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ABSTRACT 

The design and field phases of an observational program to study 

marine stratocumulus clouds using a single aircraft (NCAR Electra) are 

discussed. The basic theoretical framework for the design of the exper­

iment was provided by Lilly's cloud-topped mixed layer model. This 

theory relates the model unknowns, which are cloud top height, cloud 

base height, mixed layer moist static energy, mixed layer total water 

content, and turbulent flux profiles of moist static energy and total 

water, to certain input parameters, which are sea surface temperature, 

surface wind speed, large-scale divergence, the temperature and moisture 

fields above cloud top, and the radiative divergence near cloud top. We 

attempted to measure all model unknowns and input parameters using the 

Electra instrumentation and user supplied instrumentation. Five flights 

off the California coast were made between 5 June and 17 June 1976, each 

flight lasting approximately six hours. Examples of some of the flight 

data are shown. 

Although most of the flight data remain to be analyzed, our exper­

ience in the design and field phases leads us to conclude that much 

could be gained from a combined meteorological/oceanographic experiment 

which would include one or two aircraft and an array of three or four 

ships equipped with oceanographic instrumentation and tethered balloons. 

iv 
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1.0 INTRODUCTION 

In the strong subsidence regions to the east of the subtropical 

oceanic high pressure areas there exist large areas of persistent low 

level stratocumulus clouds. These circulation regimes were first 

studied observationally by von Ficker {1936) in the eastern Atlantic 

and by Riehl et al. {1951), Neiburger {1960) and Neiburger et al. {1961) 

in the eastern North Pacific. 

Following this observational work and adopting the modeling phi­

losophy of Ball {1960), Lilly {1968) presented a basic theoretical 

framework relating the cloud top height, cloud base height, boundary 

layer temperature and moisture fields, and turbulent flux profiles to 

the sea surface temperature, large-scale surface wind and divergence, 

and the temperature and moisture fields above the cloud top. The 

remarkable insight provided by Lilly's work has stimulated refinements 

of and experiments with his basic theoretical model (e.g. Deardorff, 

1976 and Schubert, 1976). In addition, efforts to incorporate strata­

cumulus convection in general boundary layer formulations are being 

made by Randall and Arakawa {see Arakawa, Mintz, et al., 1974) for the 

UCLA GCM and by Deardorff for the NCAR GCM. 

Since the state of stratocumulus theory seemed to be ahead of 

observational knowledge, a group of us (see the Forward for a list of 

participants) began designing in the summer of 1975 an observational 

program using the NCAR Electra. The design of the program is discussed 

in Chapter 2. The actual flight patterns and some preliminary data are 

given in Chapter 3. Chapter 4 describes what form a more comprehensive 

program might take. 
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2.0 DESIGN OF THE MARINE STRATOCUMULUS EXPERH~ENT 

2.1 Review of Lilly's Cloud-Topped Mixed Layer Model 

Lilly's cloud-topped mixed layer model (Lilly, 1968) consists of 

eight equations in the following eight unknowns: 

cloud top height 

cloud base height 

mixed layer moist static energy 

mixed layer total water mixing ratio 

turbulent flux of moist static energy 
at the surface 

turbulent flux of moist static energy 
at the cloud top 

turbulent flux of water vapor at 
the surface 

turbulent flux of total water at the 
cloud top 

ZB 

zc 

hM 

(q+i)M 

(~) 

(w' h') 

s 

B 

(w'q')s 

All eight unknowns are functions of the horizontal coordinates and 

time. We shall use a natural coordinate system in which x denotes dis­

tance in the downstream direction. The individual time change ~t will 

then be given by ~t + V ~x , where V is the speed of the horizontal wind. 

Riehl et al. (1951) and Kraus (1968) have shown that the wind speed and 

direction over the Eastern North Pacific in summer are nearly constant 

with height in the lower layers. Thus, we shall assume that there is no 

turning of the wind with height and no change of wind speed with height. 

The horizontal projections of all trajectories are then coincident with 

the surface trajectories. We need not distinguish between horizontal 

winds at cloud top, in the mixed layer, or at the surface. 
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With these assumptions the mixed layer budgets of moist static energy 

and total water are 

(1) 

(2) 

These equations state that local changes of hM and (q+~)M are caused by 

horizontal advection by the known wind V and by the vertical convergence 

of the turbulent fluxes. 

Above z8 the turbulent fluxes jump to zero. Surface turbulent fluxes 

of h and q are given by 

(W'h'Js (3) 

(WTqT)s (4) 

These equations relate the surface fluxes to the transfer coefficient CT, 
* * the surface wind speed V, and the sea-air differences, where h5 and q5 

are the saturation values of h and q at the sea surface temperature and 

pressure. 

Application of the budget equations for h and q+~ to the infinites­

imally thin layer at the cloud top yields 

( 5) 
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_8 + V _8 _ W L1 ( q+ Q.) + W 1 ( q 1 + Q. 1 ) = Q 
(

az az ) 
at ax B B ' 

(6) 

where w8 is the large-scale vertical velocity at z8, t1h and L1(q+Q.) are 

jumps across z8, and t1FR is the jump in the radiative flux across z8• 

These equations are thus the cloud top jump conditions on moist static 

energy and total water. When multiplied by the density, p, both (5) and 

(6) contain the quantity p(::B + V ::B - w8). which is the net mass flow­

ing into the mixed layer per unit horizontal area per unit time. Such a 

mass flux into the mixed layer can be due to a local increase in the 

depth of the mixed layer with time, a horizontal flow across the top of 

the mixed layer when it deepens in the downstream direction, a large-scale 

subsidence, or more generally, a combination of these three effects. Non­

turbulent air flowing into the mixed layer from above instantaneously 

changes its moist static energy by an amount t1h and its total water con­

tent by an amount L1(q+Q.), where 

(7) 

(8) 

h(z8+) and q(z8+) being known functions of z8• According to (5), the 

instantaneous change in moist static energy is due to discontinuities in 

both the turbulent moist static energy flux and the radiative flux, while 

according to (6), the instantaneous change in total water content is due 

to a discontinuity in the turbulent total water flux. 

Equations (5) and (6) can be regarded as predictive equations for 

z8• In order that they predict z8 in a consistent manner, 
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(9) 

The cloud base height zc is approximately given in terms of the 

mixed layer total water content {q+t)M and the saturation mixing ratio 

* just above the surface q0 as 

where L is the latent heat of condensation, b is given by 

- L l9_ l9._ ( *) ( *) b - cp aT P + pg ap T ' (11) 

andy is defined in (18). 

One additional equation is needed to close the system. Lilly has 

argued that the turbulent energy balance sets maximum and minimum bounds 

on the entrainment. The entrainment relation, 

= 0 ' 

is a weighted average of Lilly•s maximum entrainment relation, 

but 

and his minimum entrainment relation, 

w's 1 1 0 somewhere, v 

(12) 

(13) 



(w 1s 1
) • = 0 v m1n but 

6 

(14) 

The weighting factor k lies between zero and unity. The factor~ in the 

second term of (12) is somewhat arbitrary and has been included so that 

(12) reduces to the conventional 

{w 1s 1
) = -k (w•s 1

) v B v S (15) 

in the nonsaturated case. Omission of the factor~ simply results in a 

revised interpretation of the parameter k. 

If the effects of both water vapor and liquid water on buoyancy are 

included in the definition of the virtual dry static energy so that 

(16) 

then the turbulent virtual dry static energy flux can be expressed as 

where 

w1s 1 = (17) v 

WTfiT- (1-£o)L w 1 (q 1 +~ 1 ) O<z<zc, 

a = 1+x£(o+1) 
1+y 0 = 0.608 

(18) 
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Since h and (q+t) are constant with height in the mixed layer, their 

turbulent fluxes must be linear functions of height so that 

wrflT = ( 1- L) (wrfiT) + L (w• h') , 
ZB S ZB B 

w1 (q 1+t 1 ) 

Using (17), (19), and (20), the entrainment relation (12) may be 

written 

+ 1-kmin 
k 

(19) 

(20) 

= 0 • 

(21) 



8 

Since w'sv' is linear in pressure in the subcloud layer and in the 

cloud layer but is discontinuous across cloud base, the minimum w'sv' may 
+ occur at the top of the cloud layer z8, the bottom of the cloud layer zc , 

the top of the subcloud layer zC-' or the bottom of the subcloud layer 

z=O. These four possibilities for the minimum w'sv 1 are reflected in the 

four rows within the large braces of (21). 

The purpose of introducing the entrainment condition is to close the 

system by relating the fluxes at some level above the surface to the 

fluxes at the surface. Once this is done it becomes possible to compute 

all the fluxes at all the levels. Only then is the location of the mini­

mum w'sv' known. Thus (21) has a somewhat implicit form. 

The theoretical model can now be summarized as follows. In order to 

determine the eight unknowns listed at the beginning of this section, we 

use the mixed layer budgets (1) and (2), the surface flux relations (3) 

and (4), the cloud top jump conditions (5) and (9), the cloud base rela­

tion (10), and the entrainment condition (21). These eight equations can 

be ordered for numerical integration as follows: 

[::: :::J~::::.J = [::]. 

(25) 

(26) 
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(27) 

(28) 

(29) 

Equations (25) and (26) are simply a shorthand notation for (9) and 

(21). Thus, given initial conditions on hM' (q+t)M and z8, the system 

(22) - (29) can be numerically integrated. A single computation cycle 

is as follows: 

i) Compute the surface fluxes (w'h')s and (WTqT) 5 from (22) and 

(23). 

ii) Compute the cloud base zc from (24). 

iii) Compute the cloud top fluxes (~)8 and w1 (q 1+t 1 ) 8 from the 

two by two system (25) and (26). 

iv) Predict hM' {q+t)M, and z8 from (27), (28), and (29), respec­

tively. 

2.2 Required Measurements 

As was discussed in the previous section, Lilly's model relates the 

properties of the marine stratocumulus layer to the large-scale motion 

field, the sea surface temperature field, the radiation field and the 

temperature and moisture fields above the cloud. Thus, given certain 

inputs the model produces outputs which are measures of the properties 
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of the marine layer. The inputs and outputs are summarized as follows: 

Model Inputs 

sea surface temperature, T5 
surface wind speed, V 

large-scale divergence, D 

radiative divergence near 
cloud top, 6FR 

moist static energy above 
the mixed layer, h(z8+) 

water vapor mixing ratio 
above the mixed layer, 
q(zB+) 

Model Outputs 

cloud top height, z8 
cloud base height, zc 

mixed layer moist static energy, hM 

mixed layer total water mixing 
ratio, (q+t)M 

profiles of the turbulent fluxes of 
moist static ener~f· WTfiT 
and total wate~ w q1+t 1

) 

Our intention was to measure all model input and output quantities 

as functions of distance in the downstream direction and as functions 

of time of day. Variations in the downstream direction reveal how the 

properties of the mixed layer are modified as the air flows toward the 

ITCZ. Variations with the time of day reveal how the mixed layer re­

sponds. to diurnally varying radiation off the cloud top. The required 

measurements and instrumentation are summarized in Table I. 

2.3 Aircraft Specifications 

The aircraft chosen for the marine stratocumulus experiment was a 

Lockheed Electra (Model L-188C) leased by the National Center for Atmos­

pheric Research1, Boulder, Colorado. The Electra was chosen both for 

1 NCAR is sponsored by the National Science Foundation. 



11 

TABLE I. REQUIRED MEASUREMENTS 

Parameter 

1) sea surface temperature, Ts 

2) surface wind speed, V 

3) large-scale divergence, D 

4) radiative divergence near 
cloud top, ~FR 

5) moist static energy above 
the mixed layer, h(z8+) 

6) water vapor mixing ratio 
above the mixed layer, 
q{zB+) 

7) cloud top height, z8 

8) cloud base height, zc 

9) mixed layer moist static 
energy, hM 

10) 

11) 

12) 

13) 

mixed layer total water 
mixing ratio, {q+i)M 

profile of turbulent flux 
of moist static energy, 
wrJiT 

profile of turbulent flux 
of total water w'(q'+i 1

) 

remote measurement of 
cloud top 

Instrumentation 

PRT - 5 

gust probe/INS 

apparently too small to accurately 
measure 

upward and downward looking pyranom­
eters and pyrgeometers 

resistance wires, hygrometers 

hygrometers 

pressure altimeter, wet bulb ther­
mistor, nephelometer, lidar 

pressure altimeter, wet bulb ther­
mistor, nephelometer, lidar 

resistance wires, hygrometers, wet 
bulb thermistor 

hygrometers, wet bulb thermistor, 
liquid water meters, PMS-Knollen­
berg probes 

gust probe/INS for w'; for h' below 
zc resistance wires, hygrometers; 
for h' above zc wet bulb thermistor, 
PRT-6. 

gust probe/INS for w'; for q' below 
zc hygrometers; for q' above zc wet 
bulb thermistor, PRT-6; for i' above 
zc liquid water meters, PMS-Knollen­
berg probes. 

1 idar 
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its instrumentation and for its range. It is shown in Fig. 1. 

The Electra•s fuel capacity is sufficient to allow a six to seven 

hour low-level experimental flight. Specifications and performance are 

given in Table II. 

Flight duty limitations for the crew, as set down by the Research 

Aviation Facility of NCAR (Burris, 1975) are listed in Table III. 

2.4 Instrumentation on the NCAR Research Aviation Facility Electra 

Data recording, real-time computations, and meteorological and 

flight data display are performed by the NCAR Electra Data Management 

System (Kelley, 1973a; Duncan, 1973). The system serves as a low-noise 

data recorder, with input flexibility provided by software control. Most 

of the data are recorded at 10 Hz, so turbulence measurements are pos­

sible. 

Real-time derived meteorological and flight data may be displayed 

on any of six television monitors located throughout the aircraft (Fig. 2). 

In addition, analog voltages for eight parameters are available for strip 

chart display (Fig. 3). At the start of the marine stratocumulus experi­

ment, the parameters recorded on the strip chart were wind direction, 

wind speed, wet-bulb thermistor temperature, air temperature, dew point 

temperature, pressure altitude, equivalent potential temperature, and 

time. Time marks may be placed in the digital data record from any of 

several stations located throughout the aircraft. 

The Electra•s instrumentation is discussed in the following sections. 

RAF-supplied instrumentation specifications are listed in Table IV. 



13 

Fig. 1. NCAR Electra at Ames Research Center, Moffet Naval Air Station, 
Mountain View, California. 
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Fig. 2. Television monitor displaying real-time derived 
meteorological and flight data. 

Fig. 3. Television monitors (left) and eight parameter 
strip chart (right). 
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TABLE IIa. ELECTRA L-188C SPECIFICATIONS 

Engine Power: 

Wingspan: 

Length: 

Cabin Floor Area: 

Empty Mass: 

Maximum Gross Mass: 

Maximum Payload Mass: 

Maximum Landing Mass: 

Research Electrical Power: 

Fuel Capacity: 

11 186 kW (15 000 hp) 

30 m (99 ft) 

32 m (105 ft) 

58 m2 (628 ft2) 

26 650 kg (58 700 lb) 

52 665 kg {116 000 lb) 

12 020 kg {26 500 lb) 

43 385 kg (95 650 lb) 

60 kVA 

24 678 i (6520 gal) 
usable fuel 

TABLE lib. ELECTRA PERFORMANCE 

Maximum speed at 3700 m: 

Cruising speed at 39 000 kg (85 500 lb) at 6700 m: 

Service ceiling at 45 000 kg (100 000 lb): 

Slow flight speed: 

FAA takeoff runway at 51 000 kg (113 000 lb) sea 
level standard day: 

Maximum operating altitude: 

200 ms-1 

180 ms-1 

8700 m 

lAS 60 ms-1 

1440 m (4720 ft) 

9150 m 
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TABLE lie. PERFORMANCE AT RESEARCH GROSS MASS 

ALTITUDE (m) 

7000 

3000 

150 

RANGE (km) 

5450 

4250 

3470 

TIME (h:min) 

9:09 

7:39 

6:35 

TABLE III. ELECTRA CREW DUTY LIMITATIONS 

Flight time limitations: 

Daily: 

Weekly: 

Monthly: 

Consecutive working days: 

Maximum crew duty period: 

Minimum crew rest: 

9 h 

35 h 

110 h 

Maximum of six 

14 h 

12 h between duty periods 



TABLE IV. AIRCRAFT INSTRUMENTATION 

Parameter Instrument Manufacturer & Combined Performance of Transducer~ Sianal Conditioning~ and Recording: 
Measured Type Model No. Range Accuracy Time Constant# Precision 

Aircraft Pitch Inertial Nav. Litton APD 917055 ±45° ±O.ooao 0.016 s --& Roll Angles Resolver 

Inertial Inertial Nav. Litton APD 917055 ±45° ±0.05° 0.016 s --Platform Hdg. Resolver 

Aircraft Inertial Nav. Litton 0 to 400 ms-1 ±1 ms-1* 0.032 s --Ground Speed System LTN-51 

Aircraft Inertial Nav. Litton ±50 ms-1 ±0.10 ms-1 0.016 s --Vertical Vel. System LTN-51 

Aircraft 
True Heading & Inertial Nav. Litton 0 to 360° ±0.05° 0.064 s --Inertial Wander System LTN-51 

Angle 

Aircraft Inertial Nav. Litton ±90° ±0.066° 1 s --Latitude System LTN-51 

Aircraft Inertia 1 Nav. Litton ±180° ±0.066° 1 s --Longitude System LTN-51 

Fixed Vane NCAR ±10° ±0.5° 0.016 s --Angles of (Strain gage) Development 
Attack and 
Sideslip Rotating Vane NCAR ±10° ±0.5° 0.016 s --(LVDT) Development 

# Time constants are generally determined by the data system. 

* The indicated values are means for flights of four hour durations, longer flights will result in degraded 
accuracy without external update. 

Resolution 

0.005° 

0.005° 

0.04 ms-1 

0.012 ms-1 

0.001° 

0.001° 

0.001° 

0.005° 

0.002° 

I 

I 



TABLE IV. AIRCRAFT INSTRUMENTATION 

Continued 

Parameter Instrument Manufacturer & Combined Performance of Transducer. Signal Conditionin~ and Recordin~: 
Measured Type Model No. Range Accuracy Time Constant Precision Resolution 

Geometric Radio Sperry Rand ±1.5 m, 0-30 m 
Altitude Altimeter AA-220 0 to 762 m ±8 m, 30-150 m 0.16 s -- 0.19 m 

±53 m, 150-762 m 

Pressure Variable Rosemount Engr. Co 300 to 1035 hPa ±1 hPa 0.16 s ±0.5 hPa 0.09 hPa Altitude Capacitance 1301-A 

Variable Rosemount Engr. Co 0 to 150 ms-1 ±0.2 ms-1 0.16 s ±0.2 ms-1 0.03 ms-1 
Indicated Capacitance 1301-B 
Airspeed 

Variable Tavis 0 to 125 ms-1 0.03 ms-1 Reluctance P-1 ±0.2 ms-1 0.016 s --
Platinum Rosemount Engr. Co. -60 to +40°C ±0.2°C 0.16 s ±0.2°C 0. 0 2°C Resistance 102E2AL 

Total Air 1 meter NCAR -60 to +50°C ±1.0°C 0.016 s ±0.3°C 0.03°C Temperature Tungsten Wire Development 

Wet Bulb NCAR 
Thennistor Development -- -- -- -- --

Thermoelectric EG&G -50 to +50°C ±0.5°C,>0°C 0.32 s ±0.1°C 0.01°C 
I 

Hygrometer 137-C3-S3 ±1.0°C,<0°C 

Water Vapor Lyman-Alpha NCAR 0 to 40 g kg-1 0.05 s 0.01 g kg-1 Content Hygrometer Development -- --
Microwave National Bureau 0 to 300 N 0.016 s 0.037 N Refractometer of Standards -- --

----



TABLE IV. AIRCRAFT INSTRUMENTATION 

Continued 

Parameter Instrument Manufacturer & Combined Performance of Transducer, Signal Conditionin~ and Recordin~: 
Measured Type Model No. Range Accuracy Time Constant Precision Resolution 

Laser Particle Measuring 20 to 300 llm 1 s 20 llffi Spectrometer Systems -- --
Cloud Liquid 
Water Content Hot-wire Johnson-Williams 0.001 gm-3 Flowmeter LWH 0 to 6 gm-3 -- 1.5 s --

I 

Pyrgeometer Eppley 0 to 1750 Wm-2 * -- 1 s -- 4.2 wm-2 4 to 45 l-Im PIR 

Pyranometer Eppley 0 to 1750 Wm- 2 * -- 1 s -- 4.2 wm-2 285 to 2800 nm 2-WG7 I Radiation 
Pyranometer Eppley 0 to 1750 wm-2 * -- 1 s -- 4.2 Wm-2 285 to 1530 nm 2-0G1 

Pyranometer Eppley 0 to 1750 Wm-2 * -- 1 s -- 4.2 Wm- 2 
285 to 700 nm 2-RG8 

Sea Surface Bolometric Barnes Engr. Co -20 to +75°C ±0.5°C 0.16 s O.Ol°C Temperature Radiometer PRT-5 --

* Range and Resolution Variable 
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2.4.1 Aircraft Position and Winds 

INERTIAL NAVIGATION SYSTEM (Leondes, 1970; Lenschow, 1972) 

A Litton Industries model LTN-51 Inertial Navigation System (INS) 

is mounted inside the base of the Electra noseboom, just forward of the 

nose of the aircraft. 

An INS consists basically of three orthogonally mounted gyroscopes, 

three orthogonally mounted accelerometers, and a digital computer. The 

gyroscopes keep the reference platform stable and the accelerometers 

sense changes in the platform•s inertia. The computer integrates the 

output of each accelerometer and computes the velocity and position of 

the aircraft. Short term accuracy (<2 minutes) is ±0.1 ms-1. Long term 

accuracy is ±(1.0 + 0.5t) ms-1, where t is in hours. 

Meteorological applications of inertial navigation may be found in 

Axford (1968), Lilly and Lenschow (1971), Kelley (1973b), Lenschow (1973a), 

Pennell and LeMone (1974), Telford and Wagner (1974), and LeMone and 

Pennell (1976). 

GUST PROBE (Lenschow, 1971, 1972, 1973b, 1975) 

The gust probe is mounted on a boom 5.6 m ahead of the nose of the 

Electra. It consists of four vanes, two each for angle of attack and 

angle of sideslip, and a pitot tube (see Fig. 4). One of each pair of 

vanes is free to rotate and align itself with the airstream. Its angle 

is then obtained directly from the output of an angle transducer. The 

other vane of the pair is constrained from rotating, the force on the vane 

being determined by strain gauges mounted in the base of the vane. The 

incidence angle is directly proportional to the force and inversely 
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proportional to the vane area and the pitot-static pressure. The pitot 

tube is used to measure the fluctuations of the along-axis wind. 

ALTIMETERS 

The Electra is also equipped with a radio altimeter, which is usable 

up to 792 m and is accurate to about 7%. The usual complement of pres­

sure altimeters and airspeed indicators is also present. 

2.4.2 Air Temperature 

ROSEMOUNT TOTAL TEMPERATURE PROBE (Deleo and Werner, 1960; Lenschow, 

1972; Lenschow and Pennell, 1974) 

One of the Electra's two Rosemount platinum resistance total temper­

ature probes is shown in Fig. 4. The other is mounted on the fuselage. 

A schematic drawing of the probe is shown in Fig. 5. The probe is de­

signed such that the air turns a goo corner and is decelerated adiabatic­

ally before contacting the 27 em wound sensing element. This corner is 

intended to prevent cloud droplets or other aerosols from impacting on 

the wire and causing breakage or wet bulbing. This is more successful 

from the non-breakage point of view as droplets sufficient to wet the ele­

ment apparently negotiate the bend when flying in clouds, unless the 

clouds have low liquid water contents (Lenschow and Pennell, 1974). 

The Rosemount probe is a fast-response instrument with a time constant 

of approximately 1/6 second. 

ONE METER TUNGSTEN WIRE (Lenschow, 1972; Lenschow and Pennell, 1974) 

This probe is shown in Fig. 4. It consists of a 1 m tungsten wire 
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exposed more directly to the air flow than is the Rosemount. As a result, 

it becomes wet rapidly in cloud, but is very fast in response, having a 

time constant of 1/60 sec. 

WET BULB THERMISTOR (Lenschow and Pennell, 1974) 

This instrument, which was designed and built at NCAR by D. Lenschow 

and K. Danninger, is shown in Fig. 4. A bead thermistor is covered with 

lint and exposed to the air stream. It thus serves as a dry bulb outside 

of clouds and a wet bulb inside of clouds, since the lint is rapidly 

moistened in clouds. The thermistor, due to its small size, has a fast 

response time, and is therefore good for turbulence studies. Being small, 

however, means that it is very fragile and cannot be flown in precipitation. 

The wet bulb thermistor was installed as an experimental instrument 

on these flights. Preliminary results indicate that it worked well. 

PRT-6 RADIOMETER (Barnes Engineering Company, 1971) 

A Barnes Engineering Company model PRT-6 radiometer was loaned by 

S. K. Cox of Colorado State University and operated by B. A. Albrecht and 

K. T. Griffith of C. S. U. It operates by comparing the energy emitted by 

the target source with that emitted by a cavity of known reference temper­

ature. A three-blade chopper operating at 33 1/3 Hz yields a 100 Hz 

source/reference comparison. 

For this experiment, the radiometer was operated with a 2° field of 

view, and was filtered for the co2 band around 14 ~m. The purpose was to 

use it as a thermometer for cloud temperature measurements. Initial data 

indicate that the output is highly roll dependent, except when within a 

cloud to a sufficient depth that the optical depth has been exceeded. 
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2.4.3 Water Vapor Content 

THERMOELECTRIC DEW POINT HYGROMETER (E. G. & G., Inc., Waltham, 

Massachusetts) 

A pair of these hygrometers are mounted on the Electra, one on each 

side of the fuselage near the nose of the aircraft. The instrument works 

on the principle of detecting the changes in reflected and scattered 

light off of a mirror, upon deposition of a condensate. The mirror is 

cooled thermoelectrically until dew forms on its surface. The mirror is 

then heated in order to evaporate the dew to a very thin layer, where the 

instrument stabilizes. The temperature of the mirror at that time is thus 

the dew point temperature. A similar instrument is described by Francisco 

and Beaubien (1965). 

Such an instrument is not very fast in response, but its long term 

accuracy allows it to be used as a reference for faster responding but 

less stable instruments. 

LYMAN-~ HYGROMETER (Buck, 1975) 

The operating principle of this instrument is the absorption of the 

Lyman-~ line (121.56 nm) by water vapor. Beer's law states that, ideally, 

the absorption of a single line is exponential: 

I = Iae-kpx , 

where I and 10 are received and transmitted intensity (collimated source), 

k is an absorption coefficient, p is absorber concentration, and x is the 

path length. The ideal is complicated by impurities and drift. 
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The NCAR instrument compensates for impurities by using a specially­

designed high-purity source, and drift may be accounted for by comparison 

with other instruments. 

The NCAR Lyman-a hygrometer has a time constant of 1/20 second. 

MICROWAVE REFRACTOMETER (Thomson, 1972) 

Atmospheric radio "refractivity" is a function of pressure, tempera­

ture, and water vapor pressure, primarily. If effects of carbon dioxide 

and other trace atmospheric constituents are considered constant, then 

an empirically-derived formula for atmospheric radio 11 refractivity11 may 

be written as 

N = (n-1)x106 = 7~· 6 (p + 4810 y) , 

where n is the radio refractive index, N is in 11 N units", a conveniently 

scaled quantity, T is temperature in Kelvin, p is the total pressure, and 

e is the partial pressure of water vapor, in hectopascals (the hectopascal 

is equivalent to the millibar). 

Consequently, e may be determined by measuring N, p, and T, and 

applying the formula 

( 
NT ) T 

e = 77.6- P 4810 

In the microwave refractometer (Fig. 4) the resonant frequency of a 

reference cavity is compared to that of a sample cavity, the time varia­

tion of this resonant frequency difference being a measure of the time 

variation of the 11 refractivity11 N. Using the time series of N, T, and p, 

a time series of e can be derived. 
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2.4.4 Liquid Water Content 

FORWARD SCATTERING SPECTROMETER PROBE (Particle Measuring Systems, 

1975, 1976) 

The FSSP was supplied by Particle Measuring Systems, Inc. and operated 

by R. Knollenberg and J. Knollenberg. It is shown mounted on the Electra 

in Fig. 6. The operating and data systems are shown in Fig. 7. 

The FSSP will detect and size particles ranging in diameter from 

0.5 ~m to 45 ~min four ranges: 0.5 to 7.5 ~; 1-15 ~; 2-30 ~; and 3-45 ~­

Each size range is divided into 15 channels. 

A rough sketch illustrating the principle of operation is shown in 

Fig. 8. The sample volume is illuminated by a laser. Light scattered by 

any particles present bypasses the dump spot and reaches the detector. The 

amount of light reaching the detector is proportional to the size of the 

particle. 

Concentrations observed during this experiment were in the range of 

150 to 200 cm-3. Coincidence errors at such levels are approximately 1%. 

At concentrations of 1000 cm-3 (as are common in deep Cu and Cbs), coinci­

dence errors approach 10%. 

OPTICAL ARRAY PROBE (Knollenberg, 1970, 1972; Particle Measuring 

Systems, 1975) 

The principle of operation of this device (see Fig. 6) is simple and 

is shown schematically in Fig. 9. As a particle passes through a collimated 

light beam, it casts a shadow, which is then magnified and cast upon an 

array of photodiodes. The number of these photodiodes occulted is thus pro­

portional to the diameter of the particle. The probe used in the present 



Fig. 6. Knollenberg Forward Scattering 
Spectrometer Probe (left) and 
Optical Arr~ Probe (right). 

Fig. 7. Operating and data systems for 
Knollenberg FSSP. 
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experiment has an array with 24 elements, capable of sizing particles from 

20 ~m to 300 ~m diameters, in fifteen 20 ~ channels. 

ELECTROSTATIC DISDROMETER (Abbott et al., 1972; Dye, 1976) 

J. Doyne Sartor of NCAR supplied the disdrometer and handled its 

operation on the research flights. 

The disdrometer (shown in the photo in Fig. 10) detects cloud droplets 

by sensing the charge removed from an electrode by the droplets. Air is 

drawn through a hole at the end of the probe. Inside, any droplets pres­

ent break up and the fragments impact upon a hemispherical electrode. The 

size of the incident droplet is determined from the amplitude of the ob­

served voltage drop. 

JOHNSON-WILLIAMS HOT WIRE DEVICE (Neel and Steinmetz, 1952; Neel, 

1955; see also Knollenberg, 1972; Ruskin, 1976) 

This device consists of a heated wire with a known temperature coef­

ficient of resistance. The wire is connected in a bridge circuit, and 

water droplets impinging on it cause a loss of heat. The resulting change 

in resistance is related to the amount of liquid water in the airstream. 

The hot wire meter is useful for cloud liquid water measurements, but 

due to droplet size limitations, it will not work for precipitation. On 

the present experiment, however, this was not a problem, since we did not 

expect to encounter precipitating clouds. 

2.4.5 Solar and Infrared Radiation 

The Electra is equipped with two radiometer pods, one upward-looking 
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and the other downward-looking. Each holds four radiation instruments. 

These consist of upward- and downward-looking pyranometers (six) and 

pyrgeometers (two). The pods are retractable for ferry flight periods, 

to avoid unnecessary damage to or soiling of instrument domes. 

The Eppley Laboratory pyranometers and pyrgeometers are designed to 

measure hemispherical radiation. The pyranometers measure radiation with 

wavelengths of 285 to 2800 nm, in various ranges (see Table IV). The 

pyrgeometers are sensitive in the 4 to 45 ~m range. Each of the Eppley 

instruments has as its sensor a multi-junction thermopile, whose output 

is related to the received radiation. Further information may be found 

in Eppley Laboratory (1971), Albrecht et al. (1973), and Albrecht and Cox 

(1976). 

2.4.6 Sea Surface Temperature 

Sea surface temperature was determined by measuring infrared radia­

tion with a Barnes Engineering Company Model PRT-5 radiometer. The PRT-5 

is identical in operation to the PRT-6 described earlier (section 2.4.2). 

It is sensitive in the 9.5 to 11.5 ~m spectral range, and has a claimed 

accuracy of ±0.5°C over a range of -20°C to +75°C. 

2.4.7 Cloud Condensation Nuclei 

The Cloud Condensation Nuclei Spectrometer (Fukuta et al., 1974; 

Saxena and Fukuta, 1976) was supplied and operated by V. K. Saxena and 

R. Nye of the Denver Research Institute of the University of Denver. The 

photo (Fig. 11) shows some of its external features. 

The spectrometer consists of two parallel copper plates. The plates 
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Fig. 11. Cloud Condensation Nuclei (CCN) Spectrometer. 
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are joined together on one edge by a heat conducting material, and on the 

other edge by a non-conducting material, as shown in Fig. 12. A tempera­

ture difference is created by heating the top plate to temperature T2 and 

cooling the bottom plate to temperature T1 along the edges joined by the 

insulator. In the steady state, the temperature profiles are linear in 

the vertical, and also in the horizontal along each plate. The tempera­

ture along the median plane (shown by the dashed line in the figure) is 

constant at (T 2 + T1)/2. The supersaturation achievable in a steady-state 

situation such as this is dependent upon the magnitude of the vertical 

temperature difference. Thus the ·supersaturation which occurs along the 

median plane is greatest near the nonconducting wall and decreases toward 

the conducting wall. 

Water vapor is supplied to the sample air by moist filter papers 

placed underneath the top plate and atop the bottom plate. The upper fil­

ter paper is shaped to allow droplets to reach a uniform size for sampling, 

regardless of supersaturation, as shown in Fig. 13. This configuration 

allows droplets to grow longer at lower supersaturation. An optical scan 

is made across the exit end of the spectrometer, so activation as a func­

tion of supersaturation may be determi~ed. 

The data are recorded both on an x-y plotter for real-time analysis 

and on the Electra Data Management System. 

2.4.8 Cloud Indicators 

LIDAR (Grams and Wyman, 1972; Grams, 1974-75; Grams et al., 1975) 

The lidar (or laser radar) system presently in use was developed 

speci fica lly for the Electra by G. ~J. Grams and C. t-1. Wyman of NCAR. 
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The system consists of a pulsed dye laser, a Cassegrain telescope, 

and analyzing and recording electronics. Figures 14 and 15 are photo­

graphs of the lidar system as installed in the Electra. 

The laser was pulsed every 3 to 4 seconds at a wavelength of 585 nm. 

Returning signals were integrated over 200 ns intervals, giving a spatial 

resolution of 30m in the vertical. The first detectable signal comes 

from. 30-50 m away from the aircraft. The system includes a rotatable 

mi·rror which allows either upward- or downward-looking operation. 

An on-line computer provides real-time analysis of signal received 

vs. height as well as magnetic tape recording for post-analysis. 

The purpose of the lidar on this experiment was twofold. First, it 

was intended to give a quantitative measure of how far below cloud base 

(in upward-looking mode) or how far above cloud top (downward-looking) 

the aircraft was at any time. This would allow data to be stratified 

according to those parameters, as well as give quantitative information 

about cloud top and cloud base height. Second, the lidar was intended 

to provide for stratification of data between cloud and no-cloud overhead 

situations. 

FIXED ANGLE NEPHELOMETER 

The nephelometer, like the lidar, was built and operated by G. W. 

Grams and C. M. Wyman of NCAR. The nephelometer may best be described as 

a 11mini-lidar 11
• A diagram is shown in Fig. 16. An infrared LED provides 

the signal, whose backscatter from a region 3-4m outside of the aircraft 

window is detected. Thus, the nephelometer may serve as a cloud/no-cloud 

indicator. The LED signal is oscillatory, to allow for the removal of 
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fig. 14. Components of lidar system. 

Fig. 15. Nephelometer display (upper left) and analyzing 
and recording electronics of lidar system. 
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background signal. The present nephelometer is a low-power instrument, 

taken very closely from a Venus lander design. Plans have been made to 

beef up the system for future aircraft use. 

2.4.9 Other Equipment 

Some other user-oriented features of the Electra are listed below: 

1. 16-mm time-lapse cameras are mounted on either side of the rear 

cabin, looking out the window to record cloud patterns during the flights. 

These are adjustable from zero to twenty frames per second. The present 

experiment used them at 1/4 to 1/5 frame per second. 

2. The nose forward-looking radar may be viewed on any of the six 

TV monitors in the cabin. 

3. A forward-looking TV camera is located in the cockpit. This 

may also be called up on the TV monitors. 

4. The radar, the forward-looking TV, or the display of flight and 

meteorological parameters (section 2.4) may, at the discretion of the 

senior scientist, be recorded on videotape. 

5. In addition to the strip chart mentioned previously, an electro­

static printer records flight data at seven second intervals. An example 

is shown in Fig. 17. Parameters included are time, aircraft latitude and 

longitude, wind direction and speed, vertical wind speed (in Fig. 17, this 

has been replaced by geometric altitude), pressure altitude, air tempera­

ture, dew point, potential temperature, sea surface temperature, and 

static pressure. The printer was also used on one or two flights to per­

iodically output data from some of the radiation instrumentation. 
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Fig. 16. Schematic diagram of nephelometer system. 

T IillE LAT. LONG. biD/V vws PALT ATF D P. THETA RST PRES 

12: 7:19 37 71 -124.86 i9/23 57& 572 20.9 -0.7 299.2 10.0 941. 1 
12.: 7:26 37 71 -124.86 20/25 542 544 20.0 1.4 298.0 i 1. 1 944.3 
12.: 7:34 37 .71 -124.87 19/24 5i3 513 i9.4 3. i 297.1 10.6 947.7 
12.: 7:4i 37. 72 -124.87 19/24 481 11-81 19.4 3.2 296.8 10.4 95i. 4 
12.: 7:48 37 72 -124.87 15/26- 447 448 17.6 5.7 294.6 i0.8 955.1 
12: 7:56 37. 73 -124.88 2/24 415 4i3 11.9 8.7 288.5 11 . 1 959.2 
12.: 8: 3 37 73 -124.88 356/21 388 386 9.4 9.2 285.7 1&.5 962.3 
12.: 8:10 37. 73 -124.89 359/23 362 358 9.4 9 1 285.5 1i. 0 965.5 
12.: 8:18 37 74 -124 89 357/i9 337 332 9.4 9.4 285.2 10.9 968.5 
12.: 8:25 37 74 -124 90 354/19 307 300 9.6 9.6 285.0 i l. 7 972 2 
12. : 8:32 37 75 -124.90 356/20 275 267 9.8 9. 6 284 9 11.9 976.0 
12.: 8:40 37 75 -124.91 356/19 253 246 10 0 9. 8 284.9 i 1. 9 978.5 
12.: 8=47 37. 75 -124.91 1/19 239 231 10. 1 i0. 1 284.9 11 .8 !":180 3 
12.: 8:54 37 76 -124.91 3561i9 219 211 10. 3 9. 9 284 9 11 .7 982 6 
12. : 9: 2 37. 76 -124-.93 354/18 204 195 10. 5 1"0. 2 284. 9 11 . 8 984 . 5 
12.: 9: 9 37. 77 -124.93 354/18 us8 177 10. b 10. 3 284 8 1i .6 986 .6 
12.: 9:16 37. 77 -124.94 353/20 167 159 10. 6 10. 4 284 6 1 i .7 988. 8 
12. : 9:24 37 79 -i24. 94 352/20 150 141 10 8 ttl 2 284. 7 i i .6 990 8 
12.: 9:31 37 79 -124 .95 35i/ 18 146 136 11 .0 10.3 284. 8 11 .6 991 .4 
12.: 9:38 37.79 -124 .95 352/19 134 125 .i 1. 1 10.3 284 .9 i i. 6 992: 7 
12.: 9:46 37.80 -124. 96 347/19 132 128 i 1. 1 10 3 284 8 11 5 992.4 
12. : 9:53 37.80 -124.96 353/19 178 169 11i:r.7 i0 3 284 9 11 .6 987 6 
12.:10: 0 37.80 -124.97 352/21 2i4 208 10.3 10 2 284 .8 ii. 4 983.i 
12.:10: 8 37 80 -124.97 355/22 245 240 i0.0 i0.0 284 9 i i .2 979.3 
12.=10=1S 37. 81 -124.98 352:/20 270 264 9. 8 9 9 284 .9 11 .2 976.5 
12.:10:22 37. 8i -124.98 354/21 279 275 9 7 i0.0 284 9 10. 9 975.2 
12.:10: 3& 37 82 -124.99 357/23 286 28i 9. 7 9.6 284 .9 1 i. 1 :374.4 

Fig. 17. Sample of electrostatic printer output. 
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2.5 Base of Operations 

Since satellite images were of great importance in planning the indi­

vidual missions, we chose to base our operations in the San Francisco area, 

in order to have access to the National Environmental Satellite Service 

Office in Redwood City, California. 

The field chosen was the Moffett Naval Air Station at Mountain View, 

California. We arranged to use NASA•s (Ames Research Center) hangar and 

ramp facilities. 

The Satellite Service was able to supply us with GOES visible images 

every hour during daylight and infrared images hourly throughout the day. 

We were also able to obtain a NOAA-3 or NOAA-4 image once each day. Some 

of the GOES images are included in section 3. 
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3.0 FIELD PHASE OF THE MARINE STRATOCUMULUS EXPERIMENT 

The Marine Stratocumulus Experiment was carried out between 01 June 

and 18 June 1976. Section 3.1 gives a description of each of the five 

flights, and section 3.2 describes some related measurements taken during 

the field phase. 

3.1 The Research Flights 

Five research flights were carried out during this experiment. 

Table V summarizes the flight operations. For each flight the following 

information is presented: 

1. A brief description of the flight. 

2. A map of the flight pattern. (The discrepancies between the 

initial and final coordinates are caused by INS errors.) 

3. A visible satellite image. Images were chosen as near to the 

middle of the flight period as possible (visible images were not 

available until 1415 Z, and not of good quality over the eastern 

Pacific until 1515 Z or 1615 Z). 

4. One or two soundings. Data were taken from the electrostatic 

printer records. Times were chosen on the basis of the depth of 

the sounding in order that the inversion be sufficiently covered. 

Winds are in ms-1 with a full barb representing 5 ms-1 and a 

half-barb 2.5 ms-1. 
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TABLE V. SUMMARY OF FLIGHTS 

DATE 1976 05 June 07 June 12 June 13 June 17 June 

Takeoff 1818 1804 1144 1159 1130 (Z) 

Landing 2344 2227 1841 1922 1633 (Z) 

Duration 5 h 26 min 4 h 23 min 6 h 57 min 7 h 23 min 5 h 03 min 

Total # of 
Flight Legs/ 10/2 6/1 21/5 16/3 12/2 # of 
Locations 

no lidar, no 1 i dar no 1 i dar no 1 i dar no 1 i dar, 
Equipment noisy radi- broken no FSSP 
Problems ation data wet bulb data 

thermistor 
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Flight #1: 05 June 1976 

The first flight went the farthest south of the five. Takeoff was at 

1818 Z (1118 PDT). The stratocumulus deck was very thin, averaging 200m 

or less in thickness. Two sets of legs were flown. The first five legs 

were at altitudes of 60 m, 425 m, 850 m, 900 m, and 1050 m. The second 

set of five legs were at altitudes of 60 m, 425 m, 800 m, 900 m, and 850 m. 

In between the two sets of legs soundings were made from 900 hPa to 

1016 hPa and back to 900 hPa. 
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Fig. 18. Aircraft track for flight #1, 5 June 1976. 
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~~d~~~F 
DESCENT SOUNDING 
192227-+192508 AND 
192658~93144 l 

(NEAR 34° N, 124° 30' W) 

Fig. 20. Potential temperature and wind profiles obtained during descent 
to site (1) in Fig. 18. 
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Flight #2: 07 June 1976 

Conditions in the flight area on this date were very confused, con­

sisting of a stratocumulus deck interspersed with shallow but active 

convective clouds. The situation being contrary to the sort of condi­

tions in which we were interested, the flight was aborted after one set 

of six legs, which were flown at altitudes of 60 m, 450 m, 900 m, 1350 m, 

1800 m, and 2700 m. The stratocumulus deck was very high, with cloud 

base at about 1200 m and cloud top above 2000 m. Some precipitation was 

encountered, resulting in the breakage of the wet bulb thermistor. The 

cloud top appeared to rise during the flight. This case is of interest 

because it represents the breakdown of the classical stratocumulus deck 

during the passage of an upper level trough. 
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Fig. 21. Aircraft track for flight #2, 7 June 1976. 
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FLIGHT •2 
DESCENT SOUNDING 
192218---.193333, 

1.~·~·--- 193523 .... 193749..H .. ..,._ ..... 
193939 r 

8 1 

285 287 

CLOUD 

l 

-,N THE COURSE OF TWO MINUTES, 
LEVEL FLIGHT, THE WINO SHIFTED 
FROM 317° TO 268° 

289 291 293 295 2!37 
8(K) 

299 

Fig. 23. Potential temperature and wind profiles obtained during initial 
descent of flight #2. 



51 

Flight #3: 12 June 1976 

On 12 June an extensive stratocumulus deck covered the area off the 

northern California coast. A total of twenty-one turbulence legs were 

flown at five locations. Wind speeds as high as 20 ms-1 at 600 m MSL 

were observed. Cloud tops were in the range of 700 m to 900 m, with 

cloud base below 40 m on occasion. The first set of legs, on the east 

side of the box, were at 730 m, 275 m, 215 m, 125 m, and 520 m. On the 

north side of the pattern, legs were flown at 90 m, 760 m, 370 m, 250 m, 

and 150 m. The legs on the west side were flown crosswind, as can be 

seen in Fig. 24 (winds were generally from about 350°, see Figs. 26 and 

27). The legs were at altitudes of 670 m, 450 m, 250m, and 60 m. The 

fourth set, at the south, were at 730 m, 550 m, 300 m, and 60 m. The 

final set were in the same area as the first set, but six hours later 

(1800 to 1830 Z) and were flown at 120 m, 275 m, and 730 m. 
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Fig. 24. Aircraft track for flight #3, 12 June 1976. 
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Fig. 26. Potential temperature and wind profiles obtained at the north­
west corner of flight pattern shown in Fig. 24. 
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Fig. 27. Potential temperature and v~ind profiles obtained on the \vestern 
side of flight pattern shown in Fig. 24. 
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Flight #4: 13 June 1976 

Our longest flight was the fourth one, a total of 7 hours and 23 

minutes between take-off and touch-down. Sixteen ten-minute legs were 

flown in three locations. The first set were on the south side of the 

box, at altitudes of 60 m, 180 m, 275 m, 365 m, and 600 m. The second 

and third sets were to the north, with the second set at the same heights 

as the first and to the east of the third set, which were also at the 

same height, except for the addition of a leg at 490 m. 

Before the first set of legs soundings were flown on the east side 

of the box from 60 m to 600 m and back 2~ times (ending at 600 m). In 

between the first and second sets, a similar pattern was flown between 

60 m and 1370 m, and ~gain between the second and third sets. 

At the eastern edge of the pattern the clouds were very thin (about 

100m in thickness) and the inversion was not very pronounced, while 

clouds toward the west were thicker, and the inversion was stronger. This 

point is illustrated by comparison of the two soundings presented in Figs. 

30 and 31. 



57 

128 127 126 125 124 123 122 
39+-----~------~------~------+-~----~----~39 

FLIGHT *"4 
13 JUN 76 

(I) FIVE TEN-MINUTE LEGS 
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Fig. 28. Aircraft track for flight #4, 13 June 1976. 
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Fig. 30. Potential temperature and wind profiles obtained during initia1 
descent of flight #4w 
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west of location (3) in Fig. 28. 
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Flight #5: 17 June 1976 

Our last flight was extremely interesting with a very strong inver­

sion capping the clouds, as shown in Fig. 34. A total of twelve ten-minute 

turbulence legs were flown, at two locations, with soundings between. The 

cloud deck was fairly thin, lying between about 200 m and 450 m MSL. The 

first set of legs were flown at altitudes of 760 m, 430 m, 300 m, 180 m, 

and 60 m, while the second set were at 60 m, 170m, 275 m, 380 m, 490 m, 

600 m, and 700 m. 

The sounding shows the structure of the cloud and inversion layers 

quite well. A moist adiabat is followed through the cloud, and a strong 

inversion of about ll°C in 10 hPa is found just above cloud top. Surpris­

ingly strong winds, greater than 20 ms-1 in the mixed layer, were observed 

on the flight. 
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Fi~. 32. Aircraft track for flight #5, 17 June 1976. 
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Fig. 34. Potential temperature and \'lind profiles obtained during initial descent to northeast corner 
of box pattern sho\m in Fig. 32. 
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3.2 Related Measurements 

BOUNDARY LAYER STUDIES 
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Boundary layer studies in the San Francisco area are currently being 

carried out by a group from San Jose State University (Goodman, 1975; 

Miller, 1975, 1976). The group, led by Albert Miller, has instrumented 

the Mt. Sutro television tower in San Francisco (see Figs. 35, 36, and 37) 

at twelve levels. The tower rises from the top of 250 m high Mt. Sutro to 

a height of 470 m MSL, often extending through the coastal marine layer 

into the inversion layer above. Measurements taken include temperature 

and dew point, pressure, three components of wind, radiation, liquid water 

content, cloud droplet size distribution, cloud condensation nuclei con­

centration, and ozone concentration. 

An attempt was made to coordinate our aircraft measurements with 

Miller's tower measurements. Although air traffic control regulations 

precluded any sort of "tower fly-by" with such a large aircraft, inter­

comparisons between the two sets of data (especially for flight #3 and, 

to a lesser extent, #5) should be of value. 

SATELLITE IMAGES 

A group from Colorado State University, headed by T. H. Vander Haar, 

is performing cloud analyses with GOES satellite images, using digital 

data collected at White Sands, New Mexico. During the operational period 

of the stratocumulus experiment, Vander Haar's group shifted their HIPLEX 

grid far enough to the west to allow digital data coverage of our research 

area. This will allow correlation of high resolution digital satellite 

data with detailed aircraft soundings. 
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Fig. 35. Mt. Sutro television tower instrumented by 
San Jose State University. 
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Fig. 36. View (looking down) of instrument booms. 

Fig. 37. Close-up of a Mt. Sutro tower instrument boom. 
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4.0 CONCLUSIONS 

Since it was so well equipped the Electra aircraft was apparently 

able to make all the necessary measurements set forth in Chapter 2, with 

the possible exception of 100-500 km scale wind observations of suffi­

cient accuracy to allow computation of the large-scale horizontal diver­

gence and vertical velocity. Such observations could perhaps best be 

obtained with an array of at least three ships equipped with tethered 

balloons. A program which included two aircraft and four ships would 

provide field flexibility in the event of equipment failures. Should 

ships be available for such a program, it would appear logical to expand 

the observational objectives to include the structure of the mixed layer 

of the upper ocean. Considerable interest presently exists in oceanic 

mixed layer modeling (e.g. Kraus and Turner, 1967; Denman, 1973; Denman 

and Miyake, 1973; Pollard et al., 1973; Gill and Turner, 1974; Niiler, 

1975; Alexander and Kim, 1976; Kim, 1976). A combined atmospheric/ 

oceanic observational program would stimulate the development of coupled 

atmospheric mixed layer/oceanographic mixed layer models for use in 

climate research. Such an effort is presently being planned as a GARP 

subprogram by radiation and convection researchers from several countries. 
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