shown in line 3 

in Figure 7.3. Also, for each LTML attribute, A, Java methods _set_A() and 

_get_A() are created, as shown in lines 4-9 in Figure 7.3. These two methods 

provide an indirect mechanism to modify or to read the value of attribute A.

4. A UML operation, Cl: :o p t(p l :T l ,  p2 :T 2 ):ReturnType, is transformed into 

a Java method declaration as shown in lines 21-23 in Figure 7.3. The body 

of the method is generated from the corresponding JAL specification shown in 

Figure 6.1.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



public abstract c lass TObject{

private String uniqueName;

pub lic  TO bject(){
uniqueName = generateUniqueNameO;

>

public abstract void .d e stru c to r ();

protected s ta t ic  f in a l  TFactory _ factory (){  
return TG lobal.getFactoryO ;

>

public String getUniqueName(){ 
return uniqueName;

>

public String to S tr in g O f  
return uniqueName;

>

private String generateUniqueNameO{
return TGlobal.getFactoryO . createUniqueNameO ;

}
>

Figure 7.2: The EDUT  TObject class generated from a class diagram.

5. For each class, Cl, in a DUT , a collection class, C IC ollection  is generated 

in the EDUT  as shown in lines 11-24 in Figure 7.4. Every collection class, 

C IC ollection, is a sub-class of a class named TO bjectC ollection  (which 

is shown in lines 1-10 in Figure 7.4). An instance of C IC ollection  main

tains an ordered set of instances of Cl. The C IC ollection  class has methods, 

_add(Cl) and -remove(Cl), that add and remove instances of Cl to and from 

the collection. C IC ollection  also has the method, _getA t(in t i ) ,  tha t re-

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[1] public class Cl extends TObject {
[2] //B eg in  a ttr ib u te  L ist
[3] private T A;
[4] private T _get_A() {
[5] return iD ;
[6] >
[7] private void _set_A(T A) {
[8] th is .A  = A;
[9] >
[10] 
[11]
[12] //A sso c ia tio n s here
[13] public C2Collection c2 = new C 2C ollection();

[14] //D estructor here
[15] public void _d estru ction (){
[16] for (in t i  = 0; i  < c 2 ._ g e tT o ta l(); i++) {
[17] c 2 ._ g e tA t( i) . c l.rem o v e (th is );
[18] }

[19] >

[20] //O perations here
[21] public ReturnType 0 p t(p l:T l, p2:T2, . . . ,  pn:Tn){
[22] . . .  //Method body i s  generated from JAL
[23] }
[24] >

Figure 7.3: The EDUT C l class.

turns an instance of C l at the index i  in the collection. Cl inherits from 

TObjectCollection the method _getTotal(), which returns the total number 

of instances in the collection.

6. Suppose that a UML association, C1C2, associates two classes, Cl and C2. 

Suppose also that C1C2 connects to C2 via an association end, c2 (as shown 

is Figure 7.1. The association end is transformed into the Java state variable 

C2Collection c2 in the Java class Cl, as shown in line 13 in Figure 7.3.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[1] public abstract c la ss  TObjectCollection{
[2] protected Vector set;
[3]
[4] public TObjectCollection()-C
[5] se t = new VectorO;
C6] >

[7] public in t _getT ota l(){
[8] return s e t . s i z e ();
C9] >

[10] >

[11] public c la ss  C ICollection extends TObjectCollection{
[12] public C IC ollection( ){
[13] super();
[14] >

[15] public Cl _getA t(in t i ) {
[16] return (Product) ( s e t . elem entAt(i) );
[17] >

[18] public void add(Cl o){
[19] set.ad d (o);
[20] }

[21] public void remove(Cl o){
[22] s e t .remove(o);
[23] }
[24] >

Figure 7.4: The EDUT CICollection class.

7. For each UML class, Cl, a destructor method is created, providing a mechanism 

to destroy instances of Cl (as shown in lines 14-18 in Figure 7.3). The destructor 

method searches through every object tha t refers to the deleted instance, and 

deletes the reference. For example, lines 16, 17, and 18 are generated so that 

when they are executed, all references from C2 instances to the deleted object of

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C are removed. When all references to a Java object, o, of type Cl are removed, 

the Java garbage collector automatically deletes o.

7.1.2 G enerating th e TFactory class

The TFactory class handles low level tasks such as maintaining references between 

objects (since Java does not have link or association concepts, a UML link is repre

sented indirectly using Java references), checking association cardinalities, removing 

Java references when an object is destroyed, and processing Java exceptions.

Figure 7.5 shows the TFactory class that is generated from the class diagram in 

Figure 7.1, using the following rules:

1. For each DUT  model, create a Java class TFactory.

2. For each UML class, Cl in the DUT , create a method, _create_object_Cl(), 

in the TFactory class, as shown in lines 3-6 in Figure 7.5.

3. For each UML association, C1C2, between two classes, Cl and C2, create two 

methods, _create_ link_ClC2() and _delete_link_ClC2(), as shown in lines 

12-15 and 16-19 in Figure 7.5, respectively. These methods create and de

stroy an instance of the association, C1C2. The variable firstE nd .c2  refers to 

the attribute Cl.c2 as shown in line 13 in Figure 7.5. Similarly, the variable 

secondEnd.cl refers to the attribute Cl.c2.

4. Create a destructor method, _delete_object(), to destroy any instance of 

EDUT  classes that represent DUT  classes. For example, the destructor method 

shown in lines 21-26 in Figure 7.5 can delete instances of Cl and C2, which are 

sub-classes of TObject.

7.1.3 G enerating E D U T  m ethod  bodies from JAL specifica
tions

We now describe the rules to transform JAL specifications into Java method bod

ies. The rules are illustrated using Figure 7.6, which shows the EDUT  method

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[1] public class TFactoryf
[2] //O bject Creators
[3] public Ci _create_object_C l(){
[4] Cl o = new CIO;
[5] return o ;
C6] >

[7] public C2 _create_object_C2(){
[8] C2 o = new C2();
[9] return o ;
[10] >

[11] //L ink Creators and Destructors
[12] public void _create_link_ClC2(Cl firstE nd, C2 secondEnd){
[13] firstEnd.c2.add(secondEnd);
[14] secondEnd.cl. add(firstE nd);
[15] >

[16] public void _delete_link_ClC2(Cl firstE nd, C2 secondEnd){
[17] firstEnd.c2.rem ove(secondEnd);
[18] secondEnd.cl.rem ove(firstEnd);
[19] >

[20] //O bject Destructor
[21] public void _delete_object( TObject o ){
[25] o ..d e s tr u c to r ();
[26] >
[27] >

Figure 7.5: A TFactory class.

ProductCatalog: addProduct ( in t cID, in t pID). The method body is generated 

from the JAL specification shown in Figure 6.1.

1. JAL Call Operation, Add Variable Value, and Return statements, as well as 

Read Variable, Calculation expressions are copied into EDUT  method bodies, 

because their syntax is the same as Java method invocation, assignment, and 

return statements, and variable and calculation expressions, respectively:

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



•  JAL Call Operation, Write Variable, and Return statements become Java 

method invocation, assignment, and return statements, respectively. For 

example, lines 2 and 8 in Figure 6.1 are copied into lines 3 and 9 in Fig

ure 7.6.

•  JAL Calculation and Read Variable, expressions become calculation and 

variable expressions in Java.

2. JAL Write Attribute statements and Read Attribute expressions, which access 

the value of an attribute, A are transformed into invocation of the methods 

_set_A() and _get_A() that are generated from the attribute, A. For example, 

line 6 in Figure 6.1 is copied into line 7 in Figure 7.6.

3. Read Link expressions are transformed into invocations of methods, 

_getT otal() and _getA t().

4. Create Object and Create Link expressions as well as Destroy Object and Destroy 

Link statements are transformed into appropriate invocations of the methods 

in TFactory, as shown in Table 7.1. For example, lines 5 and 7 in Figure 6.1 

become lines 6 and 8 in Figure 7.6.

Table 7.1: Rules to transform JAL creation expressions and destruction statements 
into Java

JAL Java
_create_object_classname() _f actory () ._create_object_classname ()
_delete_object(objExpression) _f actory() . _delete_object (objExpression)
_create_linkJtssociationId(objlId,
obj2Id)

A  actory () . _create_link_AssociationId( 
objlid , obj2Id)

_delete_link.AssociationId(objlId,
obj2Id)

_factory() . _delete_link_AssociationId( 
objlid , obj2Id)

5. JAL local variable declarations have the same syntax as Java variable declara

tions, hence JAL local variable declarations are copied directly into the Java 

code. For example, line 1 in Figure 6.1 is copied into line 2 in Figure 7.6.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6. Because JAL condition and iteration structures are the same as Java conditions 

(if . . .  then . . .  else . . . ) and while loop structures (while . . . ) respectively, they 

are copied into EDUT. For example, lines 3 and 10 in Figure 6.1 are copied into 

lines 4 and 11 in Figure 7.6.

[1] private boolean addProduct( in t cID, in t pID H
[2] Category ctg ;
[3] ctg  = this.findC ategory(cID ) ;
[4] i f  (c tg != n u ll){
[5] Product prd;
[6] prd = _factory( ) . _create_object.product();
[7] prd.setlD (pID );
[8] th is ._ fa c to r y ( ) ._create_link_product_category(ctg,prd) ;
[9] return tr u e ;
[10] >
[11] e lse  {
[12] return fa ls e ;
[13] }
[14] >

Figure 7.6: EDUT generated from addProduct JAL Specification

7.2 Generating the TD U T

Figure 7.7 shows the packages that are required during test execution. The packages 

contain the generated TDUT  package, and some associated packages and classes (e.g., 

USE and Use In te rfac e ) . The USE In te r fa c e  package provides a mechanism for 

TDUT  to communicate with the USE tool, which is represented as the USE package 

in Figure 7.7.

The TDUT  package shown in the figure is generated from the DUT  whose class 

diagram is shown in Figure 7.1. The TDUT  package contains a package called Test

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TDUT

T e s t Driver

« in terface»
TestObserver

C2Collection < -

C1 Collection

C1

C2

TObjectCollection TObject

1

M odelTestC ase

+ ex ecu teT es t()

-factory

TFactory

« u se s»

Use Interface
--------- ->

Use
TestDriverlmpI

+ e x ecu teT es t()

Figure 7.7: Test Execution Packages.

D river to automate the test execution. The other classes inside TDUT  are obtained 

by adding test scaffolding to the EDUT  classes to perform failure checks.

The TDUT  itself performs the first three checks mentioned in Section 4. For 

the checks 4-6, the TDUT  uses the facilities provided by the USE tool [22]. USE 

is an open source tool tha t validates an object configuration against the constraints

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



specified in a class diagram. To facilitate its use, test scaffolding code is added to the 

EDUT  to perform the following functions:

1. Inform USE about any changes in the state of the simulated system.

2. When there is an operation call action, invoke USE to check the pre-condition.

3. When there is a return action, invoke USE to check the post-condition.

4. At the end of the test, invoke USE to check the validity of the configuration.

The last check is performed using the JUnit assertion mechanism. JUnit is a 

framework to write repeatable test inputs for Java code testing [20]. The following 

subsections describe in detail how the TDUT  is generated.

7.2.1 G enerating code to  check th e in itialization o f variables

In Java programs, using the value of a local variable before it is initialized is considered 

an error, which is reported by Java compilers during compilation. In our approach, 

JAL local variables are transformed into Java local variables. Therefore, we can 

utilize Java compilers to check for the initialization of these variables. This type of 

design faults can thus be detected at compile time. However, Java state variables can 

be set in one method and be used in another, and the order in which each method 

is called can only be determined during runtime. Thus, Java compilers cannot check 

for the initialization of state variables, which are used to represent UML attributes 

in our approach. We need to insert code in the EDUT  to check for the initialization 

of attributes.

Figure 7.8 shows the TDUT  code that is generated for a UML attribute, A (shown 

in Figure 7.1). This code is the result of adding the following lines to the corresponding 

EDUT  code, which is shown in lines 3-9 in Figure 7.3:

1. Line 3a defines a boolean flag tha t is initially set to false indicating that the 

attribute is not initialized.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[3] private T A;
[3a] private boolean _flagA = fa ls e ;
[4] private T _get_A() {
[4a] i f  C_flagiD == fa ls e )  {
[4b] reportError("Cl: :A i s  not in i t ia l iz e d ." ) ;
[4c] >
[5] return iD;
[6] }
[7] private void _set_A(T A) {
[8] th is.A  = A;
[8a] _flagA = true;
[9] >

Figure 7.8: The TDUT code generated from an attribute.

2. Lines 4a, 4b, and 4c are added to the method _get_A(), which returns the value 

of A. These lines check the value of the flag. If it is false, the TDUT  reports 

that the system under test attempts to use the value of A before initializing it.

3. Line 8a is added to the method _set_A(), which assigns a value to A. This line 

sets the flag to TRUE  to mark that A has been initialized.

7.2.2 G enerating code to  check for existence of target objects

We use Java’s “NullPointerException” to check for existence of target objects. 

When a Java program executes, if the target object of a method invocation does not 

exist, the Java Virtual Machine raises a “NullPointerException”. Since method 

invocations are used to represent operation calls in our approach, we catch these 

exceptions and report it to testers when the target object of an operation call does 

not exist.

7.2.3 G enerating code to  validate pre- and post-conditions

In order to validate pre- and post-conditions and object configurations, USE maintains 

information about the current object configuration. We first insert code into the

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



EDUT  to notify USE whenever there is a change in the object configuration. Changes 

in the configuration include creation and deletion of objects and links, as well as 

modifications to attribute values. The new code is inserted as follows:

1. Code is inserted into the TFactory class to notify USE about the creation and 

deletion of objects and links. Figure 7.9 shows the TFactory class in the TDUT  

that is generated from the class diagram shown in Figure 7.1. Segments of code 

in lines 4a-4c, 12a-12d, 16a-16d, and 21a-21c of Figure 7.9 are inserted to notify 

USE about the creation of an object, Cl, the creation of a link, C1C2, the 

deletion of a link, C1C2, and the deletion of instances, respectively. Figure 7.9 

shows the TFactory class after the code is inserted.

2. The method _set_A() (as shown in lines 7-9 in Figure 7.8) that is used to set 

values to the attribute A of a class, Cl, is transformed into the code shown in 

Figure 7.10. Lines 7a, 7b, 7c, and 7d are added to notify USE about the new 

value of attribute A.

During execution, the TDUT  requests USE to validate the pre- and post

conditions before and after an operation is called. To perform that task, code that 

represents operations in EDUT  is transformed into TDUT  as follow:

1. For each DUT operation, OptC ..)  :returnType, in a class, Cl, create a method 

C l :: _0pt ( . . . ) :  returnType in the TD UT.

2. Copy the body of EDUT  method Cl: :0 p t( .. .) :returnType into the body of 

TDUT method C l: : _0pt(.. .) :returnType.

3. Insert code into the body of TDUT  method C l :: 0 p t( .. .) :returnType so that 

it first requests USE to validate the pre-condition, then invokes the method 

C l :: _0pt ( . . . ) :  returnType, and finally requests USE to validate the post

condition.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[1] public class TFactory{
[2] //Object Creators
[3] public Cl _create_object_Cl(){
[4] Cl o = new CIO;
[4a] try{
[4b] use.addObjectO'Cl", o.getUniqueNameO );
[4c] }catch(Exception e){System .err.println(e.getM essageO);)-
[5] return o;
[6] >
[7] public C2 _create_object_C2()-(
[8] C2 o = new C2();
[8a] try{
[8b] use.add0bject("C2", o.getUniqueNameO);
[8c] }catch(Exception e){System .err.println(e.getM essageO);}
[9] return o ;
[10] >
[11] //Link Creators and Destructors
[12] public void _create_link_ClC2(Cl firstEnd, C2 secondEnd){
[12a] try{
[12b] u se.addLink("ClC2", firstEnd.getUniqueNameO,
[12c] secondEnd.getUniqueNameO);
[12d] }catch(Exception e){System.err.println(e.getMessageO)
[13] firstEnd.c2.add(secondEnd);
[14] secondEnd.cl.add(firstEnd);
[15] >
[16] public void _delete_link_ClC2(Cl firstEnd, C2 secondEnd){
[16a] try{
[16b] use.deleteLink("ClC2", firstEnd.getUniqueNameO,
[16c] secondEnd.getUniqueNameO);
[16d] }catch(Exception e){System.err.println(e.getM essageO) ;>
[17] firstEnd.c2.remove(secondEnd);
[18] secondEnd.cl.remove(firstEnd);
[19] }
[20] //Object Destructor
[21] public void _delete_obiect( TObject o){
[21a] try{
[21b] use.destroyObject( o.getUniqueNameO);
[21c] }catch(Exception e){/^System.out.println(e.getM essageO);* /}
[25] o..destructor 0 ;
[26] >
[27] >

Figure 7.9: The TFactory class with code to interact with USE.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[7] private void _set_A(T A) {
[7a] try  {
[7b] use. s e t  AttributeValue (getUniqueNameO, "A",
[7 c] S tr in g .valueOf(A));
[7d] > catch (Exception e){System. err. p r in tln (e . getMessageO) ;}
[8] th is .A  = A;
[8a] _flagA = true;
[9] >

Figure 7.10: The _set_A() method tha t has code inserted to interact with USE.

Following these steps, the EDUT  shown in Figure 7.6 is transformed into the 

TDUT  code shown in Figure 7.11. In Figure 7.11, the method _addProduct(), 

which is generated from the JAL specification, is called from addProductO (see 

line 9). Lines 2-8 and 10-15 are inserted to check the pre- and post-conditions of 

the addProduct operation, respectively. The body of the method _addProduct (lines 

19-30) in Figure 7.11 is copied from the body of method addProduct (lines 2-13) in 

Figure 7.6.

7.2.4 G enerating code for autom ation  o f test execution

The Test D river package, which is added to automate the test execution, is described 

in Kawane’s Masters Thesis [32], The package provides a mechanism so th a t test 

inputs can be applied to the TDUT. The package also provides a mechanism for 

TDUT  to communicate with a GUT to report failures.

The package has an interface, TestObserver, tha t allows the TDUT  to report fail

ures. The package also has an abstract class, ModelTestCa.se, that represents the test 

cases. It extends the JUnit TestCase class to support a test environment for testing 

UML designs by providing a base class for the model test drivers, a graphical user 

interface for displaying progress and results of test execution, and an assertion func

tion, assertConf ormance ( ) , that delegates the validation of object configurations to

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[1] public boolean addProduct( in t cID, in t pID ){
[2] try{
[3] use.optEnter("openter " + getUniqueNameO + " addProductC" +
[4] String.valueO f(cID)+ + String.valueOf(pID) + ")" );
[5] >
[6] catch(Exception e ){
[7] System .out.println(e.getM essageO ) ;
[8] >
[9] boolean _ret = _addProduct(cID.pID);
[10] try-C
[11] use.optExitC String.valueO f( _ret ) ) ;
[12] >
[13] catch(Exception e ){
[14] System .out.println(e.getM essageO ) ;
[15] >
[16] return _ret;
[17] } / /  EDUT code for addProductO follow s
[18] private boolean _addProduct( in t cID, in t  pID ){
[19] Category ctg  ;
[20] ctg  = this.findC ategory(cID ) ;
[21] i f  (c tg != n u ll){
[22] Product prd;
[23] prd = .fa c to r y O ..c r e a te .o b je c t .p r o d u c tO ;
[24] prd.setlD (pID );
[25] t h i s . .fa c to r y O . _create_link_product_category(ctg,prd) ;
[26] return tr u e ;
[27] >
[28] e lse  {
[29] return fa lse ;
[30] >
[31] >

Figure 7.11: EDUT generated from addProduct JAL Specification

the USE tool. ModelTestCase also contains the set of assertion functions provided by 

the JUnit framework, such as asse rtT ru e  or a sse rtF a lse .

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7.3 Executing Tests

Class TestDriverlmpl extends ModelTestCase{ 
void testOne (){

//C reate s ta r t configuration
ProductCatalog pc = fa c to ry . _createProductCatalog(); 
Category c_0 = f  actory._createC ategoryO ;
Product p_0 = factory ._createP rodu ct();
Product p_l = factory ._createP rodu ct();
Product p_2 = factory ._createP rodu ct(); 
factory._create_link_productcatalog_category(pc, c _ 0 ); 
factory._create_link_product_category(p_0, c_ 0 ); 
factory._create_link_product_category(p_l, c_0); 
factory._create_link_product_category(p_2, c_ 0 ); 
c_ 0 .se tID (3 );
/ /  Send te s t  s ign a l 
p c.addProduct(0, 0);
/ /  check conformance 
AssertConf ormanceO;

y
}

Fi gure 7.12: Sample Test Case.

To specify a set of test cases, a tester creates a concrete class (e.g., TestDriverlmpl) 

tha t is a subclass of ModelTestCase. For each test case, the tester specifies a test 

method with the prefix test (e.g., testO ne()). The method body has three parts: 

a prefix to create the start configuration, a sequence of system operation calls, and 

assertion statements. The prefix contains a series of TFactory method invocations 

to instantiate objects and links between them. The prefix may also contain a few 

method invocations to set the object attributes. The sequence of system operation 

calls in the method body of a test method represents the sequence of system events in 

the corresponding test case. The assertion statements correspond to the invocation 

of assertion functions (e.g., assertConf ormanceO).

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 7.12 shows the example of a test method, testO ne (), that a tester provides 

as a test input. The prefix part of the method creates a start configuration (shown 

in Figure 5.7) with an instance of ProductCatalog, an instance of Category, three 

instances of Product, and the appropriate links between them. The prefix is followed 

by the operation call, pc.addP roduct(0 , 0) that initiates the testing of the path, 

0-1-2-3-5-10.

When a tester executes the test cases inside the class, TestCaselmpl, UMLAnT 

automatically invokes every method tha t has the prefix test. The failures are detected 

by USE or UMLAnT and reported through the interface, TestObserver.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 8 

Tool Support

Model Compiler

Model execu tion  m a n a g e r

Test Driver

XMI Parser

Model Manager JAUOCL Editor

Execution Animator

Figure 8.1: UMLAnT Architecture.

We developed a prototype tool called the “UML Animator and Tester” ( UM

LA nT) that automates our test execution and animation approach. The tool is an 

Eclipse plugin. Figure 8.1 shows the architecture of UMLAnT. The subsystems are 

as follows:

1. The JAL/OCL Editor is used to specify the model under test (D U T).

2. The XM I Parser parses the class diagrams saved in the XMI format.

3. The ED U T/TD U T Generator generates the testable form of the DUT.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4. The Model Manager maintains instances of the UML metamodel (i.e. the mod

els under test).

5. The Test Driver executes tests and reports failures.

6. The Execution Animator helps visualize the execution.

8.1 M odel specification

The Eclipse Modeling Framework (EMF) and Omondo EclipseUML plugins are used 

to draw and specify the DUT. An XMI Parser is used to parse the models and generate 

an instance of the UML metamodel inside the Model Manager.

Figure 8.2 shows a subset of the design class diagram of the Model Manager 

subsystem (shown in Figure 8.1). This class diagram contains UML meta-classes 

tha t represents elements in a LIML class diagram. The “C lass ln f o" class represents 

the UML meta-class, “Class''. A C lassln fo  can have zero or many O perations, 

A ttr ib u te s , and A ssocia tions. The current version of UMLAnT supports only 

binary associations, and thus each A ssoc ia tion  has exactly two AssociationEnd.

-type

-paraList

-Type

-superclass

Attribute

Operation

Parameter

PrimttiveType

Figure 8.2: The Design Class Diagram of the Model Management Sub-System.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 8.3 shows the model input screen of UMLAnT with an example specifica

tion of the operation ProductC atalog: : addCategory, presented by the editor in the 

bottom right of the figure.

^ \ PS -v > * *
"■t -*y;v Vi&t? ''■•cX?vs *s-. $vvfc5w '-ftS5S3- >0.. x«ev  :

as « r> - >✓ • ^ *

A

N! <"

■»A A 
* j*

* «■ V

•: Pv.MsUCrC.AfcSt̂ g

7T

V i

 ̂ t O N ;< >» * Q '
V V. '  *•»», •*. X. < %. * \  ■*• V
Vi V Ja ,  '.y *' «• ■>. w  A
^  « *, i -* , «s ;{ w y
g  . .  ■> i  C  C , y « ^ J  $Ji s A s ' < « ^  >
S  A t  J  ,  V '*  '  *

^  is '

eTŜScWrtfC

ai .> ' - . ^  5
~f ww>..?A«-&y.

< «

j*s*5«rv: •r.waffv
X'vdVs'K'St*̂* <B V*\ - *
■^s**

W : -r

■•<*’•■5 •• '-.'v.v
S • v  '  *••■• ••*■•’* te vV̂v v w

Figure 8.3: UMLAnT Input Screen.

8.2 Generation of the testable form

The ED U T/TD U T Generator uses an implementation of the Visitor design pat

tern [19] to extract information about the DUT  from the Model Manager. The 

ED U T/TD U T Generator then applies the rules described in Chapter 7 to trans

form the DUT  into the EDUT  and adds test scaffolding to generate the TDUT. The 

generated TDUT  utilizes the Model Execution Manager to execute tests and detect 

failures.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 8.4 shows a set of classes of the TD U T/ED U T Generator subsystem. 

The CollectionClassGenerator class transforms each UML class into a Collection 

class. The FactoryGenerator creates a TFactory class for each design model under 

test. The InfrastructureGenerator creates TObject and TObjectSet classes. The 

TObject and TObjectSet classes are the same for every model under test.

\—

TDUT Generator

Visitor

Model
Manager

FactoryGenerator

ClassCodeGe neratorAttributeCodeGenerator

OperationCodeGenerator

CollectionClassGenerator

AssoclatlonCodeGenerator

AssoclatlonEndCodeGenerator

Figure 8.4: The Design Class Diagram of the ED U T/TD U T Generator Sub-System.

The ClassCodeGenerator, AttributeCodeGenerator,

AssociationCodeGenerator, OperationCodeGenerator, and

AssociationEndCodeGenerator classes are used to transform elements of a 

UML class into Java. A UML model is traversed several times when the TDUT  and 

the USE formats of the model are generated. Information in each class in the Model 

Manager package is manipulated differently each time different forms are generated. 

Hence, we implemented these transformations using the Visitor pattern [19].

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



All classes shown in Figure 8.2 play the roles of Concrete Elements in the 

Visitor pattern. They are sub-classes of the Abstract Element class, Element, 

shown in Figure 8.5. In Figure 8.4, V isito r  plays the role of the Abstract 

Visitor, and its sub-classes play the roles of Concrete Visitors. According to 

the visitor pattern, the transformation of an entire class diagram can be im

plemented in a single Concrete Visitor class. However, in order to increase 

the cohesion in the system, we implemented the transformation of classes, at

tributes, operations, associations, and association ends using separate classes. Thus, 

ClassCodeGenerator, AttributeCodeGenerator, AssociationCodeGenerator, 

OperationCodeGenerator, and AssociationEndCodeGenertor transform classes, at

tributes, associations, operations, and association ends, respectively, into code.

Association

Classlnfo

Attribute Parameter

TypeOperation

PrlmltlveType

Generalization AssoclatlonEnd

+accept(in v : Visitor): String

Element

Figure 8.5: UMLAnT Classes that Play the Roles of Elements in the Visitor pattern.

Figure 8.6 shows the sequence diagram that describes the transformation of a 

UML class into TDUT. The accept() and v i s i t () call operation messages are 

sent as specified in the Visitor pattern. As shown is this sequence diagram, when

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



a class is visited, all of its attributes, associations, and operations are also vis

ited. ClassCodeGenerator utilizes the code generated by AttributeCodeGenerator, 

OperationCodeGenerator, and AssociationCodeGenerator to generate code 

for a class. The AssociationCodeGenerator utilizes the code generated by 

AssociationEndCodeGenerator to generate code from association. To avoid making 

the sequence diagram cluttered, the interaction between AssociationCodeGenerator 

and AssociationEndCodeGenerator is not shown.

Class AcceplJ

accept(c)

visit

: Classlnto a lii: Attribute

e : ClassCodeGenerator

as[k]: Association

Generate class code

a c o ; AttributeCodeGenerator a c g : Qpera tionCodeGeneratac

Generate attribute code

ascq : AssociationCodeGenerator

Generate operation code

[i=0; i ciattributes.siza; i++] 
code:=accept(a[j])

loop)  ! |
0=0; j < operations.sizri; j++]

cod^:= visitOperation(^his)

loopj 
[k=0; k <

code:=accept(adcg)

cod^ := visitAssociationjthis)

Figure 8.6: Sequence diagram for transforming a class into TDUT.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8.3 Test execution and failure reporting

Test inputs that are generated by the Alloy constraint solver are currently manually 

entered by testers into the tool in the form of JUnit tests, as described in the pre

vious chapter. When a tester executes the test cases inside the class, TestCaseIm.pl, 

UMLAnt automatically invokes every method tha t has the prefix, test. The failures 

are detected by USE or UMLAnt and reported through the interface, TestO bserver.

UMLAnT provides USE with pre- and post-conditions specified in OCL and re

quests USE to validate them for every operation before and after its execution, respec

tively. Also, after the execution of every system event in the test input, UMLAnT sig

nals USE to check the object configuration against the class diagram constraints. Any 

failure detected by USE or UMLAnT is reported using the interface, TestO bserver.

UMLAnT reports the following failures: “OCL invariant checking failed" , “Post

condition failed'', “Message sent to null”, “Collection out of bounds”, “Conformance 

checking failed” , and ” Oracle condition failed” .

8.4 M odel animation

During test execution, the result of every action performed by each object is recorded 

in a log file. The results recorded include (1) any changes to the configurations, and

(2) messages that are exchanged between objects. The changes to the configuration 

include creation and deletion of objects and links and modification to attribute val

ues. Messages tha t are exchanged between objects includes create and destroy object 

messages and method invocations.

When the execution terminates, the Execution Animator reads the log file and up

dates the sequence and object diagram views. Whenever the action involves changing 

an attribute value, or creation or deletion of a class or association instance, the object 

diagram view is updated. Whenever the action involves sending a message, or cre-

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ation or deletion of an object, the sequence diagram view is changed. Figure 8.7 shows 

an example of sequence diagrams (parts (a) and (b)) and object diagrams (parts (c) 

and (d)) created by UMLAnT during the animation of test execution. Figure 8.7(d) 

shows the creation of the link between the instances, tObj_l :ProductC atalog and 

t0 b j_ 2 :Category in Figure 8.7(c).

Z<  X.’v *

* i vny* **v *
jtObL< Prc8«ctCaak<aj

----------------

(a) The sequence diagram before the call operation action

- <3tsJ

< a fc, » 54 - i

tObLI P ioduciC atatog ;

' $0b)_2 Ca»gory 
*  .1

' 1£ s'*" ' ' A

v s ' / * ' *  i

(c) Object diagram before a link creation

tObLi  PfoouctCatatos;

i * !S liliiil

I llP lil
jtOaLŜ Catggcry

'j*
t 'i Zi

tess.ifve&w+l
r-rt0bL1

. . . .  }  .............................> tOfrjJE'Catgfrory \
1: : :  ;

 i '

J <>s *  *0/

K.KjSit: ?'«*»■
s'is*<".............

<*V'

v* J a y .  < v  i

> 5

(b) The sequence diagram after the call operation action (d) Object diagram after a link creation

Figure 8.7: UMLAnt Animation Screen.

We can use the animation feature of UMLAnT to detect the existence of infinite 

loops. If we suspect such a problem when the execution of the faulty model does not 

terminate after a long time, we can terminate the execution manually and review the

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



generated run-time sequence diagram. We can inspect the sequence of actions that 

were repeatedly executed until we terminated the test execution.

8.5 Testing UMLAnT

We tested UMLAnT to evaluate the correctness of the transformation from DUT  

to Java. We used UMLAnT to generate executable Java code from a set of UML 

models that contain class diagrams and JAL segments. We carefully reviewed the 

input models before the transformation to ensure that they were syntactically correct 

and that the behavior described in the JAL segments was the intended one. We then 

checked if the generated programs exhibited correct behavior to assess the correctness 

of the transformation.

The input models were created so tha t they contained every type of construct 

in the input metamodel. In our case, the input metamodel is the subset of UML 

metamodel tha t describes concepts in class diagram views and action semantic views. 

Class diagrams used in our test cases contain classes, attributes, primitive types, 

operations with parameters, operations without parameters, generalizations, binary 

associations with one-to-one, one-to-many, and many-to-many cardinalities at two 

ends. JAL specifications in our test cases contain all primitive actions and control 

structures that are supported by our transformation approach. Furthermore, our 

input models also cover several combinations of the metamodel constructs. The input 

models cover attributes with all different primitive types: integer, floating, boolean, 

and string. The parameter types cover all primitive types and also class types. The 

input models also cover operations without any return types and operations with all 

the primitive types and class types.

To create an oracle, we leveraged the fact that the outputs of our transforma

tion are executable. Therefore, we validated the output Java programs by testing 

them. The test inputs for the Java programs were derived manually from their design

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



specifications (i.e., the DUT). We made sure tha t the test inputs covered the design 

elements in the DUT  using the criteria described in chapter 4. We then executed the 

programs with the generated inputs. In some cases, the generated programs could 

not be compiled, indicating tha t there were errors in the output. In some other cases, 

the programs compiled, but some of the test cases we ran against the generated Java 

programs failed, indicating that there were errors in the programs. Given that the 

input models were known to be correct, an error in the output meant tha t there was 

an error in the transformation. Using this technique we were able to detect and re

move a number of errors in UMLAnT. This increased our confidence in the prototype 

implementation.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 9 

Pilot Studies

We performed three pilot studies to (1) demonstrate the fault detection capability 

of the test inputs generated using our approach, and (2) explore the performance 

of our approach. We applied our design testing approach to an online shopping 

system (OSHOP), a UML model composition system (COMP), and a UML to VAG 

transformation subsystem (UML2VAG). The design models for three systems were 

created by teams of software engineering graduate students.

Table 9.1 shows the characteristics of the models under test. For each model, the 

columns show the name of the system, the number of classes in the class models, 

the number of sequence diagrams, the number of messages in each sequence diagram, 

and the number of activity diagrams, respectively. Each sequence diagram describes 

multiple scenarios and contains alternative and loop structures, and thus there is 

more than one possible execution path (e.g., see Figure 5.2(b)).

Table 9.1: Sizes of systems under test.

System Number of 
classes

Number of 
sequence 
diagrams 
(SD)

Number of 
messages 
per SD

Number of 
activity dia
grams

OSHOP 6 3 10, 11, 12 12
COMP 5 1 41 14
UML2VAG 17 2 28, 23 28

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A set of fault types was compiled by identifying common faults that designers 

normally introduce while modeling behavior. The list of fault types was created 

based in part on studies of design models developed by students in our courses, and 

mutation analysis of UML designs [14]. Faults based on these types were seeded into 

the models. The following list shows the fault types and describes how faults of each 

type were seeded:

1. Missing actions (MA): Remove an action from an activity diagram.

2. Faulty order of actions (FOA): Change the location of an action in an activity 

diagram.

3. Faulty actions (FA): Replace an action by a new action in an activity diagram.

4. Restrict the scope of condition structures (SCS): Change the scope of a condition 

structure so that a few actions are incorrectly taken out of the structure.

5. Broaden the scope of condition structures (BCS): Change the scope of a condi

tion structure so that a few actions are incorrectly included in the structure.

6. Faulty parameters (FP): Change the value of a parameter.

7. Missing branch of an alternative structure (MBA): Delete a branch of an alter

native structure.

8. Faulty condition (FC): Modify a condition of an alternative or iterative struc

ture.

9. Faulty OCL predicate (FOP): Modify an OCL statement, for example, re

place an operator by another. The OCL statement can be an invariant, a 

pre-condition or a post-condition.

10. Faulty association end multiplicities (FAM): Modify the multiplicity value at 

an association end.

11. Wrong inheritance tree (WIT): Modify the inheritance tree so that one class 

becomes a sub-class of its sibling. In other words, replace a broad inheritance 

tree by a deep inheritance tree.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



12. Wrong reference to Parent Class (WRP): Replace an association to a class by 

an association to a parent class.

Faults from each of the above types were seeded into the models one by one. Fault 

types 1-8 were used to seed faults into sequence diagrams and the rest were used to 

seed faults into class diagrams. Some faults resulted in the creation of equivalent 

designs and some others produced models tha t did not conform to the UML syntax. 

These models were discarded. We were left with 57 faulty models, which were given 

to a tester who did not know what faults were seeded.

9.1 Test input generation

The tester generated test inputs for each model using the approach described in this 

paper. The paths were always selected to cover the maximum number of uncovered 

elements. Also, the paths are selected so that the loops are iterated at most once. For 

each model, the tester generated three sets of test cases to satisfy the “A// Message 

Coverage (Mesg)” , “Condition Coverage (Cond)" , and “All Message Path Coverage 

(P ath /’ criteria. The maximum number of instances of each class was initially set to 

5 when the Alloy constraint solver was used.

Table 9.2 shows the number of paths required to cover each criterion for the 

models under test. When we generated input sets that covered the Cond criterion, 

the Alloy solver did not find solutions for 3 paths. After manually reviewing the 

path constraints, we concluded that 2 paths were infeasible; both required a boolean 

variable to be TRUE  and FALSE  at the same time. The third path was indeed 

feasible: when we increased the number of object for each class in Alloy into 6, Alloy 

provided a solution for the path. The infeasible paths were discarded and two other 

paths were selected that were feasible and also covered the remaining elements.

When generating test inputs that cover the Path criterion, we found 42 more 

infeasible paths. Among them, 12 paths belonged to OSHOP, 31 to COMP, and 1

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 9.2: Number of test cases generated from the models to satisfy the criteria.

System Mesg Cond Path
OSHOP 3 6 8
COMP 3 5 8
UML2VAG 3 4 6

to UML2VAG. In our study, manually recognizing infeasible paths was trivial when 

the same boolean expressions were required to be TRUE  and FALSE  at the same 

time. In other cases, recognizing an infeasible path required more complex logical 

reasoning. For example, we recognized an infeasible path when it required all the 

following conditions to be true:

i  = 0

i  < m l.size

j = o

!(j < ml. size)

Figure 9.1 represents the relationship between the length of a path and the size of 

its constraint in our study. Each constraint was written in conjunctive normal form.

The length of a path is measured by the number of messages along the path. The size

of a constraint is measured by the number of OCL conjuncts in that constraint. The 

figure shows tha t the size of a path constraint increased almost linearly with respect 

to the number of messages along the path in our case study. In general, the size of 

a path constraint depends on the number of messages in the path, the size of the 

post-condition of each operation that is called when the path is executed, and the 

size of each branching predicate along the path.

The number of test inputs generated using our approach does not depend on 

the size of the class diagrams. Rather, the number of test inputs generated from a 

sequence diagram increases when the total number of paths in the sequence diagram

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



80

70

60

50

40

30

20

10

0
10 15 20 350 5 25 30

Path size

Figure 9.1: Relationship between Path Length and Constraint Size.

increases. This is due to the fact that the number of test inputs depends on the 

path selection step. During path selection, we only use the information regarding 

the ordering between the nodes and edges of a VAG without using the information 

stored inside each node. Moreover, the ordering of the nodes and edges in a VAG is 

obtained from the sequence diagram, not the class diagram.

The size of the start configuration for a test input, however, tends to depend on 

the both class and sequence diagrams under test. For each chosen test path in a 

sequence diagram, the number of sequence diagram participants that either send or 

receive one or more messages belonging to the path defines the number of objects that 

wall be executed during testing. For example, when the path 0-1-2-3-5-10 in Figure 5.3 

is executed, there are only two objects, pc and c[i] tha t actually participate in the 

execution. However, the start configuration usually needs to contain some additional 

objects to make the configuration conform to the class diagram. In the example in

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 5.3, the class diagram specifies tha t any instance of ProductCatalog must link 

to one instance of Shop. Thus, the configuration must contain an instance of Shop.

9.2 Test execution results

In our study, we considered the original model as the oracle. We first ran the generated 

test cases on the original model. At the end of each test execution, we obtained the 

final object configuration from UMLAnT. We specified a set of oracle conditions based 

the final configurations.

Table 9.3 summarizes the number of faults detected by each criterion. The first, 

column of the table denotes the type of the seeded fault. The second column shows 

the number of faults tha t are seeded in the models under test for each fault type. 

The last three columns represent the number of faults for each fault type that are 

detected by tests that satisfy the Mesg, Cond, and Path criteria, respectively.

Out of 57 seeded faults, 51 (89.6%) were detected by test inputs satisfying the 

Path criterion. Among the 41 faults tha t were seeded into the activity diagrams, 

38 (92.7%) were detected by these test inputs. There were six faults that were not 

detected by any test inputs used in the study.

Among the faults seeded in the class diagrams, three were not detected by test 

cases satisfying Path, four were not detected by test cases satisfying Cond, and five 

were not detected by test cases satisfying Mesg criteria. These faults occurred in cases 

where the faulty class diagram characterized a smaller set of configurations than the 

original class diagram. Since we seeded only one fault in each model, the behavioral 

diagrams (in this case, the activity and sequence diagrams) must be unchanged. 

The behavior described by these diagrams may require configurations that are not 

characterized by the faulty class diagram. The faults would be detected by UMLAnT 

if the test execution produced a configuration that did not conform to the faulty 

class diagram. Since the criteria used in our approach did not target class diagram

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 9.3: Fault detection data.
Type of 
fault

Number 
of faults 
seeded

Number 
detected by 
M esg

Number 
detected by 
C ond

Number 
detected by 
P a th

MA 7 6 7 7
FOA 5 5 5 5
scs 4 3 4 4
BCS 2 0 0 1
FA 7 6 6 6
FP 7 6 6 6
MBA 3 0 3 3
FC 6 3 5 6
INV 5 5 5 5
FAM 6 2 3 4
WIT 4 4 4 4
WRP 1 0 0 0
Total 57 (100%) 40 (70%) 48 (84.2%) 51(89.6%)
Activity dia
gram faults

41 (100%) 29(70.7%) 36(87.8%) 38 (92.7%)

Class diagram 
faults

16 (100%) 11 (68.8%) 12 (75%) 13 (81.3%)

elements and thus did not require the tests to produce several different configurations, 

it is likely that a test input generated based on sequence diagram criteria may miss 

such a fault.

All three faults seeded in the activity diagrams that were not detected by any 

criterion were inside loop structures. These faults cause test failure only when the 

loops are executed at least twice. However, in our test selection approach, loops are 

executed only once.

Two of the faults were seeded into condition structures, causing the value of some 

variables to be set incorrectly only when some rare paths are executed. However, the 

test sets that satisfy Mesg and Cond criteria did not cause these paths to be executed 

and hence, did not find the faults. As expected, the test inputs that satisfy the Path 

criterion discovered these faults.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Seven faults in activity diagrams can only be detected by test cases that cause 

some conditions to evaluate to FALSE. In our study, the test sets generated based on 

the Mesg criterion always made these conditions evaluate to TRUE, since the FALSE 

branches are empty. Hence, test inputs generated using only Mesg criterion cannot 

detect these faults.

9.3 Discussion

The pilot study is a small scale study. The size of the models, the number of inserted 

faults, and the number of the original models used in the study were small. However, 

the studies indicate that the test inputs generated using our approach may be effective 

at finding a number of fault types and thus, motivate further studies on a larger scale.

Test inputs that are generated based on the sequence diagram based criteria can be 

used to reveal faults in behavioral diagrams more effectively than faults in structural 

diagrams. To target the faults in structural diagrams, one needs to force testing to 

cover several different set of configurations.

The techniques used to select test paths may affect test effectiveness. For example, 

our study shows that test sets tha t execute loops only once may be insufficient to find 

certain types of faults. To target such faults, one needs a test criterion that forces 

the test inputs to execute loops several times. For example, one can use Binder’s 

iteration coverage criterion [7], which requires each loop to be executed zero, one, 

and a large number of times.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 10 

Conclusions and Future Work

This chapter first summarizes the contribution of the dissertation. Open issues related 

to the contributions are then discussed. The chapter ends with directions for future 

work.

10.1 Summary of the contribution

This dissertation presents an approach to testing UML designs. UML designs are 

transformed into testable forms that include code for performing test execution and 

animation. We described a list of conditions tha t are checked during testing and a 

set of failure types that are detected by our approach. The approach also supports 

the animation of test execution. The ability to animate models can help one better 

understand modeled behavior. Novice and experienced developers can both benefit 

from the visualization of modeled behavior provided by model animators. Model 

animation gives quick visual feedback to novice modelers and thus, helps them identify 

improper use of modeling constructs. Experienced modelers can use model animation 

to understand designs created by other developers better and faster.

We introduced the JAL action language, which represents action semantics spec

ified in UML 2.0 standard. The JAL syntax is similar to Java, hence developers who 

are familiars with Java can easily learn JAL.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This dissertation presents a systematic approach for generating test inputs from 

UML design models. We propose the use of a VAG to generate path constraints. 

VAG is a directed graph, hence existing graph-based approaches to selecting execu

tion paths (such as [5, 39, 44, 47, 60]) can be applied to VAG. Moreover, the VAG 

symbolically represents object configuration constraints as sets and variables, and 

thus, can be used to generate test inputs for object oriented systems. Using the VAG 

makes it easier to generate path constraints, because the tester now needs only one 

representation instead of having to work with several different diagram views. While 

symbolic execution has been traditionally used on procedural programs where behav

iors are described imperatively, we have applied it to UML models, where behaviors 

are specified declaratively in the operation pre- and post-conditions.

The dissertation presents a prototype tool, UMLAnT, an Eclipse plugin tha t au

tomates the test execution and animation approach. UMLAnT is integrated with 

some widely used software development technologies, tools and languages, such as 

Eclipse, EMF, JUnit, UML, and Java, thereby enhancing its applicability.

The dissertation describes three pilot studies, where our testing approach is ap

plied to test design models. Our approach detected about 90% of the faults seeded 

during the studies. The results support the view that testing design models can help 

detect design flaws, though more studies are needed to evaluate the approach.

10.2 Discussion

An issue to consider for any constraint-based testing approach is the applicability 

of the approach to solve path constraints for large models. The results of our pilot 

studies suggest that the size of a path constraint increases linearly with the size of 

the path. Besides, our studies also suggest tha t the time it takes the Alloy constraint 

solver to solve a path constraint does not depend significantly on the path length.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



We noted tha t the bigger the size of a class diagram, the longer it takes Alloy to 

solve a constraint. However, if using the constraint based approach is costly, testers 

can combine it with cheaper approaches such as random testing. For example, one 

can use random approach to generate inputs that cover most of the conditions (or 

messages) in sequence diagrams, and use the constraint-based approach only to cover 

the remaining conditions (or messages).

Our test input generation approach is automatable. Rules exist for transforming 

UML diagrams into VAGs, transforming constraints into Alloy, and generating path 

constraints. The path selection can be fully automated if infeasible paths do not exist 

in the models. In the presence of infeasible paths, none of the existing path selection 

techniques can be fully automated, since the problem of determining whether there is 

an input that exercises a path is undecidable [5]. A number of researchers (e.g., [39]) 

suggested a semi-automated solution where paths that are automatically generated 

are presented to testers. The testers then determine whether a path is feasible or 

not. Given a finite range of the number of objects, the Alloy constraint solver can 

be used to determine if there is an input that exercises a path. In our approach, we 

can set a limit on the number of objects in Alloy to a reasonably large number and 

solve a path constraint. If Alloy reports tha t there is no solution within tha t limit, 

the tester can manually analyze the path and decide if the path should be rejected. 

Alternatively, a higher limit on the number of objects can be used.

A significant concern regarding UML action semantics is tha t the current seman

tics do not significantly raise the level of abstraction above that provided by pro

gramming languages [18, 37]. Our experience with using JAL to specify stand-alone 

non-distributed systems indicate that while JAL provides some abstraction over Java, 

it is not much higher. For example, the JAL segment in Figure 6.1 is similar to the 

generated Java code shown in Figure 7.6. The only significant additional Java code 

in this example is the code in the TFactory class, wdrich is about 70 lines long.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



With platform-independent models (PIM) [54] of distributed systems, however, 

using JAL instead of programming languages can produce models at a higher level 

of abstraction. The model in Figure 5.2 may be considered as a PIM of a distributed 

system, where ProductCatalog and Product are located in different machines com

municating using the Java RMI [62] mechanism. At the PIM level, a modeler can 

still use the JAL segment in Figure 6.1 to specify the behavior of the operation, Pro

ductCatalog: :addProduct(). The generated platform-specific code, however, would be 

much more detailed than the Java code shown in Figure 7.6. For example, code will 

be needed to handle RMI exceptions and creation of objects at remote locations.

In Chapter 2 we state that our approach can be applied to completely specified 

UML design models, in which every operation is associated with an activity diagram 

(specifying using JAL) and all operation pre- and post- conditions are fully specified 

using OCL. Such a requirement may at first seem to add too much overhead to the 

software development processes; OCL and action languages are rarely used in current 

development approaches. However, the fact tha t we have developed an automatable 

technique that utilizes OCL invariants and pre- and post-conditions to find faults 

will motivate developers to specify these items, especially for safety critical software 

systems. Moreover, in MDE approaches, operations that are specified using action 

languages may be automatically transformed into code.

Sometimes the modeled system is too big and it is not feasible or desirable for 

developers to completely specify all the pre- and post-conditions and JAL specifica

tions. Our approach may still be used to test the most critical scenarios described 

in a design model. Figure 10.1 describes a development process for such situations. 

First, developers create the design class diagram, which is the UML diagram that is 

most widely used. Developers use their domain knowledge to identify the system’s 

most critical scenarios that must be tested. The developers use sequence diagrams 

to specify these scenarios. Next, developers provide pre- and post- conditions and

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



JAL specifications for each operation tha t is called in the critical sequence diagrams. 

These scenarios are tested using our approach.

Specify A  
<1 ^ C r i t ic a l  Operations)

Specify 
Class Diagram Testing

Specify Critical 
Scenarios

Sequence
Diagrams

Figure 10.1: A modeling process that includes model testing.

10.3 Future work

Currently, JAL supports only synchronous action semantics. Future work can extend 

JAL to support asynchronous semantics. Techniques are needed to transform activity 

diagrams from graphical format to JAL format and vice versa.

We only use class and interaction diagrams to generate test input sets. Future 

work in generating test inputs includes using information from activity and use case 

models. Also, the approach can be extended to generate test inputs that satisfy class 

diagram based test adequacy criteria described in Andrews et al. [3].

Although our inputs are intended to test design models, they can be transformed 

into inputs that may be used to test the implementations as well. This will help 

validate the code against the models. The transformation of model test inputs to 

code test inputs can be investigated in future work.

In the current version of UMLAnT, animations are performed after test execution 

is complete. Future work in developing tools can include enhancements so that the 

animation is performed during test execution. UMLAnT can also be extended to 

support the transformation of UML diagrams into VAGs and VAGs into test inputs.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix A  

Java like A ction Language 
Specification, Version 1.1

A .l Introduction

JAL is an action language that supports the action semantics described in the 

UML 2.0 specification. JAL can be used to specify actions within the context of 

a UML activity diagram. JAL supports specification of a sequence of actions per

formed by a class instance during the execution of an operation call. It provides 

access to the data described in class diagrams and the data supplied by signals that 

initiate the specified sequence of actions. The current version of JAL only supports 

synchronous operation invocation.

A. 2 Grammar

The original version of the grammar can be found in Kawane’s Masters Thesis [32]. 

We modified the grammar so that it uses the standard BNF operators:

1. Terminal symbols are represented in bold face.

2. X* represents zero or more repetitions of X.

3. X | Y represents a choice between X or Y.

4. [ X ] represents an optional use of X. However, in the JAL grammar below, the 

characters ‘p and “]’ also appear as terminal symbols and are used to declare

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



sets. To differentiate such occurrences, we use quotes around them ( “[” and 

“]” )•

The JAL grammar is given below:

1. jal.segment := jal_statement*

2. jal.statem ent := ja l.expression; | jal_delete_statem ent

| ja l.creatin g .lin k .sta tem en t j  jal_delete_link_statem ent | statement

3. ja l.exp ression  := jal_read_attribute_expression  

j  jal-m odify_attribute_expression

| jal_creating_expression | jal_read_association_expression  

J  jal_count_association_expression j  expression

4. variable_declaration := type variable_declarator ;

5. variable_declarator := id e n t if ie r  | id e n t i f ie r “[”

6. jal_read_attribute_expression := _get_identif ie r  ( )

7. jal_m odify_attribute_expression := _set_ id en tifier( ja l.exp ression  )

8. jal_creating_expression := _create_object-identifier

9. jal_delete_statem ent := _delete_object( id e n t if ie r  ) ;

10. jal-creating_link_statem ent := .create J in k .id en t i f  ie r  ( id e n t if ie r  , 

id e n t if ie r  ) ;

11. jal_delete_link_statem ent := .delete  Jink_ident i f  ie r  ( id e n t if ie r  , 

id e n t if ie r  ) ;

12. jal_read_association_expression := id e n t if  ie r . _get_At ( id e n t if ie r  )

13. ja l.cou n t.associa tion .exp ression  := id e n t if  ier ..g e t.T o ta l ( )

14. i f  .statem ent := if ( expression ) {jal.segm ent} [ else {jal.segm ent}]

15. while_statement := while ( expression ) {jal.segm ent}

The non-terminal symbols, type, id e n t if ie r , arg_list, expression, and 

statement, have the same interpretations as those for non-terminal symbols used 

in the Java Language Specification [30].

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A .3 JAL syntax

A JAL segment specifies the sequence of actions executed within an operation. It 

consists of a number of JAL statements. A JAL statement can be a simple statement 

(e.g., an operation call action), a loop, or condition statements. A simple statement 

can be an expression, a single statement, or a compound statement. A simple state

ment ends with a semicolon ( “;”)• An expression represents an action tha t returns a 

value. A simple statement represents an atomic action that does not return a value. 

A compound statement represents a combination of atomic actions.

A .3.1 Identifiers

JAL statements are composed of keywords, logical and arithmetic operators, and 

identifiers. Identifiers can be defined in class diagrams (e.g., names of classes, at

tributes, associations, operations, and operation parameters) or in JAL segments as 

local variables. JAL identifiers must conform to the following rules:

• Identifiers are case sensitive.

• Identifiers may only contain the characters [a — z], [A — Z],  and [0 — 9],

• Identifiers must not start with a numeric character [0-9].

• Identifiers must not be the same as the keywords.

A variable can have a primitive type or be an object handle. A JAL variable needs 

to be declared before being used.

A .3.2 Keywords

JAL has the keywords i f ,  when, return, _get_, _set_, _create_object_, 

_delete_object_, _create_link_, _delete_link_, _get_At, _get_Total, _add, 

and _remove.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A .3.3 P rim itive and Pre-defined T ypes

JAL supports the primitive types int, float, String, and boolean. JAL also defines the 

Collection type that only contains objects of the same type.

A .3.4 C ondition statem ents

Condition statements in the JAL have the following syntax:

i f  ( boolean_expression) {

< SEQUENCE.0F_ STATEMENTS _1>

>

[e lse  {

< SEQUEN CE_ 0F_ STATEMENTS _ 2 >

>]

If boolean_expression evaluates to true, <SEQUENCE_0F_STATEMENTS_1> is exe

cuted, otherwise, <SEQUENCE_0F_STATEMENTS_2> is executed. The e lse  branch can 

be omitted if <SEQUENCE-OF-STATEMENTS_2> is empty.

A .3.5 Loop statem ents

Loop statements in the JAL have the following syntax:

w h ile( boolean_expression ){

< SEQUEN CE_ OF _ STATEMENTS >

}

The body of the loop, <SEQUENCE_OF_STATEMENTS>, is executed when the loop 

guard, boolean_expression, is true.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A .3.6 A tom ic actions

A UML atomic action is represented using a JAL single statement or expression. 

JAL supports the following atomic actions: CreateObjectAction, Destroy Object Action, 

ReadLinkAction, CreateLinkAction, DestroyLinkAction, CallOperationAction, Reply- 

Action, ReadStructuralFeatureA ction, Write Structural Action, ValueSpecijicationAc- 

tion, ReadVariableAction, and WriteVariableAction. These atomic actions are repre

sented by create object expression, destroy object statement, read object expression, 

create link statement, delete link statement, call operation expression, return state

ment, read attribute expression, write attribute statement, calculation expression, 

read variable expression, and write variable statements.

A .3.6.1 Create object expression

-result

♦classifier

OutputPin

■className : String
Classifier

CreateObjectAction

Figure A.l: Create Object Action Meta-Class Diagram [56].

The CreateObjectAction shown in Figure A .l is represented by the JAL create 

object expression, _create_object_<className>().

• _create_object_ is the keyword representing the create object expression.

• <className> is the name of the class tha t is instantiated. It is denoted by the 

attribute C la ss if ie r  .className in Figure A.l.

The create object expression evaluates into the reference of the newly created 

object. When a new object is created, all its attributes are undefined, unless default 

values for the attributes are given in the class diagrams.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A .3.6.2 Destroy object statem ent

DestroyObjectAction -target InputPin
-isD estroylirks: Boolean = True 
-isDestroyOwnedObject:: Boolean False ♦ --------------------->

0..1 1

Figure A.2: Destroy Object Action Meta-Class Diagram [56].

The DestroyObjectAction shown in Figure A.2 is represented by the delete object 

statement, _delete_object_(<obj ectHandle>).

• delete object is the keyword representing the delete object statement.

• <objectHandle> is an expression representing the value associated with the 

target InputPin of the DestroyObjectAction. <objectHandle> evaluates to 

the object that is destroyed.

When an object is destroyed, all the links are also destroyed, but all the owned 

objects are left unchanged.

A .3.6.3 Read link expressions

-result

0..1 0..1

-endData
+end

0..1

InputPinOutputPin

PropertiesLinkEndData

ReadLinkAction

Figure A.3: Read Link Action Meta-Class Diagram [56].

The ReadLinkAction shown in Figure A.3 is represented by an association navi

gation expression, [Obj ectHandle. ] <AssociationEndName>.

• Ob j ectHandle is an expression representing the value associated with the 

InputPin object, endData.value, of the ReadLinkAction. This expression 

evaluates to an object at one end of a link.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



• <AssociationEndName> is the identifier representing the name of the 

Properties object, endData.end, of theReadLinkAction. This endData.end

object represents the association end at the other end of the link.

This expression evaluates into a read-only collection of objects that associates with 

the object, ObjectHandle, with the association-end named, AssociationEndName. In 

JAL, two operations can be applied to this collection:

• _get_Total(): Returns the number of objects in the collection.

• _get_At(index): Returns an object at the <index> position in the collection.

A .3.6.4 Create link statement

-linkEndData

0..1

+insertAt0..1

+associaiotn

+end

InputPinPropotiesAssociation

CreateLinkAction

Figure A.4: Create Link Action Meta-Class Diagram [56].

The CreateLinkAction shown in Figure A.4 is represented by the create link state

ment, _create_link_<AssociationName>(<objectHandlel>, <objectHandle2>).

•  create link is the keyword representing the CreateLinkAction.

• <AssociationName> is the identifier representing the name of the A ssociation  

object in the one-element bag linkEndData.end.association, of the 

CreateLinkAction. This association is instantiated during the execution of 

the action.

• <objectHandlel> and <objectHandle2> are expressions representing the val

ues associated with the InputPin objects in the bag linkEndData. in sert At of 

the CreateLinkAction. These expressions evaluate to the objects at the two

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ends of the newly created link. These objects must be instances of classes at 

the two ends of the instantiated association.

The create link statement creates a link that is an instance of the association with 

the name, <AssociationName>. This link connects two objects represented by the 

expressions, <objectHandlel> and <objectHandle2>.

A .3.6.5 D elete  link  s ta tem e n t

+associaiotn

+end

+endData

0..1

Propoties InputPinAssociation

DestroyLinkAction Lin kEndDestruction Data

Figure A.5: Destroy Link Action Meta-Class Diagram [56].

The DestroyLinkAction shown in Figure A.5 is represented by the delete link state

ment, _deleteJink_<AssociationNam e>(<objectHandlel>, <objectHandle2>).

• -delete_link_ is the keyword representing the DestroyLinkAction.

• <AssociationName> is the identifier representing the name of the A ssocia tion  

object in the one element bag, endD ata .end .assoc ia tion , of the De

stroyLinkAction. This association is of the type of the link tha t is deleted.

• <objectHandlel> and <objectHandle2> are expressions representing the val

ues associated with the InputP in  objects in the bag endD ata.destroyA t of the 

DestroyLinkAction. These expressions evaluate to the objects at the two ends 

of the deleted link. These objects must be instances of classes at the two ends 

of the association of the deleted link.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The statement deletes the link tha t connects two objects represented by the ex

pressions <objectHandlel> and <objectHandle2>. The link is an instance of the 

association with the name, <AssociationName>.

A .3.6.6 C all o p e ra tio n  expression

0..1

+arguments

+operat -result

In p u tP in

I n p u tP in

O p e ra t io n
O u tp u tP In

C a l lO p e ra t lo n A c tlo n

Figure A.6: Call Operation Action Meta-Class Diagram [56].

The CallOperationAction shown in Figure A.6 is represented by the 

call operation expression, [<ObjectHandle>] . <OperationName>([<Parameterl>, 

<Parameter2>, . . . ] ) .

•  <ObjectHandle> is an expression representing the value associated with the 

InputPin object, target, of the CallOperationAction. This expression eval

uates into the target object of the operation call.

• <OperationName> is the identifier representing the name of the Operation ob

ject, operation, of the CallOperationAction. The operation object repre

sents the called operation.

• <Parameterl>, <Parameter2>, . . .  is a comma separated list of expressions. 

Each of the expression in the list represents a value associated with an InputPin 

object in the set, arguments, of the CallOperationAction. This set represents 

the arguments of the operation call.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This expression evaluates into the value that is returned by the called opera

tion. The return value is represented by the OutputPin object, resu lt, of the 

CallOperationAction.

A .3.6.7 R e tu rn  s ta te m e n t

-replyToCall 1

0..1

C a llE v en t R e p ly  A c tio n In p u tP in

0..1 -returnlnformation 1

Figure A.7: Reply Action.

The ReplyAction shown in Figure A. 7 is represented by the return statement, 

return <ReturnValue>.

• return is the keyword representing the ReplyAction.

•  <ReturnValue> is an expression representing the value associated with the 

InputPin object, returnValue, of the ReplyAction.

The ReplyAction terminates the execution of the current operation call, and re

turns the returnValue to the operation tha t called the current operation. In the UML 

specification, an operation call can return multiple values. In JAL, it is assumed that 

each operation call can return at most one value.

A .3.6.8 R ead  a t t r ib u te  expression

The ReadStructuralFeatureAction shown in Figure A.8 is represented by the read 

attribute expression, [obj ectHandle] ._get__<AttributeName> ().

• -ge t- is the keyword representing the ReadStructuralFeature Action.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-object
^structuralFeature

-result

0..1

O u p u tP in

In p u tP in

S t ru c tu ra l  F e a tu r e

Figure A.8: Read Structural Feature Action Meta-Class Diagram [56].

• <AttributeName> is the identifier representing the name of the 

S tru c tu ra lF e a tu re  object, s tru c tu ra lF e a tu re , of the ReadStructuralFea- 

tureAction. This object represents the accessed attribute.

• <objectHandle> is an expression representing the value associated with the 

InputPin, ob jec t, of the action. The expression evaluates to the object that 

contains the accessed attribute.

This expression returns the attribute value, <AttributeName>, of the object, 

<objectHandlel>.

A .3.6.9 W rite  a t t r ib u te  s ta te m e n t

0..1 W rl te S tru c tu ra lF e a tu re A c t lo n + s tru c tu ra lF ea tu re S t ru c tu ra lF e a tu r e

— ♦ --------------------------------------------^
1

R e m o v e S tru c tu ra lF e a tu re V a lu e A c tio n

1 +value

\ / IIn p u tP in
^  1
^  +insertA t

+ rem oveA t

Figure A.9: Write Structural Feature Actions Meta-Class Diagram [56].

The WriteStructuralFeatureAction shown in Figure A.9 is represented by the write 

attribute statement, [Obj ectHandle] ._set_<AttributeName> (<value>)

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



• _set - is the keyword representing the Write StructuralFeature Action.

• <AttributeName> is the identifier representing the name of the 

S tru c tu ra lF e a tu re  object, s tru c tu ra lF e a tu re , of the WriteStructuralFea- 

tureAction. This object represents the accessed attribute.

• <objectHandle> is an expressions representing the value associates with the 

InputP in  object, in se rtA t, of the WriteStructuralFeatureAction. This expres

sion evaluates to the object that contains the accessed attribute.

• <value> is an expression that evaluates to the new value tha t is assigned to the 

attribute, <AttributeName>.

This statement removes the old value of the attribute, <AttributeName>, of the 

object, <objectHandlel>. It then adds the new value, <value>, to the attribute.

A .3.6.10 C alcu la tio n  expression

+value

+result O u tp u tP in

V a lu e S p e c if ic a tio n

V a lu e S p e c if ic a tio n A c tio n

Figure A.10: Value Specification Actions Meta-Class Diagram [56].

The ValueSpecificationAction shown in Figure A. 10 is represented by a calculation 

expression. In JAL, the calculation expressions for Boolean, integer, float, and string 

expressions are the same as those in Java.

The following collection operations are supported:

• <CollectionExpression>._get_Total(): Get the number of items in the col

lection.

• <CollectionExpression>._get_At(<index>): Get an item at the <index> po

sition in the collection.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



• <CollectionExpression>.^add(<Expression>): Add an item to the end of 

the collection.

• <C ollectionExpression>._rem ove(<index>) Remove an item at the <index> 

position in the collection.

A .3.6.11 A ccessing variab les

The syntax for accessing a variable in JAL is the same as in Java.

A .3.7 C om pound statem ent

In JAL, a compound statement represents a combination of atomic actions. A JAL 

compound statement consists of an expression or a single statement that uses another 

expression as a parameter.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Appendix B  

UM LAnT User Guide

This appendix describes how to use the UMLAnT tool. The steps are illustrated 

using a small example of a simple “Product Management” system. A partial class 

diagram of the system is shown in Figure B.l. The system has one ProductCatalog, 

which is used to managed zero or many Products. Each Product is categorized into

exactly one Category.

Figure B.l: DUT  Class Diagram of the Product Management System.

The steps are listed below and explained in subsequent sections:

1. Specify the design under test (DUT) in Eclipse using the Omondo EclipseUML 

graphical editor and UMLAnT plug-in editor.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. Use UMLAnT 's TDUT generator to obtain the testable form (TD U T ) of the 

model.

3. Specify JUnit like test inputs.

4. Execute tests and observe test results.

5. Use UMLAnT 's animator to animate the test execution.

B .l  Creating a. D U T

1. Create a new Eclipse project:

•  Select File —» New —)• Project. Choose “EMF Project” .

•  Set the name for the project, e.g., “Demo”. Click “N ext”. Chose “Create 

an empty Project” , click “Finish”.

2. Create an EMF  class diagram for the D U T :

•  On the Package Explorer view, right click on the newly created Project 

(“Demo” in our example) and then choose “New —)• Other”.

•  Select “EMF Class Diagram” and then click “N ext”.

•  In the “File name”, type the name of the new EMF  file. Usually, the 

name of this file is the same as the project name, which is “Demo. ecd” in 

the example used here.

• In “Package” text box, type the name of the package, for example, 

“Demo”, and then click “Finish” .

•  Open the newly created EMF  file (which is “Demo.ecd” in our example) 

with the graphical editor. Using the editor, create the class diagram for 

the DUT. For example, create the class diagram as shown in Figure B.l.

•  Save the class diagram by press “Ctrl-S” .

3. Open the “.ecore” file in EM F 's tree-based sample Ecore editor (e.g., the 

“Demo.ecore” file):

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



•  Choose the file in the package explorer and right click.

•  Choose Open As —» Sample Ecore Model Editor from the context 

menu to open the file in the tree editor.

UMLAnT provides additional capabilities to the editor to let the user specify 

constraints and operation behaviors.

4. Right click anywhere within the tree view and choose UMLANT —> Specify 

Invariants to input system OCL constraints. For example, enter the OCL 

constraint as shown in Figure B.2.

context ProductCatalog inv:
— There should not be 2 categories with the same categorylD  

not s e l f . ca teg o ry -> ex ists (c l, c2:Category I(c l.categorylD  = 
c2.categorylD) and (cl<>c2))

Figure B.2: OCL Constraint for the “Demo” project.

5. Collapse all the nodes of the tree to see attributes, operations and associations. 

Right click on each operation and choose UM LANT —> Specify Behavior 

in JAL to input JAL specification. Enter the JAL segments shown in Fig

ures B.3, B.4, B.5, B.6, B.7, B.8, and B.9.

This completes the specification phase of the system.

Category catg;
catg = _create_object_C ategory(); 
ca tg .setlD (ID );
catg.setC ategoryD escription(catD sc);
_create_link_ProductCatalog_Category_category_catalog(catg, 
t h i s ) ;

Figure B.3: JAL segment for ProductCatalog: : addCategoryO.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



_set_categoryID(newID);

Figure B.4: JAL segment for Category: :setID ().

return _get_categoryID ();

Figure B.5: JAL segment for Category: :getID().

Category catg;
catg = _create_object_C ategory(); 
ca tg .setlD (ID );
catg.setC ategoryD escription(catD sc);
_create_link_ProductCatalog_Category_category_catalog(catg, 
t h i s ) ;

Figure B.6: JAL segment for ProductCatalog: : addCategoryO.

Category ctg=th is.findC ategory(cID ); 
if (c tg != n u ll){

Product p = _create_object_Product(); 
p .setlD (pID );
_create_link_Product_ProductCatalog_catalog_product(this, p ) ; 

/ /  _create_link_Product_Category_category_product(ctg, p ) ; 
return true;

>
return fa ls e ;

Figure B.7: JAL segment for ProductCatalog: :addProduct0 .

_set_iD(newID);

Figure B.8: JAL segment for Product: :setID ().

B.2 Generating TDUT

A testable form of the system is generated from the model specification. In the left 

window of package explorer, choose the “.ecore” file(e.g\, ’’Demo.ecore” and then

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



in t to ta l= category . _getT otal();
in t i=0;
w h ile (i< to ta l){

Category c=category. _ g e tA t(i); 
in t id=c.getID ( ) ;  
if(id==cID ){  

return c;
}
i= i+ l;

}
return n u ll;

Figure B.9: JAL segment for ProductCatalog: :findCategory().

right click. Choose U M LA N T —» G enerate Testing Package. This generates the 

following files under the “src” directory:

1. A testable form of the model in the Java package, testable_m odels.Project.

2. The USE specification Project .use in the testablejm odels .Project package. 

Chapter 8 contains more information on the integration of UMLAnT and USE.

3. A JUnit-like framework for running tests in the package, 

testable_m odels.Proj e c t .Framework.

4. A SampleExample test driver in the package, 

testable_m odels.Proj ect.T ests .

B.3 W riting test cases

Writing test cases for models is similar to writing JUnit1 test cases for testing code. 

One difference while writing test cases for models is that the test case class ex

tends the testable_m odels. P roject. Framework. ModelTestCase class, instead of 

the junit.framework.TestCase class. The ModelTestCase class integrates the

xhttp://www.junit.org

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.junit.org


model execution engine and the USE subsystem. The class also provides a tester 

with an additional assert method, assertConf ormanceQ. which checks the confor

mance of a particular run-time object configuration against the model specification. 

A sample test case, testable_m odels. Pro j e c t . T ests . SampleTestCaseForModel, is 

generated as part of testable_m odels.Project .Tests package. As an example, we 

edit the “testOne” method of the SampleTestCaseForModel class and enter the code 

as shown in Figure B.10.

public void testO ne(){
//C reate s ta r t configuration
ProductCatalog pc = fa c to ry . _create_object_ProductC atalog(th is); 
p c . addCategoryC'Book", 1);

//sen d  te s t  s ig n a l(s )  
pc.addProduct(2, 1);

//U se assertXXXX as oracle to  check the resu lts  
t h i s . assertConformance();

>

Figure B.10: The Code for the “testOne” method.

B .4 Launching the test runner

The class testable_m odels. Pro j e c t . Framework. ModelTestsRunner generated by 

UMLAnT loads and runs test cases written by the tester. in the package 

testable_m odels.Project.T ests. To run the tests, the CLASSPATH  must con

tain these jar files: ju n it . jar, UMLAnT. jar, a n t lt -2 .7 .5 . jar and USE. jar. The 

CLASSPATH  needs to contain the ‘ 'SWT1 ’ library. We can add these .ja r  files and 

the ‘ ‘SWTJ 3 libraries to the classpath  as follows:

1. On the Package Explorer view, right click on the current project (e.g., “Demo”, 

choose “Properties” .

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2. Select “Jav a  B uild  P a th ” .

3. Select “L ib raries” tab.

4. Click “A dd  L ib ra ry ” , and then select “S ta n d a rd  W id g e t Toolkit 

(S W T )” . Click “N e x t” , and then “F in ish ” .

5. Click “A dd  E x te rn a l J A R s” and select “ . . .  

p lu g in s \ed u .co lo s ta te .ed u .u m lan t_ 1 .0 .0 \u se .ja r” .

6. Repeat step 5 to add the following . j a r  files:

•  . . \p lu g in s \e d u .c o lo s ta te .e d u .u m la n t_ l.0 .0 \ a n t l t - 2 .7 .5 . j a r ”

•  . . \p lu g in s \e d u .c o lo s ta te .edu .um lan t_ l.0 .0 \um lan t. j a r ”

•  “ . . . \ p lu g in s \o r g . ju n it_ 3 . 8 . i \ j u n i t . j a r”

7. Click “O K ” .

B.5 Running test cases

We can execute the ModelTestRunner as follows:

1. On the menu bar, select “R u n  —> R u n . . .  ”

2. Click “B row se” to select the current Project (e.g., “Demo” . The main class 

automatically gets set to “ModelTestRunner” .

3. Choose the “ (x )= A rg u m e n ts” tab. On “V M  arg u m en ts” , enter:

-D ja v a .lib ra ry .p a th  =

" [ . . . ]  \p lu g in s \o rg . e c l ip s e . sw t. win32_3.0 . 2\os\w in32\x86 ’ ’

4. Click “R u n ”

Once the test runner is launched, it lists all the test case drivers written by the 

tester. Testers can choose and run a test driver one at a time. The list of drivers 

is shown in the left pane and the results are displayed on the right pane. In our 

example, there is one test driver, “SampleTestCaseForModel”. Select the test driver 

and click on “R u n ” .

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The tests are executed and the test runner reports failures, if any. For our example, 

UMLAnT reports one failure, which occurs because of a fault in the JAL statement 

for the “ProductCatalog::addProductO” operation in Figure B.7. To fix the fault, 

we can uncomment the currently commented line in the JAL specification. To close 

the test runner, the tester must click on “E xit”.

B.6 Anim ating the execution

On the Package Explorer view, the tester will see a “.mtd” file (e.g., “Demo .mtd”). 

If the file is not visible, the view needs to be refreshed. This is done by clicking on the 

current project (e.g., “Demo”) and then choosing “Refresh”). The “.mtd” file logs all 

the actions tha t were executed during the test. Right clicking on the file and choosing 

“UMLAnT Animated Debugger —>• Run Debugger” launches the animator..

The animator window contains two tabs: “Object Diagram” and “Sequence 

Diagram”, which are the two views used to animate the test execution. Three 

buttons under the menu bar are used to control the animation. The right-most 

button allows the tester to step through the actions; the middle button allows the 

tester to run to the end of the animation; the left-most button is currently inactive. 

Since the animation is performed quickly in the current version of the tool, if a tester 

chooses to run to the end of the animation, we can only see the end result once the 

animation is complete. In a future version, when the tester chooses to run to the end 

of the animation, the tool will pause briefly after animating each action. During each 

pause, the left-most, button can be used to stop the animation.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



REFERENCES

[1] A. Abdurazik and J. Offutt. Using UML collaboration diagrams for static check
ing and test generation. In Proceedings of the 3rd International Conference on 
the UML, pages 383-395, York, UK, October 2000.

[2] W. Adrion, M. Branstad, and J. Cherniavsky. Validation, verification, and test
ing of computer software. ACM  Computing Survey, 14(2):159-192, December 
1982.

[3] A. Andrews, R. France, S. Ghosh, and G. Craig. Test Adequacy Criteria for 
UML Design Models. Journal of Software Testing, Verification and Reliability, 
13(2):95—127, April-June 2003.

[4] J. F. Benders. Partitioning procedures for solving mixed-variables programming 
problems. Numerische Math,em,atik 4, pages 238-252, 1962.

[5] A. Bertolino and M. Marre. Automatic generation of path covers based on the 
control flow analysis of computer programs. IEEE Transactions on Software 
Engineering, 20(12):885-899, December 1994.

[6] R. V. Binder. Testing Object-Oriented Systems. Models, Patterns, and Tools. 
Addison Wesley, USA, 2004.

[7] R. V. Binder. Testing Object-Oriented Systems Models, Patterns, and Tools. 
Object Technology Series. Addison Wesley, Reading, Massachusetts, October
1999.

[8] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User 
Guide. Addison-Wesley, 1999.

[9] Borland Software Corporation. Together 6.0. h ttp :  / /b o r la n d , com/ 
to g e th e r / , 2003.

[10] R. S. Boyer, B. Elspas, and K. N. Levitt. Select-a formal system for testing and 
debugging programs by symbolic execution. In Proceedings of the International 
Conference on Reliable Software, pages 234-245, April 1975.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[11] M. M. Brandis and H. Mossenbock. Single-pass generation of static single
assignment form for structured languages. ACM  Transactions on Programming 
Languages and Systems, 16(6) :1684—11698, November 1994.

[12] L. Briancl, J. Cui, and Y. Labichi. Towards automated support for deriving test 
data from UML statecharts. In Proceedings of the 6th International Conference 
on the UML, pages 265-279, San Francisco, CA, USA, October 2003.

[13] L. Briand and Y. Labiche. A UML-based approach to system testing. Software 
and Systems Modeling, l(l):10-42, Sept 2002.

[14] T. Dinh-Trong, S. Ghosh, R. France, B. Baudry, and F. Fleury. A Taxonomy 
of Faults for UML Designs. In 2nd MoDeVa workshop - in conjunction with 
MoDELS, October 2005.

[15] T. T. Dinh-Trong. Rules For Generating Code From UML Collaboration Dia
grams and Activity Diagrams. Master’s thesis, Colorado State University, Fort 
Collins, Colorado, 2003.

[16] G. Engels, R. Hucking, S. Sauer, and A. Wagner. UML collaboration diagrams 
and their transformations to Java. In Proceedings of the 2nd International Con
ference on the UML, pages 416-429, Fort Collins, CO, USA, October 1999.

[17] R. Ferguson and B. Korel. The chaining approach for software test data gener- 
atio. ACM Transactions on Software Engineering and Methodology ( TOSEMj, 
5(l):63-86, January 1996.

[18] R. France, S. Ghosh, T. Dinh-Trong, and A. Solberg. Model-Driven Development 
Using UML 2.0: Promises and Pitfalls. Computer, 39(2), February 2006.

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissicles. Design Patterns: Elements 
of Reusable Object-Oriented Software. Addison Wesley, 1995.

[20] E. Gamma and K. Beck. Junit. h ttp :  //www. ju n i t .  o r g / , 2001.

[21] S. Ghosh, R. B. France, C. Braganza, N. Kawane, A. Andrews, and O. Pilskalns. 
Test adequacy assessment for UML design model testing. In Proceedings of the 
International Symposium on Software Reliability Engineering, pages 332-343, 
Denver, CO, 2003.

[22] M. Gogolla, J. Bohling, and M. Richters. Validation of UML and OCL models 
by automatic snapshot generation. In Proceedings of the 6th International Con
ference on the UML, pages 265-279, San Francisco, CA, USA, October 2003.

[23] M. Gogolla, J. Bohling, and M. Richters. Validating LTML and OCL Models by 
Automatic Snapshot Generation. Software and System. Modeling, 4(4):386-398, 
Nov 2005.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[24] R. E. Gomory. An algorithm for integer solutions to  linear programs. Recent 
Advances in Mathematical Programming, 1963.

[25] N. Gupta, A. P. Mathur, and M. L. Sofia. Automated test data generation 
using an iterative relaxation method. In Proceedings of the 6th ACM  SIGSOFT  
international symposium on Foundations of software engineering, pages 231-244, 
Lake Buena Vista, FL, USA, November 1998.

[26] D. Harel and E. Gery. Executable Object Modeling with Statecharts. IEEE  
Computer, 30(7):31-42, 1997.

[27] P. V. Hentenryck, L. Micheal, and Y. Deville. Numerica. A modeling language 
for global optimization. The MIT Press, Cambridge, Massachusetts, London, 
1997.

[28] IBM. Rational Rose, h t t p : / / www-306. ibm. c o m /so ftw a re /a w d to o ls /  
d e v e lo p e r /r o s e x d e /, 2004.

[29] D. Jackson, I. Schechter, and I. Shlyakhter. Alcoa: The alloy constraint analyzer. 
In Proceedings of the 22nd International Conference on Software Engineering 
(ICSE ’00), pages 730-733, Limerick, Ireland, June 2000.

[30] B. Joy, G. Steele, J. Gosling, and G. Bracha. Java(TM) Language Specification. 
The Java Series. Addison-Wesley Professional, Reading, Massachusetts, June
2000.

[31] Kabira Technology. Kabira. h ttp :  //www. ka b ira . com/, 2006.

[32] N. Kawane. EPTUD: An Eclipse plugin for testing UML design models. Master’s 
thesis, Colorado State University, Fort Collins, Colorado, 2005.

[33] Kennedy Carter. iUML. h ttp :  / /m m .  fee. com/, 2006.

[34] Y. Kim, H. Hong, D. Bae, and S. Cha. Test cases generation from UML state 
diagrams. IEE Proceedings - Software, 146(4):187-192, 1999.

[35] J. C. King. A new approach to program testing. In Proceedings of the interna
tional conference on Reliable software, pages 228-233, Los Angeles, LA, USA, 
1975.

[36] J. C. King. Symbolic execution and program testing. Communications of the 
ACM, 19(7):385-394, July 1976.

[37] A. Kleppe, J. Warmer, and W. Bast. MDA Explained - The Model Driven 
Architecture: Practice and Promise. Addison-Wesley, 2005.

[38] B. Korel. Automated software test data generation. IEEE Transactions on 
Software Engineering, 16(8):870-879, August 1990.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www-306


[39] K. W. Krause, R. W. Smith, and M. A. Goodwin. Optimal software test plan
ning through automated network analysis. In IEEE Proceedings of the 1973 
Symposium on Computer Software Reliability, pages 18-22, New York, 1973.

[40] C. Larman. Applying UML and Patterns: An Introduction to Object-Oriented 
Analysis and Design and the Unified Process Second Edition. Prentice-Hall, 2002.

[41] T. Massoni, R. Gheyi, and P. Borba. A UML class diagram analyzer. Technical 
report, Information Center, Federal University of Pernambuco, Brazil, September 
2004.

[42] S. Mellor and M. Balcer. Executable UML: A Foundation for Model Driven 
Architecture. Addison Wesley Professional, 2002.

[43] Mentor Graphics, Accelerated Technology division. Bridgepoint. h ttp :  / /m m .  
mentor, com/, 2006.

[44] E. F. Miller, M. R. Paige., J P. Benson, and W. R. Wisehart. Structural tech
niques of program validation. In Digest COMPCON7j, pages 161-164, 1974.

[45] G. J. Myers. The Art of Software Testing. John Wiley and Sons, New York, NY, 
1979.

[46] U. A. Nickel, J. Niere, R. P. Wadsack, and A. Zundorf. Roundtrip Engineering 
with FUJABA. In Proceedings of the 2nd Workshop on Software-Engineering, 
Bad Honnef, Germany, August 2000.

[47] S. C. Ntafos and S. Louis Hakimi. On path cover problems in digraphs and 
applications to program testing. IEEE Transactions of Software Engineering, 
SE-5:520-529, Sept. 1979.

[48] J. Offutt and A. Abdurazik. Generating tests from UML specifications. In 
Proceedings of the 2nd International Conference on the UML, pages 416-429, 
Fort Collins, CO, USA, October 1999.

[49] T. Ostrancl and M. Balcer. The category-partition method for specifying and 
generating fuctional tests. Communications of the ACM, 31(6):676-686, June
1988.

[50] O. Pilskalns, A. Andrews, S. Ghosh, and R. B. France. Rigorous testing by 
merging structural and behavioral uml representations. In Proceedings of the 6th 
International Conference on the Unified Modeling Language, pages 234-248, San 
Francisco, CA, LTSA, October 2003.

[51] D. Riehle, S. Fraleigh, D. Bucka-Lassen, and N. Omorogbe. The Architecture 
of a UML Virtual Machine. In Proceedings of the 2001 Conference on Object- 
Oriented Programming Systems, Languages, and Applications (OOPSLA ’01), 
pages 327-341. ACM Press, 2001.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



[52] M. Scheetz, A. von Mayrhauser, R. France, E. Dahlman, and A. E. Howe. Gen
erating test cases from an 0 0  model with an AI planning system. In Proceedings 
of the 10th International Symposium, on Software Reliability Engineering, pages 
250-259, Boca Raton, FL, USA, January 1999.

[53] K. Tai. On program testing criteria. In Proceedings of IEEE Computer Society’s 
3rd International Computer Software and Applications Conference, pages 494- 
499, November 1979.

[54] The Object Management Group. MDA Guide. Version 1.0.1, OMG, omg/03-06- 
01, 2003.

[55] The Object Management Group. Unified Modeling Language: Infrastructure. 
Version 2.0, OMG, formal/05-07-05, 2005.

[56] The Object Management Group. Unified Modeling Language: Superstructure. 
Version 2.0, OMG, formal/05-07-04, 2005.

[57] The Object Management Group. Object Constraint Language - OMG Available 
Specification. Version 2.0, OMG, formal/06-05-01, 2006.

[58] N. T. Sy and Y. Deville. Consistency techniques for interprocedural test data 
generation. In Proceedings of the 9th European Software Engineering Conference 
held jointly with 10th, ACM  SIGSOFT International Symposium, on Foundations 
of Software Engineering, pages 108-117, Helsinki, Finland, September 2003.

[59] E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

[60] H. S. Wang, S. R. Hsu, and J. C. Lin. A generalized optimal path selection model 
for structural program testing. The Journal of Systems and Software, 10:55-63,
1989.

[61] E. Weyuker. Axiomatizing software test data adequacy. IEEE Transactions on 
Software Engineering, 12(11):1128-1138, June 1986.

[62] W. Grosso. Java RMI. O’Reilly, Sebastopol, CA, October 2002.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


