WIND TUNNEL MODELING FOR GEP STACK HEIGHT ISLAND END COGENERATION PROJECT

Prepared by David E. Neff Hesham El-Badry

FINAL REPORT (September 1991)

for

Cabot Power Corporation 200 State Street Boston, Massachusetts 02109

FLUID MECHANICS AND WIND ENGINEERING PROGRAM

CER91-92DEN-HEB3

TABLE OF CONTENTS

LI	ST O	F TABL	JES	iii
LI	ST O	F FIGU	RES	iv
1	REP	ORT SU	J MMARY	1
2	FLU	ID MOI	DEL DESIGN	3
	2.1	PROJE	CT DEFINITION AND SITE SPECIFICATION	3
		2.1.1	Wind Direction Specifications	3
		2.1.2	Wind Speed Specifications	3
		2.1.3	Wind Speed Variation with Height Specifications	4
		2.1.4	Plant Stack Parameter Specifications	4
		2.1.5	Study Area Downwind Extent Estimates	4
		2.1.6	Summary of Prototype Specifications	5
	2.2	OVER	VIEW OF EPA GUIDELINE SIMILARITY REQUIREMENTS	5
	2.3	MODE	L SIMILARITY CRITERIA COMPLIANCE	6
	2.4	MODE	L CONSTRUCTION AND COVERAGE	7
	2.5	BOUN	DARY LAYER WIND TUNNEL CONFIGURATION	8
2	TES		ጉ ጋ ል እ <i>ለ</i>	0
3	3 1			9
	5.1	$\frac{AIMO}{211}$	Overview of EPA Guideline Pequirements	2 0
		3.1.1	Similarity Criteria Compliance	ד רו
		3.1.2 2 1 2	Wind Profile Magsurements	.∪ ⊧1
		$\begin{array}{c} \mathbf{J} \cdot \mathbf{I} \cdot \mathbf{J} \\ 3 \cdot \mathbf{I} \cdot \mathbf{A} \end{array}$	Stack Plyme Visualization	.⊥ ງ
		215	Concentration Maggurements	2
	37	J.I.J DEVNI		2
	J.2	$\frac{\text{RETIN}}{221}$	Test Specifications 1	ר. בי
		3.2.1	Wind Profile Magsuraments	ר. ג
		3.2.2	Concentration Measurements	כ. ג
	33	GED S	$\mathbf{T} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} C$.4 ./
	5.5	$\frac{\text{ODF S}}{2 2 1}$	Wind Profiles Measurements	. ч Л
		3.3.1	Stack Plume Visualization	.4 5
		222	Concentration Maggurements	.) 5
		5.5.5		.)
4	INST	FRUME	NTATION AND MEASUREMENT METHODOLOGY 1	7
	4.1	VELO	CITY MEASUREMENT AND PRESENTATION 1	7
	4.2	<u>PLUM</u>	E VISUALIZATION TECHNIQUES	7
	4.3	<u>CONC</u>	ENTRATION MEASUREMENT AND PRESENTATION 1	.8
	4.4	STACK	K FLOW RATE AND COMPOSITION TECHNIQUES 1	.8
RJ	EFER	ENCES		:0
TA	ABLE	S		·1

FIGURES	5		• • • • • •	• • • • •	• • • • • •		• • • •	• • • •		F-1
APPEND	IX A:	VIDEO '	TAPE EN	CLOSU	RE	• • • •		• • • •	• • •	A-1
APPEND	IX B:	VELOC	TY PRO	FILE DA	ATA PR	INTOU	TS.	••••	•••	A-2
APPEND	IX C:	CONCE	NTRATIC	ON DAT	A FILE	PRINI	OUTS	•••	•••	A-8
APPEND	IX D:	FACILI	TIES ANI) TECH	NIQUES	5	• • • •			. A-40
D.1:]	FLUID	DYNAM	ICS AND	DIFFUS	SION LA	BORA'	<u>FORY</u>			. A-41
D.2:]	ENVIR	ONMENT	AL WIN	D TUNN	EL DES	CRIPT	ION .			. A-44
D.3: 1	WIND	SPEED M	EASURE	MENT I	DESCRIP	TION				. A-45
D.4:]	FLOW	VISUALI	ZATION	TECHN	IOUES .					. A-50
D.5: 0	CONCE	ENTRATI	ON MEAS	SUREMI	ENT DES	SCRIPT	ION .			. A-52

LIST OF TABLES

Table 1	Wind Speed and Direction Frequency Table	. T-2
Table 2	Ground Level Pasquill-Gifford Dispersion Estimate to Determine	
	Maximum Distance to Maximum Downwind Concentration	. T-3
Table 3	Parameter Chart for Model Scale Selection	. T-4
Table 4	GEP Test Parameters	. T-5
Table 5	GEP Reynolds Number Invariance Test Parameters	. T-6
Table 6	Atmospheric Dispersion Comparability Test Parameters	. T-7
Table 7	Field Test Conditions (all tests)	. T-8
Table 8	Model Test Conditions (all tests)	T-11
Table 9	ADCT Reference Velocity and Turbulence Profiles	T-14
Table 10	ADCT Downwind Velocity and Turbulence Profile Variation	T-15
Table 11	ADCT Crosswind Velocity and Turbulence Profile Variation	T-16
Table 12	ADCT Vertical Concentration Profile Data; $X = 500$ meters	T-17
Table 13	ADCT Lateral Concentration Profile Data; $X = 500$ meters	T-18
Table 14	ADCT Vertical Concentration Profile Data; $X = 1000$ meters	T-19
Table 15	ADCT Lateral Concentration Profile Data; $X = 1000$ meters	T-20
Table 16	ADCT Vertical Concentration Profile Data; $X = 1500$ meters	T-21
Table 17	ADCT Lateral Concentration Profile Data; $X = 1500$ meters	T-22
Table 18	ADCT Ground Level Concentration Profile Data	T-23
Table 19	Reynolds No. Invariance Test Velocity and Turbulence Profiles,	
	140° Wind Direction	T-24
Table 20	Reynolds No. Invariance Test Velocity and Turbulence Profiles,	
	325° Wind Direction	T-25
Table 21	GEP Reynolds Number Invariance Concentration Results for 140°	
	Wind Direction	T-26
Table 22	GEP Reynolds Number Invariance Concentration Results for 325°	
	Wind Direction	T-27
Table 23	GEP Reference Velocity and Turbulence Profiles	T-28
Table 24	GEP Visual Test Results	T-29
Table 25	GEP Concentration Test Results for the 45.7 m Stack Height	T-30
Table 26	GEP Concentration Test Results for the 61.0 m Stack Height	T-31
Table 27	GEP Concentration Test Results for the 73.1 m Stack Height	T-32
Table 28	Stack Gas Flow Settings and Composition	T-33
Table 29	Example Calculational Spreadsheet for Omega Mass Controller	
	System, ADCT Test Parameters	T-34
Table 30	Example Calculational Spreadsheet for Omega Mass Controller	
	System, GEP Test Parameters	T-35

LIST OF FIGURES

Figure 1	Topographic Map Detailing Test Study Area (grid lines are one
	km)
Figure 2	Plan View of Study Area Structures (heights are feet above
	MSL)
Figure 3	Model Site Area Picture F-4
Figure 4	Model Site and Surroundings Picture
Figure 5	ADCT Reference Velocity and Turbulence Profile F-6
Figure 6	ADCT Downwind Velocity and Turbulent Profile Variation F-7
Figure 7	ADCT Crosswind Velocity and Turbulence Profile Variations F-8
Figure 8	ADCT Vertical Concentration Profile; $X = 500$ meters F-9
Figure 9	ADCT Lateral Concentration Profile; $X = 500$ meters F-10
Figure 10	ADCT Vertical Concentration Profile; $X = 1000$ meters F-11
Figure 11	ADCT Lateral Concentration Profile; $X = 1000$ meters F-12
Figure 12	ADCT Vertical Concentration Profile; $X = 1500$ meters F-13
Figure 13	ADCT Lateral Concentration Profile; $X = 1500$ meters F-14
Figure 14	ADCT Ground Level Concentration Profile
Figure 15	Reynolds No. Invariance Test Velocity and Turbulence Profiles,
	140° Wind Direction F-16
Figure 16	Reynolds No. Invariance Test Velocity and Turbulence Profiles,
	325° Wind Direction F-17
Figure 17	GEP Reference Velocity and Turbulence Profiles F-18
Figure A-1	Fluid Dynamics and Diffusion Laboratory Layout
Figure A-2	Environmental Wind Tunnel Schematic A-44
Figure A-3	Velocity Calibration and Measurement System A-49
Figure A-4	Video Image Analysis System A-51
Figure A-5	Concentration Sampling and Measurement System Schematic A-55

1 **REPORT SUMMARY**

Cabot Power Corporation requested Dr. David Neff of Colorado State University to perform a wind tunnel measurement program designed to study "Good Engineering Practice" (GEP) stack height determination as defined by the Environmental Protection Agency (EPA) for the Island End Cogeneration Project. This fluid model assessed the effects of adjacent rounded structures (two LNG tanks and a cement silo) on the stack gas plume from a 235 MW gas-fired cogeneration facility. The original objectives of this fluid modeling study, as stipulated in the <u>STUDY PROTOCOL</u> document, were to:

- 1) Determine whether these rounded structures cause "excessive concentrations" downwind of the desired 45.7 meter (150 foot) plant stack configuration. An excessive concentration is defined as a "maximum ground-level concentration monitored or modeled in the presence of nearby structures or terrain obstacles that is 40% or more, in excess of maximum groundlevel concentration, monitored or modeled for the same orientation and stack parameters in the absence of downwash, wake or eddy effects produced by nearby structures or terrain."
- 2) If the 45.7 meter plant stack configuration produces "excessive concentrations" then determine the minimum stack height which does not produce "excessive concentrations."
- 3) Insure that all modeling is consistent with EPA requirements for wind tunnel testing including those provided in <u>Guideline</u> for Use of Fluid Modeling to Determine Good Engineering <u>Practice Height</u> (EPA-450/4-81-003, July, 1981), (EPA-FM-GEP Guideline hereafter).

A 1:400 scale model of the Island End Cogeneration Project and surrounding features was constructed and tested in a wind tunnel facility. These tests, both visual and concentration measurements, covered three plant stack heights (45.7m, 61m, and 73.1m) and four wind directions (140°, 150°, 320°, and 325°). The results from these tests determined that:

- 1) The 45.7 meter plant stack configuration did not satisfy the EPA GEP criteria.
- 2) The highest stack tested in this study, 73.1 meters, also did not satisfy the EPA GEP criteria.

Because atmospheric dispersion modeling conducted by HMM Associates demonstrated compliance of ambient air quality standards with the 73.1 meter stack, further fluid testing was not necessary. Full documentation of the testing conducted on the three stack heights identified above is provided in this report.

The organization of major topics discussed in this report are as follows:

- Section 2 The compliance of the model design with the similarity criteria stipulated in the EPA-FM-GEP Guideline.
- Section 3 Wind tunnel testing program and results for the demonstration of atmospheric dispersion comparability as specified in the EPA-FM-GEP Guideline.

Wind Tunnel testing program and results documenting Reynolds number invariance of the model flow around the rounded LNG tanks and silo structures.

Wind Tunnel testing program and results documenting the three non-GEP stack heights tested.

Section 4 Discussion of the instrumentation and measurement methodologies used.

2 FLUID MODEL DESIGN

2.1 PROJECT DEFINITION AND SITE SPECIFICATION

The Island End Cogeneration Project proposes to build a 235 Megawatt gas fire powerplant at a site north of downtown Boston, Massachusetts; see Figure 1. The proposed plant stack is located ~ 200 meters to the southeast of two large round LNG tanks (~ 58 meters high) and ~ 100 meters to the northwest of a rounded silo complex (~ 42 meters high); see Figure 2. The plant turbine building is ~ 26 meters high. The proposed plant stack height of 45.7 meters is 1.7 times the height of the turbine building. Whenever there are high wind speeds (causing little plume rise) from the southeast or northwest it can be hypothesized that the plume interaction with the LNG tanks and/or silo complex may cause "excessive concentrations".

The EPA suggests the use of a fluid model to determine the GEP stack height necessary to avoid these "excessive concentrations" from rounded structures. This fluid model is a reduced scale representation of the plant site, topography and structures adjacent to the plant site, the atmospheric wind structure of interest approaching the site, and plant stack discharge characteristics. Proper scaling of this phenomena is achievable in a boundary layer wind tunnel test facility.

2.1.1 Wind Direction Specifications

The meteorological conditions for which "excessive concentrations" are mostly to occur have already been stated as high winds from the southeast or northwest. Observation of the line up of the plant stack and the silo complex/LNG tanks shows that the wind directions of 140° , 150° , 320° , and 325° should cover the worst case scenarios.

2.1.2 Wind Speed Specifications

The worst case design wind speed, as specified in the EPA-FM-GEP Guideline, is that speed at which the lowest plume rise will occur but not more than the speed that is exceeded less than 2 percent of the time (i.e., 98th percentile wind speed). Table 1 shows the wind speed and direction frequency table observed at the Logan Intl Airport in Boston, Massachusetts for the years 1965 through 1974. The EPA-FM-GEP guideline states that "A frequency distribution based on categories of specific design wind directions would only be appropriate if on-site meteorology is used." Since Logan Intl Airport can not be considered on-site, the total frequency of observations for all wind directions (bottom line in Table 1) is the appropriate design specification. The shaded values in Table 1 indicate the design values used for this study, i.e., 11.3 meters/second at a height of 6.7 meters.

2.1.3 Wind Speed Variation with Height Specifications

The variation of mean wind speed with height above the ground (referred to as the boundary layer) at the study site is deduced from empirical equations known to correlate atmospheric data. The EPA-FM-GEP Guideline states that for heights up 100 meters the log-linear velocity profile relationship be used:

- $U/u_{*} = 2.5*\ln[(z-d)/z_{o}];$ where
- u. \equiv friction velocity,
- d = displacement height,
- z_{o} = roughness length.

Table 1 in the EPA-FM-GEP Guideline lists suggested values of the roughness length for various types of ground cover. This Table indicates that for all wind direction of interest (140°,150°,320°,325°) that a roughness length of 0.5 meters is an appropriate value. The displacement height is estimated from Equation 6 in the EPA-FM-GEP Guideline: d = H-z_0/2.5; where H = the general roof-top level.

The mean velocity through the entire depth of the boundary layer (which the Guideline states to be 600 meters) is represented by the power law equation:

- $U/U_{\infty} = (z/\delta)^{p}$; where
- U = mean wind speed at height z,
- U_{∞} = wind speed at boundary layer height δ ,
- δ = boundary layer height = 600 meters
- p = power law index.

The EPA-FM-GEP Guideline suggests that the power law index be estimated from the equation $p = 0.24 + 0.096*\log_{10}(z_o) + 0.016*[\log_{10}(z_o)]^2$. For a study site roughness length value of 0.5 meters, the power law index equals 0.213. Given that U = 11.3 m/s at z = 6.7 m and solving the power law equation for U_{∞} yields $U_{\infty} = 29.4$ m/s. Again using the power law equation but this time solving for the design wind speed at the design stack height of 45.7 meters yields U = 17 m/s.

2.1.4 Plant Stack Parameter Specifications

The proposed plant stack is a straight, steel stack with an internal diameter of 5.79 meters. The Air Quality Modeling Protocol done by HMM Associates, Inc. found that the worst case air pollution scenario was for fuel oil combustion. The stack gas exit velocity and temperature for this situation was reported as 20.4 m/s and 135°C respectively. This stack gas exit temperature coupled with an annual mean temperature in the Boston area of 10.8°C indicates that the stack gas specific gravity is 0.696.

2.1.5 Study Area Downwind Extent Estimates

The EPA-FM-GEP Guideline requires that the study area be of sufficient downwind extent such that the maximum ground level concentration be clearly resolved. Estimation of this downwind distance can be made using a Pasquill-Gifford (PG) elevated

point source dispersion model (Turner, 1970). The maximum downwind distance is found using the highest expected stack height, 73.1 meters, and dispersion category D in the PG empirical model. Table 2 displays ground level normalized concentration, $\chi U_H/Q$ [m⁻²], estimates for these conditions. The distance to the maximum concentration value is 1400 meters. A study area downwind extent of 2000 meters should be sufficient to satisfy all Guideline requirements.

2.1.6 Summary of Prototype Specifications

The following list summarizes important field scale site specifications that are needed for model scale test design:

1)	Wind Directions	140°,150°,320°,325°,
2)	Wind Speed at Design Stack Height	17 meters/second,
3)	Wind Profile Roughness Length	0.5 meters,
4)	Wind Profile Displacement Height	0.0 meters,
5)	Wind Profile Power Law Index	0.213,
6)	Plant Stack Inside Diameter	5.79 meters,
7)	Stack Gas Exit Velocity	20.4 meters/second,
8)	Stack Gas Specific Gravity	0.696,
~		aaaa .

9) Downwind Extent of Study Area 2000 meters.

2.2 OVERVIEW OF EPA GUIDELINE SIMILARITY REQUIREMENTS

Snyder (1981) discusses in general terms the scaling techniques for a wide range of atmospheric diffusion problems. The EPA-FM-GEP Guideline specifically states the fluid modeling requirements for GEP stack height determination studies. This fluid model is in complete compliance with the EPA-FM-GEP Guideline. The major modeling requirements specified in the EPA-FM-GEP Guideline are summarized in the following list:

- (1) The roughness Reynolds number, $u_{\sigma} z_{\sigma} / \nu$, characterizing the turbulent structure of the model boundary layer should be greater than 2.5.
- (2) The model should be covered with roughness of size ϵ such that $\epsilon u_{\star}/\nu > 20$.
- (3) The fluid model stack effluent Reynolds number, W_*D/ν , should be greater than 2,000.
- (4) The model plume rise, dominated by the momentum length scale, should be match to the field plume rise by maintaining equality of the plume velocity ratio, W_s/U_s , the plume specific gravity, ρ_s/ρ_a , and stack geometric similarity, D/H_s.

- (5) The design wind speed should near that of the 98th percentile wind speed expected at the site. Wind direction weighted frequencies are permissible only if on site meteorology is used.
- (6) The model boundary layer's roughness length, z_o, friction velocity, u_n, and power law index, p, should be representative of the expected field conditions as stipulated in the EPA-FM-GEP Guideline's Table 1 and Figure 1.
- (7) The flow over significant nearby structures and terrain should be Reynolds number independent. For sharp edged obstacles an object Reynolds number, $U_H H/\nu$, greater than 11,000 is sufficient. For any obstacles with an Re # < 11,000 or for any smooth shaped obstacles an Re # independence test must be performed.
- (8) All structures and terrain features with heights greater than 1/20 the distance to the plant stack should be included in the geometrically scaled model.
- (9) The flow blockage of the model in an adjustable roof wind tunnel should be less than 10 percent.
- (10) The model boundary layer should be characteristic of Pasquill-Gifford C to D stability category with a field equivalent boundary layer height of 600 m.

2.3 MODEL SIMILARITY CRITERIA COMPLIANCE

To satisfy the EPA-FM-GEP similarity requirements for a fluid model of the Island End Cogeneration Project the following model design parameters were selected:

a)	Model to Field Length Scale Ratio	=	1:400
b)	Generic Model Surface Roughness, ϵ	~	0.15 cm
c)	Model Roughness Length, z _o	~	0.125 cm
d)	Site Power Law Index, p	~	0.213
e)	Model Boundary Layer Height, δ	R	150 cm
f)	Model Wind Speed at stack height	=	250 cm/s
g)	Model Stack Effluent Velocity		300 cm/s
h)	Model Stack Effluent Specific Gravity	=	0.696

Table 3, Parameter Chart for Model Scale Selection, details all pertinent scaled parameters and scaling criteria for both the full scale input data and several different possible model scales including the selected model scale of 1:400. The model wind speed at stack height in this table was set to 250 cm/s so that tests for Reynolds numbers invariance (at twice this wind speed) could be obtained in the selected wind tunnel testing facility.

Table 4, GEP Test Parameters, represents the information in Table 3 but for only the selected model scale, 1:400. These model test parameters satisfy many of the EPA-FM-GEP Guideline requirements mentioned in the previous section, i.e.:

Requirement

Number ↓

- (1) Roughness RE# $(u_z/\nu) = 18.3$ is greater than 2.5,
- (2) Generic Roughness RE# $(u \cdot \epsilon/\nu) = 21.9$ is greater than 20,
- (3) Stack Gas RE# = 2,895 is greater than 2,000,
- (4) Velocity Ratio W/U = 1.2 is equal to field value,
- (4) Stack Gas Specific Gravity = 0.696 is equal to field value,
- (4) All length dimensions are scaled equally, 1:400,
- (5) The design wind speed is representative of field values near to the 98th percentile,
- (6) All model boundary layer characteristics are representative of field values,
- (7) Turbine Building RE# is slightly less than 11,000,
- (7) Measurements must be made to verify Reynolds number invariance around rounded structures (these tests are discussed in chapter 3.2 on Reynolds Number Invariance Verification Tests),
- (8) The required site structures are reproduced at model scale and are discussed further in the next section on model construction,
- (9) Wind tunnel blockage is less than 10 percent and is discussed further in a subsequent section on wind tunnel configuration,
- (10) The equivalent wind tunnel dispersion category is the subject of the Atmospheric Dispersion Comparability Tests described in the next chapter.

2.4 MODEL CONSTRUCTION AND COVERAGE

Based on atmospheric data over the Boston area, the size of the concentration measurement grid, and modeling constraints discussed in earlier sections, a model scale of 1:400 was selected. The Environmental Wind Tunnel test facility has a width of 3.66 meters. This allows for the reduced scale construction of all significant buildings within a 730 meter radius of the plant stack. The tunnel test section extends 5 meters downwind of this stack location thus providing for scaled concentration measurements out to 2000 meters. The location of the Island End Cogeneration site along with a circle demarking the portion of the Project area replicated is shown in Figure 1.

The buildings surrounding the plant stack were fabricated from masonite and/or styrofoam and placed in their appropriate locations on a 3.6 meter diameter, 0.63 cm thick masonite sheet. All roads and waterways were painted on this masonite sheet. Modeled upwind and downwind structural and terrain features were also fabricated if their heights exceed 1/20th the distance to the plant stack. Figure 2 shows the location of the different site structures and their associated heights. The topography changes within the modeled area are mostly insignificant except for one small hill located 700 meters from the plant stack at a direction of 100° from north. Modeled topography representative of this hill was included as a removable section on the model. The two LNG tanks, the cement silo structure and the project buildings were all designed for easy removal. Figure 3 is a picture of the model site area in close to the powerplant. Figure 4 is a picture of the model site area and surrounding structures.

Four different plant stacks (equivalent to 45.7 m, 61 m, 73.1 m, 100 m) were constructed from brass tubing stock. Both the inside and outside of these model stacks were coated with sand roughness to ensure fully turbulent flow. An orifice, one-half the inside diameter, was placed in the base of each stack to initiate turbulent flow. The 100 meter model stack is for use in the atmospheric dispersion comparability test program. Model roughness elements of 0.15 cm were added to the rounded exterior surfaces of the LNG and silo structures to improve Reynolds number invariance performance, as specified in the GEP standards. Roughness elements of 0.15 cm were spread over all model ground level surfaces to ensure proper Reynolds number performances.

2.5 BOUNDARY LAYER WIND TUNNEL CONFIGURATION

All model tests were performed in the Environmental Wind Tunnel (EWT) test facility at Colorado State University (CSU). This tunnel has a 3.66 m by 2.13 m crosssection, a 17.4 m length, a wind speed range of 0 to 13 m/s and a flexible test section roof. A description of this facility is provided in Appendix D.2 and a facility drawing is provided in Figure A-2. Appropriate boundary layer development techniques were utilized to accurately represent wind conditions approaching the plant stack from the 140° and 320° wind directions. The 140° wind direction studies the plant stack plume when the silo structure is directly upwind and the LNG tanks are directly downwind. The 320° wind direction studies the opposite effects, i.e. when the LNG tanks are upwind and the silo structure is downwind. The Island End Cogeneration Project model stack was placed six meters from the end of the EWT's test section. This placement provides sufficient upwind fetch and a sufficient downwind measurement zone. The zones upwind and downwind of the turntable area were modeled with a generic roughness design (chain rows every 15 cm) to create the desired model boundary layer.

3 TEST PROGRAM

The original goals of the test program were to determine and fully document the GEP stack height for the Island End Cogeneration Project in complete compliance with the EPA-FM-GEP Guideline. Table 7 Field Test Conditions, lists the field conditions for each type of data test to be performed in this original specification. Table 8 Model Test Conditions, details the model conditions for each type of these data tests. Upon determination in this test program that the GEP stack height would be greater than 73.1 meters the decision was made to suspend all further testing. The shaded areas in these tables designate those tests which were not performed in the present test program.

3.1 ATMOSPHERIC DISPERSION COMPARABILITY TESTS

3.1.1 Overview of EPA Guideline Requirements

The EPA-FM-GEP Guideline requires that the wind tunnel testing facility demonstrate atmospheric dispersion comparability by acquiring and documenting a set of velocity and concentration profiles on a standardized stack plume released into a standardized model boundary layer. The EPA-FM-GEP Guideline similarity requirements for these atmospheric dispersion comparability tests (ADCT) are summarized below:

- (1) All ADCT length scaling (stack height, study area distances, boundary layer height and roughness length, etc.) should be at the same ratio, 1:400, as for the GEP model tests,
- (2) The ADCT flow velocity should match the GEP model design flow velocity at the proposed stack height; i.e., 250 cm/s at H = 45.7m/400 = 11.4 cm,
- (3) The ADCT stack is to be the field equivalent of 100 meters high with an inside diameter of 5 meters and is placed at the same location within the test facility as the GEP stack tests,
- (4) The ADCT wind boundary layer is represented by a characteristic roughness length, z_0 , of less than 0.2 meters,
- (5) The ADCT stack gas exit velocity is to be 1.5 times the ADCT wind speed at the stack top.

The EPA-FM-GEP Guideline requires that the following ADCT data be acquired and documented:

- (6) Vertical profiles of mean velocity, longitudinal turbulent intensity, vertical turbulent intensity and Reynolds stress at the stack location, at the end of the planned study area (prototype 2 km downwind) and midway between these two locations,
- (7) Lateral profiles of mean velocity and longitudinal turbulent intensity at three elevations (prototype 25 m, 45.7m, 100 m) near the stack and at three elevations (prototype 25 m, 45.7m, 100 m) at the end of the study area (prototype 2 km downwind),
- (8) Vertical and lateral mean concentration profiles through the plume centerline at quarter intervals between the stack and the end of study area (prototype 0.5 km, 1.0 km and 1.5 km),
- (9) Ground level longitudinal concentration profile through the ground level plume centerline with lateral points verifying location of ground level plume centerline.

The EPA-FM-GEP Guideline requires that the following ADCT data be analyzed:

- (10) The velocity profiles are to be regressed upon to determine their power law index, roughness length, and friction velocity. These values are to be compared to the expected atmospheric values for this site.
- (11) The concentration data are to be converted to the equivalent field values of $\chi U_H/Q$ [m⁻²] and compared to estimates from the Pasquill-Gifford diffusion categories C and D.
- (12) The measured model plume rise is to be compared to estimates from the EPA-FM-GEP Guidelines suggested model.

1

3.1.2 Similarity Criteria Compliance

The ADCT model scale and flow velocity were set to equal that of the site model program, i.e. scale of 1:400 and $U_{\rm H} = 250 \text{ cm/s}$ (where test H = 45.7m/400 = 11.4cm). The ADCT boundary layer roughness length, $z_0 < 0.2$ meters, is different from the GEP test program, thus different boundary layer development techniques were employed. The model stack represents a field stack of 100 m height and 5 m inside diameter, i.e. 25 cm high with I.D. = 1.25 cm. This stack was placed at the same location in the wind tunnel as that used in the main test program. A neutrally buoyant stack gas (100% ethane) was released at a flow rate such that the exhaust velocity was 1.5 times the mean velocity at the stack top. Table 6, Atmospheric Dispersion Comparability Test Parameters, lists the different prototype and model parameter values for this atmospheric dispersion comparability test program. This table shows that all of the required Guideline similarity criteria are satisfied.

3.1.3 Wind Profile Measurements

The field scale specifications for the EPA-FM-GEP ADCT velocity profile requirements are listed in Table 7. The model scale specifications are listed in Table 8. The lateral profiles were determined from abbreviated vertical velocity profiles at each of the required test positions and thus no run numbers and file names are included in this portion of these tables. Table 9 presents model, normalized, and field values of the average of the three tunnel centerline wind profiles, one at the stack location ($X_m = 0$ cm), one at the end of the study area ($X_m = 500$ cm), and one at half way between these two ($X_m = 250$ cm).

The averaged profile, mentioned in the previous paragraph, was examined to determine the following model boundary layer similarity parameters; the roughness length, the displacement height, the friction velocity, and the power law index. The top graph in Figure 5 displays the test data as symbols and the design power law curve (index = 0.18, see Table 6) as a line. This graph shows that the model profile is representative of the field design power law index value of 0.18. The middle graph in Figure 5 displays the mean velocity profile test data and the design log-lin law on log-lin coordinates. This graph shows that the model profile is representative of the field design values of roughness length equal to 0.2 meters, friction velocity equal to 1.25 meters/second, and a displacement height of 0.0 meters. The bottom graph in Figure 5 displays the longitudinal turbulent intensity profile test data and the EPA-FM-GEP suggested design curve. The EPA-FM-GEP Guideline states that a model turbulent intensity greater than this curve maybe too turbulent of a condition. The measured test data is slightly less turbulent than the suggested curve and thus complies with the Guidelines specifications.

Table 10 presents model, normalized and field values of the three tunnel centerline wind profiles, one at the stack location $(X_m = 0 \text{ cm})$, one at the end of the study area $(X_m = 500 \text{ cm})$, and one at half way between these two $(X_m = 250 \text{ cm})$. The field values of mean velocity, longitudinal, and vertical turbulent intensity for all three locations are presented in the graphs in Figure 6. The consistency in profile shape between these three measurement locations is demonstrated.

Vertical velocity profiles of four heights each ($Z_f = 10, 25, 43.7, 100$ meters) were taken at six different crosswind positions ($Y_f = \pm 360, \pm 240, \pm 120$ meters) and two different downwind positions ($X_f = 0, 2000$ meters) to test the flow uniformity of the wind tunnel. These mean velocity and turbulent intensity data along with the appropriate height data from the tunnel centerline velocity profiles ($Y_f = 0$ meters) are presented in Table 11. Graphs of the lateral mean velocity and lateral turbulent intensity profiles for both downwind distances and for the heights of 6.3 cm model (43.7 meters field) and 25 cm model (100 meters field) are presented in Figure 7. Here again it is seen that the wind tunnel uniformity is within the bounds of acceptability.

3.1.4 Stack Plume Visualization

Visualization of the atmospheric dispersion comparability stack plume was documented on the video cassette VHS tape and included with this report in Appendix A. The specifications for this test is listed in Table 7 for field conditions and Table 8 for model conditions. The camera position for this film sequence was directly outside the wind tunnel from the model stack at a height slightly above model ground level. The film test observes the plume trajectories from the model stack down to the end of the model turntable, approximately 730 meters field equivalent distance, and zooms in on the stack to document downwash and near stack plume rise characteristics.

The EPA-FM-GEP Guideline states that for the conditions of this test there should be little stack downwash and low plume rise. The ADCT plume visualization shows that the model plume had little stack downwash and low plume rise.

3.1.5 Concentration Measurements

The specifications for these tests are listed in Table 7 for field conditions and Table 8 for model conditions. Seven concentration profiles of the test plume were measured, lateral and vertical profiles at field downwind distances of 500, 1000, and 1500 meters and a ground level profile with additional off-centerline line points. Table 12 through Table 18 lists for each of these concentration profiles field and model sample positions, measured model concentrations in both ppm, χ , and normalized model concentrations, $K_m = \chi U_m/Q_m$ [cm⁻²], the equivalent field normalized concentration, K_f , and Pasquill-Gifford estimates of K_f for both dispersion categories C and D. Figure 8 through Figure 14 display plots of each concentration profile for the measured test data converted to field equivalent normalized concentrations and the Pasquill-Gifford dispersion estimates for both stability categories C and D.

The EPA-FM-GEP Guideline desires that the ADCT plume be representative of plume dispersion between Pasquill-Gifford dispersion categories C and D and it requires that the ADCT plume not be more stable then estimates based on dispersion category D. Observation of the test data with respect to the PG dispersion estimates for categories C and D in Figure 8 through Figure 14 for the vertical and lateral plume centerline profiles out to 1500 meters shows that the test plume meets the EPA requirements. The test data ground level concentration profile shown in Figure 14 stays between dispersion classes C and D out to 1500 meters. At distances greater than 1500 meters the test data display greater ground level concentrations than dispersion class C indicates and much greater than dispersion class D indicates. This behavior of being outside of the specification on the unstable side is considered "not critical" in the EPA-FM-GEP Guideline.

3.2 **REYNOLDS NUMBER INDEPENDENCE VERIFICATION TESTS**

3.2.1 Test Specifications

The GEP standards require that Reynolds number (Re) invariance of the concentration field be demonstrated when significant structures have rounded surfaces. The LNG tanks and silo structures are rounded. The method for demonstration of Reynolds number invariance is to measure the ground level longitudinal concentration distribution from a passive (non-buoyant with no release momentum) tracer gas released at the location of the plant stack at the height of the rounded shape in question. This test is done for two different free stream velocities, the higher one being at least twice that of the lower one. When these concentration profiles are normalized by the form $\chi U_{\infty}/Q$ [m⁻²] their differences should not be greater than 10 percent. If they are greater than 10 percent then the design velocity, the lower of the two, should be increased and the Re independence tests redone.

Table 5 GEP Reynolds Number Invariance Test Parameters, lists the different prototype and model parameter values for these Reynolds number independence tests. Table 7 Field Test Conditions, details the field conditions for each type of data test performed in this test series. Table 8 Model Test Conditions, details the model conditions for each type of data test to be performed in this test series.

As noted in Table 7 and Table 8, the Reynolds number invariance tests are done for two different wind directions, 140° and 325°. At the 140° wind direction the height of a passively released tracer gas was the height of the LNG tank (approximately 61 meters). At the 325° wind direction the height of a passively released tracer gas is the height of the silo structure (approximately 45.7 meters). The passive releasing scheme was to introduce a tracer gas of specific gravity 1.0 through a tube pointing downwind at the appropriate height with an exit velocity near that of the local wind velocity.

3.2.2 Wind Profile Measurements

As specified in Table 7 and Table 8 of the field and model test conditions respectively, there were velocity profiles taken at two wind speeds (at design speed and at twice design speed) and two wind directions $(140^{\circ} \text{ and } 325^{\circ})$, four profiles total in this test series. All four of these profiles were taken at the stack location with the model power plant removed but with the LNG tanks and silo structures present. The data for the 140° wind direction tests are listed in Table 19 and plotted in Figure 15. The data for the 325° tests are listed in Table 20 and plotted in Figure 16. These figures demonstrate that a change in Reynolds number by a factor of two produced no significant change in the shape of the wind tunnel mean velocity and turbulent intensity profiles for both wind directions tested.

3.2.3 Concentration Measurements

The concentration results for the Reynolds number invariance tests are listed in Table 21 for the 140° wind direction and in Table 22 for the 325° wind direction. These tables list both model and field distances to concentration measurement locations, the model reference velocity and flow rate used to calculate normalized field concentrations, normalized field concentrations, and the percent difference between the design Reynolds number concentration values and the higher Reynolds number concentration values. Both tables show that the design Reynolds number test results are within the desired ± 10 percent of the test results at higher Reynolds numbers.

3.3 GEP_STACK HEIGHT DETERMINATION TESTS

Table 4 GEP Test Parameters, lists the different prototype and model parameter values for all these tests. Table 7 Field Test Conditions, details the field conditions for each type of data test performed in each test series. Table 8 Model Test Conditions, details the model conditions for each type of data test performed in each test series.

In Table 7 and Table 8, under the heading of "Building Config.", <u>Out</u> refers to the removal of all significant structures that may alter the stack plume dispersion, i.e. the LNG tanks, the silo and the proposed site buildings, <u>In</u> refers to the inclusion of the LNG tanks and silo structure but not any proposed site buildings, <u>In all</u> refers to the inclusion of the LNG tanks, silo structure and all proposed site buildings. The 45.7 meter stack is documented with both visual observations and concentration data for one wind direction (140°) and all three building configurations. The 61 and 73.1 meter stacks are documented with both visual observations and concentration data for four wind directions (140°, 150°, 320°, 325°) and two building configurations (<u>Out and In</u>). There was a total of nineteen different run conditions studied.

3.3.1 Wind Profiles Measurements

The field and model scale specifications for the EPA-FM-GEP Guidelines GEP documentation of velocity profiles are listed in the shaded portions (not performed due to project redefinition) of Table 7 and Table 8 respectively. To document the GEP stack height determination test series an upwind tunnel centerline wind profile was measured. Table 23 presents model, normalized, and field equivalent values for this profile. This profile was examined to determine the following model boundary layer similarity parameters; the roughness length, the displacement height, the friction velocity, and the power law index. The top graph in Figure 17 displays the test data as symbols and the design power law curve (index = 0.21, see Table 4) as a line. This graph shows that the model profile is representative of the field design power law index value of 0.21. The middle graph in Figure 17 displays the mean velocity profile test data and the design

log-lin law on log-lin coordinates. This graph shows that the model profile is representative of the field design values of roughness length equal to 0.5 meters, friction velocity equal to 1.49 meters/second, and a displacement height of 0.0 meters. The bottom graph in Figure 17 displays the longitudinal turbulent intensity profile test data and the EPA-FM-GEP suggested design curve. The EPA-FM-GEP Guideline states that a model turbulent intensity greater than this curve maybe too turbulent of a condition. The measured test data is slightly less turbulent than the suggested curve and thus complies with the Guidelines specifications.

3.3.2 Stack Plume Visualization

Visualization of the model plant stack plume for the nineteen tests (Vis. Run # 1 to 19) listed in Table 7 for field conditions and Table 8 for model conditions were documented on the video cassette VHS tape included with this report in Appendix A. Table 24 GEP Visual Test Results, lists the run conditions for each of these tests including the equivalent concentration run number and comments describing stack downwash, LNG tank impingement, LNG tank downwash, Silo impingement, and Silo downwash. The camera position for these film sequences was directly outside the wind tunnel from the plant stack at a height slightly above model ground level. Each film test observes the plume trajectories from the plant stack down to the end of the model turntable, approximately 730 meters field equivalent distance, and zooms in on the downwash.

The visualization shows that for all stack heights (45.7, 61, 73.1 meters) and both wind directions toward the LNG tanks (140° and 150°), LNG tank impingement and LNG tank downwash were very noticeable. The wind directions (320° and 325°) with the silo complex downwind showed much less plume impingement on the silo as compared to the LNG tanks. For the 73.1 meter stack no impingement on the silo structure was observed but plume downwash behind the silo was still present. With the silo downwind the plume appears to be more affected by descending streamlines as the result of the upwind LNG tanks than by silo structure downwash.

3.3.3 Concentration Measurements

Concentration measurements downwind of the model plant stack were measured for the nineteen tests (Conc. Run # 20 to 39, excluding #23) listed in Table 7 for field conditions and Table 8 for model conditions. Table 25 through Table 27 GEP Concentration Test Results, lists the run conditions, the equivalent visualization run number, the model and field position of the concentration measurements, and the field normalized concentrations for stack heights 45.7, 61, and 73.1 meters respectively. All the sample locations presented here were at ground level. Table 25 through Table 27 GEP Concentration Test Results also present the maximum ground level concentration observed in each test and the percent increase in this maximum ground level concentration between the runs with no buildings versus ones with buildings present. The influence of the LNG tanks and silo complex are seen to increase maximum ground level plume concentrations by 82 percent to 303 percent depending on stack height and wind direction conditions. The EPA-FM-GEP Guideline defines any concentrations greater than 40 percent as excessive. Thus all stacks and wind directions tested produced "excessive concentrations."

4 INSTRUMENTATION AND MEASUREMENT METHODOLOGY

Laboratory measurement techniques are discussed in this section, along with conversion methods used to convert measured model quantities to their meaningful field equivalents.

4.1 VELOCITY MEASUREMENT AND PRESENTATION

The techniques employed in the acquisition of velocity profiles are discussed in detail in Appendix D.3 including basic equations and errors associated with each technique. Single-hot-film (TSI 1220 Sensor), cross-film (TSI 1241) probes and pitot-static probes are used to measure velocity statistics. TSI 1125 Velocity Calibrator System and Pitot-static Probes are used for velocity calibration.

The approach mean velocity and turbulent statistics profiles are obtained from velocity measurement techniques. The approach mean velocity profiles for a suburban roughness condition are regressed to find the best log-log and log-linear fit. The log-log regression will find a power law exponent, p, such that $U/U_r = (z/z_r)^p$. The log-linear regression $(U/u_* = 2.5\ln\{(z-d)/z_o\})$ will find a best fit roughness length z_o , friction velocity u_{*}, and displacement height d.

Velocity measurements obtained in this study are summarized and presented through plots of vertical profiles of mean velocity, longitudinal and vertical turbulence intensity, and Reynolds stress. The height and velocity coordinates are normalized by a model reference height and the model velocity at the reference height. Since a neutral boundary layer's velocity is invariant with respect to wind speed, the normalized profiles can be converted to any field velocity at a specific height by the appropriate multiplicative constant. Each of the vertical profiles of mean velocity are plotted on linear-linear and log-linear paper to display the best fit regressions.

4.2 PLUME VISUALIZATION TECHNIQUES

Techniques employed to obtain a visible plume are discussed in Appendix D.4. A Smoke Generator System and a Video Camera System are used for plume visualization. Given a field to model wind speed ratio of $6.8 \ (= [17 \text{ m/s}]/[2.5 \text{ m/s}])$ and a model to field length scale ratio of 400, then the time scale ratio between the model and the field is 1:58.8. Thus phenomena observed over the model in the wind tunnel will occur 58.8 times faster than observed at full scale. If the TV tapes were replayed in slow motion (58.8 times slower than the recorded speed) the observed plume trajectories and motions would appear realistic.

4.3 CONCENTRATION MEASUREMENT AND PRESENTATION

Techniques employed to obtain the concentration data are discussed in Appendix D.5. A gas chromatograph with flame ionization detector is used to measure gas concentrations. Figure A-5 shows a schematic of stack gas release, sampling, and analyzing methodology.

Concentration data are reported in terms of field scale normalized concentration, K_p , where $K_p = (\chi U_H/Q)_p$ [m⁻²]. This normalized format is convenient because the concentration results, χ_p [gm/m³], from a test at one particular combination of wind speed, $(U_H)_p$ [m/s], and source mass flow rate, Q_p [gm/sec], can be extrapolated to other $(U_H)_p$ and Q_p values provided that flow physics, such as plume rise, remains the same. $(U_H)_p$ is the field wind speed at the stack height. The conversion from model units to field units is as follows:

 $K_p = K_m * (H_m/H_p)^2 [m^{-2}];$ with $K_m = (\chi U_H/Q)_m [cm^{-2}].$ χ_m is the source normalized model concentration (ppm/10⁶ ppm), $(U_H)_m$ [cm/s] is model wind speed at stack height, Q_m [ccs] is the model stack flow rate, H_m [cm] is the model stack height, and H_p [m] is the field stack height.

4.4 STACK FLOW RATE AND COMPOSITION TECHNIQUES

An Omega mass flow controlling system was used to monitor and control all stack gas flow settings. This system has four mass flow channels with full scale responses of 0.1, 1, 10, and 100 SLPM for gases with unity gas factors. Different gases will have different gas factors and this must be taken into account when calculating the proper meter setting. The local atmospheric pressure (~ 630 mmHg at CSU) must also be accounted for in these calculations.

During a visual plume test the proper plume flow rate and specific gravity would be attained by mixing metered quantities of Air (SG = 1) and Helium (SG = 0.14) or Argon (SG = 1.38). This gas mixture is then pass through the smoke generator and then out the model stack. During a plume concentration test a hydrocarbon gas must be in the source mixture so that measurements of sample concentration can be made with a flame ionization type gas chromatograph. Depending upon many experimental considerations, a hydrocarbon, either methane (SG = 0.55), ethane (SG = 1.04), or propane (SG = 1.52) will be mixed with Helium (SG = 0.14), Nitrogen (SG = 0.967), or Argon (SG = 1.38). This mixture is passed directly into the model stack. Table 28 Stack Gas Flow Settings and Composition, lists the settings and type of gas used to achieve the proper model stack effluent discharge velocities and specific gravities. A spreadsheet of these calculations for the ADCT tests is provided in Table 29. A spreadsheet of these calculations for the GEP tests is provided in Table 30. The double underlined values were used in the tests.

REFERENCES

Environmental Protection Agency, 1981: Guideline for Use of Fluid Modeling to Determine Good Engineering Practice Height, EPA-450/4-81-003, Research Triangle Park, North Carolina.

Snyder, W. H., 1981: Guideline for Fluid Modeling of Atmospheric Diffusion. EPA-600/8-81-009, Research Triangle Park, North Carolina.

Turner, D. B., 1970: Workbook of Atmospheric Dispersion Estimates. Publication No. AP-26, Office of Air Programs, Environmental Protection Agency, Research Triangle Park, North Carolina.

TABLES

	RECTIC	<u> 11 vs. wii</u>	ND SPEEL	J (PEHUE	INT FHEL	JUENCY	JP OBSEI	TVATION	5) AL			INDENE	a.vvr.sj
		WIND SPE	eed (Kno	TS) at 6.	7 meters	height							_
WIND		0-3	4-6	7-10	11-16	17-21	22-27	28-33	34-40	> 40	TOTAL	AVERA	GE
DIRECT	ION	WIND SPE	eed (M/S)	at 6.7 m	eters hei	ght					FREQ.	WIND S	PEED
	(deg)	0-1.5	2.1-3.1	3.6-5.1	5.7-8.2	8.7-10.8	11.3-13.9	14.4-17	17.5-20.6	>20.6	(%)	(knots)	(m/s)
N	0.0	0.3	1.4	3.0	2.2	0.4	0.1	0.0			7.4	9.8	5.0
NNE	22.5	0.2	0.8	0.9	0.7	0.2	0.1	0.0			2.9	9.5	4.9
NE	45.0	0.2	0.5	1.1	1.0	0.3	0.2	0.0	0.0	0.0	3.2	11.2	5.8
ENE	67.5	0.1	0.7	1.2	1.1	0.3	0.1	0.0	0.0		3.6	10.5	5.4
E	90.0	0.3	1.0	2.4	2.3	0.3	0.1	0.0	0.0		6.6	10.3	5.3
ESE	112.5	0.3	0.9	1.9	1.9	0.3	0.0		0.0		5.3	9.8	5.0
SE	135.0	0.2	1.0	1.6	0.6	0.0	0.0	0.0	0.0		3.5	8.1	4.2
SSE	157.5	0.2	0.8	1.1	0.4	0.0	0.0	0.0			2.5	7.8	4.0
S	180.0	0.3	1.6	3.0	1.8	0.2	0.1	0.0	0.0		7.0	9.1	4.7
SSW	202.5	0.1	0.7	2.0	2.4	0.6	0.1	0.0			5.9	11.1	5.7
SW	225.0	0.1	0.8	1.9	2.7	0.6	0.1	0.0			6.1	11.3	5.8
WSW	247.5	0.1	1.1	3.3	3.9	0.7	0.1	0.0			9.3	11.0	5.7
W	270.0	0.2	0.9	2.7	5.0	1.5	0.5	0.1	0.0		10.8	12.6	6.5
WNW	292.5	0.1	0.7	2.7	4.7	1.6	0.5	0.1			10.4	13.0	6.7
NW	315.0	0.1	0.8	3.1	4.1	1.1	0.3	0.0			9.4	11.8	6.1
NNW	337.5	0.1	0.7	2.2	2.2	0.4	0.0				5.6	10.6	5.5
CALM		0.3									0.3		
Total fre	eq.(%)	3.3	14.3	34.2	36.9	8.5	2.3	0.4	0.1	0.0	100.0	10.9	5.6

.

WIND DIDEOT ALL MEATLED (MINDEDEO MIZO)

T-2

LOGAN INTL. AIRPORT; BOSTON, MA. (YEARS 1965–1974)

.

Pasquill-Gifford Elevation Plane Dispersion Estimates for Stack Plumes (GEP test parameters {PGESTMAX.WK3})

Input	Field	Model	Calculated	Field	Model	•	Handb	ook on A	tm. Diffu	ision; Ha	Inna	METHOD In GEP,
Parameters	(mks)	(cgs)	Parameters	(mks)	(cgs)			Open		Urban		equality of density, velocity,
Length Scale =	400.0	1.0	Stack Gas S.G. =	0.696	0.696		Stab.	Sig Y	Sig Z	Slg Y	Sla Z	length scale ratios.
Stability =	D	lo	Stack Flow Plate =	537	493.20	i	Α.	401.7	400.0	477.0	631.4	Eff. Stack Height is chosen
Fetch (Open/Urban) =	Open	Open	Sigma Y _{max} =	146.1	36.5		B	292.1	240.0	477.0	831.4	from the selection of model or
Max. Downwind Dist. =	2000.0	500.0	Sigma Z _{max} =	60.0	15.0		С	200.8	135.2	328.0	400.0	field since buoyancy force
Elevation =	C	i d	L _µ /H ₂ =	0.036	0.036		D	148.1	60.0	238.5	221.4	equality is not forced.
Stack Height =	73.1	18.3	Fr. =	4.91	144.15		E	109.5	37.5	184.0	140.3	
Stack Diameter =	5.79	1.45	L_/H, =	·0.0011	0.0000		F	73.0	20.0	164.0	140.3	
Gas Temp (C) =	135.0	22.0					For X =	2000 1	neters			
Amblent Temp (C) =	10.8	22.0										
Tracer Fraction =	1.0	1.000										
Wind Speed @H =	18.8	276										
Velocity Ratio W/U =	1.09	1.09										
Output 1 (Fleid/Model) =	Field											
Output 2 (K/Conc) =	K											
Option 1 (Yes/No) =	No	< Plum	e Rise Option									

																	Distance	to Max	. Conc, (Below			
		X _p (m) =	Ū	100.0	200.0	300.0	400.0	500.0	000.0	700.0	800.0	900.0	1000.0	1100.0	1200.0	1300.0	1400.0	1500.0	1600.0	1700.0	1800.0	1900.0	2000.0
		X _m (cm) =	0	25.0	50.0	75.0	100.0	125.0	150.0	175.0	200.0	225.0	250.0	275.0	300.0	325.0	350.0	375.0	400.0	425.0	450.0	475.0	500.0
		X/Xmax =	0	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90	0.95	1.00
× ()	V (* ~)	VI-1-V	F1-14	~																			
τ _ο (m)	1 ^m (cm)	T/SIGT max	1-161Q	ĸ	K-10- (m ~)											May Ca	no Bolo					
•	•			0.0	0.0	00	03	20	E 2	00	12.6	15.2	17.9	19.5	10.3	10 A	10 T	10.5	10.2	18.8	18.3	17.8	17.3
- 18 3	-48	-0 125		0.0	0.0	0.0	0.3	1.8	4 R	8.5	11.0	14.7	18.7	18.1	18.0	10.3	10 A	10.0	10.0	18.6	18.2	17.7	17.2
-38.5	-9.1	-0.250		0.0	0.0	0.0	0.0	1.0	38	72	10.4	13.2	15.3	16.4	17 8	18.3	18.5	18.5	18.3	16.0	17.6	17.2	18.6
-54 A	-137	-0.375		0.0	0.0	0.0	01	0.7	28	54	84	11 1	13.3	14.0	18.1	16.8	17.2	17.3	17.3	17.1	18.8	18.5	16.1
-73.0	-18.3	-0.500		0.0	0.0	0.0	0.0	0.3	1.5	3.6	82	8.7	10.9	12.6	13.9	14.8	15.4	15.8	15.9	15.9	15.7	15.5	15.3
-91.3	-22.8	-0.625		0.0	0.0	0.0	0.0	0.1	0.8	2.2	4.2	6.3	8.4	10.2	11.6	12.7	13.5	14.0	14.3	14.4	14.5	14.4	14.2
- 109.5	-27.4	-0.750		0.0	0.0	0.0	0.0	0.0	0.3	1.2	2.6	4.3	6.1	7.8	9.3	10.5	11.4	12.1	12.8	12.9	13.0	13.1	13.1
-127.8	-32.0	-0.675		0.0	0.0	0.0	0.0	0.0	0.1	0.6	1.4	2.7	4.2	5.7	7.1	8.4	9.4	10.2	10.8	11.2	11.5	11.7	11.8
- 146.1	-36.5	- 1.000		0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.7	1.0	2.7	4.0	5.3	6.4	7.5	8.3	9.0	9.6	10.0	10.3	10.5
- 164.3	-41.1	- 1.125		0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.4	0.9	1.7	2.7	3.7	4.8	5.8	6.6	7.4	8.0	8.5	8.9	9.2
- 162.6	- 45.6	- 1.250		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.2	0.5	1.0	1.7	2.5	3.4	4.3	5.2	5.9	8.5	7.1	7.6	7.9
-200.8	- 50.2	- 1.375		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.5	1.0	1.7	2.4	3.1	3.9	4.6	5.2	5.8	6.3	6.7
-219.1	54.8	- 1.500		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.3	0.8	1.0	1.6	2.2	2.9	3.5	4.1	4.7	5.2	5.8
-237.3	- 59.3	- 1.625		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.3	0.6	1.0	1.5	2.1	2.0	3.2	3.7	4.2	4.8
255.6	-63.9	-1.750		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.4	0.6	1.0	1.4	1.9	2.4	2.9	3.3	3.7
-273.9	-68.5	- 1.875		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.4	0.7	1.0	1.3	1.8	2.2	2.6	3.0
-292.1	-73.0	-2.000		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.4	0.6	0.9	1.3	1.6	2.0	2.3
-310.4	-77.6	-2.125		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.2	0.4	0.6	0.9	1.2	1.5	1.8
-328.6	-62.2	-2.250		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.3	0.4	0.6	8.0	1.1	1.4
-346.9	-66.7	-2.375		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.3	0.4	0.8	0.6	1.0
- 365.1	-91.3	-2.500		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.2	0.3	0.4	0.6	0.8
-383.4	-95.9	-2.625		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.2	0.3	0.4	0.6
-401.7	- 100.4	2.750		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.2	0.3	0.4
-419.9	- 105.0	-2.875		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.2	0.3
-438.2	- 109.5	-3.000		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.2
		H _{eff} (m) =	73	73.1	73.1	73.1	73.1	73.1	73.1	73.1	73.1	73.1	73.1	73.1	73.1	73.1	73.1	73.1	73.1	73.1	73.1	73.1	73.1
		SigY (m) =		8.0	15.8	23.6	31.4	39.0	46.8	54.1	81.6	69.0	76.3	83.5	90.7	97.8	104.9	111.9	116.8	125.7	132.0	139.3	146.1
		SigZ (m) =		5.8	10.5	14.0	19.0	22.7	26.1	29.3	32.4	35.2	37.9	40.5	43.0	45.4	47.7	49.9	52.1	64.1	56.1	58 .1	60.0
		COEFF =		3573.5	954.5	450.2	267.3	179.8	130.7	100.2	79.9	65.5	55.0	47.0	40.8	35.8	31.8	28.5	25.7	23.4	21.4	19.7	18,2

 Table 2
 Ground Level Pasquill-Gifford Dispersion Estimate to Determine Maximum Distance to Maximum Downwind Concentration

SCALE =			S(0)0	<u></u>		<u> </u>	<u> </u>	
				· · · · · · · · · · · · · · · · · · ·				
SELECTED HEIGHT DIMENSIONS				0.47		0.40	0.40	
Generic Houghness Element Height =	0.60	m	0.20	0.17	0.15	0.13	0.12	<u> </u>
Airport Wind Instr. Height =	6.7	<u> </u>	2.2	1.9	1./	1.5	1.3	cm
Rel Height 10 m =	10.0	<u> </u>	3.3	2.9	2.5	2.2	2.0	<u> </u>
Turbine Building Height =	26.9	<u> </u>	9.0	<u> </u>	6.7	6.0	<u> </u>	<u> </u>
Base Case Stack Height =	45,7	<u> </u>	15.2	13.1		10.2	9,1	<u> </u>
Option 1 Stack Height =	01.0	<u> </u>	20.3	17.4	10.2	13.5	12.2	em em
Option 2 Stack Height #	/ 3.1		24.4	20.9	16.3	10.2	14.0	
Boundary Layer Height =	600,0	м	200.0	1/1.4	100.0	133.3	120.0	Cim
	42.0		19.0	12.0	0.5	10.0	0.4	Critica Critic
	57.0		18.2	10.5		12.0	11.5	<u> </u>
SELECTED DISTANCE DIMENSIONS								
Distance to Silo =	100.0	m	33.3	28.6	25.0	22.2	20.0	cm
Distance to LNG Tanks =	210.0	m	70.0	60.0	52.5	46.7	42.0	cm
Distance to 2 km downwind =	2000.0	m	666.7	571.4	500,0	444.4	400.0	cm
APPROACH FLOW CHARACTERISTICS						-		
Roughness Length =	0.50	m	0.167	0.143	0.125	0.111	0.100	cm
Power Law Index =	0.213		0.213	0.213	0.213	0.213	0.213	
Friction Velocity =	1,49	m/s	21.9	21.9	21.9	21.9	21.9	cm/s
Max. Design Wind Speed @ airport =	11.3	m/s	166.2	166.2	166.2	166.2	166.2	cm/s
Wind Speed @ 10m =	12.3	m/s	181.0	181.0	181.0	181.0	181.0	cm/s
Wind Speed @ Turbine Bldg =	15.2	m/a	223.3	223.3	223.3	223.3	223.3	cm/s
Wind Speed @ Base Case Stack =	17.0	m/s	250.0	250.0	250.0	250.0	250.0	cm/s
Wind Speed @ Opt#1 Stack =	18.1	m/s	265.7	265.7	265.7	265.7	265.7	cm/s
Wind Speed @ Opt#2 Stack =	18.8	m/s	276.2	276.2	278.2	276.2	276.2	cm/s
Wind Speed @ BL =	29.4	m/s	432.1	432.1	432.1	432.1	432.1	cm/s
STACK FLOW CHARACTERISTICS								
Stack I.D. =	5.79	m	1.93	1.65	1.45	1.29	1.16	cm
Stack Exit Velocity =	20.4	m/s	300.0	300.0	300.0	300.0	300.0	cm/s
Stack Flow Rate =	537.1	m ^ 3/8	877.8	644.9	493.8	390.1	316.0	CCS
Stack gas Temp. =	135.0	C	22.0	22.0	22.0	22.0	22.0	C
Ambient Temp. =	10.8	Ċ	22.0	22.0	22.0	22.0	22.0	C
Stack Gas Equivalent MW =	29.0		20.1	20.1	20,1	20.1	20.1	
UIMENSIONLESS SCALING PARAMETERS								<u> </u>
Houghness RE # =	496.3		24.3	20.9	18.3	16.2	14.6	
Generic Roughness Element RE # =	595.6		29.2	25.0	21.9	19.5	17.5	
iurbine Bldg RE # =	272302.6		13350.1	11442.9	10012.5	8900.0	8010.0	
Stack RE # =	78744.0		3860.5	3309.0	2895.4	2573.7	2316.3	I
W/U velocity ratio for Base Stack =	1.20		1.20	1.20	1.20	1.20	1.20	
W/U velocity ratio for Opt#1 Stack =	1.13		1.13	1.13	1,13	1.13	1.13	ļ
W/U velocity ratio for Opt#2 Stack =	1.09		1.09	1.09	1.09	1.09	1.09	
<u>Stack Gas Specific Gravity =</u>	0.696		0.696	0.696	0.696	0.696	0.696	

Parameter Chart for Model Scale Selection {GEPSCALE.WK3}

 Table 3
 Parameter Chart for Model Scale Selection

GEP Test Parameters {GEPPARAM.WK3}

SCALE =	Full	Unis	400	Units
SELECTED HEIGHT DIMENSIONS				
Generic Roughness Element Height =	0.60	. m	0.15	cm
Airport Wind Instr. Height =	6.7	m	1.7	cm
Ref Height 10 m =	10.0	m	2.5	cm
Turbine Building Height =	26.9	m	6.7	cm
Base Case Stack Height =	45.7	m	11.4	cm
Option 1 Stack Height =	61.0	m	15.2	cm
Option 2 Stack Height =	73.1	m	18.3	ст
Boundary Layer Height =	600.0	m	150.0	cm
Silo Height =	42.0	m	10.5	cm
LNG Tank Height =	57.6	m	14.4	cm
SELECTED DISTANCE DIMENSIONS				
Distance to Silo =	100.0	m	25.0	cm
Distance to LNG Tanks =	210.0	m	52.5	cm
Distance to 2 km downwind =	2000.0	m	500.0	cm
APPROACH FLOW CHARACTERISTICS				
Roughness Length =	0.50	m	0.125	cm
Power Law Index =	0.213		0.213	
Friction Velocity =	1.49	m/s	21.9	cm/s
Max. Design Wind Speed @ airport =	11.3	m/s	166.2	cm/s
Wind Speed @ 10m =	12.3	m/s	181.0	cm/s
Wind Speed @ Turbine Bldg =	15.2	m/s	223.3	cm/s
Wind Speed @ Base Case Stack =	17.0	m/s	250.0	cm/s
Wind Speed @ Opt#1 Stack =	18.1	m/s	265.7	cm/s
Wind Speed @ Opt#2 Stack =	18.8	m/s	276.2	cm/s
Wind Speed @ BL =	29.4	m/s	432.1	cm/s
			-	
STACK FLOW CHARACTERISTICS				
Stack I.D. =	5.79	m	1.45	cm
Stack Exit Velocity =	20.4	m/s	300.0	cm/s
Stack Flow Rate =	537.1	m ^ 3/s	493.8	CCS
Stack gas Temp. =	135.0	С	22.0	C
Ambient Temp. =	10.8	С	22.0	C
Stack Gas Equivalent MW =	29.0		20.1	
DIMENSIONLESS SCALING PARAMETERS				
Roughness RE # =	496.3		18.3	
Generic Roughness Element RE # =	595.6		21.9	
Turbine Bldg RE # =	272302.6		10012.5	
Stack RE # =	78744.0		2895.4	
W/U velocity ratio for Base Stack =	1.20		1.20	
W/U velocity ratio for Opt#1 Stack =	1.13		1.13	
W/U velocity ratio for Opt#2 Stack =	1.09		1.09	
Stack Gas Specific Gravity =	0.696		0.696	

GEP Reynolds Number Invariance Test Parameters {REYPARAM.WK3}

SCALE =	Full	Unis	400	Units
SELECTED HEIGHT DIMENSIONS				
Generic Roughness Element Height =	0.60	m	0.15	cm
Airport Wind Instr. Height =	6.7	m	1.7	cm
Turbine Building Height =	26.9	m	6.7	cm
Boundary Layer Height =	600.0	m	150.0	cm
Silo Height =	42.0	m	10.5	cm
LNG Tank Height =	57.6	m	14.4	cm
SELECTED DISTANCE DIMENSIONS				
Distance to Silo =	100.0	m	25.0	ст
Distance to LNG Tanks =	210.0	m	52.5	cm
Distance to 2 km downwind =	2000.0	m	500.0	cm
APPROACH FLOW CHARACTERISTICS				
Roughness Length =	0.50	m	0.125	cm
Power Law Index =	0.213		0.213	
Friction Velocity =	1.49	m/s	21.9	cm/s
Max. Design Wind Speed @ airport =	11.3	m/s	166.2	cm/s
Wind Speed @ Turbine Bldg =	15.2	m/s	223.3	cm/s
Wind Speed @ Silo Complex Height =	16.7	m/s	245.5	cm/s
Wind Speed @ LNG Tank Height =	17.9	m/s	262.6	cm/s
Wind Speed @ BL =	29.4	m/s	432.1	cm/s
STACK FLOW CHARACTERISTICS				
Stack I.D. =	2.79	m	0.70	cm
Stack Exit Velocity =	16.7	m/s	245.5	cm/s
Stack Flow Rate =	102.3	m^3/s	94.1	CCS
Stack gas Temp. =	22.0	С	22.0	С
Ambient Temp. =	22.0	С	22.0	С
Stack Gas Equivalent MW =	29.0		29.0	
DIMENSIONLESS SCALING PARAMETERS				
Roughness RE # =	496.3		18.3	
Generic Roughness Element RE # =	595.6		21.9	
Turbine Bldg RE # =	272302.6		10012.5	
Release Tube RE # =	31092.4		1143.3	
W/U velocity ratio for Silo Height =	1.00		1.00	
Stack Gas Specific Gravity =	1.000		1.000	

Atmospheric Dispersion Comparability Test Parameters {ADCPARAM.WK3}

SCALE =	;;;;)[]	Unis	490	Units
SELECTED HEIGHT DIMENSIONS				
Airport Wind Instr. Height =	6.7	m	1.7	cm
Ref Height 10 m =	10.0	m	2.5	cm
Base Case Stack Height =	45.7	<u> </u>	11.4	cm
ADCT Stack Height =	100.0	m	25.0	cm
Boundary Layer Height =	600.0	<u> </u>	150.0	cm
SELECTED DISTANCE DIMENSIONS				
Distance to 0.5 km downwind =	500.0	m	125.0	cm
Distance to 1.0 km downwind =	1000.0	m	250.0	cm
Distance to 1.5 km downwind =	1500.0	m	375.0	cm
Distance to 2.0 km downwind =	2000.0	m	500.0	cm
APPROACH FLOW CHARACTERISTICS				
Roughness Length < or = to	0.20	m	0.05	cm
Power Law Index =	0.18		0.18	
Friction Velocity =	1.25	m/s	18.4	cm/s
Max. Design Wind Speed @ airport =	12.0	m/s	176.7	cm/s
Wind Speed @ 10m =	12.9	m/s	190.0	cm/s
Wind Speed @ Base Case Stack =	17.0	<u>m/s</u>	250.0	cm/s
Wind Speed @ ADCT Stack =	19.6	m/s	288.0	cm/s
Wind Speed @ BL =	27.1	m/s	398.1	cm/s
ADCT STACK FLOW CHARACTERISTICS				
Stack I.D. =	5.00	m	1.25	cm
Stack Exit Velocity =	29.4	m/s	432.0	cm/s
Stack Flow Rate =	576.8	m^3/s	530.2	CCS
Stack gas Temp. =	22.0	C	22.0	C
Ambient Temp. =	22.0	C	22.0	C
Stack Gas Equivalent MW =	29.0		29.0	
DIMENSIONLESS SCALING PARAMETERS				
Roughness RE # =	166.9		6.1	
ADCT Stack RE # =	97921.4		3600.1	
ADCT W/U velocity ratio =	1.50		1.50	
ADCT Stack Gas Specific Gravity =	1.000		1.000	

.

Field Test Conditions {GEPTESTS.WK3 Sheet A;}

Measurement	Run	File	Model	Stack	Building	Wind	Rof.	Ref.	Stack	Effluent		Position	
Type	No.	Name	Config	Config	Config	Dir.	Velocity	Height	Height	Velocity	X	Y	Z
			-	•	-	(deg)	(m/ə)	(m)	(m)	(m/s)	(m)	(m)	(m)
	1					1							
ADCT Series													
Vel. Lateral Profile U,u'	From	From	Generic	Out	No		19.6	100.0			0	Profile	25.0
Vel. Lateral Profile U,u'	43	GEP043.PRF	Generic	Out	No		19.6	100.0			0	Profile	45.7
Vel. Lateral Profile U,u'	То	Το	Generic	Out	No		19.6	100.0			0	Profile	100.0
Vel. Lateral Profile U,u'	67	GEP067.PRF	Generic	Out	No		19.6	100.0			2000	Profile	25.0
Vel. Lateral Profile U,u'	•	•	Generic	Out	No		19.6	100.0			2000	Profile	45.7
Vel. Lateral Profile U,u'	•	•	Generic	Out	No		19.6	100.0			2000	Profile	100.0
Vel. Vertical Profile U,u',w',uw	43	GEP043.PRF	Generic	Out	No		19.6	100.0			0	0	Profile
Vel. Vertical Profile U,u',w',uw	44	GEP044.PRF	Generic	Out	No		19.6	100.0			1000	0	Profile
Vel. Vertical Profile U,u',w',uw	45	GEP045.PRF	Generic	Out	No		19.6	100.0			2000	0	Profile
Visualization of Plume Elevation	0	TAPE #1	Generic	In	No		19.6	100.0	100.0	29.4	Profile	0	Profile
Concentration Vertical Profile	11	GEP011.GC	Generic	In	No		19.6	100.0	100.0	29.4	500	0	Profile
Concentration Vertical Profile	10	GEP010.GC	Generic	In	No		19.6	100.0	100.0	29.4	1000	0	Profile
Concentration Vertical Profile	9	GEP009.GC	Generic	In	No		19.6	100.0	100.0	29.4	1500	0	Profile
Concentration Lateral Profile	14	GEP014.GC	Generic	In	No		19.6	100.0	100.0	29.4	500	Profile	Heff
Concentration Lateral Profile	13	GEP013.GC	Generic	In	No		19.6	100.0	100.0	29.4	1000	Profile	Hett
Concentration Lateral Profile	12	GEP012.GC	Generic	In	No		19.6	100.0	100.0	29.4	1500	Profile	Heff
Conc. Ground Level Profile	15	GEP015.GC	Generic	In	No		19.6	100.0	100.0	29.4	Profile	Profile	0.0
Re Invariance Series													
Vel. Vertical Profile U,u'	59	GEP059.PRF	In	Out	ln In	140	29.4	600.0			0	0	Profile
Vel. Vertical Profile U,u'	60	GEP060.PRF	In	Out	In	140	58.8	600.0			0	0	Profile
Vel. Vertical Profile U,u'	61	GEP061.PRF	In	Out	In	325	29.4	600.0			0	0	Profile
Vel. Vertical Profile U,u'	62	GEP062.PRF	In	Out	In	325	58.8	600.0			0	0	Profile
Conc. Ground Level Profile	16	GEP016.GC	In	Passive	In	140	29.4	600.0	61.0	17.0	Profile	Profile	0.0
Conc. Ground Level Profile	17	GEP017.GC	In	Passive	In	140	58.8	600.0	61.0	17.0	Profile	Profile	0.0
Conc. Ground Level Profile	18	GEP018.GC	In	Passive	In	325	29.4	600.0	45.7	17.0	Profile	Profile	0.0
Conc. Ground Level Profile	19	GEP019.GC	In	Passive	In	325	58.8	600.0	45.7	17.0	Profile	Profile	0.0
45.7 meter Stack Tests	 												
Vel. Vertical Profile U.u'	58	GEP058.PRF	In	Out	In	140	17.0	45.7			-1000	0	Profile
Visualization of Plume Elevation	1	TAPE # 2	In	In	Out	140	17.0	45.7	45.7	20.4	Profile	0	Profile
Visualization of Plume Elevation	2	TAPE # 2	In	in	In	140	17.0	45.7	45.7	20.4	Profile	0	Profile
Visualization of Plume Elevation	3	TAPE # 2	In	In	In all	140	17.0	45.7	45.7	20.4	Profile	0	Profile
Conc. Ground Level Profile	20	GEP020.GC	In	In	Out	140	17.0	45.7	45.7	20.4	Profile	Profile	0.0
Conc. Ground Level Profile	21	GEP021.GC	In	In	In	140	17.0	45.7	45.7	20.4	Profile	Profile	0.0
Conc. Ground Level Profile	22	GEP022.GC	In	 In	In all	140	17.0	45 7	45 7	20.4	Profile	Profile	0.0

Table 7Field Test Conditions (all tests)

Field Test Conditions {GEPTESTS.WK3 Sheet A:}

Measurement	Run	File	Model	Stack	Building	Wind	Ref.	Ref.	Stack	Effluent		Position	
Type	No.	Name	Config	Config	Config	Dir.	Velocity	Height	Height	Velocity	x	Y	z
			-	•		(geb)	(m/s)	(m)	(m)	(m/s)	(m)	(m)	(m)
					ويستعدي المتراولية الناود سينبع بمراجع								
Stack Height Determination													
Visualization of Plume Elevation	4	TAPE # 2	In	In	Out	140	17.0	45.7	61.0	20.4	Profile	0	Profile
Visualization of Plume Elevation	5	TAPE # 2	In	In	In	140	17.0	45.7	61.0	20.4	Profile	0	Profile
Visualization of Plume Elevation	6	TAPE # 2	İn	In	Out	140	17.0	45.7	73.1	20.4	Profile	0	Profile
Visualization of Plume Elevation	7	TAPE # 2	In	In	In	140	17.0	45.7	73.1	20.4	Profile	0	Profile
Visualization of Plume Elevation	10	TAPE # 2	In	In	Out	150	17.0	45.7	61.0	20.4	Profile	0	Profile
Visualization of Plume Elevation	11	TAPE # 2	In	In	In	150	17.0	45.7	61.0	20.4	Profile	0	Profile
Visualization of Plume Elevation	8	TAPE # 2	In	In	Out	150	17.0	45.7	73.1	20.4	Profile	0	Profile
Visualization of Plume Elevation	9	TAPE # 2	In	In	În	150	17.0	45.7	73.1	20.4	Profile	0	Profile
Visualization of Plume Elevation	12	TAPE # 2	In	In	Out	320	17.0	45.7	61.0	20.4	Profile	0	Profile
Visualization of Plume Elevation	13	TAPE # 2	In	In	In	320	17.0	45.7	61.0	20.4	Profile	0	Profile
Visualization of Plume Elevation	14	TAPE # 2	In	In	Out	320	17.0	45.7	73.1	20.4	Profile	0	Profile
Visualization of Plume Elevation	15	TAPE # 2	In	In	In	320	17.0	45.7	73.1	20.4	Profile	0	Profile
Visualization of Plume Elevation	18	TAPE # 2	In	In	Out	325	17.0	45.7	61.0	20.4	Profile	0	Profile
Visualization of Plume Elevation	19	TAPE # 2	In	In	In	325	17.0	45.7	61.0	20.4	Profile	0	Profile
Visualization of Plume Elevation	16	TAPE # 2	In	In	Out	325	17.0	45.7	73.1	20.4	Profile	0	Profile
Visualization of Plume Elevation	17	TAPE # 2	In	In	In	325	17.0	45.7	73.1	20.4	Profile	0	Profile
Conc. Ground Level Profile	24	GEP024.GC	In	In	Out	140	17.0	45.7	61.0	20.4	Profile	Profile	0.0
Conc. Ground Level Profile	25	GEP025.GC	In	In	In	140	17.0	45.7	61.0	20.4	Profile	Profile	0.0
Conc. Ground Level Profile	26	GEP026.GC	In	In	Out	140	17.0	45.7	73.1	20.4	Profile	Profile	0.0
Conc. Ground Level Profile	27	GEP027.GC	In	In	In	140	17.0	45.7	73.1	20.4	Profile	Profile	0.0
Conc. Ground Level Profile	30	GEP030.GC	In	In	Out	150	17.0	45.7	61.0	20.4	Profile	Profile	0.0
Conc. Ground Level Profile	31	GEP031.GC	In	In	In	150	17.0	45.7	61.0	20.4	Profile	Profile	0.0
Conc. Ground Level Profile	28	GEP028.GC	In	In	Out	150	17.0	45.7	73.1	20.4	Profile	Profile	0.0
Conc. Ground Level Profile	29	GEP029.GC	In	In	In	150	17.0	45.7	73.1	20.4	Profile	Profile	0.0
Conc. Ground Level Profile	32	GEP032.GC	In	In	Out	320	17.0	45.7	61.0	20.4	Profile	Profile	0.0
Conc. Ground Level Profile	33	GEP033.GC	In	In	In	320	17.0	45.7	61.0	20.4	Profile	Profile	0.0
Conc. Ground Level Profile	34	GEP034.GC	In	In	Out	320	17.0	45.7	73.1	20.4	Profile	Profile	0.0
Conc. Ground Level Profile	35	GEP035.GC	ļn	In	In	320	17.0	45.7	73.1	20.4	Profile	Profile	0.0
Conc. Ground Level Profile	38	GEP038.GC	In	In	Out	325	17.0	45.7	61.0	20.4	Profile	Profile	0.0
Conc. Ground Level Profile	39	GEP039.GC	In	In	In	325	17.0	45.7	61.0	20.4	Profile	Profile	0.0
Conc. Ground Level Profile	36	GEP036.GC	In	In	Out	325	17.0	45.7	73.1	20.4	Profile	Profile	0.0
Conc. Ground Level Profile	37	GEP037.GC	In	In	In	325	17.0	45.7	73.1	20.4	Profile	Profile	0.0
Visualization of Plume Elevation			In	In	Out	Wonst Case	@ GEPSH	GEPSH	GEPSH	20.4	Profile	0	Profile
Visualization of Plume Elevation			In	In	In	Worst Case	GEPSH	GEPSH	GEPSH	20.4	Profile	0	Profile
Conc. Ground Level Profile			In	In	Out	Wont Case	O GEPSH	GEPSH	GEPSH	20.4	Profile	Profile	0.0
Conc. Ground Level Profile			ĺn	In	In	Worst Case	@ GEPSH	GEPSH	GEPSH	20.4	Profile	Profile	0.0

T-9

Field Test Conditions {GEPTESTS.WK3 Sheet A:}

Measurement	Run	File	Model	Stack	Building	Wind	Ref.	Ref.	Stack	Effluent		Position	
Туре	No.	Name	Config	Config	Config	Dir.	Velocity	Height	Height	Velocity	X	Y	Z
						(deg)	(m/s)	(m)	(m)	(m/s)	<u>(m)</u>	(m)	(m)
Stack Height Documentation													
Vel. Lateral Profile U,u'			In	Out	<u>In</u>	Worst Case	@ GEPSH	GEPSH			<u> </u>	Profile	25.0
Vel. Lateral Profile U.u'			in la	Out	In	Worst Case	GEPSH	GEPSH			0	Profile	45.7
Vel. Lateral Profile U,u'			In	Out	In	Worst Case	Ø GEPSH	GEPSH			0	Profile	73,1
Vel. Lateral Profile U,u'			In	Out	In	Worst Case	@ GEPSH	GEPSH			2000	Profile	25.0
Vel. Lateral Profile U,u'			In	Out	In	Worst Case	GEPSH	GEPSH			2000	Profile	45.7
Vel. Lateral Profile U,u'			ln In	Out	In	Worst Case	Ø GEPSH	GEPSH			2000	Profile	73.1
Vel. Vertical Profile U,u',w',uw,T			In	Out	In	Worst Case	@ GEPSH	GEPSH			0	0	Profile
Vel. Vertical Profile U,u',w',uw,T			In	Out	In	Worst Case	GEPSH	GEPSH			1000	0	Profile
Vel. Vertical Profile U,u',w',uw,T			In	Out	In	Worst Case	@ GEPSH	GEPSH			2000	0	Profile
Visualization of Plume Elevation			In	In	Out	Worst Case	GEPSH	GEPSH	GEPSH	20.4	Profile	Ó	Profile
Visualization of Plume Elevation			In	In	In	Worst Case	g Gepsh	GEPSH	GEPSH	20,4	Profile	0	Profile
Conc. Ground Level Profile			In	In	Out	Worst Case	Ø GEPSH	GEPSH	GEPSH	20.4	Profile	Profile	0.0
Conc. Ground Level Profile			In	In	In	Worst Case	Q GEPSH	GEPSH	GEPSH	20.4	Profile	Profile	0.0
Conc. Ground Level Profile Detail			In	In	Out	Worst Case	GEPSH	GEPSH	GEPSH	20.4	Profile	Profile	0.0
Conc. Ground Level Profile Detail			In	In	In	Worst Case	g GEPSH	GEPSH	GEPSH	20.4	Profile	Profile	0.0
Conc. Ground Level Profile Detail			In	In	Out	Worst Case	Q GEPSH	GEPSH	GEPSH	20,4	Profile	Profile	0.0
Conc. Ground Level Profile Detail			In	In	In	Worst Case	@ GEPSH	GEPSH	GEPSH	20.4	Profile	Profile	0.0
Conc. Ground Level Profile Detail			In	In	Out	Worst Case	GEPSH	GEPSH	GEPSH	20.4	Profile	Profile	0.0
Conc. Ground Level Profile Detail			In	In	In	Worst Case	GEPSH	GEPSH	GEPSH	20,4	Profile	Profile	0.0
Conc. Vertical & Lateral Profile			in	In	Out	Worst Case	GEPSH	GEPBH	GEPSH	20.4	500	Profile	Profile
Conc. Vertical & Lateral Profile			In	In	In	Worst Case	@ GEPSH	GEPSH	GEPSH	20.4	500	Profile	Profile
Conc. Vertical & Lateral Profile			In	In	Out	Worst Case	@ GEP\$H	GEPSH	GEPSH	20,4	1000	Profile	Profile
Conc. Vertical & Lateral Profile			In	In	In	Worst Case	@ GEPSH	GEPSH	GEPSH	20.4	1000	Profile	Profile
Conc. Vertical & Lateral Profile			In	İn	Out	Worst Case	@ GEPSH	GEPSH	GEPSH	20.4	@GL Max	Profile	Profile
Conc. Vertical & Lateral Profile			In	In	In	Worst Case	@ GEPSH	GEPSH	GEPSH	20.4	@GL Max	Profile	Profile
Conc. Vertical & Lateral Profile			In	In	Out	Worst Case	& GEPSH	GEPSH	GEPSH	20.4	2000	Profile	Profile
Conc. Vertical & Lateral Profile			ln	In	In	Worst Case	@ GEPSH	GEPSH	GEPSH	20.4	2000	Profile	Profile

4

T-	1	1
	-	_

Model Test Conditions {GEPTESTS.WK3 Sheet B:}

Measurement	Run	File	Model	Stack	Building	Wind	Reference	Reference	Stack	Effluent		Position	
Туре	No.	Name	Config	Config	Config	Direction	Velocity	Height	Height	Velocity	X	Y	Z
						(deg)	(cm/s)	(cm)	(cm)	(cm/s)	(cm)	(cm)	(cm)
ADCT Series													
Vel. Lateral Profile U,u'	From	From	Generic	Out	No		288.0	25.0			0	Profile	6.3
Vel. Lateral Profile U,u'	43	GEP043.PRF	Generic	Out	No		288.0	25.0			0	Profile	11.4
Vel. Lateral Profile U,u'	To	Το	Generic	Out	No		288.0	25.0			0	Profile	25.0
Vel. Lateral Profile U,u'	67	GEP067.PRF	Generio	Out	No		288.0	25.0			500	Profile	6.3
Vel. Lateral Profile U,u'	•	•	Generic	Out	No		288.0	25.0			500	Profile	11.4
Vel. Lateral Profile U,u'	•	•	Generlo	Out	No		288.0	25.0			500	Profile	25.0
Vel. Vertical Profile U,u',w',uw	43	GEP043.PRF	Generic	Out	No		288.0	25.0			0	0	Profile
Vel. Vertical Profile U,u',w',uw	44	GEP044.PRF	Generic	Out	No		288.0	25.0			250	0	Profile
Vel. Vertical Profile U.u',w',uw	45	GEP045.PRF	Generic	Out	No		288.0	25.0			500	0	Profile
Visualization of Plume Elevation	0	TAPE #1	Generic	In	No		288.0	25.0	25.0	432.0	Profile	0	Profile
Concentration Vertical Profile	11	GEP011.GC	Generic	<u> </u>	No		288.0	25.0	25.0	432.0	125	0	Profile
Concentration Vertical Profile	10	GEP010.GC	Generic	In	No	•	288.0	25.0	25.0	432.0	250	0	Profile
Concentration Vertical Profile	9	GEP009.GC	Generic	In	No		288.0	25.0	25.0	432.0	375	0	Profile
Concentration Lateral Profile	14	GEP014.GC	Generic	In	No		288.0	25.0	25.0	432.0	125	Profile	Hett
Concentration Lateral Profile	13	GEP013.GC	Generic	In	No		288.0	25.0	25.0	432.0	250	Profile	Hett
Concentration Lateral Profile	12	GEP012.GC	Generic	In	No		288.0	25.0	25.0	432.0	375	Profile	Hett
Conc. Ground Level Profile	15	GEP015.GC	Generic	In	No		288.0	25.0	25.0	432.0	Profile	Profile	0.0
Re Invariance Series													
Vel. Vertical Profile U,u'	59	GEP059.PRF	In	Out	In	140	432.2	150.0			0	0	Profile
Vel. Vertical Profile U,u'	60	GEP060.PRF	In	Out	In	140	864.4	150.0			0	0	Profile
Vel. Vertical Profile U,u'	61	GEP061.PRF	In	Out	in	325	432.2	150.0			0	0	Profile
Vel. Vertical Profile U,u'	62	GEP062.PRF	In	Out	In	325	864.4	150.0			0	0	Profile
Conc. Ground Level Profile	16	GEP016.GC	In	Passive	ln l	140	432.2	150.0	15.3	250.0	Profile	Profile	0.0
Conc. Ground Level Profile	17	GEP017.GC	In	Passive	In	140	864.4	150.0	15.3	250.0	Profile	Profile	0.0
Conc. Ground Level Profile	18	GEP018.GC	In	Passive	In	325	432.2	150.0	11.4	250.0	Profile	Profile	0.0
Conc. Ground Level Profile	19	GEP019.GC	In	Passive	In	325	864.4	150.0	11.4	250.0	Profile	Profile	0.0
45.7 meter Stack Tests			· · · · · · · · · · · · · · · · · · ·										
Vel. Vertical Profile U.u'	58	GEP058, PRF	In	Out	in	140	249.9	11.4			-250	0	Profile
Visualization of Plume Elevation	1	TAPE # 2	in	In	Out	140	250.0	11.4	11.4	300.0	Profile	0	Profile
Visualization of Plume Elevation	2	TAPE # 2	In	In	In	140	250.0	11.4	11.4	300.0	Profile	0	Profile
Visualization of Plume Elevation	3	TAPE # 2	In	In	ln ell	140	250.0	11 4	11 4	300.0	Profile	<u> </u>	Profile
Conc. Ground Level Profile	20	GEP020 GC	In	In	Out	140	250.0	11 4	11 4	300.0	Profile	Profile	0.0
Conc. Ground Level Profile	21	GEP021.GC	ln	ln l	In	140	250.0	11 4	11 4	300.0	Profile	Profile	0.0
Conc. Ground Level Profile	22	GEP022 GC	in	in	In ell	140	250.0		11 4	300.0	Profile	Profile	0.0
	L		111	111	111 CUI	<u></u>	£00,0	L	11.9	300.0	FIUNU	L TIOMO	0.0
Model Test Conditions {GEPTESTS,WK3 Sheet B:}

Measurement	Run	File	Model	Stack	Building	Wind	Reference	Reference	Stack	Effluent		Position	
Туре	No.	Name	Config	Config	Config	Direction	Velocity	Height	Height	Velocity	X	Y	Z
			-	_	_	(deg)	(cm/s)	(cm)	(cm)	(cm/s)	(cm)	(cm)	(cm)
Stack Height Determination													
Visualization of Plume Elevation	4	TAPE # 2	In	In	Out	140	250.0	11.4	15.3	300.0	Profile	0	Profile
Visualization of Plume Elevation	5	TAPE # 2	· In	In	In	140	250.0	11.4	15.3	300.0	Profile	0	Profile
Visualization of Plume Elevation	6	TAPE # 2	In	In	Out	140	250.0	11.4	18.3	300.0	Profile	0	Profile
Visualization of Plume Elevation	7	TAPE # 2	In	In	In	140	250.0	11.4	18.3	300.0	Profile	0	Profile
Visualization of Plume Elevation	10	TAPE # 2	In	In	Out	150	250.0	11.4	15.3	300.0	Profile	0	Profile
Visualization of Plume Elevation	11	TAPE # 2	In	In	In	150	250.0	11.4	15.3	300.0	Profile	0	Profile
Visualization of Plume Elevation	8	TAPE # 2	In	In	Out	150	250.0	11.4	18.3	300.0	Profile	0	Profile
Visualization of Plume Elevation	9	TAPE # 2	In	ln.	In	150	250.0	11.4	18.3	300.0	Profile	0	Profile
Visualization of Plume Elevation	12	TAPE # 2	In	<u>In</u>	Out	320	250.0	11.4	15.3	300.0	Profile	0	Profile
Visualization of Plume Elevation	13	TAPE # 2	in	In	In	320	250.0	11.4	15.3	300.0	Profile	0	Profile
Visualization of Plume Elevation	14	TAPE # 2	In	In	Out	320	250.0	11.4	18.3	300.0	Profile	0	Profile
Visualization of Plume Elevation	15	TAPE # 2	In	In	ln.	320	250.0	11.4	18.3	300.0	Profile	0	Profile
Visualization of Plume Elevation	18	TAPE # 2	In	In	Out	325	250.0	11.4	15.3	300.0	Profile	0	Profile
Visualization of Plume Elevation	19	TAPE # 2	In	In	In	325	250.0	11.4	15.3	300.0	Profile	0	Profile
Visualization of Plume Elevation	16	TAPE # 2	In	In	Out	325	250.0	11.4	18.3	300.0	Profile	0	Profile
Visualization of Plume Elevation	17	TAPE # 2	In	In	In	325	250.0	11.4	18.3	300.0	Profile	0	Profile
Conc. Ground Level Profile	24	GEP024.GC	In	In	Out	140	250.0	11.4	15.3	300.0	Profile	Profile	0.0
Conc. Ground Level Profile	25	GEP025.GC	In	<u>In</u>	In	140	250.0	11.4	15.3	300.0	Profile	Profile	0.0
Conc. Ground Level Profile	26	GEP026.GC	In	In	Out	140	250.0	11.4	18.3	300.0	Profile	Profile	0.0
Conc. Ground Level Profile	27	GEP027.GC	In	In	<u>In</u>	140	250.0	11.4	18.3	300.0	Profile	Profile	0.0
Conc. Ground Level Profile	30	GEP030.GC	In	In	Out	150	250.0	11.4	15.3	300.0	Profile	Profile	0.0
Conc. Ground Level Profile	31	GEP031.GC	In	In	In	150	250.0	11.4	15.3	300.0	Profile	Profile	0.0
Conc. Ground Level Profile	28	GEP028.GC	In	In	Out	150	250.0	11.4	18.3	300.0	Profile	Profile	0.0
Conc. Ground Level Profile	29	GEP029.GC	in	In	In	150	250.0	11.4	18.3	300.0	Profile	Profile	0.0
Conc. Ground Level Profile	32	GEP032.GC	In	In	Out	320	250.0	11.4	15.3	300.0	Profile	Profile	0.0
Conc. Ground Level Profile	33	GEP033.GC	In	In	<u>in</u>	320	250.0	11.4	15.3	300.0	Profile	Profile	0.0
Conc. Ground Level Profile	34	GEP034.GC	ln.	In	Out	320	250.0	11.4	18.3	300.0	Profile	Profile	0.0
Conc. Ground Level Profile	35	GEP035.GC	In	In	in	320	250.0	11.4	18.3	300.0	Profile	Profile	0.0
Conc. Ground Level Profile	38	GEP038.GC	In	In	Out	325	250.0	11.4	15.3	300.0	Profile	Profile	0.0
Conc. Ground Level Profile	39	GEP039.GC	In	In	İn	325	250.0	11.4	15.3	300.0	Profile	Profile	0.0
Conc. Ground Level Profile	36	GEP036.GC	In	In	Out	325	250.0	11.4	18.3	300.0	Profile	Profile	0.0
Conc. Ground Level Profile	37	GEP037.GC	In	In	İn	325	250.0	11.4	18.3	300,0	Profile	Profile	0.0
Visualization of Plume Elevation			In	In	Out	Worst Case	@ GEPSH	GEPSH	GEPSH	300.0	Profile	0	Profile
Visualization of Plume Elevation			In	In	In	Worst Case	GEPSH	GEPSH	GEPSH	300.0	Profile	0	Profile
Conc. Ground Level Profile			In	In	Out	Worst Case	@ GEPSH	GEPSH	GEPSH	300,0	Profile	Profile	0.0
Conc. Ground Level Profile			In	In	In	Worst Case	@ GEPSH	GEPSH	GEPSH	300.0	Profile	Profile	0.0

.

Table 8Continued

Model Test Conditions	(GEPTESTS.WK3)	Sheet B: }

Т-	1	2
	Ŧ	J

Measurement	Run	File	Model	Stack	Building	Wind	Reference	Reference	Stack	Effluent		Position	
Туре	No.	Name	Config	Config	Config	Direction	Velocity	Height	Height	Velocity	X	Y	Z
			ļ			(deg)	(cm/s)	(cm)	(cm)	<u>(cm/s)</u>	<u>(cm)</u>	<u>(cm)</u>	(cm)
Stack Height Documentation													
Vel. Lateral Profile U,u			In	Out	In	Worst Case	@ GEPSH	GEPSH			Q	Profile	6.3
Vel. Lateral Profile U,u'			· In	Out	ln	Worst Case	@ GEPSH	GEPSH			0	Profile	11.4
Vel. Lateral Profile U,u'			In	Out	In	Worst Case	GEPSH	GEPSH			0	Profile	18,3
Vel. Lateral Profile U,u'			In	Out	ln	Worst Çase	@ GEPSH	GEPSH			500	Profile	6.3
Vel. Lateral Profile U,u'			In	Out	In	Worst Case	@ GEPSH	GEP8H			500	Profile	11.4
Vel. Lateral Profile U,u'			In	Out	ln	Worst Case	Ø GEPSH	GEPSH			500	Profile	18.3
Vel. Vertical Profile U,u',w',uw,T			In	Out	ln	Wonst Case	GEP8H	GEPSH			0	Ø	Profile
Vel. Vertical Profile U,u',w',uw,T			In	Out	In	Worst Case	@ GEPSH	GEPSH			250	0	Profile
Vel. Vertical Profile U,u',w',uw,T			In	Out	In	Worst Case	Ø GEPSH	GEPSH			500	0	Profile
Visualization of Plume Elevation			in	In	Óut	Worst Case	Ø GEPSH	GEPSH	GEPSH	299.9	Profile	0	Profile
Visualization of Plume Elevation			In	İn	In	Worst Case	@ GEPSH	GEPSH	GEPSH	299.9	Profile	0	Profile
Conc. Ground Level Profile			In	In	Out	Worst Case	Ø GEPSH	GEPSH	GEPSH	299.9	Profile	Profile	0.0
Conc. Ground Level Profile			In	ln	İn	Wonst Case	GEP8H	GEPSH	GEPSH	299,9	Profile	Profile	0.0
Conc. Ground Level Profile Detail			In	İn	Out	Wont Case	@ GEPSH	GEPSH	GEPSH	299.9	Profile	Profile	0.0
Conc. Ground Level Profile Detail			ln	In	ln	Worst Case	G GEPSH	GEPSH	GEPSH	299.9	Profile	Profile	0.0
Conc. Ground Level Profile Detail			In	In	Out	Worst Case	Ø GEPSH	GEPSH	GEPSH	299.9	Profile	Profile	0.0
Conc. Ground Level Profile Detail			In	In	ln	Womt Case	@ GEPSH	GEPSH	GEPSH	299.9	Profile	Profile	0.0
Conc. Ground Level Profile Detail			ln	In	Out	Worst Case	G GEPSH	GEPSH	GEPSH	299.9	Profile	Profile	0.0
Conc, Ground Level Profile Detail			In	In	In	Worst Case	GEPSH	GEPSH	GEPSH	299,9	Profile	Profile	0.0
Conc. Vertical & Lateral Profile			In	In	Out	Wonst Case	@ GEPSH	GEPSH	GEPSH	299.9	125	Profile	Profile
Conc. Vertical & Lateral Profile			In	Inl	In	Worst Case	Ø GEPSH	GEPSH	GEPSH	299.9	125	Profile	Profile
Conc. Vertical & Lateral Profile			In	ln	Out	Worst Case	Ø GEPSH	GEPSH	GEPSH	299.9	250	Profile	Profile
Conc. Vertical & Lateral Profile			In	In	In	Worst Case	GEPSH	GEPSH	GEPSH	299.9	250	Profile	Profile
Conc. Vertical & Lateral Profile			In	ln	Out	Worst Case	@ GEPSH	GEPSH	GEPSH	299.9	@GL Max	Profile	Profile
Conc. Vertical & Lateral Profile			In	In	In	Worst Case	Ø GEPSH	GEPSH	GEPSH	299.9	@GL Max	Profile	Profile
Conc. Vertical & Lateral Profile			In	In	Dut	Womt Case	C GEPSH	GEPSH	GEPSH	299.9	500	Profile	Profile
Conc. Vertical & Lateral Profile			In	In	In	Worst Case	@ GEPSH	GEPSH	GEPSH	299.9	500	Profile	Profile

Run No.	=	Average	of 43, 44	1, 45	Location = (avg,0,Z)									
FIELD V	ALUES				NORMA	LIZED V	ALUES			MODEL	VALUES			
Heigh	Velocity	Long. T.I.	Vert. T.I.	Re Stress	Helgh	Velocity	Long. T.I.	Vert. T.I.	Re Stress	Height	Velocity	Long. T.I.	Vert. T.I.	Re Stress
(m)	(m/s)	(%)	(%)				(%)	(%)		(cm)	(cm/s)	(%)	(%)	(cm/s) ²
0.2														
4.0	9.7	26.5	13.1	0.62	0.088	0.570	26.5	13.1	0.62	1.0	142.4	26.5	13.1	-210.5
10.0	12.7	20.7	10.7	0.60	0.219	0.747	20.7	10.7	0.60	2.5	186.7	20.7	10.7	-202.6
16.0	13.9	19.4	10.0	0.59	0.350	0.820	19.4	10.0	0.59	4.0	204.9	19.4	10.0	-200.6
25.0	15.4	16.8	9.7	0.64	0.547	0.903	16.8	9.7	0.64	6.3	225.9	16.8	9.7	-217.4
30.0	15.8	16.1	9.1	0.57	0.656	0.931	16.1	9.1	0.57	7.5	232.8	16.1	9.1	-193.3
45.7	16.9	14.7	9.2	0.66	1.000	0.992	14.7	9.2	0.66	11.4	248.0	14.7	9.2	-225.0
60.0	17.7	13.0	8.7	0.58	1.313	1.043	13.0	8.7	0.58	15.0	260.7	13.0	8.7	-195.0
80.0	18.4	12.2	8.8	0.61	1.751	1.084	12.2	8.8	0.61	20.0	271.1	12.2	8.8	-206.4
100.0	19.2	11.2	8.6	0.62	2.188	1.127	11.2	8.6	0.62	25.0	281.6	11.2	8.6	-211.0
140.0	19.9	10.9	8.5	0.63	3.063	1.171	10.9	8.5	0.63	35.0	292.7	10.9	8.5	-211.7
200.0	21.4	9.9	8.0	0.67	4.376	1.259	9.9	8.0	0.67	50.0	314.6	9.9	8.0	-226.9
300.0	23.7	8.2	7.1	0.58	6.565	1.394	8.2	7.1	0.58	75.0	348.4	8.2	7.1	-195.6
400.0	26.0	7.0	6.3	0.58	8.753	1.528	7.0	6.3	0.58	100.0	381.9	7.0	6.3	-196.0
500.0	27.6	5.5	5.3	0.32	10.941	1.624	5.5	5.3	0.32	125.0	406.0	5.5	5.3	-109.0
Reference	es									Reference	es			
45.7	17.0			1.25					18.4	11.4	250.0			250.0
Roughne	ess Lengtl	h (m) =		0.20	Roughness Length (cm) =							0.05		
Displace	ment Heig	ght (m) =		0.00						Displace	ment Hei	ght (cm) =	=	0.00
Friction V	/elocity (n	n/s) =		1.25						Friction \	/elocity (d			18.40
Power La	aw Index :	=		0.18						Power La	aw Index	=		0.18

T-14 Atmospheric Dispersion Comparability Test Centerline Velocity Profiles ADCVRES2.WK3 Sheet A:

÷,

T.	-1	~
	· I	-
-		· •

Atmospheric Dispersion Comparability Test Centerline Velocity Profiles ADCVRES2.WK3 Sheet B:

Run No.	-	43	and have been	aggete e e	Location) =	(0,0, Z)		eletterebij-r	de final de la composición de la composición de la composición de la composición de la composición de la compos	hille server	<u>, selestidade</u>	gin, ginajuev	ngan dista di shikinga
FIELD V	ALUES				NORMA	UZED V	ALUES			MODEL	VALUES	3		
Height	Velocity	Long. T.I.	Vert. T.I.	Re Stress	Height	Velocity	Long. T.I.	Vert TJ.	Re Stress	Height	Velocity	Long. T.I.	Vert. T.I.	Re Stress
(m)	(m/s)	(%)	(%)				(%)	(%)		(cm)	(cm/s)	(%)	(%)	(cm/s) ²
0.0														
4.0	9.3	27.2	13.5	0.66	880.0	0.547	27.2	13.5	0.66	1.0	136.7	27.2	13.5	-223.9
10.0	13.0	20.1	10.7	0.64	0.219	0.764	20.1	10.7	0.64	2.5	191.0	20.1	10.7	-217.9
16.0	13.9	19.1	10.1	0.65	0.350	0.815	19.1	10.1	0.65	4.0	203.8	19.1	10.1	-220.5
25.0	15.4	16.5	9.7	0.66	0.547	0.908	16.5	9.7	0.66	6.3	227.1	16.5	9.7	-224.5
30.0	15.8	15.6	9.3	0.54	0.656	0.927	15.6	9.3	0.54	7.5	231.7	15.6	9.3	-183.7
45.7	16.6	14.8	9.8	0.65	1.000	0.975	14.8	9.8	0.65	11.4	243.8	14.8	9.8	-220.5
60.0	17.7	12.3	9.2	0.57	1.313	1.039	12.3	9.2	0.57	15.0	259.8	12.3	9.2	-193.4
80.0	18.2	11.6	8.9	0.49	1.751	1.071	11.6	8.9	0.49	20.0	267.7	11.6	8.9	-165.3
100.0	19.2	10.4	8.5	0.40	2.188	1.130	10.4	8.5	0.40	25.0	282.6	10.4	8.5	-134.8
140.0	19.6	10.8	9.0	0.52	3.063	1.154	10.8	9.0	0.52	35.0	288.4	10.8	9.0	-177.6
200.0	21.2	9.8	8.2	0.56	4.376	1.248	9.8	8.2	0.56	50.0	311.9	9.8	8.2	-190.8
300.0	23.0	7.9	7.4	0.46	6.565	1.354	7.9	7.4	0.46	75.0	338.5	7.9	7.4	-155.9
400.0	25.4	7.1	6.7	0.58	8.753	1.494	7.1	6.7	0.58	100.0	373.6	7.1	6.7	-195.1
500.0	27.3	5.6	5.9	0.22	10.941	1.606	5.6	5.9	0.22	125.0	401.5	5.6	5.9	-76.0
Reference	:05									Referenc	85			
45.7	17.0			1.25					18.4	11.4	250.0			250.0

Atmospheric Dispersion Comparability Test Centerline Velocity Profiles ADCVRES2.WK3 Sheet C:

Run: No		- 44	<u>ini katatan</u>	olipiisisi po	Location	r a dan dahir	(1000,0,	Z)			seren en filler		ula di <u>Mana</u>	<u>, 1966)</u>
FIELD V	ALUES				NORMA	LIZED V	ALUES			MODEL	VALUES	3	jenský korejs	
Height	Velocity	Long. TJ.	Vert. T.I.	Re Stress	Height	Velocity	Long, T.I.	Vert. T.I.	Re Stress	Height	Velocity	Long. T.I.	Vert. T.I.	Re Stress
(m)	(m/s)	(%)	(%)				(%)	(%)		(ст)	(cm/s)	(%)	(%)	(cm/s) ²
0.0														
0.0	9.9	26.5	12.6	0.56	0.000	0.581	26.5	12.6	0.56	[]	145.2	26.5	12.6	-188.9
10.0	12.5	20.8	10.7	0.57	0.219	0.738	20.8	10.7	0.57	2.5	184.4	20.8	10.7	-193.9
16.0	13.9	19.6	10.4	0.61	0.350	0.815	19.6	10.4	0.61	4.0	203.8	19.6	10.4	-208.1
25.0	15.3	17.3	9.6	0.69	0.547	0.900	17.3	9.6	0.69	6.3	224.9	17.3	9.6	-232.0
30.0	15.5	16.6	9,4	0.63	0.656	0.910	16.6	9.4	0.63	7.5	227.6	16.6	9.4	-212.7
45.7	16.6	15.1	9.0	0.64	1.000	0.976	15.1	9.0	0.64	11.4	244.0	15.1	9.0	-215.1
60.0	17.5	13.6	8.7	0.56	1.313	1.032	13.6	8.7	0.56	15.0	258.0	13.6	8.7	-190.0
80.0	18.3	12.6	9.0	0.72	1.751	1.077	12.6	9.0	0.72	20.0	269.3	12.6	9.0	-242.7
100.0	19.2	11.7	8.6	0.77	2.188	1.130	11.7	8.6	0.77	25.0	282.6	11.7	8.6	-260.4
140.0	19.6	11.3	8.5	0.66	3.063	1.154	11.3	8.5	0.66	35.0	288.6	11.3	8.5	-224.6
200.0	21.2	10.0	8.0	0.60	4.376	1.248	10.0	8.0	0.60	50.0	312.0	10.0	8.0	-201.6
300.0	23.7	8.2	7.0	0.63	6.565	1.394	8.2	7.0	0.63	75.0	348.5	8.2	7.0	-213.1
400.0	25.9	7.3	6.2	0.56	8.753	1.521	7.3	6.2	0.56	100.0	380.3	7.3	6.2	- 190.7
500.0	27.6	5.4	5.1	0.31	10.941	1.625	5.4	5.1	0.31	125.0	406.3	5.4	5.1	-106.3
Reference	:8 \$									Referenc	88			
45.7	17.0			1.25					18.4	11.4	250.0			250.0

Atmospheric Dispersion Comparability Test Centerline Velocity Profiles ADCVRES2.WK3 Sheet D:

Run No	, se se se se se se se se se se se se se se se	45	<u>a de la terre de la terre de la terre de la terre de la terre de la terre de la terre de la terre de la terre d</u>	An an an an an an an an an an an an an an	Locatior	1 -	(2000,0.	,Z)	da da da da da da da da da da da da da d	alige de la la la la la la la la la la la la la	de de la la la la la la la la la la la la la	<u>baaddalada</u>		
FIELD 1	ALUES		aalayyyyyyy		NORMA	LIZED V	ALUES			MODEL	VALUES	3		
Heigh	Velocity	Long. T.I.	Vert. T.I.	Re Stress	Heigh	Velocity	Long. T.I.	Vert. T.I.	Re Stress	Height	Velocity	Long. T.I.	Vert. T.I.	Re Stress
(m)	(m/s)	(%)	(%)				(%)	(%)		(cm)	(cm/s)	(%)	(%)	(cm/s) ²
0.0														
0.0	9.9	25.9	13.0	0.65	0.000	0.582	25.9	13.0	0.65		145.4	25.9	13.0	-218.6
10.0	12.6	21.2	10.7	0.58	0.219	0.739	21.2	10.7	0.58	2.5	184.7	21.2	10.7	-195.9
16.0	14.1	19.6	9.6	0.51	0.350	0.829	19.6	9.6	0.51	4.0	207.2	19.6	9.6	-173.1
25.0	15.3	16.4	9.6	0.58	0.547	0.902	16.4	9.6	0.58	6.3	225.6	16.4	9.6	-195.6
30.0	16.3	16.1	8.7	0.54	0.656	0.956	16.1	8.7	0.54	7.5	239.0	16.1	8.7	-183.6
45.7	17.4	14.3	8.9	0.71	1.000	1.025	14.3	8.9	0.71	11.4	256.2	14.3	8.9	-239.5
60.0	18.0	13.0	8.2	0.60	1.313	1.058	13.0	8.2	0.60	15.0	264.4	13.0	8.2	-201.5
80.0	18.8	12.3	8.6	0.62	1.751	1.105	12.3	8.6	0.62	20.0	276.3	12.3	8.6	-211.3
100.0	19.0	11.6	8.6	0.70	2.188	1.119	11.6	8.6	0.70	25.0	279.7	11.6	8.6	-237.7
140.0	20.5	10.7	8.1	0.69	3.063	1.204	10.7	8.1	0.69	35.0	301.0	10.7	8.1	-232.8
200.0	21.8	10.1	7.8	0.85	4.376	1.280	10.1	7.8	0.85	50.0	320.0	10.1	7.8	-288.4
300.0	24.4	8.4	6.8	0.64	6.565	1.433	8.4	6.8	0.64	75.0	358.2	8.4	6.8	-217.7
400.0	26.7	6.6	6.1	0.60	8.753	1.568	6.6	6.1	0.60	100.0	392.0	6.6	6.1	-202.2
500.0	27.9	5.4	5.0	0.43	10.941	1.641	5.4	5.0	0.43	125.0	410.4	5.4	5.0	-144.8
Reference	285									Reterenc	85			
45.7	17.0			1.25	1	1			18.4	11.4	250.0			250.0

T-16

ADCT Lateral Velocity and Turb. Profiles ADCVRES1.WK3

				Y (cm)			
Z (cm)	-90.0	-60.0	-30.0	0.0	30.0	60.0	90.0
2.5	191	180	199	191	189	184	200
6.3	258	235	235	227	237	241	216
11.4	270	241	257	244	242	267	255
25.0	286	280	266	283	278	272	273
Run#=	54	53	52	43	55	56	57

Model Mean Wind Speed (cm/s) at X = 0 cm

Model Mean Wind Speed (cm/s) at X = 500 cm

		Y (cm)											
Z (cm)	-90.0	-60.0	-30.0	0.0	30.0	60.0	90.0						
2.5	220	207	180	185	183	209	192						
6.3	233	239	238	226	247	229	250						
11.4	270	260	251	256	252	245	279						
25.0	281	286	275	280	316	287	309						
Run#=	48	47	46	45	49	50	51						

Longitudinal Turbulent Intensity (%) at X = 0 cm

				Y (cm)			
Z (cm)	-90.0	-60.0	-30.0	0.0	30.0	60.0	90.0
2.5	19.85	21.51	21.29	20.11	19.45	19.57	22.04
6.3	14.34	16.58	15.52	16.51	16.21	15.53	19.00
11.4	16.08	15.00	12.45	14.75	14.16	11.95	17.82
25.0	11.73	13.38	12.74	10.37	13.00	13.84	12.02
Run#=	54	53	52	43	55	56	57

Longitudinal Turbulent Intensity (%) at X = 500 cm

				Y (cm)			
Z (cm)	-90.0	-60.0	-30.0	0.0	30.0	60.0	90.0
2.5	17.58	22.98	19.17	21.24	19.15	16.10	21.39
6.3	19.55	13.69	16.28	16.45	17.52	18.16	16.66
11.4	14.28	13.89	12.93	14.35	12.64	13.08	13.21
25.0	12.68	13.25	10.56	11.58	8.20	12.00	12.31
Run#=	48	47	46	45	49	50	51

AUCT SIA	ck Cond	centrat	ion Measu	rements		RES1.WK3	Sheet A:			
Field Va	lues (M	KS)	Model V	alues (C	CGS)			R	UN # 11	
400			1			< Length S	Scale			
17.0			250.0			< Wind Sp	eed			
576.8			530.2			< Flow Ra	te			
22.0			22.0			< Stack G	as Temp.	(C)		
22.0			22.0			< Ambient	Temp, (C	り		
104.0			26.0			< Effective	Stack He	eight		
Field Po	<u>sition</u>		Model P	osition		PG-C	Field	PG-D	Model	Model
X	Y	Z	X	Y	Z	K=10=	K=10*	K-10-	K-10	Conc.
(II)	(m)	(m)	(CM)	(cm)	(cm)	(<u>n</u> =)	(M==)	<u>(M</u> .)	(cm~•)	(ppm)
500			105							
500		10	125		0	4	<u> </u>		0	
500	<u> </u>	20	125		- 4	12				4/
500		32	120		0	10	10		160	200
500		40	125		12	- 15	10	<u> </u>	205	<u> </u>
500		40	125	0	14	20	10		<u> </u>	020
500		64	125	<u> </u>	16	45	23	38	531	1107
500		72	125	<u> </u>	18	55	52	66	837	1775
500		80	125	0	20	64	69	103	1111	2356
500	<u> </u>	88	125	<u> </u>	22	71	80	140	1281	2717
500	0	96	125	0	24	76	90	169	1442	3058
500	0	104	125	0	26	78	91	180	1456	3089
500	0	112	125	0	28	76	93	169	1487	3153
500	0	120	125	0	30	71	87	140	1390	2949
500	0	128	125	0	32	64	79	103	1264	2681
500	0	136	125	0	34	55	67	66	1072	2273
500	0	144	125	0	36	45	59	38	937	1987
500	0	152	125	0	38	35	46	19	734	1557
500	0	160	125	0	40	26	36	9	571	1211
500	0	176	125	0	44	13	20	1	327	692
500	0	192	125	0	48	5	9	0	140	296
500	0	208	125	0	52	2	4	0	61	129
500	0	224	125	0	56	1	2	0	26	56
500	0	240	125	0	60	0	1	0	11	22
500	0	256	125	0	64	0	0	0	3	7
500	0	272	125	0	68	0	0	0	2	3
500	0	288	125	0	72	0	0	0	1	3
500	0	304	125		76	0	0	0		3
500	<u> </u>	320	125	<u> </u>	08	Ŭ	0		<u> </u>	3
500		330	125	<u> </u>	<u>84</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	2
500		352	120	<u> </u>	88	<u> </u>	<u> </u>	<u> </u>	1	2
000		300 204	120	<u> </u>	92	<u> </u>	<u> </u>	<u> </u>	<u> </u>	3
500		100	125	<u> </u>	100	<u> </u>	<u> </u>	<u> </u>		
500	<u>v</u>	400	120	<u> </u>	100	0	<u>v</u>	<u> </u>		2
500	<u>v</u>	410	125	<u> </u>	104		<u> </u>	<u>v</u>	<u> </u>	2
500		402	125	<u> </u>	112		<u> </u>			2
500		464	125	<u> </u>	116		<u> </u>	<u> </u>	1	
		-04		<u>v</u>		<u> </u>	<u> </u>		_	2
	** -,								· · · · · · · · · · · · · · · · · · ·	<u> </u>
	<u></u>									
										<u></u>

Field Va	lues (M	KS)	Model	Values (C	CGS)			R	UN # 14	
400			1			< Length S	cale		- • • • • • • • • • • • • • • • • • • •	
17.0			250 0			< Wind Sn	hed			
576.9			530.0			< Flow Bat				
370.8			000.2			< Stack Ga		(\cap)		
22.0			22.0				is remp. Toma /C			
22.0			22.0				remp. (C	/ 		
104.0			26.0			< Enective	STACK He	ngn		
Field Po	sition		Model	Position		PG-C		PG-D	MODEI	Model
X	Y	Z	X	Y	Z	Keilo	K=10-	K-10*	K-10-	Conc.
(m)	(п)	(m)	(CIII)	<u>(cm)</u>	(cm)	(m ⁻ f)	<u>(m~)</u>	<u>(m°4)</u>	(cm)	(ppm)
500	-32	104	125	-8	26	65	83	128	1325	2811
500	-24	104	125	-6	26	70	81	149	1300	2757
500	-16	104	125	4	26	74	89	165	1429	3030
500	-8	104	125	-2	26	77	86	176	1379	2925
500	0	104	125	0	26	78	90	180	1444	3062
500	8	104	125	2	26	77	83	176	1321	2801
500	16	104	125	<u>A</u>	26	74	79	165	1260	2671
500	24	104	125		26	70	69	149	1101	2334
- 500 500	20	104	125		20		<u>55</u>	102	225	1976
500	32	104	123		20	50	<u> </u>	120	950	1900
500	<u>40</u>	104	120		20			100	704	1407
500	40	104	120	12	20	52	44		701	148/
500	55	104	125	14	26	45	35	64	558	1184
500	64	104	125	16	26	38	25	47	405	859
500	72	104	125	18	26	32	19	33		645
500	80	104	125	20	26	26	<u> </u>	22	214	453
500	88	104	125	22	26	20	9	14	150	319
500	96	104	125	24	26	16	6	9	98	207
500	104	104	125	26	26	12	4	5	71	150
500	112	104	125	28	26	9	3	3	50	106
500	120	104	125	30	26	6	2	2	36	77
500	128	104	125	32	26	5	1	1	23	49
500	144	104	125	36	26	2	1	0	10	20
500	160	104	125	40	26	1	<u> </u>	<u> </u>	3	5
500	176	104	125	40	26	<u> </u>	0			3
500	102	104	125		20		0		ł	
500	192	104	120	40	20	<u> </u>	<u> </u>	0		۷
500	200	104	120	<u> </u>	2D	<u> </u>	<u> </u>	<u>v</u>		1
500	-224	104	125	56	26	0	0	0		1
500	240	104	125	60	26	0	0	0	1	1
500	256	104	125	64	26	0	0	0	0	1
500	272	104	125	68	26	0_	0	0	2	4
500	288	104	125	72	26	0	0	0	0	1
500	304	104	125	76	26	0	0	0	0	1
500	320	104	125	80	26	0	0	0	0	1
500	336	104	125	84	26	0	0	0	4	9
500	352	104	125	88	26	0	0	0	0	1
}							.	······		.
<u> </u>										
	· · · · · · · · · · · · · · · · · · ·			· · · · ·			<u> </u>		· · ·	
			<u> </u>							
 	······									

ADCT Sta	ck Cond	centrat	ion Measu	rements	ADC	RES1.WK3	Sheet C:	_		
Field Val	ues (M	KS)	Model Va	alues ((CGS)			R	UN # 10	
400			1			< Length	Scale			
17.0			250.0			< Wind S	Deed			
576.8			530.2			< Flow Ra	rte			
22.0			22.0			< Stack G	ias Temp.	(C)		
22.0			22.0			< Ambien	t Temp. (O)		
104.0			26.0			< Effectiv	e Stack H	eight		
Field Po	sition		Model Po	osition		PG-C	Field	PG-D	Model	Model
X	Y	Z	X	Y	Z	K*10 ⁴	K*10 ⁸	K*10 ⁸	K*10 ⁸	Conc.
(m)	(m)	(m)	(CM)	(cm)	(cm)	(m~2)	(m ⁻²)	(m ⁻²)	(cm ⁻²)	(ppm)
1000	0	0	250	0	0	15	7	3	112	238
1000	0	16	250	0	4	15	9	4	148	313
1000	0	32	250	0	8	16	14	9	229	486
1000	0	48	250	0	12	18	21	19	328	696
1000	0	64	250	0	16	19	21	32	343	727
1000	0	72	250	0	18	20	27	39	436	926
1000	0	80	250	0	20	21	30	45	478	1014
1000	0	88	250	0	22	21	30	50	473	1003
1000	0	96	250	0	24	21	32	54	513	1088
1000	0	104	250	0	26	21	32	55	<u> </u>	1097
1000	0	112	250	. 0	28	21	32	54	504	1070
1000	0	120	250	0	30	20	31	50	489	1037
1000	0	128	250	0	32	20	29	45	472	1001
1000	0	144	250	0	36	18	26	32	417	884
1000	0	160	250	0	40	16	22	19	352	746
1000	0	176	250	0	44	13	18	9	287	609
1000	0	192	250	0	48	10	13	4	203	430
1000	0	208	250	0	52	8	10	1	155	328
1000	0	224	250	0	56	5	7	0	112	238
1000	0	240	250	0	60	4	5	0	74	157
1000	0	256	250	0	64	2	3	0	45	95
1000	0	272	250	0	68	1	2_	0	28	59
1000	0	288	250	0	72	1	1	0	15	33
1000	0	304	250	0	76	0	1	0	9	19
1000	0	320	250	0	80	0	0	0	5	10
1000	0	336	250	0	84	0	0	0	33	6
1000	0	352	250	0	88	0	0	0	2	3
1000	0	368	250	0	92	0	0	0	2	4
1000	0.	384	250	0	96	0	0	0	1	3
1000		400	250	0	100	0	0	0	1	3
1000	0	416	250	0	104	0	0	0	1	3
1000	0	432	250	0	108	0	0	0	1	3
1000	0	448	250	0	112	0	0	0	1	3
1000	0	464	250	0	116	0	0	0	2_	3
								·····	·····	
								- <u></u>		
							<u>.</u>			
									·····	
ļ	·						····			
				<u></u>			·			
										_

Field Va	LUGS /M		Model		GSI				UN # 13	
	1063 (M	<u>INST</u>	1			< 1 ength 5	Scale			
17.0			250 0			< Wind So	heed			
576 Q			520.0				te			
5/0.0			00.2			< Stock G		\sim		
22.0			22.0				as remp.			
22.0			22.0				Temp. (C	/) 		
104.0			20.0			< Enective			Madal	
	SILION		MODEL	OSITION		PG-C	Field	PG=D	MODBI	MODEL
X						K-10-	K-10-	K-10-	K-10-	Conc.
	22 (u)		(CII)	(CIII)		<u>(113)</u>	<u>(UII)</u>		(cm =)	(ppm)
1000		104	050	0	00		20	50	E19	1007
1000	-32	104	250	-0	20	20	<u> </u>	50	490	1007
1000	-24	104	200	-0	2	21	31	52	409	1037
1000	-16	104	250		20	21	33	<u> </u>	<u> </u>	1130
1000	-8	104	250	-2	2	21	31		502	1000
1000		104	250	<u> </u>	20	21			540	1157
1000	8	104	250		26	21	32		514	1090
1000	16	104	250	4	26	21	32	54	514	1090
1000	24	104	250	6	26	21	30	52	4//	1011
1000	32	104	250	8	26	20	26	50	409	867
1000	40	104	250	10	26	20	28	48	443	939
1000	48	104	250	12	26	19	26	45	418	886
1000	56	104	250	14	26	18	24	42	376	798
1000	64	104	250	16	26	18	23	39	368	780
1000	72	104	250	18	26	17	19	35	308	654
1000	80	104	250	20	26	16	18	32	290	616
1000	88	104	250		26	15	16	28	248	526
1000	96	104	250	24	26	14	15	25	237	503
1000	104	104	250		26	13	12		199	422
1000	112	104	250		26	12	12	19	185	393
1000	120	104	250	30	26	11	10	16	153	325
1000	128	104	250	32	26	10		13	132	280
1000	144	104	250	36	26	8	6	9	91	193
1000	160	104	250	40	26	7	4	6	57	120
1000	176	104	250	44	26	5	2	4	38	81
1000	192	104	250	48	26	4	2	2	26	56
1000	208	104	250	52	26	3	1	1	17	37
1000	224	104	250	56	26	2		1	9	18
1000	240	104	250	60	26	2	0	0	4	9
1000	256	104	250	64	26	1	0	0	2	5
1000	272	104	250	68	26	1	0	0]	2
1000	288	104	250	72	26	0	0	0	1	2
1000	304	104	250	76	26	0	0	0	1	
1000	320	104	250	80	26	0	0	0	0	
1000	336	104	250	84	26	0	0	0		2
1000	352	104	250	88	26	<u> </u>	0	<u> </u>		1
							<u> </u>			
 										
			<u> </u>					·····		
							·			
								· · ··································		
			ļ							
I			1							

ADCT Stack Concentration Measurements ADCRES1.WK3 Sheet D:

ADCT Stac	ck Cond	centrat	ion Measur	ements	S ADC	RES1.WK3 S	heet E:			
Field Val	ues (M	IKS)	Model Va	<u>alues (</u>	<u>CGS</u>			H	UN # 9	
400			1			< Length S	Cale			
17.0			250.0			< wind Spe	960			
576.8			530.2			< Flow Hat	9 	-		
22.0			22.0			< Stack Ga	siemp. (-)		
22.0			22.0				iemp. (C)			
104.0			26.0				Stack Hel	<u>ent</u>	Madal	
Field Pos	SITION		MODEL PO	DSITION	-	PG=C	Field		MODBI	MOOGI
					4	K-10-	K-10-	K-10-	K-10-	Conc.
(III)	20) 200 200	200 S	(CII)	(сп)					(cm.=)	
1500	0	0	375	0	0	12	13	7	202	429
1500	0	16	375	0	4	12	13	8	206	436
1500	0	32	375	0	8	12	14	11	227	481
1500	0	48	375	0	12	12	15	15	247	525
1500	0	64	375	0	16	12	14	21	227	482
1500	0	80	375	0	20	12	18	25	283	600
1500	0	96	375	0	24	11	18	28	286	607
1500	0	112	375	0	28	11	18	28	287	608
1500	0	128	375	0	32	10	17	25	276	586
1500	0	144	375		36	10	15	21	247	523
1500	<u> </u>	170	3/5	<u> </u>	40	<u> </u>	13	10	214	404
1500	<u> </u>	102	3/5	0	44	- 0	10		160	392
1500		208	375		40 52	6	8	3	104	269
1500	<u> </u>	200	375		56	5			103	219
1500		240	375		60	4	5	1	80	170
1500	0	256	375	0	64	3	4	0	59	126
1500	0	272	375	0	68	3	3	0	43	92
1500	0	288	375	0	72	2	2	0	31	67
1500	0	304	375	0	76	2	1	0	20	43
1500	0	320	375	0	80	1	1	0	14	29
1500	0	336	375	0	84	1	1	0	9	19
1500	0	352	375	0	88	1	0	0	6	13
1500	0	368	375	0	92	0	0	0	4	9
1500	0		375	0	96	0	0	0	3	6
1500	0	400	375	0	100	0.	0	0	2	4
1500		416	375	0	104	0	0	0	1	3
1500	0	432	375	0	108	0			1	3
1500		448	375	<u> </u>	112	0	<u> </u>	0		2
1500	· U	448	3/5	<u> </u>	112	<u> </u>	<u> </u>	<u> </u>	1	2
1500		404	375	<u> </u>	116		<u> </u>	<u> </u>		3
	V	704	575		110	<u> </u>	<u> </u>	<u> </u>	<u> </u>	3
										. <u> </u>
·										
<u> </u>								· · · ·		
								<u> </u>		
			1			1				

Field Va	lues (M	KS)	Model	Values (C	CGS)			R	UN # 12	
400			1			< Length S	cale			
17.0			250.0			< Wind Sp	eed			
576.8			530.2			< Flow Rat	8			
22.0			22.0			< Stack Ga	s Temp.	(C)		
22.0			22:0			< Ambient	Temp. (C) .		
104.0			26.0			< Effective	Stack He	ight		
Field Po	sition		Model	Position		PG-C	Field	PG-D	Model	Model
X	Y	Z	X	Y	Z	K=10 ⁶	K*10 ⁸	K*10 ^e	K*10 ⁸	Conc.
(m)	(m)	(m)	(cm)	(cm)	(CM)	(m-z)	(m ⁻²)	(m-2)	(cm ⁻²)	(ppm)
Concerned Cardy They										يطلبون والمناهد
1500	-32	104	375	-8	26	11	18	27	289	612
1500	-24	104	375	-6	26	11	17	28	274	582
1500	-16	104	375	-4	26	11	19	28	297	629
1500	-8	104	375	-2	26	. 11	18	28	281	596
1500	0	104	375	0	26	11	19	28	300	635
1500	8	104	375	2	26	11	18	28	289	612
1500	16	104	375	4	26	11	19	28	305	646
1500	24	104	375	6	26	11	18	28	293	622
1500	32	104	375	8	26	11	16	27	251	533
1500	40	104	375	10	26	11	18	27	288	611
1500	48	104	375	12	26	11	19	26	302	640
1500	56	104	375	14	26	11	18	25	280	594
1500	64	104	375	16	26	10	18	24	283	601
1500	80	104	375	20	26	10	16	22	253	538
1500		104	375	24	26	9	14	20	222	471
1500	112	104	375	28	26	ă	12	17	194	411
1500	128	104	375	32	26	8	10	15	163	346
1500	144	104	375	36	26	7		12	137	290
1500	160	104	375	40	26	7		10	100	213
1500	176	104	375	AA	26	6	5	8	76	162
1500	192	104	375	49	26	5	<u>A</u>	7	03	127
1500	208	104	375	52	20	<u> </u>		5	42	80
1500	200	104	375	56	20	4		<u>A</u>		50
1500	240	104	375	<u> </u>	20		<u> </u>		17	35
1500	240	104	275	64	20	3		<u> </u>	12	27
1500	200	104	375		20	<u> </u>	4	<u>-</u>		
1500	212	104	375	70	20	2	<u> </u>		<u> </u>	10
1500	200	104	375	76	20	2	0		<u>_</u>	
1500	200	104	3/3	0/	20	<u>∠</u>	<u> </u>	<u> </u>	<u> </u>	/
1500	320	104	3/3	00	20		<u> </u>	<u> </u>	~ ~ ~	4
1500	350	104	3/3	04	20		~	<u> </u>	<u> </u>	4
1500	252	104	313	00	20		<u> </u>	<u> </u>	1	
1500	300	104	3/3	32	20		<u>v</u>	<u> </u>		
1500	304	104	313		20	<u> </u>	<u> </u>	<u> </u>		
1500	400	104	313	100	20	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
1500	410	104	3/3	104	20	<u> </u>	<u> </u>		<u>v</u>	
1500	432	104	3/5	108	20	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1
				<u> </u>				· · ·		
								· · ·		
				<u></u>						
Į										
	<u></u>									
									····	
1						1				

ADCT Stack Concentration Measurements ADCRES1.WK3 Sheet F:

Field Va	lues (M	KS)	Model V	alues (C	GS)			R	UN # 15	
400			1			< Length S	Scale			
17.0			250.0			< Wind Sp	eed			
576 8			530 2			< Flow Ra	ta			
22.0			22.0			< Stack G	as Temo	(C)		
22.0			22.0				Temn ((107		
104.0								y alaht		
IU4.U	-141					× Ellective			Madal	Model
Field PO	<u>silion</u>	-	MOGELF		_		FIEID	Verage	MOUBI	MOURI
		4				K-IU-	K-10-	K-10-	K-10-	Conc.
		(III)	(CII))	(CIII)	(CIII)§	<u> </u>	(UL)=)	(UL)	(eur -)	(()))))
200	0	0	50	0	0	0	0	0	0	
300	0	0	75	0	0	0	0	0	0	0
400	0	0	100	0	0	1	0	0	1	2
700	0	0	175	0	0	11	2	0	25	54
800	0	0	200	0	0	14	4	1	59	125
900	0	0	225	0	0	15	5	2	82	174
1000	0	0	250	0.	0	15	7	3	113	241
1100	0	0	275	0	0	15	8	4	135	287
1200	0	0	300	0	0	14	10	4	160	339
1300	0	0	325	0	0	14	11	5	173	366
1400	0	0	350	0	0	13	11	6	182	387
1500	0	0	375	0	0	12	12	7	189	400
1600	Ō	0	400	Ō	0	11	12	7	194	412
1700	0	0	425	0	0	11	13	7	203	430
1800	0	0	450	0	0	10	13	8	204	432
1900	0	0	475	0	Ō	9	13	8	202	429
2000	0	0	500	0	0	9	13	8	201	426
2100		0	525	0	0	8	12	8	198	420
500			125	-15	- 0	2		<u>0</u>	6	13
500	_40		125			2	1	0	14	20
500	-40		125	5	0					17
500	-20		105		0	4			12	41
500			125	10	0	4				- 20
500	40		120	10	0	<u> </u>	. 0		0	13
500	60		125	15	0	2	<u> </u>	0	2	4
1000	-60		250	-15		13		2	08	183
1000	-40		250	-10	0	14	<u> </u>	2	103	219
1000	-20	0	250	-5	0	15		2	114	242
1000	0	0	250	0	0	15		3	113	241
1000	20	0	250	5	0	15	7	2	116	246
1000	40	0	250	10	0	14	7	2	111	235
1000	60	0	250	15	• 0	13	6	2	97	205
1500	-60	0	375	-15	0	11	10	6	162	343
1500	-40	0	375	-10	0	12	11	6	177	376
1500	-20	0	375	-5	0	12	12	6	187	397
1500	0	0	375	0	0	12	12	7	189	400
1500	20	0	375	5	0	12	12	6	187	396
1500	40	0	375	10	0	12	11	6	178	377
1500	60	0	375	15	0	11	10	6	159	337
2000	-60	0	500	-15	0	8	11	7	173	368
2000	-40	0	500	-10	0	9	12	8	189	401
2000	-20	Ō	500	-5	0	9	12	8	197	419
2000	0	0	500	0	Õ	9	13	8	201	426
2000	20	ō	500	5		9	12	8	197	419
2000	40	ň	500	10	- 0	ă	12	×	188	300
2000	0.3		500	15		<u>_</u>	10	7	165	250
2000	00	V	300	15	<u>v</u>	· · · · ·	10	(601	330

T-24 GEP Reynolds Number Invariance Test Velocity Profiles {REYVRES.WK3 A:}

Run Numbe Wind Direct Ref Wind S Model Loca	er = tion = peed (cm/s) ttion (cm) =	I	59 140.0 472.7 (0,0,z)			60 140.0 954.2 (0,0,z)		
Field	leboM	Normalized	Model	Normalized	Turbulent	Model	Normalized	Turbulent
Height	Height	Height	Velocity	Velocity	Intensity	Velocity	Velocity	Intensity
<u>(m)</u>	(cm)		(cm/s)		(%)	<u>(cm/s)</u>		<u> (%)</u>
10.0	2.5	0.020	108.3	0.23	45.2	243	0.25	44.9
16.0	4.0	0.032	128.1	0.27	44.1	273	0.29	44.4
25.0	6.3	0.050	159.8	0.34	40.8	332	0.35	39.7
30.0	7.5	0.060	178.9	0.38	36.8	377	0.40	36.1
45.7	11.4	0.091	253.4	0.54	21.8	514	0.54	22.4
60.0	15.0	0.120	269.9	0.57	16.7	568	0.60	16.3
80.0	20.0	0.160	284.9	0.60	15.2	587	0.62	14.9
100.0	25.0	0.200	295.6	0.63	14.1	625	0.66	13.3
140.0	35.0	0.280	314.4	0.67	13.0	654	0.69	12.2
200.0	50.0	0.400	344.5	0.73	11.2	704	0.74	10.6
300.0	75.0	0.600	386.8	0.82	9.7	797	0.83	8.5
400.0	100.0	0.800	428.5	0.91	7.6	875	0.92	7.6
500.0	125.0	1.000	472.7	1.00	6.0	954	1.00	5.7

T-25 GEP Reynolds Number Invariance Test Velocity Profiles {REYVRES.WK3 B:}

Run Numbe Wind Direct Ref Wind S Model Loca	or = lon = peed (cm/s) tion (cm) =	=	61 325.0 465.5 (0,0,z)			62 325.0 951.0 (0,0,z)		
Field	Model	Normalized	Model	Normalized	Turbulent	Model	Normalized	Turbulent
Height	Height	Height	Velocity	Velocity	Intensity	Velocity	Velocity	Intensity
<u>(m)</u>	(cm)		(cm/s)		(%)	(cm/s)		(%)
10.0	25	0.020	161 4	0.25	22.0	251	0.27	20.5
10.0	2.5	0.020	101.4	0.33	32.9	270	0.37	30.3
10.0	4.0	0.032	170.0	0.36	31.4	3/0	0.40	29.3
25.0	6.3	0.050	199.2	0.43	29.1	414	0.44	28.6
30.0	7.5	0.060	204.0	0.44	29.1	447	0.47	26.6
45.7	11.4	0.091	236.9	0.51	24.6	503	0.53	22.6
60.0	15.0	0.120	267.9	0.58	18.2	574	0.60	17.0
80.0	20.0	0.160	284.2	0.61	16.3	611	0.64	14.3
100.0	25.0	0.200	310.6	0.67	13.2	635	0.67	12.2
140.0	35.0	0.280	324.9	0.70	11.2	672	0.71	10.9
200.0	50.0	0.400	337.9	0.73	11.1	720	0.76	10.2
300.0	75.0	0.600	389.0	0.84	8.1	798	0.84	8.2
400.0	100.0	0.800	423.3	0.91	7.8	873	0.92	7.6
500.0	125.0	1.000	465.5	1.00	6.2	951	1.00	5.8

<u>GEP R</u>	eynol	ds Ni	umber	Invari	ance	Tests (140 degi	ree) {RE`	<u>(RES.WK3 A:}</u>		
RUN N	0.					16		17		
RELEA	SE HE	EIGHT	「 (m)			45.7		45.7		
WIND	DIREC	TION				140.0		140.0		
Model	Veloc	ity (cr	n/s)			473.0		954.0		
Model	Relea	se Flo	ow Rate	e (ccs)		95.8		95.8		
Field C)ist.	····	Mode	l Dist.		Model	Field	Model	Field	Difference
X	Ŷ	Z	X	Y	Z	Conc.	K,*10 ⁶	Conc.	K,*10*	in K,
<u>(m)</u>	<u>(m)</u>	<u>(m)</u>	(cm)	(cm)	(cm)	(ppm)	<u>(m-²)</u>	<u>(ppm)</u>	<u>(m-2)</u>	(%)
320	0	0	80	0	o	915	282	446	277	1.7
372	0	0	93	0	0	964	298	462	287	3.5
420	0	0	105	0	0	985	304	476	297	2.4
472	0	o	118	0	0	933	288	457	284	1.2
520	0	0	130	0	0	874	270	432	269	0.4
620	0	0	155	0	0	755	233	375	234	-0.3
672	0	0	168	0	0	683	211	339	211	0.3
760	0	0	190	0	0	594	183	292	182	0.9
840	0	0	210	0	0	534	165	262	163	0.9
920	0	0	230	0	0	487	150	238	148	1.4
1000	0	0	250	0	0	443	137	215	134	1.9
1080	0	0	270	0	0	411	127	199	124	2.4
1160	0	0	290	0	0	370	114	180	112	1.7
1240	0	0	310	0	0	339	104	166	103	1.1
1320	0	0	330	0	0	315	97	155	97	0.7
1400	0	0	350	0	0	295	91	144	89	1.8
1480	0	0	370	0	0	271	84	134	83	0.4
1560	0	0	390	0	0	248	76	121	76	1.1
1640	0	0	410	0	0	242	75	118	74	1.4
1720	0	0	430	0	0	225	69	110	69	1.1
1800	0	0	450	0	o	214	66	104	65	1.9
1960	0	o	490	0	ol	191	59	95	59	-0.2
2040	0	Ó	510	0	ol	186	58	91	57	1.0
2120	0	0	530	Ō	Ō	176	54	86	53	17

T-26 GEP Reynolds Number Invariance Tests (140 degree) {REYRES.WK3 A:}

Table 21GEP Reynolds Number Invariance Concentration Results for 140° Wind Direction

								T-27		
GEP R	eynol	<u>ds N</u> ı	umber	Invari	ance	Tests (325 degree)	$\left \left\{ RE \right\} \right $	YRES.WK3 B:}		
RUN N	0.					18		19		
RELEA	SE HE	-IGH	(M)			61.0		61.0		
WIND	DIREC	TION				325.0		325.0		
Model	Veloc	ity (ci	m/s)			465.5		951.0		
Model	Relea	sø Flo	ow Rate	(CCS		95.8		95.8		
Field D	ist.		Mode	Dist.	Ī	Model	Field	Model	Field	Difference
X	Y	Z	X	Y	Z	Conc.	K,*10 ⁸	Conc.	K,*10°	in K,
<u>(m)</u>	<u>(m)</u>	<u>(m)</u>	(cm)	(cm)	(cm)	(ppm)	<u>(m⁻²)</u>	<u>(ppm)</u>	<u>(m-2)</u>	(%)
160	0	0	40	0	0	1974	600	1020	633	-5.6
212	Ō	Ō	53	0	ŏ	2590	787	1221	758	3.7
260	Õ	ō	65	Õ	Ō	2243	681	1067	662	2.8
360	Ō	õ	90	Ō	ō	1603	487	760	472	3.1
460	0	0	115	0	o	1206	366	574	356	2.9
560	0	0	140	0	0	978	297	466	289	2.7
664	0	0	166	0	0	779	237	378	234	1.0
760	0	0	190	0	o	643	195	311	193	1.4
840	0	0	210	0	o	579	176	275	170	3.0
920	0	0	230	0	0	506	154	236	147	4.5
1000	0	0	250	0	0	459	139	215	133	4.3
1080	0	0	270	0	o	421	128	196	121	5.1
1160	0	0	290	0	0	381	116	177	110	5.1
1240	0	0	310	0	oj	351	107	161	100	6.5
1320	0	0	330	0	0	325	99	148	92	6.9
1400	0	0	350	0	0	302	92	137	85	7.5
1480	0	0	370	0	0	270	82	124	77	6.3
1560	0	0	390	0	0	243	74	112	69	6.0
1640	0	0	410	0	O	242	74	108	67	8.5
1720	0	0	430	0	O	224	68	101	63	8.1
1800	0	0	450	0	0	215	65	97	60	8.0
1880	0	0	470	0	0	205	62	92	57	8.2
1960	0	0	490	0	o	194	59	88	54	7.7
2040	0	0	510	0	o	189	57	85	53	8.0
2120	0	0	530	0	0	174	53	77	48	9.4

Table 22GEP Reynolds Number Invariance Concentration Results for 325° Wind Direction

								Real chairs drains have their	
Run No. =	58		Location =	Upwind Re	†.				
FIELD VAL	UES		NORMALIZ	ZED VALUE	S	MODEL V/	ALUES		
Height	Velocity	Long. T.I.	Height	Velocity	Long. T.I.	Height	Norm Vel.	Velocity	Long. T.I.
(m)	(m/s)	(%)			(%)	(cm)	(cm/s)	(cm/s)	(%)
0.5			•						
10.0	11.5	26.7	0.219	0.674	26.7	2.5	168.6	178.8	26.7
16.0	12.5	24.9	0.350	0.736	24.9	4.0	184.1	195.3	24.9
25.0	14.9	20.9	0.547	0.879	20.9	6.3	219.8	233.1	20.9
30.0	14.9	22.0	0.656	0.875	22.0	7.5	218.8	232.1	22.0
45.7	17.0	18.9	1.000	1.000	18.9	11.4	250.0	265.2	18.9
60.0	17.2	17.2	1.313	1.014	17.2	15.0	253.5	268.9	17.2
80.0	18.4	15.0	1.751	1.080	15.0	20.0	270.0	286.4	15.0
100.0	19.4	13.9	2.188	1.142	13.9	25.0	285.6	302.9	13.9
140.0	20.3	12.8	3.063	1.193	12.8	35.0	298.2	316.3	12.8
200.0	21.8	12.2	4.376	1.284	12.2	50.0	321.1	340.6	12.2
300.0	24.8	9.7	6.565	1.460	9.7	75.0	365.0	387.2	9.7
400.0	27.3	8.2	8.753	1.606	8.2	100.0	401.6	426.0	8.2
500.0	30.2	7.2	10.941	1.779	7.2	125.0	444.8	471.8	7.2
References						References	5		
45.7	17.0					11.4	250.0	265.2	
Roughness	Length (m)	0.50				Roughness	Length (cm) =	0.13
Displacemer	nt Height (m	0.00				Displaceme	ent Height (c	m) =	0.00
Friction Velo	city (m/s) =	1.49				Friction Velocity (cm/s) =			21.90
Power Law I	ndex =	0.21				Power Law	Index =		0.21

.

T-28 GEP Stack Height Determination Tests Series Reference Velocity Profile {GEPVRES.WK3}

Visual Test Results {VISRES.WK3}

Visual	Equil.	Building	Stack	Wind	Tape	Stack	LNG Tank	LNG Tank	Silo Bldg.	Silo Bldg.
Run	Conc,	Config.	Height	Direction	Index	Downwash	Impingement	Downwash	Impingement	Downwash
No.	Run	-	(m)	(geb)	(CSU)					
	No.									
1	20	Out	45.7	140	00:46	B	_	_	-	-
2	21	In	45.7	140	· 02:02	В	F	F		
3	22	In all	45.7	140	04:11	В	F	F		
4	24	Out	61.0	140	06:32	В	_	_	—	-
5	25	In	61.0	140	08:23	В	D	F		
6	26	Out	73.1	140	11:28	C	-			-
7	27	In	73.1	140	13:01	C	C	D		
8	28	Out	73.1	150	15:35	C	-	-	-	-
9	29	In	73.1	150	17:11	C	С	D		
10	30	Out	61.0	150	19:35	В	-	_	-	-
11	31	In	61.0	150	21:03	В	D	F		
12	32	Out	61.0	320	23:30	В			-	-
13	33	In	61.0	320	24:50	B			В	С
14	34	Out	73.1	320	27:06	C	-		-	-
15	35	In	73.1	320	28:50	С			A	В
16	36	Out	73.1	325	31:01	C	_			
17	37	In	73.1	325	32:41	C			A	В
18	38	Out	61.0	325	34:51	В	_	چیندی ا		
19	39	In	61.0	325	36:11	В			C	D

Note :

Plume characteristics are evaluated on a A to F scale,

A being not noticeable, F being very noticeable

GEP Stack Height Determination Test Results

RUN	NO.			- 20	21	22
Equil.	Visua	il Run	No.	1	2	3
STAC	K (m)			45.7	45.7	45.7
WIND	DIR.			140	140	140
CONF	·JG.			001	IN	inai
Field	DISI.	MODE	I DISE	14-108	V+4.08	
	, <u>.</u>			K-10-	K-10-	
2000). 2000)	<u> (11)</u>					
- 200		50		7	156	275
200				26	193	100
400		100	- 0	53	202	211
500	- ŏ	125	0	57	183	195
600	0	150	0	63	155	169
700	0	175	0	68	133	144
800	Ő	200	0	68	117	127
900	ō	225	0	67	104	114
1000	Ō	250	0	65	94	105
1100	Ō	275	0	60	83	93
1200	0	300	0	56	75	84
1300	0	325	0	53	69	77
1400	0	350	0	51	63	70
1500	0	375	0	46	59	64
1600	0	400	0	44	53	58
1800	0	450	0	39	46	50
1900	0	475	0	38	43	47
2000	0	500	0	37	41	45
2100	0	525	0	34	39	42
300	-40	75	-10	7	140	143
300	-20	75	-5	20	170	177
300	0	75	0	26	183	190
300	20	75	5	14	216	202
300	40	75	10	16	192	188
500	-40	125	-10			
500	-20	125	-5			
500	0	125	0	57	183	195
500	20	125	5	51	185	194
500	40	125	10	40	164	169
1000	-40	250	. – 10	57	89	95
1000	-20	250	-5	59	89	96
1000	0	250	0	65	94	105
1000	20	250	5	60	91	102
1500	40	250	10	58	91	103
1500	-40	3/5	-10	41	<u> </u>	
1500	-20	3/3	-2	45	50	02
1500		3/3	U	40	<u></u>	
1500		313	10	40	<u> </u>	<u>DJ</u>
2000	-40	5/5	10	24	00	
2000		500	-10	34	<u> </u>	43
2000	-20	500	-3	27	41	6 4 38
2000	- 20	500	V 2	31	41	40
2000	40	500	10	2/	41	40
Mavin	num V	alue		<u>63</u>	216	275
Field	Dist (m) to		800	300	213
Perce	nt inc	rease			216	303
GEPRE	S.WK	3 Shee	et A:			

	Table 25	GEP	Concentration	Test	Results	for	the	45.7	7 m	Stack	Heig	zh
--	----------	-----	---------------	------	---------	-----	-----	------	-----	-------	------	----

T-3	1
------------	---

GEP Stack Height Determination Test Results

RUN N	10.			24	25	30	31	32	33	38	39
Equil.	Visua	I Run	No.	4	5	10	11	12	13	18	19
STAC	K (m)			61.0	61.0	61.0	61.0	61.0	61.0	61.0	61.0
WIND	DIR.			140	140	150	150	320	320	325	325
CONF	1 G .			OUT	IN	OUT	IN	OUT	IN	OUT	IN
	a supervised										
Field	DIST.	MOUB		Veri of	Veane	100106	Vetol	Ketof	Kaine	K+108	Vaina
X				K-10		N-10		N 10		(m-2)	~-10 (8)
(m)	<u>(m)</u>	(CIII))									(11)
200		50	0	1	24	0	8	0	50	0	100
300	ō	75	0	6	83	6	60	2	90	6	154
400	0	100	0	17	115	18	101	23	110	21	164
500	0	125	0	27	126	31	120	38	116	35	166
600	0	150	0	38	120	42	115	50	114	47	156
700	0	175	0	45	111	56	109	53	101	56	138
800	0	200	0	54	109	61	103	- 61	101	58	126
900	0	225	0	55	103	60	94	60	97	59	114
1000	0	250	0	54	94	60	87	63	90	59	105
1100	0	275	0	53	85	57	78	60	82	58	95
1200	0	300	0	51	77	56	72	59	75	57	87
1300	0	325	0	50	72	52	67		72	54	79
1400	0	350	0	47	67	51	62	53	65	52	72
1500	0	375	0	45	61	48	56	48	59	48	67
1600	0	400	0	43	56	45	53	46	54	45	61
1800	0	450	0	38	49	40	46	41	48	40	53
1900	0	475	0	36	46	39		39	45	38	50
2000	0	500	0	35	44	37	42	38	43	37	47
2100		323	10	33		34	39	3/	41	35	44
300	-40	/3	-10	2	72		40	3	01	3	
300	-20	75	-3	6	13	<u> </u>	00	5	04	5	129
300	- 20	75	5	2	102		20	10	<u> </u>	7	104
300	20	75	10	3	77		32	10	70	5	
500	-40	125	_10	<u> </u>		26		22	103	23	122
500	-20	125	-5			33	119	32	113	30	158
500		125	- 0	27	126	31	120	38	116	35	166
500	20	125	5	26	114	31	117	40	107	32	161
500	40	125	10	20	93	19	85	35	86	25	132
1000	-40	250	-10	47	88	50	76	47	78	47	96
1000	-20	250	-5	50	87	55	79	53	80	53	97
1000	0	250	0	54	94	60	87	63	90	59	105
1000	20	250	5	50	88	54	81	63	84	57	100
1000	40	250	10	46	83	50	80	61	84	57	102
1500	-40	375	-10	40	59	43	54	41		39	60
1500	-20	375	-5	43	60	46	57	45	57	44	65
1500	0	375	0	45	61	48	56	48	59	48	67
1500	20	375	5	44	60	46	55	50	59	48	67
1500	40	375	10	41	57	42	54	0	14	46	65
2000	-40	500	-10	23	44	35	40	35	43	35	45
2000	-20	500	-5	34	44	37	42	37	43	36	47
2000	0	500	Ō	35	44	37	42	38	43	37	47
2000	20	500	5	34	44	36	41	38	44	37	46
2000	40	000	10	34	100	36	40	37	45	37	47
Field					126	61	120	63	116	59	166
Perce	DISL.	111/ 10		300	500	008	500	1000	500	1000	500
LLAICE	III INC	rease	=		127	وي المحرب الرائدة المحروم	<u> </u>		82		180

GEPRES.WK3 Sheet B:

1-32

GEP Stack Height Determination Test Results

RUN	NO.			26	27	28	29	34	35	36	.37
Equil.	VISUA	I KUN	NO.	D		70 4		70.4	13	10	1/
SIAC	к (т)			/3.1	73.1	13.1	13.1	(3.1	/3.1	73,1	/3.1
WIND	DIH.			140	140	150	UCI:	320	320	32	325
CONF	IG.			001	IN	UUI	in		IN	001	IN
F1810	DISL	MOUE		V=108	Verne	Varia de	Veant	Ka-1 08	Katol	Ket 08	Veant
				N-10-		N-10	N-10 (m=8)	N-10	N 10	K 10	N- 10-
2000). (III)	200) I	S(CIII):				(III)			<u>(un)</u>		<u>(115)</u>
		50							12		
200	<u> </u>	50		<u> </u>	21		24	0	- 10		2/
300	<u> </u>	100	0	4	53	2	<u>64</u>	2	54	9	
500		100	- 0	18	73	15		U	33	17	
000	<u> </u>	150		27	78	24		27	74	26	105
700		175		32	77	35	95	32	73	37	105
800		200	Ő	39	81	41	94	38	80	41	102
900	- ŏ	225	ō	41	79	44	88	40	79	44	97
1000		250	ō	42	74	45	83	42	75	46	89
1100		275	ō	43	68	45	76	44	72	46	83
1200	Ō	300	0	43	65	45	71	42	68	46	78
1300	0	325	0	42	60		67		61		71
1400	0	350	0	41	62	42	62	39	60	44	67
1500	0	375	0	40	54	40	58	39	56	42	62
1600	0	400	0	37	52	39	52	35	51	41	56
1800	0	450	0		45	36	46	33	45	38	49
1900	0	475	0	33	43	35	44	33	43	37	46
2000	0	500	0	33	41	34	43	31	43	36	45
2100	0	525	0	31		33		31	41	34	42
300	-40	75	-10	1	21	1	14	0	23	1	30
300	-20	75	-5	2	25	2	26	1	33	1	49
300	0	75	0	2	31	2	24	2	35	3	57
300	20	75	5	1	39	1	11	3	25	2	48
300	40	75	10	1	28	1	7	3	13	1	25
500	-40	125	-10				80	10	57	12	
500	-20	120	-0	10			88	14	64	17	91
500		12	0	18	/3	15	90		66	17	94
500	20	120		15	62	14	89	19	58	16	91
1000	40	123	10	10	40		5/	10	45	13	
1000	-40	250	. – 10	30	71		70	33	60	30	04
1000	-20	250	-3	40	74	41	/0	37	75	39	90
1000	- 20	250	5	40	60	40 <u>4</u> 1	77	92	60	40	83
1000	40	250	10	36	65	38	73	43	71		83
1500	-40	375	-10	35	52	36	53	31	49	36	56
1500	-20	375	-5	39	54	39	56	36	53	40	61
1500	0	375	Ō	40	54	40	58	39	56	42	62
1500	20	375	5	39		40		38	57	43	60
1500	40	375	10	36	50	36	54	37	55		58
2000	-40	500	-10	31	40	33	41	28	39	32	43
2000	-20	500	-5	33	41	33	42	31	41	35	44
2000	0	500	0	33	41	34	43	31	43	36	45
2000	20	500	5	32	40	33	41	32	43	35	43
2000	40	500	10	31	39	32	41	34	43	35	45
Maxin	num V	alue	=	43	81	45	95	44	80	46	105
Field	Dist. (m) to	=	1100	800	1100	700	1100	800	1100	700
Perce	nt Inci	rease	=		88		111		82	· · · · · · · · · · · · · · · · · · ·	127

GEPRES.WK3 Sheet C:

Omega Mass Flow Controller System Settings {MASSFLOW.WK3}

Test	Test	Total	Specific	Gas mixtu	re compor	nent 1			Gas mixtu	ire compor	nent 2		
Program	Туре	Flow Rate (ccs)	Gravity	Туре	Percent of Total (%)	Flow Rate (ccs)	Meter FS Range (SLPM)	Meter Setting (%FS)	Туре	Percent of Total (%)	Flow Rate (ccs)	Meter FS Range (SLPM)	Meter Setting (%FS)
ADCT	Visual	530.2	1.000	Air	100.0	530.2	100.0	26.4					
ADCT	Conc.	530.2	1.036	Ethane	100.0	530.2	100.0	53.2					
Re Inv	Conc.	95.8	1.036	Ethane	100.0	95.8	10.0	96.1					
GEP	Visual	493.8	0.696	Air	64.7	319.6	10.0	15.9	Helium	35.3	174.2	100.0	59.6
GEP	Conc.	493.8	0.696	Methane	65.4	322.8	10.0	22.2	Nitrogen	34.6	171.0	100.0	85.1

ADCT S	tack Gas	s Calc. fo	or Omeg	a mass flo	w system	MASSMIX	<u>.WK3 A:</u>
Source F	Plume =	,		Visual	A	В	С
Tracer Ty	vpe =			Air	CH4	C2H6	C3H8
INPUT >	Total Flo	w (ccs) =		530.20		530.20	
INPUT >	S.G. mix	ture =		1.000		1.036	
Plume	Gas	Gas	Gas	Meter 1	Meter 2	Meter 3	Meter 4
	Туре	Flow	Flow	setting	setting	setting	setting
		(%)	(ccs)	(slpm0.1)	(sipm1)	(slpm10)	(sipm100)
				1000.0	100.0	10.0	1.0
Visual	Air	100.0	530.2				<u>26.4</u>
И	He						
Visual	Air	100.0	530.2				26.4
01	Ar						
A	CH4						
38	He						
Α	CH4						
81	N2						
A	CH4						
11	Ar						
В	C2H6	100.0	530.2				53.2
51	He	0.0	0.0				
В	C2H6	100.0	530.2				<u>53.2</u>
11	N2	0.0	0.0				
В	C2H6						
\$1	Ar						
С	C3H8						
ŧł.	He						
C	C3H8						
16	N2						
С	C3H8						· · · · · · · · · · · · · · · · · · ·
u	Ar-						

Units & STP Factor = 20.1									
Gas Conversion Factors									
Gas	K Value	MW	SG						
AIR	1.000	29.0	1.000						
N2	1.000	28.0	0.967						
Ar	1.443	40.0	1.381						
He	1.454	4.0	0.138						
CH4	0.723	16.0	0.552						
C2H6	0.496	30.0	1.036						
C3H8	0.357	44.0	1.519						

Table 29Example Calculational Spreadsheet for Omega Mass Controller System, ADCT
Test Parameters

T-34

GEP Sta	ick Gas	Calc. for	Omega	mass flow	system	MASSMIX.	WK3 B:
Source Plume =			Visual	A	B	C	
Tracer Ty	ype =			Air	CH4	C2H6	C3H8
INPUT >	INPUT > Total Flow (ccs) =				493.80		
INPUT > S.G. mixture =				0.696	0.696		
Plume	Gas	Gas	Gas	Meter 1	Meter 2	Meter 3	Meter 4
	Туре	Flow	Flow	setting	setting	setting	setting
		(%)	(ccs)	(sipm0.1)	(sipm1)	(slpm10)	(sipm100)
				1000.0	100.0	10.0	1.0
Visual	Air	64.7	319.6				<u>15.9</u>
18	He	35.3	174.2			59.6	
Visual	Air						
21	Ar						
A	CH4						
H	He						
A	CH4	65.4	322.8				22.2
88	N2	34.6	171.0			85.1	
A	CH4	82.7	408.3				28.1
38	Ar	17.3	85.5			29.5	
В	C2H6						
H	He						
В	C2H6						
98	N2						
В	C2H6						
31	Ar						
С	C3H8						
84	He						
С	C3H8						
H	N2						
С	C3H8						
Ħ	Ar						

Units & S	20.1						
Gas Conversion Factors							
Gas	K Value	MW	SG				
AIR	1.000	29.0	1.000				
N2	1.000	28.0	0.967				
Ar	1.443	40.0	1.381				
He	1.454	4.0	0.138				
CH4	0.723	16.0	0.552				
C2H6	0.496	30.0	1.036				
C3H8	0.357	44.0	1.519				

Table 30Example Calculational Spreadsheet for Omega Mass Controller System, GEP Test
Parameters

FIGURES

Figure 1Topographic Map Detailing Test Study Area (grid lines are one km)

Figure 3 Model Site Area Picture

Figure 5 ADCT Reference Velocity and Turbulence Profile

F-6

Figure 6 ADCT Downwind Velocity and Turbulent Profile Variation

Figure 8 ADCT Vertical Concentration Profile; X = 500 meters

Figure 10 ADCT Vertical Concentration Profile; X = 1000 meters

Figure 12 ADCT Vertical Concentration Profile; X = 1500 meters

F-16

F-17

Figure 17 GEP Reference Velocity and Turbulence Profiles

F-18

APPENDIX A: VIDEO TAPE ENCLOSURE

APPENDIX B: VELOCITY PROFILE DATA PRINTOUTS

File Name	= GEP043.	PRF APR	FL.FOR Out	put	
RECORD	HEIGHT	VELOCITY	TURB.INT	TURB.INT	STRESS
NO.	(Cm)	(m/s)	Ū(%)	W(%)	(m/s)²
1	1.00	1.37	27.21	13.53	0224
2	2.66	1.91	20.11	10.68	0218
3	4.09	2.04	19.15	10.07	0221
4	6.43	2.27	16.51	9.74	0225
5	7.47	2.32	15.57	9.31	0184
6	11.43	2.44	14.75	9.76	0221
7	14.96	2,60	12.27	9.21	0193
Ŕ	19.92	2.68	11.61	8,90	0165
ğ	25.04	2.83	10.37	8.47	0135
10	34.95	2.88	10.78	8.96	0178
11	49.93	3,12	9.78	8.20	0191
12	75.09	3,39	7.94	7.39	0156
13	100.10	3.74	7.09	6.68	0195
14	124.95	4.01	5.59	5.89	0076
	20.020			••••	
File Name	= GEP044.	PRF APR	FL.FOR Out	put	
RECORD	HEIGHT	VELOCITY	TURB.INT	TURB.INT	STRESS
NO.	(CM)	(m/s)	U(%)	₩(%)	(m/s)²
1	1.00	1.45	26.46	12.63	0189
2	2.67	1.84	20.82	10.75	0194
3	3.97	2.04	19.55	10.38	0208
4	6.36	2.25	17.32	9.64	0232
5	7.64	2.28	16.64	9.38	0213
6	11.17	2.44	15.07	9.00	0215
7	14.79	2.58	13.59	8.68	0190
8	19.90	2.69	12.65	8.97	0243
9	24.91	2.83	11.71	8.64	0260
10	34.95	2.89	11.30	8.54	0225
11	50.00	3.12	9.96	7.99	0202
12	75.17	3.48	8.22	6.96	0213
13	100.16	3.80	7.27	6.21	0191
14	124.78	4.06	5.41	5.13	0106
File Name	= GEP045	ססד אסס	FT. FOR Out	D11 +	
	UFICUT	VELOCITY	TIIDE TNT		STRESS
NO		(m/g)	10KD-1N1	W/S/	$(m/q)^2$
1	1 00	1 45	25 91	12 01	(m/3)
2	2 41	1.45	23.91	10 69	- 0196
2	4.41 4 15	1.05	41.44 10 E7	10.00	0198
3	4.13	2.07	19.3/	9.02	01/3
4	7 60	2.20	16 10	7.03	- 0190
5	11 55	2.37	14.25	0./3	0184
7	14 77	2.30	12 00	0.74	0239
/	10 06	2.04	12.77	0.44	0202
0	72.20 T3.20	2./0	12.20 11 EQ	0.01 0 E7	0211
7	23.00	2.00	10 66	0.3/	- 0233
10	33.20	3.01	10.00	0.03	- 0233
12	30.00	3.20	10.00	1.10	0288
12	100 22	3.30	0.4U 6 61	0.0J 6 07	0218
10	100.22	J.74 1 10	6.0T	5.U/ 5.02	-0145
7.4	124.03	4.10	3.40	3.02	0140

File Name	= GEP046.	PRF APR	FL.FOR Out	put	
RECORD	HEIGHT	VELOCITY	TURB.INT	TURB.INT	STRESS
NO.	(cm)	(m/s)	U(%)	₩(%)	(m/s) ²
1	2.50	1.80	19.17	10.53	0127
2	6.12	2.38	16.28	8.96	0169
3	11.22	2.51	12.93	8.66	0151
4	25.17	2.75	10.56	8.98	0178
File Name	= GEP047.	PRF APR	FL.FOR Out	put	
RECORD	HEIGHT	VELOCITY	TURB.INT	TURB.INT	STRESS
NO.	(cm)	(m/s)	Ū(%)	W(%)	(m/s) ²
1	2.50	2.07	22.98	10.15	0207
2	6.46	2.39	13.69	8.82	0150
3	11.18	2.60	13.89	9.34	0175
4	25.15	2.86	13.25	9.25	0248
File Name	= GEP048.	PRF APR	FL.FOR Out	put	
RECORD	HEIGHT	VELOCITY	TURB.INT	TURB.INT	STRESS
NO.	(cm)	(m/s)	Ū(%)	₩(ზ)	(m/s) ²
1	2.50	2.20	17.58	10.34	0230
2	6.21	2.33	19.55	10.91	0262
3	11.47	2.70	14.28	9.12	0254
4	24.81	2.81	12.68	9.88	0407
File Name	= GEP049.	PRF APR	FL.FOR Out	put	
RECORD	HEIGHT	VELOCITY	TURB.INT	TURB.INT	STRESS
NO.	(Cm)	(m/s)	U(%)	W(%)	(m/s) ²
1	2.50	1.83	19.15	10.43	0178
2	6.37	2.47	17.52	9.05	0112
3	11.17	2.52	12.64	9.49	0191
4	25.09	3.16	8.20	8.29	0033
File Name	= GEP050.	PRF APR	FL.FOR Out	put	
RECORD	HEIGHT	VELOCITY	TURB.INT	TURB.INT	STRESS
NO.	(Cm)	(m/s)	U(%)	W(%)	(m/s) ²
1	2.50	2.09	16.10	10.39	0226
2	6.24	2.29	18.16	9.93	0223
3	11.56	2.45	13.08	8.76	0129
4	24.89	2.87	12.00	9.65	0215
File Name	= GEP051.	PRF APR	FL.FOR Out	put	
RECORD	HEIGHT	VELOCITY	TURB.INT	TURB.INT	STRESS
NO.	(CM)	(m/s)	U(%)	W(%)	(m/s) ²
1	2.50	1.92	21.39	11.06	0220
2	6.24	2.50	16.66	8.59	0226
3	11.56	2.79	13.21	9.50	0185
4	25.06	3.09	12.31	8.14	0250

File Name	= GEP052.	PRF APR	FL.FOR Out	put	
RECORD	HEIGHT	VELOCITY	TURB.INT	TURB.INT	STRESS
NO.	(CM)	(m/s)	U(%)	W(%)	(m/s) ²
1	2.50	1.99	21.29	9.96	0216
2	6.44	2.35	15.52	9.12	0116
3	11.53	2.57	12.45	8.85	0186
4	24.79	2.66	12.74	9.10	0143
File Name	= GEP053.	PRF APR	FL.FOR Out	put	
RECORD	HEIGHT	VELOCITY	TURB.INT	TURB.INT	STRESS
NO.	(cm)	(m/s)	U(%)	W(%)	(m/s)-
1	2.50	1.80	21.51	10.53	0115
2	6.40	2.35	16.58	9.79	0263
3	11.19	2.41	15.00	9.66	0187
4	24.80	2.80	13.38	10.21	0258
File Name	= GEP054.	PRF APR	FL.FOR Out	put	
RECORD	HEIGHT	VELOCITY	TURB. INT	TURB.INT	STRESS
NO.	(Cm)	(m/s)	U(%)	W(%)	$(m/s)^2$
1	2.50	1.91	19.85	10.17	0138
$\overline{2}$	6,50	2,58	14.34	8.98	0129
3	11.41	2.70	16.08	9.82	0209
4	25.10	2.86	11.73	10.96	0440
File Name	= GEPU55.	PRF APR	FL.FOR Out	put	
RECORD	HEIGHT	VELOCITY	TURB.INT	TURB.INT	STRESS
NO.	(cm)	(m/s)	U(%)	W(%)	(m/s)-
I	2.50	1.89	19.45	9.52	0150
2	6.27	2.37	16.21	8.54	0243
3	11.20	2.42	14.10	9.53	0188
4	24.80	2.78	13.00	10.23	0281
File Name	= GEP056.	PRF APR	FL.FOR Out	put	
RECORD	HEIGHT	VELOCITY	TURB.INT	TURB.INT	STRESS
NO.	(CM)	(m/s)	U(%)	W(%)	(m/s) ²
1	2.50	1.84	19.57	9.46	0163
2	6.38	2.41	15.53	9.38	0177
3	11.37	2.67	11.95	8.77	0137
4	24.95	2.72	13.84	9.97	0420
File Name	= GEP057		FT. FOR Out	nut	
RECORD	HETCHT	VELOCITY	TURB. INT	TURBINT	STRESS
NO.	(cm)	(m/a)	11/8/	W(&)	$(m/a)^2$
1	2.50	2.00	22.04	10.13	- 0256
2	6.36	2.16	19,00	10.05	0195
3	11.63	2.55	17.82	10.55	0359
4	24.89	2.73	12.02	10.35	0216

A-5

.

RECORD	HEIGHT	VELOCITY	TURB.INT	
NO.	(CM)	(m/s)	(%)	
1	1.00	1.41	30.98	
2	2.67	1.79	26.72	
3	4.04	1.95	24.91	
4	6.33	2.33	20.92	
5	7.33	2.32	22.02	
6	11.39	2.65	18.86	
7	14.84	2.69	17.15	
8	19.78	2.86	15.05	
9	24.87	3.03	13.88	
10	34.99	3.16	12.81	
11	49.78	3.41	12.25	
12	74.90	3.87	9.71	
13	99.84	4.26	8.20	
14	125.07	4.72	7.17	
File Name	= GEP059	.PRF APR	FL.FOR Output	t
RECORD	HEIGHT	VELOCITY	TURB.INT	

RECORD	UFIGUI	AUTOCITI	IOKD . INI
NO.	(Cm)	(m/s)	(%)
1	2.50	1.08	45.17
2	4.00	1.28	44.05
3	6.31	1.60	40.83
4	7.50	1.79	36.79
5	11.38	2.53	21.76
6	14.79	2.70	16.69
7	20.13	2.85	15.20
8	24.82	2.96	14.06
9	34.88	3.14	12.99
10	49.88	3.45	11.18
11	75.11	3.87	9.66
12	99.98	4.28	7.60
13	124.94	4.73	5.99

File Name	= GEP060	PRF AP	RFL.FOR Output	
RECORD	HEIGHT	VELOCITY	TURB.INT	
NO.	(cm)	(m/s)	(ह)	
1	2.50	2.43	44.90	
2	4.06	2.73	44.37	
3	6.16	3.32	39.68	
4	7.39	3.77	36.12	
5	11.33	5.14	22.41	
6	14.79	5.68	16.25	
7	20.18	5.87	14.86	
8	24.85	6.25	13.33	
9	35.03	6.54	12.18	
10	49.85	7.04	10.58	
11	74.91	7.97	8.46	
12	99.79	8.75	7.55	
13	124.78	9.54	5.69	

File Name	= GEP061	.PRF APR	FL.FOR Output
RECORD	HEIGHT	VELOCITY	TURB.INT
NO.	(Cm)	(m/s)	(%)
1	2.50	1.61	32.88
2	3.93	1.76	31.36
3	6.39	1.99	29.15
4	7.46	2.04	29.10
5	11.56	2.37	24.62
6	15.17	2.68	18.21
7	19.88	2.84	16.31
8	25.17	3.11	13.23
9	35.06	3.25	11.20
10	50.12	3.38	11.10
11	75.15	3.89	8.07
12	99.98	4.23	7.77
13	125.04	4.65	6.16
File Name	= GEP062.	.PRF APR	FL.FOR Output
RECORD	HEIGHT	VELOCITY	TURB.INT
NO.	(cm)	(m/s)	(%)
NO. 1	(cm) 2.50	(m/s) 3.51	(%) 30.47
NO. 1 2	(cm) 2.50 3.91	(m/s) 3.51 3.78	(%) 30.47 29.28
NO. 1 2 3	(cm) 2.50 3.91 6.42	(m/s) 3.51 3.78 4.14	(%) 30.47 29.28 28.56
NO. 1 2 3 4	(cm) 2.50 3.91 6.42 7.68	(m/s) 3.51 3.78 4.14 4.47	(%) 30.47 29.28 28.56 26.62
NO. 1 2 3 4 5	(cm) 2.50 3.91 6.42 7.68 11.35	(m/s) 3.51 3.78 4.14 4.47 5.03	(%) 30.47 29.28 28.56 26.62 22.63
NO. 1 2 3 4 5 6	(cm) 2.50 3.91 6.42 7.68 11.35 14.81	(m/s) 3.51 3.78 4.14 4.47 5.03 5.74	(%) 30.47 29.28 28.56 26.62 22.63 17.01
NO. 1 2 3 4 5 6 7	(cm) 2.50 3.91 6.42 7.68 11.35 14.81 19.91	(m/s) 3.51 3.78 4.14 4.47 5.03 5.74 6.11	(%) 30.47 29.28 28.56 26.62 22.63 17.01 14.29
NO. 1 2 3 4 5 6 7 8	(cm) 2.50 3.91 6.42 7.68 11.35 14.81 19.91 24.96	(m/s) 3.51 3.78 4.14 4.47 5.03 5.74 6.11 6.35	(%) 30.47 29.28 28.56 26.62 22.63 17.01 14.29 12.17
NO. 1 2 3 4 5 6 7 8 9	(cm) 2.50 3.91 6.42 7.68 11.35 14.81 19.91 24.96 34.82	(m/s) 3.51 3.78 4.14 4.47 5.03 5.74 6.11 6.35 6.72	(%) 30.47 29.28 28.56 26.62 22.63 17.01 14.29 12.17 10.92
NO. 1 2 3 4 5 6 7 8 9 10	(cm) 2.50 3.91 6.42 7.68 11.35 14.81 19.91 24.96 34.82 50.10	(m/s) 3.51 3.78 4.14 4.47 5.03 5.74 6.11 6.35 6.72 7.20	(%) 30.47 29.28 28.56 26.62 22.63 17.01 14.29 12.17 10.92 10.21
NO. 1 2 3 4 5 6 7 8 9 10 11	(cm) 2.50 3.91 6.42 7.68 11.35 14.81 19.91 24.96 34.82 50.10 74.95	(m/s) 3.51 3.78 4.14 4.47 5.03 5.74 6.11 6.35 6.72 7.20 7.98	(%) 30.47 29.28 28.56 26.62 22.63 17.01 14.29 12.17 10.92 10.21 8.24
NO. 1 2 3 4 5 6 7 8 9 10 11 12	(cm) 2.50 3.91 6.42 7.68 11.35 14.81 19.91 24.96 34.82 50.10 74.95 99.88	(m/s) 3.51 3.78 4.14 4.47 5.03 5.74 6.11 6.35 6.72 7.20 7.98 8.73	(%) 30.47 29.28 28.56 26.62 22.63 17.01 14.29 12.17 10.92 10.21 8.24 7.56

APPENDIX C: CONCENTRATION DATA FILE PRINTOUTS

RUN NUM BY NEFF WIND SP AIR TEM SOURCE SOURCE SOURCE TRACER TRACER BACKGRO	BER 9 ON 07 EED 250.00 P. 27.0 DESIGNATIO FLOW RATE GAS TEMPEH TYPE CONCENTRAT UND CONCEN	7-10-91 C M/S A C A ON (CCS) RATURE (CION (PP VTRATION	FILE T 11. T 11. C) M) (PPM)	NAME GEP009 4 CM 4 CM 530.2 27.0 C2H6 1000000.0 19.22	9.GC
TUBE NO	. x	Y	Z	CONCENTRA	TIONS (PPM)
	(cm)	(cm)	(Cm)	Source 1	Tracer 1
1	375.0	.ó	`. ó	428.6	447.8
2	375.0	.0	4.0	436.1	455.3
3	375.0	.0	8.0	480.7	499.9
4	375.0	.0	12.0	524.9	544.1
5	375.0	.0	16.0	482.0	501.2
6	375.0	.0	20.0	599.8	619.0
7	375.0	.0	24.0	606.9	626.1
8	375.0	.0	28.0	608.2	627.4
9	375.0	.0	32.0	586.0	605.2
10	375.0	.0	36.0	522.9	542.1
11	375.0	.0	40.0	454.3	473.5
12	375.0	.0	44.0	391.7	410.9
13	375.0	.0	48.0	326.9	346.1
14	375.0	.0	52.0	269.1	288.3
15	375.0	.0	56.0	219.4	238.6
16	375.0	.0	60.0	169.8	189.1
17	375.0	.õ	64.0	126.0	145.3
18	375.0	.0	68.0	91.6	110.8
19	375.0	.0	72.0	66.7	85.9
20	375.0	.0	76.0	43.4	62.6
21	375.0	.0	80.0	28.8	48.0
22	375.0	.0	84.0	19.2	38.4
23	375.0	.0	88.0	13.4	32.6
24	375.0	.0	92.0	9.3	28.5
25	375.0	.0	96.0	5.5	24.7
26	375.0	.0	100.0	3.8	23.0
27	375.0	.0	104.0	3.2	22.4
28	375.0	.0	108.0	3.0	22.2
29	375.0	.0	112.0	2.4	21.6
30	375.0	.0	116.0	2.8	22.0

RUN 1	NUMBER 1	10		FILE	NAME	GEP010).GC
BY NI	eff	ON 07-	-10-91				
WIND	SPEED 2	250.00	CM/S A	т 11.	4 CM		
ATR 1	FRMD	27.0		T 11.	4 CM		
	TEMP.	27.00 אחדית גואי	сл I			1	
SOUR	JE DESIG	D D D D D D D D D D D D D D D D D D D			5	20.2	
SUUR	CE FLOW	RAIL (a \	3	27.0	
SOUR	JE GAS 1	TEMPERA	TURE (C)	~~	2/.0	
TRACI	ER TYPE				C2	HO	
TRACI	ER CONCE	ENTRATI	ION (PP	M)	10000	00.0	
BACK	GROUND C	CONCENT	TRATION	(PPM)		28.21	
TUBE	NO.	X	Y	Z	CONC	ENTRA	CIONS (PPM)
	()	cm)	(CM)	(cm)	Sour	ce 1	Tracer 1
1	250).0	.0	.0	2	38.4	266.6
2	250).0	.0	4.0	3	13.4	341.6
3	250).0	.0	8.0	4	85.8	514.0
4	250).0	.0	12.0	6	96.3	724.5
5	250	0.0	.0	16.0	7	26.8	755.0
5	250			20.0	10	14 0	1042 2
7	250		.0	20.0	10		1115 0
	250		.0	24.0	10		1000 1
8	250		.0	28.0	10	09.9	1098.1
9	250	1.0	.0	32.0	10	00.7	1028.9
10	250).0	.0	36.0	8	83.7	911.8
11	250).0	.0	40.0	7	46.0	774.2
12	250).0	.0	44.0	6	09.2	637.4
13	250).0	.0	48.0	4	30.4	458.6
14	250).0	.0	52.0	3	27.9	356.1
15	250).0	.0	56.0	2	37.7	265.9
16	250).0	.0	60.0	1	56.5	184.7
17	250	0.0	.0	64.0		95.5	123.7
18	250).0	.0	68.0		59.4	87.6
19	250		.0	72.0		32.8	61.1
20	250			76 0		18 8	47 0
20	250		.0	90.0		10.0	39 5
21	250		.0	80.0		20.5	30.5
22	250		.0	84.0		2.1	34.3
23	250	1.0	.0	88.0		3.3	31.5
24	250	0.0	.0	92.0		4.3	32.5
25	250).0	.0	96.0		3.1	31.3
26	250).0	.0	100.0		3.0	31.2
27	250).0	.0	104.0		3.0	31.2
28	250).0	.0	108.0		3.1	31.3
29	250).0	.0	112.0		3.1	31.4
30	250	0.0	.0	116.0		3.5	31.7
35	250).0	.0	18.0	9	25.7	953.9
36	250	1.0	.0	22.0	10	03.1	1031.3
37	250		.0	26 0	10	96 7	1124 9
20	220			20.0	10	26.7	1064 0
20	230		••	20.0	TO	JU./	1004.7

RUN 1	NUMBER 11		FILE	NAME GEPOI	1.GC
BY NI	eff on 0	7-10-91			
WIND	SPEED 250.0	0 CM/S A	T 11.	4 CM	
AIR 1	CEMP. 27.0	C A	T 11.	4 CM	
SOUR	CE DESIGNATI	ON		1	
SOUR	CE FLOW RATE	(CCS)		530.2	
SOUR	CE GAS TEMPE	RATURE (*	C)	27.0	
TRACE	ER TYPE			C2H6	
TRACE	ER CONCENTRA	TION (PP	M)	100000.0	
BACK	GROUND CONCE	NTRATION	(PPM)	25.03	
TUBE	NO. X	Y	Z	CONCENTRA	TIONS (PPM)
	(cm)	(cm)	(cm)	Source 1	Tracer 1
1	125.0	.0	•0	16.6	41.7
2	125.0	.0	4.0	47.5	72.5
3	125.0	.0	8.0	208.0	233.0
4	125.0	.0	12.0	626.4	651.5
5	125.0	.0	16.0	1126.9	1151.9
6	125.0	.0	20.0	2355.5	2380.5
7	125.0	.0	24.0	3058.2	3083.2
8	125.0	.0	28.0	3152.7	3177.7
9	125.0	.0	32.0	2681.4	2706.4
10	125.0	.0	36.0	1987.0	2012.0
11	125.0	.0	40.0	1211.2	1236.2
12	125.0	.0	44.0	692.5	717.5
13	125.0	.0	48.0	296.2	321.3
14	125.0	.0	52.0	129.5	154.5
15	125.0	.0	56.0	56.1	81.1
16	125.0	.0	60.0	22.4	47.4
17	125.0	.0	64.0	6.6	31.6
18	125.0	.0	68.0	3.3	28.4
19	125.0	.0	72.0	2.9	27.9
20	125.0	.0	76.0	3.0	28.0
21	125.0	.0	80.0	2.6	27.6
22	125.0	.0	84.0	2.4	27.4
23	125.0	.0	88.0	2.4	27.5
24	125.0	.0	92.0	3.4	28.5
25	125.0	.0	96.0	2.3	27.3
26	125.0	.0	100.0	2.3	27.3
27	125.0	.0	104.0	2.4	27.5
28	125.0	.0	108.0	2.4	27.5
29	125.0	.0	112.0	2.2	27.2
30	125.0	.0	116.0	2.5	27.5
33	125.0	.0	10.0	340.3	365.4
34	125.0	.0	14.0	917 2	942.2
35	125.0	.0	18.0	1775 3	1800.3
35	125 0		22 0	2717 2	2742 2
20	125 O		26 0	3088 6	2112 6
20	125.0	.0	30.0	29/9 4	2973 6
20	125.U	.0	3/ 0	2340.0 9979 7	2213.0
73	125.0	.0	36 0	<i>1556 E</i>	447/0/ 1501 5
40	140.0	• •	J0.U	T-20.3	TOOT . O

RUN N	UMBER	1:	2	07-11-01	FILE	NAME	GEP012	.GC
BI NE WIND	SFF CDDDD	່		07-11-91	N (1)	1 04		
ATD 4	oreeu Tevd	2:	30. 77		AT 11. NM 11			
ALK 1	LEMP.	TO	4/. 		AT II.	.4 CM	1	
SOURC	JE DES	161	TAN DAG				1 2	
SOURC	E FLO	W	KA1	E (CCS)	(0)		30.2	
SOURC	je gas	_ T1	SMP	ERATURE	(0)	0	27.0	
TRACE	SR TIP	E			2010		200 0	
TRACE	SR CON	CEI	N.T.H	ATION (P	PM)	TOOOL		
BACKG	FROUND	C	JNC	ENTRATIO	N (PPM)		3/.12	
TUBE	NO.		K j	Y	Z	CONC	CENTRAT	IONS (PPM)
-	_	(CI	n)	(cm)	(cm)	Sour	ce l	Tracer 1
1	3	75	.0	-8.0	26.0	6	512.1	649.2
2	3	75	• 0	-4.0	26.0		528.8	665.9
3	3	75	• 0	.0	26.0	e	535.3	672.4
4	3	75	.0	4.0	26.0	e	546.0	683.1
5	3	75	.0	8.0	26.0	5	533.0	570.1
6	3	75	.0	12.0	26.0	6	540.0	677.1
7	3	75	.0	16.0	26.0	e	501.0	638.1
8	3	75	.0	20.0	26.0	Ę	537.5	574.6
9	3	75	.0	24.0	26.0	4	170.5	507.6
10	3	75	.0	28.0	26.0	4	111.5	448.6
11	3	75	.0	32.0	26.0		345.7	382.8
12	3	75	.0	36.0	26.0		289.8	327.0
13	3	75	.0	40.0	26.0	2	212.9	250.0
14	3	75	.0	44.0	26.0	1	162.0	199.1
15	3	75	.0	48.0	26.0	1	126.9	164.0
16	3	75	.0	52.0	26.0		88.6	125.7
17	3	75	.0	56.0	26.0		58.5	95.6
18	3	75	.0	60.0	26.0		35.2	72.3
19	3	75	.0	64.0	26.0		26.7	63.9
20	3	75	.0	68.0	26.0		17.7	54.8
21	3	75	.0	72.0	26.0		11.1	48.3
22	3	75	.0	76.0	26.0		6.6	43.7
23	3	75	.0	80.0	26.0		4.2	41.3
24	3	75	.0	84.0	26.0		3.7	40.9
25	3	75	.0	88.0	26.0		1.4	38.5
26	3	75	.0	92.0	26.0		1.2	38.3
27	3	75	.0	96.0	26.0		.8	37.9
28	3	75	.0	100.0	26.0		.8	38.0
29	3	75	.0	104.0	26.0		.6	37.7
30	3	75	.0	108.0	26.0		.8	37.9
31	3	75	.0	-6.0	26.0	5	582.0	619.1
32	3	75	.0	-2.0	26.0	5	596.3	633.4
33	3	75	.0	2.0	26.0	e	511.9	649.0
34	3	75	.0	6.0	26.0	e	521.8	658.9
35	3	75	.0	10.0	26.0	e	510.7	647.8
36	3	75	.0	14.0	26.0	5	594.5	631.6

RUN I	NUMBER 13		FILE N	AME GEP013	.GC
BY NI	EFF ON 07	-11-91			
WIND	SPEED 250.00	CM/S A	AT 11.4	CM	
AIR 7	TEMP. 27.0	C P	T 11.4	CM	
SOUR	CE DESIGNATIO	N		1	
SOUR	CE FLOW RATE	(CCS)		530.2	
SOUR	CE GAS TEMPER	ATURE ((C)	27.0	
TRACI	ER TYPE		•	C2H6	
TRACI	ER CONCENTRAT	ION (PE	M) 1	000000.0	
BACK	GROUND CONCEN	TRATION	(PPM)	24.34	
			()		
TUBE	NO. X	Y	Z	CONCENTRAT	IONS (PPM)
_	(cm)	(c m)	(Cm)	Source 1	Tracer 1
1	250.0	-8.0	26.0	1087.1	1111.4
2	250.0	-4.0	26.0	1129.9	1154.2
3	250.0	.0	26.0	1157.2	1181.5
4	250.0	4.0	26.0	1090.4	1114.7
5	250.0	8.0	26.0	867.0	891.3
6	250.0	12.0	26.0	886.1	910.4
7	250.0	16.0	26.0	780.1	804.5
8	250.0	20.0	26.0	616.0	640.3
9	250.0	24.0	26.0	502.6	526.9
10	250.0	28.0	26.0	392.6	416.9
11	250.0	32.0	26.0	279.6	303.9
12	250.0	36.0	26.0	192.9	217.3
13	250.0	40.0	26.0	120.1	144.4
14	250.0	44.0	26.0	80.6	104.9
15	250.0	48.0	26.0	56.0	80.3
16	250.0	52.0	26.0	36.6	60.9
17	250.0	56.0	26.0	18.4	42.7
18	250.0	60.0	26.0	9.5	33.8
19	250.0	64.0	26.0	4.8	29.2
20	250.0	68.0	26.0	2.1	26.5
21	250.0	72.0	26.0	1.9	26.3
22	250.0	76.0	26.0	1.1	25.4
23	250.0	80.0	26.0	.9	25.2
24	250.0	84.0	26.0	1.6	25.9
25	250.0	88.0	26.0	.7	25.5
31	250.0	-6 0	26.0	1037 2	1061 5
32	250.0	-2 0	26.0	1065 6	1001.5
32	250.0	-2.0	20.0	1005.0	1114 0
22	250.0	2.0	20.0	1011 5	1025 0
34	230.0	10 0	20.0	TOTT'3	1033.0
35	250.0	14 0	20.0	738.3	702.8 001 0
30	250.0	14.0	20.0	171.0	821.9
37	250.0	18.0	26.0	003.0	6/7.9
38	250.0	22.0	26.0	526.3	550.7
- 39	250.0	26.0	26.0	421.6	445.9
40	250.0	30.0	26.0	324.8	349.1

RUN NUM BY NEFF WIND SF AIR TEM SOURCE SOURCE SOURCE TRACER BACKGRO	ABER 14 CON 0 PEED 250.00 AP. 27.0 DESIGNATION FLOW RATE GAS TEMPE TYPE CONCENTRA DUND CONCE	7-11-91 O CM/S A C A ON (CCS) RATURE (TION (PP) NTRATION	FILE 1 T 11.4 T 11.4 C) M) :	NAME GEP01 4 CM 4 CM 530.2 27.0 C2H6 1000000.0 23.08	4.GC	
TURE NO). X	Y	Z	CONCENTRA	TIONS (PPM)	
	(cm)	(cm)	(cm)	Source 1	Tracer 1	
1	125.0	-8.0	26.0	2810.8	2833.8	
2	125.0	-4.0	26.0	3030.0	3053.0	
3	125.0	.0	26.0	3062.0	3085.0	
4	125.0	4.0	26.0	2671.2	2694.2	
5	125.0	8.0	26.0	1876.0	1899.0	
6	125.0	12.0	26.0	1487.5	1510.5	
7	125.0	16.0	26.0	859.1	882.2	
8	125.0	20.0	26.0	453.1	476.2	
9	125.0	24.0	26.0	207.5	230.6	
10	125.0	28.0	26.0	106.4	129.5	
11	125.0	32.0	26.0	49.3	72.4	
12	125.0	36.0	26.0	20.2	43.3	
13	125.0	40.0	26.0	5.3	28.4	
14	125.0	44.0	26.0	2.8	25.9	
15	125.0	48.0	26.0	1.7	24.7	
16	125.0	52.0	26.0	1.5	24.6	
17	125.0	56.0	26.0	1.4	24.5	
18	125.0	60.0	26.0	1.3	24.4	
19	125.0	64.0	26.0	1.0	24.0	
20	125.0	68.0	26.0	3.5	26.6	
21	125.0	72.0	26.0	.9	24.0	
22	125.0	76.0	26.0	.8	23.9	
23	125.0	80.0	26.0	.9	23.9	
24	125.0	84.0	26.0	9.5	32.5	
25	125.0	88.0	26.0	.8	23.9	
31	125.0	-6.0	26.0	2756.6	2779.6	
32	125.0	-2.0	26.0	2925.5	2948.5	
33	125.0	2.0	26.0	2801.0	2824.0	
34	125.0	6.0	26.0	2334.0	2357.0	
35	125.0	10.0	26.0	1801.7	1824.7	
36	125.0	14.0	26.0	1183.9	1207.0	
37	125.0	18.0	26.0	645.1	668.2	
38	125.0	22.0	26.0	318.7	341.8	
39	125.0	26.0	26.0	149.5	172.6	
40	125.0	30.0	26.0	76.8	99.9	

RUN N	IUMBER	15			FILE	NAME	GEP01	5.GC
BY NE	CFF	ON	07-11-	91				
WIND	SPEED	250.	.00 CM/	S AT	11.	.4 CM		
AIR I	EMP.	27.	.0 C	AT	11.	.4 CM		
SOURC	E DESI	[GNA]	FION				1	
SOURC	E FLOV	V RAT	re (ccs)		ļ	530.2	
SOURC	E GAS	TEMI	PERATUR	E (C)		27.0	
TRACE	ER TYPE	2				C	2H6	
TRACE	ER CONC	CENTI	RATION	(PPM)	1000	0.00	
BACKG	ROUND	CONC	CENTRAT	ION	(PPM)		23.50	
TTD C	NO	v	v		7	CON	מסתונסה	TONS (DOW)
IOPE	NO.	A (cm)	1	、	4 (cm)	Sour	rca 1	Tracer 1
1	, ,		(Cm	,	(Cm)	30u.		
÷			•	0	.0		.5	24.0
2	10		•	Ň	.0		1 6	20.0
5	1-		•	0	.0		1.0	23.1
07	1.		•	0	.0		34.U	1/.J
	20		•	0	.0	•	172 7	107 0
8	22	25.0	•	0	.0		1/3./	19/.2
	2:		•	0	.0		240.0	264.1
10	27	/5.0	•	0	.0		286.7	310.2
11	30		•	0	.0	•	338.5	362.0
12	32	25.0	•	0	.0		366.3	389.8
13	35	50.0	•	0	.0	•	386.7	410.2
14	37	75.0	•	0	.0	4	400.4	423.9
15	40	0.0	•	0	.0	•	411.6	435.1
16	42	25.0	•	0	.0	4	430.1	453.6
17	45	50.0	•	0	.0	4	431.7	455.2
18	47	75.0	•	0	.0	4	429.3	452.8
19	50	0.0	•	0	.0	4	426.2	449.7
20	52	25.0	•	0	.0	•	419.7	443.2
21	12	25.0	-15.	0	.0		13.3	36.8
22	12	25.0	-10.	0	.0		29.1	52.6
23	12	25.0	-5.	0	.0		46.7	70.2
24	12	25.0	5.	0	.0		28.1	51.6
25	12	25.0	10.	0	.0		12.6	36.1
26	12	25.0	15.	0	.0		4.2	27.7
27	25	50.0	-15.	0	.0		183.1	206.6
28	25	50.0	-10.	0	.0		219.0	242.5
29	25	50.0	-5.	0	.0		242.3	265.8
30	25	50.0	5.	0	.0		246.1	269.6
31	25	50.0	10.	0	.0		234.5	258.0
32	25	50.0	15.	0	.0		205.2	228.7
33	37	75.0	-15.	0	.0		343.1	366.6
34	37	75.0	-10.	0	.0		375.8	399.3
35	37	75.0	-5.	0	.0		396.6	420.1
36	37	75.0	5.	0	.0		395.6	419.1
37	37	75.0	10.	Ó	.0		376.5	400.0
38	31	75.0	15.	0	.0		336.9	360.4
39	50	0.0	-15.	ō	.0		367.7	391.2
40	50	0.00	-10-	Ō	.0		401.0	424.5
41	50	0.0	-5	ō	.0	-	418.6	442.1
42	50		5.	ñ			418 5	442 0
42	50		10	õ	.0		398.5	422.0
7.J 7.A	50		15	ñ	.0	•	350 3	372 8
	ິງເ		- U +	.	• •	•		J/J•0

RUN N	NUMBER	16	07 14 01	FILE	NAME	GEP01	6.GC	
BY NE	SFF	ON	07 - 14 - 91	105	0 av			
MIND	SPEED	4/3.	UU CM/S AT	125.				
AIR 1	LEWL.	4/۰ مریده	U C AT	125.	U CM	1		
SOUR	LE DESI	LGNAT				1 1		
SOUR	JE FLUY	MEND	E (CCS)	、		77.0		
SOUR	JE GAS	TEMP	ERATURE (C)	00	2/.0		
TRACE	SR LIFE	2 777 NT/1717	ATTON (DDW	`	10000			
TRACE	SR CONC	CONC	FITOR (FFM	/ / 10101/()	10000	00.0		
DACK	SKOOND	COAC	ENTRATION	(PPM)		0.97		
TUBE	NO.	Х	Y	Z	CONC	ENTRA	TIONS	(PPM)
		(cm)	(c m)	(cm)	Sour	ce 1	Tracer	1
1	5	30.0	.0	•0	9	14.6	923	.6
2	9	92.5	.0	.0	9	64.3	973	.3
3	10	05.0	•0	.0	9	84.8	993	•8
4	11	L7.5	.0	•0	9	33.2	942	.1
5	13	30.0	.0	.0	8	73.7	882	.6
6	15	55.0	.0	.0	7	55.0	764	.0
7	16	57.5	.0	.0	6	82.6	691	• 6
8	19	90.0	.0	.0	5	93.7	602	• 6
9	21	10.0	•0	.0	5	33.7	542	•7
10	23	30.0	.0	.0	4	87.2	496	• 2
11	25	50.0	.0	.0	4	42.5	451	• 5
12	27	70.0	.0	•0	4	11.5	420	.4
13	29	90.0	.0	.0	3	70.2	379	•2
14	31		.0	.0	3	38.5	347	• 5
15	33	30.0	.0	.0	3	15.2	324	.1
16	35	0.0	.0	.0	2	95.0	304	.0
17	37	/0.0	.0	.0	2	70.7	279	•7
18	25	90.0	.0	.0	2	47.8	256	•7
19	41		.0	.0	2	41.9	250	• 8
20	43	50.0	.0	.0	2	24.7	233	• 6
21	45		.0	••	2	14.2	223	• 1
23	45		.0	••	1	31.J	200	• •
24	51		.0	.0	1	76 0	195	• 3
20	53	0.0	.0	• •	1	./0.0	184	• 7

RUN NUM	IBER 17		FILE	NAME GEI	2017.GC		
BY NEFF	' ON 07	-14-91					
WIND SP	EED 954.00	CM/S AT	125.	0 CM			
AIR TEM	IP. 27.0	C AI	125.	0 CM			
SOURCE	DESIGNATIO	N		1			
SOURCE	FLOW RATE	(CCS)		95	. 8		
SOURCE	GAS TEMPER	ATURE (C	;)	27.	.0		
TRACER	TYPE	·	•	C2H6			
TRACER	CONCENTRAT	ION (PPM	()	1000000	.0		
BACKGRC	UND CONCEN	TRATION	(PPM)	3.	.78		
TUBE NO). X	Y	Z	CONCEN	TRATIONS	S (PPM)
	(Cm)	(Cm)	(cm)	Source	1 Trac	cer`1	•
1	80.0	Ò.	`.Ó	445	.8 4	449.6	
2	92.5	.0	.0	461	.6 4	165.3	
3	105.0	.0	.0	476	.4 4	180.2	
4	117.5	.0	.0	457	.0 4	460.7	
5	130.0	.0	.0	431.	.6 4	135.3	
6	155.0	.0	.0	375	.3 3	379.1	
7	167.5	.0	.0	339.	4 3	343.1	
8	190.0	.0	.0	291	6 2	295.4	
9	210.0	.0	.0	262	2 2	266.0	
10	230.0	.0	•0	238.	.1 2	241.9	
11	250.0	.0	.0	215	.3 2	219.1	
12	270.0	.0	.0	199.	.1 2	202.9	
13	290.0	.0	.0	180.	.4 1	184.2	
14	310.0	.0	.0	165.	.9 1	L69.7	
15	330.0	.0	•0	155.	.1 1	L58.9	
16	350.0	.0	.0	143.	6 1	L47.4	
17	370.0	•0	.0	133.	7 1	L37.4	
18	390.0	.0	•0	121.	5 1	125.3	
19	410.0	.0	.0	118.	2 1	122.0	
20	430.0	.0	.0	110.	2 1	114.0	
21	450.0	.0	.0	104.	2 1	108.0	
23	490.0	.0	•0	95	0	98.8	
24	510.0	.0	.0	91.	5	95.3	
25	530.0	.0	.0	85.	8	89.6	

RUN N	NUMBER	18	N 07-	-15-0*		FILE	NAME	GEP01	8.GC	
DI NE WIND	Corpr	1 46		-T3-33	እጥ	125	0 0 0			
מדנה מדנהם	SPEEL TTVD	, 40)	7 0	CM/S	አ ጉ	125				
COLLDO	LEMF. VV NVC	2 STON	. / • U IA TTON	с т	NT.	1230		1		
CONTRO		M D	ATTON ATTON					05 9		
SOURC	20 CDC	ע חע מער ז	מוה (10			27 0		
TDACE	D TVI) T T 1 T T	ine eine	TURE	(0)		C 2	27.0		
TRACE	SP COM	icen Icen	רית בכיתו		אסכ		10000			
DACACE	DOUNT		NCENI 1VUT1	ערשיערי	SEM)	ואסס	TOOOL	5 55		
DACAG	SKOONL		NCENI	INALL) 11	FEMJ		5.00		
TUBE	NO.	X	C	Y		Z	CONC	CENTRA	TIONS	(PPM)
		(Cm	l)	(cm)		(cm)	Sour	ce 1	Tracer	1
1		40.	0	.0		.0	19	974.3	1979	•9
2		52.	5	.0		.0	25	590.1	2595	.7
3		65.	0	.0		.0	22	242.6	2248	.2
4		90.	0	.0		.0	16	503.1	1608	.7
5	1	15.	0	.0		.0	12	206.5	1212	.1
6	1	40.	0	.0		.0	ç	977.5	983	• 2
7	1	.65.	5	.0		.0	-	778.9	784	.6
8	1	190.	0	.0		.0	6	543.4	649	.0
9	2	210.	0	.0		.0	5	578.8	584	.5
10	2	230.	0	.0		.0	5	505.7	511	.4
11	2	250.	0	.0		.0	4	159.0	464	.7
12	2	270.	0	.0		.0	4	21.1	426	•8
13	2	290.	0	.0		•0	3	381.4	387	•0
14	3	310.	0	.0		•0	3	351.5	357	.1
15	3	330.	0	.0		•0	3	324.8	330	.5
16	3	350.	0	.0		• 0	3	302.0	307	.6
17	3	370.	0	.0		•0	2	270.4	276	.1
18	3	390.	0	.0		.0	2	243.0	248	.7
19	4	10.	0	.0		.0	2	242.2	247	.8
20	4	130.	0	.0		.0	2	224.4	230	.1
21	4	150.	0	.0		.0	2	214.7	220	.4
22	4	170.	0	.0		.0	2	204.6	210	• 2
23	4	190.	0	.0		.0	1	194.3	199	.9
24	5	510.	0	.0		•0	1	188.7	194	.3
25	5	530.	0	.0		•0	1	L73.8	179	.4

RUN NUM	BER 19 ON 07	-15-91	FILE N	AME GEP019	.GC
WIND SD	EED 951 00	CM/S AT	125 0	CM	
ATR TEM	$P_{1} = 27.0$	C AT	125.0	CM	
SOURCE	DESTGNATIC	N III	12010	1	
SOURCE	FLOW RATE	(CCS)		95.8	
SOURCE	GAS TEMPER	ATURE (C	:)	27.0	
TRACER	TYPE	()	,	C2H6	
TRACER	CONCENTRAT	TON (PPM	N 1	000000.0	
BACKGRO	UND CONCEN	TRATION	(PPM)	4.18	
			()		
TUBE NO	. X	Y	Z	CONCENTRAT	CIONS (PPM)
_	(Cm)	(c m)	(Cm)	Source 1	Tracer 1
1	40.0	.0	.0	1020.4	1024.6
2	52.5	.0	.0	1221.3	1225.5
3	65.0	.0	.0	1067.1	1071.3
4	90.0	.0	.0	760.1	764.3
5	115.0	.0	.0	573.5	577.7
6	140.0	.0	.0	465.7	469.9
7	165.5	.0	.0	377.6	381.8
8	190.0	.0	.0	310.5	314.7
9	210.0	.0	.0	274.7	278.9
10	230.0	.0	.0	236.4	240.5
11	250.0	.0	.0	215.1	219.3
12	270.0	.0	.0	195.6	199.8
13	290.0	.0	.0	177.2	181.4
14	310.0	.0	.0	160.8	165.0
15	330.0	.0	.0	148.0	152.2
16	350.0	.0	.0	136.8	140.9
17	370.0	.0	.0	124.0	128.2
18	390.0	.0	.0	111.8	116.0
19	410.0	.0	.0	108.5	112.7
20	430.0	.0	.0	101.0	105.2
21	450.0	.0	.0	96.7	100.8
22	470.0	.0	.0	91.9	96.1
23	490.0	.0	.0	87.8	92.0
24	510.0	.0	.0	84.9	89.1
25	530.0	.0	.0	77.0	81.2

RUN NU	IMBER 20		FILE N	NAME GEPO20).GC
BY NEF	F ON O	7-16-91			
WIND S	SPEED 250.0	O CM/S AI	11.4	1 CM	
AIR TE	EMP. 27.0	C AI	! 11.4		
SOURCE	E DESIGNATI	ON		1	
SOURCE	E FLOW RATE	(CCS)		493.8	
SOURCE	GAS TEMPE	RATURE (C	2)	27.0	
TRACEF	R TYPE			CH4	
TRACEF	CONCENTRA	TION (PPM	[)	692000.0	
BACKGF	ROUND CONCE	NTRATION	(PPM)	12.13	
TUBE N	10. X	Y	Z	CONCENTRA	TIONS (PPM)
	(cm)	(cm)	(Cm)	Source 1	Tracer 1
1	\$0.Ó	· . Ó	`.Ó	155.8	119.9
2	75.0	-10.0	.0	157.5	121.2
3	75.0	-5.0	.0	441.0	317.3
4	75.0	.0	.0	568.3	405.4
5	75.0	5.0	.0	303.2	221.9
6	75.0	10.0	.0	342.5	249.1
7	100.0	.0	.0	1162.6	816.6
10	125.0	.0	.0	1263.0	886.1
11	125.0	5.0	.0	1126.9	791.9
12	125.0	10.0	.0	879.7	620.9
13	150.0	.0	.0	1380.4	967.4
14	175.0	.0	.0	1487.4	1041.4
15	200.0	.0	.0	1502.7	1052.0
16	225.0	.0	.0	1477.0	1034.2
17	250.0	-10.0	.0	1253.4	879.5
18	250.0	-5.0	.0	1306.3	916.1
19	250.0	.0	.0	1421.5	995.8
20	250.0	5.0	.0	1326.1	929.7
21	250.0	10.0	.0	1276.4	895.4
22	275.0	.0	.0	1314.5	921.8
23	300.0	.0	.0	1233.3	865.5
24	325.0	.0	.0	1168.7	820.9
25	350.0	.0	.0	1122.3	788.7
26	375.0	-10.0	.0	903.9	637.6
27	375.0	-5.0	.0	984.7	693.5
28	375.0	.0	.0	1017.9	716.5
29	375.0	5.0	.0	1010.5	711.4
30	375.0	10.0	.0	967.0	681.3
31	400.0	.0	.0	964.3	679.4
33	450.0	.0	.0	860.5	607.6
34	475.0	.0	.0	827.4	584.7
35	500.0	-10.0	.0	748.8	530.3
36	500.0	-5.0	.0	784.7	555.1
37	500.0	.0	.0	812.3	574.2
38	500.0	5.0	.0	785.3	555.5
39	500.0	10.0	.0	742.6	526.0
40	525.0	.0	.0	757.8	536.5

RUN NUMBER 21FILE NAME GEP021.GCBY NEFFON 07-16-91WIND SPEED 250.00 CM/S AT11.4 CMAIR TEMP.27.0 CATSOURCE DESIGNATION1SOURCE FLOW RATE (CCS)493.8SOURCE GAS TEMPERATURE (C)27.0TRACER TYPECH4TRACER CONCENTRATION (PPM)692000.0BACKGROUND CONCENTRATION (PPM)16.36									
TUBE	NO. X	Y	Z	CONCENTRA	TIONS (PPM)				
	(cm)	(cm)	(cm)	Source 1	Tracer 1				
1	50.0	.0	.0	3435.3	2393.5				
2	75.0	-10.0	.0	3086.7	2152.3				
3	75.0	-5.0	.0	3737.9	2602.9				
4	75.0	.0	.0	4024.0	2800.9				
5	75.0	5.0	.0	4753.6	3305.8				
6	75.0	10.0	.0	4225.0	2940.0				
7	100.0	.0	.0	4445.1	3092.3				
10	125.0	.0	.0	4015.5	2795.0				
11	125.0	5.0	.0	4060.1	2825.9				
12	125.0	10.0	.0	3609.8	2514.3				
13	150.0	.0	.0	3409.4	2375.6				
14	175.0	.0	.0	2933.8	2046.5				
15	200.0	.0	.0	2570.9	1795.4				
16	225.0	.0	.0	2289.6	1600.7				
17	250.0	-10.0	.0	1958.5	1371.6				
18	250.0	-5.0	.0	1964.0	1375.4				
19	250.0	.0	.0	2074.1	1451.6				
20	250.0	5.0	.0	1993.7	1396.0				
21	250.0	10.0	.0	1997.6	1398.7				
22	275.0	.0	.0	1830.0	1282.7				
23	300.0	.0	.0	1656.2	1162.4				
24	325.0	.0	.0	1508.6	1060.3				
25	350.0	.0	.0	1392.8	980.2				
26	375.0	-10.0	.0	1204.0	849.5				
27	375.0	-5.0	.0	1271.6	896.3				
28	375.0	.0	.0	1291.8	910.3				
29	375.0	5.0	.0	1260.0	888.3				
30	375.0	10.0	.0	1225.9	864.7				
31	400.0	.0	.0	1164.4	822.1				
33	450.0	.0	.0	1011.7	716.4				
34	475.0	.0	.0	955.8	677.8				
35	500.0	-10.0	.0	890.7	632.7				
36	500.0	-5.0	.0	907.1	644.1				
37	500.0	.0	.0	907.3	644.2				
38	500.0	5.0	.0	892.9	634.3				
39	500.0	10.0	.0	887.9	630.8				
40	525.0	.0	.0	850.9	605.2				

RUN N	NUMBER	22		FILE	NAME	GEP022	2.GC	
BY NE	EFF	ON	07-17-91					
WIND	SPEED	250	.00 CM/S A	r 11.	4 CM			
AIR 7	CEMP.	27	.0 C A	r 11.	4 CM			
SOURC	CE DES	IGNA	TION			1		
SOURC	CE FLO	W RA	TE (CCS)		4	193.8		
SOURC	CE GAS	TEM	PERATURE (C)		27.0		
TRACE	ER TYP	E			CF	14		
TRACE	ER CON	CENT	RATION (PP)	M)	6920	00.00		
BACK	ROUND	CON	CENTRATION	(PPM)		17.63		
TIBE	NO	Y	v	7.	CON	TENTRA	TTONS	(PPM)
TODE	NO.	(cm)	(cm)	(cm)	Sou	ce 1	Tracer	1
1		50 0	(0)		60)52.6	4205	.9
2		75 0	-10.0	.0	3.	51.0	2198	. 1
2		75 0	-5.0		33	292 N	2710	8
2		75 0	-3.0	.0	A -		2903	••• •
		75.0	5.0	.0		1/3 9	3092	- 2 - 7
5		75.0	10.0	.0		175 0	2879	. /
7	1	/3.U	10.0	.0	4.	(33.3)	2073	5
10	1	25 0	.0	.0	40		2025	• J
11	1	23.0	.0	.0	44	200.0	2905	•••
10	1	23.0	10 0	.0	3.	705 3	2591	.0
12	1	23.0	10.0	.0	3.	702.3	2501	. U 5
13	1	30.0 75 A	.0	.0	2.	165.0	2303	• 5
15	2	13.0	.0	.0	ວ. ດ	700 A	105/	• 2
10	2	25.0	.0	.0	2	100.4	1747	•
17	2	23.0	-10.0		2.	±77+/ 102 0	1/4/	• • • 6
10	2		-10.0		20	103.0	1435	• •
10	2	50.0	-5.0	.0	2.	107.2	14/5	••
17	2	50.0	.0	.0	2.)EJ J	1676	• 4
20	2	50.0	5.0	.0	24	232.2	1500	• 1
21	2	30.0	10.0	.0	24		1420	.0 <
22	2	/5.0	.0	.0	20	J34.7	1200	• •
23	د د		.0	.0	10	551.4	1100	••
24	3	23.0	.0	.0	10		1001	••
25	2	50.0	.0	.0	1:		1081	
26	3	/5.0	-10.0	.0	· 1 ·	282.0	905	• 4
27	3	/5.0	-5.0	.0	1.	327.T	958	• 1
28	5	75.0	.0	.0	1.	39/.4	984	• •
29	5	75.0	5.0	.0	1.	380.8	973	• 1
30	5	75.0	10.0	.0	1.	351.5	952	.8
31	4	00.0	.0	.0	1.	280.0	903	. 3
33	4	50.0	.0	.0	1.	103.3	781	• 1
34	4	75.0	.0	.0	10	044.1	740	.1
35	5	00.0	-10.0	.0	9	46.9	672	.9
36	5	00.0	-5.0	.0	C .	984.1	698	.6
37	5	00.0	.0	•0	Ş	98.3	708	.4
38	5	00.0	5.0	.0	ç	982.1	697	• 2
39	5	00.0	10.0	.0	ç	984.8	699	.1
40	5	25.0	.0	.0	ç	929.1	660	.6

,

RUN N	UMBER	23			FILE	NAME	GEP023	3.GC
BY NE	FF	ON 07	-17-91	•				
WIND :	SPEED	250.00	CM/S	AT	11.	4 CM		
AIR T	EMP.	27.0	C	AT	11.	4 CM		
SOURC	E DES:	IGNATIO	N				1	
SOURC	E FLO	N RATE	(CCS)				493.8	
SOURC	E GAS	TEMPER	ATURE	(C)			27.0	
TRACE	R TYPI	3				C	H4	
TRACE	R CON	CENTRAT	ION (F	PM)		692	000.0	
BACKG	ROUND	CONCEN	TRATIC	DN (PPM)		15.84	
TUBE	NO.	X	Y		Z	CON	CENTRAT	CIONS (PPM)
		(cm)	(cm)		(cm)	Sou	rce 1	Tracer 1
1	!	50.0	.0		.0		185.1	143.9
2	•	75.0	-10.0		.0		269.9	202.6
3	•	75.0	-5.0		.0		578.5	416.2
4		75.0	.0		.0		617.4	443.1
5	•	75.0	5.0		.0		354.2	260.9
6	•	75.0	10.0		.0		406.7	297.3
7	10	0.0	.0		.0	1	164.6	821.7
10	12	25.0	.0		.0	1	328.1	934.9
11	12	25.0	5.0		.0	1	210.2	853.3
12	12	25.0	10.0		.0		982.8	695.9

RUN N BY NE WIND AIR T SOURC SOURC SOURC TRACE	NUMBER 24 EFF O SPEED 25 TEMP. 2 CE DESIGN CE FLOW R CE GAS TE ER TYPE	N 07-18-9 0.00 CM/S 7.0 C Ation Ate (CCS) Mperature	FILE AT 11 AT 11 AT 11 (C)	NAME GEPO .4 CM .4 CM 1 493.8 27.0 CH4 654000.0	24.GC
BACK	ROUND CO	NCENTRATI	ON (PPM)	21.2	0
TUBE	NO. X	Y Y	Z	CONCENTR	ATIONS (PPM)
	(cm	i) (CM)	(cm)	Source 1	Tracer 1
1	50.	0.0	.0	15.2	31.2
2	75.	0 -10.0	.0	47.3	52.1
3	75.	0 -5.0	.0	113.8	95.6
4	75.	0.0	.0	114.4	96.0
5	75.	0 5.0	.0	71.2	67.8
6	75.	0 10.0	.0	67.9	65.6
7	100.	0.0	.0	346.9	248.0
10	125.	0.0	.0	566.3	391.5
11	125.	0 5.0	.0	536.3	372.0
12	125.	0 10.0	.0	417.5	294.2
.13	150.	0 .0	.0	794.4	540.7
14	175.	0.0	.0	923.7	625.3
15	200	0 .0	.0	1109.0	746.5
16	200.			1147 4	771.6
17	223.	0 -10 0		078 0	661 4
10	250.		.0	1024 0	690 9
10	250.	0 -5.0	.0	1120 2	753 0
20	250.		.0	1026 4	400 E
20	250.	0 10 0	.0	1020.4	616 7
21	230.	0 10.0	.0	1000 2	732 0
22	2/5.	0.0	.0	1050.3	732.9
23	300.	0.0	.0	1050.2	708.0
24	325.	0.0	.0	1031.8	690.0
25	350.	0.0	.0	980.6	002.5
20	3/5.	0 -10.0	.0	837.5	508.9
21	3/5.	0 -5.0	.0	887.5	601.6
28	3/5.	0.0	.0	920.5	623.2
29	375.	0 5.0	.0	905.4	613.3
30	375.	0 10.0	.0	852.8	578.9
31	400.	0.0	.0	880.4	597.0
33	450.	0.0	.0	777.7	529.8
34	475.	0.0	.0	739.5	504.8
35	500.	0 -10.0	.0	482.9	337.0
36	500.	0 -5.0	.0	709.7	485.4
37	500.	0.0	.0	727.4	496.9
38	500.	0 5.0	.0	694.1	475.1
39	500.	0 10.0	.0	693.6	474.8
40	525.	0.0	.0	678.2	464.7

RUN N	NUMBER 2	5		FILE N	AME G	EP025.G	С
BY NE	EFF (ON 07-1	8-91				
WIND	SPEED 2	50.00 C	M/S AT	11.4	CM		
AIR 1	TEMP.	27.0 C	AT	11.4	CM	1	
SOURC	E DESIG	NATION	aa\		40	1	
SOURC	CE FLOW	RATE (C	CS)		49	3.8	
SOURC	CE GAS TI	EMPERAT	URE (C)		2	/.0	
TRACE	ER TYPE				CH4		
TRACE	ER CONCE	NTRATIO	N (PPM)		65400	0.0	
BACKG	ROUND C	ONCENTR	ATION (PPM)	2	4.90	
TUBE	NO.	x	Y	Z	CONCE	NTRATIO	NS (PPM)
	(CI	m) (cm)	(cm)	Sourc	el Tr	acer 1
1	50	•0	.0	•0	49	2.7	347.1
2	75	.0 -1	0.0	.0	125	9.7	848.7
3	75	.0 -	5.0	.0	150	8.2	1011.2
4	75	.0	.0	•0	172	3.0	1151.7
5	75	.0	5.0	.0	212	4.7	1414.4
6	75	.0 1	0.0	.0	159	4.4	1067.6
7	100	.0	.0	.0	237	5.8	1578.6
10	125	.0	.0	.0	259	8.9	1724.5
11	125	.0	5.0	.0	236	6.3	1572.4
12	125	.0 1	0.0	.0	193	2.6	1288.8
13	150	.0	.0	.0	247	5.5	1643.8
14	175	.0	.0	.0	229	2.3	1524.0
15	200	.0	.0	.0	224	6.4	1494.0
16	225	.0	.0	.0	212	0.7	1411.8
17	250	.0 -1	0.0	.0	181	0.0	1208.6
18	250	.0 -	5.0	.0	178	9.4	1195.1
19	250	.0	.0	.0	194	9.9	1300.1
20	250	.0	5.0	.0	181	1.8	1209.8
21	250	.0 1	0.0	.0	172	4.7	1152.8
22	275	.0	.0	.0	174	9.3	1168.9
23	300	.0	•0	.0	159	5.6	1068.4
24	325	.0	.0	.0	148	0.2	992.9
25	350	.0	.0	.0	138	6.7	931.8
26	375	.0 -1	0.0	.0	122	9.7	829.1
27	375	.0 -	5.0	.0	124	5.8	839.6
28	375	.0	.0	.0	125	2.5	844.0
29	375	.0	5.0	.0	123	8.5	834.8
30	375	.0 1	0.0	.0	117	2.5	791.7
31	400	.0	.0	.0	115	9.4	783.1
33	450	.0	.0	.0	101	4.3	688.2
34	475	.0	.0	.0	95	7.0	650.8
35	500	.0 -1	0.0	.0	90	7.5	618.4
36	500	.0 -	5.0	.0	91	8.6	625.6
37	500	.0	.0	.0	91	4.8	623.1
38	500	.0	5.0	.0	90	0.6	613.8
39	500	.0 1	0.0	.0	89	5.3	610.4
40	525	.0	.0	.0	86	7.0	591.9

RUN NU	UMBER 26		FILE	NAME GEPO26	5.GC
BY NEI	FF ON O	7-18-91			
WIND S	SPEED 250.0	O CM/S AT	11.	4 CM	
AIR TI	EMP. 27.0	C AI	11.	4 CM	
SOURCI	E DESIGNATI	on		1	
SOURCI	e flow rate	(CCS)		493.8	
SOURCI	e gas tempe	RATURE (C	:)	27.0	
TRACE	R TYPE			CH4	
TRACE	R CONCENTRA	TION (PPM	() 	654000.0	
BACKGI	ROUND CONCE	NTRATION	(PPM)	18.13	
TUBE I	NO. X	Y	Z	CONCENTRA	CIONS (PPM)
	(cm)	(cm)	(Cm)	Source 1	Tracer 1
1	50.0	.0	.0	22.9	33.1
2	75.0	-10.0	.0	22.0	32.5
3	75.0	-5.0	.0	31.2	38.6
4	75.0	.0	.0	40.7	44.7
5	75.0	5.0	.0	28.1	36.5
6	75.0	10.0	.0	25.0	34.5
7	100.0	.0	.0	170.2	129.4
10	125.0	.0	.0	348.7	246.2
11	125.0	5.0	.0	297.2	212.5
12	125.0	10.0	.0	200.8	149.4
13	150.0	.0	.0	534.2	367.5
14	175.0	.0	.0	628.5	429.2
15	200.0	.0	.0	778.4	527.2
16	225.0	.0	.0	820.4	554.6
17	250.0	-10.0	.0	766.0	519.1
18	250.0	-5.0	.0	791.9	536.0
19	250.0	.0	.0	839.1	566.9
20	250.0	5.0	.0	802.5	542.9
21	250.0	10.0	.0	726.2	493.0
22	275.0	.0	.0	856.1	578.0
23	300.0	.0	.0	850.1	5/4.1
24	325.0	.0	.0	034.0	563.5
23	350.0	-10.0	.0	624.0	357.0
20	375.0	-10.0	.0	07/.4	4/4.J 576 5
30	375.0	10 0	.0	773 5	101 3
31	400 0	10.0	.0	723.3	500 6
34	400.0	.0	.0	658 2	148 5
35	500 0	-10 0	.0	673 5	470.J 425 g
36	500.0	-5 0	.0	652 1	423.5
37	500.0	-3.0	.0	650 9	444.0
38	500.0	5.0		628 2	429.0
40	525 0	.0	.0	625 6	427 3
41	375.0	-5.0	.0	784_1	530.9
42	375.0	_0	.0	793.4	537.0
43	500.0	10.0	.0	622.1	425-0
		2414	•••		

 \mathbf{n}

RUN NUMBER 27 FILE NAME GEP027.GC						
BY NEFF ON 07-18-91						
WIND SI	PEED 250.0	O CM/S A	r 11.4	4 CM		
AIR TEN	AP. 27.0		r 11.4	4 CM		
SOURCE	DESIGNATI	ON		1		
SOURCE	FLOW RATE	(CCS)		493.8		
SOURCE	GAS TEMPE	RATURE (C	2)	27.0		
TRACER	TYPE			CH4		
TRACER	CONCENTRA	TION (PP)	4)	654000.0		
BACKGRO	DUND CONCE	INTRATION	(PPM)	31.57		
TUBE NO	. x	Y	Z	CONCENTRA	TIONS (PPM)	
	(Cm)	(Cm)	(cm)	Source 1	Tracer 1	
1	50. 0	Ì.Ó	· . Ó	.0	.3	
2	75.0	-10.0	.0	421.3	307.1	
3	75.0	-5.0	.0	491.0	352.7	
4	75.0	.0	.0	622.4	438.6	
5	75.0	5.0	.0	781.5	542.7	
6	75.0	10.0	.0	551.3	392.1	
7	100.0	.0	.0	1059.3	724.3	
10	125.0	.0	.0	1452.7	981.6	
11	125.0	5.0	.0	1224.1	832.1	
12	125.0	10.0	.0	948.3	651.7	
13	150.0	.0	.0	1542.6	1040.4	
14	175.0	.0	.0	1528.4	1031.1	
15	200.0	.0	.0	1609.2	1083.9	
16	225.0	.0	.0	1571.2	1059.1	
17	250.0	-10.0	.0	1430.8	967.3	
18	250.0	-5.0	.0	1421.0	960.8	
19	250.0	.0	.0	1470.1	992.9	
20	250.0	5.0	.0	1376.4	931.7	
21	250.0	10.0	.0	1287.9	873.8	
22	275 0	10.0		1359 4	920 6	
23	300.0	.0	.0	1290.3	875 A	
23	325 0	.0		1184 5	806 2	
24	350 0	.0	.0	1234 1	838 6	
25	375 0	-10.0	.0	1035 5	709 9	
20	375.0	10.0	.0	1002 7	697 3	
30	400 0	10.0	.0	102.7	709 0	
33	400.0	.0	.0	1033.8	620 E	
33	450.0	.0	.0	900.0	020.J	
35	4 /3.0	-10 0	••	040.J 201 7	500.5	
33	500.0	-10.0		004./ 010 E	55/.0	
20	500.0	-3.0	••	010.3	500.0 ECA 4	
ر 20	500.0	0	••	014./	304.4 5/0 0	
38	300.0	5.0	.0	/91.2	549.U 721 F	
41 40	3/3.0	-2.0	••	10/0.4	/31.3	
42	375.0	.0	.0	1081.0	/38.5	
43	500.0	10.0	.0	774.0	537.7	

RUN NU	MBER 28		FILE I	NAME GEPO2	B.GC
BY NEF	F ON O	7-18-91			
WIND S	PEED 250.0	O CM/S AT	11.4	4 CM	
AIR TE	MP. 27.0	C AI	11.4	4 CM	
SOURCE	DESIGNATI	ON		1	
SOURCE	FLOW RATE	(CCS)		493.8	
SOURCE	GAS TEMPE	RATURE (C	2)	27.0	
TRACER	TYPE			CH4	
TRACER	CONCENTRA	TION (PP)	() ()	654000.0	
BACKGR	OUND CONCE	NTRATION	(PPM)	29.12	
TUBE N	o. x	Y	Z	CONCENTRA	TIONS (PPM)
	(cm)	(cm)	(cm)	Source 1	Tracer 1
1	50.0	.0	.0	.8	29.6
2	75.0	-10.0	.0	21.8	43.4
3	75.0	-5.0	.0	39.8	55.2
4	75.0	.0	.0	33.3	50.9
5	75.0	5.0	.0	13.8	38.1
6	75.0	10.0	.0	12.3	37.2
7	100.0	.0	.0	153.1	129.3
10	125.0	.0	.0	298.2	224.1
11	125.0	5.0	.0	286.9	216.7
12	125.0	10.0	.0	209.2	165.9
13	150.0	.0	.0	470.9	337.1
14	175.0	.0	.0	701.6	487.9
15	200.0	.0	.0	824.3	568.2
16	225.0	.0	.0	881.1	605.3
17	250.0	-10.0	.0	711.3	494.3
18	250.0	-5.0	.0	812.2	560.3
19	250.0	.0	.0	888.5	610.2
20	250.0	5.0	.0	819.2	504.8
21	250.0	10.0	.0	/39.0	525.0
22	2/5.0	.0	.0	070.3	610.0
23	300.0	.0	.0	003.3	506.5
20	350.0	_10_0	.0	034.0 774 A	5/5.0
20	375.0	-10.0	.0	700 6	502.0
29	375.0	10 0	.0	700.0	544.7
21	375.0	10.0	.0	769 0	531 /
22	400.0	.0	.0	713.0	JJI.4 195 9
34	430.0	.0	.0	680 0	493.9
35	500 0	-10.0	.0	648 6	453.3
35	500.0	-5 0	.0	665 3	455.5
27	500.0	-3.0	.0	671 1	469.2
22	500.0	50	.0	653 4	456.4
40	525.0	.0	.0	652.5	455.8
41	375 0	-5.0	.0	773.4	534.9
42	375.0	.0	.0	801.4	553.2
47	500.0	10.0	.0	636.3	445.2
		24.4	• •		

RUN N	NUMBER 29	•		FILE	NAME	GEP029	.GC
BY NE	EFF C	DN 07-	19-91		4		
WIND	SPEED 25	50.00	CM/S A	T 11	.4 CM		
AIR 1	CEMP. 2	27.0	C A	AT 11	.4 CM		
SOURC	CE DESIGN	NATION				1	
SOURC	CE FLOW P	RATE (CCS)		4	493.8	
SOURC	ce gas te	empera	TURE ((C)		27.0	
TRACE	ER TYPE				CI	14	
TRACE	er concen	ITRATI	ON (PF	PM)	654(0.00	
BACKG	FROUND CO	DNCENT	RATION	I (PPM)		33.71	
TUBE	NO. 2	۲.	Y	Z	CON	CENTRAJ	TIONS (PPM)
	(Cn	n)	(cm)	(cm)	Sour	rce 1	Tracer 1
1	50.	. Ó	.0	.0		27.1	51.5
2	75.	.0 -	10.0	.0		280.3	217.1
3	75.	.0	-5.0	.0	Į	507.4	365.6
4	75.	.0	.0	.0		487.1	352.3
5	75.	.0	5.0	.0		215.2	174.5
6	75.	.0	10.0	.0		135.2	122.1
7	100.	.0	.0	.0	12	263.6	860.1
8	125.	.0 -	10.0	.0	1	595.2	1076.9
9	125	.0	-5.0	.0	1'	742.9	1173.5
10	125.	.0	.0	.0	11	783.4	1200.0
11	125.	.0	5.0	.0	1	765.7	1188.4
12	125.	.0	10.0	.0	1	135.4	776.2
14	175	Ō	.0	.0	18	891.2	1270.5
15	200.	.0	.0	.0	18	377.9	1261.8
16	225	.0	.0	.0	1'	753.4	1180.4
17	250.	.0 -	10.0	.0	14	451.6	983.0
18	250	.0	-5.0	.0	19	546.1	1044.8
19	250.	Ō	.0	.0	10	549.5	1112.4
20	250.	.0	5.0	.0	1	536.0	1038.2
21	250	.0	10.0	.0	14	461.4	989.4
22	275	.0	.0	.0	1	507.1	1019.3
23	300.	.0	.0	.0	14	408.7	954.9
24	325.	.0	.0	.0	1	335.7	907.2
25	350	0	.0	.0	12	228.1	836.8
26	375.	0 -	10.0	.0	10	062.5	728.5
30	375	.0	10.0	.0	10	080.8	740.5
31	400	0	.0	.0	10	041.7	714.9
33	450	.0	.0	.0		911.3	629.7
34	475	.0	.0	.0	5	372.6	604.4
35	500	.0	10.0	.0	5	825.4	573.5
35	500	.0	-5.0		5	838.9	582 3
27	500	Ő	.0	.0	5	859 5	595 8
37	500	.0	5.0	.0	5	221.1	570.7
40	500.	. õ	J.U N	.0	,	~~ ^	2,0.,
<u>4</u> 0	375	0	-5 0	.0	1 -	117 0	761 2
<u>4</u> 1 10	275	0	J.U N	.0	1	144 3	782 0
43	500	.0	10.0	.0	<u>نا</u>	321.4	570.9

	IIMBER 30		FTI.E	NAME GEPO30	GC
RY NE	EFF ON C	7-19-91			
WIND	SPEED 250.0	O CM/S AT	11.	4 CM	
ATRI	EMP. 27.0	C AT	11.	4 CM	
SOURC	E DESIGNATI	ON		1	
SOUR	TE FLOW RATE	(CCS)		493.8	
SOURC	TE GAS TEMPE	BATURE (C	· ·	27.0	
TRACE	ER TYPE	(0	· /	CH4	
TRACE	R CONCENTRA	TTON (PPM	1	654000.0	
BACK	ROUND CONCE	NTRATION	(PPM)	18.52	
2			(/		
TUBE	NO. X	Y	Z	CONCENTRAT	IONS (PPM)
	(cm)	(cm)	(cm)	Source 1	Tracer 1
1	50.0	.0	.0	7.9	23.7
2	75.0	-10.0	.0	65.2	61.2
3	75.0	-5.0	.0	128.2	102.4
4	75.0	.0	.0	122.8	98.8
5	75.0	5.0	.0	29.6	37.9
6	75.0	10.0	.0	31.7	39.3
7	100.0	.0	.0	363.4	256.2
8	125.0	-10.0	.0	543.3	373.9
9	125.0	-5.0	.0	674.5	459.6
10	125.0	.0	.0	633.3	432.7
11	125.0	5.0	.0	631.7	431.7
12	125.0	10.0	.0	387.2	271.7
13	150.0	.0	.0	876.5	591.7
14	175.0	.0	.0	1163.3	779.3
15	200.0	.0	.0	1257.1	840.6
16	225.0	.0	.0	1247.8	834.5
17	250.0	-10.0	.0	1031.4	693.0
18	250.0	-5.0	.0	1143.7	766.5
19	250.0	.0	.0	1232.7	824.7
20	250.0	5.0	.0	1121.2	751.7
21	250.0	10.0	.0	1024.8	688.7
22	275.0	.0	.0	1187.3	795.0
23	300.0	.0	.0	1152.8	772.4
24	325.0	.0	.0	1085.7	728.5
25	350.0	•0	.0	1052.5	706.8
26	375.0	-10.0	.0	886.6	598.4
27	375.0	-5.0	.0	957.3	644.6
28	375.0	.0	.0	984.9	662.6
29	375.0	5.0	.0	950.7	640.2
30	375.0	10.0	.0	876.0	591.4
31	400.0	.0	.0	923.6	622.5
33	450.0	.0	.0	833.5	563.6
34	475.0	.0	•0	799.2	541.2
35	500.0	-10.0	.0	732.5	497.6
36	500.0	-5.0	.0	759.6	515.3
37	500.0	.0	.0	758.2	514.4
38	500.0	5.0	.0	738.0	501.1
39	500.0	10.0	•0	741.4	503.4
40	525.0	.0	.0	713.5	485.1
RUN N	IUMBER 31		FILE N	NAME GEP031	.GC
--------	-----------------------	-------------	---------	-------------	----------------
BY NE	CFF ON C	7 - 19 - 91			
MTND 4	SPEED 250.0	C CM/S A1	. 11.4		
SOUD	TEMP. 27.0			1 CM	
SOURC	E DESIGNAII			493.8	
SOURC	E FLOW RAIL	DATTINE (C	• \	27.0	
TDACE	d gro iempe D TVDF	MIONE (C	~)	СНА	
TRACE	E CONCENTER	TTON (DDM	Ω.	654000.0	
BACKO	ROUND CONCE	NTRATION	(PPM)	18,93	
DUOIC			(****)	10170	
TUBE	NO. X	Y	Z	CONCENTRAT	IONS (PPM)
	(cm)	(CM)	(cm)	Source 1	Tracer 1
1	50.0	.0	.0	167.1	128.2
2	75.0	-10.0	.0	942.9	635.6
3	75.0	-5.0	.0	1245.8	833.7
4	75.0	.0	•0	1231.9	824.6
5	75.0	5.0	.0	669.6	456.8
6	75.0	10.0	.0	561.6	386.2
7	100.0	.0	.0	2096.8	1390.2
8	125.0	-10.0	.0	1898.8	1260.7
9	125.0	-5.0	.0	2461.0	1628.4
10	125.0	.0	.0	2482.7	1642.6
11	125.0	5.0	.0	2421.1	1602.3
12	125.0	10.0	.0	1759.0	1169.3
13	150.0	.0	.0	2387.5	1580.3
14	175.0	.0	.0	2251.7	1491.5
15	200.0	.0	.0	2123.7	1407.8
16	225.0	.0	.0	1952.0	1295.5
17	250.0	-10.0	.0	1576.8	1050.1
18	250.0	-5.0	.0	1635.8	1088.7
19	250.0	.0	.0	1/9/.9	1194.7
20	250.0	5.0	.0	1682.9	1119.5
21	250.0	10.0	.0	1612 0	1078.8
22	2/5.0	.0	.0	1402 4	10/4.4
23	300.0	.0	.0	1205 7	993.0
24	350 0	.0	.0	1293.7	951./ 957 1
25	375 0	_10_0	.0	1115 1	7/9 2
20	375.0	-10.0	.0	1172 6	795 0
20	375 0	-5.0	.0	1166 3	705.0
20	375 0	5.0	.0	1147 3	769 2
30	375 0	10 0	.0	1109 0	744 2
31	400.0	10.0	.0	1089 3	731 3
22	450.0	.0	.0	959 8	646 6
34	475.0	.0	.0	909.2	613.5
35	500.0	-10.0	.0	827.5	560.1
36	500.0	-5.0	.0	867.0	586.0
37	500.0	.0	.0	867.8	586.4
38	500.0	5.0	10	838.0	567.0
39	500.0	10.0	.0	823.7	557.6
40	525.0	.0	.0	814.1	551.3

RUN N BY NE WIND AIR T SOURC SOURC SOURC TRACE BACKG	UMBER 32 FF ON (SPEED 250.(EMP. 27.(E DESIGNAT) E FLOW RATH E GAS TEMPH R TYPE R CONCENTRA ROUND CONCH	07-19-91 00 CM/S AT 0 C AT CON 2 (CCS) 2RATURE (C ATION (PPM 2NTRATION	FILE 1 11.4 11.4 11.4 (PPM)	NAME GEP03: 4 CM 4 CM 493.8 27.0 CH4 654000.0 29.28	2.GC
TUBE	NO. X	Y	Z	CONCENTRA	TIONS (PPM)
	(cm)	(cm)	(cm)	Source 1	Tracer 1
1	50.0	.0	.0	.0	29.3
2	75.0	-10.0	.0	53.9	64.5
3	75.0	-5.0	.0	107.1	99.3
Ă	75.0	.0	.0	123.7	110.2
5	75.0	5.0	.0	203.6	162.5
6	75.0	10.0	.0	195.4	157.1
7	100.0	.0	.0	486.0	347.1
Ŕ	125.0	-10.0	.0	452.2	325.0
9	125.0	-5.0	.0	663.4	463.1
10	125.0	.0	.0	787.7	544.4
11	125.0	5.0	.0	818.1	564.3
12	125.0	10.0	.0	724.1	502.8
13	150.0	.0	.0	1032.3	704.4
14	175.0	.0	.0	1101.8	749.8
15	200.0	.0	.0	1254.8	849.9
16	225.0	•0	.0	1251.2	847.5
17	250.0	-10.0	.0	980.3	670.4
18	250.0	-5.0	.0	1104.1	751.3
19	250.0	.0	.0	1311.9	887.2
20	250.0	5.0	.0	1294.1	875.6
21	250.0	10.0	.0	1268.7	859.0
22	275.0	.0	.0	1240.4	840.4
23	300.0	.0	•0	1213.2	822.7
25	350.0	•0	.0	1093.5	744.4
26	375.0	-10.0	•0	845.7	582.3
27	375.0	-5.0	.0	923.8	633.4
28	375.0	.0	.0	985.2	673.6
29	375.0	5.0	.0	1028.0	701.6
31	400.0	.0	.0	955.8	654.3
33	450.0	•0	.0	839.1	578.0
34	475.0	.0	.0	811.4	559.9
35	500.0	-10.0	.0	718.6	499.2
36	500.0	-5.0	.0	761.3	527.2
37	500.0	.0	.0	790.9	546.5
38	500.0	5.0	.0	789.2	545.4
39	500.0	10.0	.0	759.2	525.8
40	525.0	.0	.0	757.7	524.8

RUN N	IUMBER 33	7-10-01	FILE N	NAME GEP033	.GC
BI NE WIND	SPEED 250 0	0 CM/S AT	11.4	LCM	
ATR 1	темр. 27.0		11.4		
SOURC	E DESIGNATI	ON		1	
SOURC	E FLOW RATE	(CCS)		493.8	
SOURC	E GAS TEMPE	RATURE (C	:)	27.0	
TRACE	R TYPE		,	CH4	
TRACE	R CONCENTRA	TION (PPM	D .	654000.0	
BACKG	ROUND CONCE	NTRATION	(PPM)	32.09	
			()	_	
TUBE	NO. X	Y	Z	CONCENTRAT	CIONS (PPM)
-	(Cm)	(cm)	(cm)	Source 1	Tracer 1
Ť	50.0	.0	.0	1050.5	703.3
2	75.0	-10.0	.0	1746 4	1174 2
د	75.0	-5.0	.0	1050 A	1247 4
4	75.0	.0	.0	1000.4 1456 5	124/.4
5	75.0	5.0	.0	1430.3	504.0
7	100.0	10.0	.0	740.0	1521 1
· ·	100.0	-10.0	.0	22/0.9	1/10 7
0	125.0	-10.0	.0	2120.3	1555 6
10	125.0	-5.0	.0	2329.0	1595 4
11	125.0	5.0	.0	2390.3	1483 7
12	125.0	10 0	.0	1777 2	1194 3
13	150 0	10.0	.0	2349 5	1568 6
14	175 0	.0	.0	2097.8	1404.0
15	200 0	.0	.0	2094.3	1401.7
16	225.0	.0	.0	1996.8	1337.9
17	250.0	-10.0	.0	1609.1	1084.4
18	250.0	-5.0	.0	1664.3	1120.5
19	250.0	.0	.0	1853.6	1244.3
20	250.0	5.0	.0	1735.9	1167.3
21	250.0	10.0	.0	1735.7	1167.2
22	275.0	.0	.0	1695.2	1140.7
23	300.0	.0	.0	1546.9	1043.7
24	325.0	.0	.0	1484.2	1002.7
25	350.0	.0	.0	1337.2	906.6
27	375.0	-5.0	.0	1177.1	801.9
28	375.0	.0	.0	1230.0	836.5
29	375.0	5.0	.0	1216.8	827.8
30	375.0	10.0	.0	286.2	219.3
31	400.0	.0	.0	1118.0	763.2
33	450.0	.0	.0	992.1	680.9
34	475.0	.0	.0	931.9	641.5
35	500.0	-10.0	.0	887.8	612.7
36	500.0	-5.0	.0	881.0	608.3
37	500.0	.0	.0	897.6	619.1
38	500.0	5.0	.0	910.0	627.2
39	500.0	10.0	.0	921.0	634.4
40	525.0	.0	.0	852.1	589.3

RUN N BY NE WIND AIR T SOURC SOURC SOURC TRACE BACKG	UMBER 34 FF ON 0 SPEED 250.0 EMP. 27.0 E DESIGNATI E FLOW RATE E GAS TEMPE R TYPE R CONCENTRA ROUND CONCE	7-19-91 O CM/S A C A ON (CCS) RATURE (O TION (PPI NTRATION	FILE N F 11.4 F 11.4 C) (PPM)	IAME GEP03 CM 493.8 27.0 CH4 654000.0 18.16	4.GC
TUBE	NO.X	Y	Z	CONCENTRA	TIONS (PPM)
	(cm)	(Cm)	(CM)	Source 1	Tracer 1
1	50. 0		`.ó	.5	18.5
2	75.0	-10.0	.0	8.8	23.9
3	75.0	-5.0	.0	23.8	33.7
4	75.0	.0	.0	34.0	40.4
5	75.0	5.0	.0	65.8	61.2
6	75.0	10.0	.0	60.4	57.6
7	100.0	.0	.0	167.9	128.0
8	125.0	-10.0	.0	191.8	143.6
9	125.0	-5.0	.0	269.1	194.2
11	125.0	5.0	.0	377.2	264.9
12	125.0	10.0	.0	319.2	226.9
13	150.0	.0	.0	539.9	371.2
14	175.0	.0	.0	637.2	434.9
15	200.0	.0	.0	751.0	509.3
16	225.0	.0	.0	804.7	544.4
17	250.0	-10.0	.0	651.5	444.2
18	250.0	-5.0	.0	740.7	502.6
19	250.0	.0	.0	826.9	558.9
20	250.0	5.0	.0	472.5	327.2
21	250.0	10.0	.0	847.7	572.5
22	275.0	.0	.0	871.1	587.8
23	300.0	.0	.0	844.8	570.6
25	350.0	.0	.0	776.9	526.3
26	375.0	-10.0	.0	613.0	419.0
27	375.0	-5.0	.0	714.6	485.5
28	375.0	.0	.0	783.9	530.8
29	375.0	5.0	.0	763.7	517.6
30	375.0	10.0	.0	740.3	502.3
31	400.0	.0	.0	699.8	475.8
33	450.0	.0	.0	647.9	441.9
34	475.0	.0	.0	648.0	441.9
35	500.0	-10.0	.0	552.5	379.5
36	500.0	-5.0	.0	613.1	419.1
37	500.0	.0	.0	618.0	422.3
38	500.0	5.0	.0	630.9	430.8
39	500.0	10.0	.0	667.7	454.8
40	525.0	.0	.0	619.3	423.1

RUN N	IUMBER 35		FILE N	NAME GEP035	.GC
BY NE	IFF ON O	7-19-91			
WIND	SPEED 250.0	U CM/S AT	· 11.4		
AIR 1	EMP. 27.0			1 CM	
SOURC	E DESIGNATI			493.8	
SOURC	E GAS TEMPE	RATURE (C	!)	27.0	
TRACE	R TYPE	(,	CH4	
TRACE	R CONCENTRA	TION (PPM	0	654000.0	
BACKG	ROUND CONCE	NTRATION	(PPM)	21.76	
			\ /		
TUBE	NO. X	Y	Z	CONCENTRAT	IONS (PPM)
	(cm)	(cm)	(cm)	Source 1	Tracer 1
1	50.0	.0	.0	253.3	187.4
2	75.0	-10.0	.0	448.5	315.0
3	75.0	-5.0	.0	666.0	457.3
4	75.0	.0	.0	703.4	481.8
5	75.0	5.0	.0	507.1	353.4
0	/5.0	10.0	.0	205.0	195.0
/	100.0	-10.0	.0	1127 0	745 9
0 0	125.0	-10.0	.0	1279 6	858 6
10	125.0	-5.0	.0	1319 7	884.8
11	125.0	5.0	.0	1156.3	778.0
12	125.0	10.0	.0	897.0	608.4
13	150.0	.0	.0	1470.7	983.5
14	175.0	.0	.0	1450.8	970.6
15	200.0	.0	.0	1583.6	1057.4
16	225.0	.0	.0	1567.1	1046.6
17	250.0	-10.0	.0	1260.4	846.0
18	250.0	-5.0	.0	1372.1	919.1
19	250.0	.0	.0	1487.9	994.8
20	250.0	5.0	.0	1363.6	913.5
21	250.0	10.0	.0	1406.7	941.7
22	275.0	.0	.0	1435.9	960.8
23	300.0	.0	.0	1353.1	906.7
24	325.0	.0	.0	1212.1	814.5
25	350.0	.10.0	.0	1194.0	602.0
20	375.0	-10.0	.0	1047 7	706 9
27	375.0	-5.0	.0	1109 9	700.9
20	375.0	5.0	.0	1129.8	760.6
30	375.0	10.0	.0	1098.2	740.0
31	400.0	.0	.0	1015.4	685.8
33	450.0	.0	.0	894.0	606.4
34	475.0	.0	.0	865.4	587.7
35	500.0	-10.0	.0	776.1	529.3
36	500.0	-5.0	.0	813.0	553.5
37	500.0	.0	.0	850.0	577.7
38	500.0	5.0	.0	857.8	582.8
39	500.0	10.0	.0	853.2	579.7
40	525.0	.0	.0	813.5	553.8

RUN N BY NI	NUMBER EFF SPFFD	36 ON 250	07-19-91	FILE	NAME GEP03	6.GC
ATD 1	TEMD.	230.		11	4 CM	
SOUR	TE DESI	IGNAT		***	1	
SOUR	CE FLO	V RAT	E (CCS)		493.8	
SOUR	TE GAS	TEME	ERATURE (C)		27.0	
TRACE	TR TYPI		2.0.10.02 (0)		CH4	
TRACE	ER CON	- CENTE	ATION (PPM)		654000.0	
BACK	GROUND	CONC	ENTRATION	(PPM)	19.31	
TUBE	NO.	x	Y	Z	CONCENTRA	TIONS (PPM)
		(cm)	(cm)	(cm)	Source 1	Tracer 1
1	!	30.Ó	`.Ó	Ò.	.2	19.5
2	•	75.0	-10.0	.0	16.7	30.2
3	•	75.0	-5.0	.0	26.4	36.6
4	-	75.0	.0	.0	55.5	55.6
5	•	75.0	5.0	.0	31.4	39.8
6	•	75.0	10.0	.0	26.6	36.7
7	10	0.00	.0	.0	160.6	124.4
8	12	25.0	-10.0	.0	246.7	180.6
9	12	25.0	-5.0	.0	342.6	243.4
10	12	25.0	.0	.0	344.1	244.4
11	12	25.0	5.0	.0	324.7	231.7
12	12	25.0	10.0	.0	268.3	194.8
13	1!	50.0	.0	.0	519.8	359.3
14	1'	75.0	.0	.0	739.0	502.6
15	20	0.00	.0	.0	819.6	555.3
16	22	25.0	.0	.0	868.4	587.2
17	2!	50.0	-10.0	.0	748.4	508.8
18	2!	50.0	-5.0	.0	784.3	532.2
19	2	50.0	.0	.0	919.2	620.5
20	2:	50.0	5.0	.0	867.9	586.9
21	2!	50.0	10.0	.0	870.7	588.7
22	2	/5.0	.0	.0	919.5	620.7
23)C		.0	.0	914.9	61/.6 507 5
25	3:		.0	.0	808.8	20/.2
20		/5.0	-10.0	.0	124.0	473.3
21	ວ ວາ	75.0	-5.0	.0	/0/.5	554.5
20		75.0	.0	.0	030.3	50/./
29	د ۱۸		5.0	.0	002.5	JOJ.J EEA 3
27	40		.0	.0	750 2	554.5
22	4:		.0	.0	737.2	272.0
34	4		-10.0	.0	/20.J	474.3
22	5(-10.0	.0	543.1 600 n	4J7.7 160 0
20	50		-5.0	.0	700.9	407.7 187 g
/د دد	51		.0	.0	/00.0 600 1	402.0 176 e
20	50		10 0	.0	701 0	470.5 477 Q
<u> </u>	51	25 0	10.0	.0	681 0	46A 7
	J.	v	••	•••	001.0	

RUN N	UMBER 37	7-19-91	FILE N	NAME GEP037	.GC
WIND	SPEED 250.0	O CM/S AT	: 11.4	1 CM	
AIR T	EMP. 27.0	C AI	11.4	1 CM	
SOURC	E DESIGNATI	on		1	
SOURC	E FLOW RATE	(CCS)		493.8	
SOURC	E GAS TEMPE	RATURE (C	;)	27.0	
TRACE	R TYPE			CH4	
TRACE	R CONCENTRA	TION (PPM	()	654000.0	
BACKG	ROUND CONCE	NTRATION	(PPM)	30.26	
TUBE	NO. X	Y	Z	CONCENTRAT	IONS (PPM)
-	(Cm)	(cm)	(Cm)	Source 1	Tracer 1
2 T	50.0	-10.0	.0	533.2	3/9.0
2	75.0	-10.0	.0	377.7	422.0
Л	75.0	-5.0	.0	1128 7	768 4
- T	75.0	5.0	.0	947.1	649.6
5	75.0	10.0	.0	490.1	350.8
7	100.0	.0	.0	1554.6	1046.9
8	125.0	-10.0	.0	1562.2	1051.9
9	125.0	-5.0	.0	1820.2	1220.6
10	125.0	.0	.0	1872.5	1254.8
11	125.0	5.0	.0	1810.1	1214.0
12	125.0	10.0	.0	1463.0	987.0
13	150.0	.0	.0	2081.3	1391.4
14	175.0	.0	.0	2084.3	1393.3
15	200.0	.0	.0	2032.3	1359.3
16	225.0	.0	.0	1936.2	1296.5
17	250.0	-10.0	.0	1678.7	1128.1
18	250.0	-5.0	.0	1677.5	1127.3
19	250.0	.0	.0	1780.6	1194.7
20	250.0	5.0	.0	1656.9	1113.8
21	250.0	10.0	.0	1651.9	1113.8
22	2/5.0	••	.0	1677 0	1042 5
23	300.0	.0	.0	104/.0	1042.5 QEE 1
24	350 0	.0	.0	1326 8	898 0
26	375.0	-10.0	.0	1114.1	758.8
27	375.0	-5.0	.0	1209.4	821.2
28	375.0	.0	.0	1226.3	832.2
29	375.0	5.0	.0	1185.1	805.3
30	375.0	10.0	.0	1151.8	783.5
31	400.0	.0	.0	1109.8	756.0
33	450.0	.0	.0	968.2	663.4
34	475.0	.0	.0	908.8	624.6
35	500.0	-10.0	.0	850.0	586.1
36	500.0	-5.0	.0	876.1	603.2
37	500.0	.0	.0	886.9	610.3
38	500.0	5.0	.0	865.4	596.2
39	500.0	10.0	.0	900.4	619.1
40	525.0	.0	.0	830.3	573.3

RUN N	UMBER 38		FILE	NAME GEPOSE	.GC
BY NE	FF ON C	7-19-91			
WIND	SPEED 250.0	O CM/S P	T 11.	4 CM	
AIR I	EMP. 27.0) C A	T 11.4	4 CM	
SOURC	E DESIGNATI	ON		1	
SOURC	E FLOW RATE	CCS)		493.8	
SOURC	E GAS TEMPE	ERATURE ((C)	27.0	
TRACE	R TYPE			CH4	
TRACE	R CONCENTRA	ATION (PE	YM)	654000.0	
BACKG	ROUND CONCE	INTRATION	I (PPM)	19.32	
TUBE	NO. X	Y	Z	CONCENTRAT	CIONS (PPM)
	(CM)	(cm)	(cm)	Source 1	Tracer 1
1	50.0	.0	.0	6.7	23.7
2	75.0	-10.0	.0	70.7	65.5
3	75.0	-5.0	.0	100.1	84.8
4	75.0	.0	.0	118.0	96.5
5	75.0	5.0	.0	138.1	109.7
6	75.0	10.0	.0	105.9	88.6
7	100.0	.0	.0	441.4	308.0
8	125.0	-10.0	.0	466.7	324.5
9	125.0	-5.0	.0	628.5	430.4
10	125.0	.0	.0	721.7	491.3
11	125.0	5.0	.0	657.6	449.4
12	125.0	10.0	.0	522.5	361.0
13	150.0	.0	.0	964.5	650.1
14	175.0	.0	.0	1159.8	777.8
15	200.0	.0	.0	1195.5	801.1
16	225.0	.0	.0	1216.5	814.9
17	250.0	-10.0	.0	963.6	649.5
18	250.0	-5.0	.0	1086.5	729.9
19	250.0	.0	.0	1225.3	820.6
20	250.0	5.0	.0	1174.2	787.2
21	250.0	10.0	.0	1169.1	783.9
22	275.0	.0	.0	1205.7	807.8
23	300.0	.0	.0	1185.3	794.5
24	325.0	.0	.0	1122.0	753.1
25	350.0	.0	.0	1068.2	717.9
26	375.0	-10.0	.0	808.6	548.1
27	375.0	-5.0	.0	918.0	619.7
28	375.0	.0	.0	989.1	666.2
29	375.0	5.0	.0	995.1	670.1
30	375.0	10.0	.0	956.1	644.6
31	400.0	.0	.0	935.8	631.3
33	450.0	.0	.0	829.5	561.8
34	4/5.0	.0	.0	/94.1	538.6
35	500.0	-10.0	.0	/19.3	489.7
30	500.0	-5.0	.0	/50.1	509.9
37	500.0	U	.0	764.0	212.0
38	500.0	5.0	.0	/59.0	515.7
40	500.0	10.0	.0	/5/.6	514.8
40	525.0	.0	.0	18.0	488.9

RUN N	NUMBER 39		FILE I	NAME GEPO39	.GC
BY NI	EFF ON	07-19-91			
WIND	SPEED 250.	00 CM/S AT	11.4	4 CM	
AIR 7	TEMP. 27.	O C AT	11.4	4 CM	
SOUR	CE DESIGNAT	ION		1	
SOUR	E FLOW RAT	E (CCS)		493.8	
SOURC	CE GAS TEMP	ERATURE (C	:)	27.0	
TRACE	ER TYPE	•	•	CH4	
TRACE	ER CONCENTR	ATION (PPM	()	654000.0	
BACK	ROUND CONC	ENTRATION	(PPM)	23.49	
			• •		
TUBE	NO. X	Y	Z	CONCENTRAT	TIONS (PPM)
	(CM)	(Cm)	(cm)	Source 1	Tracer 1
1	50.0	.0	•0	2072.0	1378.5
2	75.0	-10.0	.0	1736.6	1159.2
3	75.0	-5.0	.0	2671.7	1770.7
4	75.0	.0	.0	3175.1	2099.9
5	75.0	5.0	.0	2780.4	1841.8
6	75.0	10.0	.0	1569.3	1049.8
7	100.0	.0	.0	3399.2	2246.5
8	125.0	-10.0	.0	2754.5	1824.9
9	125.0	-5.0	.0	3276.1	2166.0
10	125.0	.0	.0	3433.8	2269.1
11	125.0	5.0	.0	3322.0	2196.0
12	125.0	10.0	.0	2720.1	1802.4
13	150.0	.0	.0	3233.9	2138.4
14	175.0	.0	.0	2848.6	1886.4
15	200.0	.0	.0	2598.3	1722.7
16	225.0	.0	.0	2367.1	1571.5
17	250.0	-10.0	.0	1984.0	1321.0
18	250.0	-5.0	.0	2016.3	1342.1
19	250.0	.0	.0	2174.1	1445.3
20	250.0	5.0	.0	2075.3	1380.7
21	250.0	10.0	.0	2118.4	1408.9
22	275.0	.0	.0	1954.8	1301.9
23	300.0	.0	.0	1803.1	1202.7
24	325.0	.0	.0	1637.1	1094.1
25	350.0	.0	.0	1498.5	1003.5
26	375.0	-10.0	.0	1243.5	836.7
27	375.0	-5.0	•0	1336.0	897.2
28	375.0	.0	•0	1382.6	927.7
29	375.0	5.0	.0	1379.5	925.7
30	375.0	10.0	.0	1344.1	902.5
31	400.0	.0	.0	1262.0	848.8
33	450.0	.0	•0	1089.1	735.8
34	475.0	.0	•0	1025.8	694.3
35	500.0	-10.0	• 0	940.5	638.5
36	500.0	-5.0	•0	974.3	660.7
37	500.0	0	.0	975.9	661.7
38	500.0	5.0	.0	954.5	647.7
39	500.0	10.0	• 0	980.8	664.9
40	525.0	.0	.0	917.4	623.5

APPENDIX D: FACILITIES AND TECHNIQUES

D.1: FLUID DYNAMICS AND DIFFUSION LABORATORY

Engineering Research Center (ERC) is located at Foothills Campus of Colorado State University in Fort Collins, Colorado. This ERC has facilities for Agricultural & Chemical Engineering, Civil Engineering, Electrical Engineering and Mechanical Engineering Department including Groundwater Laboratory, Geotechnical Laboratory, Hydraulics Laboratory, Fluid Dynamics and Diffusion Laboratory (FDDL), Thermofluid Laboratory, Laser laboratory, Aerosol Science Laboratory and Heat Transfer Laboratory.

The FDDL is an integral part of the Fluid Mechanics and Wind Engineering Program, and houses facilities with unique research capabilities. Special boundary layer wind tunnels for simulation of atmospheric motions provide a capability for unique research on wind problems of state. environmental engineering and national and international concerns. Modern instrumentation and a variety of flow facilities support fundamental investigations on turbulence and turbulent diffusion. The Fluid Mechanics and Wind Engineering Program was awarded in 1989 from National Society of Professional Engineers for its distinguished research.

Research developed during the first three decades has revolved around basic fluid dynamics - turbulence, heat and mass transfer, boundary layers, jets and wakes, vortex dynamics, and flow separation; physical modeling - winds near the surface of Earth (atmospheric boundary layers), atmospheric diffusion, and mountain and urban winds; basic studies in aerosol mechanics - particle generation techniques, sampling and collection investigations, development of ambient aerosol samplers and fractional systems, behavior of particles in turbulent shear flows, deposition of particles in plant canopies; wind engineering - air pollution control, behavior of smoke plumes from power plant stacks, hazard analysis of liquid natural gas (LNG) storage, industrial aerodynamics, environmental design for urban centers, wind power, heat transfer from buildings, and wind forces on buildings and bridges; turbomachinery - effects of turbulence on the performance of blade cascades; and instrumentation - aerosol and tracer gas concentration sensors and hot wire anemometry. Research in these areas is sponsored primarily by the National Science Foundation, the Office of Naval Project SQUID, Research. the National Aeronautics and Space Administration, the Department of Energy, the Gas Research Institute. the Department of Transportation, the Nuclear Regulatory Commission, the Environmental Protection Agency, and the Electric Power Research Institute.

Research in the Program is complemented by a wide variety of laboratory investigations of wind forces on structures, atmospheric diffusion, and other wind engineering problems associated with the design and planning of major engineering projects. These investigations, sponsored by leading consulting and industrial firms throughout the country, utilize many of the research results obtained by the Program staff and students and help identify areas that will be productive for new research.

Figure A-1 below shows the plan view layout of the FDDL laboratory facilities including the meteorological wind tunnel, environmental wind tunnel and industrial aerodynamics wind tunnel.

Figure A-1 Fluid Dynamics and Diffusion Laboratory Layout

The unique meteorological wind tunnel has an overall length of 200 feet with a 6-foot by 6-foot test or working section 100 feet long. Heating and cooling of air in the 18-foot by 18-foot return flow section of the recirculating tunnel provides extreme flexibility for simulating a wide range of atmospheric thermal stratifications, as well as elevated inversions. This thermal control, coupled with well-controlled flow speeds from 0.0 to 100 miles per hour and a long test section, enables boundary layer flows similar to those found in the real atmosphere to be modeled with accuracy. Thus, this facility provides an ideal medium for fundamental studies on the relationship of mean wind speed and turbulence to surface roughness, thermal stratification and topography. On the other hand, the simulation of natural winds for specific sites provides an ideal means for physical modeling of wind effects on existing or proposed buildings, urban developments, or any other of man's activities on earth's surface.

The FDDL houses an environmental wind tunnel with working section 60 feet long and a cross section of 12 by 8 feet. Using wind speed from 0.5 miles per hour up to 34 miles per hour, this facility provides excellent capability for investigation of wind effects on large areas. Dispersion of cloud seeding materials over mountain ranges, dispersion of automobile

exhaust in new urban developments and existing cities, effects of buildings and topography on power plant plumes, and heat island effects over large urban areas have been investigated successfully in this facility.

The industrial aerodynamics wind tunnel with a working section 60 feet long and 6 feet by 6 feet in cross section provides additional capabilities for basic studies of boundary layer characteristics. Many studies of evaporation from soil and water surfaces, wind pressures on model structures, ventilation of buildings, and the movement of soil and snow by wind have been made in this wind tunnel, which has a speed range of 1 to 70 miles per hour.

A gust wind tunnel equipped with two arrays of oscillating air foils provides opportunities for research on the effects of turbulence scale on the aerodynamics of bluff bodies and aerodynamic stability of long-span bridge decks.

Instrumentation for measurement of flow variables and tracer gas concentrations is available to support either the most advanced studies on turbulence and diffusion or the applied investigations of wind engineering. This instrumentation includes hot wire anemometer system; electronic pressure transducers and meters; aerosol, radioactive gas, and helium and hydrocarbon concentration measurement systems; optical systems; and strain gage balances. Data processing equipment includes analog-todigital converters connected to PC, AT and 386 type computer, spectral analyzers, probability density analyzers, and a variety of special purpose Additional data processing and numerical analyses are systems. accomplished on the University CDC 170 model 720 digital computer, or the CRAY 1 digital computer of the National Center for Atmospheric Research Recording capabilities are provided by 50 FM magnetic tape (NCAR). channels, 25 digital tape channels, floppy disks, and a variety of motion and still picture cameras.

D.2: ENVIRONMENTAL WIND TUNNEL DESCRIPTION

This wind tunnel, especially designed to study atmospheric flow phenomena, incorporates special features such as an adjustable ceiling, a rotating turntable and a long test section to permit adequate reproduction of micrometeorological behavior. Mean wind speeds of 0.1 to 15 m/sec in the EWT can be obtained. A boundary-layer thickness up to 1.5 m can be developed over the downwind portion of the EWT test section by using vortex generators at the test section entrance and surface roughness on the floor. The flexible test section on the EWT roof is adjustable in height to permit the longitudinal pressure gradient to be set at zero.

Figure A-2 Environmental Wind Tunnel Schematic

D.3: WIND SPEED MEASUREMENT DESCRIPTION

Velocity Standards

a. CSU Mass Flow System

The velocity standard used in the present study consisted of a Omega Model FMA-78P4 mass controller and a profile conditioning section designed and calibrated by the Fluid Dynamics and Diffusion (FDDL) staff at Colorado State University (CSU). The mass flow controller sets mass flow rate independent of temperature and pressure. The profile conditioning section forms a flat velocity profile of very low turbulence at the position where the hot-film-probe is located. Incorporating a measurement of the ambient atmospheric pressure, temperature and a profile correction factor permits the calibration of velocity at the measurement station from 0.1 - 2.0 m/s to within \pm 5 percent and from 2.0 - 4.7 m/s to within \pm 3 percent. This calibration nozzle is mounted on two computer controlled rotary tables for precise flow angle calibrations of multi-film probes.

b. TSI Calibrator

The TSI Model 1125 Velocity Calibrator System is designed to calibrate hot wire and hot film sensors over wide ranges of velocities. It is primarily for air but can also be modified for use in water and other fluids. In air the velocity range is from approximately 0.1 m/s to 305 m/s. This wide range can be covered using manometers with a range of 0.5 inch of water to approximately 400 inch of water (30 inch of mercury). The calibrator has been designed to be as simple and flexible as possible, while still maintaining good calibration accuracy.

In using the calibrator for air, the unit can be connected to a shop compressed air line. An On-Off line valve, pressure regulator, needle valve, and a heat exchanger are installed in line with the calibrator. This arrangement gives good control of the velocity through the calibrator. Essentially the same arrangement can be used for calibrating in other gases. Rather than the compressed air line the source can be a tank of bottled gas or other convenient supply.

The accuracy of the system is primarily dependent on the accuracy of the pressure measurement. When using the inside chambers with the exterior nozzle in place, the accuracy is \pm 2 percent down to 3 m/s. Below 3 m/s, the accuracy is \pm 5 percent down to approximately 0.1 m/s. Below 0.1 m/s, approximately \pm 10 percent accuracy can be expected.

c. Pitot Probe

Pitot-static probes are used as a velocity standard during the calibration of the different hot film systems and to provide the reference upwind velocity measurement. The principles of operation of pitot-static probes are described in any fundamental text on fluid mechanics and will

not be discussed in detail here. The operational relationship for these probes is $U = (2g_c \Delta P/\rho)^{1/2}$, where U = velocity, $g_c =$ gravitational conversion constant, $\Delta P =$ difference between static and stagnation pressures, and ρ is the air density. ρ is calculated from ideal gas law and ΔP is measured using a Datametrics Electronic Manometer. The pitot-static probe measurements are accurate to within ± 2 percent of the actual velocity.

Single-Hot-Film Probe Measurements

Single-hot-film (TSI 1220 Sensor) measurements are used to document the longitudinal turbulence levels. During calibration the probe voltages are recorded at several velocities covering the range of interest. These voltage-velocity (E,U) pairs are then regressed to the equation $E^2 = A + BU^c$ via a least squares approach for various assumed values of the exponent c. Convergence to the minimum residual error was accelerated by using the secant method to find the best new estimate for the exponent c.

The hot-film-probe is mounted on a vertical traverse and positioned over the measurement location in the wind tunnel. The anemometer's output voltage is digitized and stored within an IBM AT computer. This voltage time series was converted to a velocity time series using the inverse of the calibration equation; $U = [(E^2 - A)/B]^{1/c}$. The velocity time series is then analyzed for pertinent statistical quantities, such as mean velocity and root-mean-square turbulent velocity fluctuations. The computer system moves the velocity probe to a vertical position, acquire the data, then moves on to the next vertical positions, thus obtaining an entire vertical velocity profile automatically.

Error Statement

The calibration curve yields hot film anemometer velocities that were always within 2 percent of the known calibrator velocity. Considering the accumulative effect of calibrator, calibration curve fit and other errors the model velocity time series should be accurate to within 5 percent.

Cross-Film Probe Measurements

Cross-film measurements are used to document longitudinal, lateral and vertical turbulence levels along with cross-component correlations such as Reynolds stresses.

During the calibration of the TSI 1241 X-film probe it is placed at the nozzle of the calibrator with the probe support axis parallel to air flow. In this position the angle between each sensor and the flow vector is 45°. Thus, the yaw angles for each sensor are 45°. The voltage from each anemometer channel are digitized for several velocities covering the range of interest. These voltage-velocity pairs (E_i , U_i ; i = 1,2), at a fixed angle, are fit to the equation $E_{i,j}^2 = A_i + B_i'(U_j)^{ci}$; i = 1,2; j = 1,nwhere $B_i' = B_i(\cos^2\phi_i + k^2\sin^2\phi_i)^{ci/2}$ $\phi_i = yaw$ angle between velocity vector and film i k = yaw factor n = number of the calibration points

via a least squares fit with the secant method to find the best new estimate of exponent, c_i .

Note that if the yaw factor, k, equals zero then a sample cosine law dependence of the heat flux exists. To determine the yaw factor, k, the air velocity is set at a constant value, and the probe is rotated about its third axis so that voltage samples are taken for a wide range of yaw angle variation on both films. These voltage-yaw angle pairs, $(E_i, \phi_i; i = 1, 2)$ are regressed to the equation

$$B_{i'} = (E_{i,j}^2 - A_i)/U^{ci} = B_i(\cos^2\phi_{i,j} + k_i^2\sin^2\phi_{i,j})^{ci/2}$$

where i = 1, 2 and j = 1, n

via a least squares approach with the secant method to find the best new estimate for the yaw factor, k_i . A_i , B_i , c_i and k_i for both films are thus obtained. For the reduction algorithm used, k_i must be equal for both films and not a function of velocity. Providing that both films have similar aspect ratio, then both k_i values should be of similar magnitude; hence, setting them equal does not introduce large errors. Once a value for k is specified then a least squares fit will determine the optimal values for B_i . Once the value of k is determined for a specific probe, it is no longer necessary to perform further angle calibrations.

Given the calibration constants A_i , B_i , and c_i , then the equations $E_i^2 = A_i + B_i (V_{eff_i})^{ci}$; i = 1,2;

where
$$V_{eff,i} = V(\cos^2\phi_i + k^2\sin^2\phi_i)^{1/2}$$
; $i = 1,2;$
 $V_{eff,i} = effective cooling velocity for film i, and $V = total velocity vector approaching sensor array$$

are defined. To take measurements with this calibrated X-film probe, both anemometer signals and the temperature signal are digitized and stored on a disk file within an IBM AT computer. These voltage time series are converted to u and v (or w) velocity time series using the following algorithm proposed by Brunn [1974],

$$u = (V_{eff,1} + V_{eff,2}) / [2(\cos^2 \alpha + k^2 \sin^2 \alpha)^{1/2}],$$

v (or w) = $(V_{eff,1} - V_{eff,2}) / [(\cos^2 \alpha + k^2 \sin^2 \alpha)^{1/2} A \tan \alpha],$

where A = $\cos^2 \alpha (1-k^2) / [\cos^2 \alpha (1 - k^2) + k^2]$, $\alpha = 45^\circ$, $V_{e \pm f, i} = [E_i^2 - A_i^*) / B_i^*]^{1/ci}$, $A_{i*} = A_i T_{factor}$, $B_i = B_i T_{factor}$, $T_{factor} = (T_{sensor} - T_{environment}) / (T_{sensor} - T_{calibration})$.

Error Statement

The accuracy of X-film velocity measurements and associated reduction algorithms can be estimated by directing different known mean velocity vectors at the probe. Tests at calibration temperature determine that the mean velocity magnitude is generally within ± 5 percent of the calibration value. The error in angle calculation was approximately $\pm 2^{\circ}$ for angular deviations of 15° or less and somewhat larger than this for greater deviations. Considering cumulative effect of calibrator, calibration curve fit and temperature correction errors, the model longitudinal velocity time series should be accurate to within ± 10 percent. The lateral or vertical velocity time series errors are greater than those of the longitudinal component but should be accurate to within ± 15 percent.

Velocity Measurement System

A flow-logic chart of velocity calibration system, velocity measurement system, and the positioning system with the wind tunnel is displayed in Figure A-3 on the following page.

Figure A-3 Velocity Calibration and Measurement System

D.4: FLOW VISUALIZATION TECHNIQUES

Smoke Generator System

A visible plume is produced by passing the metered simulant gas through a Rosco Model 8215 Fog/Smoke Machine located outside the wind tunnel and then out of the model stack. The plume is illuminated with high intensity back lighting. The visible plumes for each test are recorded on VHS video cassettes with a Panasonic Omnivision II camera/recorder system. Run number titles are placed on the video cassette with a title generator.

Video Image Analysis System

Digital image processing and computer aided enhancement methods provide a means to modernize and significantly improve the conventional smoke wire technique. The visible behavior of the smoke line is now recorded on by a high-resolution television camera system on VCR tape. The analog images may be transformed into digital arrays, and the images can then be enhanced and manipulated by a computer system.

The hardware components of the FDDL Video Image Processing System (VIPS) are presented in the figure on the following page. The image capturing part of the system includes a SVHS camcorder and a four-head one-half inch tape VCR recorder. These images may be edited into convenient sequences using a dual-monitor, dual-SVHS VCR recorder editing system. Unfortunately, most VCR systems can not be controlled well enough to maintain adequate picture registration when advancing frame-by-frame under computer control [Lee et al., 1988]. Hence, the edited VCR tape must be additionally recorded onto a video disk. Currently this transfer is being accomplished at another laboratory.

Computer control may be used to command a video-disk player to project each individual video frame to a high-resolution video monitor. We use a high-resolution image capturing board installed in a PC-386 compatible microcomputer to digitize the image. A standard NTSC video signal (30 frames/sec) can be digitized with 8-bit precision. The board we use produces an intensity field of 512 x 512 pixels at 256 possible grey levels. Given the image interweaving typical of an NTSC signal the frames can be split to provide images at 60 frames/sec.

Once the video picture is digitized, the image may be enhanced by a) subtracting the background, b) overlaying a coordinate system, c) enhancing front, center, or back edge of the image, or d) assigning colors to different intensity levels. One can also extract edge pixel locations to calculate velocities or combine images to provide animation.

Often it is appropriate to print or restore enhanced images. The FDDL VIPS includes hardware to project the image to a RGB or VGA monitor; store the digital image to floppy or hard disks, streaming tapes, optical

digital disk, or on network file-servers; or print to a laser printer or color slide maker. Alternatively, a VGA-to-NTSC hardware card can reformulate the signal to record to a conventional VCR or a color video printer.

Figure A-4 Video Image Analysis System

D.5: CONCENTRATION MEASUREMENT DESCRIPTION

The experimental measurements of concentration were performed using a Hewlett Packard gas-chromatograph and a sampling systems designed by Fluid Dynamics and Diffusion Laboratory staff.

Gas Chromatograph

A gas chromatograph (Hewlett-Packard Model 5710A) (GC) with flame ionization detector (FID) operates on the principle that the electrical conductivity of a gas is directly proportional to the concentration of charged particles within the gas. The ions in this case are formed by the burning a mixture of hydrogen and the sample gas in the FID. The ions and electrons formed pass between an electrode gap and decrease the gap resistance. The resulting voltage drop is amplified by an electrometer and passed to a Hewlett-Packard Model 3390A integrator. When no effluent gas is flowing, a carrier gas (nitrogen) flows through the FID. Due to certain impurities in the carrier, some ions and electrons are formed creating a background voltage or zero shift. When the effluent gas enters the FID, the voltage increase above this zero shift is proportional to the degree of ionization or correspondingly the amount of tracer gas present. Since the chromatograph used in this study features a temperature control on the flame and electrometer, there is very low drift of the zero shift. Even given any zero drift, the HP 3390A, which integrates the effluent peak, also subtracts out the zero drift.

The lower limit of measurement is imposed by the instrument sensitivity and the background concentration of tracer within the air in the wind tunnel. Background concentrations are measured and subtracted from all data.

Sampling System

The tracer gas sampling system consists of a series of fifty 30 cc syringes mounted between two circular aluminum plates. A variable-speed motor raises a third plate, which lifts the plunger on all 50 syringes, simultaneously. Computer controlled valves and tubing are connected such that airflow from each tunnel sampling point passes over the top of each designated syringe. When the syringe plunger is raised, a sample from the tunnel is drawn into the syringe container. The sampling procedure consists of flushing (taking and expending a sample) the syringe three times after which the test sample is taken. The draw rate is variable and generally set to be approximately 6 cc/min.

The sampling system is periodically calibrated to insure proper function of each of the valves and tubing assemblies. To calibrate the sampler each intake is connected to a manifold. The manifold, in turn, is connected to a gas cylinder having a known concentration of tracer gas. The gas is turned on, and a valve on the manifold is opened to release the pressure produced in the manifold. The manifold is allowed to flush for about one minute. Normal sampling procedures are carried out during calibration to insure exactly the same procedure is reproduced as when taking a sample from the tunnel. Each sample is then analyzed for tracer gas concentration. Percent error is calculated, and "bad" syringe/tube systems (error > 2 percent) are not used or repaired.

Test Procedure

The test procedure consisted of:

- 1) Setting the proper tunnel wind speed,
- 2) Releasing the metered mixtures of source gas from the plant stack,
- 3) Withdrawing samples of air from the tunnel designated locations, and
- 4) Analyzing the samples with a FID.

The samples were drawn into each syringe over a 200 s (approximate) time period and then consecutively injected into the GC.

The procedure for analyzing the samples from the tunnel is:

- 1) Introduce the sample into the GC which separates the ethane tracer gas from other hydrocarbons,
- 2) The voltage output from the chromatograph FID electrometer is sent to the HP 3390A Integrator,
- 3) the HP 3390A communicates the measured concentration in ppm to an IBM computer for storage, and
- 4) These values, χ_{mea} , along with the response levels for the background χ_{bg} and source χ_{source} are converted into source normalized model concentration by the equation:

$$\chi_{\rm m} = (\chi_{\rm mea} - \chi_{\rm bg}) / (\chi_{\rm source} - \chi_{\rm bg})$$

5) Field equivalent concentration values are related to model values by the equation:

$$\chi_p = \frac{\chi_m}{\chi_m + (1 - \chi_m) \left[V(T_a/T_s) \right]_m / \left[V(T_a/T_s) \right]_p}$$

where $V = Q/U_{\rm H}L^2$,

and L is the characteristic length scale. When there is no distortion in the model-field volume flux ratio, V, and the plumes are isothermal this equation reduces to $\chi_p = \chi_m$.

Error Statement

Background concentrations, χ_{bg} , (the result of previous tests within the laboratory), are measured to an accuracy of 20 percent. The larger measured concentrations, χ_{mea} , are accurate to 2 percent. The source gas concentration, χ_{source} , is known to within 10 percent. Thus the source normalized concentration for $\chi_{mea} >> \chi_{bg}$ is accurate to approximately 3 percent. For low concentration values, $\chi_{mea} > \chi_{bg}$, the errors are larger.

Concentration Measurement System

A flow-logic chart of the source gas release, gas sampling, and concentration measurement systems is displayed in Figure A-5 on the following page.

Figure A-5 Concentration Sampling and Measurement System Schematic