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ABSTRACT

MODELING LOCAL PATTERN FORMATION ON MEMBRANE SURFACES USING

NONLOCAL INTERACTIONS

The cell membrane is of utmost importance in the transportation of nutrients and signals

to the cell which are needed for survival. The magnitude of this is the inspiration for our

study of the lipid bilayer which forms the cell membrane. It has been recently accepted that

the lipid bilayer consists of lipid microdomains (lipid rafts), as opposed to freely moving

lipids. We present two lipid raft models using the Ginzburg-Landau energy with addition

of the electrostatic energy and the geodesic curvature energy to describe the local pattern

formation of these lipid rafts. The development and implementation of a C0 interior penalty

surface finite element method along with an implicit time iteration scheme will also be

discussed as the optimal solution technique.
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CHAPTER 1

Introduction

Cancer, Cardiac health disease, Alzheimer’s, Parkinson’s, HIV, and Immune Disorders

are some of the most recognized and deadly diseases in the world today. Shockingly, all of

these diseases are in some way linked to abnormalties in lipid rafts [53, 25, 26, 16, 46, 9].

Lipid rafts have become intensely studied for the roles they play in cell signaling and their

link to these diseases. Lipid rafts are highly dynamic cholesterol-enriched microdomains of

the cell membrane. As we dive deeper into the study of lipid rafts we first need to start with

fundamental knowledge of the cell membrane.

Bilayer membranes are selectively permeable which allows them to regulate what enters

and exits the cell. Along with many other functions such as cellular signaling processes and

signal transduction make the cell membrane essential for the survival of the cell. Although

cell membranes have been studied since 1855, introduced by C. Naegeli and C. Cramer,

the present membrane model is still being developed. The first fluid mosaic model shown

in Figure 1.1 of a biological membrane was developed by Singer and Nicolson [15]. More

specific mosaic models can be established by considering different lipid types or lipid to

protein ratios.

Figure 1.1: Fluid Mosaic Model [15].
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Since 1972 there have been some changes to the fluid mosaic model, such as the meme-

brane having a patchwork mesh such that inside the patches lipid movement occurs, instead

of lipids moving freely across the entire cell surface [48]. We call these patches ”Lipid Rafts” a

name coined by Simons and Ikonen at the 2006 Keystone Symposium of Lipid Rafts and Cell

Function. Specifically they defined lipid rafts as small (10-200nm), heterogeneous, highly

dynamic, sterol- and sphingolipid-enriched domains that compartmentalize cellular processes

[52]. Figure 1.2 is the most recent membrane model including lipid rafts. Some experimental

images of lipid rafts are shown in Figure 1.3.

Figure 1.2: Illustration of a lipid raft model
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(a) (b) (c)

Figure 1.3: (a) These fluorescent images are representative of images of ordered and disordered
phase coexistence in giant unilamellar vesicles and correspond to different lipid species and ratios
[5]. (b) Phase separation shown experimentally using giant unilamellar vesicles [33]. (c) Comparison
of experimental (top) and 2D simulated (bottom) phase separation kinetics [10].

To understand the form and stability of a cell membrane the knowledge of lipid be-

havior is essential, since the cell membrane is made of a lipid bilayer with embedded pro-

teins and cholesterol. The lipid bilayer is formed by the spontaneous self arrangement of

phosopholipids, such that their tails are isolated from the surrounding aqueous solution. This

arrangement leaves their heads free to associate with other surfaces. In aqueous solutions

lipids are able to laterally exchange locations with their neighbors c.f. Figure 1.4. This

movement happens often, in fact millions of times a second [13]. Another type of movement,

that happens much more slowly and not as often, is a lipid flip-flop c.f. Figure 1.4. This oc-

curs when a lipid crosses the hydrophobic membrane core. This rare event has many degrees

of freedom and multiple time scales which make it very difficult to understand and model.

Despite being the least understood dynamical process in the membrane, there are currently

some simple models using transition path sampling (TPS) of this biological phenomena [42].

Many models have been developed to model the lateral movement of lipid diffusion in

membranes [58]. However, there are significantly fewer models developed to include lipid

rafts. This may not be surprising as lipid rafts are a fairly new development in biological

science. In fact there are many unanswered questions including [2, 39, 47, 1]:

(1) How do rafts organize themselves?
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Figure 1.4: Lateral lipid movement (left) and flip-flop lipid movement (right) [41].

(2) How are the lipids attracted to the raft?

(3) How does the raft move?

(4) What is the size and lifetime of a lipid raft?

(5) How are the two monolayers of a bilayer coupled to form a trans-membrane raft?

(6) What do detergent extraction and insolubility tell us about the state of cell mem-

branes?

(7) How directed are the effects of cholesterol depletion on cell function?

(8) What is the physiological function of lipid rafts?

(9) What effect do diet and drugs have on lipid rafts?

By answering these questions we are able to understand the applications of lipid rafts

better. Applications include drug development, biosensors, solar energy transduction, fabri-

cation of synthetic giant vesicles, and formation of virus envelopes [2, 47].There are so many

unanswered quesions because of the lack of direct visualization of lipid rafts. Despite this

lack we do have great knowledge about lipid rafts, for example the membrane has two dif-

ferent states, one being a fluid-like state. This occurs when lipids are moving freely around

the membrane. The other being a gel-like state. This might be a state when lipids are

clustered together to form a lipid raft. One could start with modeling these different states,

particularly the phase transitions and the surface patterns made during these transitions as

seen in Figure 1.3.
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In this paper we will focus on answering Questions 1 and 4 from above by modeling the

local pattern formations of lipid rafts. Chapter 2 and 3 will give background information

about lipid rafts and the mathematics used to model them. These two chapters will provide

helpful material, derivations, and explanations to better understand the models presented.

Chapter 4 will discuss current models found in the literature. Chapter 5 will introduce our

lipid raft model with electrostatics. In Chapter 6 we will propose a model for lipid rafts

including line tension and geodesic curvature. Chapters 7 and 8 will present the numerical

technique needed for the computational simulations of lipid rafts using the models we de-

veloped. In Chapter 9 we will discuss our numerical results and in Chapter 10 we will draw

conclusions and discuss future works.
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CHAPTER 2

Biology Modeling Background

Although lipid rafts are not completely understood at present there is growing knowl-

edge on this topic. We will review some helpful information about modeling lipid rafts in

this section. Membranes are formed by lipids, cholesterol, and proteins. It is known that

the membrane undergoes a structural phase transition that changes the orientation of these

membrane components. The changes are specifically reflected in the order of the lipid hy-

drocarbon chains [40]. The “ordered” phase, often denoted Lo, finds the lipid hydrocarbon

chains to be ordered c.f Figure 2.1 (a). This ordering is largely caused by a high concentra-

tion of cholesterol imbedded in the membrane. This phase is what models the lipid raft. The

“disorded” phase, often denoted Ld, is the state when lipid hydrocarbon chains are disor-

dered c.f Figure 2.1 (b). In this phase the lipids diffuse freely over the membrane. The atoms

in this phase are not as tightly packed as in Lo which makes it possible for molecules to pass

through the membrane. As the lipid chains become less ordered the thickness of the bilayer

(a) (b)

Figure 2.1: Ordered (a) and Disordered (b) domains [43]

is decreased as shown in Figure 2.2 [43]. This height mismatch produces a “step-like” gap as

seen in Figure 2.2 (a). There exist lipids with one full saturated hydrocarbon chain and one

partially unsaturated chain, often referred to as “hybrid lipids” which fill in this gap as seen

in Figure 2.2 (b). It has been suggested that “hybrid-lipids” are line active at the interface
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(a)

(b)

Figure 2.2: Showing the thickness mismatch [7]

of ordered and disordered lipid phases [7]. This may lead to line tension reduction for strong

interaction strengths [8]. This height mismatch produces a free energy between ordered and

disordered lipid phases. This height mismatch is associated with the hybrid lipids packing

at the interface and is also associated with the specific curvature of the interface.

Along the interface between the Lo and Ld phases a line tension arises, and it has been

suggested that the phase separation minimizes the total line tension [55]. This means the

line tension favors having the Lo and Ld domains form two large domains instead of several

microdomains, much like the domains produced by the Cahn-Hilliard equations in Figure

2.3. A competing interaction with the line tension is the electrostatic interactions of the

membrane components. Since lipids, proteins, and ions all carry a charge the lipid blayer

will have a net charge as well. For highly charged lipids or proteins the electrostatic interac-

tion could be a competing interaction with line tension causing microdomain (or lipid raft)

formation. To model these behaviors we consider the free energy of a physical system given

7



by

F = E − TS ,

where E is the energy of the system, T is the absolute temperature, S is the entropy. By

minimizing the free energy we maximize the entropy of the system. This leads to maximizing

disorder, at the same time each particle tries to minimize its energy of interaction with its

neighbor, creating a type of organization. This results in a competition between the entropy

of mixing and the desire to have particular neighbors. It has become very popular to model

this behavior using phase field models [10, 40, 11, 51].

2.1. Derivation of the Cahn-Hilliard Equation

The Cahn-Hilliard equation has been used for many years to describe the process of phase

separation of two species of particles spontaneously separating to form domains containing

only an individual species of particles. This process is illustrated in Figure 2.3. We can

Figure 2.3: A computational simulation of phase separation is shown [20].

describe the phase separation by defining two components A and B with concentrations and

making the following assumptions:

(1) Domain is filled with binary fluid: A and B particles with concentrations m1 and

m2 respectively.

(2) Diffusion is the only form of transportation

(3) AA and BB interactions are favorable

(4) AB and BA interactions are unfavorable.

8



(5) The phase function can be defined in either of two ways

φ =
m1 −m2

m1 +m2
, c =

m1

m1 +m2
.

It follows that −1 ≤ φ ≤ 1 and 0 ≤ c ≤ 1.

In this study we will define the phase function as φ above. With these assumptions we

further define the Ginzburg Landau free energy functional:

(1) F (φ) : =

∫

Ω

(

f(φ) +
1

2
|∇φ|2

)

dx ,

where each term is defined as the following.

(1) f(φ) is a double well potential. An example of this would be to let f(φ)=
φ4

4
− φ2

2
pictured below.
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−0.25
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−0.15
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−0.05

0

0.05

0.1

0.15

φ

f(
φ)

If we minimize f(φ) this term will draw the two particle species apart.

(2)
∫

Ω
1
2
|∇φ|2 represents the energy cost associated with local variations in φ, specifically

those associated with domain walls. When these variations are small the gradient

squared term is the lowest order approximation to the energy cost of creating the

wall [51].

(3) The first variation,
δF (φ)

δφ
, would quantify how the energy changes when particle

concentrations change. This variation is called the chemical potential of the system
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(2)
δF (φ)

δφ
= f ′(φ) − ∆φ = µ .

The time dependent problem

(3)
∂φ

∂t
= −f ′(φ) + ∆φ ,

is known as the Allen-Cahn equation. We use Fick’s Law,

J = −M(φ)∇µ ,

to define the particle flux, J , where M(φ) is the phase field mobility. We have a mass

conservation constraint so there is no creation or destruction of particles. We have the

following time-dependent equation.

∂φ

∂t
+ ∇ · J = 0

∂φ

∂t
= ∇ · (M(φ)∇µ)

Then the Cahn-Hilliard Equation in an open domain, Ω ∈ R
n, for n = 2, 3 is as follows:

∂φ

∂t
= ∇ · (M(φ)∇(f ′(φ) − ǫ2∆φ)) in Ω

∇φ · n = 0 on ∂Ω

(M(φ)∇µ) · n = 0 on ∂Ω ,

where n is the outward normal to the domain. These equations will serve as a starting base

for modeling lipid rafts.

2.2. Electrostatic Energy

Electrostatics has been proven to help stabilize biomolecular conformations [49], making

it very useful to include electrostatic interactions in biomolecular models. These interactions

10



can exist over a long distance since they decay slowly at low ion concentrations. The elec-

trostatic potential can be discribed by Gauss’s Law c.f Theorem 2.2.1 from which we can

derive Poisson’s equation seen in Equation (4).

Theorem 2.2.1. [ Gauss’s Law] [49] If the volume within an arbitrary closed math-

ematical surface holds a net charge Q, then the electrical flux ΦE through the surface is

given by

ΦE =
Q

ǫ0
,

ehere ǫ0 is an electric constant.

ΦE may also be expressed as a surface integral as folows

ΦE =

∫

S

E · dA ,

where E is the electric field and dA represents an element of area.

Alternatively, this law may be written in a differential form as

∇ ·E =
ρ

ǫ0
,

where ρ is the total electric charge density.

Using Gauss’s Law the Poisson Equation can be derived.

(4) ∇2ψ = − ρ

ǫ0

This equation gives the electric potential, ψ, in terms of electric charge density ρ. We will

incorporate the electrostatic interactions into the model we develop in Chapter 5.

2.3. Bending Energy

Another interaction we will model is the competition between the phase separation and

the curvature energy. Some recent studies suggest that one can use the preferred interface
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curvature for specific lipid compositions to determine the microdomain sizes [7]. The bending

of a bilayer membrane modeled as a surface, S, also known as the Willmore Energy, has been

introduced as

F =

∫

S

[
κH (H − C0)

2 + κKK
]
dA ,

where H is the mean curvature and K is the Gauss curvature of the domain. κH and

κK are the mean bending rigidity and the Gauss bending rigidity respectively and C0 is

the spontaneous curvature. By the Gauss-Bonnet theorem the total Gauss curvature of the

domain is a constant and can be computed using the Euler characteristics of the domain. This

term is topologically invariant, so we may simplify the bending energy by just considering

the mean curvature

F =

∫

S

[
κH (H − C0)

2] dA

In this study the phase separation occurs on a given surface, so the phase interface is a 3-D

curve. The curvature of a curve, α, on a surface, S, is given by

κ = α′′(t) · n(t) + α′′(t) · (n(t) × α′(t)) = α′′(t) · (n(t) + (n(t) × α′(t)))

Where α′′(t) = κnN(t), N(t) = T ′

|T | is the principal normal vector, and T is the unit tangent

vector to α. This is called the geodesic curvature. These types of curves can be seen in

Figure 2.4.

Figure 2.4: Curves of constant geodesic curvature
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Remark 2.3.1. It’s important to note that the geodesic curvature of the great circle

(the curve running along the sphere equator) is zero. This can be seen by considering the

projection of the great circle onto the the plane tangent to the curve. This projection is

essentially a straight line with zero curvature. The domain interfaces produced by the Cahn-

Hilliard equation are great circles where the system has a minimum curvature.

We can write this geodesic curvature, κ, in terms of the phase field function, φ, defined

in Equation (1) as

κ = ∇s · n = ∇s ·
( ∇sφ

|∇sφ|

)

.

This will be an essential measurement when comparing the curvature of the mircodomains

found numerically to the curvature of lipid rafts found experimentally. We develop a model

including this interaction in Chapter 6.
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CHAPTER 3

Background Mathematics

We will be modeling lipid rafts on surfaces, so it is important to note the difference

between surface differential operators and domain differential operators. In this chapter we

will introduce surface differentia operators and present some helpful theorems for surface

calculations.

3.1. Surface Operators

Let S be a compact two dimensional, C2-hypersurface imbedded in R
3. If we are able to

extend the surface S then let d be some oriented distance function defined on some open set

U ⊆ R
3, then S may be written as

(5) S = {x ∈ U |d(x) = 0} ,

where ∇d 6= 0 and ∂S = ∅ [22]. Then the tangential gradient, ∇s, on S can be written as

(6) ∇su = ∇u− (∇u·~n)~n

for u ∈ C1(S) , where ∇ is the three-dimensional gradient and ~n is the normal vector on S.

For smooth S we can assume that there is a strip

U = {x ∈ R
3| dist(x, S) < δ}

about S where

(7) x = a(x) + d(x)~n
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is unique for a(x) ∈ S and |d(x)| = dist(x, S) [22]. This suggests that we can uniquely

extend a function u defined on S to U by

(8) û(x) = u(x− d(x)~n) , x ∈ U

If we are unable to extend the surface, S to U then let c(t) be a curve defined on the

same Riemannian manifold as that defined by S. Then c(t) = S(u(t), v(t)) where u(t), v(t)

are tangent vectors to the surface S then by taking the derivative of c(t) we obtain

(9) c′(t) =
∂S

∂u

du

dt
+
∂S

∂v

dv

dt
.

If s(t) represents the arc length of the curve then

(10) s(t) =

∫ b

a

|c′(t)| dt ,

and

(11)
ds

dt
= |c′(t)| .

This means

(
ds

dt

)2

= |c′(t)|2

=

(
∂S

∂u

du

dt
+
∂S

∂v

dv

dt

)2

=

(
∂S

∂u

du

dt

)2

+ 2

(
∂S

∂u

du

dt
· ∂S
∂v

dv

dt

)

+

(
∂S

∂v

dv

dt

)2

.
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If we let

g1,1 =

(
∂S

∂u

)2

,

g2,2 =

(
∂S

∂v

)2

,

g1,2 =

(
∂S

∂u
· ∂S
∂v

)

,

g2,1 =

(
∂S

∂v
· ∂S
∂u

)

.

Then the metric tensor g is given by

(12) g =




g1,1 g1,2

g2,1 g2,2



 .

Note that this matrix is symmetric, since g2,1 = g1,2. With this we can compute g for any

parameterized surface [58]. Then we have the following alternative definitions of the surface

gradient and surface divergence.

∇su =
1√
g

∂

∂xi
ui
√
g

∆su = ∇s · ∇su =
1
√

|g|
∂

∂xi
(
√

|g|giju) .

3.2. Surface Theorems

Theorem 3.2.1 (Divergence Theorem). [54] Let M ⊂ R
3 be a compact three-

dimensional manifold-with-boundary, ∂M , and ~n the unit outward normal on ∂M . Let

F be a differentiable vector field on M . Then,

∫

M

∇ · FdV =

∫

∂M

F · ~n dA

16



Theorem 3.2.2 (Integration By Parts). Let M ⊂ R
3 be a compact three-dimensional

manifold-with-boundary and ~n the unit outward normal on ∂M . If u and v are two

continuosly differentiable functions on the closure of M , then

∫

M

∇suv dV =

∫

∂M

uv ~n dA−
∫

M

u∇svdV

where ~n is the outward unit surface normal to ∂M

3.3. Helpful Derivations

A few minor but helpful derivations are presented here for the convenience of the reader.

∆φ2 =
∂2 (φ2)

∂x2
+
∂2 (φ2)

∂y2
+
∂2 (φ2)

∂z2
(13)

=
∂

∂x
(2φφx) +

∂

∂y
(2φφy) +

∂

∂z
(2φφz)

= 2φxφx + 2φφxx + 2φyφy + 2φφyy + 2φzφz + 2φφzz

= 2|∇φ|2 + 2φ∆φ

∆φ3 =
∂2 (φ3)

∂x2
+
∂2 (φ3)

∂y2
+
∂2 (φ3)

∂z2
(14)

=
∂

∂x

(
3φ2φx

)
+

∂

∂y

(
3φ2φy

)
+

∂

∂z

(
3φ2φz

)

= 6φφxφx + 3φ2φxx + 6φφyφy + 3φ2φyy + 6φφzφz + 3φ2φzz

= 6φ|∇φ|2 + 3φ2∆φ
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CHAPTER 4

Current Models of Lipid Raft

4.1. Electrostatics

In addition to evidences that lipid rafts might be formed by electrostatic interactions,

[39], there is research suggesting other significant interactions such as thermal fluctuations,

long-range repulsive interactions, and dipole interactions may also play a significant role in

driving the formation of lipid rafts [10, 40, 11, 51]. Throughout this section we will review

a model of each type.

4.1.1. Thermal Fluctuations. It is known that thermal fluctuations play a role in

coarsening of binary fluids by driving coalescence [10]. This is also observed in phase sep-

aration in lipid membranes. This is considered in the model presented by Brown et al.[10].

They treat the membrane as a flat 2-D plane and follow the Ginzburg Landau free energy

model presented in Chapter 2. They arrive at an overdamped model

∂φ(x, t)

∂t
+ v · ∇φ(x, t) = M∇2 δF

δφ(x, t)
+ θ(x, t) ,

vi(x, t) =

∫

d2x′Tmij (x− x′)

[
δF

δφ
∇′
jφ(x′, t) + ζj(x

′, t)

]

,

where φ is the phase field function and F is the Ginzburg Landau free energy introduced in

Equation (1). Tmij is the Green’s function for in-plane velocity field, θ(x, t) and ζj(x
′, t) are

Gaussian white random forces. Simplifying further we have

∂tφ(r, t) = M∇2µ+ θ(r, t) − v · ∇φ(r, t) ,

vi(r, t) =

∫

d2r′Tmij (r − r′) ×
[
µ∇′

jφ(r′, t) + ζj(r
′, t)
]
,
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where µ is the chemical potential defined as in (3). Details of the numerical scheme can be

found in [10]. It is easily seen that this model has a convection/advection term which is an

advantageous feature. The results of including thermal fluctuations are reported in Figure

4.1. They conclude thermal fluctuations speed up the coarsening process and that the path

taken to coarsening may be different. It is noted that φ is not at equillibrium in Figure 4.1.

The authors also make some very enlightening conclusions reguarding scaling laws. However,

Figure 4.1: Both top and bottom images are snapshots of the coarsening process over time.
The system size is 30µm x 30µm. The top image includes thermal effects and the bottom
image does not include thermal effects [10]

in this model the membrane is treated as a flat geometry which may not be favorable as

the membrane is a surface with curvature and this curvature has been shown to effect phase

separation [3]. One could also ask since φ is not at equillibrium, how long do these patterns

exist? Do the patterns stay around long enough for the biological processes to take place on

lipid rafts? I am interested in the equillibrium state of this model and the results that are

produced.

4.1.2. Long-Range Repulsive Interactions. C.B. Muratov develops a system with

short-range attractive interactions and long-range repulsive Coulomb interactions [11]. This

model is formed from the Ginzburg-Landau free energy model presented in Chapter 2. We

take the domain to be a 2-D flat infinite domain and we have the following general mean-field
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free energy functional

(15) F =

∫

ddx

(

f(φ) +
1

2
|∇φ|2 +

α

2

∫

ddx′g[φ(x)]G(x− x′)g[φ(x′)]

)

,

where G(x− x′) is a positive-definite kernel for long range interactions, α > 0 is a coupling

constant, g(φ) is a monotonic function that is equal to zero at some φ = φ̄, and d is the

dimension of space. Using singular pertubation, Fourier analysis, and linearization he is

able to make estimates of the location of domain walls, characteristic sizes of domains, and

develop some scaling laws. He uses a simple gradient descent method to study and analyze

the homogenous system. Simulations of this model are presented in Figure 4.2. He notes that

Figure 4.2: Coarsening of the domain pattern with (a) φ̄ = 0 , (b) φ̄ = −0.2 , (c) φ̄ = −0.5.
The system is size 400 x 460

the system and the resultant patterns are extremely sensitive to the intial conditions. This

results in a large number of metastable patterns which locally minimize the energy along

with the equillibrium patterns. They emphasize that the stability analysis really addresses

the metastability of the resultant patterns. Again, in this model the membrane is treated as
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a flat plane which may not be favorable as the membrane is a surface with curvature and this

curvature can effect phase separation [3]. Also, the membrane is a finite charged domain,

and much of the analysis is done on a neutrally charged infinite domain which may not

be an accurate model. The gradient flow for F in Equation (15) is a nonconserved system

thus cannot be applied to the modeling of lipid rafts. However, this model serves as a good

building block to develop better physical models.

4.1.3. Dipole-Dipole Interactions. Michael Seul and David Andelman developed

one of the earliest models of domain patterns and phase separation [51]. They consider

phase separation caused by competing interactions, especially the repulsive dipole-dipole

electrostatic interactions. The model is expressed as a Ginzburg Landau energy functional

as presented in Chapter 2 on a 2-D domain.

Fφ =

∫

ddx

(

f(φ) +
1

2
|∇φ|2

)

.

They also note that in the minimization of the energy functional, the second term can be

expressed in terms of the line tension, γ, and domain wall length, l, i.e.

Fφ =

∫

ddx(φ) + γl .

If two species carry dipole moments and all the molecular dipoles point along the direction

normal to the plane they interact pairwise by a repulsive electrostatic interaction. Setting

µ equal to one dipole moment and setting the other equal to zero this interaction may be

modeled in the continuum limit by

Fd = − µ2

2

∫ ∫

d2xd2x′φ(x)g(x, x′)φ(x)

− µ2

2

∫

d2qφ−qG(q)φq

Where µ is the dipole moment, q is a finite wave number, G(q) and φq are the Fourier

transforms of g(|r − r′|) and φ(r) respectively, and g(|r − r′|) = |x − x′|−3 expresses the
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long-range nature of the dipole-dipole interactions. Combining the two terms we have the

complete free energy

F = Fφ + Fd

Once more, the domain is represented as a flat 2-D plane, which is not a physical feature of

membranes. However, this model does serve as a good base for modeling membranes and

the ideas are used in many of the current models.

4.2. Curvature

There has been indications that the free energy associated with the curvature of domain

patterns competes with the line tension of the domain to produce multiple lipid domains.

Recently, a few lipid raft models have considered the interaction between the line tension

and the curvaure of the lipid domains [4, 8, 7, 31, 32, 3]. This interaction is discussed in

detail in Chapter 2, but we will summarize a few models found in the literature here.

4.2.1. Lattice Model. We have chosen to summarize the model given in [7, 8]. This

model is a spontaneous curvature model that uses packing arguments to predict the size of

a lipid raft that is stabilized by a line of hybrid lipids saturating the interface as seen in

Figure (4.3). The hybrid lipids must minimize the energy associated with the chain length

mismatch while conserving their molecular volumes. The portion of the total free energy

that dictates the response of the interface to bending is the mismatch free energy. This free

energy is due to the volume constraints of the hybrid lipid and is given by

g =

(
Vs

aws (1 − 1/2 ws H)
− LS

)2

+

(
Vu

awu (1 + 1/2 wu H)
− Lu

)2

(16)

+

(

− Vs

aws (1 − 1/2 ws H)
+

Vu

awu (1 + 1/2 wu H)

)2

Where Ls and Lu is the length of the saturated chain of the hybrid lipid and the unsatu-

rated chain of the hybrid chain respectively. H is the curvature, Vs and Vu are the volumes
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(a) (b)

Figure 4.3: (a) Shows the thickness mismatch with the hybrid lipid, h, at the interface. (b)
shows the same bilayer as in (a) but looking down from above [7].

of the saturated and unsaturated chains respectively, ws and wu are the lengths that char-

acterize the spacing of the saturated and unsaturated lipid heads respectively, and a is the

headgroup spacing along the interface. Many of these parameters are lipid specific and can

be measured experimentally. They add this term to a mean-field free energy of the system

defined on a lattice pictured in Figure (4.4). They specifically look at modeling the interface

Figure 4.4: Schematic pictures for the lattice populated with saturated, unsaturated, and
hybrid lipids [7].

of lipid domains. They conclude that the hybrid lipids drive the line tension to zero causing

the formation of microdomains to stabilize. They are also able to measure the radius of

microdomains by using information gathered on the curvature of the mircodomains. This

model offers ideas to construct a better surface lipid raft model, by considering the curvature

of mircodomains.
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4.2.2. Discrete Model. Amazon, Goh, and Feigenson present a model based on line

tension and curvature competition [4]. They develop the following Hamiltonian energy func-

tional to model this interaction.

H = Hp +HH +HG ,

where Hp is the line tension term which is defined by multiplying the total perimeter of the

phase boundary, L, by the constant energy per unit length, γ

Hp = γL .

HH is the mean curvature term given by

HH =

∫ ∫

κ (φ(x)) (H(x))2 dA ,

where κ(φ) is the local bending modulus. The last term HG is the Gaussian curvature taken

from the Helfrich functional

HG =

∫ ∫

κ̄ (φ(x))G(x) dA .

Along with this energy functional they have two constraints to fix the volume and area of

the vesicle. To determine the equillibrium shape of lipid rafts they use a discretizing scheme

on a triangular lattice with an overall spherical topology, seen in Figure 4.5, and apply a

Monte Carlo simulation.
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Figure 4.5: Triangulated lattice with vertices, edges, and faces [4].

Figure 4.6: Patterns produced by purely changing the line tension. The top row are experi-
mental phase patterns and the bottom row are simulated phase patterns [4].

In conclusion, they found the line tension to be the main factor in the location of domains.

The patterns produced in the simulations presented in Figure 4.6 are the result of changing

the line tension. This is a very good base for our model and will aid in comparison of results.

4.2.3. Course Grain Model. Meinhardt, Vink, and Schmid ,present a course grain

model for multi-component lipid bilayers [44]. They have two main results. The first is

showing the existence of a thermodynamically stable heterogeneous membrane phase with

raft-like nanodomains using Monte-Carlo simulations os a coarse-grained model. The second

is a model that explains this raft formation which is obtained by coupling the local com-

position and the monolayer curvature. The curvature is associated with an elastic bending
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energy which in their simplified version is given by

(17) Fel = kcδc0

∫

dl ~n∇u ,

where ~n is the normal vector to the interface, δc0 is a constant characterizing the curva-

ture mismatch, and the line integral,
∫
dl, runs over all domains. They conclude that the

curvature mismatch generates elastic interactions that supress global phase separation and

stabilize the mircodomains. Their model was able to produce these stable microdomains.
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CHAPTER 5

Electrostatics Model

Electrostatics have been seen to affect the phase separation in lipid rafts [40]. In this

chapter we develop an electrostatics model of lipid rafts in which to show this effect. We

consider the domain in Figure 5.1, where Ω is a 3-D domain, S is a surface in Ω, and φ is

the chemical potential defined only on the surface.

S

φ

Ω

Ω−
n+

n− Ω+

Figure 5.1: Ω is a 3D domain, S is a surface in Ω, and φ is the chemical potential defined
on the surface

We can define the Ginzburg-Landau functional, as seen in Equation (1), over the surface,

S, as

(18) F (φ) =

∫

S

(σ

2
|∇sφ(x)|2 + f(φ)

)

ds

where f(φ) is a double well potential. We add to F (φ) in Equation (18) an electro-chemical

energy term
∫

Ω
1
2
|∇sψ|2dx defined over Ω to get

(19) F (φ) =

∫

S

(σ

2
|∇sφ(x)|2 + f(φ)

)

ds+

∫

Ω

1

2
|∇sψ|2dx .

Note that the electro-chemical energy is defined in Ω but not on the surface, S, only. In

order to transform this integral on Ω to a surface integral on S we will start with Poisson’s
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equation (20) to further develop the electro-chemical energy. Consider,

(20)







−∇2ψ = 0, on Ω

ψ+ = ψ−

[
∂ψ

∂n

]
= −(qAρA + qBρB) = −ρ(φ), on S ,

where ρA and ρB are the densities of particle A and particle B respectively and qA and qB

are the charges on particle A and particle B respectively with the following definitions.

(21)







ρA − ρB = φ ,

ρA + ρB = 1 .

The solution to the Poisson’s equation (20) is

(22) ψ(x) =

∫

S

G(x− x0)ρ(x0)dx ,

where G(x − x0) is the Green’s function for the 3-D Laplace equation. In a domain, such

as Ω, this solution depends on the boundary condition, ρ(y), and we get the following nice

result in Ω

ψ(x) =

∫

Ω

G(x− y)ρ(y)dy ,

∆ψ(x) = ∆

∫

Ω

G(x− y)ρ(y)dy = ρ(y) .

However, on surfaces this solution no longer depends on the boundary conditions, ρ(φ).

Thus, the property does not hold on S

u(x) =

∫

S

G(x− y)f(y)dy ,

∆su(x) = ∆s

∫

S

G(x− y)ρ(y)dy 6= ρ(y) .

This suggests that there is no explicit form for the electro-chemical term on S.
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5.1. Domain Integral to Surface Integral

We now consider the electro-chemical term
∫

Ω
1
2
|∇sψ|2dx. To transform the integral on

Ω to an integral on S we first put Poisson’s equation in weak form.

∫

Ω

−∆ψψ = 0 .

Letting Ω = Ω+ + Ω− as represented in Figure 5.1 and integrating by parts we get

−
∫

∂Ω+

(∇ψ · n+)ψdx+

∫

Ω+

(∇ψ · ∇ψ) −
∫

∂Ω−

(∇ψ · n−)ψdx+

∫

Ω−

(∇ψ · ∇ψ) = 0 ,

That is

−
∫

∂Ω+

(
∇ψ · n+

)
ψdx+

∫

Ω+

|∇ψ|2 =

∫

∂Ω−

(
∇ψ · n−)ψdx−

∫

Ω−

|∇ψ|2 .

Notice that n+ = −n− so we can write

∫

∂Ω+

(
∇ψ · n−)ψdx+

∫

Ω+

|∇ψ|2 =

∫

∂Ω−

(
∇ψ · n−)ψdx−

∫

Ω−

|∇ψ|2 ,

and further
∫

Ω

|∇ψ|2 =

∫

∂Ω

[
∂ψ

∂n

]

ψdx =

∫

S

(qAρA + qBρB)ψds .

Thus, the integral transformation is

∫

Ω

|∇ψ|2 dx =

∫

S

(qAρA + qBρB)ψds

Substituting this into the original formulation, Equation (19), we get

F (φ) =

∫

S

(σ

2
|∇sφ(x)|2 + f(φ)

)

ds+
1

2

∫

S

(qAρA + qBρB)ψds .

Now let ρ(φ) =
[
∂ψ

∂n

]
= qAρA + qBρB we obtain,

1

2

∫

S

(ρAqA + ρBqB)ψds =
1

2

∫

S

ρ(φ)ψds ,
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Substituting this into Equation (22), we get

1

2

∫

S

ρ(φ)ψds =
1

2

∫

S

ρ(φ)

∫

S

G(x− x0)ρ(x0)ds .

Finally, with this relation the total energy defined in Equation (19) can be given as a quantity

defined only on a surface as

(23) F (φ) =

∫

S

[
σ

2
|∇sφ(x)|2 + f(φ) +

1

2
ρ(φ)

∫

S

G(x− x0)ρ(x0)ds

]

ds .

5.2. Variational Calculation

To minimize the total energy we need to derive the variation of the total energy. Using

the definition of a functional derivative, for a general functional, F (x):

∫
δF

δφ
v(x) = lim

ǫ→0

F (φ+ ǫv) − F (φ)

ǫ
.

With our functional, F , in Equation (23) we have

F (φ) =

∫
σ

2
|∇sφ(x)|2 +

∫

f(φ) +
1

2

∫

ρ(φ)

∫

G(x− x0)ρ(φ)

F (φ+ ǫv) =

∫
σ

2
|∇s(φ+ ǫv)|2 +

∫

f(φ+ ǫv) +
1

2

∫

ρ(φ+ ǫv)

∫

G(x− x0)ρ(φ+ ǫv)

where

ρ(φ) =
(qa − qb)

2
φ(x) +

(qa + qb)

2
, ρ(φ+ ǫv) =

(qa − qb)

2
(φ(x) + ǫv) +

(qa + qb)

2
.

For simplicity we define

k =
(qa − qb)

2
, k′ =

(qa + qb)

2
.

Then,

ρ(φ) = kφ(x) + k′ , ρ(φ+ ǫv) = k(φ(x) + ǫv) + k′ = kφ(x) + kǫv + k′ ,
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and we have a simplified version of the variation:

F (φ) =

∫
σ

2
|∇sφ(x)|2 +

∫

f(φ) +
1

2

∫

kφ(x) + k′
∫

G(x− x0)(kφ(x) + k′)

F (φ+ǫv) =

∫
σ

2
|∇s(φ+ǫv)|2+

∫

f(φ+ǫv)+
1

2

∫

kφ(x)+kǫv+k′
∫

G(x−x0)(kφ(x)+kǫv+k′)

Then the derivation of the variation is

∫
δF

δφ
v(x) dx = lim

ǫ→0

1

ǫ
(E(φ+ ǫv) − E(φ))

(24)

= lim
ǫ→0

1

ǫ

(∫
σ

2
|∇sφ(x)|2 +

∫

f(φ)

)

+ lim
ǫ→0

1

ǫ

1

2

∫

kφ(x) + kǫv + k′
∫

G(x− x0)(kφ(x) + kǫv + k′)

− lim
ǫ→0

1

ǫ

(∫
σ

2
|∇s(φ+ ǫv)|2 +

∫

f(φ+ ǫv)

)

+ lim
ǫ→0

1

ǫ

(
1

2

∫

kφ(x) + k′
∫

G(x− x0)(kφ(x) + k′)

)

=

∫

σ∆φv +

∫

f ′(φ)v + lim
ǫ→0

1

ǫ

(
1

2

∫

kφ(x)

∫

G(x− x0)kǫv

)

+
1

ǫ

(
1

2

∫

kǫv

∫

G(x− x0)(kφ(x) + kǫv + k′)

)

+
1

ǫ

(
1

2

∫

k′
∫

G(x− x0)kǫv

)

=

∫

σ∆φv +

∫

f ′(φ)v + lim
ǫ→0

1

2

∫

kφ(x)

∫

G(x− x0)kv+

+ lim
ǫ→0

(
1

2

∫

kv

∫

G(x− x0)(kφ(x) + kǫv + k′) +
1

2

∫

k′
∫

G(x− x0)kv

)

=

∫

σ∆φv +

∫

f ′(φ)v +
1

2

∫

kφ(x)

∫

G(x− x0)kv

+
1

2

∫

kv

∫

G(x− x0)(kφ(x) + k′) +
1

2

∫

k′
∫

G(x− x0)kv

=

∫

σ∆φv +

∫

f ′(φ)v +
1

2

∫

(kφ(x) + k′)

∫

G(x− x0)kv

+
1

2

∫

kv

∫

G(x− x0)(kφ(x) + k′)
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=

∫

σ∆φv +

∫

f ′(φ)v +
1

2

∫

ρ(φ)

∫

G(x− x0)
dρ

dφ
v

= +
1

2

∫
dρ

dφ
v

∫

G(x− x0)ρ(φ)

=

∫

σ∆φv +

∫

f ′(φ)v +

∫
dρ

dφ

∫

G(x− x0)ρ(φ)v

which implies:

∫
δF

δφ
=

∫

S

σ∆φ dx+

∫

S

f ′(φ) dx+

∫

S

dρ

dφ

∫

S

G(x− y)ρ(y)dy

5.3. Complete Model of Electrostatic Mediated Lipid Raft Formation

The total energy functional is

(25) F (φ) =

∫

S

[
σ

2
|∇sφ(x)|2 + f(φ) +

1

2
ρ(φ)

∫

S

G(x− x0)ρ(x0)ds

]

ds

with the total variation

δF

δφ
= f ′(φ) − σ∆φ+

∫

S

G(x, y)ρ(y)dy
dρ

dφ
.

Applying Fick’s Law, the change in φ over time is given by

∂φ

∂t
= ∆s

(

f ′(φ) − σ∆φ+

∫

S

G(x, y)ρ(y)dy
dρ

dφ

)

,

where

ρ(y) =

(
qA − qB

2

)

φ(y) +
1

2
qA +

1

2
qB

and

dρ

dφ
=
qA − qB

2
.

To summarize the final problem is to find φ such that:

(26)







∂φ

∂t
= ∆sf

′(φ) − ∆2
sφ+ ∆sψ

dρ

dφ

ψ =
∫

S
G(x.y)ρ(y)dy
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whereG(x, y) is the Green’s function for the 3-D Laplace equation. We will develop numerical

techniques to solve Equation (68) in Chapter 8.
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CHAPTER 6

Geodesic Curvature Model of Lipid Rafts

Recently, it has been shown that the free energy associated with the curvature of mi-

crodomain patterns is a driving energy in the formation of microdomains. This is discussed

in detail in Chapter 2. This motivates us to develop and implement a model containing the

free energy associated with the curvature of microdomains. We start with the free energy

associated with the curvature of lipid-lipid interfaces developed in [7, 8]:

F (φ) =

∫

S

g(H) ds

where g(H) is defined as

g =

(
Vs

aws (1 − 1/2 ws H)
− LS

)2

+

(
Vu

awu (1 + 1/2 wu H)
− Lu

)2

(27)

+

(

− Vs

aws (1 − 1/2 ws H)
+

Vu

awu (1 + 1/2 wu H)

)2

Where Ls and Lu is the length of the saturated chain of the hybrid lipid and the unsaturated

chain of the hybrid chain respectively. H is the geodesic curvature, Vs and Vu are the

volumes of the saturated and unsaturated chains respectively, ws and wu are the lengths

that characterize the spacing of the saturated and unsaturated lipid heads respectively, and

a is the headgroup spacing along the interface. This free energy is highly nonlinear and has

a unique global minimum so we can approximate the curvature energy density, g(H), near

the minimum, H = H0, using a Taylor approximation. This Taylor approximation is plotted

against the original function in Figure 6.1 and the approximation is listed below

g(H) ≈ g(H0) + g′(H0) (H −H0) +
1

2
g′′(H0) (H −H0)

2

Define

a = g(H0) − (H0)g
′(H0) +

H2
0

2
g′′(H0) b = −g′(H0) + (H0)g

′′(H0) c =
1

2
g′′(H0)
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Figure 6.1: g(H) near its minimum and the Taylor approximation of g(H) plotted together
for parameters Vu = 72, Vs = 896, Lu = 27.36, Ls = 28, wu = 6, ws = 5.65.

Then we can write g(H) as

g(H) ≈ a− bH + cH2

By completing the square we can write g(H) as

(28) g(H) = (H − H̃0)
2 + a− H̃2

0

Where H̃0 = b
2

is the spontaneous geodesic curvature. Then, the energy functional defined

on a contour, C, is given by

(29)

∫

C

(H − H̃0)
2 + a− H̃2

0 dx .

Note that the minimization of Equation (30) is equivalent to minimizing

(30)

∫

C

(H −H0)
2 dx ,
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where H0 is the spontaneous geodesic curvature, since the minimization is driven by this

term. Thus, the total energy functional is

(31) F (φ) =

∫

C

(H −H0)
2ds .

The task now becomes to write the contour integral in terms of a surface integral and to

define H in terms of the phase field function, φ, defined on S.

6.1. Countour Integral to Surface Integral

To begin the derivation of the energy functional in terms of φ on the surface, S, we

note that Equation (31) is the Lagrangian formulation of the energy. A possible alternate

formulation is the Eulerian formulation given by

(32)

∫

S

kǫ

2

(

∆sφ+
1

ǫ2
(φ+Hcǫ)

(
1 − φ2

)
)2

dx

where Hc =
√

2Ho. Since the Eulerian formulation is a surface integral it would suffice to

show these two forms are equivalent up to a constant. This equivalence is analog to the

equivalence between the Canham-Helfrich-Evans bending energy and the membrane elastic

energy [19]. We first define the phase field function φ = tanh
(
d(x)

ǫ
√

2

)

where d(x) is the signed

distance for any point on the surface S to the contour C and ǫ is the width of the transition

layer between lipid phases. Then,

∇φ =
1

ǫ
q′∇sd , ∆sφ =

1

ǫ
q′′∇sd · ∇sd+

1

ǫ
q′∆sd

q(x) = tanh

(
x√
2

)

, q′(x) =

(

1 − tanh2

(
x√
2

))

/
√

2, q′′(x) = −2 tanh

(
x√
2

)

sech2

(
x√
2

)

The geodesic curvature of a contour is given by

H = ∇s · n
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where n is the bi-normal vector to the contour, C. Since n = ∇sd we have

H = ∇s · ∇sd = ∆sd .

Using the relations given in Equation (33) we find that

∆sd =
ǫ

q′
∆sφ− 1

q′
q′′∇sd · ∇sd

and

∇sd =
ǫ

q′
∇sφ .

Together we have

∆sd =
ǫ

q′
∆sφ− 1

q′
q′′
ǫ

q′
∇sφ · ǫ

q′
∇sφ .

Writing q′ and q′′ in terms of q we can rewrite this as

∆sd =

√
2ǫ

1 − q2

(

∆sφ+
2q

1 − q2
∇sφ · ∇sφ

)

.

Then the curvature of a countour is given by

H =

√
2ǫ

1 − q2

(

∆sφ+
2q

1 − q2
∇sφ · ∇sφ

)

.

Replacing q with φ we have the final form as:

H =

√
2ǫ

1 − φ2

(

∆sφ+
2φ

1 − φ2
|∇sφ|2

)

,(33)

=

√
2ǫ

1 − φ2

(

∆sφ+
1

ǫ2
(
1 − φ2

)
φ

)

.
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Following the procedure for transforming a contour integral to a surface integral, [19], we

consider the following integral:

∫ ∞

−∞

(

1 − q2

(
x√
2ǫ

))2

dx = 2

∫ ∞

0

sech4

(
x√
2ǫ

)

dx

(34)

=

√
2ǫ

3

(

3 sinh

(
x√
2ǫ

)

+ sinh

(
3x√
2ǫ

)

sinh3

(
x√
2ǫ

))
∣
∣
∣
∣
∣

∞

x=0

=

√
2ǫ

3
lim
x→∞

(

3 sinh

(
x√
2ǫ

)

+ sinh

(
3x√
2ǫ

)

sinh3

(
x√
2ǫ

))

=

√
2ǫ

3
lim
x→∞

(
3

2

(

e
x√
2ǫ − e

x√
2ǫ

)

+
1

2
e

3x√
2ǫ − e

−3x√
2ǫ

)(
2

e
x√
2ǫ + e

−x√
2ǫ

)3

=

√
2ǫ

3
lim
x→∞

(

4e
3x√
2ǫ + Lower order terms

e
3x√
2ǫ + Lower order terms

)

=
4
√

2ǫ

3
,

which implies

(35)
3

4
√

2ǫ

∫ ∞

−∞

(

1 − q2

(
x√
2ǫ

))2

dx = 1 .

38



Multiplying Equation (30) by Equation (35) we get

∫

C

(H −H0)
2dx =

3

4
√

2ǫ

∫ ∞

−∞

(

1 − q2

(
x√
2ǫ

))2

dx

∫

C

(H −H0)
2dx

(36)

=
3

4
√

2ǫ

∫ ∞

−∞

(

1 − q2

(
x√
2ǫ

))2

dx

∫

C

( √
2ǫ

1 − q2

(

∆φ+
2q

1 − q2
∇φ · ∇φ

)

−H0

)2

dx

∼ 3

4
√

2ǫ

∫

S

(

1 − q2

(
x√
2ǫ

))2
( √

2ǫ

1 − q2

(

∆φ+
2q

1 − q2
∇φ · ∇φ

)

−H0

)2

dx

=
3

8
√

2ǫ

∫

S

(

ǫ∆φ+
1

ǫ
φ
(
1 − φ2

)
+
√

2(1 − φ2)H0

)2

dx

=
3

4
√

2

∫

S

ǫ

2

(

∆φ+
1

ǫ2
(φ+Hcǫ)

(
1 − φ2

)
)2

dx ,

where Hc =
√

2H0. This shows that the two forms of the energy differ by a constant multiple,

which suffices for giving the complete energy functional over the surface, S, as

(37) F (φ) =
3k

4
√

2

∫

S

ǫ

2

(

∆sφ+
1

ǫ2
(φ+Hcǫ)

(
1 − φ2

)
)2

dx .

The model is subject to a mass concentration constraint given by

A(φ) =

∫

S

φ(x)ds = constant

6.2. First Variation of Energy Functional

To minimize the total energy we need to derive the variation of the total energy, F (φ),

as defined in Equation (37). Using the definition of a functional derivative, for a general

functional, F (x):
∫
δF

δφ
v(x) dx =

[
d

dτ
F (φ+ τv)

]
∣
∣
∣
∣
∣
τ=0

and substituting in the functional from Equation (37) the variational derivative follows

(38) F (φ+ τv) =
3k

4
√

2

∫

S

ǫ

2

(

∆s(φ+ τv) +
1

ǫ2
((φ+ τv) +Hcǫ)

(
1 − (φ+ τv)2

)
)2

dx ,
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d

dτ
F (φ+ τv) =

d

dτ

3k

4
√

2

∫

S

ǫ

2

(

∆s(φ+ τv) +
1

ǫ2
((φ+ τv) +Hcǫ)

(
1 − (φ+ τv)2

)
)2

dx

∣
∣
∣
∣
∣
τ=0

=

∫

S

k

(

ǫ∆sφ− 1

ǫ
(φ+Hcǫ)

(
φ2 − 1

)
)(

∆sv +
1

ǫ2
v
[
1 − φ2 + (φ+Hcǫ) (−2φ)

]
)

dx

=

∫

S

kW

(

∆sv +
1

ǫ2
v
[
1 − φ2 + (φ+Hcǫ) (−2φ)

]
)

dx

=

∫

S

−k∇sW · ∇svdx−
∫

S

k
1

ǫ2
v[3φ2 + 2Hcǫφ− 1]g dx

=

∫

S

k∆sWv dx−
∫

S

k
1

ǫ2
v[3φ2 + 2Hcǫφ− 1]g dx .

(39)

The total variation is then

δF

δφ
= k

[

∆sW − 1

ǫ2
(
3φ2 + 2Hcǫφ− 1

)
W

]

,

where

W = ǫ∆sφ− 1

ǫ
(φ+Hcǫ)

(
φ2 − 1

)
.

Let WL and WN be the linear and nonlinear parts of W , respectively. Then

WL = ǫ∆sφ+
1

ǫ
φ+Hc , WN = −1

ǫ
φ3 −Hcφ

2

Then the linear part, FL, of δF
δφ

is given by

(40) FL = k∆sWL +
k

ǫ2
WL ,

and the nonlinear part, FN , is given by

(41) FN = k∆sWN − k

ǫ2
(
3φ2 + 2Hcǫφ

)
WN − k

ǫ2
WL

(
3φ2 + 2Hcǫφ

)
.

Totally,

δF

δφ
= FL + FN = k∆WL +

k

ǫ2
WL + k∆WN − k

ǫ2
(
3φ2 + 2Hcǫφ

)
WN − k

ǫ2
WL

(
3φ2 + 2Hcǫφ

)
.
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The variation in its fully expanded form is

δF

δφ
=kǫ∆2

sφ− 2k

ǫ
∆sφ+

(
2H2

c k

ǫ
+
k

ǫ3

)

φ(42)

+
3k

ǫ3
φ5 +

5kHc

ǫ2
φ4 −

(
4k

ǫ3
+

2H2
c k

ǫ

)

φ3

− 6Hck

ǫ2
φ2 − k

ǫ
∆sφ

3 − kHc∆sφ
2 − 3k

ǫ
φ2∆sφ− 2Hckφ∆sφ+

Hck

ǫ2
.

Using the identities derived in Equations (13) and (14) we can rewrite the variation as

δF

δφ
=kǫ∆2

sφ− 2k

ǫ
∆sφ−

(
2C2k

ǫ
+
k

ǫ3

)

φ(43)

+
3k

ǫ3
φ5 +

5kC

ǫ2
φ4 −

(
4k

ǫ3
+

2C2k

ǫ

)

φ3

− 6Ck

ǫ2
φ2 +

Ck

ǫ2
−
(

4kCφ+
6k

ǫ
φ2

)

∆sφ−
(

6k

ǫ
φ+ 2kC

)

|∇sφ|2

And note the variation of the concentration constraint is

∂A

∂φ
= 1

6.3. Complete Model of Geodesic Curvature Modulated Lipid Raft

Formation

Therefore, the gradient of the flow of the phase field function is given by

(44)
∂φ

∂t
= −δF

δφ
+ λ

∂A(φ)

φ
,

where λ is a Lagrange multiplier used to ensure the conservation of φ. We can derive an

expression for λ by integrating Equation (44) and noting that
∫

S

∂φ

∂t
= 0. Hence

(45) 0 = −
∫

S

δF

δφ
+

∫

S

λ .
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Then

(46)

∫

S

λ =

∫

S

δF

δφ
,

so

(47) λ|S| =

∫

S

δF

δφ
,

That is

(48) λ =
1

|S|

∫

S

δF

δφ
.

We can then rewrite the gradient flow equation as follows

(49)
∂φ

∂t
= −δF

δφ
+

1

|S|

∫

S

δF

δφ

We will develop a surface finite element method in Chapter 8 to solve the gradient flow

equation.

42



CHAPTER 7

Review of Numerical Methods for Surface PDEs

Many of the models previously discussed contain a fourth order differential operator, also

known as a bilaplacian or biharmonic operator. This term poses challenges to developing

numerical methods to minimize the various free energy functionals presented in previous

chapters. For general surface PDE’s there are several numerical techniques including finite

difference, finite element, spectral methods, finite volume, and embedded domain methods

[20, 21, 29, 45, 35, 36, 12, 14, 23, 24, 28, 27, 34, 37, 38, 17, 56, 57]. We will give a brief

overview of these numerical methods.

7.1. Mixed Finite Element Method

The fourth order Cahn-Hilliard equation can be reduced to a system of second order

equations by introducing an intermediate variable. Mixed finite element methods can then

be applied to solve this system [20, 21]. Let p be the chemical potential as in Equation (3).

Let S be an open connected and bounded surface in R
3 and let φ = φ(x, t) ∈ H1(S) Then

we can reduce the Cahn-Hilliard equation into the following system:

(50)







∂φ

∂t
= ∆sp

p = ∂F
∂φ

= f ′(φ) − σ∆sφ ,

with boundary conditions φ(x) = 0 and p(x) = 0 for x ∈ ∂S. Let U ⊂ S be the continuous

piecewise linear function finite element space. Then the fully discrete approximation problem

is:

Find (φn+1, Pn) ∈ U2 for n = 0, 1, ..., N such that for any V,W ∈ U :

(51)







(δtφ
n, V ) + (∇Pn,∇V ) = 0,

−(Pn,W ) + σ(∇φn+ 1

2

,∇W ) + (φ̃(φn, φn+1),W ) = 0
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where N is the number of timesteps, ∆t is the step size in time, and

φn+ 1

2

=
φn + φn+1

2
,

δtφ
n =

φn+1 − φn
∆t

,

φ̃(x, y) =







f(x) − f(y)

x− y
, x 6= y ,

φ(x) , x = y .

Convergent numerical results for the Cahn-Hilliard equation on a closed sphere at different

time steps have been obtained by using this approach shown in Figure 7.1

Figure 7.1: Solutions to the Cahn-Hilliard equation using a mixed finite element method at
t = 0, 1, 2, 5. The top image is simulated on a mesh with 2018 nodes and the bottom image
is simulated on a mesh with 8066 nodes [20].

It is noticed that the coupled system, Equation (51), can be integrated by neither an

explicit or implicit method. When an explicit method is used a very small timestep has to

be adopted due to the stability constraint. Interior iterations between the coupled equations

are necessary if implicit methods are used. This motivates us to develop alternative efficient

numerical techniques.

44



7.2. Spherical Finite Difference Methods

When the surfaces entail a global 2-D parameterization, finite difference methods can

be applied to the fourth order equation directly without order reduction. Finite difference

methods have been effective for such surfaces. Figure 7.2 shows a spherical-polar coordinate

Figure 7.2: Grid arrangement and periodicities for spherical coordinates [29]

system. The dotted arrows indicate how the data repeats periodically. 1-D finite difference

discretization can be applied to ρ and θ directions independently. Singularities at the poles

can pose numerical difficulties for which we turn to [45] for an elegant treatment. We first

derive the Cahn-Hilliard equations in spherical coordinates. The biharmonic term is

(52)

∆2u = uρ

[
cos ρ

sin3 ρ
+ 2 cot ρ

]

+
4uθθ
sin4 ρ

−uρρ cot2 ρ+2uρρρ cot ρ+uρρρρ+
uθθθθ
sin4 ρ

+2
uρρθθ
sin2 ρ

−2
uρθθ cos ρ

sin3 ρ
.

Lumping together all terms of the Cahn-Hilliard equation we get

∂u

∂t
=uρ

[
cos ρ

sin3 ρ
+ 2 cot ρ

]

+
4uθθ
sin4 ρ

− uρρ cot2 ρ+ 2uρρρ cot ρ+ uρρρρ +
uθθθθ
sin4 ρ

(53)

+2
uρρθθ
sin2 ρ

− 2
uρθθ cos ρ

sin3 ρ
+ (u3)ρ cot ρ+

(u3)θθ
sin2 ρ

+ (u3)ρρ − uρ cot ρ+
uθθ

sin2 ρ
+ uρρ .

To find the finite difference scheme near the poles we use a polar coordinate system as shown

in Figure 7.3:
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Figure 7.3: Finite difference scheme in polar coordinates near a pole.

The fourth order term in polar coordinates is

(54) ∆2u = urrrr +
2

r2
urrθθ +

1

r4
uθθθθ +

2

r
urrr −

2

r3
urθθ −

1

r2
urr +

4

r4
uθθ +

1

r3
ur .

Along with the rest of the terms we have the Cahn-Hilliard equation in polar coordinates.

∂u

∂t
=urrrr +

2

r2
urrθθ +

1

r4
uθθθθ +

2

r
urrr −

2

r3
urθθ −

1

r2
urr +

4

r4
uθθ +

1

r3
ur(55)

+
1

r
(u3)r + (u3)rr +

1

r2
(u3)θθ −

1

r
ur − urr −

1

r2
uθθ .

To find the finite difference scheme near the pole we define a new polar coordinate as

r̃(r, θ) =







r , 0 ≤ θ < π ,

−r , π ≤ θ < 2π ,

over both positive and negative radius. Differentiation is done with respect to the new

coordinate r̃.
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Figure 7.4: Computational and physical domains [45]

Vector and scalar quantities near the pole must be transformed using these rules:

(1) for 0 ≤ θ < π all quantities are the same in both coordinate systems

(2) for π ≤ θ < 2π we multiply any polar components of a vector quantity, radial

derivative, and any r by −1.

For example, to approximate

∂(vrvθ)

∂r

near the poles we apply the aforementioned transformation for π ≤ θ < 2π to get:

−∂(−vrvθ)
∂ − r

= −∂(vrvθ)
∂r

The signs change for π ≤ θ < 2π but nothing changes for 0 ≤ θ < π. The transformation

is only used to calculate radial derivatives. A disadvantage to using an a finite difference

scheme is that the domain has to be globally parameterizable. This really limits the types

of domains, especially more physical domains, that can be used.
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7.3. Embedded Domains

Deckelnick, Elliott, and Ranner develop an unfitted finite element method for approxi-

mating the solution of surface PDE’s using bulk finite elements [17, 18, 50]. The idea behind

embedded domain methods is a n-dimensional hypersurface is embedded in a polyhedral

domain in R
n+1 discritized by a union of (n+1)- simplices, as seen in Figure 7.5 Continuous

piece-wise linear finite element functions are used for the finite element space. The authors

combine the finite element method with discrete sharp interfaces and narrow bands to give

a finite element method for parabolic equations on evolving surfaces.

Figure 7.5: Example plots of computation domain and solution given in [17].

These methods works well for elliptic equations with advection/convection on evolving

surfaces. The downfall is the memory and storage needed for the method and the method

can have long run times. Although the method could be applied in subsequent projects it is

not optimal for the problems presented in the lipid raft models.
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CHAPTER 8

Surface Finite Element Method and Implementation

In this chapter we develop a C0 interior penalty surface finite element method and an

implicit time iteration scheme for solving the electrostatic and geodesic curvature models

presented in Chapters 5 and 7. Our method is a generalization of a C0 interior penalty

discontinuous Galerkin method for the 2-D Cahn-Hilliard equation [6] to fourth order partial

differential equations on arbitrary surfaces.

8.1. Electrostatics Model

8.1.1. C0 Interior Penalty Surface Finite Element Method. Let S ⊂ R
3 be

a bounded polygonal surface and V = {v ∈ H2(S)| ∂v
∂n

= 0 on ∂S}, where ∂v
∂n

is the outward

normal derivative. Then the electrostatics model presented in Chapter 5 reads as:

Find φ ∈ V such that

(56)







∂φ

∂t
= ∆sf

′(φ) − σ∆2
sφ+ ∆sψ

dρ

dφ
,

ψ =
∫

S
G(x.y)ρ(y)dy ,

Consider the steady state problem,

(57)







0 = ∆sf
′(φ) − σ∆2

sφ+ ∆sψ
dρ

dφ
,

ψ =
∫

S
G(x.y)ρ(y)dy ,

The variational form is then,

A(φ, v) = (f, v) , v ∈ V

for f ∈ L2(S) where

A(φ, v) =

∫

S

∆s(φ
3 − φ)v −

∫

S

σ∆2
sφv +

∫

S

dρ

dφ
∆sψv dx(58)

= −
∫

S

∇s(φ
3 − φ) · ∇sv − σ

∫

S

∇2
sφ : ∇2

sv dx−
∫

S

dρ

dφ
∇sψ · ∇sv dx .

49



With ∇2
sw : ∇2

sv =
∑3

i,j=1wxi,xj
vxi,xj

the inner product of the Hessian matrices of w and v.

Let Th be a regular triangulation of the surface S and define Vh as the standard quadratic

finite element space associated with Th.

Vh = {v ∈ C(S) : vt = v|t ∈ P2(T ) ∀T ∈ Th}

We first consider the fourth order term (the second term in Equation (58)). We apply

integration by parts to the biharmonic operator, ∆2
s. For w, v ∈ H4(T ) we will have

∫

S

(
∆2
sw
)
v dx =

∫

∂T

∂∆sw

∂n
v ds−

∫

T

∇s(∆sw) · ∇sv dx

(59)

=

∫

∂T

∂∆w

∂n
v ds−

2∑

i=1

∫

T

(∇s · ∇swxi
)vxi

dx

=

∫

∂T

∂∆w

∂n
v ds−

∫

∂T

(
∂

∂n
∇sw) · ∇sv ds+

∫

T

∇2
sw : ∇2

sv dx

=

∫

∂T

∂∆w

∂n
v ds−

∫

∂T

∂2w

∂n∂t

∂v

∂t
ds−

∫

∂T

∂2w

∂n2

∂v

∂n
ds+

∫

T

∇2
sw : ∇2

sv dx ,

where ∇2
sw : ∇2

sv =
∑3

i,j=1wxi,xj
vxi,xj

is the inner product of the Hessian matrices of w and

v.

Substituting into Equation (58) the identity in Equation (59) the weak form now becomes

A(φ, v) = −
∫

T

∇s(φ
3 − φ) · ∇sv − σ

∫

∂T

∂∆φ

∂n
v ds+ σ

∫

∂T

∂2φ

∂n∂t

∂v

∂t
ds(60)

+ σ

∫

∂T

∂2φ

∂n2

∂v

∂n
ds− σ

∫

T

∇2
sφ : ∇2

sv dx−
∫

T

dρ

dφ
∇sψ · ∇sv dx .
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To define the discrete form of Equation (60), we define the the jumps and averages on edges

as follows
[[
∂v

∂ne

]]

=
∂vT+

∂ne
|e −

∂vT−
∂ne

|e ,
〈
∂v

∂ne

〉

=
1

2

[
∂vT+

∂ne
|e +

∂vT−
∂ne

|e
]

,

[[
∂2v

∂n2
e

]]

=
∂2vT+

∂n2
e

|e −
∂2vT−
∂n2

e

|e ,
〈
∂2v

∂n2
e

〉

=
1

2

[
∂2vT+

∂n2
e

|e +
∂2vT−
∂n2

e

|e
]

,

where e is the edge shared by the two triangles T+, T− ∈ Th. Define nT+
,nT− as the normal

direction relative to T+ and T− and te to be defined as the tangential direction in the

counterclockwise direction. This is pictured in Figure 8.1. Then,

T+

T−

e

n+

n−

te

Figure 8.1: An edge, e, shared by triangles T− and T+ and the associated normal and tangent
vectors

∫

S

∆2
swv =

∑

j

∫

Tj

∇2
sw : ∇2

sv dx

+
∑

j

∫

ej

〈
∂2w

∂n2
e

〉[[
∂v

∂ne

]]

ds+
∑

j

∫

ej

〈
∂2v

∂n2
e

〉[[
∂w

∂ne

]]

ds

+
∑

j

ǫ

|e|

∫

ej

[[
∂w

∂ne

]] [[
∂v

∂ne

]]

ds .
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for all v, w ∈ Vh, where ǫ ≥ 1 is a penalty parameter. Then the discrete problem is to find

φh ∈ Vh such that

Ah(φh, v) = (f, v)

for all v ∈ Vh, where

Ah(φh, vh) = −
∫

T

∇(φ3
h − φh) · ∇vh − σ

∫

T

∇2
sφh : ∇2

svh dx(61)

−σ
∫

e

〈
∂2φh
∂n2

e

〉[[
∂vh
∂ne

]]

ds− σ

∫

e

〈
∂2vh
∂n2

e

〉[[
∂φh
∂ne

]]

ds

−σ ǫ

|e|

∫

e

[[
∂φh
∂ne

]] [[
∂vh
∂ne

]]

ds−
∫

T

dρ

dφ
∇ψh · ∇vh dx

and

(f, v) =

∫

T

fv dx .

Since S is a closed surface there are no boundary conditions but is subject to a mass

conservation constraint.
∫

S

φ ds = C

where C is the given total quantity of charged lipids on the surface S.

8.1.2. Time Iteration. For the time iteration we use an implicit scheme on the linear

parts and explicit scheme on the nonlinear parts. The time dependent problem is

∂φ

∂t
= ∆s

(

f ′(φ) − σ∆sφ+ ψ(φ)
dρ

dφ

)

.

For simplification let

R =
dρ

dφ
=
qA − qB

2
,

then,
∂φ

∂t
= ∆s (f ′(φ) − σ∆sφ+ ψ(φ)R) .
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To begin, we average the functions over the current and next time step φn and φn+1 and use

a linear approximation to the derivative.

(
φn+1 − φn

∆t

)

=

(

∆sf
′
(
φn+1 + φn

2

)

− σ∆2
s

(
φn+1 + φn

2

)

+
R

2
∆sψ(φn+1 + φn)

)

,(62)

f ′(φ) = φ3 − φ = (φ2 − 1)φ .

To treat the fully implicit scheme, we define an interior iteration for computing φn+1 with

an index k called wk where wk → φn+1 as k → ∞. Then replacing φn+1 with wk and wk+1

we have

(
wk+1 − φn

∆t

)

+ σ∆2
s

(
wk+1

2

)

= ∆s

[(
wk + φn

2

)2

− 1

](
1

2
wk + φn

)

(63)

− σ∆2
s

(
φn

2

)

+
R

2
∆sψ(wk + φn) .

Thus,

wk+1 + σ∆t∆2
s

(
wk+1

2

)

=
∆t

8
∆s

[
(wk + φn)2 − 4

] (
wk + φn

)
(64)

− σ∆t∆2
s

(
φn

2

)

+ φn +
R∆t

2
∆sψ(wk + φn) ,

where

ψ(φn) =

∫

G(x, y)ρn dy ψ(wk) =

∫

G(x, y)ρk dy ,

and

ρn = ρ(φn) , ρm = ρ(wm) .

We continue the inner iteration on k until ||wk+1−wk|| ≤ β, where β is the desired tolerance.

Then update φn+1 = wk and advance to the next timestep.

8.2. Curvature Model

8.2.1. C0 Interior Penalty Surface Finite Element Method. Let S ⊂ R
3 be

a bounded polygonal surface and V = {v ∈ H2(S)| ∂v
∂n

= 0 on ∂S}, where ∂v
∂n

is the outward
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normal derivative. Then the curvature model presented in Chapter 7 reads as:

Find φ ∈ V such that

(65)
∂φ

∂t
= −δF

δφ
+

1

|S|

∫

S

δF

δφ
,

where

(66) −δF
δφ

= −kǫ∆2
sφ+

2k

ǫ
∆sφ+

(
2C2k

ǫ
− k

ǫ3

)

φ+ g(φ)

and g is defined by

g(φ) = − 3k

ǫ3
φ5 − 5kC

ǫ2
φ4 +

(
4k

ǫ3
− 2C2k

ǫ

)

φ3(67)

+
6Ck

ǫ2
φ2 +

k

ǫ
∆sφ

3 + kC∆sφ
2 +

3k

ǫ
φ2∆sφ+ 2Ckφ∆sφ− Ck

ǫ2
.

Consider the steady state problem

(68) 0 = −δF
δφ

+
1

|S|

∫

S

δF

δφ
.

The variational form is then,

A(φ, v) = (f, v) , v ∈ V

for f ∈ L2(S) and

A(φ, v) =

∫

S

−kǫ∆2
sφv +

∫

S

2k

ǫ
∆sφv +

∫

S

(
2C2k

ǫ
− k

ǫ3

)

φv +

∫

S

g(φ)v +

∫

S

1

|S|

∫

S

δF

δφ
v

= −kǫ
∫

S

∇2
sφ : ∇2

sv dx−
∫

S

(

σ − 2k

ǫ

)

∇sφ · ∇sv +

∫

S

(

1 +
2C2k

ǫ
− k

ǫ3

)

φv

+

∫

S

g(φ)v +

∫

S

1

|S|

∫

S

δF

δφ
v ,

(69)

and ∇2
sw : ∇2

sv =
∑3

i,j=1wxi,xj
vxi,xj

is the inner product of the Hessian matrices of w and v.
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Let Th be a regular triangulation of the surface S and define Vh as the standard quadratic

finite element space associated with Th;

Vh = {v ∈ C(S) : vt = v|t ∈ P2(T ) ∀T ∈ Th} .

Consider the fourth order term (the first term in Equation (69)). We apply integration by

parts to the biharmonic operator ∆2
s. For w, v ∈ H4(T ) we have

∫

S

(
∆2w

)
v dx =

∫

∂T

∂∆sw

∂n
v ds−

∫

T

∇s(∆sw) · ∇sv dx(70)

=

∫

∂T

∂∆w

∂n
v ds−

2∑

i=1

∫

T

(∇s · ∇swxi
)vxi

dx

=

∫

∂T

∂∆w

∂n
v ds−

∫

∂T

(
∂

∂n
∇sw) · ∇sv ds+

∫

T

∇2
sw : ∇2

sv dx

=

∫

∂T

∂∆w

∂n
v ds−

∫

∂T

∂2w

∂n∂t

∂v

∂t
ds−

∫

∂T

∂2w

∂n2

∂v

∂n
ds+

∫

T

∇2
sw : ∇2

sv dx

where ∇2
sw : ∇2

sv =
∑3

i,j=1wxi,xj
vxi,xj

is the inner product of the Hessian matrices of w and

v.

Substituting into Equation (69) the identity in Equation (70) the weak form now becomes

A(φ, v) = −
∫

T

2k

ǫ
∇sφ · ∇sv +

∫

T

(
2C2k

ǫ
− k

ǫ3

)

φv(71)

+

∫

T

g(φ)v +

∫

T

1

|S|

∫

S

δF

δφ
v − kǫ

∫

T

∇2
sφ : ∇2

sv dx

−
∫

∂T

∂∆sφ

∂n
v ds+

∫

∂T

∂2φ

∂n∂t

∂v

∂t
ds

+

∫

∂T

∂2φ

∂n2

∂v

∂n
ds
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To define the discrete form of equation (71), we define the the jumps and averages as follows

[[
∂v

∂ne

]]

=
∂vT+

∂ne
|e −

∂vT−
∂ne

|e ,
〈
∂v

∂ne

〉

=
1

2

[
∂vT+

∂ne
|e +

∂vT−
∂ne

|e
]

,

[[
∂2v

∂n2
e

]]

=
∂2vT+

∂n2
e

|e −
∂2vT−
∂n2

e

|e ,
〈
∂2v

∂n2
e

〉

=
1

2

[
∂2vT+

∂n2
e

|e +
∂2vT−
∂n2

e

|e
]

,

where e is the edge shared by the two triangles T+, T− ∈ Th. Define nT+
,nT− as the normal

direction relative to T+ and T− and te to be defined as the tangential direction in the

counterclockwise direction. This can be seen in Figure 8.1. Then,

∫

S

∆2
swv =

∑

j

∫

Tj

∇2w : ∇2v dx

+
∑

j

∫

ej

〈
∂2w

∂n2
e

〉[[
∂v

∂ne

]]

ds+
∑

j

∫

ej

〈
∂2v

∂n2
e

〉[[
∂w

∂ne

]]

ds

+
∑

j

µ

|e|

∫

ej

[[
∂w

∂ne

]] [[
∂v

∂ne

]]

ds ,

for all v, w ∈ Vh, where µ ≥ 1 is a penalty paramenter. Then the discrete problem is to find

φh ∈ Vh such that

Ah(φh, v) = (f, v)

for all v ∈ Vh, where

Ah(φh, vh) = −
∫

T

2k

ǫ
∇sφh · ∇svh +

∫

T

(
2C2k

ǫ
− k

ǫ3

)

φhvh(72)

+

∫

T

g(φh)vh +

∫

T

1

|S|

∫

S

δF

δφ
vh − kǫ

∫

T

∇2φh : ∇2vh dx

−
∫

e

〈
∂2φh
∂n2

e

〉[[
∂vh
∂ne

]]

ds−
∫

e

〈
∂2vh
∂n2

e

〉[[
∂φh
∂ne

]]

ds

− µ

|e|

∫

e

[[
∂φh
∂ne

]] [[
∂vh
∂ne

]]

ds
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and

(f, v) =

∫

T

fv dx

We will now develop an iteration method to solve the time-dependent problem.

8.2.2. Time Iteration. The solution technique is similar to the solution technique for

the electrostatic model in Section 8.1.2. We use an implicit scheme on the linear parts and

explicit scheme on the nonlinear parts. For the curvature model the time dependent problem

is

(73) φt = −γ δF
δφ

+
1

|S|

∫

S

δF

δφ
.

For simplification define g = δF
δφ

and λ = 1
|S|
∫

S
δF
δφ

. Then the equation for gradient flow is

given by

(74) φt = −γg + λ.

To begin, we average the function in the first equation over the current and next step φn

and φn+1, and use a linear approximation on the derivative to obtain,

(75)
φn+1 − φn

∆t
+ γg(φn+1, φn) − λ = 0,

where the averaged function is defined by

g(φn+1, φn) =
k

2
∆ (fc(φn+1) + fc(φn))(76)

− k

2ǫ2
(
φ2
n+1 + φn+1φn + φ2

n + Cǫ(φn+1 + φn) − 1
)
(fc(φn+1) + fc(φn)) ,

and

(77) fc(φ) = k

(

ǫ∆φ− 1

ǫ
(φ+ Cǫ)

(
φ2 − 1

)
)

.

To numerically treat this implicit scheme, we define an interior iteration for computing φn+1

with an index m, named ψm, where ψm → φn+1 as m → ∞. Then, replacing φn+1 with ψm
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and ψm+1 in (75), we have:

(78)
ψm+1 − φn

∆t
+ γg(ψm+1, ψm, φn) − λ = 0,

where the new averaged functions are defined by

f ′
c(ψm+1, ψm, φn) =

ǫ

2
∆(ψm+1 + φn) −

1

4ǫ
(ψ2

m + φ2
n − 2)(ψm + φn + 2Cǫ)(79)

g(ψm+1, ψm, φn) = k∆ (f ′
c(ψm+1, ψm, φn))(80)

− k

2ǫ2
(
ψ2
m + ψmφn + φ2

n − 1 + Cǫ(ψm + φn)
)
(fc(ψm) + fc(φn)) .

We first iterate over the interior index m. Numerically, once ||ψm+1 − ψm|| ≤ β where β

is the desired tolerance, we say that ψm has converged and update φn+1 = ψm. Then, we

advance to the next timestep.

To efficiently solve Equation (78) we divide the averaged functions up into linear and

nonlinear parts, where the linear parts are functions of ψm+1 only and the nonlinear parts

are functions of φn and ψm only.

f ′
clin

(ψm+1) =
ǫ

2
∆ψm+1 ,(81)

f ′
cnlin

(ψm, φn) =
ǫ

2
∆φn −

1

4ǫ
(ψ2

m + φ2
n − 2)(ψm + φn + 2Cǫ) ,(82)

glin = k∆f ′
clin

(ψm+1) ,(83)

gnlin = k∆f ′
cnlin

(ψm, φn)(84)

− k

2ǫ2
(
ψ2
m + ψmφn + φ2

n − 1 + Cǫ(ψm + φn)
)
(fc(ψm) + fc(φn)) .

The implicit scheme is now given by

(85)
ψm+1 − φn

∆t
= λ− γ (glin + gnlin) .
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To solve Equation (85), we first gather all the terms ψm+1, using the formulas for flin and

glin:

ψm+1 + γ∆tglin = (λ− γgnlin) ∆t+ φn,(86)
(

1 +
γ∆tkǫ

2
∆2

)

ψm+1 = (λ− γgnlin) ∆t+ φn.

Expanding the right hand side of Equation (86) we have

(λ− γgnlin)∆t+ φn = ∆tλ1 −
∆tγkǫ

2
∆2φn + ∆tγ∆

(
k

4ǫ
(ψ2

m + φ2
n − 2)(ψm + φn + 2Cǫ)

)

+ ∆tγ

(
k

2ǫ2
(
ψ2
m + ψmψn + φ2

n − 1 + Cǫ(ψm + φn)
)
(fc(ψm) + fc(φn))

)

+ φn ,

where

fc(ψm) = ǫ∆ψm − 1

ǫ
(ψ2

m − 1)(ψm + Cǫ) ,

and

fc(φn) = ǫ∆φn −
1

ǫ
(φ2

n − 1)(φn + Cǫ) .

8.3. Surface Finite Elements

First we approximate the surface, S, by a polyhedral surface, Sh, which is the union of

triangular faces, as seen in Figure 8.2.

Figure 8.2: Sphere with triangle mesh
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Let Tj be the jth triangular face. Then,

(87) S ≈ Sh =
N⋃

j=1

Tj

where N is the number of triangles. Every triangle is made up of three nodes and three

midpoints. So each Tj, called a physical element, is associated with six points pk, where

1 ≥ k ≤ 6 as seen in Figure 8.3.

Figure 8.3: Triangle with six nodes. Three are the vertices of the triangle. The other three
are the centers of three edges.

Consider one particular triangle, known as the reference element. The reference element

refers to the triangle with vertices at

p1 = (0, 0, 0), p2 = (1, 0, 0), p3 = (0, 1, 0), p6 =

(
1

2
, 0, 0

)

, p4 =

(
1

2
,
1

2
, 0

)

, p5 =

(

0,
1

2
, 0

)

.

This is pictured in Figure 8.4. To distinguish between reference element coordinates and

physical element coordinates, we will denote the reference element with coordinates (ξ, η, ζ)

and physical elements with coordinates (x, y, z). Also note the cooresponding node indicies

will be labled in a counterclockwise order. Since the reference triangle lies locally in the
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Figure 8.4: Reference triangle

xy − plane we can treat it in two dimensions. Define

Vh = {v ∈ C(S) : vt = v|t ∈ P2(T ) ∀T ∈ Th}

and let {v1, v2, ......, vn} be the standard quadratic Lagrange basis functions of the form

(88) vi(x, y) = c0 + c1x+ c2y + c3x
2 + c4xy + c5y

2

with general surface gradients

∇svi(x, y) =








c1 + 2c3x+ c4y

c2 + 2c5y + c4x

0







,

and the associated general surface Hessian matrix

Hf =




2c3 c4

c4 2c5



 .
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Then for any u ∈ Vh

(89) u(p) =

N∑

i

ūivi(p) ,

where p ∈ S. The basis functions defined on the reference element are

v1 = 1 − 3ξ − 3η + 2ξ2 + 4ηξ + 2η2, v2 = −ξ + 2ξ2, v3 = −η + 2η2,

v4 = 4ξ − 4ηξ − 4ξ2, v5 = 4ηξ, v6 = 4η − 4ηξ − 4η2,

We can map every physical triangle to the reference triangle, depicted in Figure 8.5, by the

following affine transformation, denoted as F (ξ, η, ζ).
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Figure 8.5: Affine transformation where ζ1 = ζ2 = ζ3 = 0
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(90)








x

y

z








=








x2 − x1 x3 − x1 n1

y2 − y1 y3 − y1 n2

z2 − z1 z3 − z1 n3








︸ ︷︷ ︸

M








ξ

η

ζ








+








x1

y1

z1








︸ ︷︷ ︸

F(ξ,η,ζ)

where nk are the entries of the normal vector to the triangle Tj and (x1, y1, z1) are the

coordinates of the first node on the physical triangle. Now we are able evaluate the basis

functions on every physical element, vi, using the basis functions defined on the reference

element in Equation (90). For example the gradient vector on a physical element would be

calculated as follows

(91) ∇u =









∂u
∂x

∂u
∂y

∂u
∂z









with entries

(92)
∂u

∂x
=
[
∂ξ

∂x

∂η

∂x

]

·





∂u
∂ξ

∂u
∂η



 ,

(93)
∂u

∂y
=
[
∂ξ

∂y

∂η

∂y

]

·





∂u
∂ξ

∂u
∂η



 ,

(94)
∂u

∂z
=
[
∂ξ

∂z

∂η

∂z

]

·





∂u
∂ξ

∂u
∂η



 ,

63



and the Hessian matrix would be calculated as

(95) Hf =









∂2u
∂x2

∂2u
∂x∂y

∂2u
∂x∂z

∂2u
∂y∂x

∂2u
∂y2

∂2u
∂y∂z

∂2u
∂z∂x

∂2u
∂z∂y

∂2u
∂z2









,

with entries

(96)
∂2u

∂x2
=





(
∂ξ

∂x

)2 ∂ξ

∂x

∂η

∂x

∂η

∂x

∂ξ

∂x

(
∂η

∂x

)2









∂2u
∂ξ2

∂2u
∂ξ∂η

∂2u
∂η∂ξ

∂2u
∂η2



 =





(
∂ξ

∂x

)2 ∂ξ

∂x

∂η

∂x

∂η

∂x

∂ξ

∂x

(
∂η

∂x

)2








2c3 c4

c4 2c5



 .

To calculate the normal derivatives on the triangle edges as seen in equation (72) and (61)

we will develop a normal transformation defined as

(97)








n

τ

ν








=








nx ny nz

τx τy τz

νx νy νz








︸ ︷︷ ︸

M








x

y

z








Where nx,ny,nz are the components to the vector normal to the triangle edge, n. tx,ty,tz are

the components to the vector tangent to the triangle edge, τ . νx,νy,νz are the components

to the vector normal to the triangle face, ν. These are pictured in Figure 8.6.
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Figure 8.6: Local coordinate system on a triangulated surface

This transformation allows us to calculate the normal derivatives on the triangle edge.

For example the first and second derivatives would be calculated as

(98)
∂2u

∂n2
=








(
∂x
∂n

)2 ∂x
∂n

∂y

∂n
∂x
∂n

∂z
∂n

∂y

∂n
∂x
∂n

(
∂y

∂n

)2 ∂y

∂n
∂z
∂n

∂x
∂n

∂z
∂n

∂y

∂n
∂z
∂n

(
∂z
∂n

)2















∂2u
∂x2

∂2u
∂x∂y

∂2u
∂x∂z

∂2u
∂y∂x

∂2u
∂y2

∂2u
∂y∂z

∂2u
∂z∂x

∂2u
∂z∂y

∂2u
∂z2







,

(99)
∂u

∂n
=








∂u
∂x

∂u
∂y

∂u
∂z







·








nx

ny

nz







.

Using both transformations presented above and the P2 finite element space we are able to

solve the discrete problem defined by Equations (72) and (61).
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CHAPTER 9

Numerical Simulations and Discussion

9.1. Numerical Solution of the Cahn-Hilliard Equation on Surfaces

In this section we numerically implement the Cahn-Hilliard equations presented in Chap-

ter 2. The coding of the model was done in C, using a biconjugate gradiant method and

a 6-point Gaussian Quadrature. We apply the C0 interior penalty surface finite element

method and the implicit time iteration scheme discussed in Chapter 8. We first vary the

penalty parameter, µ, to find the most precise solution. Then we modify the interface width,

σ, to find the desired separation. We also compare and contrast the total energy using dif-

ferent σ. These graphs are used for comparision in later simulations.

After 10,000 iterations the results for different penalty parameters, µ, with σ fixed at

σ = 0.1 are found in Figure 9.1. These were ran on a mesh with 460 nodes until the time

evolution reached equillibrium state. These results show that the penalty parameter does

not effect the solutions greatly. After 10,000 iterations the results for different σ with µ

fixed at µ = 10.0 are found in Figure 9.2. These were ran on a mesh with 460 nodes until

the time evolution reached equillibrium state. After 10,000 iterations the energy plots for

these different σ values are found in Figure 9.3. Note that in this graph the red curve for

σ = 0.001 is very similiar to σ = 0.0001 and is not visible on this graph.
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µ = 10 µ = 30 µ = 50

µ = 70 µ = 100

Figure 9.1: Cahn-Hilliard solutions for different values of the penalty parameter, µ
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σ = 0.001 σ = 0.01

σ = 0.1 σ = 1.0

Figure 9.2: Cahn-Hilliard solutions for different interface widths, σ
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Figure 9.3: Total energy for different σ values
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In Figure 9.4 we present the obtained results ran on a fine mesh with 3963 nodes for

10,000 iterations.

Figure 9.4: Plot of solutions of the Cahn-Hilliard equation with penalty parameter µ = 10 ,
interface width σ = 0.01, timestep ∆t = 0.001. Top left is the initial condition. Top right is
at 2000 iterations. Bottom left is at 4000 iterations. Bottom right is at 8000 iterations

We can see separation into two domains one with φ = 1 and one with φ = −1 in the

numerical results. These are the expected results and gives confindence to implement the

modified models presented in Chapter 5 and 6.
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9.2. Electrostatic Simulations

In this section we numerically implement the electrostatic lipid raft model presented in

Chapter 5. The coding of the model was done in C using a biconjugate gradient method

and a 6-point Gaussian Quadrature. We apply the C0 interior penalty surface finite element

method and the time iteration scheme discussed in Chapter 8. We present solutions using

different interface widths, σ. We also compare and contrast the total energy.

After 10,000 iterations the results for different interface widths, σ, with the penalty

parameter, µ, fixed at µ = 10.0 are found in Figure 9.5. These were ran on a mesh with 460

nodes with a random initial condition until an equillibrium state is reached.

σ = 0.001 σ = 0.01

σ = 0.1 σ = 1.0

Figure 9.5: Electrostatic model solutions for different σ values
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After 10,000 iterations the energy plots for these different σ values are found in Figure

9.6
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Figure 9.6: Electrostic model total energy for different interface widths, σ

As one would notice the solutions above are very similar to the Cahn-Hilliard equations.

This leads us to scale the electrostatic energy by some constant, ǫ, to make this energy

relevent in the solution. Three different patterns were obtained as seen in Figures 9.7, 9.8,

and 9.9. We were unable to obtain circular raft-like mircodomains at this time. However,

the model is very sensitive to the value of ǫ and further investigation into this model is

necessary. The total energy for these three simulations and for different values of ǫ can be

found in Figure 9.10. Note that for ǫ = 0 the standard Cahn-Hilliard energy is reproduced.

72



t = 0 t = 5

t = 10 t = 20

Figure 9.7: Electrostatic model solutions for scaling constant ǫ = 5.0.
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t = 0 t = 1

t = 10 t = 20

Figure 9.8: Electrostatic model solutions for scaling constant ǫ = 4.5.
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t = 0 t = 1

t = 10 t = 20

Figure 9.9: Electrostatic model solutions for scaling constant ǫ = 5.5.
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Figure 9.10: Electrostic Energy for different scaling constants,ǫ.
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9.3. Numerical Simulations of the Allen-Cahn equation

In this section we numerically solve the Allen-Cahn equation presented in Chapter 2.

The coding of the model was done in C, using a biconjugate gradient method and a 6-point

Gaussian Quadrature. We apply the C0 interior penalty surface finite element method and

the time iteration scheme discussed in Chapter 8. We present solutions using different values

for the parameters σ, as well as different initial conditions as the model may be sesitive to

the inital state. We also compare and contrast the total energy.

After 10,000 iterations the results for different σ with µ fixed at µ = 10.0 are found in

Figure 9.11, 9.12, 9.13, and 9.14. These were ran on a mesh with 460 nodes until equillibrium.

Figure 9.11: Allen-Cahn equation with penalty parameter µ = 10 , interface width σ = 0.01,
and timestep ∆t = 0.001.

Figure 9.12: Allen-Cahn equation with penalty parameter µ = 10 , interface width σ = 0.1,
and timestep ∆t = 0.001.
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Figure 9.13: Allen-Cahn equation with penalty parameter µ = 10 , interface width σ = 0.01,
and timestep ∆t = 0.001.

Figure 9.14: Allen-Cahn equation with penalty parameter µ = 10 , interface width σ = 0.1,
and timestep ∆t = 0.001.

As can be seen the inital condition does not make a significant impact on the solution

in these simulations. Also, note the Allen-Cahn equation solutions look very similar to the

Cahn-Hilliard solutions as to be expected. The different values of σ also behave as we would

predict. We can compare the total energy of the Allen-Cahn equation using these different

σ values. After 10,000 iterations the energy plots for these different σ values are found in

Figure 9.15
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Figure 9.15: Ginzburg-Landau Energy for interface widths σ = 0.01 and σ = 0.1

9.4. Curvature Simulations

In this section we numerically implement the curvature lipid raft model presented in

Chapter 6. The coding of the model was done in C, using a 6-point Gaussian Quadrature a

biconjugate gradient method. We apply the C0 interior penalty surface finite element method

and the time iteration scheme discussed in Chapter 8. We present 4 different simulations

using different values for the parameters. We also compare and contrast the total energy

and are able to approximate the radius of lipid rafts.

9.4.1. Simulation # 1. In this simulation we set ǫ = 0.1 , C0 = 1
0.3

, k = 0.01, ∆t =

0.001. We set the inital condition as a scaled random initial condtion. This scaling allows for

more control over how many rafts could be produced given the initial condition. The results

are compared side by side with the Allen-Cahn equation in Figure 9.4.1. This simulation

was ran on the unit sphere using 3963 nodes. Using a k-means clustering method and

calculating the area of each raft we are able to get an approximation of the raft radius. The
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radius assiociated with the average raft is approximately 0.23. Which means the curvature

is approximately 1
0.23

. We are able to obtain an approximation to the initial spontaneous

curvature. The total energy for Simulation #1 and the Allen-Cahn equation have been

plotted in Figure 9.16.
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Figure 9.16: Total energy in Simulation #1 vs. Ginzburg-Landau Energy
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(1) t = 0

(2) t = 1

(3) t = 3

(4) t = 5

(5) t = 7

Figure 9.17: Simulation #1 (left) and Allen-Cahn equation (right) at different time steps.
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9.4.2. Simulation # 2. In this simulation we set ǫ = 0.1 , C0 = 1
0.40

, k = 0.01,

∆t = 0.001. This spontaneous curvature is the reported spontaneous curvature for Lysophos-

phatidylcholine [30]. We set the inital condition as a random initial condtion. The results

are compared side by side with the Allen-Cahn equation in Figure 9.4.2. This simulation

was ran on the unit sphere using 984 nodes. Using a k-means clustering method and cal-

culating the area of each raft we are able to get an approximation of the raft radius. The

radius assiociated with the largest raft is approximately 0.37. Which means the curvature is

approximately 1
0.37

. We are able to obtain an approximation to the initial spontaneous cur-

vature. The total energy for Simulation #2 and the Allen-Cahn equation have been plotted

in Figure 9.18.
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Figure 9.18: Total Energy in Simulation #2 vs. Ginzburg-Landau Energ.y
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(1) t = 0

(2) t = 1

(3) t = 3

(4) t = 6

(5) t = 8

Figure 9.19: Simulation #2 (left) and Allen-Cahn equation (right) at different time steps.
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9.4.3. Simulation # 3. In this simulation we use a more robust geometry made of

three spheres. We set ǫ = 0.1 , C0 = 1
0.4

, k = 0.01, and ∆t = 0.001. The inital condition

is random. The results are compared side by side with the Allen-Cahn equation in Figure

9.4.3. Using a k-means clustering method and calculating the area of each raft we are able to

get an approximation of the raft radius. The radii of the approximately six rafts produced

by this simulation are plotted in Figure 9.20. One can see the largest raft radius obtained

by the simulation is about 0.37 which means the curvature of that raft is about 1
0.37

. We are

able to approximate the initial spontaneous curvature. The total energy for Simulation #3

and the Allen-Cahn equation have been plotted in Figure 9.21.
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Figure 9.20: The radii of the prominent 6 rafts produced by Simulation #3
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Figure 9.21: Total Energy in Simulation #3 vs. Ginzburg-Landau Energy
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(1) t = 0

(2) t = 1

(3) t = 3

(4) t = 6

(5) t = 8

Figure 9.22: Simulation #3 (left) and Allen-Cahn equation (right) at different time steps.
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9.4.4. Simulation # 4. We test the robustness of the numerical implementation by

running a simulation using a geometry composed of six spheres. This mesh contains 3903

nodes and we set ǫ = 0.1 , C0 = 1
0.4

, k = 0.01, and ∆t = 0.001. The inital condition

is random. The results are compared side by side with the Allen-Cahn equation in Figure

9.4.4. Using a k-means clustering method and calculating the area of each raft we are able to

get an approximation of the raft radius. The radii of the approximately nine rafts produced

by this simulation are plotted in Figure 9.23. One can see the largest raft radius obtained

by the simulation is about 0.35 which means the curvature of that raft is about 1
0.35

. We are

able to approximate the initial spontaneous curvature. The total energy for Simulation #4

and the Allen-Cahn equation have been plotted in Figure 9.24.
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Figure 9.23: The radii of the prominent 9 rafts produced by Simulation #4
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Figure 9.24: Total Energy in Simulation #4 vs. Ginzburg-Landau Energy
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(1) t = 0

(2) t = 0.1

(3) t = 1

(4) t = 3

(5) t = 8

Figure 9.25: Simulation #4 (left) and Allen-Cahn equation (right) at different time steps.
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CHAPTER 10

Conclusions

10.1. Conclusions and Discussion

In this work we investigated phase separation on membrane surfaces. We proposed two

models starting with the Ginzburg-Landau free energy and adding electrostatic energy and

geodesic curvature energy. Patterned states are produced by a competition of the different

energies. In Chapter 8 we developed a C0 interior penalty surface finite element method

along with a time iteration scheme to numerically implement these models. The overall aim

of this work was to develop the understanding of how lipid rafts could form and obtain the

ability to measure the size of the rafts.

The electrostatic model did produce interesting patterns obtained by scaling the elec-

trostatic energy. We produced the lamellar pattern which is produced and discussed quite

frequently in the liturature. However it was not able to produce the circular raft-like patterns

we are interested in. This model is very sensitive to the value of the parameters and would

be worth investingating further.

The geodesic curvature model was able to produce the circular raft-like microdomains we

are interested in. We presented four simulations in all of which we were able to produce an

approximation to the spontaneous curvature. Using biological data, like the spontatneous

curvature of lysophosphatidylcholine, we were able to fit the raft domain sizes by adjusting

the spontaneous curvature. The numerical method was shown to be quite robust by running

the simulation on different geometries. Ultimately we were able to produce a raft-like pattern

and measure the raft size.

10.2. Future Direction

There are numerous future works that can be developed off of the presented models. I

believe the investigation into the electrostatic model would prove to be fruitful and helpful
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to the field of study. Further work in the analysis of the two models would be benificial,

especially analysis that focused on the differences in the surface problem and domain prob-

lem. Obtaining bounds on the parameters and their relationship to mesh size and geometry

would be extremely valuable. Computationally incorporating different combinations of bend-

ing rigidities, spontaneous curvatures, and initial conditions would further convince biologist

of the relevance of the model.

Lipid rafts are found on both layers of the bilayer, so one future direction would be

to incorporate the second leaflet of the bilayer. The investigation of whether the leaflet

interactions could drive different pattern formation would be interesting.

There is much evidence that lipid rafts aid in vesicle budding and the deformation of

the membrane. Currently many models are being produced to model vesicle budding and

membrane deformation. This opens up a whole research area of connecting the two biological

phenomenon. Numerous other biological energies could be incorporated into the models. For

instance, adding the thermal fluctuations as discussed in the literature review.

This research is still in its early years but has a bright future for its continued study.
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