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Abstract—This paper introduces a new connectionist network
for certain domain-specific text-retrieval and search applications
with expert end users. A new model reference adaptive system is
proposed that involves three learning phases. Initial model-ref-
erence learning is first performed based upon an ensemble set
of input–output of an initial reference model. Model-reference
following is needed in dynamic environments where documents
are added, deleted, or updated. Relevance feedback learning from
multiple expert users then optimally maps the original query
using either a score-based or a click-through selection process.
The learning can be implemented, in regression or classification
modes, using a three-layer network. The first layer is an adaptable
layer that performs mapping from query domain to document
space. The second and third layers perform document-to-term
mapping, search/retrieval, and scoring tasks. The learning algo-
rithms are thoroughly tested on a domain-specific text database
that encompasses a wide range of Hewlett Packard (HP) prod-
ucts and for a large number of most commonly used single- and
multiterm queries.

Index Terms—Connectionist networks, learning algorithms,
query mapping, relevance feedback, text retrieval.

I. INTRODUCTION

THE focus of most general-purpose text-retrieval systems
(TRSs) is to apply search and content matching to deal ef-

fectively and consistently with an overwhelmingly large volume
of information. In these systems, the user typically modifies
and enhances the query text in a subjective manner in order
to narrow the domain of the search. The search process typ-
ically culminates at a list of the documents from which the
user identifies, either implicitly or explicitly, the most relevant
ones after navigating or browsing through the list in the order
of the documents’ “retrieval status values” or relative scores.
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This trial-and-error-based query modification does not allow for
the incorporation of the user expertise or feedback to influence
the suggested solutions. Moreover, identification of an optimum
query that carries the required concept is difficult or sometimes
impossible, even for expert users.

TRSs that allow for user contribution typically utilize “rele-
vance feedback” [1] from the users to modify the original query
in order to meet the users’ requirements and improve the re-
trieval efficiency. It is expected that the modified query would
deliver a more refined list of documents than that delivered by
the original query. A mechanism to implement relevance feed-
back was originally introduced by Rocchio [2]. In this algo-
rithm, the query is selectively modified using the relevant docu-
ments to achieve improved retrieval. Ide [3] showed that by in-
corporating nonrelevant documents as well as the relevant ones,
retrieval accuracy could be improved even further. In [4] and
[5], query modification using Rocchio’s formula and query ex-
pansion schemes are used, while others rely on support vector
machines (SVMs) [6]–[8] or on boosting algorithms [9].

The learning capabilities of a neural network (NN) provide a
framework around which an adaptive TRS could be built [10],
[11]. Kwok [12] devised a probabilistic document retrieval
system implemented using a feedforward NN. The search
results are ranked in the order of conditional probabilities that
are estimated based on a sample of relevant documents to the
query. In [13] and [14], a backpropagation neural network
(BPNN) was used as a retrieval system. The retrieved doc-
uments for a query are compared against the corresponding
relevant document set and if any nonrelevant document is also
retrieved the network relearns to remove it from the list. The
documents are simply listed as relevant or nonrelevant and are
not ordered in accordance with their relevancy to the query.
The results in [13], however, indicated poor performance of the
network when the training was done only with a limited set of
relevant documents. Boughanem et al. [15] used an unsuper-
vised network with two fully interconnected layers where the
neurons in the first layer represent terms and those in the second
layer represent documents. Hebb’s learning rule [16] was used
to modify the connection weights. Recently, Bouchachia [17]
proposed a hierarchical fuzzy NN architecture for document
retrieval. The documents and queries are represented as fuzzy
sets and a two-layer NN is used to learn the implicit relationship
among the documents.

Tong and Koller [6] developed an active learning scheme
using SVM, called SVM , to quickly and effectively learn
the boundary that separates samples satisfying the user’s query
concept from the rest of the text database. To apply relevance
feedback, the user is asked to label a small set of documents
as relevant or nonrelevant classes. Using these initially labelled
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samples, the system finds the separating hyperplane and per-
forms a series of querying rounds. In each round, the hyper-
plane parameters are adjusted based upon user votes on the un-
labeled samples closest to the hyperplane. Upon the completion,
the SVM returns the top -most relevant samples that are
farthest from the hyperplane on the query concept side (i.e., rele-
vant samples). Comparison of the SVM results with those
obtained using the query-by-committee (QC) algorithm [18] in-
dicated the superiority of SVM regardless of the initial
number of labeled samples.

In [19], using the risk minimization framework of SVM
and the description-oriented class of ranking functions [20], a
learning method for linear retrieval function using click-through
data is presented. Discordance pairs between the ranked doc-
uments and the click-through data are used to create a set of
training samples. The goal is to learn a ranking function with
the minimum number of discordance pairs. This is equivalent
to maximizing the Kendall’s [21] factor, which measures
the degree of correspondence between two ranking schemes.
A suboptimal solution is suggested by formulating the SVM
problem with a penalizing factor that accounts for the errors
of the discordance pairs. More recently, Chang and Chen [22]
developed a new query reweighting mechanism based upon the
relevance feedback from users. Genetic algorithm is employed
to assign optimal weights to the terms in the user query in order
to improve the overall document retrieval accuracy. Experi-
mental data on a small database showed improved precision
and recall rates. In [23], a new query expansion scheme was
proposed that uses the recorded user logs to extract implicit
relevance information, and hence, improve the retrieval accu-
racy. The associations between the terms in the user queries
and documents are then established based upon the user logs.
The results indicate that exploiting user logs is indeed effective
for improving the overall retrieval accuracy.

Current TRS tools are typically designed for general purpose
text search and retrieval applications. In domain-specific envi-
ronments with expert end users, such as customer support of var-
ious corporations (application considered in this paper), hospital
databases such as MEDLINE [24], homeland security [25], and
other similar applications, adaptable TRS is needed to continu-
ously learn from the users and enhance the relevancy of the sug-
gested solutions without the slow process of authoring or modi-
fying the information content within the query directly. In these
environments, it is important to accurately meet the expert user
requirements when queries normally do not receive numerous
relevance feedback. Additionally, it is crucial to capture and re-
tain, within the adaptable TRS, the expertise of different tier
expert users for more refined future searches. This adaptability
must be achieved without jeopardizing the stability of the pre-
viously learned information.

In [25], a domain-specific adaptable text search engine,
referred to as vista system was developed that supports con-
text-sensitive information access and monitoring for effective
and timely information exchange and coordination among var-
ious homeland security and emergency management agencies.
The goal of [25] was to develop new technologies that can
dynamically exploit the output of new information providers
to offer both vastly improved information/situation awareness

and the ability to coordinate crisis response. The vista system
consists of several adaptable engines that are designed for
specific databases at different agencies, e.g., Federal Bureau
of Investigation (FBI), Central Intelligence Agency (CIA),
and Federal Emergency Management Agency (FEMA). These
local search profiles manage their own set of documents and
receive limited training from within expert users via relevance
feedback learning. Queries are keyword-based, e.g., “anthrax
letters,” leading to a list of relevant/nonrelevant documents.
Leveraging on the expert user’s operational context, the system
is able to produce refinements to user queries and identify the
most relevant “query anchors” to the user tasks via the rele-
vance feedback. The vista system in [25] also utilizes “concept
switching” that allows for expanding the domain of search
across different communities (or agencies) for broader concept
matching and search.

In this paper, an adaptable and robust TRS for special-pur-
pose application is developed which incorporates the users’
information and expertise to improve the relevancy of solu-
tions. The proposed approach uses a new framework referred
to as model-reference text retrieval system (MRTRS), which
is inspired from the well-known model-reference adaptive
control theory. The proposed learning involves the following
three phases: 1) initial model-reference learning, 2) model-ref-
erence following, and 3) relevance feedback learning from
expert users. These learning phases that can be implemented
effectively using a three-layer connectionist network are driven
based upon an ensemble of input–output relations from a ref-
erence TRS model (phases 1 and 2) or from the user feedback
(phase 3) and their specific characteristics such as relevance
feedback frequencies and expertise level of the users. The
purpose of initial model-reference learning is to set up (or
initialize) the weights of the first layer to capture the behavior
of a reference model or the results of an indexing system.
The latter is motivated by the fact that even though an “ideal”
TRS may not be available, one can always have access to a
set of input–output relations that can be used to initially train
the MRTRS. The model-reference following is needed when
documents are added, deleted, or updated, using both struc-
tural and weight adaptation mechanisms. Structural adaptation
corresponds to adding or deleting nodes to the hidden and
output layers of the network. New relevance feedback learning
methods are also developed for single- and multiterm queries
using either score-based or click-through feedback from mul-
tiple users of different expertise levels. Relation of the proposed
learning to SVM is also established. The effectiveness of the
developed algorithms is demonstrated on a domain-specific text
database for customer support on various ranges of HP products
consisting of over 32 000 documents. This database involves
over 108 000 terms and 5900 commonly used keyword-based
single- and multiterm queries. A benchmarking with the BM25
method [26] is also presented.

The organization of this paper is as follows. Section II
presents the proposed MRTRS and its different operational
phases. Section III presents the initial model-reference learning
and the query mapping mechanism. The implementation
using a three-layer connectionist network is also discussed. In
Section IV, model-reference following learning is introduced



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

AZIMI-SADJADI et al.: ADAPTABLE CONNECTIONIST TRS WITH RELEVANCE FEEDBACK 3

to capture the changes in the model due to document addition,
deletion, or updating. Structural and weight adaptation schemes
are also proposed to implement these operations using the
network. Section V develops new relevance feedback learning
algorithms from multiple users using both score-based and
click-through selection processes. Relationship to SVM-based
learning is also demonstrated. The test results on a do-
main-specific database of various HP products are presented in
Section VI. Finally, conclusions and observations are given in
Section VII

II. MODEL REFERENCE TRS

A typical TRS consists of several subsystems namely storage,
document indexing system, user interface, and search/retrieval
system. The indexing system processes each document in the
database and generates an indexed file based upon certain at-
tributes in the documents. These attributes represent the impor-
tance of different terms contained in the document. These at-
tributes form a vector that represents
th document, , where is the total number of docu-

ments in the database and represents the transposition opera-
tion. The component where is the total
number of terms in the entire corpus, gives the weight or im-
portance of the term in document vector . When a specific
term is not present in the document, the corresponding entry in
the vector is 0.

The retrieval and search system performs, upon the user re-
quest or query, a similarity measure between the sub-
mitted query and each document vector in the entire data-
base and delivers closest matches. In the simplest case,
this similarity measure could be . The search and
matching processes result in a list of the relevant and nonrele-
vant documents arranged in order of their relevancy (or match)
to the submitted query. The “retrieved status value” or relative
score of each listed document is clearly a function of the adopted
similarity measure and the model used by the particular TRS
[27]. If the search results and the retrieved status values are not
arranged in their relevancy to the items of interest, the user may
need to interactively modify the query until the refinements lead
to results that most closely carry the required query concept.
Since the identification of an optimum query is difficult and
some times an impossible task, the user can browse through the
list of documents and identify the most relevant document(s).
Such a user relevance feedback is typically applied in a binary
(positive or negative cases) fashion to obtain the desired results.

In special-purpose TRS, it is crucial that the system exactly
meets the specific requirements of the expert users by proper
adaptation of the system parameters while maintaining the pre-
vious learning. The main benefit of the proposed approach is that
the expert users can contribute to the decision-making capability
of the system and enhance the relevancy of the suggested solu-
tions. This can be accomplished without the slow and expen-
sive process of authoring or modifying the information content
within the query directly. The efficiency of the system improves
over time as expert users actively provide relevance informa-
tion in the context of their needs. The learning eventually cul-
minates at the optimal association for mapping queries to docu-
ments, which will be captured in the system for future use. The

Fig. 1. MRTRS.

proposed system offers high retrieval accuracy needed in spe-
cial-purpose applications and more importantly preserves sta-
bility of the stored information, while offering plasticity needed
in these situations.

Fig. 1 shows the block diagram of the proposed MRTRS.
As discussed previously, there are the following three opera-
tional phases for this system: 1) initial model-reference learning
under invariant model or static environment, 2) model-refer-
ence following in dynamic environments where documents are
to be added, deleted, or updated, and 3) learning from users
through score-based relevance feedback or click-through selec-
tion. These different modes of operation are described in the
next sections.

III. INITIAL MODEL-REFERENCE LEARNING

The goal of initial model-reference learning phase is to set
up or initialize the weights of the adaptable TRS in Fig. 1
based upon an ensemble set of training samples. If a reference
TRS model exists, then this ensemble set corresponds to a set
of queries and the corresponding listed documents and their
retrieval scores. The function of the initial model reference
learning, in this case, is to capture the behavior of the unknown
and possibly inflexible black-box TRS. This is due to the fact
that, in practice, access to the internal parameters of the refer-
ence model is not typically available or feasible to influence its
behavior via relevance feedback. Thus, our MRTRS becomes
an independent adaptable system on top of any available ref-
erence model to dynamically incorporate user feedback and/or
other input–output characteristics. In absence of a reference
model, the indexed documents generated by a simple document
indexing system (see Remark II.1) can be used. In this case,
only the document vectors s are needed to initialize the
system, without the need to have queries and their associated
listed documents. It will be shown later that even with this
crude initialization the system quickly learns to produce the
desired solutions using relevance feedback learning.

In the initial learning phase, the query mapping subsystem in
Fig. 1 plays a similar role as an adaptable regulator in a con-
trol system. It learns to map the original submitted query to
the modified query (control signal) that yields the desired re-
sponse or the document list . Note that the dimension of the
original query space is the same as that of the mapped query
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. The process is shown using the dotted–dashed lines in the
upper loop of the block diagram in Fig. 1. The desired response

for a submitted query is generated by the reference model, if
available. The retrieval system, which plays a similar role as a
plant in an adaptive control system, is a linear mapping system
described by matrix where is the
document matrix for the entire collection and is the th doc-
ument vector of size , as defined previously. The docu-
ment matrix is generated either by the indexing system within
the TRS or any other indexing system. Once the initial model
reference learning is completed, the reference model and the
components shown in dotted lines are removed for subsequent
relevance feedback learning phase.

In the proposed system, initial model reference learning could
be accomplished either in a regression mode using a score-based
matching or in a classification mode using an SVM-type frame-
work as will be discussed in the next section.

A. Regression Mode

In the regression model, the goal of this initial model-refer-
ence learning is to find the optimal mapped query that yields
the desired response for the submitted original th query .
Since typically , this parameter estimation problem
is underdetermined. Thus, the problem can be cast as a min-
imum-norm least square (LS) [28] where it is desirable to find a
mapped query with minimum distance from the origin (i.e.,
small number of terms) subject to constraint , where

is the desired score vector for the th
submitted query. Accordingly, we can construct the Lagrangian
function

(1)

where and s are Lagrangian multi-
pliers. Differentiating with respect to (w.r.t.) and
setting the result to zero yields

(2)

Now, taking the derivative of w.r.t. and setting the
result to zero yields . Combining with (2) gives the
solution for the optimal

(3)

which generates the desired result at the output of the retrieval
system. Thus, the LS solution for lies in the space spanned
by the documents. This can be viewed as a generalization of the
Rocchio’s formula [4] where all the documents are included and
their associated weights are obtained using the learning mecha-
nism in this section.

The objective function can equivalently be repre-
sented in terms of documents s and the Lagrangian multipliers

leading to the following “dual problem”:

(4)

(5)

which should be maximized w.r.t. . This cost function is
represented in terms of weights and dot product of documents

. This implies that there is a close similarity between the
proposed query mapping approach and SVM in the original
linear space. This is described in the next section.

B. Classification Mode

The initial model reference learning and relevance feedback
(Section V) in our framework can also be implemented in classi-
fication mode, if desired. To see this, let us compare the dual cost
function [8] of the SVM to that in (4) or (5). If we change

where is a diagonal matrix with elements 1 (class 1) or
1 (class 2), and further with being the one vector,

then the cost function in (5) becomes exactly the same as that of
SVM. Note that since , then which implies that
the score vector consists of elements 1 (relevant documents) or

1 (nonrelevant documents) as in a two-class problem. Now,
taking the partial derivative of the resultant w.r.t. and
setting the result to zero yields

(6)

Moreover, from the modified primal problem in (1)

(7)

(8)

the solution for the optimal query for this two-class classifica-
tion problem becomes

(9)

Clearly, this optimal query yields the desired output of
. These results show that the proposed learning can be imple-

mented in either regression mode or classification mode, which
is closely related to the SVM framework. This offers the po-
tential for development of kernel-based text search and retrieval
machines using the proposed framework.

C. Connectionist Network Implementation

The query mapping and retrieval processes in the feedforward
path of Fig. 1 can be implemented using a simple three-layer
network, as illustrated in Fig. 2. This network facilitates the im-
plementation and understanding of all the three learning phases
as will be shown later. Moreover, it provides a unified system
that captures all the components in Fig. 1 excluding the ref-
erence model, if that exists. Each node in the first and third
layers represents a document , , whereas each node
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Fig. 2. Proposed flexible network structure.

, in the second layer represents a term . The connec-
tion weight from node in the first layer to node in the second
layer is . Similarly, the connection weight between node in
the second layer and node in the third layer is the same weight

. Thus, the weight matrices for the second and third layers
are and , respectively. These weights remain unchanged
unless the documents are reindexed or updated. The weight ma-
trix (adjustable) of the first layer is . As
shown before, in the initial model-reference learning, the objec-
tive is to find to capture input–output behavior of the ref-
erence system for every query in the ensemble set. The first
and second layers combined form the mapped query at the term
layer, i.e., , which in turn yields the retrieved doc-
uments and their desired score vector at the
output of the retrieval layer for the optimal . Consequently,
the first and second layers combined function like the regulator
in Fig. 1. Note that the space that spans the original input query
is the same as the mapped term space (second layer) that forms
the optimal query.

In this network, the inputs are indexed representing different
possible terms in the submitted query. Each input can take either
0 or 1 values depending on the absence or presence of the cor-
responding term in the query. A single-term query consisting
of term can be represented by input vector where

is a unit norm vector with the th component
being 1. If this single-term query is applied to the network, the
output of the first layer extracts the th column of weight ma-
trix , i.e., , which in turn generates the mapped
query at the output of the second layer. Thus,
is the weight vector that connects the term to all the doc-
ument (first) layer nodes. This implies that learning for each
single-term query can be performed independently by only up-
dating to meet the desired scores at the output layer. This
interesting feature of this network guarantees the stability of the
weights for other queries while offering flexibility that is needed
to accommodate new model- or user-based information.

For the initial training phase, (3) can be rewritten as

(10)

where is the initial weight vector, is the initial doc-
ument rank vector provided either by the TRS or the indexing
system (see Remark II.1), and is a symmetric pos-
itive–definite (PD) Gram matrix with element .
The superscript “0” is used to represent the initial training phase.
Equation (10) is solved once for all the queries in the ensemble
set. The Gram matrix can be expressed as

where is a lower triangular matrix with
positive diagonal entries. Fast algorithms using Cholesky de-
composition and triangular matrix inversion [29] can be ap-
plied to solve for the weight vector for each query, i.e.,

.
Once the initial model reference learning is completed, the

weights of the first layer can be updated in response to the rele-
vance feedback from expert users. Relevance feedback learning
will only impact those weight vectors corresponding to the
terms in the submitted query. This process will be discussed in
Section V

Remark III.1: From the definition of weight matrix and
the result in (3), it can easily be shown that ,
where is the score matrix for all the queries.
It is interesting to note that when a reference TRS is not
present, the results of an indexing system can be directly
used to initially train the network. In this case, we have

which yields the regulator mapping matrix
of , i.e., the projection matrix associated
with document space . This implies that the regulator projects
the original query onto a space spanned by the documents to
generate the mapped query. Clearly, for the th query ,
this gives the retrieved score vector that
contains the attributes or the weights for the th term in all
documents. Thus, the document that has the highest weight
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Fig. 3. Network after the insertion of L new documents.

attribute for term will have the highest retrieved score. Al-
though these scores are not directly representative of relevancy,
subsequent learning based upon users feedback for every query
will gradually improve the relevancy scores of the documents.
This will be shown in Section VI-C.

Remark III.2: If two document vectors are identical, the
Gram matrix becomes singular. This situation can be
avoided, if for each document its ID, which is unique to each
document, is also added as a representative term. If is the
weight assigned to the term that represents the document name,
and is the document vector after augmenting the original
document vector with the document name, then we have

and (11)

(12)

Therefore, the new Gram matrix is , which is a
regularized version of . In the sequel, it is assumed that the
Gram matrix is regularized when needed. Thus, for simplicity
in notation, the superscript “ ” is dropped.

IV. MODEL-REFERENCE FOLLOWING

Once the initial model-reference learning is completed and
the system in the feedforward path of Fig. 1 captures the
underlying input–output relationship of a reference model
(or an indexing system), it is crucial that the regulator adapts
to the changes in the model or the environment (database).
These changes can be brought about as a result of document
reindexing, adding new documents that may contain new terms,
and/or deleting the obsolete ones. The key requirement is that
these changes must be incorporated into the system without
impacting the performance or sacrificing the stability of the
previously established learning.

This model-reference following can be accomplished effi-
ciently in the regulator of the proposed system using either an
online recursive or a batch learning scheme. As in the initial

learning phase, the upper loop in Fig. 1 together with an appro-
priate adjustment mechanism is used in this phase. In the pro-
posed three-layer network, these changes can easily be imple-
mented via structural and weight adaptation mechanisms. Struc-
tural adaptation involves node addition and deletion in the net-
work layers. Sections IV-A–IV-C describe the adaptation rules
for these scenarios for the case where the learning is carried
out in regression mode. Note that the results in Section III can
be used to derive similar adaptation rules for the classification
mode of model-reference following.

A. Document Addition

To incorporate new documents into the three-layer net-
work, additional nodes with new connection weights must be
added while the old weights of the network are updated. Let

, , and be the new document vectors to be
added into the system, and be the total number of new terms
introduced as a result of adding these documents. To accommo-
date these documents, new nodes must be inserted into the first
and third (output) layers. The weight vectors corresponding to
connections emanating from the added nodes in the first hidden
layer and the weight vectors for the incoming connections to the
added nodes in the third layer are , . Addition-
ally, to account for the addition of newly introduced terms,
new nodes must be added in the second hidden layer as well as in
the input. The network has to be updated in such a way that even
after the insertion of the new documents with the corresponding
new terms, the system retains the previous training. Fig. 3 shows
the network after the insertion of the new documents and terms.
The newly added nodes are shown inside the dashed boxes. For
all of the already existing terms, i.e., , , the old con-
nections weights , have to be updated; while the
new connection weights , have to be com-
puted. For those newly introduced terms , ,
all the connection weights must be computed as well.

Assume that the system is initially trained using docu-
ments and that data matrix contains these documents. Let
be the data matrix of the newly introduced document vectors.
These new documents are added to the column space of matrix
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. Now, using (2), the optimal query for the single-term query
in this augmented space is given by

(13)

The desired score vector of the
newly added documents is assumed to be available from the
reference model. Since the score of the already existing docu-
ments should not change, the score vector of all the documents
for the mapped query in (13) is . We rede-
fine as the new weight vector
after inserting these new documents. Clearly, we still have

where matrix is given as

(14)

Here, is the same as before, is a matrix of dot
products between old and new documents, and is a
matrix formed with the dot products of the new documents only.
If the inverse of matrix is expressed as

(15)

where

(16)

then, using the expansion for matrix , the updating equation
for the weight vector can be given as

(17)

This weight update equation is performed for all nodes
or single-term queries in the input layer. The first and

second parts of the vector in the right-hand side of (17) corre-
spond to updating the old weights and computing the new added
weights, respectively. For those newly introduced terms, since

, , we have

(18)

From (17) and (18), it can be seen that only and are needed
to update the weights. Computing involves inverting a matrix
of dimension where .

This batch learning reduces to an iterative online learning if
for every time that a new document is added the weight updating
is performed. This leads to the following recursive equations:

(19)

and

(20)
where matrix, in this case, is given by

(21)

matrix was defined before with , and
. Also, it can easily be shown that

(22)

where and the projection matrix was defined
before.

B. Document Deletion

When multiple documents are to be simultaneously
removed, they could be at any position within the network
structure. To facilitate the deletion of these documents (or
nodes), we shift them to the last columns of matrix .
To accomplish this, let be the Gram matrix after shifting
the document vectors to be deleted to the far right side of
the data matrix . Then, can be defined in terms of the
original Gram matrix by permutations where we have

, where ’s, are the appropriate permu-
tation matrices. Each permutation matrix is formed such
that it shifts a particular document vector to be deleted to
the far right side of the data matrix so that it can easily be
removed. Additionally, we partition the weight and score
vectors such that the connection weights corresponding to the
documents to be deleted are at their lower end, hence we have

, and similarly for the score vector,

. Thus, the weight vector solution can be
written as

(23)

Rewriting in the block matrix form, we have

(24)

The inverse of matrix can be computed using
. Now, rewriting in the block matrix form

(25)

and using (25) gives

(26)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS

where , , and are defined as before. Now, the solution
for the connection weights of the network after deleting doc-
uments can be written as

(27)

Note that (27) is obtained by deleting the last columns and
rows of matrix in (24) and then solving for . From
(24) and (25), we can express . Using
the matrix inversion lemma [29], we have

(28)
Substituting for in (27) yields

(29)

Using (26), the updating equation for document deletion be-
comes

(30)

where weight vector after the deletion is expressed

in terms of the weight vectors and before the
deletion. In (30), the inverse of matrix of dimension
needs to be computed.

C. Document Updating

When a document is reindexed (or updated) care must be
taken to include it into the system because of possibly new doc-
ument terms that are introduced as a result of the reindexing.
Although the weights in the second and third layers can easily
be updated, additional steps should be carried out to modify the
first layer connections in order to retain the previously stored
information. Suppose that document is updated and also new
terms are introduced. Let be the set of remaining terms in
the system after the document to be updated is removed from the
system. The process of finding the weights can be accomplished
in two steps, where the document to be updated is first removed
and then added into the system with new attributes and terms.
However, the equations for removal and addition of a document
can be simplified using a sequential updating. If document is to
be updated and rep-
resents the weight vector emanating from term in the
input to the remaining documents, i.e., excluding the th one,
then using (30) with the weight vector after
deletion will be

(31)

where represents the weight connection of the
document to be removed (i.e., document ), is a scalar
and is a column vector. Now, we use (17) to add the
updated document along with its new terms and its new score

. In this case, and will be column vectors
and is a scalar. Therefore, we have

(32)

where

if
otherwise

(33)

Note that is needed to account for the remaining terms after
document is deleted. Combining (31) and (32), the final equa-
tions to modify the weights of the system, when document is
updated, are shown in (34), at the bottom of the page, where the
last element of is the weight between term and document
.

V. RELEVANCE FEEDBACK LEARNING

Often the original submitted query does not meet the spe-
cific user requirements in terms of the listed documents, their
relevancy, or relative scores. To meet the expert users’ require-
ments and at the same time preserve the previous learning, in
our proposed MRTRS, the relevance feedback information can
be incorporated using two possible mechanisms, depending on
the nature of the user feedback. This can be accomplished by
updating the parameters of the regulator or the weights of the
first layer. In the MRTRS framework, the lower feedback loop
(relevance feedback loop) of the system in Fig. 1 provides ex-
pert users’ votes on relevant and nonrelevant documents to the
adjustment mechanism, which in turn updates the parameters of
the regulator to meet the users’ requirements by imposing rel-
evance feedback. The user may provide relevance feedback to
the adjustment mechanism either by assigning desired scores
to the most relevant document(s) that he/she selects or simply
by click-through selection. These relevance feedback types can
be implemented using either regression or classification-based
learning. Clearly, this phase of learning captures certain user-
based information and expertise that cannot be learned from the
reference model alone.

A. Regression Mode

As in Section III, the problem of relevance feedback learning
can be cast in a constrained optimization framework. In this
case, the main objective is to transform the previously mapped
query (obtained in phase 1), to a new optimal query that is

(34)
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the closest to the old one (in the Euclidian norm) and further
satisfies the new constraint . Thus, the Lagrangian
function in this regression-based learning should be modified to

(35)
where represents the incremental change in the La-
grangian multiplier. Then, the LS solution for becomes

(36)

and the optimal solution for is

(37)

where with , i.e., score vector for the
old query. Thus, the weight vector in the first layer can be
updated to using , where
meets the new score requirements .

If there are voted documents whose scores need to be mod-
ified in the regression mode, the new score vector becomes

(38)

where is as defined before, is the incremental change
corresponding to user-specified score of the voted documents

, and represents the set of voted documents with cardinality
. In this case, the parameters of the regulator or the

weights of the first layer must be updated using the weight in-
crement vector

(39)

where is the th column of the matrix
.

From (39), it can be observed that document voting corre-
sponds to linearly adjusting the weights to incorporate user feed-
back. Since this weight updating is only implemented for the
weights associated with the query term , it is ensured that in-
formation learned in the previous learning is not lost while at
the same time allowing for adaptation of new associations.

Remark V.1: The relevance feedback learning in this section
can be implemented either online for every user (not typical)
or in batch mode after collecting all the users’ votes on various
queries and forming a log file. In the former case, the score for
a click-through selection can be specified internally using a par-
ticular scoring scheme [19] and without any user involvement.
In the latter case, frequency of votes, expertise level of the user,
date in which voting takes place, date in which the document
is last modified, or any other meaningful criterion can be used
in conjunction with some specific heuristic rules to arrive at the
desired score vector for every query in the log file. This is
used in Section VI, though the same updating rules can also be
applied for online iterative-based learning.

Remark V.2: Although during the initial model-reference
learning (phase 1) the weights of the first layer of Fig. 2 are
computed for all the single-term queries, due to the linearity of
the network, one can perform weight adaptation during rele-
vance feedback for multiterm queries as well. For instance, if a
2-term query containing terms and is applied, the weights
associated with these terms, i.e., and will undergo
adaptation. Since the global corpus weights of these terms are
known, the contribution of each term toward the desired re-
sponse will be determined based upon these weights. However,
this fine-tuning may slightly change the response for other
queries that contain the same terms. To remedy this problem,
a new learning algorithm is developed in Appendix A, which
starts from the indexing results, i.e., projection matrix for
the initial training of the regulator, and then applies relevance
feedback learning based upon a set of single- and multiterm
queries and their associated votes in the log file. Section VI-C
gives the results of this method and their benchmarking with
the original single-term relevance feedback learning method.

Remark V.3: An alternative relevance feedback mechanism
[30] that provides flexibility in the position of the documents
(typical in general-purpose TRS) can be devised using our
network structure. In this scheme, the terms in the voted docu-
ments are modified via updating the corresponding document
terms in the retrieval layer in order to elevate the relevant
documents while demoting the nonrelevant ones. The learning
is based upon Gram–Schmidt orthogonalization in conjunction
with a node creation strategy to incorporate the user feedback.

B. Classification Mode

If the user identifies the most relevant document(s) via
click-through selection, he/she may not be interested in as-
signing scores, rather is content with specifying whether a
document is relevant to a particular query or not. Then, the new
score vector can still be found using (38) for this classifica-
tion-based learning (two class) with the minor difference that

, where is used when the th document status
should be changed from nonrelevant to relevant while is used
when the status should be changed from relevant to nonrelevant.
Additionally, the new diagonal matrix should be changed to

(40)

in order to satisfy the requirement . With these minor
modifications, the weight increment becomes

(41)

where is defined as before.

VI. TEST RESULTS

The main problem considered here is to drastically reduce
service call duration received by call center agents responding
to customers’ issues in a knowledge management system. The
proposed system is used to capture and incorporate the expertise
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of certain subject matter experts to help and expedite the reso-
lution rates for subsequent searches automatically and without
any manual or laborious operations.

The entire knowledge base for the TRS consists of several
major collections of about 75 000 documents and about 130 000
distinct terms. These collections provide a wide range of in-
formation for support, diagnostics, and specifications for con-
sumers and commercial suites of HP products. The documents
contain both unstructured and structured information on various
product types. The majority of content is represented in text
format, while the collections also contain a mixed graphical and
multimedia formats. The number of searches or query sessions
received from users within the United States and abroad can
vary in the range of 650 000–720 000 searches per month, while
the number of relevance feedback is less than 1000 per month.
The search strings are typical single- or multiterm queries (av-
erage query length of 2.5 terms) that are used in daily conversa-
tions to respond to various support calls to diagnose and resolve
customer’s questions or issues in real-life production environ-
ment. Some limited examples of such queries can be found in
Tables II and III. The major collections are based on product
types. The results presented in this paper are obtained based
upon 17 different product collections containing over 32 000
documents and about 108 000 distinct terms.

The document survey feature available within the TRS helps
users to log their feedback on one or more documents for the
query submitted. The voting process is influenced by the users’
perception on the desired solution documents. The influence
comes in the form of a vote, either a positive or a negative
one, that the user assigns to a particular document. To incor-
porate user expertise level and additional dynamics into the re-
trieval system, the vote is weighted by a factor that depends on
the users’ expertise level and the elapsed time since the docu-
ment was last created or modified. Using the log file of queries
along with their respective feedback information, we recreate
the voting process used by the users to generate a set of pro-
totype pairs s with the goal of training our MRTRS. The
relevance feedback learning can be applied either iteratively or
in the batch mode. It is important to mention that although a
large number of queries were available, only a subset of approx-
imately 5900 most commonly used queries were used to form
the prototypes. The prototype query set consists of 2386 1-term,
1664 2-term, and 1846 -term queries.

To assess the performance of the learning algorithms, the
rank order correlation measure based on Kendall’s [21] is
used. This nonparametric measure is useful when the under-
lying distribution that generates the scores cannot be easily es-
timated. The performance measure based on Kendall’s com-
pares two ranked or unranked lists and generates a coefficient

that represents the closeness of the two lists. The
coefficient [21] is given by

(42)

where and are the number of concordant and discordant
pairs, respectively. The denominator in (42) is the number of
combinations of taking two elements out of and is equal to
the sum of the concordant pairs and discordant pairs found

in the two lists when they do not contain ties. However, when
there are ties, the measure in (42) is not appropriate. In this case,
a modification can be made to yield Kendall’s as defined by

(43)

where and are the number of tied pairs for lists 1 and 2,
respectively. Clearly, (43) reduces to (42) when there are no ties.

In the sequel, the testing of the algorithms is performed in
the three different phases described in Sections III–V. In all
these phases, the results are evaluated by comparing them to the
“benchmark,” which consists of the reference model TRS results
augmented or enhanced by several votes received from different
tier expert users collected in the log file. The Kendall’s mea-
sure is then generated in each case to determine how closely the
learning in different phases can reach the desired benchmark.
Additionally, the standard performance metric “recall,” which
presents the ability of the TRS to retrieve all the relevant docu-
ments for a given query is used. More specifically, recall is the
ratio of the number of relevant documents retrieved to the total
number of relevant documents. To compute the recall perfor-
mance measure for the same “benchmark,” the recall values for
different queries in the log file are averaged to yield one point
on the recall curve.

The initial model-reference learning is also compared against
the advanced BM25 IR method. The BM25 document scoring
function [26] is

(44)

where the Robertson-Sparck–Jones weighting function is
given by

(45)
Here, is the query containing the term , is the total
number of documents in the collection, is the total number
of documents containing the term , is the number of
documents known to be relevant to a specific query, is the
number of relevant documents containing the term , is
the document length, is the average document length,

, is the term frequency within
a specific document, is the term frequency within the query

, and , , , and are some prespecified constants. The
values of these constants in our experiments are chosen to be

, , , and .
Sections VI-A–VI-D describe the details of the experiments,

the results, and observations.

A. Initial Model-Reference Learning—Phase I

As pointed out before, the goal of the initial model-reference
learning is to capture the input–output behavior of a reference
TRS or to use the results of the indexing system in the absence
of a model TRS. Thus, four scenarios are considered here: the
first and second use the response of the model TRS to all the
single-term queries in the log file to set up the weights of the
network (initial training) through the regression or classification
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TABLE I
PERFORMANCE MEASURE, � , FOR DIFFERENT LEARNING MODES

learning modes, while the third one uses the projection matrix
, i.e., the indexing results, and the fourth one uses document

scoring generated using (44) and (45). The regression mode is
useful when the scores of the documents are available from the
TRS, while the classification mode is used when a set of rele-
vant document(s) for each submitted query in the training set is
known. However, the initial training using the indexer solely re-
lies on documents’ terms and their term weights and not on any
querying results.

The networks are trained in the batch mode and the weights
of the networks are obtained using (3), (6), and the projection
matrix for the regression, classification, and indexer-based
learning modes, respectively. The Kendall’s measure is then
generated based on the top 20 documents listed by the initially
trained networks evaluated against the “benchmark,” i.e., the re-
sults of the TRS augmented by the users’ votes. The purpose
is to determine how close each initially trained system can ap-
proach the ultimate benchmark. The results are obtained for the
most commonly used 1-, 2-, and -term queries in the log file.
Table I gives the values of for these most commonly used
prototype queries. In the regression and classification learning
modes, the value of gets close to 1 (perfect match) for all
the single- and multiterm queries. The results obtained based
upon regression mode learning, however, are slightly better than
those of the classification mode learning. This is due to the fact
that unlike the regression mode, in the classification mode, doc-
ument scores are ignored and only their binary relevance in-
formation is considered. However, the high value of indi-
cates that the learning through both the regression and classifica-
tion modes is able to capture the reference model behavior very
closely. The initial learning results obtained based upon the doc-
ument indexer indicate that even though for single-term queries
the value of is reasonable, the corresponding values for the
multiterm queries become unacceptable. This is due to the fact
that in this case the querying information and the response of
the reference model are not used in the initial training. Nonethe-
less, we will show that even with this crude initial training, the
proposed relevance feedback learning leads to excellent final
results. The results of the BM25 scoring function in (44) and
(45) are given in the last row of Table I. Although, these results
are slightly better than those generated based upon the docu-
ment indexer without any querying and scoring process, they
are certainly worse than those of the regression and classifica-
tion learning modes proposed in this paper. This is mainly due
to fact that the regression and classification learning modes are
specifically designed to capture the behavior of the model-ref-
erence TRS.

Next, the recall capability of the system initially trained using
three different initial learning modes is evaluated. Fig. 4(a)–(c)
shows the recall plots for various thresholds of the retrieved
list for the regression, classification, and indexer-based learning
modes, respectively, for the most commonly used 1-, 2-, and

-term queries in the log file. Fig. 4(d) shows the same plots for
the BM25 algorithm. As can be observed from the plots in Fig. 4,
the results obtained based on the regression mode are signifi-
cantly better than those of the other three modes. The results of
the classification mode learning are inferior as this method only
uses the binary relevance information of the top 20 documents
without considering the scores of the relevant documents. The
results of the indexer-based learning, which requires the least
amount of prior information (no reference TRS model and doc-
ument scores), are better than those of the classification mode
and very comparable to those of the BM25 method. Thus, in
Section VI-C, this system is used as the initially trained system
for the subsequent learning via relevance feedback.

B. Model-Reference Following

The model-reference following developed in Section IV for
learning in dynamic environments is tested in this section when
new documents with new terms are introduced or the obso-
lete ones are removed from the initially trained system. The
experiments in this section are performed on only one collec-
tion consisting of about 3700 documents and the results are ob-
tained for 800, 724, and 1037 1-, 2-, and -term queries, re-
spectively. Two experiments are conducted here. In the first ex-
periment, 500 new documents with new terms are introduced
into the initially trained system in steps of 20. The algorithm in
Section IV was then applied to update the weights of the initially
trained network using the regression-based learning. Every time
a group of 20 new documents are added, the value of is com-
puted for the most commonly used 1-, 2-, and -term queries.
Fig. 5(a) shows the plots of the averaged for these three cases
during the course of the model-reference following. Again, the
Kendall’s measure is generated based on the top 20 docu-
ments listed by the updated system against the benchmark. Note
that, in this phase, the benchmark corresponds to the log file
of users’ votes for the enlarged document set that included the
additional 500 documents. As can be seen, for the 1-, 2-, and

-term queries the values of increased from 0.714, 0.659,
and 0.792 to 0.93, 0.89, and 0.93, respectively. This increasing
trend of in Fig. 5(a) implies that the retrieved results of the
system after adding the new documents approach those of the
initially trained system based upon the enlarged document set.
It is interesting to note that the retrieved results for the -term
queries are much closer to the benchmark. This is also consis-
tent with the results of phase 1 study in Table I. This may be
attributed to the fact that incorporating more than three relevant
terms in queries closely captures the user concepts and require-
ments.

Another experiment was conducted when 500 documents
were deleted from the initially trained system. The benchmark
for this paper was the log file of the users’ votes and TRS results
for the reduced set of documents that excluded the 500 docu-
ments. Documents were deleted in steps of 20 and the value of

was generated at every step for the most commonly used 1-,
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Fig. 4. Recall plots for learning in (a) regression mode, (b) classification mode, (c) indexer mode, and (d) BM25 method.

Fig. 5. Model-reference following: (a) � when 500 new documents are added and (b) � 500 when documents are deleted.

2-, and -term queries in the log file. Fig. 5(b) shows the plots
of the averaged for these queries. As can be observed from
these plots, the value of for these queries increased from
0.77, 0.71, and 0.80 to 0.938, 0.902, and 0.935, respectively.

Again, these results attest to the fact that the system after the
model-reference following closely captures the underlying
dynamic behavior of the model when documents are added or
deleted.
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Fig. 6. Relevance feedback learning: (a) weight update in regression mode and (b) weight update in classification mode.

C. Relevance Feedback Learning

The goal of the relevance feedback is to promote/demote one
or more documents to the required positions based upon the
users’ votes and their characteristics such as expertise level of
the users, frequency of votes, and document publish dates. Al-
though the relevance feedback can be implemented either in an
iterative online mode for every expert user, or in a batch mode
based upon votes collected over certain period of time, in this
section, the effectiveness of the proposed algorithms is demon-
strated for the batch mode relevance feedback based upon the
votes collected in the log file for single- and multiterm queries.
It will also be shown that voting for 1-term queries improves the
accuracy of the retrieval system for multiterm queries.

1) Training Based Upon Single-Term Queries: In this paper,
the votes collected in the log file for 1-term queries are used
for relevance feedback training and the updated system is then
evaluated on the multiterm (testing) queries. The system was ini-
tially trained based on the document indexer results. Relevance
feedback learning is then performed in both the regression and
classification modes by incrementally adjusting the weights of
the first layer based on (39) and (41). After the relevant feedback
learning for every 1-term query is performed, the Kendall’s is
computed for the training and testing queries. Fig. 6(a) and (b)
shows the plots of for the entire 2386 iterations of relevance
feedback for these two learning modes. In the regression mode,
the initial values of Kendall’s were 0.611, 0.026, and 0.124,
while the final values after relevance feedback learning became
1, 0.805, and 0.89 for 1-, 2-, and -term queries, respectively.
Similarly, in the classification mode, initial values of were
0.692, 0.210, and 0.109, whereas the final values became 1,
0.902, and 0.906 for 1-, 2-, and -term queries, respectively.
This shows that although relevance feedback learning is exclu-
sively applied for 1-term queries with indicating a perfect
match, the substantial increase in the final values of for the
multiterm queries is indicative of the generalization capability
of the system. This is significant especially for cases when some
terms in the multiterm queries did not receive any relevance
feedback during training. Also, note that the final values for

the classification mode are higher as the documents are not or-
dered according to their scores.

Fig. 7(a) and (b) shows the plots of recall measure for var-
ious choices of top documents after the relevance feedback,
using the regression and classification learning modes, respec-
tively. These plots are generated for the most commonly used
1-, 2-, and -term queries in the log file by taking the av-
erage of the recall values. As mentioned before, the system was
initially trained using the indexer results. As can be seen from
Figs. 4 and 7, the maximum achieved recall increased consider-
ably after the relevance feedback learning process was applied.
In the case of regression-based relevance feedback learning,
the maximum achieved recall increased from 0.673, 0.720, and
0.657 [see Fig. 4(a)] to 0.961, 0.980, and 0.869 [see Fig. 7(a)]
for the 1-, 2-, and -term queries, respectively. Similarly, for
the classification mode, the maximum recall achieved increased
from 0.551, 0.453, and 0.385 [see Fig. 4(b)] to 0.808, 0.797, and
0.698 [see Fig. 7(b)] for the 1-, 2-, and -term queries, respec-
tively. These results indicate the effectiveness of the proposed
relevance feedback learning in both regression and classifica-
tion modes.

2) Training Based Upon Multiterm Queries: In this paper,
the multiterm query learning method developed in Appendix A
is tested and analyzed. Two different experiments were con-
ducted. In the first experiment, we split the queries in the log
file into a training set consisting of 2386 1-term queries, 1664
2-term queries, and 1661 -term queries randomly drawn from
the set of 1846 -term queries, and a testing set consisting of
the remaining 185 -term queries. Note that the purpose of
this experiment is to evaluate the system performance when new

-term queries are encountered. In the second experiment, we
split the queries in the log file into a training set consisting of
2386 1-term queries and 1664 2-term queries, and a testing set
consisting of -term queries that have common terms with the
1- or 2-term queries or both. That is, only those -term queries
that contained terms that participated in the training are used for
testing and performance evaluation.

Fig. 8(a) and (b) shows the plots of Kendall’s versus the
number of epochs for the training (solid line) and testing sets
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Fig. 7. Recall plot after relevance feedback learning in (a) regression mode and (b) classification mode.

Fig. 8. Kendall’s � for two experiments. (a) Kendall’s � versus epochs (first experiment). (b) Kendall’s � versus epochs (second experiment).

(dashed line) for the first and second experiments, respectively.
For any submitted query, only the top 20 documents where con-
sidered to generate Kendall’s measure. The training process
consisted of a series of epochs in which all the samples in the
training set were submitted to the system and necessary adjust-
ments to and using (A.5) and (A.6) were made. Fur-
thermore, at each epoch, the Kendall’s performance measures
for all the samples in the training and testing sets were gener-
ated and plotted. As can be seen, in both figures, starts from
very low values, indicating that the document lists from the ini-
tially trained system using the projection matrix and those of
the benchmark are not highly correlated. However, as relevance
feedback training progresses, the values for the training set
ends up at high values of approximately 0.85 and 0.90 for the
first and second experiment, respectively. This indicates that the
retrieval system closely captures the information content in the
benchmark. Moreover, comparing to the results of the first ex-
periment, in the second experiment values for the testing set

follow more closely those of the training set. This behavior is ex-
pected since the testing queries in the second experiment have
common terms with the training queries. The performance of the
system on the testing set, as shown in Fig. 8(b), for the second
experiment illustrates the generalization ability of the learning
algorithm on multiterm queries. It is important to point out that
Kendall’s plots resemble most learning curves in the sense
that the learning rate is high during the early stages of learning
and decreases gradually as learning progresses.

D. Query Association and Clustering

The great difficulty in querying is that the user has to specify
the right query in order to retrieve the desired results. Hence, it
is prudent for the system to suggest relevant terms from which
the user can pick one or more terms to augment and fine-tune the
original query. In this section, we show how the weights learned
by the query mapping mechanism may be used for document
term associations to provide such query refinement suggestions.
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TABLE II
TERM ASSOCIATION FOR THE QUERY “PCLXL ERROR”

TABLE III
TERM ASSOCIATION FOR THE QUERY “USB CHIPSET”

To test the document term association, we have used a subset
of the most frequently submitted queries taken from the log
file. When a new query is submitted, the query terms are evalu-
ated against these most frequently submitted queries and those
queries that are more related (in concept) to the submitted query
are retrieved and suggested to the user for query refinement.
The selection of the related terms is based upon determining the
amount of match between the weight vectors of the query terms,
i.e., s, of the first layer of the network, and those of the queries
in the log file. If the match is above a prespecified threshold
(0.4), then they are selected and suggested to the user for query
refinement. The weight vectors captured by the network for
single-term queries have to be mean corrected and normalized
prior to the matching process. Consequently, term-matching via
dot product operation corresponds to finding the cosine of the
angle between the two weight vectors.

The suggested query terms are then evaluated by the expert
users for their relevance to the submitted query terms. The
results reveal that on average 84.5% of the suggested terms are
indeed relevant to the query term. This shows the usefulness
of first layer mapping weights for term association based upon
their captured concept. It should be noted that this approach
of query refinement using term association, which is one
of by-products of our system, is very fast and amenable for
real-time operation. The results of query refinement are shown

for two user submitted queries in Tables II and III. Columns
1 and 2 in these tables show the suggested terms and their
corresponding match index, respectively. The terms on the
first row of these tables, which have a match value of 1, are
the actual user-submitted query terms while the rest are the
suggested ones. Clearly, one can see the similarity in their
concept and relevance to the original submitted queries. These
results point to this interesting observation that the weight
vectors for single-term queries that are captured in the first
layer of our network indeed contain useful information for
query association and clustering applications.

VII. CONCLUSION AND DISCUSSION

A new adaptive MRTRS is proposed in this paper. The
learning can be implemented in three phases using a three-layer
connectionist network structure. Initial model-reference
learning captures the behavior of a reference model or the
documents’ content information. Model-reference following is
needed in dynamic environments where documents are to be
added, deleted, or updated. This feature makes the network suit-
able for adaptive and dynamic document retrieval applications.
To capture users’ expertise and knowledge, a relevance feed-
back learning process using either score-based or click-through
selection is proposed. The learning can be implemented in
regression or classification modes for single- and multiterm
queries. The user feedback is employed to administer the expert
user voting based upon frequency of votes, users’ expertise,
or any other externally imposed business rules and heuristic
criteria. The second and third layers perform document-to-term
mapping and search/retrieval tasks, respectively. The effec-
tiveness of the proposed algorithms is demonstrated on a large
domain-specific text database containing various HP products.
A benchmarking with BM25 scoring algorithm is also provided
indicating much better performance than BM25.

The proposed MRTRS provides a flexible text search and re-
trieval engine that possesses the following several desirable key
benefits: 1) ability to continuously learn by modifying the in-
ternal parameters during the interaction with multiple expert
users, 2) preserving stability of the stored information while of-
fering flexibility to incorporate new information from the users
via relevance feedback, 3) ability to update the knowledge-base
in dynamic environments, and 4) simplicity needed for real-life
implementation. Clearly, the main feature of our approach is
the ability of the users to contribute to the decision-making ca-
pability of the system and to enhance the performance of the
system by modifying the knowledge content retrieval directly
in the context of their specific needs.

Theproposedsystemisapplicable toothersimilardomain-spe-
cific applications, e.g., homeland security, as in [25], where doc-
ument collections are limited to their specific organizational con-
tent and needs. In this case, for example, an adaptable TRS can
be designed for specific document collection, queries, and exper-
tise of the users at different emergency management agencies.
The user expertise and information is captured through an anal-
ysis of the context information via relevance feedback learning
usingeitherscore-based(logfile)orclick-throughselection.Sim-
ilar to the vista model in [25], our system can refine the user
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queries and autonomously identify the relevant key terminolo-
gies or the “query anchors” using the query clustering mecha-
nism in Section VI-D. The most relevant terms are provided to the
user as “suggestions” to modify or enhance the submitted query.
This feature is very similar to the “traction” capability of vista. Fi-
nally, “concept switching” [25] in our system can be incorporated
using a hierarchical search and retrieval structure employing var-
ious local adaptable TRSs by allowing the traction concepts to be
shared among various organizations. This system has been im-
plemented by Hewlett Packard Corporation for all their product
collections where an adaptable TRS is used for every set of doc-
ument collections depending on their categories.

APPENDIX A
MULTITERM QUERY LEARNING

The developed algorithms for phases 1 and 3 can be extended
to account for multiterm as well as single-term query learning.
To see this, let us divide the problem of finding mapping matrix

(see Fig. 1) given an ensemble of training samples
into the problem of finding certain columns of mapping matrix

by using only specific samples that convey
the necessary information. For instance, queries that contain one
or more terms , , and , , can be used
to find columns , , and , respectively.

Now, the problem of finding columns , given
a set of -term queries , with

, with their respective outputs s, where is the
vector containing 1 at the position and zero elsewhere, can
be cast in an optimization framework. The goal here is to find

and s that minimize the Lagrangian function

(A.1)
Since we require linear optimal mapping of the form

, , we set the derivative of w.r.t.
to . This yields

(A.2)

To transfer the information of the ensemble of optimal queries
s into the mapping matrix, let us plug the th optimal query

into (A.2). This gives

(A.3)
which must hold for the query terms . Here,

, , and the term in the bracket in (A.3)
represents a correlation measure between the terms in the set of
queries. To find a solution for s, let us define the matrix

, with elements and
matrix . Then, (A.3) can be rewritten
in matrix form , where matrix
contains columns of . If we solve for , we get

(A.4)

As can be seen, to solve for , we need to compute and ,
where (inverse of a correlation matrix) exists and
is easy to compute as is usually small and queries
with few terms are abundant.

A recursive equation for can be found using the corre-
sponding recursive equations for and . Since ,
the correlation matrix for query “ ,” can be written as a func-
tion of the new query sample and as

, , its inverse can easily be computed
using the matrix inversion lemma [31]

(A.5)
Now, since the constrains in (A.1) are given by ,

, this implies that (A.2) can be rewritten as
, . From here, the

Lagrange multipliers , are
found and then used to form the columns of to obtain

. Consequently, the recursive

equation for is

(A.6)

Having found and , can be computed using
.

Since the retrieval system initially starts from the projection
matrix , the corresponding initial values
for and are

and (A.7)
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