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Pressure Distribution During Steady Flow 

In Unsaturated Sands 

by 

V. H. Scott Ci) and A. T. Corey (z) 

ABSTRACT 

A . differential equation is derived which describes the pressure 

distribution during steady flow in a porous material occupied by two 

immiscible fluids such as air and water. It is .assumed that Darcy's 

equation applies simultaneously to the wetting and the non-wetting 

phase. Each phase is assumed to be continuous, and therefore, any 

isolated portions of either phase must be regarded as part of the 

porous matrix. The equation may be applied to fluids flowing in 

any direction with respect to each other or in any direction with 

respect to the earth's gravitational field. In order to solve the equa-

tion, it is necessary to know the relationship between the pr·essure 

discontinuity across interfaces between the phases and the conduct-

ivity of the flowing phase or phases. The nature of thi s function and 

a method of obtaining it are discussed briefly. 

Experiments were conducted using a hydrocarbon liquid as the 

wetting fluid, air as the non-wetting fluid, and long columns of sand 

as porous media. Several cases were investigated, and results of 

two are present -:d: (1) Downward flow through a uniform sand, and 

( 2) Downward flow through a sand into another sand of finer texture. 

· Good ag::-eement between experimental data and theory was obtained 

for all cases. 

(1) Associate Professor of Irrigation, University of California, 
Davis. California. 

(2) Associate . Professor of Civil Engineering, Colorado State 
University. Ft. Collins, Colorado. 
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Introduction 

Steady flow in unsaturated soils is a phenomenon that rarely if 

ever exists ' in na:tur,e. Nevertheless .. an anlysis of this type of flow 

leads to tlie development of certain principles that can be applied 

qualitatively to situations of practical interest. Such situations include 

the drainage of soils and evaporation of water from the surface of soils = --- .. .. - - - -. . . . - - . 
in contact with a water table. 

In 1945 Childs (1) reported a study of steady downward flow through 

long columns· of uniform soil. He concluded that (provided the column is 

sufficiently long) the moisture content and suction are constant over a 

considerable length of the column and, as a consequence, the potential 

gradient is the gravitational gradient. Childs and George (2) have also 

pointed out that th,e existence of an invariant suction over a considerable 

portion or a long column during steady downward flow can be the basis 

.. of. a . convenient -method -of measuring the permeability of -unsaturated 

soils. 

:~ / -·. The analysis presented here provides an explanation for these 

ahd other phenomena associated with the steady flow of fluids through 

porous s.olids • 

... - -. - -

Analysis 

-~ It is assumed that Darcy's equation applies simultaneously to 

a wetting and a non-wetting phase as was first suggested by Muskat and 

Mere' s (7). Any i,solated mass of fluid is regarded as a part. of the 

porous matrix and not as a part of either fluid phase. The forces in 
-

each phase are assumed to constitute separately a conservative poten-

tial field in a homogeneous and isotropic matrix . 
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The capillary pressure p is defined as 
C 

pc = pnw - PW 
so that 

) Pc d Pnw _ a Pw = d r d r <> r 

{ 1) 

(Z) 

Where the subscripts nw and w refer to the non-wetting and wetting 

phases. respectively. and r is any direction in which it is desired to 

find the variation of capillary pressure. For the range of p investi-c 
gated in this study. the term p is identical with "suction" as the 

C 
latter term is usually employed. 

For a situation in which the only body force acting on the fluid is 

gravity, Darcy's equation may be written as 

q = K<t. { d p + pg sin e) (3) 
T1 d r 

-in .which q is the component of volume flow per unit of area in the 

direction of r. K is the effective permeability. r, is the fluid vis-e 
cosity. p is the fluid density. and g is the force per unit mass due 

to gravity. and e is the angle of r with the horizontal. 

Solving equation 3 for 

equation 2 gives 

__e. . and substituting its equivalent into 
r 

d p C = (_JE7__ +1 pg sin 8) _ c~ + Pg sin 0) 
~ r K w K . nw 

e e 

(4) 

For the sake of brevity. this is written as 

= [t.(pg}] sine - ~(.il) 
Ke 

(5) 

Equation 5 can be written as an ordinary differential equation 

provided the following conditions (in addition to those previously men-

tioned) exist: 

1. The system is at steady state 
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Z. Thermal equilibrium exists 

3. The flow rate q does not vary in space for either phase. 

4. The properties of the matrix do not vary in space. 

With the foregoing condition satisfied, equation 5 becomes .. 

~ = [ 6( pg)] sine - 6 (an_) 
dr - . Ke 

(6) 

If i~ is assumed further that the flow is in one direction only (and there-

fore its component in any other direction is zero), it is permissible 

to drop the requirement that the matrix be isotropic. In this case, Ke 

may be regarded as the effective permeability in the direction r. The 

term "effective" is used here to distinguish the permeability of a par-

ticular fluid in the presence of another fluid from the permeability K 

that exists when only one fluid occupies the pores of the matrix. 

An insight into the significance of equation 6 can be gained simply 

by inspection. If there is no flow of either phase, the equation merely 

des.cribes the rate of change of Pc in the direction r resulting from 

a change in elevation. On the other hand, if there is no change in ele-

vation in the direction r (as for horizontal flow), the equation describes 

only the difference in the rate of pressure loss of the two phases result-

i??,g from flow. In the general case, the combined effect of both factors 

is described. With proper consideration of signs, the equation should 

be applicable to situations in which two fluids are flowing in the same, 

oblique, or even opposite directions. 

Equation 6 can be written in terms of dimensionless variables 

by dividing both sides by (~pg) sine • and scaling p by dividing 
C 

it by a characteristic capillary pressure Pa • A description of a para-

m~er Pd and the method of its determination are given in the discus-

sion of experimental procedures. The term Ke may be replaced by 

its equivalent K k • where K is the relative permeability for the . r r 
particular phase under consideration and K is the permeability for 

a saturation of unity, and the term r sin e by its equivalent, . the 

elevation z. 
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1 For the <=;ase of a static non-wetting phase, equation 6 may be 

wrr en in terms of th:ta:e: :a;;:les as (7) 
inwhich P. is p /p·d' Z, is z (b.pg), and Q. is b.(~ 911 . \. 

c Pct \J<etb. Pg) sin 9; 
,fhe designation of scaled variables by dots after the letters follows the 

'• 

pt'ecedent set by Miller and Miller (5). The scaled variables permit 

the behavior of laboratory models to be compared with the behavior of 

more extensive systems in the field. The values of scaled variables 

do not depend on the units employed, provided that a consistent set of 

units is used. 

Equation 7 can be solved for particular values of Q. provided 

the functional relationship 
K = _f (P.) rw (8) 

is known or assumed. The method of determining K as a function rw 
of. P. is described in the section dealing with experimental procedures. 

for the present purposes it is sufficient to assume that Krw is a con-

tinuous function of P. and furthermore that K decreases with rw 
increasing P. . The analysis that follows is applicable only to the 

cycle of increasing P. so that the problem of hysteresis is avoided. 

For downward flow, the value of Q. is negative. When the 

matrix is completely saturated and the downward flow is steady, K rw 
has a value of one, and Q. is a constant. The solution of equation 7 

for the latter case is 

p. = ( 1 - I Q.1 ) z. + C (9) 

which is a !in.ear equation. By defining Z. as zero where P. is 

zero, the constant c can be eliminated. For very small flow rates 

P. ~ Z. (-10) 
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which can be written as an exact solution for the static case.- As P. is 

increased. ~w is decreased and will eventually reach the same value 

as ~.Q. J. When Krw =i Q. t_ for steady downward flow in a uniform 

matrix. the solution of equation 7 is 
dP. = 1 - I Q.l = 0 ( 11) -dZ. K rw or 

P. = a constant. ( 1 Z) 

Theoretically _P. could not become greater than this constant because 

a smaller value of K would result in a negative value of dP. / dZ.. rw 
and thus cause P. to decrease. If the value of P. is large over a 

substantial portion of the column. the value of Q. will be small be-

cause of the high resistance of the column to flow. 

A long vertical column of uniform sand is considered which is 

assumed to be partly saturated with a wetting liquid, the non-wetting 

phase being air. The wetting liquid is flowing downward at a steady 

rate. The value of P. is substantially greater than unity for most 

of the column. At the bottom of the column P. is iero and Z. is 

defined as zero at this point . At the top of the column., P. is some 

arbitrary constant, say 2. O. Without knowing anything more about 

K as a function of P. than has already been assumed, it is possible rw -
to deduce the following: 

1. Near the bottom of the column, P. will vary linearly with Z. 

and probably P. ~ Z. 

z. 

3. 

Near the top· of the column, provided the column is suffi-

ciently long, P. will be invariant with Z. 

The portion of the column between the region where P .~ Z. 

and that where P. is invariant will consist of a transition 

zone in which P. will approach a limiting value asympto-

tically. 

4. The value of ~w near the top of the column will be the 

value of l Q. l . 
-6-
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By assuming a particular functional ~elationship for equation $ 
. . . 

it is possible to pr.edict in detail the curve representing P. _ vs Z. 

It is also possible to predict the form of P. vs Z. when the column 

undergoes a change in texture, a change ih slope, or when Q. changes 

abruptly as a result of a source or sink for the flow at some point within 

the cblumn. Before the latter situations are discussed, however, the 

experimental proc,edures and results are explained in order to justify 

the assumption of a particular kind of relationship between K and P •• rw 

Experimental Procedures 

In all of the laboratory tests of equation 7 , the non..:.w~ttirtg phase 

was air and was stationary. The wetting phase was a hydrocarbon oil 

called Soltrol1 ~ and the matrix was sand packed into a Lucite tube which 

ranged in length up to five feet. The tube consisted of a large number of 

short sections separated by tensiometer rings. No attempt was made to 

seal the joints in the assembled column, because it was desired that 

air (at atmospheric pressure) be in contact with the column at as many 

points as possible in order to hasten equilibrium. 

Before ea.ch experimental run, the entire column was vacuum-

s~~urated with Soltrol. This was accomplished by clamping the column 

µlto a metal ~ray .made especially for the column, surrounding the 

c:olumn with Soltrol, covering the container with a lid which sealed the 

system, and then ·evacuating the entire assembly. When the column 

was returned to atmospheric pre·ssure, it appeared to be completely 

saturated with SoltroL The metal tray without the lid served as a 

support for mounting the column in its position for the experimental 

run. In cases where the run involved a change in slope, the container 

was built to accomodate column of this shape. 

1 Phillips Cone Te.st Fluid, produced by Phillips Petroleum Co. , 
Special Products Division, Bartlesville, Oklahoma. 
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The use of Soltrol. as the wetting phase permitted valties of Z. 

abo'\4t twice ai:; grea~ as ·would be possibie witli' water because the smaller 

surface tension of Soltrol results in smaller values of pd for particular 

sands. Soltrol also has a much smaller vapor pressure than water and 

as a consequence, the problem of evaporation from joints in the column 

was greatly diminished. Because of the more consistent wetting pro-

perties of Soltrol, pressure-sensing manometers consisting of vertical 

capillary tubes were less subject to error due to variations in capillarity 

than is the case with water. The sands which have small values of pd 

also permitted much larger scaled elevations than would have been pos-

sible with fine soils. 

The tensiometers consisted of annular strips of Porvic2 cemented 

over grooves machined into the inside wall of the Lucite tube, an ar.range-

ment that permitted the manometers to equilibrate in much less time 
' 

than would be possible with any ceramic tensiometer commonly employed. 

Because the Porvic strips were flush with the inside wall of the tube, the 

tensiometers did not reduce the cross-sectional area of the column or 

interfere with the flow in any way. 

Disks made from the same porous plastic were placed at the top 

·and bottom of the column, and were connected to constant-head siphons 

to provide the means whereby the capillary pressure within the column 

was controlled. In all cases. the wetting phase was maintained at a 

pressure less than atmospheric so that there was no tendency for the 

Soltrol to run out the joints of the Lucite tube. A typical experimental 

arrangement is shown in figure 1 • 

2 Supplied by Pritchett and Gold and E.P.S .• Co., Dagenham Dock, 
Essex England. 
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DISCHARGE SIPHON 
~~ .... 

CALIBRATED CONTAINER 

FIGURE I - SCHEMATIC DIAGRAM OF EXPERIMENTAL 

APPARATUS 
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All tests were on the drainage cycle; Le., each successive run 

(Wlth a particular setup) was conducted with a smaller saturation than 

the preceding run. In each case, the first run was conducted with the 

entire column at a p sufficiently small to avoid desaturating the ' col-
c 

umns in order to obtain K for the sand or sands packed into the tube. w 
... The curves of K vs p were determined for the sands in the 

· rw c 

assembled column. The technique for doing this was a modification of 

Richards (8) original controlled-pressure method. It was similar in 

some respects to Childs' and George's (3) long-·column method. Down-

ward flow was established under a hydraulic gradient of unity and with 

an increased value of p and smaller value of Q. for each succeeding 
C 

run. The p at the extreme lower end of the column was kept suffi-
. c 

ciently small to insure complete saturation in that region. The rates 

of flow into and out of the column were measured and when these rates 

were the same, the system was assumed to be at steady state. At 

steady state, the average was determined over that portion of the 

column in which p was constant except for deviations caused by 
C 

variations in packing. The average p was determined by averaging 
C 

the readings of the manometers attached to the tensiometers. 

· When K had been determined over the desired range of pc , rw 
a graph of In K vs In p was made as shown in figure 2. In every rw c 
case the curve was linear over most of the range of p , the exception 

C 

being in the range of very small values of p • An extrapolation of the 
C . 

linear portion of the curve to the abscissa representing K = 1. 0 was rw 
used to define the parameter pd as shown in figure 2. 

Having determined the value of the scaling factor pd , a graph 

of P. vs Z. was made for the entire column for each run • 

. -10-



>-
~ 
_j 

CD 
<1 w 
~ 
er: w 
~ 

w 
> 
~ 
c:{ 
_j 
w 
er: 

_.7,,:: __ 

0 1 

.001 -

10 

I 
I 
\ 

I I I I I \ i 
- ' . :e ~ I . I 

g I I 1 
. I \ 

-. 

FT COLLIN'S SAND O 

WHITE SAND Q 

LOVELAND SANO __ e 

----- -- --- - . ---- - --

.00011--, ___________ ....L..., __ ___._.....__-1,,, _______ __, 

CAPI LLARY PRESSURE (Pc) :.. IN. OF OIL 

FIGURE 2 - Relat ive Permeabil i ty As A Function Of 

Cap i l la ry Pressure For Three Sands 



Results 

The results of the measurements of K shown in figure 2 rw 
sho\v that for the sands investigated, the curves of K vs p are ·, rw c ; . . 

linear~ This result is in agreement with observations made by 

W. R. Gardner ( 4). The slopes ( -n) of these curves, however, are 
,. 

much steeper than any found by Gardne_r. They are of the same order 

of ma:gnitude, however, as slopes of curves determined by Moore (6) 

for Oakley sand and Yolo fine sandy loam. Apparently, sands normally 

have larger values of n than finer materials unless, perhaps, if the 

finer materials are well aggregated. 

It is apparent that for values of P. greater than one, 

K ~ ip /p )n ~ P _n rw - , c d· 

consequently, equation 7 can be written as 

. .:. dP. 
dZ. 

....., l+Q pn _:_ 
~ - . . 

(13) 

(14) 

whi'ch is applicable only for P. greater than one. If a part of the 

column has a value of P. substantially greater than one, it is known 

that P. -::;:: Z. where P. is less than one. The variables are separable 

_in equation 14, and if the values of n happened to be an integer less 

than or equal to 4, a soluti6n of equation 14 in a closed form is easily 

obtained • . 

For large values of n , however, it is more convenient to solve 

equation 7_ numerically by plotting slopes using values of K vs P. rw 
taken directly from graphs such as are show·n in figure 2. Solutions 

of equation 7 along with data which substantiate the theory are shown 

in figures ~ and 4. The smooth curves drawn on the figures were com-

puted for the measured values of Q. using equation 7 and graphs simi-

lar to those in figure 2. _ The smooth curves are not to be construed as 

best-fit curves through the dat a. 
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Figure 3· shows the results for steady downward flow through a 

I , . 
column of uniform sand. Figure 4 shows ·the results for steady. down .. 

I . 
ward flow through a sa:nd into another sand having a slightly finer texture. I . , 
h:l plotting the graph for figure 4, the pd of the lower sand was used 

as a scaling parameter for both sands in order to avoid a discontinuity · 
' in scales at the juncture of the two sands. 

Many similar curves were obtained for other values of IQ·I and 

for other situations such as those that involved changes in slope, sources 

arid sinks within the column, and flow from a finer to a coarser-textured 

sand. By coarser-textured, in this case, is meant a sand having a 

smaller pd . The results for virtually every test (which have all been 

reported by Scott (9) ) were in ·as good agreement with equation 7 as 

those shown in figures 3 and 4. 

The results shown in figure 4 demonstrate the interesting phe-

nomenon that when steady flow is downward through a long column of 

unsaturated sand, the effective permeability tends to reach the same 

value in each stratum provided the stratum are sufficiently thick. At 

the bottom of a coarse-textured stratum underlain by a finer-textured 

stratum, however, there will develop a region of very low saturation 

and low permeability. The reason for this is that the relationship be-

tween p and Z. must be continuous regardless of abrupt changes in 
C 

texture. If this were not true, there would be an infinite pressure gra-

dient at the juncture of two constrasting sands. Since this is a physical 

impossibility, it is obvious that the p at the juncture must be the same 
C 

for both sands and, as a consequence, the sand having the coarser tex-

ture will have a smaller saturation and permeability. This generali-

zation would, of course, not apply if both sands were still completely 

saturated because in this case the sand with the smaller pd would 

usually have the higher permeability. 
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The zone of low effective permeability at the bottom of coarse-

textured strata during downward flow undoubtedly accounts for the 

abnormally low suctions in and above such strata for long periods 

following rains or irrigations. This can also explain why the mois-

ture equivalent is a poor approximation of field capacity for coarse-

textured soils. 
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