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Abstract

Real-time applications continue to increase in impor-
tance as they are employed in various critical areas, such as
command and control systems. These applications have tra-
ditionally required custom-made systems to execute them.
Recently, with the widespread use of increasingly powerful
commercial off-the-shelf (COTS) products, some real-time
system designers have started a shift from custom devel-
opment to COTS-based systems to achieve lower costs and
more flexible systems. This research investigates the prob-
lem of allocating real-time applications to a set of COTS
heterogeneous machines connected together by a COTS
high-speed network. The heuristics were implemented on
the High Performance Distributed Computing Program’s
(HiPer-D) Naval Surface Warfare Center (NSWC) testbed.
At the specification of NSWC, the goal of this study is to
design static resource allocation heuristics that balance the
utilization of the computation and network resources in the
HiPer-D system based on the system information provided.
The broader goal is to maximize the time before dynamic re-
allocation is required for managing an increased workload
at runtime.

This research was supported by the DARPA/ITO Quorum Program
through the Office of Naval Research under Grant No. N00014-00-1-0599.
Some of the equipment used was donated by Intel and Microsoft.

1. Introduction

The importance of real-time systems continues to grow
as they are used in various critical areas, such as com-
mand and control systems, intensive care monitoring, flight
control systems, process control systems, multimedia, and
high-speed communication systems [35]. In the past, com-
putational requirements for some real-time applications
could only be met by custom-made systems. Such systems
generally employed special purpose computers, intercon-
nects, languages, and operating systems designed and built
to execute those real-time applications. Typically, these cus-
tom solutions are expensive and have limited flexibility. Re-
cently, however, with the widespread use of increasingly
powerful commercial off-the-shelf(COTS)products, some
real-time system designers have started a shift from custom
development to COTS-based systems to achieve lower costs
and more flexible systems [39].

To use COTS-based systems effectively as parts of a
larger system, one needs to exploit the heterogeneity in pro-
cessor speeds, memory structures, specialized hardware ca-
pabilities, etc., that most likely will be present in different
COTS products.Heterogeneouscomputing(HC) is the co-
ordinated use of different types of machines, networks, and
interfaces to meet the requirements of widely varying appli-
cation mixtures and to maximize the combined performance
or cost-effectiveness, e.g., [10, 14, 19, 37]. A typical real-
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time HC system consists of heterogeneous sets of sensors,
real-time applications, machines, and actuators. An impor-
tant research problem is how to assign resources to applica-
tions (matching) and order the execution of the applications
(scheduling) so as to maximize some performance criterion
without violating any real-time constraints. This process of
matching and scheduling is calledmapping.

Two different types of mapping are static and dynamic.
Static mapping is performed when the applications are
mapped in an off-line planning phase [9], e.g., when a sys-
tem is first started up and a mapping is needed to ensure
that all real-time constraints will be met for a giveninitial
workload(i.e., the set of initial sensor outputs). Dynamic
mappingis performed when the applications are mapped in
an on-line fashion [36], e.g., when an increase in the work-
load of a system causes quality of service violations to oc-
cur [25, 44], or when new applications arrive unpredictably.
Both types of mapping problems have been shown, in gen-
eral, to be NP-complete [13, 16, 26]. Thus, the development
of heuristic techniques to find near-optimal mappings is an
active area of research, e.g., [6, 5, 9, 10, 14, 17, 36, 38, 45].

MSHN (Management System for Heterogeneous Net-
works) is a collaborative research effort among Colorado
State University, Purdue University, the University of
Southern California, NOEMIX, and the Naval Postgraduate
School [21]. It is supported by the DARPA/ITO Quorum
Program. One objective of MSHN is to design and evaluate
mapping heuristics for different types of HC environments,
including the COTS-basedHigh Performance Distributed
Computing Program (HiPer-D) environment at the Naval
Surface Warfare Center, Dahlgren Division (NSWCDD)
[39].

The contribution of this research is the design and evalu-
ation of five mapping heuristics for the initial allocation of
resources to applications in the HiPer-D environment. The
heuristics are compared by using simulation experiments,
and it is shown that two heuristics, MIP* and HRA Max-
min, are particularly suited for HiPer-D-like HC systems
with high heterogeneity.

A general framework for a HiPer-D subsystem is shown
in Figure 1 and a specific example is shown in Figure 2. In
Figure 1, the output from a radar is processed by a group
of applications, and a signal is then produced to control the
firing of a missile. The nodes denote applications in the
real-time system. In Figure 2, Fire Sim 21, OTH (Over the
Horizon) Data Server, and ALT (Air Engagement Control
Local Track) Data Server send periodic data to the applica-
tions. Tacfire, CFF (Call for Fire) Broker, Land Attack En-
gagement Server, Deconflict Server, Gun Sim, and Display
Components are the applications to be mapped. The arrows
denote communications, and the labels next to them denote
the network protocols used for communications. The la-
bels in parentheses next to the applications denote the types

Figure 1. An example real-time system.

of machines on which those applications can execute. The
HiPer-D system consists of a number of such systems.
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Figure 2. An example HiPer-D subsystem
composed of heterogeneous COTS machines
and networks.

At the specification of NSWCDD, the goal of this study
is to design static mapping heuristics that minimize the uti-
lization of the most utilized computation or network re-
source in the HiPer-D system. The broader goal is to max-
imize the time before dynamic re-mapping is required for
managing an increased workload at runtime.

The rest of the paper is organized as follows. Section
2 outlines how this work is related to the previous work in
this area. The system model is described in Section 3. Sec-
tion 4 presents the static mapping heuristics designed for the
NSWC system. The details of the simulation experiments
are given in Section 5. Section 6 concludes the paper.

2. Related Work

Many research efforts in the literature concentrate on
mapping real-time applications on a uniprocessor (e.g.,
[4, 7, 12, 20, 23, 28, 29, 30, 31, 32, 33, 34, 43, 46]). Even
though these papers present good schemes to schedule real-
time tasks on a uniprocessor, they could not be directly ap-
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sensor actuator
non-blocking

 switch

Figure 3. The hardware model. All machines
have dedicated, full duplex Ethernet connec-
tions to a non-blocking switch.

plied to our work because our research assumes a very dif-
ferent environment that includes multitasking on multiple
processors with multitasking communication links, contin-
uously running applications, and heterogeneous distributed
processors.

Some research efforts assume a multiprocessor (some-
times a multi-resource) environment (e.g., [11, 15, 22, 41,
47]). The research in [11, 15, 47] is not directly applica-
ble because, unlike our research, it does not assume hetero-
geneous distributed multitasking processors. The work in
[8, 24, 40] has the same system model for sensors, tasks,
and actuators as the model used in our research. These re-
search efforts are very different because in our research the
processors and the communication links can perform multi-
tasking.

3. Model

The system consists of heterogeneous sets of sensors,
real-time applications, machines, and actuators. Each ma-
chine on the network has a full-duplex Ethernet connection
to a non-blocking switch. The sensors and actuators have
half-duplex connections (Figure 3). Each sensor produces
data periodically, and these data streams are fed into ap-
plications. The applications process the data and send the
output to other applications or to actuators (Figures 1 and
2).

Let M be the set of machines in the system. Each ma-
chine inM is characterized by its floating point and integer
SPEC values [42], and the “background load” on its CPU
and input/output network links. Thebackgroundloadson a
machine are the utilizations of the CPU, input link, and out-
put link before any applications are mapped on the system.

LetA be the set of applications that need to be mapped.
All applications inA execute continuously to process the
periodic inputs that arrive from the sensors or to process
input data from the predecessor applications. An applica-
tion can start processing input data as soon as the data is
available and the application has finished processing prior

data inputs. Based on the problem definition provided by
NSWCDD, an application is characterized by the CPU, in-
put network link, and output network link utilizations that
it requires on a given machine to finish within a given time
constraint. Each utilization is an average value for the frac-
tion of the resource required by the given application on a
given machine to process a data set within its time period.
Let C(ai, mj) be the CPU utilization that applicationai re-
quires on machinemj , with the initial workload, to process
a data set within the required time period (based on the rates
of its associated sensors). LetI(ai) andO(ai) be the input
network link and output network link utilizations, respec-
tively, that applicationai requires on the machine it is exe-
cuting to process a data set, at the initial workload, within
the required time period. It is assumed that network link
utilizations for an application do not depend on the machine
where the application executes.

Including the background load on resources, the utiliza-
tion of any resource on any machine cannot exceed 100%.
LetCbg

j , Ibg
j , andObg

j be the background utilizations on the

CPU, input network link, and output network link, respec-
tively, of machinemj . Let Aj be the set of applications
already mapped on machinemj . Let Cj , Ij , andOj be the
total utilizations on the CPU, input network link, and output
network link, respectively, of machinemj . Then,

Cj = Cbg
j +

∑

ai∈Aj

C(ai,mj),

Ij = Ibg
j +

∑

ai∈Aj

I(ai), and

Oj = Obg
j +

∑

ai∈Aj

O(ai).

The total utilization of the most heavily loaded resource
(the CPU, input link, or output link) of machinemj is given
byUj = max(Cj , Ij , Oj). Ensuring that no resource is more
than 100% utilized implies that, for1 ≤ j ≤ |M|, Uj ≤
100%.

The performance objective for the mappings in this study
is the minimization of the utilization of the most heavily
loaded resource, here called themaximumutilization, de-
fined asUmax = maxj(Uj).

4. Mapping Heuristics

This study examines five mapping heuristics, namely:
(i) the Min-min heuristic, (ii) the Max-min heuristic, (iii)
the host-restriction-aware Min-min heuristic, (iv) the host-
restriction-aware Max-min heuristic, and (v) the Mixed-
Integer-Programming-based heuristic (referred to as MIP*
in the following text).

The Min-minheuristic is based on [26], and is one of the
heuristics implemented in SmartNet [18]. Some variants of
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(1) for all machines mj

(2) Uj = max(Cbg
j , Ibg

j , Obg
j )

(3) do until all applications are mapped
(4) for each unmapped application ar, find

the machine mk such that
Ur,k = minj Ur,j and Ur,k ≤ 1

(5) if no such machine found,
print “mapping not found” and return

(6) from the (ar, mk) pairs found in step (4),
select the pair (ax, my) for
which Ux,y = min(ar, mk) Ur,k

(7) assign the application ax to the machine my

(8) mark the application ax as mapped
(9) update Cy , Iy , and Oy

(10)end do

Figure 4. The Min-min heuristic.

the Min-min heuristic were studied in, e.g., [3, 9, 36, 45],
and were seen to perform well in many different environ-
ments.

Formally, the version of the Min-min heuristic designed
for the NSWCDD model can be defined as follows. LetUr,j

be the total utilization of the most heavily loaded resource
(the CPU, input link, or output link) of machinemj , if the
currently unmapped applicationar is mapped on machine
mj . That is,

Ur,j = max(Cj + C(ar,mj), Ij + I(ar), Oj + O(ar)).

Let U∗ = mini:ai∈(A−Sj Aj)(minj:mj∈M Ui,j). The
outer minimum in the preceding expression is taken over
all unmapped applications (i.e.,A − ⋃

j Aj). Figure 4
shows the pseudo-code used to implement Min-min for
the NSWCDD model. Min-min selects thex, y for which
Ux,y = U∗ ≤ 1, assignsax to my, addsax to Ay, and
updatesUy to reflect the assignment. The above process is
repeated until all applications are mapped. IfU∗ > 1 in
some iteration, a mapping cannot be found with this heuris-
tic.

The Max-minheuristic is similar to the Min-min heuris-
tic, and is also one of the heuristics implemented in Smart-
Net [18]. It differs from the Min-min heuristic in that now
U∗ = maxi:ai∈(A−Sj Aj) (minj:mj∈M Ui,j), and in Figure
4, “Ux,y = min(ar, mk) Ur,k” in step (6) is replaced with
“Ux,y = max(ar, mk) Ur,k.” Max-min is likely to do better
than Min-min in scenarios like the one shown in Figure 5.
Here, the system consists of three applications and two ma-
chines. The table in Figure 5 shows theC(ai,mj) values.
For all i, j, I(ai) = O(ai) = Cbg

j = Ibg
j = Obg

j = 0. Min-
min mapsa0 and a1 before mappinga2, while Max-min

ut
ili

za
tio

n

Max-min mapping Min -min mapping

a2  
a1

a0  a0  
a1

a2

 
 

m1m0 m1m0

2% 11%

18% 15%

40% 20%

m1m0
a0  
a1
a2  

Figure 5. A scenario where Max-min performs
better than Min-min.

mapsa2 first.

The host-restriction-aware Min-min heuristic
(HRA Min-min) considers the fact that in many sys-
tems a given application may not be able to execute on
all machines in the system. This may arise because the
application is not compiled for all machines or it requires
specialized capabilities available only on select machines.
In such systems, the Min-min or Max-min heuristics may
fail to find “obvious” mappings for some cases. One such
case is shown in Table 1 where both Min-min and Max-min
fail to find the obvious mapping (a0 on m1, a1 on m2, and
a2 on m0). In Table 1, for alli, j, I(ai) = O(ai) = Cbg

j

= Ibg
j = Obg

j = 0. The symbol∞ for an entryC(ai,mj)
indicates that applicationai cannot execute on machine
mj . Min-min assignsa1 to m1 in the first iteration,
thereby deprivinga0 of the only machine on which it
could execute. Similarly, Max-min assignsa1 to m0 in the
second iteration, thereby deprivinga2 of the only machine
on which it could execute. The HRA Min-min heuristic,
described next, does find the obvious mapping.

The HRA Min-min heuristic is shown in Figure 6. In
each iteration, the heuristic splits the unmapped applica-
tions into two sets, and tries to map those sets separately.
Let Up

1 andUp
2 be the two sets of unmapped applications

in iteration p. Let S(k) be the set of applications that
can map on exactlyk machines. In the first iteration, the
heuristic splits all applications such thatU1

1 = S(1) and
U1

2 = A−S(1). Then it attempts to map the applications in
U1

1 onto their respective machines. If that partial mapping is
not successful, then no mapping exists. If this partial map-
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m0 m1 m2

a0 ∞ 60% ∞
a1 60% 45% 70%

a2 50% ∞ ∞

Table 1. An example scenario showing
C(ai, mj) values for a system of three applica-
tions and three machines where HRA Min-min
finds the obvious mapping, but Min-min and
Max-min do not find any feasible mapping.

ping is successful, it tries to mapU1
2 by using Min-min. If

the mapping ofU1
2 fails, the heuristic undoes any changes

it made to the system while trying to find the mapping of
U1

2 , and then moves to the second iteration. In the second
iteration,U2

1 = S(2) andU2
2 = A− U2

1 − U1
1 . In general,

in thep-th iteration,Up
1 = S(p) andUp

2 = A −⋃p
k=1 Uk

1 .
For allp exceptp = 1, HRA Min-min uses Min-min to map
Up

1 . For the case ofU1
1 , performing Min-min is equivalent

to assigning each application inU1
1 to the only machine on

which it can execute.

The maximum number of iterations is equal to the total
number of machines in the system. In the best case, a com-
plete mapping is found in the first iteration; in the worst
case, a complete mapping is not found until the last itera-
tion.

The host-restriction-aware Max-min heuristic
(HRA Max-min) is similar to the HRA Min-min ex-
cept that it uses the Max-min heuristic instead of Min-min.
That is, in steps (4) and (6) in Figure 6, Max-min is used
instead of Min-min.

The MIP* heuristic is based on the well-researched
mixed integer programming (MIP) mathematical technique
for optimization [1]. A mathematical programming formu-
lation based on the model in Section 3 is developed to map
the applications onto machines. The set{xij} defines a
mapping of applications onto machines such that

xij =
{

1 if applicationai is mapped onto machinemj

0 otherwise

(1) N = 1
(2) while (N ≤ |M|)

// if there are any applications that can map to
// only N machines, map those applications first

(3) if (|S(N)| > 0)
(4) use Min-min to find a mapping for S(N)
(5) if a mapping for S(N) is not found

print “no feasible mapping found”
exit

(6) use Min-min to find a mapping for all of the
remaining applications, marking each
assignment as “speculative”

(7) if a complete mapping is not found in step (6)
(8) for each speculative assignment (ai, mj )

made in step (6)
// roll back - undo all changes to
// the system data structures

(9) undo the mapping of ai on mj

(10) mark application ai as unmapped
(11) undo the increases in the CPU, input link,

and output link utilizations of machine
mj that were caused by speculative
mapping of ai on mj

(12) N = N + 1
(13) else // matches the “if” in step (7)
(14) print “mapping found”
(15) return mapping
(16) else // matches the “if” in step (3)
(17) N = N + 1
(18) end while

Figure 6. The HRA Min-min heuristic.
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given M,A, {C(ai,mj)}, {I(ai)}, {O(ai)}
find xij and U , where xij ∈ {0, 1}

and U is a real number
to
minimize

U
subject to

U ≤ 1
∀mj ∈M, Cj ≤ U
∀mj ∈M, Ij ≤ U
∀mj ∈M, Oj ≤ U
∀ai ∈ A,

∑
j:mj∈M(ai)

xij = 1

∀ai ∈ A,
∑

j:mj /∈M(ai)

xij = 0

Figure 7. The mixed integer programming for-
mulation.

where1 ≤ i ≤ |A| and1 ≤ j ≤ |M|. In terms ofxij ,

Cj = Cbg
j +

∑

1≤ i≤|A|
(xij × C(ai, mj))

Ij = Ibg
j +

∑

1≤ i≤|A|
(xij × I(ai))

Oj = Obg
j +

∑

1≤ i≤|A|
(xij ×O(ai))

Let M(ai) be the set of hosts onto which application
ai can be mapped. Figure 7 shows the MIP formulation,
whereU is an auxiliary variable that will equal the mini-
mum value ofUmax when the optimization is complete. In
this paper, the objective of the MIP formulation is to mini-
mizeUmax based on the constraints that both CPU and net-
work utilizations of each machine are less than or equal to
100%. (However, this approach can be extended to optimize
more complex metrics.) The last two constraints in Figure 7
force applicationai to be mapped onto exactly one machine
in M(ai).

Because the above objective function minimizes the
maximum utilization (CPU or network) among all ma-
chines, the mapping of applications on the less utilized
machines may not be necessarily optimized. To achieve
system-wide optimization, the MIP* heuristic uses an itera-
tive way to solve the problem. The mapping is described as
a set,T , of |A| tuples, whereT = {T1, . . . , T|A|}. Each tu-
pleTi is in the form(ai,mj), whereai ∈ A andmj ∈ M.
Note that there is a tuple (ai, mj) in T iff xij = 1. The
complete pseudo-code is shown in Figure 8.

In addition to the five heuristics mentioned above, this

(1) initialize T to ∅
(2) let M∗ and A∗ denote the set of machines

and applications that need to be mapped
(3) initialize M∗ to M and A∗ to A
(4) repeat
(5) Using M∗ and A∗, construct a MIP problem instance

(based on the MIP formulation shown in Figure 7)
(6) solve the MIP problem instance using an MIP solver
(7) find out the machine mx that has the

highest CPU or network utilization
(8) for each application ai ∈ Ax

// record the mapping information
// regarding mx in T

(9) add (ai, mx) into T
(10) delete ai from A∗
(11) delete mx from M∗

(12) until M∗ = ∅

Figure 8. The MIP* heuristic.

study also examined a fastgreedy heuristic, a random
allocationheuristic, and a lower bound (LB) on the max-
imum utilization. The fast greedy heuristic and the ran-
dom allocation heuristics are shown in Figure 9. Note that,
unlike the Min-min or Max-min heuristics, the fast greedy
and the random allocation heuristics iterate through the set
of applications only once. The lower bound on the maxi-
mum utilization is calculated by assuming that for all ap-
plicationsI(ai) andO(ai) are zero, that each application
ai is mapped on the machinemj whereC(ai,mj) is mini-
mum over all machines, and that the sum of the utilizations
can be divided equally over all of the machines (which,
in general, may not be physically realistic). Specifically,
LB = (

∑
i minj C(ai,mj) +

∑
j Cbg

j )/|M|. An example
of when this lower bound situation could occur is: (1) all
applications that communicate with each other are mapped
to the same machine, (2) each application is mapped to its
best machine, and (3) the set of applications is such that all
machines are equally utilized.

5. Simulation Experiments and Results

In this study, several sets of simulation experiments were
conducted to evaluate and compare the heuristics. For all
experiments, the number of machines in the system was
fixed at ten. Also, it was assumed that every application
could execute on at least one machine. That machine was
chosen randomly from among all of the machines in the sys-
tem. For any other machine, the probability that a given
application could execute on it was 50%.
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(1) for all machines mj

(2) Uj = max(Cbg
j , Ibg

j , Obg
j )

// iterate through the applications
// in an arbitrary order

(3) for i = 1 to |A|
(4) find the machine mk such that

Ur,k = minj Ur,j and Ur,k ≤ 1
(5) if no such machine found,

print “mapping not found” and return
(6) assign the application ar to the machine mk

(7) update Ck, Ik, and Ok

(8) end for

(a)

(1) for all machines mj

(2) Uj = max(Cbg
j , Ibg

j , Obg
j )

// iterate through the applications
// in an arbitrary order

(3) for i = 1 to |A|
(4) identify the set, L, of machines such that

if ai is mapped on mj ∈ L, Uj ≤ 1
(5) if L is empty,

print “mapping not found” and return
(6) assign ai to a randomly chosen

machine from L
(7) update Cj , Ij , and Oj

(8) end for

(b)

Figure 9. (a) The fast greedy heuristic. (b) The random allocation heuristic.

The C(ai, mj) matrix was generated by sampling a
probability distributionDC. The entries in theC(ai,mj)
matrix were generated to have a meanMC, a “task hetero-
geneity”HC

task (heterogeneity is the standard deviation di-

vided by the mean), and a “machine heterogeneity”HC
mach.

See [2] for a description of the method used in this study
for generating random numbers with given mean and het-
erogeneity values. TheI(ai) andO(ai) values were gen-
erated by sampling a probability distribution,DIO, with a
meanM IO and heterogeneityHIO. In this study,DC and
DIO were either both gamma distributions or both uniform
distributions.

The Cbg
j values were generated by sampling a uniform

distribution with a meanMC
bg and a heterogeneityHC

bg. The

Ibg
j andObg

j values were sampled from a uniform distribu-
tion with a meanM IO

bg and a heterogeneityHIO
bg .

The simulation experiments were conducted for the pa-
rameter values as shown in Table 2. Each experiment was
repeated enough number of times to give, forUmax, a 95%
confidence interval with a “precision” (i.e., the ratio of the
half-width of the confidence interval to the mean [27]) of
10% or better. Call each repetition of a given experiment a
trial. In each trial,C(ai,mj), I(ai), O(ai), Cbg

j , Ibg
j , and

Obg
j values were re-generated by sampling their respective

distributions.
The results for a selected set of representative experi-

ments for inconsistent HC environments are shown in Fig-
ures 10 to 13. These figures also show the value offailure
ratio (FR) for each heuristic, where FR is the ratio of the
number of trials in which the heuristic could not find a map-
ping to the total number of trials. Note that the notion of a
failure ratio does not apply to LB (therefore FR for LB is

always shown to be zero in the results given here).
For each heuristic, at most three bars are shown in these

figures. The first bar (from the left) shows the average value
of Umax for that heuristic with a 95% confidence interval and
a 10% (or better) precision. TheUmax shown in the first bar
is based on only those trials where the given heuristic was
successful at finding a mapping; thus, theUmax values for
two different heuristics may be based on different subsets
of the trials. The second bar showsumax - the Umax value
averaged only for those trials for which every heuristic suc-
cessfully found a mapping. Finally, the third bar shows FR
for the given heuristic. When FR for a heuristic is zero, the
third bar is not shown.

Consider the significance of the performance metric
umax. When FR is zero for all heuristics in a given experi-
ment, thenumax equals the average value ofUmax, because
no trials are excluded for the purpose of calculatingumax.
For the sake of discussion, assume that, in a certain exper-
iment comparing two heuristics Alg-A and Alg-B, FR is
non-zero for Alg-A and is zero for Alg-B. Then, for Alg-
B, umax may differ from the average value ofUmax because
some trials will be excluded for the purpose of calculating
umax. If Alg-B had performed as well in the excluded tri-
als as in the included trials, the difference betweenumax

andUmax would be zero. However, if Alg-B had performed
poorly in the excluded trials,umax would be smaller than
Umax. Also, note that by definition,umax = Umax for Alg-A.

Figure 10 shows, for one set of parameters, the relative
values ofUmax and FR for the heuristics discussed in this pa-
per. It can be seen that MIP*, Max-min, and HRA Max-min
give almost the sameUmax value, outperforming all other
heuristics. The running time of HRA Max-min was smaller
than that of MIP* by a factor of about 260. It should be
noted that the mapping generation time for MIP* was lim-
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|A| MC HC
task HC

mach M IO HIO DC = DIO MC
bg = M IO

bg HC
bg = HIO

bg

40 12 or 18 1.4 or 1.8 0.4 7 or 10 0.3 or 0.5 uniform or gamma 7 or 10 0.3

80 6 or 9 1.4 or 1.8 0.4 3.5 or 5 0.3 or 0.5 uniform or gamma 3.5 or 5 0.3

Table 2. A tabulation of parameter values for which the experiments were performed. An entry that
contains an “or” indicates that separate sets of experiments were performed for each value.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

H
R

A
 M

ax
-m

in

H
R

A
 M

in
-m

inLB

R
an

do
m

G
re

ed
y

M
in

-m
in

M
IP

*

M
ax

-m
in

Figure 10. The variation of Umax, umax, and FR for different heuristics. The bar with confidence intervals
shows Umax, the second bar shows umax, and the third bar if present shows FR. |A| = 40, MC = 12%,
HC

task = 1.4, M IO = 7%, HIO = 0.3, MC
bg = M IO

bg = 7, and DC = DIO = gamma. A total of 55 trials
were performed.
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Figure 11. The variation of Umax, umax, and FR for different heuristics. The bar with confidence intervals
shows Umax, the second bar shows umax, and the third bar if present shows FR. All parameters are
the same as in Figure 10 except HC

task which has increased to 1.8 and HIO which has increased to
0.5. A total of 90 trials were performed.
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Figure 12. The variation of Umax, umax, and FR for different heuristics. The bar with confidence intervals
shows Umax, the second bar shows umax, and the third bar if present shows FR. All parameters are
the same as in Figure 10 except MC which has increased to 18 and M IO which has increased to 10.
A total of 60 trials were performed.
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Figure 13. The variation of Umax, umax, and FR for different heuristics. The bar with confidence intervals
shows Umax, the second bar shows umax, and the third bar if present shows FR. With respect to Figure
10, |A| has doubled and MC and M IO have halved. A total of 67 trials were performed.
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ited to fifteen seconds (on an UltraSparc III 750MHz, one
gigabyte memory machine running Solaris 5.8). The vari-
ation of the quality of mappings generated by MIP* as a
function of the mapping generation time will be discussed
later.

Figure 11 shows the change in relative performance
when the heterogeneity of the application resource utiliza-
tion increases. The value ofHC

task increases to 1.8 from a
value of 1.4 in Figure 10, andHIO increases to 0.5 from
a value of 0.3. The higher values ofHC

task and HIO in-
crease the FR for all heuristics. The same effect can be
seen in Figure 12, which shows the change in relative per-
formance when the average application resource utilization
increases. Here, the value ofMC increases to 18% from
a value of 12% in Figure 10, andM IO increases to 10%
from a value of 7%. Figures 11 and 12 show that, for
the parameters used in these experiments, the failure ratios
for the greedy, random allocation, and Min-min techniques
are higher in systems with higher application heterogene-
ity or higher average application resource utilization. These
heuristics are, therefore, very undesirable for systems with
limited resources and high application heterogeneity or high
average resource requirement. In contrast, MIP*, Max-min,
and HRA Max-min heuristics are appropriate for such sys-
tems. Low failure ratios can be very critical in HiPer-D-like
systems.

Figure 13 shows the change in the relative performance
of heuristics when the number of applications is doubled to
80 (from a value of 40 in Figure 10). At the same time, the
average resource requirement of the applications is halved
(MC is halved to 6% andM IO is halved to 3.5%). It is ex-
pected that, in general, when the resource requirements of
the applications become smaller, the load imbalance gener-
ated by “bad” mapping decisions becomes smaller as well.
This is seen in Figure 13 where the relative performance
differences between different heuristics have dropped.

Note that the results given in this paper are for the sim-
ulation experiments. Future work will include the results
that can be obtained from experiments on the NSWCDD
testbed.

A discussion of how the length of mapping generation
time affects the quality of the mapping generated by MIP*
is now presented. Experiments were conducted for mapping
generation times of one, two, five, fifteen, and 360 seconds
on an UltraSparc III 750MHz, one gigabyte memory ma-
chine running Solaris 5.8. Each experiment was defined by
the set of parameters in Figure 13, and was repeated for 30
trials. The solutions found with a mapping generation time
of fifteen seconds were very close in quality (as measured
by Umax) to those found with a mapping generation time of
360 seconds. For these two mapping generation times, the
maximum difference inUmax over all trials was less than
2%. For mapping generation times of one second and 360

seconds, the maximum difference inUmax over all trials was
about 11%. In addition, no feasible solution was found for
four trials with a mapping generation time of one second.

6. Conclusions

This paper presented five static heuristics designed to
map applications onto machines in the NSWCDD platform.
The heuristics were compared under a variety of simulated
heterogeneous computing environments. The results from
the simulation experiments show that MIP* and HRA Max-
min are the heuristics of choice in HC environments with
high application and machine heterogeneities, or with high
average resource requirement. Both of these heuristics give
comparable performance with eitherUmax or FR as the per-
formance metric. The HRA Max-min heuristic takes a
much shorter mapping generation time than MIP*. The re-
sults show that, among all heuristics compared in this study,
MIP* is the best heuristic for mapping in the NSWCDD en-
vironment if the time to generate the mapping is not an is-
sue. However, if the time to generate a mapping should be
small, HRA Max-min is the best heuristic.
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