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ABSTRACT 
 
 
 

FUNCTIONAL ANALYSIS OF SMYD2 AND SMYD3 LYSINE  
 

METHYLTRANSFERASES  
 

 

The proteins SMYD2 and SMYD3 are two of five members of a unique family of 

lysine methyltransferases defined by a catalytic SET domain that is split into two 

segments by a MYND protein interaction domain, followed by a cysteine-rich post-SET 

domain. The SMYD family members have been shown to be essential for cellular 

development, cell cycle progression, and when dysregulated, tumorigenesis. SMYD1 has 

been widely studied as a pivotal component of cardiac and skeletal muscle development. 

Although their three dimensional structures have been solved, less is known about 

functional consequences of SMYD2 and SMYD3.  Aberrant overexpression of SMYDs 2 

and 3 have been implicated in numerous malignancies, and both have been studied as 

potential therapeutic targets.  

The overriding aim of our research is to obtain a more thorough understanding of 

SMYD2 and SMYD3 function. In Chapters 1 and 2, we outline essential background 

regarding the SMYD family and the methods used in our studies. In Chapter 3, we 

address the consequences of the interaction of SMYD3 with the nuclear chaperone, 

HSP90. Each have been independently implicated as proto-oncogenes in several human 

malignancies. Loss of SMYD3-HSP90 interaction leads to SMYD3 mislocalization within 

the nucleus, thereby severing its association with chromatin. This results in reduction of 

SMYD3-mediated cell proliferation and, consequentially, impairment of SMYD3’s 
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oncogenic activity. We suggest a novel approach for blocking HSP90-driven malignancy 

which may have reduced toxicity over current HSP90 inhibitors.  

In Chapter 4, we turn our attention to SMYD2 and its putative role in hematopoietic 

carcinogenesis. In order to study the effect of SMYD2 in tumor initiation, we employed 

transforming oncogenes to study the consequences of SMYD2 loss in three 

hematopoietic models: B-Acute Lymphocytic Leukemia (B-ALL), Chronic Myeloid 

Leukemia (CML), and Mixed Lineage Leukemia (MLL). Loss of SMYD2 in CML and MLL, 

but not in B-ALL, models led to cell cycle block following by widespread apoptosis and 

cell death. Tumorigenicity, as assessed in vitro by colony formation and in vivo by 

NOD/SCID transformation, was dependent upon SMYD2. Gene expression analyses 

indicated that, as previously determined in multiple studies, impairment included 

reduction in the level of the p53 tumor suppressor. Collectively, these studies establish 

SMYD2 as a putative proto-oncogene in CML and MLL.  

In Chapter 5, we report our efforts to extend the above findings to the living 

organism. SMYD2 was conditionally deleted via cre/Lox methodology from the germline 

of C57BL.6 mice exclusively in hematopoietic progenitors. SMYD2-deficient mice were 

born healthy and achieved normal lifespans. However, consistent with our findings of 

Chapter 4, we observed significant blocks in the progression of fetal and bone marrow 

hematopoietic stem cells to both B lymphocyte and myeloid lineages. While these blocks 

led to an overall reduction of mature peripheral B cells, SMYD2-deficient mice maintained 

a relatively normal immune response. These studies further support a model in which 

SMYD2 is required for normal hematopoiesis transformation.  
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CHAPTER 1 – BACKGROUND 
 
 

 
A. SMYD FAMILY PROTEINS TARGET HISTONES AS A SUBSTRATE 

Histones play a key role in compacting meters’ worth of DNA into microscopic cells. 

The higher orders of DNA compaction are achieved by wrapping it around an octamer of 

core histones into a structural unit known as a nucleosome [1-3]. Each nucleosome 

consists of 146 base pairs of DNA wrapped 1.7 times around a histone octamer and 

separated by a linker region of approximately 50 base pairs of DNA (Figure 1) [4]. Each 

primary histone core is composed of eight histone subunits; two each of H2A, H2B, H3 

and H4. This nucleoprotein, while highly conserved in eukaryotes, is able to form a 

complex not through shared sequence homology but instead through the shared domain 

structures of the histone components which allow interactions that ultimately form the 

histone octamer [5, 6]. Two heterodimers each of H3-H4 and H2A-H2B interact with each 

other via helical folding that not only assemble the positively charged histone core but 

also establish the wrapping and tight binding of the negatively charged phosphodiester 

backbone of DNA [4].   

In addition to the folded octamer core, histones also possess unstructured N- and C-

terminal tail regions which account for approximately 28% of the histone proteins’ mass 

[7]. The tails consist of strings of amino acid residues, mostly of a basic nature. Specific 

residues can be modified in certain manners as indicated in (Figure 2). Lysine, for 

instance, can be subjected to many different post-translational covalent modifications, 

however each is mutually exclusive to another (Table 1).  It has been proposed that a 

histone code exists where site specific histone tail modifications are associated with a 
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particular action such as transcriptional activation or repression (Figure 3) [8-12]. This in 

turn provides an extension of variations in gene expression without changing the DNA 

sequence. Therefore, histones prove to be crucial to the study of altered gene expression 

and epigenetics, factors in the development of cancer cells and various disease states [9, 

13-16]. 

 

Histone modifiers and types of modifications 

 Histone modifiers, often referred to as “writers” such as methyltransferases and 

acetyltransferases, alter the nucleosomal conformation and therefore access to DNA for 

transcriptional activity [17]. Histone acetyltransferases or HATs, first discovered in 

Tetrahymena thermophile, catalytically add acetyl groups to the N-terminus of lysine (K) 

residues on histone tails utilizing acetyl CoA as an acetyl donor [18]. The activity of these 

primarily nuclear bound enzymes, is thought to neutralize a portion of the positively 

charged histone core changing its affinity to the negative DNA [19]. Due to this DNA 

disassociation and therefore access to it and the presence of HATs in some transcription 

complexes, HATs are generally associated with transcriptional activation [20]. Gene 

expression however is highly regulated and additional histone modifiers known as 

“erasers” can remove or reverse the action of a “writer”. Histone deacetylases (HDACs) 

catalytically remove the acetyl group from lysine residue thereby restoring its strong 

interaction with DNA, allowing for chromatin compaction and thereby repressing 

transcriptional activity [21, 22]     

 Unlike HATs, histone lysine methyltransferases (HKMTs) are “writers” that are 

commonly associated with transcriptional repression or gene silencing [23]. HKMTs utilize 
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an abundant co-substrate, S-adenosyl methionine (SAM), as a methyl donor to catalyze 

the addition of one, monomethylation (me), two, dimethylation (me2) or three, 

trimethylation (me3) methyl groups to a specific histone lysine residue [24]. Methylation 

while often pigeonholed as a gene silencing mark, can result in either activation or 

repression [25]. Certain modifications have been linked to specific outcomes, such as 

methylation of histone 3 lysine 4 (H3-K4) and H3-K36 correlating to gene transcription 

while methylation of H3-K9 and H3-K7 are correlated to gene silencing [26, 27]. Unlike 

the readily interchanging states of lysine acetylation via HATs and HDACs, most 

methylation marks are thought to have a more permanent nature. However, there is some 

turnover of histone methylation thought to be attributed to a demethylase. Lysine specific 

demethylase 1 (LSD1) is thought to function as an “eraser” of methyl marks at specific 

residues such as H3-K4 and act as a transcriptional co-repressor [28]. This dynamic 

process of “writing” and “erasing” marks on histone tail residues provides another layer 

of governing gene expression and therefore contribute to the processes of cellular 

development and disease states [10, 14, 29]. 

 

B. INTRODUCTION TO THE SMYD FAMILY PROTEINS 

There are three classes of methyltransferases (MTs). The first, called suppressor 

of variegation, enhancer of zeste and trithorax, (SET) domain lysine methyltransferases 

were originally discovered in Drosophila melanogaster [30]. The second are non-SET-

domain lysine methyltransferases and the third class are arginine methyltransferases [27, 

31]. Regardless of their classification, these “writers” orchestrate the dynamic access and 

restriction of DNA for both replication and transcriptional machinery [32].  
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The unique structural assembly of the catalytically active SET-domain containing 

proteins is shared throughout eukaryotes and different from that of other enzymes that 

utilize the co-factor S-adenosyl-L-methionine (SAM) as a methyl donor [31]. The distinct 

configuration of the SAM binding pocket in SET methyltransferases causes SAM to bend 

when bound to the active site. SET-containing proteins are crucial in various biological 

processes including developmental regulation, signaling cascades, association to 

chaperone proteins, and proteasomal degradation to name a few [33, 34].  

Due to several variations within HKMTs, including the conformation of SAM when 

bound, the three classes have been further categorized into subfamilies based both on 

sequence and structural homology as well as the specific methylation of lysine residues 

[5, 11, 35]. Within the SET-domain containing HKMTs is a family of proteins knowns as 

the SMYDs named as such due to possessing both a SET and MYND (Myeloid-Nervy-

DEAF1) domain [36]. While the SET domain is the active region, catalyzing the addition 

of a methyl group to lysine residues, the MYND domain contains a zinc finger binding 

motif and is known for its role in protein-protein interaction particularly to proline rich 

regions [37, 38]. The novelty of the SMYDs continues, as in their amino acid sequence 

the MYND domain lies within the catalytically active SET domain, dividing the domain into 

pre- and posterior-SET regions (Figure 4) [39-41]. However, upon proper protein folding, 

the separated SET domains fold together to produce the active site and push the MYND 

domain outward [42]. There are five total SMYD proteins, (SMYDs 1-5) each highly 

conserved among eukaryotes and with high sequence and structural homology to each 

other. SMYDs 1-3 have been the most studied and have demonstrated important roles in 

proper development during embryogenesis (Figure 5) [34].  
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The SMYDs as HKMTs are “writers”, placing methylation marks at site specific 

lysine residues that allow for the recruitment of chromatin remodeling complexes to alter 

the access to DNA. SMYDs 1-3 have a shared methylation target at H3-K4, a site 

associated with transcriptional activity [39, 43]. However, each SMYD has additional 

unique targets that impact other processes and while they are most well-known for 

methylating their histone methylation targets, they have also proven to methylate non-

histone proteins as well.  

For instance, SMYD1 has also shown to bind to certain HDACs, resulting in 

targeted repression. SMYD1 also binds to a muscle-specific transcription factor skNAC 

(nascent polypeptide-associated complex alpha) that is required for myofibril organization 

[43, 44]. It has been identified as a muscle specific regulator and is essential not only to 

proper heart development, but also in maintaining the size of the adult heart [45, 46]. A 

global knockout of SMYD1 in mice led to embryonic lethality by day E9.5 as ventricular 

development was severely impaired [37, 47].  In addition to cardiomyocyte and myofibril 

development, SMYD1 also plays a vital role in cardiac diseases [45, 48].  

In regard to SMYD3, in addition to its activating mark of H3-K4, in the last few 

years it has recently shown to also methylate H4-K5, a residue only thought to be 

acetylated before [49]. SMYD3 is mostly associated with triggering proliferation of cancer 

cells when overexpressed, most notably in such diseases as breast cancer [50], 

hepatocellular carcinoma [51], and cervical carcinoma [52] to name a few [53]. It is 

thought that cellular growth is promoted due to its interactions with RNA polymerase II, 

the chaperone protein HSP90 and HELZ, an RNA helicase [53, 54]. SMYD3 

overexpression allows it to bind to a specific DNA motif within the promoter region of 
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genes such as the homeobox protein Nkx2.8 [55]. SMYD3 methylates its target H3-K4 

resulting in transcriptional activation that outcompetes repressive markers for Nkx2.8.  

The NKx2.8 gene has been associated with cell proliferation, tumor progression and 

metastasis [56-58]. Knock down of SMYD3 by inhibitors or RNAi has shown to inhibit cell 

growth and tumor invasion [59-62].  

Recently, SMYD2 has become an interest for therapeutic cancer targets as well 

[63]. In addition to its histone lysine methylations at H3-K4 and H3-K36me2, SMYD2 is 

thought to potentially regulate the functions of tumor suppressors through its methylation 

of p53 at K370 and retinoblastoma (RB1) at K860 [38, 64-67]. The monomethylation on 

both of these well-known guardians of the genome result in the repression of their 

functions which are to mediate apoptosis and halt cell cycle progression, respectively [65, 

68]. Developmentally, unlike SMYD1, SMYD2 is dispensable for proper heart formation 

however it may play a more prominent role in other cellular pathways [69, 70].  

 

Chaperone Proteins 

Molecular chaperones are highly conserved through all branches of life, including the 

HSP90 family [71-75]. Necessary for viability of eukaryotes, HSP90 is not required in 

bacteria [76, 77]. It functions as a homodimer that associates with co-chaperones to 

catalyze the maturation and/or activation of over 100 substrate proteins that are known 

to be involved in cell regulatory pathways [75]. These ‘client proteins’ include protein 

kinases, nuclear hormone receptors, transcription factors, and an array of other essential 

proteins [78]. While much is known regarding the ATPase-driven conformational cycling 
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of HSP90, the precise physical effects imparted by this chaperone that serve to activate 

its substrates are still poorly understood [75]. 

The most detailed understanding of the effects of HSP90 on its client proteins has 

been gleaned from its involvement with the maturation of steroid hormone receptors. 

Steroid receptors must be maintained in a labile conformation that allows them to be 

rapidly activated in the presence of their cognate ligand[79]. Hop1/Sti1, by virtue of its 

ability to bind Hsp70 and HSP90 in tandem, facilitates the transfer of Hsp70-bound 

receptors to the open form of HSP90. The HSP90 system then induces subtle alterations 

in the conformation of the bound steroid receptor that enhances its affinity toward its 

respective ligand [80]. Protein kinases comprise the most prevalent group of HSP90 client 

proteins. The co-chaperone Cdc37 is known to interact both with protein kinases and 

HSP90, thereby delivering client kinases to the HSP90 chaperone complex [81, 82]. 

Bound to HSP90, the client kinases are stabilized and remain in a receptive but inactive 

state while awaiting appropriate signals [81]. The details of the HSP90-protein kinase 

chaperone system are still under investigation. The essential roles that HSP90 fulfills in 

the normal physiology of healthy cells are even more critical for the viability of transformed 

cells. HSP90 is absolutely essential for the stabilization/maturation of nuclear hormone 

receptors, transcription factors, and protein kinases that are commonly misregulated 

during tumorigenesis [78]. It also serves to buffer the effects of transformation by 

preventing the aggregation of aberrantly expressed proteins, whose accumulation would 

otherwise result in toxic stress signals and progression to programmed cell death [83]. As 

many of the client proteins of HSP90 are linked to growth signal pathways, HSP90 is 

viewed as key player in the subversion of normal cells toward unrestrained proliferation. 
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Amplifying the corruptive potential of HSP90 is its ability to facilitate the evolution of 

neoplastic clones by stabilizing many of the mutated proteins that are often associated 

with cancerous lesions, including p53, bcr-Abl, and v-Src [74, 83]. For this reason, HSP90 

is thought to be especially crucial in the development of tumors that result from the 

inactivation of DNA repair pathways, in which there are extensive pools of diversely 

mutated proteins. 

 

Chaperone Proteins Enhance the Methylation Ability of the SMYDs 

 As a chaperone protein, HSP90 interacts with a vast variety of client proteins. The 

unique properties of any one protein in addition to the effect of HSP90s interaction, can 

cause a number of biological responses. Some such responses include transcriptional 

regulation, proteasomal degradation, apoptosis, cellular localization, chromatin 

remodeling, etc [84].  One way in which HSP90 is able to anchor itself to and interact with 

certain proteins is via TPR (tetratricopeptide repeat) domains on the protein that consist 

of tandem repeats of amino acids. The carboxyl terminal domain of the SMYD proteins 

highly resemble that of TRP domains and are thought to be able to anchor HSP90 as a 

result. The physical interaction has been shown to enhance the SMYD methyltransferase 

activity [63, 85].   Methylation assays indicated increased methylation of H3-K4 as well as 

other targets including chromatin remodeling complexes. [86, 87]. The interaction 

between HSP90 and the SMYDs is important as their aberrant expression and activity is 

linked to many cancers. Understanding the structure and means of interactions will better 

aid in therapeutic targeting the SMYD proteins.  
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C. THE HEMATOPOIETIC PATHWAY 

Hematopoiesis is the process that gives rise to all of the immune system cells and 

blood components via a pluripotent hematopoietic stem cell (HSC) that can differentiate 

into various committed progenitors each able to further differentiate into one or more 

functional cell types (Figure 6). Many of the functional mature cells are short lived and 

non-dividing. Therefore, they must have a means of constant renewal. The HSC resides 

in the adult bone marrow. However, in vertebrates HSC precursors known as 

hemangioblasts are first detected during embryonic development in the yolk sac [88]. 

Early in development a small population of HSC precursors are responsible for generating 

red blood cells (RBCs) as the heart continues to develop. These RBCs play a vital role in 

oxygenating embryonic tissue as it rapidly expands and increases. Later in 

embryogenesis, the HSCs migrate to another resident area known as the aorta, gonad, 

mesonephros (AGM) before their colonization in the fetal liver. While there, there is a 

clonal expansion of HSCs in the fetal liver and eventually the fetal thymus and spleen are 

also populated (Figure 7). Upon birth and thereafter, most of the HSCs can be found and 

or harvested from the adult bone marrow [88].  

While the initial migration and journey of the HSC precursor and HSC alone is an 

intricate one, that complexity continues as the single stem cell can proceed to differentiate 

down several pathways producing over thirty different progenitors, intermediate, and 

functional cells of at least ten different lineages of cells that will circulate in the blood. 

HSCs, therefore, exist either in a state extreme proliferation or of quiescence [89]. Their 

cell cycles are highly regulated by the various complexes such as cyclin dependent 

kinases, cytokine signaling, and relative gene expression. For instance, p21 supports 
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HSC quiescence. The bone marrow itself also provides a textural stromal environment 

filtering and relaying this information to the HSC population [90-93].  

However, once undergoing cell cycling, hematopoietic stem cells rapidly proliferate 

and differentiate in response to stromal signals, which include but are not limited to fms-

like tyrosine kinase 3 (Flt3), interleukin 3 (IL-3), and IL-7 [94, 95]. Immediately 

downstream of the HSC are two early non-lineage progenitors known as the multipotent 

progenitor (MPP) and the lymphoid primed multipotent progenitor (LMPP) cells. LMPPs 

are predominantly an immediate precursor to the common lymphoid progenitors (CLPs) 

which is a decisive branching point in the pathway of differentiation towards lymphocytes 

while the other pathway branches towards the myeloid derived cells (Figure 6). The 

lymphocyte pathway contains three distinct cell types (Natural Killer cells, T cells and B 

cells) that go through a variety of immature and intermediate stages and have a rather 

linear pathway of development (Figure 8). 

Unlike the simplicity of lymphocyte lineages, the myeloid pathways are many and 

complex. The MPP can give rise to a common myeloid progenitor (CMP) in addition to 

several other committed cell precursors such as the megakaryocyte-erythroid progenitor 

(MEP) either of which lead to at least one other dedicated progenitor [96]. The crucial and 

functional cells downstream of the MEP are the megakaryocytes, erythrocytes and 

platelets. Developing from the CMP progenitors are the cells that function in the immune 

activities like pathogenesis and allergic responses and include macrophages, mast cells, 

dendritic cells and the basophil, eosinophil and neutrophil cells. While hematopoiesis is 

complex in its lineages, cells can be distinguished from one another based on their 

various expression of transmembrane receptors throughout development. This allows a 
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means to investigate precise cell populations and experiment with the impact upstream 

cells have on later functional cells.  

 

Gene expression of SMYD2 in hematopoiesis 

Microarray data representing the basal gene expression of SMYD2 throughout the 

hematopoietic pathway in mice was our initial starting point for deriving our hypotheses 

(Figure 9). In the HSC and in every lineage specific progenitor, there was a high 

expression of SMYD2. The highest expression of the early cells was in the precursors to 

the megakaryocyte-erythrocyte progenitor (pMEP), granulocyte-macrophage progenitor 

(gGMP), the common myeloid progenitor (sCMP) and in the granulocyte-macrophage-

lymphoid progenitor (GMLP). More committed progenitors such as MEP and common 

lymphoid progenitor (CLP) only showed moderate expression. From the CLP where the 

T- and B- cells arise, there was a contrasting effect. In both the committed T- and B-cells 

SMYD2 expression was still present. However, it remained constant and even increasing 

again in T-cell development whereas it became nonexistent just past the initial precursor 

B cells.    

 

SMYD2 overexpression in leukemia 

Precursor-B cell acute lymphoblastic leukemia (Pre-B-ALL) is a white blood cell 

cancer that results in an excess of lymphoblasts; malignant, immature, malfunctioning 

white blood cells that rapidly develop in the bone marrow [97]. These lymphoblasts rapidly 

out-compete other healthy hematopoietic stem cell (HSC) derived cells such as B-

lymphocytes, T-lymphocytes, erythrocytes, white blood cells and platelets.  The lack of 



 

12 
 

functioning white blood cells and an overall imbalance of other HSC derived cells causes 

a host of systemic problems in an individual including frequent infections, muscular 

weakness, liver and spleen enlargement and shortness of breath. B-ALL is most 

commonly present in children ages one to ten and 80% of childhood leukemia is 

categorized as Pre-B- ALL. Due to its breadth of symptoms and effect on the immune 

system, ALL can be fatal if left untreated for several weeks.  

Chronic myeloid leukemia (CML) is similar to ALL in that it is also a white blood 

cell cancer however it specifically affects cells downstream of the common myeloid 

progenitor which includes erythrocytes, macrophages and dendritic cells [97] whereas 

Pre-B-ALL affects cells downstream of the common lymphoid progenitor.  In CML 

aberrant blood cells mature but do not function properly and slowly over time accumulate 

and eventually outnumber healthy cells. Because CML has a slow progression rate, 

damaging effects might not be observed for months or possibly even years. Therefore, 

this type of leukemia is most common in adults.  

Both Pre-B-ALL and CML have demonstrated to generally be coupled with various 

chromosomal translocations that can be associated with either a favorable or poor 

prognosis. Pre-B-ALL cases have shown to have at least five different possible 

translocations including the non-favorable Philadelphia chromosome. CML however is 

mostly associated only with the Philadelphia chromosome translocation as it is present in 

95% of cases.  

Microarray data indicates that SMYD2 is upregulated in both ALL and CML [98, 

99] and that SMYD2 overexpression predicts low survival in both adult and children with 

Pre-B-ALL [98-100].  SMYD2 has also been found to be overexpressed in some other 
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non-HSC derived cancers [101]. Based on these findings we sought to look for a potential 

developmental role of SMYD2 in the hematopoietic pathway from which all of these 

immunological cancers originate. Gene expression profiling of SMYD2 demonstrates that 

SMYD2 is highly expressed in HSCs and specifically throughout HSC lineage progenitor 

cells (Figure. 9) suggesting its potential for being a key factor in HSC derived 

malignancies including Pre-B-ALL. It has been thought that SMYD2 plays an integral part 

in DNA damage response due to its methylation targets including p53 and RB [64, 66] but 

in leukemia it may do so by directly affecting the HSC pathway.  

 

D. INVESTIGATIONAL AIMS 

Aim 1: Investigate the structural and functional relationship between HSP90 and SMYD3 

both in vitro and in vivo 

We have produced a series of SMYD3 CTD truncations and mutations and 

analyzed which residues were responsible for the binding and enhanced activity of 

HSP90. Methyltransferase assays were also used to determine which SMYD3 CTD 

regions were required to be able to methylate its substrates.  

 

Aim 2: To determine the impact SMYD2 has in specific models of hematopoietic 

malignancies 

We have generated in vitro models of three types of leukemias in which SMYD2 

can be inducibly knocked out. ALL-like cells and CML-like cells were generated from 

SMYD2flox/flox pre-B or common myeloid progenitor cells, respectively. These cells were 

then transduced with Bcr-Abl constructs and cre ER. MLL-like cells were generated from 
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SMYD2flox/flox multipotent progenitor cells transduced with MLL-GAS7 constructs as well 

as cre ER. Control and SMYD2 deleted cells were analyzed for viability, cell cycle, colony 

formation and expression of tumor suppressor and related genes. 

 

Aim 3: To understand the role of SMYD2 in hematopoietic development 

We have constructed both an embryonic (vav cre) and adult inducible (mx1 cre) 

conditional knockout of SMYD2 at the hematopoietic stem cell. Early progenitors and 

stages throughout both the myeloid and the lymphoid lineage were analyzed for changes 

in the size of cell populations via flow cytometry. Mature B cells were later analyzed for 

functional production of an antibody repertoire in both control and conditional knockout 

(cKO) mice.  
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Figure 1: Human nucleosome. Structural representation of a human nucleosome 
showing the 146 base pairs of DNA wrapped 1.7 times around a histone octamer that 
consists of two each of H2A, H2B, H3 and H4. The positive histone subunits interact with 
each other through helical folding and with DNA via its negatively charged phosphodiester 
backbone (PDB 5AV5). 
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Figure 2. Histone tails and covalent modification. (A) A cartoon diagram of the 
unstructured histone tails protruding outward from the core nucleosome. (B) Select sites 
of post-translational modifications on the histone tails. The modifications shown include 
acetylation (green diamonds), methylation (red circles), phosphorylation (blue squares), 
and ubiquitination (orange triangle). Note that Lys 9 in the H3 tail can be either acetylated 
or methylated. (Adapted from Zhang et al. Genes Dev. 2001) [25].  
 

Table 1.  Types of amino acid modifications. A table indicating the manner in which 
various histone resides can be differentially post-translationally modified. Lysine residues 
can be subjected to several types of modification 
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Figure 3: Sites & functions of histone methylation. Site specific methylation of histone 
tail residues are associated with one or more functions. Methylation can result in either 
transcriptional repression or activation. Select known methyltransferases responsible for 
methylating the specific residue in either human or mouse genomes are indicated on the 
right (Adapted from Dillon et al. Genome Biology. 2005) [34]. 
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Figure 4: SMYD Family homology. Both the (A) cartoon diagram overlay and (B) the 
amino acid alignment display the sequence and structural identity of the familial proteins 
(PDB: SMYD1; 3n71, SMYD2; 3tg4, SMYD3; 3mek). 
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Figure 5: SMYDs in murine development.  SMYDs 1-3 have demonstrated roles in 
cellular development and differentiation. The murine stages of development indicate 
where each of the first three SMYDs are expressed.  All of SMYDs 1-3 are at their highest 
expression during the earlier stages. 
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Figure 6: Hematopoiesis.  A simplified version of the cells derived from a single self-
renewing hematopoietic stem cell.  Two main branches, the myeloid lineage and the 
lymphocyte lineage give rise to the above noted cells.  
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Figure 7: Migration of progenitor HSC and HSC through resident organs in 
embryonic mouse development. Precursors to HSC’s began in the yolk sac to provide 
RBCs needed to oxygenate new tissues. Those cells migrate through the AGM to the 
fetal liver before permanent residence in the bone marrow after birth [88]. Arrows indicate 
the stage at which each the vav cre (V) and the mx1 cre (M) delete SMYD2 in HSCs.  
  

M 
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Figure 8: Lymphocytes. Downstream of the common lymphoid progenitor are the B cell, 
T cell and Natural killer cells that mature in a linear fashion through several different 
stages. 
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Figure 9: Expression of SMYD2 throughout hematopoiesis. SMYD2 is most highly 
expressed in the HSC and in the early progenitor in both the myeloid and lymphoid 
lineages. Throughout T cell development, SMYD2 expression remains high through most 
of the maturation process whereas there is little expression beyond early B cell stages. 
The myeloid lineage has varied expression of SMYD2 in its committed progenitors and 
very low expression onward [102, 103]. 
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CHAPTER 2 - MATERIALS & METHODS 
 
 
 

A. MUTAGENESIS, CLONING, AND BACTERIAL EXPRESSION  
Point mutants were generated using GeneEditor in vitro Site-Directed Mutagenesis 

System (Promega) according to manufacturer’s instructions using as template full length 

human SMYD3 cloned into Gateway pENTR vector (Invitrogen). For PCR, samples were 

heated to 94°C for 5 min, subjected to amplification for 16 cycles of 0.5 mi n at 94°C, 0.5 

min at 55°C, and 0.5 min at 68°C and extended after the last cycle at 72°C for 7 min. 

 

B. BACTERIAL PROTEIN PURIFICATION  

Polyhistidine (6xHis)-tagged SMYD3 wildtype, truncation and substitution mutants 

were shuttled using directional TOPO cloning into Gateway (Invitrogen) pET™-DEST42. 

High level expression was induced by IPTG in E. coli strains MG232 (Scarab LTM) or 

HSP90PlusTM (Expression Technologies Inc). Cells were lysed in buffer A [50 mM Tris-

HCl pH7.7, 250 mM NaCl with protease inhibitors (Roche Applied Science, Cat. #11–873-

580–001)] and centrifuged to remove cell debris. The soluble fraction was purified over 

an IMAC column charged with nickel (GE Healthcare, NJ), and eluted under native 

conditions with a step gradient of 10 mM, then 500 mM imidazole. Proteins were then 

further purified by gel filtration using a Superdex 200 column (GE Healthcare, NJ), into 

25 mM Tris-HCl pH7.6, 150 mM NaCl, and 1 mM TCEP. Protein was pooled based on 

SDS-PAGE and concentrated to 1–10 mg/ml. 
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C. HISTONE METHYL TRANSFERASE ASSAYS  

For in vitro HMTase assays, SMYD3 proteins (0.1–1 μg) +/− equivalent amt. of 

human HSP90α (Assay Designs, Ann Arbor, MI, USA, cat. no SPP-776D) were incubated 

with 1 μg of mixed histones from calf thymus (Sigma) or recombinant core histones 

(Upstate). Two μCi S-adenosyl-L–[methyl-3H] methionine (SAM; Amersham Biosciences) 

was included as a methyl donor. All reactions were carried out in 40 μl HMT reaction 

buffer (10 mM dithiothreitol, 100 mM NaCl, 4 mM MgCl2, and 50 mM Tris-HCl at pH 8.8) 

at 30°C for 3 hours. An 18% SDS-PAGE gel was used to resolve samples and 

fluorography was used to visualize isotope incorporation. Substrate loading was 

visualized by Coomassie blue staining. 

 

D. HSP90 AND GST-MEEVD BINDING ASSAYS  

Determination of apparent dissociation constants (Kd) values for wildtype or mutant 

6X-His-SMYD3 with either HSP90α or GST-MEEVD (plasmid provided by Dr. Lynne 

Regan, Yale Univ.) complex formation was carried out as follows: 1.5 μM of each purified 

6X-His-SMYD3 protein was mixed with various amounts of HSP90α or GST-MEEVD 

(0.25, 0.5, 1, 2, 4, 8, 16, and 32 μM) in 130 μl of buffer B (20 mM Tris-HCl (pH 8.0), 300 

mM NaCl, 20 mM imidazole, 5 mM β-mercaptoethanol, and 5% glycerol) in the presence 

or absence of 1 mM ATP plus 5 mM MgCl2 and incubated at 25°C for 30 min. Ni-NTA-

agarose (15 μl of a 50% slurry in buffer B, Qiagen) was added to each reaction mixture, 

and incubation was carried out at 4°C with constant shaking for 40 min. Mixtures were 

transferred to an Ultrafree- MC centrifugal filter device (UFC30HV00, Millipore) and 

centrifuged at 6000 rpm for 10s. After 3 washes with Buffer B, the Ni-NTA-agarose was 
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pelleted at 6000 rpm for 10 s. Resin was then mixed with 10 μl of elution buffer [20 mM 

Tris-HCl (pH 8.0), 300 mM NaCl, 5 mM β-mercaptoethanol, 250 mM imidazole, and 5% 

glycerol] and incubated at room temperature for 10 min. Following centrifugation at 6000 

rpm for 1min, elution step was repeated and combined eluates were fractionated on SDS-

PAGE. For input controls, 10% of the amounts of HSP90α and GST-MEEVD used for 

binding reactions were processed identically but in the absence of 6X-His- SMYD3 

proteins. After staining with Coomassie Blue, protein amounts were quantitatively 

estimated with a densitometer (GS-800™, Bio-Rad). Ratio of densities of HSP90 or GST-

MEEVD to 6X-His-SMYD3 represents the percentage of 6X-His-SMYD3 bound. 

Concentration of 6X-His-SMYD3 /HSP90 and 6X-His-SMYD3/ GST-MEEVD complexes 

were derived from the ratio of their densities multiplied by total 6X-His-SMYD3 

concentration (1.5 μM). Concentrations of respective complexes were plotted against 

total concentrations of HSP90 or GST-MEEVD. Kd values were obtained by non-linear 

least square curve fitting using the Sigmaplot program (SSPS Inc.) using the following 

equation:  

ER = (Kd + Et + Rt) ─ √(Kd + Et + Rt)2 ─ 4 X Et + Rt)/2, where ER is the concentration 

of the 6X-His- SMYD3-HSP90 or GST-MEEVD complex; Et, total HSP90 or GST-MEEVD 

concentration; and Rt, total SMYD3 concentration. 

 

E. MAMMALIAN CELL TRANSFECTION AND WESTERN BLOTTING  

Wildtype and mutant SMYD3 cDNAs were transferred from Gateway pENTR into 

pEF-DEST51 (N-terminal V5-tagged) by TOPO cloning. NIH3T3 cells were transiently 

transfected, harvested 48 hours later, and then lysed in RIPA buffer (150 mM NaCl, 1% 
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NP- 40, 0.5% DOC, 50 mM Tris pH 8, 0.1% SDS) containing protease inhibitors (Roche 

Molecular Biochemicals, Indianapolis, IN). Expression levels were determined by 

Western blotting. Proteins were resolved on 8–15% SDS-PAGE, transferred to 

nitrocellulose (Protran BA, Schleicher and Schuell, NH), and blocked using 5% nonfat 

milk (10g nonfat milk, 150 mM NaCl, 10 mM Tris pH 8, 0.05% Tween-20) overnight at 

4°C. Membranes were incubated with anti-SMYD3 polyclonal antibody [19] for 1 hour at 

room temperature, extensively washed, then incubated with ECL Plex Goat anti-Rabbit 

IgG-Cy5 Secondary Antibody (GE Healthcare) for 1 hour at room temperature. Blots were 

exposed and developed using ECL blot detection reagent (Amersham Pharmacia 

Biotech) according to manufacturer’s instructions. 

 

F. PROLIFERATION ASSAYS  

Mouse embryonic fibroblasts (MEFs) were isolated from E13.5 C57Bl/6 embryos 

as previously described [49]. Cells were plated at ~5 × 106/ml in RPMI (supplemented 

with 10% heat-inactivated fetal calf serum, 100 U/ml penicillin, 100 μg/ml streptomycin, 5 

× 10−5 M β-mercaptoethanol, and 1 mM sodium pyruvate) transfected) and transfected 

by lipofection (Fugene) with ~6 ug of either SMYD3 wildtype, mutants or empty vector. 

To determine the rates of cell proliferation, transfected MEFs were plated in triplicate 1 d 

after infection at a density of 104 cells/cm2 and counted every 24 h using a Z1 Coulter 

Particle Counter (Beckman Coulter) with elimination of dead cells calculated by trypan 

blue exclusion. 
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G. CELL FRACTIONATION  

Cells were separated into cytoplasmic (C), soluble nuclear protein (NP), chromatin 

(CH), and nuclear matrix (NM) fractions as follows. Approximately 1x108 cells were 

washed twice in PBS and the pellet was resuspended in 2ml HNB buffer (500 mM 

sucrose/15 mM Tris-HCL pH 7.5/60 mM KCL/.25 mM EDTA/.125 mM EGTA/.5 mM 

spermidine). Then 1ml HNBN buffer was added dropwise (HBN buffer+ 1% NP-40) and 

incubated at 4°C for 5 minutes before centrifugation at 6,000g for 3  min at 4°C; the 

supernatant of this is the C fraction. The pellet was then resuspended in 1ml CSKT buffer 

(CSK buffer + 1% Triton-X), incubated at 4°C for 5 minutes before centrifug ation at 3,000g 

for 3 min at 4°C; the supernatant of this is the NP fraction. The pellet was then 

resuspended in 720 μl CSK buffer (10 mM Pipes pH 6.8/300 mM sucrose/3 mM MgCl2/2 

mM EGTA) and 30 μl RNase-free DNase, incubated at 37°C for 15 minutes then added 

250 μl 1M AmSO4/CSK and incubate at 4°C for 5 minutes, before centrifugation at 3,000g 

for 3 min at 4°C; the supernatant of this is the CH fraction. The pellet wa s resuspended 

in 1ml 8M Urea and centrifuged at 13,000g for 5 minutes; the supernatant is the NM 

fraction. Purity of the subfractions was assessed by western blotting with antibodies noted 

in Figure 15C as previously described [50]. 

 

H. IN VITRO HEMATOPOIETIC TUMOR MODELS 

Bone marrow was extracted from femurs of SMYD2flox/flox mice. Cells were then 

depleted of erythrocytes, cultured and selected for preB, common myeloid progenitor or 

multipotent progenitor cells for ALL, CML and MLL tumors, respectively. FACS analysis 

of lineage markers was performed to confirm cell stages: For ALL, SMYD2 IL-7 cells were 
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B220+CD19+, for CML FcyRintCD34int and for MLL, Lin-Sca1+cKit+Flt3int. These cells 

were then transduced with MSCV-based retroviral p210 bcr-Abl constructs to generate 

ALL and CML-like cells and with MLL-GAS7 constructs to generate MLL-like cells.  

To induce cre to delete SMYD2, tumor-like cells were transduced with cre-ERT2 

pyromycin construct or empty vector. After, cells were treated with tamoxifen (4OHT) to 

activate cre and subsequently delete SMYD2 alleles in B cell precursor ALL, CMP cell for 

CML and in MPP cell for MLL. Samples collected over 4 days and WB. 

 

I. COLONY FORMING UNIT ASSAY 

Either 100,000 CML or MLL cells, or 10,000 ALL cells with or without treatment 

with 4-OHT to initiate deletion of SMYD2 in vitro, were plated on a semi-solid 

methylcellulose-based medium in a colony forming unit (CFU) assay. Cells were cultured 

in a 5% CO2 incubator at 37°C. Cells were left to grow in a 3D culture for 21 days and 

the media were changed every 2 days. The CFU formation was monitored weekly.  

 

J. IN VIVO TUMORS 
           NOD-SCID mice were purchased from the Jackson Laboratory (JAX Mice & 

Services Bar Harbor, ME USA). For tumor formation, 103, 104, 105 or 106 of non-treated 

(control) cre-ERT2 (n=65) or cre-ERT2 treated with 4-OHT to initiate deletion of SMYD2 

(n= 60) cells were injected intrafemorally into 6 to 8-week old male NOD/SCID mice. 

Tumor size was measured by caliper weekly for at least 3 months or until the presence 

of a tumor diameter >17mm, tumor ulceration or bleeding, when in those cases mice were 

sacrificed earlier. For examining tumor growth and/or detecting metastasis by 

bioluminescence imaging, mice were injected with luciferin (1 mg/ml, Promega 
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Corporation). Mice were then anesthetized using Κetamine HCl, xylazine, NaCl, 0.9% 

(GE Heathcare, UK). The in vivo bioluminescense monitoring was performed in a 

Xenogen IVIS Lumina II System (Advanced Molecular Vision, Inc.). Animals were then 

sacrificed.  

 

K. CELL VIABILITY  

CML, MLL, and ALL cells were seeded in 6-well plates and cultured for up to 60 

days. Cells were harvested at 2 day intervals to detect cells undergoing apoptosis. 

Apoptosis was detected using an Annexin V-FITC apoptosis detection kit (Keygen, 

Nanjing, China). Briefly, 2×106 cells were digested into cell suspension with EDTA-free 

trypsin and resuspended in cold binding buffer and incubated for 15 min in the dark at 

room temperature following addition of 5 μl of Annexin V-FITC and 5 μl of propidium iodide 

(PI, Keygen, Nanjing, China) solutions. Flow cytometry analysis was performed using an 

LSR II Fortessa cytometer. For 4,-6-diamidino-2-phenylindole (DAPI) staining, slides 

were incubated for 30 min at room temperature in the dark with mounting medium for 

fluorescence containing DAPI (Vectoer Laboratories, Inc., Burlingame, CA, USA). The 

cells were then observed through a fluorescence microscope. 

 

L. CLONING OF THE SMYD2 CONDITIONAL TARGETING CONSTRUCT  

To construct the SMYD2 conditional targeting construct, two genomic fragments 

were first subcloned from the C57BL/6 murine Bac clone-RPC124288J3. A 2.2kb KpnI 

fragment containing exon 1 and a KpnI fragment containing 5.2kb of intronic sequence 

between exons 1 and 2 was subcloned into pBluescript (Stratagene). Fragment 1 (5.2kb) 
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was excised with KpnI, blunt ended, and ligated into the unique blunt ended SalI site of 

pDELBOY [118]. The resulting clones were screened for correct orientation and for the 

regeneration of the SalI site. Fragment 2 (2.2kb) was excised with KpnI and ligated into 

the unique KpnI site of pDELBOY containing fragment 1. This was subsequently screened 

for correct orientation. Fragment 3, containing 0.6kb upstream of exon 1, was generated 

using Platinum Pfx DNA Polymerase (Invitrogen), C57BL/6 genomic DNA as template, 

and the following primer pair:  

5’GTCGACATTGAGCTAATGTGCTTA-3’; 5’-CTCGAGGTAACACTCAACCTCTGC-3’.  

The resulting PCR product was treated with TAQ Polymerase, ligated into 

pGEMTEASY (Promega), and excised with SalI and XhoI. This product was ligated into 

the unique XhoI site of pDELBOY containing fragments 1 and 2 and subsequently 

screened for correct orientation. The completed targeting construct was linearized at the 

short arm of homology using XhoI. C57BL/6 ES cells were then transfected and selected 

with G418 and gancyclovir. Targeted ES cell colonies were screened by Southern 

hybridization analysis using probes specific for the genomic sequence external to the 

arms of homology. The 5’ Southern used a 0.8kb PCR fragment using the following primer 

pair:  

5’-GGCTGGAGTTAGAGGTGGTTATGA-3’;5’-ACAGCTCTGGGCTCGGAAATAAAG-3’.  

The 3’ Southern used a 0.9 kb PCR fragment using the following primer pair:  

5’-AACTCCATGTGGTGGAATTCTGTGGT-3’;5’-

GCAGCCTGAAAGAATCCCTTAGACT-3’. 
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M. CRE-MEDIATED DELETIONS  

Mice were from a C57BL/6 (CD45.1) background. To generate the SMYD2 

conditional knockout mice, we mated cre (vav or mx1) and SMYD2flox/flox YFP+ mice. To 

activate mx1-cre in vivo, 100 μg of pIpC (Sigma-Aldrich) was injected every other day for 

5 days and samples taken at least two days after the final injection. PCR genotyping from 

tail DNA was used to confirm genetic profiles and determine mates. Fluorescent 

microscope and flow cytometry were also used to determine presence of YFP.   

Mice were bred in specific pathogen-free environment and caged in groups less 

than five. During housing, animals were cleaned twice a week. All animal protocols and 

experiments were approved by the local Institutional Animal Care and Use Committee 

(IACUC). Protocol ID AUP-2012-00169 

 

N. MOUSE TAIL DNA EXTRACTION 

A crude DNA extraction was made from 2mm mouse tail clippings dissolved in 

200ul of 1x PBND buffer. 10mg/ml Proteinase K was added to each sample and placed 

at 55° C for 3hrs to overnight. Samples were then boiled for 5 minutes and  centrifuged. 

The supernatant was then used as the DNA template in the genotyping PCR experiments.   

 

O. GENOTYPING 

A PCR master mix of reagents was made to ensure each sample of 1ul mouse tail 

DNA template received 5ul 10x PCR buffer, 1ul 10mM dNTPs, .2ul Taq polymerase, 0.5ul 

each of 100um forward and reverse primers and 2.8ul of water.  The samples were run 
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through a thermocycler on the following programs per each set of primers to generate a 

PCR product: 

SMYD2:  

5’GGTCTGGCTTTGGAGTTGAGCC3’; 5’GAGCTTCGTGGAGTGCAGGAC3’ 

Ran at: 94°C x 5’ (94°C x 30”, 62°C x 30”, 72°C x 30”) x 35 cycles, 72°C x 7’ 

Mx1 cre:  

5’GCGGTCTGGCAGTAAAAACTATC3’; 5’GTGAAACAGCATTGCTGTCACTT3’ 

Ran at: 94° C x 2’ (94° C x 20”, 60° C x 20”, 72° C x 20”) x 35 cycles, 72° C x 2’ 

Vav cre:  

5’AGATGCCAGGACATCAGGAACCTG3’; 5’ATCAGCCACACCAGACACAGAGATC3’ 

Ran at: 94° C x 5’ (94° C x 30”, 64° C x 45”, 72° C x 45”) x 35 cycles, 72° C x 7’ 

YFP: 

5’GGAGCGGGAGAAATGGATATG3’; 5’AAAGTCGCTCTGAGTTGTTAT3’; 

5’AAGACCGCGAAGAGTTTGTC3’ 

Ran at: 94° C x 5’ (94° C x 30”, 58° C x 1’, 72° C x 1’) x 35 cycles, 72° C x 7’ 

All PCR products were analyzed via gel electrophoresis. 15ul of each sample and 

loading dye was run on a 2.0% agarose gel with the addition of ethidium bromide. 

Electrophoresis was ran at 100v for approximately 30minutes before visualization in a UV 

light box. 

 

P. FLOW CYTOMETRY 

Bone marrow from femurs, spleen, thymus and peripheral blood cells were 

harvested from experimental and control mice and kept on ice and in RPMI media. Cell 
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suspensions were washed, strained through 70um mesh filters and counted. At least 

1.5x106 cells were aliquoted into 1.5mL Eppendorf tubes, pelleted and incubated for 

30mins at room temperature in the dark or for one hour at 4° C in the dark with a 1% 

concentration of fluorescently labeled antibody (BioLegend, BD Biosciences and 

eBiosciences) stains for each tissue type in 100ul of sterile 1x PBS buffer. Cells were 

then washed of their stains, transferred to 5ml polystyrene tubes in 2ml of sterile 1x PBS 

buffer. Arc compensation beads stained for each color used per assay were used as 

controls. Definitions of each cell population were defined as denoted in Table 2 and 

antibody conjugates are listed in Table 3. All samples and controls were collected on the 

BD Bioscience LSR II Fortessa. Analysis of flow data was conducted using FlowJo 

software.  

 

Q. CELL CULTURE 

 Cell lines were grown in appropriate media; alpha-MEM for OP9 cells, RPMI for 

primary bone marrow cells and DMEM for 293T cells without any antibiotic supplements. 

Cells were cultured at 37° C in a humidified atmosphere of 5% CO 2.  

 

R. TIMED MATINGS 

Female mice (n = 1 or 2) of 6wks old were placed in a cage overnight with a single male 

mouse. Putative pregnancy was determined by the presence of a copulation plug the 

following morning (approximately 0800), which was designated as GD0.5. Female mice 

were group-housed (n = 1 to 5 mice per cage) according to their copulation-plug status,. 

Pregnancy was confirmed by the birth of a litter. 
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S. FETAL LIVERS 

We conducted timed matings of SMYD2 F/F Vav cre+ YFP+/+ males with a SMYD2 F/F 

YFP +/- female and harvested the embryos at day E15.5. Fetal livers were removed, 

pushed through a 70 um mesh screen to obtain a single cell suspension and red blood 

cell lysed. These cells were then labeled with fluorescently conjugated antibodies and 

analyzed by flow cytometry. 

 

T. MACS CELL SEPARATION 

Magnetic cell sorting was performed using the Milyenyi Biotec lineage depletion kit 

and according to the manufacturer’s instructions in order to separate earlier bone marrow 

progenitor cells from later lineage specific cells. The bone marrow of both control and 

experimental mice were harvested by flushing mouse femurs with MACS Buffer on ice. 

The cell suspension was then strained through 70um mesh filters, washed, counted and 

labeled with CD43 magnetic beads. The labeled cells were run through the magnetic 

fields of the MACS separator columns and the effluents collected for analysis.  

 

U. B CELL PROLIFERATION ASSAY 

The proliferation assays were conducted and adapted from the Cold Spring Harbor 

Protocol for the OP9-DL1 System, doi: 10.1101/pdb.prot5156. Early primary progenitor 

cells from 4-8 week old experimental and control mouse bone marrow, previously 

separated by MACS cell separation, were strained, washed and counted. 5x105 cells 

were plated on top of a culture of 80-90% confluent OP9 cells in alpha-MEM media with 

the addition of the cytokines Flt3 and IL-7 at a concentration of 5mg/mL and 1ng/mL 
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respectively. The co-culture was maintained for up to twenty days during which time cells 

were harvested for counting, detection of YFP, and flow cytometry analysis around days 

0, 5, 8, 12 and 16. Cells were re-plated with or without trypsin mediated passage to fresh 

confluent OP9 cultures every four to five days.  

 

V. WESTEN BLOTS  

Proteins were resolved in SDS PAGE gel at 200V for 35min and electrotransfered 

by tank method to membranes at 30V for 1hour. The blots were blocked in 5% BSA with 

TBS-T buffer for 1hour, then rinsed five times for ten minutes each with TBS-T. Blots were 

incubated with primary antibody diluted in TBS-T 1:1000 overnight, washed five times for 

ten minutes each with TBS-T, and then incubated with secondary antibody 1:1000 for 

1hour. Blots were washed five times in TBS-T before visualization on Storm Imaging 

System.  

 

W. MOUSE IMMUNIZATIONS 

Mice were SMYD2flox/flox mb1 cre+ YFP or SMYD2flox/flox mb1 cre- YFP. All mice were 

maintained on a C57BL/6 background in specific pathogen–free facilities. Mice were 

immunized with NP-KLH at a molar ratio ~17:1 (NP/KLH). Antigen was precipitated on 

alum at a concentration of 1 mg/ml and delivered by intraperitoneal (100 μg) or 

subcutaneous (50 μg) injection. Blood serum was collected at 0, 14, and 28 days after 

inoculation and analyzed via ELISA. 
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X. ELISA  

For measuring the levels of serum IgG isotypes, ELISA plates were coated with goat–

anti-mouse Ig(M+G+A), incubated with serially diluted sera (1:50, 1:150, 1:450, 1:1,350, 

1:4,050, 1:12,150, and 1:36,450), and developed with horseradish peroxidase (HRP)-

conjugated goat Ab specific for each mouse IgG isotype (Southern Biotechnology 

Associates). Plates were developed with HRP-conjugated goat Abs specific for mouse 

IgM and IgG isotypes and Dako TMB One-Step substrate. Antibody concentrations were 

calculated by using the linear ranges of the dilution and standard curves generated with 

purified mouse monoclonal IgG antibodies.  
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Table 2. Hematopoietic population definitions. Each stage of differentiation is unique 
in its expression of extracellular surface markers. Cells were distinguished from each 
other according to the listed definitions.  

 

 

 

  

Tissue Population Population Abbr Marker Lineage

Hematopoietic stem cell HSC Lin-Sca1+ckit+Flt3- B220, CD19, CD3e, CD4, 

Multipotent progenitor MPP Lin-Sca1+ckit+Flt3int CD8a, CD11b, Gr1, NK1.1, 

Lymphoid primed multipotent progenitor LMPP Lin-Sca1+ckit+Flt3hi Ter119

Common lymphoid progenitor CLP Lin-Flt3+IL-7+Sca1low+ckitlow

Common myeloid progenitor CMP Lin-Sca1-+ckit+ FcyRintCD34int

Granulocyte/macrophage progenitor GMP Lin-Sca1-+ckit+ FcyRhiCD34hi

Megakaryocyte/erythroid progenitor MEP Lin-Sca1-+ckit+ FcyRlowCD34low

Progenitor B cell Pro-B B220+CD19-CD43+ckit+IgM-

Pre B cell  Pre-B B220+CD19+CD43-IgM-

Large Pre-B Large Pre-B B220+CD19+CD43+IgM-BP1+

Small Pre-B Small Pre-B B220+CD19+CD43-IgM-CD2+

Immature B cell Imm B B220+CD19+CD43-IgMhiIgD-

Mature B cell or Recirculating B cell Mat B or Recirc B220+CD19+IgMhiIgD+

Macrophage Macro Mac1+Gr1lowCD115+

Granulocytes Gran Mac1+Gr1hiCD115-

Plasmacytoid dendritic cell pDC CD11b-CD11clowB220+PDCA1+

Double negative DN CD4-CD8- B220, CD19, CD3e, CD8a 

Double positive DP CD4+CD8+ TCRB, TCRyΔ, CD11b, NK1.1, 

Helper T cells CD4+ CD4+CD8- Ly-6G, CD11b, CD11c,Ter119

Cytotoxic T cells CD8+ CD4-CD8+

Immature B cell Imm B B220+CD19+IgMhiIgD-

Transitional B cell 1 Trans B 1 B220+CD19+IgMhiIgD-CD21-CD23-

Transitional B cell 2 Trans B 2 B220+CD19+IgMhiIgD+CD21+CD23+

Mature B cell or Recirculating B cell Mat B or Recirc B220+CD19+IgMhiIgDhi

Follicular B cell FO B B220+CD19+CD21intCD23hi

Marginal zone B cell MZ B B220+CD19+CD21hiCD23low
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 Table 3. Epitopes and conjugated antibodies. Stains utilizing the listed fluorescently 
labeled antibodies were used to define cells as mentioned in Table 2. 

Epitope Conjugate Epitope Conjugate

B220 qDot605 CD71 PE
Alexa700 ckit PE-CY7

BP1 PE F4/80 PE-CY7
CD2 APC FCyR PE
CD3e APC-CY7 Flt3 APC

PerCP-CY5.5 Gr1 APC
CD4 PerCP-CY5.5 PerCP-CY5.5
CD8a APC IgD Pacific Blue

PerCP-CY5.5 IgM APC-CY7
CD8b.2 Pacific Blue PerCP-CY5.5
CD11b PE-CY7 IL-7Ra V21

Pacific Blue PerCP-CY5.5
PerCP-CY5.5 MHCII Pacific Blue

CD11c APC-CY7 NK1.1 PerCP-CY5.5
CD115 qDot605 PDCA1 PE
CD19 APC Sca1 APC-CY7

Alexa700 Alexa700

CD21/35 PE-CY7 TCRB APC
CD22 PE TCRyΔ PE
CD23 PE Ter119 PerCP-CY5.5
CD34 Alexa700
CD43 APC

PE
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CHAPTER 3 – C-TERMINAL DOMAIN OF SMYD3 SERVES AS A UNIQUE HSP90- 
REGULATED MOTIF IN ONCOGENESIS 

 
 
 

The histone code of post-translational modifications determines the level of 

chromatin accessibility to both transcription factors and polymerase complexes [11, 104, 

105]. In this way, the SMYD family of histone methyltransferases (HMTases) plays critical 

roles in the modulation of transcriptional activity to impart normal cellular differentiation 

as well as oncogenic transformation. SMYD3 catalyzes trimethylation (me3) of H4-K20 

[106], H4-K5 [49] and H3-K4 [54] and monomethylation of vascular endothelial growth 

factor receptor 1 [107]. These various histone methylation marks lead to altered 

expression levels of genes physically associated with the methylated histone. Indeed, 

SMYD3 has been strongly implicated as a proto-oncogene in hepatocellular, colorectal 

and breast carcinomas [40, 50, 108-110] by virtue of its high over-expression and 

promoter-associated polymorphisms specific to malignant cells. 

 HSP90 is a key chaperone involved in the proper folding of many cellular proteins 

and its deregulation is strongly implicated in a broad array of malignancies [78, 111]. At 

the same time, HSP90 has been implicated as a driver of evolution, either as a stabilizer 

of particular polymorphisms in coding and regulatory sequences of key proteins  [84, 112] 

or as an inducer of heritably altered chromatin states [113], suggesting it has a significant 

role in epigenetic modification. This later role is more surprising, as HSP90’s primary role 

is traditionally seen as a folding chaperone to a vast number of client proteins, including 

a myriad of epigenetic regulators. It remains an open question as to whether HSP90 has 

specific interactions with a select few epigenetic proteins through which the heritably 

altered chromatin states are cooperatively induced.  
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HSP90 has been the target of many novel cancer therapeutics. The most advanced of 

these function by occupying the ATP binding site, thus blocking the release of HSP90 

substrates. Unfortunately, adverse side effects are the unintended consequence of 

eliminating the molecular chaperone activity of this broadly expressed and essential 

protein [114]. Altering the association of HSP90 with specific partners is seen as a 

potential, but challenging and as yet unsolved, approach toward mitigating these side 

effects. One line of thought is that altering the epigenetic functions of HSP90 without 

significantly altering its molecular chaperone function might lead to a better tolerated 

therapeutic outcome.  

SMYD3 and HSP90 can physically interact, with HSP90 stimulating the basal 

HMTase activity of SMYD3 [40]. The relevance of this association in a cellular milieu and 

its association with the epigenetic roles of either of these proteins is, however, poorly 

characterized. The potential to connect both the physical associations and the epigenetic 

functions of SMYD3 and HSP90 has increased significantly with the almost concurrent 

publication of three independent crystal complexes of SMYD3 [39, 115, 116]. The SMYD3 

structures revealed an overall compact architecture in which the N- and C-terminal 

portions of the “split-SET” domain (N-SET and C-SET) adopt a canonical SET domain 

fold and closely assemble with the MYND (Myeloid translocation protein 8, Nervy, and 

DEAF-1) zinc-binding and protein-protein interaction domain .[117-119] The structures 

also feature a previously uncharacterized, ~150 residue C-terminal domain (CTD) which 

is conserved in all SMYD paralogs except SMYD5. The CTD forms a superhelical 9 α-

helical bundle which constricts the floor of the substrate binding site to a variable degree 

among the SMYDs [42, 67]. Based on structural overlays, the superhelical bundle 
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appears to be a second protein-protein interaction domain, termed the tetratricopeptide 

repeat (TPR). TPRs facilitate a wide range of diverse functions and are composed of ~34 

amino acids of roughly conserved sequence that invariably assemble into characteristic 

helix-turn-helix structures [120]. A previously documented interaction of HSP90 with the 

TPR of the cyclophilin FKBP52 [121, 122] implicates the CTD as the HSP90 binding motif 

for most human SMYDs [123, 124]. This model was suggested for SMYDs 2, 3, and 5 

[85], but the cellular consequences of potential HSP90-SMYD interactions have not been 

addressed.  

Herein, we investigate the structural and functional relationship between HSP90 and 

SMYD3 both in vitro and in vivo. We show that the CTD is essential for basal SMYD3 

methyltransferase activity and establish a unique interfacial interaction for maximal 

HMTase induction by HSP90. We suggest that disruption of the association between 

SMYD3 and HSP90 may impact cellular differentiation and oncogenic transformation, 

providing a potential avenue for blocking HSP90- enabled malignancy with a reduced 

toxicity profile in SMYD3-overexpressing cells.  

 

A. RESULTS 

The CTD is required for basal HMTase activity of SMYD3 

 Inspection of the SMYD3 structure (Figure 10A) revealed that a relatively large space 

near the post-SET domain and N-terminal portion of the CTD along the inner wall of the 

pocket is decorated by polar residues from the CTD (mainly residues from N324-C333 of 

helix 4) (Figure 10B). Sirinupong et al. [125] had identified residue K329 as a key linchpin 

residue, helping maintain the spacing between the CTD and the rest of the protein. In 
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addition, residues T277 and N327 form multiple hydrogen bonds which help stabilize the 

assembly of helices 1–4 of the CTD. The remaining residues (E294, E295, D332, and 

C333) all align in roughly linear fashion in close succession, except for Q287. This 

conserved clustering suggests that these polar residues might cooperate with the post-

SET residues to restrict the histone substrate on both sides of the methyl-lysine. In this 

context, the CTD could function as a cap necessary to bind substrates effectively and 

selectively. Consistent with this hypothesis, deletion of CTD helices 1–9 [SMYD3(1–279)] 

eliminated basal HMTase activity of SMYD3 for histone H4 (Figure 11A).  

This loss in basal HMTase is also associated with significantly reduced binding of 

SMYD3 to HSP90 (Figure 11B). The C-terminal five residues (MEEVD) of HSP90 are 

putatively sufficient to recognize TPR motifs [122]. While this pentapeptide bound WT 

SMYD3, it failed to interact significantly with SMYD3(1–279). This indicated that not only 

is the CTD required for the basal HMTase activity of SMYD3, but that recognition of 

HSP90 via its last five C-terminal residues may also be required. Unexpectedly, deletion 

of helices 7–9 [SMYD3(1–364)], which neither contains nor interacts with any of the polar 

residues mentioned above, also led to loss of basal HMTase activity and to loss of binding 

to HSP90 and its derivative MEEVD peptide (Figure 11).  

 

Structural conservation of SMYD3 CTD and the HSP90-binding tetratricopeptide (TPR) 

repeats within FKBP52 

To reconcile the above results for SMYD3(1–364), a model of the binding of HSP90 

to the CTD of SMYD3 proved extremely helpful. The CTDs are significantly conserved 

among SMYDs 1–3 and their orthologs after position 364 of SMYD3 (Figure 12). Others 
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[42, 116, 125] have posited that the CTD of various SMYDs may be associated with 

HSP90 binding and have even generated overlays predicting the orientation of the 

MEEVD peptide in the TPR-like motif. Recapitulation of this overlay (Figure 13A, 13B) 

using FKBP52, which was solved in a complex with the terminal 5 amino acids (MEEVD) 

of HSP90 [122], indicated that the overlay may be incorrect. 

 First, the HSP90 pentapeptide is inserted deep into the pocket, leading to a 

potential steric conflict between HSP90 and substrates of SMYD3. The HSP90 CTD is 

almost certainly not a disordered domain nor is it a purely linear chain. But in this model, 

the CTD must be positioned somewhere near the lip of the SMYD3 protein, thereby 

reducing access. Second, the residues in that region are incompatible with the HSP90 

peptide (Figure 13B). Several of the residues of the MEEVD peptide model are in steric 

clash with the CTD residues, where a loop from the I-SET domain occupies a similar 

space. This clash was rationalized away by hypothesizing an autoinhibitory mode [42], 

which we grant is possible. Yet, even if the SMYD3 side chains were adjusted so as to 

relieve steric clashes, the acidic residues of the HSP90 C-terminal tail sit in a neutral to 

acidic portion of the pocket, suggesting a lack of electrostatic complementarity as well. 

Third, deletion of helices 7–9 should not significantly perturb the MEEVD peptide binding 

which is inconsistent with our data (Figure 11B). Thus, an alternative binding mode must 

be considered.  
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TPR-like residues of SMYD3 CTD are essential in vitro for HSP90 binding and catalytic 

enhancement 

In order to reconcile our data with a TPR-like motif which could bind HSP90, we 

aligned helices 7–9 with the HSP90 binding region of FKBP52 [121, 122] (Figure 13C). 

Helices 4–9 in SMYD3 align with the first 3 helices of the TPR motif from FKBP52 (Figure 

13D), which features the C-terminal pentapeptide MEEVD. Several SMYD3 residues 

between CTD helices 4 and 5, 7 and 8, and at the end of helix 9 were predicted from the 

FKBP52 structure [122] to be within contact distance (6Å) of the modeled HSP90 

pentapeptide. All are conserved among closest SMYD3 orthologs and, to varying 

degrees, among SMYD3 paralogs and with FKBP52 (Figure 12; Table 4). Mutation of 

several of these residues led to diminished SMYD3 binding to both HSP90 and MEEVD, 

including I339 and K375, structural anchors between N- and C-terminal components of 

the CTD, or to complete loss of binding on mutation of H382, a potential HSP90 interfacial 

residue, or C421, an anchor for helix 9 to the rest of the CTD (Figure 14A). Dissociation 

constant (Kd) measurements averaged from 5 biologic replicas with density 

measurements within linear range (Materials and Methods) indicated that HSP90 and 

MEEVD binding losses ranged from ~10-fold for I339A at the low end to ~40-fold for 

C421A at the high end (Table 4). The same point mutations lost up to 8-fold enhancement 

of HSP90 stimulation of HMTase activity toward histone H4 (representative data in Figure 

14B; Table 4).  

To ensure that these mutations are specific, we mutated nearby residues, such as 

N340 and E420. These mutations had no effect on HSP90 binding or enhancement 

(Table 4). Taken with the data of Figure 12, these results indicate that the more N-terminal 
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helices of the SMYD3 CTD are required for its constitutive HMTase activity, whereas the 

TPR-like C-terminal helices are required for the enhanced activity afforded by HSP90.  

 

TPR-like residues of SMYD3 CTD are essential in vivo for nuclear localization, HSP90 

interaction and sub-nuclear sequestration into chromatin 

To establish the cellular effects of the deletion and point mutants which impaired 

HSP90 binding in vitro, nuclear (N) and cytoplasmic (C) distributions of their 

overexpressed FLAG-tagged constructs were evaluated in NIH3T3 fibroblasts. As shown 

in Figure 15A, deletion of the 9 helices of the CTD in SMYD3(1–279) eliminated nuclear 

localization (compare lanes 5 and 6), whereas deletion of helices 7–9 in SMYD3(1–364) 

(lanes 3 and 4) showed no difference with wildtype (WT, lanes 1 and 2). Thus, nuclear 

entry function resides within helices 1–6 of the CTD. Potentially relevant is the previous 

observation that the predictive general nuclear localization sequence (NLS) for Kapβ2 

transporter recognition (ΦGΦΦX13RX3 PY; Φ, any hydrophobic residue) [126] matches 

the SMYD3 sequence from L341 to Y358. This sequence and, particularly the P357Y358 

essential for Kapβ2-NLS recognition, are not exposed, but buried by helices 7–9 of the 

CTD of SMYD3, suggesting HSP90 C-terminal binding may serve to expose the putative 

NLS. 

 Next we tested whether the HSP90 binding requirements established in vitro were 

observed in cells. Following over-expression of the indicated SMYD3 constructs of Figure 

15B, ~5% of the protein was reserved for Input (lane 1) and the remainder was subjected 

to antiSMYD3 or anti-HSP90 immunoprecipitation (IP; lanes 2 and 3) with pre-immune 

sera (α-Ig) serving as a control (lane 4). Complexes were resolved on SDSPAGE, and 
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interactions of over-expressed SMYD3 with endogenous levels of HSP90 were assessed 

by anti-HSP90 and anti-FLAG western blotting. Strong, reciprocal interaction was 

observed for SMYD3 WT, whereas no interaction was detectable if helices 7–9 were 

truncated [SMYD3(1–364), Figure 15B]. Each of the SYMD3 point mutants which had 

reduced or no interaction with HSP90 in vitro (Figure 14B) showed highly reduced 

interactions in NIH3T3 cells (Figure 15B).  

The lack of association between HSP90 and SMYD3 mutants raised the possibility 

that HSP90 interaction with SMYD3 CTD, and particularly helices 7–9, is essential for 

SMYD3 nuclear transport. To address this, we overexpressed select SMYD3 substitution 

mutants (Figure 15C), fractionated the NIH3T3 cells into cytoplasmic (C), soluble nuclear 

(N), chromatin (Ch) and nuclear matrix (NM) components and then carried out semi-

quantitative antiFLAG Western analysis. Established markers (bottom 3 panels) validated 

purity of the sub-fractions. As previously shown [74, 127], HSP90 accumulates in the 

cytoplasm (C) and within the soluble and chromatin sub-fractions (Figure 15C, lanes 1 

and 3). WT SMYD3 accumulated in a similar pattern as HSP90. While nuclear localization 

was achieved with SMYD3(1–364) and each of the nonHSP90 interacting point mutants, 

they were mislocated to various extents, with virtually complete loss of K375A and H382A 

from chromatin into the nuclear matrix (compare lanes 3 and 4). Hence, association of 

the SMYD3 CTD with HSP90 is not required for nuclear transport per se but is required 

to distribute SMYD3 to its site of functional catalysis-nuclear chromatin.  
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CTD-HSP90 interaction is required for maximal SMYD3 stimulation of cell proliferation  

Although maximal nuclear activity of SMYD3 requires HSP90 association, its 

activity against cytoplasmic targets may be uncompromised and hence may not require 

HSP90 interaction for its oncogenicity. Numerous studies [50, 54, 128-130] demonstrated 

proto-oncogene-type actions of SMYD3 under conditions of genetic-based promoter 

mutations leading to gain-of-function in malignant tumors or following enforced ectopic 

over-expression in non-transformed cells. HSP90 assists in the folding and function of 

numerous proto-oncogenes, as its inhibition by small molecules or siRNA leads to their 

destabilization and subsequent suppression of malignancy. As shown in Figure 16, stable 

over-expression of wildtype SMYD3 in mouse embryonic fibroblasts (MEFs) leads to a 

statistically significant (p < .001) approximately 3-fold enhancement in proliferation 

relative to vector control. This enhancement is significantly abrogated to varying extents 

in SMYD3 CTD mutants impaired in HSP90 interaction. Specifically, we observed low 

statistical difference (p < 0.10) between vector-only and all CTD mutants which lose 

HSP90 association, whereas the I339A mutation which retains HSP90 association trends 

much more closely to that of WT SMYD3 (p < 0.10). We did not observe significant 

changes in morphology, adhesion or cell migration following enforced expression of 

SMYD3, as was observed in some previous reports [50, 54, 128-132] .That these 

previous enforced expression studies were performed in transformed cell lines, which 

quite probably express higher levels of endogenous SMYD3 than did our diploid MEF 

transfectants, may account for this difference. 
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Figure 10: Structure of SMYD3.  (A) Structure of SMYD3 colored by domain 
components. SMYD3 has 6 domain components: N-SET (red), MYND (Yellow), I-SET 
(cyan), C-SET (magenta), post-SET (pale green), and the CTD (blue). (B) Cross-eye 
Stereo view of helices 1–6 of the CTD of SMYD3. SMYD3 domains are colored 
separately, with the CTD colored blue. Residues conserved in SMYD3 orthologs but not 
paralogs are displayed in thick bonds. Dashed lines indicate hydrogen bonds. Underlined 
residues are available on the surface for interactions. Other domains include the N-SET 
(red), MYND (yellow), I-SET (cyan), C-SET (magenta) and the post-SET domain (pale 
green). 

A. 

B. 
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Figure 11: The SMYD3 CTD is required for binding and enhanced Histone Methyl 
Transferase Activity (HMTase) by HSP90. (A) Truncation mutants were expressed in 
E. coli and validated for purity on 10% SDS-PAGE stained with Coomassie Blue (Upper 
panel). Equal amounts of truncated and wildtype (WT) SMYD3 were then compared for 
in vitro HMTase activities in the presence or absence of HSP90 by 3H-S-
adenylmethionine incorporation into histone H4 (3H-H4) followed by gel fractionation and 
autoradiography after loading onto a separate 20% SDS-PAGE (lower and middle 
panels). The SMYD3(1–279) truncation eliminates the entire CTD, while SMYD3(1–364) 
lacks the final 3 helices of the CTD. Molecular weights in kD indicated to the right of each 
panel were determined from marker mix (M, included in Lane 1 with H4 only) which, as 
indicated by the blue vertical line was run on parallel 10% and 20% gels. (B) The SMYD3 
CTD is required for binding of HSP90 and for binding to a pentapeptide MEEVD 
previously shown [29] to be sufficient for the interaction of HSP90 and a TPR domain 
within the immunophilin, FKBP52. Nickel-NTA beads were mixed with ~1 μg wildtype 
(WT) 6X-His-SMYD3 or ~1 μg 6X-His-mutants in which the entire CTD (1–279) or its C-
terminal 3 helices (1–364) were truncated. The slurries were incubated with either 
HSP90α or GST-MEEVD and bound protein (B lanes) was eluted from the beads and 
analyzed on 12.5% SDS-PAGE. For input controls (I lanes), 10% of the amounts of 
HSP90α and GST-MEEVD used for binding reactions were processed identically but in 
the absence of 6X-His-SMYD3. Band assignments (left) were made by sizes of 
Coomassie stained bands (upper panel) as judged by migration of a standard molecular 
weight marker mix (not shown). These assignments were confirmed (lower panels) by 
western blotting using antibodies (indicated on the left) specific for SMYD3, HSP90 and 
GST. Arrows denote positions of WT bound HSP90 or GST-MEEVD. Molecular weights 
are indicated on the right in kD. Blue vertical lines denote composites of lanes run on 
parallel gels repositioned to emphasize outcomes. 
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Figure 12: Alignment of the carboxyl terminal (CTD) domain from SMYD3 orthologs 
and paralogs. Structure of the 9-helix bundle SMYD3 CTD (right upper panel, blue). The 
primary human sequence of SMYD3 CTD is aligned (lower panel) with corresponding 
CTDs of closest paralogs, SMYDs1 and 2, in multiple species. Residues are colored 
according to their physical properties. For example, all shades of red represent acidic 
residues, all shades of blue represent basic residues, and all shades of green represent 
hydrophobic residues. Black boxes in the alignment indicate residues conserved among 
orthologous SMYD subfamilies but not among paralogs in the same species. Red boxes 
below the alignments correspond to the SMYD3 residue labels in the upper right hand 
corner. These residues are modeled as being within 6Å of the MEEVD C-terminal peptide 
from HSP90 in human SMYD3 (see Figure 13B) or were mutated (see Table 4). 



 

52 
 

 
 

Figure 13: Residues within a degenerate tetratricopeptide (TPR)-like domain within 
the SMYD3 CTD mediate HSP90 interaction. (A) Cross-eye stereo recapitulation of the 
modeled overlay of SMYD3 CTD (blue) with the TPR motif from FKBP52 (yellow) as in 
[20, 21, 26]. The N-terminal of the CTD is labeled for clarity of orientation. (B) Stereo 
close-up of the overlay in Figure 13A, with ribbon coloring retained. Residues from 
SMYD3 are in green while the MEEVD pentapeptide from the C-terminus of HSP90 in the 
FKBP52-bound structure is in magenta. The residues from the I-SET domain are marked 
by the cyan ribbon. (C) Stereo depiction of the current publication’s modeled overlay of 
helices 7–9 of the SMYD3 CTD (blue) with the HSP90-binding region of FKBP52 (yellow). 
(D) Stereo close-up of the overlay in Figure 13C, with ribbon coloring retained. Residues 
from HSP90 are in black, while those from SMYD3 are in off-white. Residues in the vicinity 
of the modeled HSP90 peptide are labelled. 
  



 

53 
 

Table 4: Summary of HSP90 binding and histone methyltransferase activities 
following truncation or point mutation of residues within the SMYD3 CTD. §Mutated 
residues conserved among SMYDs 1, 2, 3 and/or FKBP52 (F); #ratio of HSP90-induced- 
to basal- in vitro SMYD3 HMTase activities for the indicated construct (Methods and 
Materials). A minimal number of 4 biological replicates were measured to determine 
ratios, standard deviations, and statistical significance. Basal levels were eliminated by 
the two CTD deletions [SMYD3 (1-364) and (1-279)] but remained essentially unchanged 
for any of the point mutations listed here. **SMYD3 side chain predicted to be within 6Å 
of bound HSP90 pentapeptide, MEEVD; ***SMYD3 surface residue; †Critical SMYD3 
structural element. 
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Figure 14: Enhancement of basal HMTase activity of SMYD3 requires binding of 
HSP90 to conserved residues within a TPR-like region of the CTD. (A) Conserved 
residues within a TPR-like region of SMYD3 CTD are required for HSP90 and MEEVD 
binding. Residues mutated (detailed in Materials and Methods) were predicted to interact 
with the HSP90 peptide or to be critical for CTD integrity. Nickel-NTA beads were mixed 
with ~1 μg wildtype (WT) 6X-His-SMYD3 or ~1 μg 6X-His-mutants. The slurries were 
incubated with either HSP90α or GST-MEEVD and bound protein was eluted from the 
beads and analyzed on 12.5% SDS-PAGE. Arrows denote loss of SMYD3-mutant 
interaction. Blue vertical lines denote repositioning of lanes run on the same gel 
repositioned to emphasize outcomes. (B) CTD residues required for HSP90 binding are 
required for HSP90-mediated enhancement of SMYD3 HMTase activity. In vitro 3H-SAM 
HMTase assays (autoradiographs, center panels) were performed as described in 
Materials and Methods and in the legend to Figure 11A. Inputs are shown by Coomassie 
stains in upper (SMYD3 WT and mutants) and lower (recombinant histone H4) panels. 
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Blue vertical lines denote repositioning of lanes run on the same gel repositioned to 
emphasize outcomes. 
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Figure 15: TPR residues of SMYD3 CTD are essential in vivo for nuclear 
localization, HSP90 interaction and sub-nuclear sequestration into chromatin. (A) 
Deletion of the 9 helices of the CTD eliminates nuclear localization. Upper panel: NIH3T3 
cells were transiently transfected with the indicated FLAG-tagged SMYD3 WT or deletion 
mutants, separated into nuclear (N) and cytoplasmic (C) fractions, and protein lysates 
were analyzed by SDS-PAGE/anti-FLAG western blotting. Purity of the fractions and 
confirmation of equal protein inputs was confirmed by anti-Lamin B western (lower panel). 
(B) Confirmation in vivo of SMYD3-HSP90 interactions established in vitro. Following 
transient transfection of the indicated FLAG-tagged wildtype (WT) and CTD point mutants 
into NIH3T3 cells, ~5% of the whole cell lysate was reserved for Input (lanes 1) and the 
remainder was subjected to immunoprecipitation with antibodies (α) specific for SMYD3 
or HSP90 (IP; lanes 2 and 3) with pre-immune sera (anti-Ig, lanes 4) serving as negative 
control. Complexes were resolved on SDS-PAGE, and interactions of over-expressed 
SMYD3 with endogenous levels of HSP90 were assessed by anti-HSP90 and anti-FLAG 
western blotting. (C) CTD mutation perturbs distribution of SMYD3 within sub-nuclear 
compartments. Following over-expression of the indicated FLAG-tagged constructs, 
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NIH3T3 cells were fractionated into cytoplasmic (C), soluble nuclear (N), chromatin (Ch) 
and nuclear matrix (NM) and following resolution on SDS-PAGE, protein subcellular 
localization was assessed by semi-quantitative anti-FLAG Western analysis. Western 
blotting with established markers (indicated in bottom 3 panels) validated purity of the 
sub-fractions. 
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Figure 16: CTD-HSP90 interaction is required for maximal SMYD3 stimulation of 
cell proliferation rate. The indicated WT and mutant constructs (top left) were transiently 
transfected into mouse embryonic fibroblasts. Relatively equal levels of expression were 
confirmed by Western blot of total cell lysates at day 1 (inset). Proliferation rates were 
assessed at the indicated time-points following transfection by counting trypan blue-
negative (living) cells. Growth curves are shown as averages of 4 independent 
experiments with standard deviations (I) Brackets denote paired t-test-derived mean-
difference probabilities (p) with width of the bracket representing magnitude. Δ364 stands 
for SMYD3 (1–364). 
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B. CONCLUSION  
 

SMYD3 is overexpressed in a variety of tumor types, including hepatocellular 

carcinomas and breast cancers, with poor prognosis commonly observed [41]. It is an 

important epigenetic regulator, known to methylate histones at several sites, including 

H4-K20. We demonstrate that the C-terminal domain (CTD) is essential for SMYD3’s 

histone methyltransferase (HMTase) activity, as truncates of either the whole CTD or 

even just the three C-terminal helices of the CTD suffice to eliminate basal methylation of 

H4, both in vitro and in vivo. A central hypothesis proposed in the analysis of SMYD1 as 

applied to SMYD3 [20] conflicts with our results. Based on the differential geometries 

adopted by the CTDs of SMYD1 and SMYD3, those authors speculated that the SMYD3 

CTD must undergo a hinge-like movement to relieve its inherent auto-inhibition of 

substrate entry and/or release, suggesting that the CTD serves mainly a regulatory role. 

In contrast, we directly demonstrated that CTD deletion greatly reduced enzymatic activity 

(Figure 11A and Table 4), suggesting that, at least for basal histone catalysis, the CTD 

stabilizes the SMYD3 active site.  

To further understand the binding determinants of this regulatory site, we 

hypothesized that HSP90, which is known to stimulate SMYD family HMTase activity 

upon binding, interacts with the final three helices of the CTD. This proposal stands in 

contrast to earlier predictions which suggested that the entire CTD should interact with 

HSP90, based on overlays between the CTD and the HSP90-interacting tetratricopeptide 

repeat (TPR) domain of FKBP52. Detailed analysis of the HSP90 binding site modeled 

onto SMYD3 suggested several residues important for binding. These residues are 

conserved among both SMYD3 paralogs and orthologs, indicating potential functional 
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significance. Our data establish a strong correlation between modification of these 

terminal helices, either through truncation or through point mutations, and sensitivity to 

HSP90 activation. Most strikingly, the side chain of H384 points out into solvent and is 

not expected to play a role in SMYD3 CTD conformational integrity but is predicted in our 

model to play an important role in HSP90 C-terminal recognition. As predicted, the H384A 

substitution mutant suffers near complete loss of HSP90 activation of SMYD3 both in in 

vitro and cellular contexts, suggesting the modeled binding model is indeed predictive. 

Only the last 5 C-terminal residues of HSP90 (MEEVD) play a significant role in SMYD3 

activation, as association and activation patterns are nearly identical between the full 

length HSP90 and the 5-mer (Table 1).  

The TPR-like CTD of SMYD3 also appears necessary for cell localization and for 

nuclear trafficking. Indeed, the TPR motif has been well documented for its role in HSP90-

dependent protein localization [42]. For example, mitochondrial localization of the 

immunophilin FKBP51 is dependent upon HSP90 via the TPR motif of FKBP51 [43]. 

Without a TPR motif and/or in the absence of HSP90, FKBP51 translocates to the nucleus 

where it has been shown to prevent oxidative stress [43]. Conversely, the association of 

many nuclear hormone receptors with TPR-motif containing proteins is known to facilitate 

their transport into the nucleus via association with HSP90 complexes [42]. Such is the 

case with the mineralocorticoid receptor which is transported into the nucleus by way of 

its association with TPR-containing FKBP52 in an HSP90 complex [44].  

Our results indicate that a substantial, if not exclusive, component of SMYD3-driven 

proliferation derives from its CTD interaction with HSP90. HSP90 facilitates SMYD3 

localization with chromatin and generically prevents SMYD3 destabilization. While we 
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cannot exclude HSP90 catalyzed stabilization of SMYD3 as the primary driver of the 

proliferation results, the fact that MEEVD suffices to activate SMYD3 in vitro but is not 

considered relevant to HSP90’s chaperone function suggests HSP90 most likely serves 

to relieve the regulatory components on SMYD3 to enable SMYD3’s epigenetic function. 

Nevertheless, sorting out the relative importance of these multiple HSP90 interaction with 

SMYD3 in native and oncogenic environments warrants further exploration. Based, then, 

on our data, a model of SMYD3- HSP90 cooperatively in heritably altering chromatin 

states emerges, with HSP90 interactions with the CTD of SMYD3 proceeding via a two-

component regulatory motif. The terminal helices 7–9 in this motif serve as a regulator of 

both the nuclear localization and compartmentalization sequences, with regulation of the 

latter facilitated through the enhanced accessibility of histone substrates. Relief of this 

HSP90-dependent regulatory feature permits a conformation in SMYD3 that supports 

efficient substrate binding. The remainder of the CTD (helices 1–6) serves as a binding 

enhancer and specificity determinant for SMYD3 substrates. Increasing levels of SMYD3 

in the presence of HSP90 effectively allows HSP90 to transform into an epigenetic agent.  

Given the general nature of HSP90 as a stress sensor, the connection between 

HSP90 and SMYD3 offers a unique opportunity for insight into oncogenesis and possibly 

evolution. Since most cancerous cells are in a perpetually stressed state, teetering on the 

brink of apoptosis, they face continual selection pressure, much like evolving organisms 

do. Activation of epigenetic stress response pathways should permit those cells to access 

survival mechanisms that might not otherwise be accessible under lower stress 

conditions. Generically, oncogenesis and metastasis require the manipulation of several 

processes, such as metabolic and cell cycle checkpoints, apoptosis, 
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expression/repression of cell adhesion and motility factors, and recruitment of angiogenic 

factors. The scope of this process is analogous to measures that are required for re-

setting a differentiated cell to a state of pluripotency, followed by selection of another 

differentiated state, and favors the conditions required for rapid mutagenesis and micro-

evolution. HSP90, also termed the ‘cancer chaperone’, has a central role in these 

processes by maintaining the stability and activity of many client proteins which are 

essential for each process [13]. SMYD3 appears to place suppressive marks in normal 

cells, but may inappropriately place activating marks on other residues over time when 

continually overexpressed. This role reversal may occur because, even though SMYD3 

has greater affinity for the H3-K4 site than for other histone peptide sequences, the 

specificity of its MYND domain partners prevent it from interacting significantly with those 

sites in normal cells. Overexpression may lead to saturation of those partner binding sites 

which would then permit SMYD3 recognition of these alternate high affinity sites. HSP90 

putatively helps stabilize, localize, and activate the excess SMYD3, allowing continuous 

methylation of its targets. Such expression levels would be permanently achieved by the 

types of malignancy-associated SMYD3 promoter polymorphisms previously observed 

[11, 12, 45], leading to rapidly proliferative clonal expansion well beyond what we 

observed in our data of Figure 16. Clearly, the ability to prevent reversion to a more 

pluripotent state in the first place may suffice to significantly reduce the short term threat 

from cancers, suggesting the interaction between HSP90 and epigenetic proteins such 

as SMYD3 needs a closer inspection.  
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CHAPTER 4 – THE IMPACT OF SMYD2 IN SPECIFIC MODELS OF 
HEMATOPOIETIC MALIGNANCIES 

 
 
 

Hematopoiesis is the pathway of cellular development that produces all of the cells 

that circulate in the blood [88, 96]. These cells include red blood cells and platelets in 

addition to immune cells such as macrophages, B cells and T cells. The process of 

hematopoiesis starts with a pluripotent, self-renewing hematopoietic stem cell (HSC). The 

HSC differentiates into early progenitor cells, which will develop into one of two distinct 

lineages, the myeloid and the lymphoid lines. These two lineages have committed 

precursors which further generate the multiple cells in the HSC pathway. Hematopoiesis 

occurs in the adult bone marrow and is triggered by a series of signals transported through 

the stromal environment. Many cells in this pathway undergo maturation via a progression 

of stages and selection. Aberrations in the hematopoietic cells result in a multitude of 

leukemias and lymphomas defined and named by the cell in which the transformation 

occurred (Figure 18).  Many of these cellular transformations possess chromosomal 

translocations which cause activation through transgene expression. 

Chromosomal rearrangements generally occur a specific stage in somatic cell 

types. These cells, such as those in hematopoiesis and during gametogenesis, undergo 

rearrangements in order to generate diversity. This process, though, can result in 

mutations as there is an exchange of genetic material between two non-homologous 

chromosomes. Each chromosome would have undergone double stranded DNA breaks 

through genetic instability or enzymatic activity. The exchange and joining of the double 

stranded breaks cause an aberrant exchange of genetic material between the 
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chromosomes called a translocation (Figure 17). One or more oncogenic translocations 

are found in most cancers.  

 In hematopoietic malignancies, there are several well studied oncogenic 

translocations. The Philadelphia chromosome, a translocation between chromosomes 9 

and 22, causes the production of a fusion genes known as BCR-Abl. This transgene 

remains constitutively active as a kinase, inducing cell signaling, deregulating 

proliferation, and prevention of apoptosis. The Philadelphia chromosome, or t(9:22), is 

present in 95% of chronic myeloid leukemia (CML) incidents. 

 Current treatment options include a hematopoietic stem cell transplant to 

repopulate healthy, non-transformed cells in addition to a drug Imatinib by Gleevec, that 

inhibits the kinase activity of the transgene. Unfortunately, compatible bone marrow 

donors are not always available and the effect of the drug is short lived.  

 Translocations involving the mixed lineage leukemia gene are also present in the 

hematopoietic pathway. Much like the SMYD proteins, the MLL gene produces a protein 

that methylates H3-K4. MLL fusion proteins have demonstrated the ability to transform 

hematopoietic cells into leukemic stem cells.     

Here we turn our attention to SMYD2 and its putative role in hematopoietic 

carcinogenesis. In order to study the effect of SMYD2 in tumor initiation, we employed 

transforming oncogenes to study the consequences of SMYD2 loss in three 

hematopoietic models: B-Acute Lymphocytic Leukemia (ALL), Chronic Myeloid Leukemia 

(CML), and Mixed Lineage Leukemia (MLL). Loss of SMYD2 in CML and MLL, but not in 

B-ALL, models led to cell cycle block following by rampant apoptosis and cell death. 

Tumorigenicity, as assessed in vitro by colony formation and in vivo by NOD/SCID 
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transformation, was dependent upon SMYD2. Gene expression analyses indicated that, 

as previously determined in multiple studies, impairment included reduction in the level 

of the p53 tumor suppressor. Collectively, these studies establish SMYD2 as a putative 

proto-oncogene in CML and MLL. 
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Figure 17: The Philadelphia Chromosome. A depiction of the translocation between 
chromosomes 9 and 22 resulting in the fusion gene Bcr-Abl also known as the 
Philadelphia Chromosome [133].  
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Figure 18: Points of transformation in various hematopoietic derived malignancies. 
An illustration of select cells in the hematopoietic pathways during maturation and 
associated tumorigenic states.  Some of these cancer phenotypes are   also connected 
to transgene expression caused by chromosomal translocations.  
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A. RESULTS 

Figure 19: Cell death in HSC tumor models of CML, MLL and ALL when SMYD2 is 
deleted. Deletion of SMYD2 in MLL and CML cells reduced their viability to 30% on day 
47 (MLL) and to 16% on day 29 (CML). The viability of ALL cells, upon SMYD2 deletion, 
was comparable to the control cells. CML SMYD2 cKO cells have a higher percentage of 
about 80% of pre-apoptotic cells (Annexin V+, DAPI-), while MLL and ALL cells showed 
an increase of about 45% and 52% respectively.  
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Figure 20: The effect of SMYD2 deletion on cell cycle protein expression and 
phases in tumor models. Cell-cycle proteins such as p53, p21, Arf and p27 showed no 
significant changes after the deletion of SMYD2 in the (A) CML, (B) MLL and (C) ALL in 
vitro tumor models. A measurement of 5-ethynyl-2-deoxyuridine (EdU) incorporation by 
flow cytometry was conducted. CML cells showed a severe block in their cell cycle where 
an increased percentage of cells were present in G0-G1 phase (about 13% more in CML 
and 9% more in MLL), accompanied with a reduction in the percentage of cells entering 
the S phase (82% less in CML and about 33% less in MLL) in comparison to the control. 
ALL cells also showed an increase in their G0-G1 phase of about 31% and a decrease in 
their S phase of about 31%.  
 
  

A. B. C. 
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Figure 21: Colony formation reduced in SMYD2 depleted tumor models. After 21 
days, in case of (A) CML and (B) MPP cells, or 14 days, in case of (C) ALL cells, CML 
cells transduced with SMYD2 cKO showed a complete absence of colonies, while MPP 
and ALL cells transduced SMYD2 cKO showed a reduction in their number of colonies of 
about 85% and 35% respectively.  

A. B. C. 
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Figure 22: CML-like SMYD2 deleted cells did not result in tumors. (A) In comparison 
to the control group, SMYD2 cKO-transduced CML cells failed to recapitulate leukemia in 
the recipient NOD-SCID mice. For tumor formation, 103, 104, 105 or 106 of non-treated 
(control) cre-ERT2 (n=65) or cre-ERT2 treated with 4-OHT to initiate deletion of SMYD2 
(n= 60) cells were injected intrafemorally into 6 to 8-week old male NOD/SCID mice. 
Tumor size was measured by caliper weekly for at least 3 months or until the presence 
of a tumor diameter >17mm, tumor ulceration or bleeding, when in those cases mice were 
sacrificed earlier. For examining tumor growth and/or detecting metastasis by 
bioluminescence imaging, mice were injected with luciferin. The in vivo bioluminescense 
monitoring was performed in a Xenogen IVIS Lumina II System. (B) Is a graphical 
representation of the survival rate of CML mice injected with 106 cells from (A). SMYD2 
cKO mice lived almost twice as long as control mice.   
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B. CONCLUSION 
 

I conclude that SMYD2 contributes to cellular proliferation in hematopoietic 

malignancies. This was most evident with the absence of SMYD2 in the CML model which 

impacted cell viability, colony production and tumor formation. These findings support 

SMYD2 inhibition as a therapeutic means to treating HSC derived cancers. SMYD2 may 

also be a factor and potential target in the ALL pathway given that colony formation was 

decreased and the cell cycle was altered. Expression of cell cycle proteins p21 and p19 

were affected by the deletion of SMYD2 further supporting its interaction in the p53 

pathway. Continued research on the proliferation driving potential of SMYD2 in HSC 

derived leukemias will likely reveal more connections.  
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CHAPTER 5 – THE FUNCTION OF SMYD2 IN HEMATOPOIESIS 
 
 
 

The SMYDs have demonstrated their propensity for both cellular development and 

proliferation. When overexpressed, both SMYD2 and SMYD3 have shown to induce 

tumorigenesis [50, 101, 134-138]. SMYD2, the least characterized of the SMYDs, has 

been directly linked to immunological tumors when overexpressed and an indicator of 

poor overall survival [139, 140]. While the localization of SMYD2 in cardiomyocytes is well 

established, a conditional knockout of SMYD2 showed that it was dispensable for proper 

embryonic development of the heart [69]. SMYD2 does however methylate two well-

known tumor suppressors, p53 [67, 141] and RB1 [65, 66] by which it may regulate 

cellular proliferation in other systems. Immunological cancers stem from a single 

pluripotent stem cell, the hematopoietic stem cell (HSC) [88]. From the HSC, all cells that 

circulate within the bloodstream are produced, including red blood cells, B cells, T cells, 

macrophages and monocytes.  

Here we report our efforts to extend the above findings to the living organism. 

SMYD2 was conditionally deleted via cre/Lox methodology from the germline of C57BL.6 

mice exclusively in hematopoietic progenitors. SMYD2-deficient mice were born healthy 

and achieved normal lifespans. However, consistent with our findings of Chapter 4, we 

observed significant blocks in the progression of fetal and bone marrow hematopoietic 

stem cells to both B lymphocoyte and myeloid lineages. While these blocks led to an 

overall reduction of mature peripheral B cells. These studies further support a model in 

which SMYD2 is required for normal hematopoiesis.  
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A. RESULTS  

Loss of SMYD2 reduces HSCs  

The overall expression of SMYD2 throughout hematopoiesis indicates its potential 

importance for normal development in the pathway (Figure 9). To determine the effect of 

HSCs and early progenitors, a conditional knock out of SMYD2 was generated in a murine 

model. Both an embryonic (vav cKO) and an adult inducible (mx1 cKO) cre-mediated 

HSC specific promoter were used to delete SMYD2. These cells also possessed an 

inducible YFP marker to indicate when SMYD2 was deleted.  

The vav deletion of SMYD2 at the HSC did not prove to be fatal. cKO mice 

appeared to be as healthy and the same size as control mice and did not encounter a 

higher disease burden or rate of mortality in comparison to control mice. Litter sizes were 

average for all mice and the gender distributions were in line with the controls as well. 

Upon closer inspection of cell populations via flow cytometry, cKO mice did exhibit a 

depletion of a small subset of the bone marrow hematopoietic stem cell population 

(Figure 23). Despite the loss of this population, the HSCs progressed into the next cell 

stage to the multipotent progenitor (MPP). The vav cKO resulted in increased MPPs 

contrary to the mx1 cKO which saw a decrease in those cells. In, the following stage, the 

lymphoid multipotent progenitor (LMPP), in both models was significantly affected. Again 

the two deletion models showed opposite trends with the embryonic deletion resulting in 

increased LMPPs and the mx1 deletion causing a reduction in the LMPP population. The 

deletion of SMYD2 shows an early block in hematopoietic stem cells and it may prove to 

have more severe effects in other cell populations. To determine this, we continued to 



 

75 
 

look for perturbations in regard to an expansion or depletion of cell proliferation measured 

by flow cytometry.  

 

SMYD2 increases the population of myeloid and lymphoid progenitors 

Downstream of the earliest progenitors, the pathway diverges into one of two very well 

defined lineages, the myeloid or the lymphoid lines [142]. Each of these are characterized 

by a committed precursor, either the common myeloid progenitor (CMP) or the common 

lymphoid progenitor (CLP) [143]. To determine if SMYD2 had a greater impact beyond 

the HSC, analysis was continued to investigate which committed lineage was the most 

dependent on SMYD2. Based on the expression of SMYD2 in hematopoiesis (Figure 9), 

we reasoned that the myeloid lineage was likely to be affected.   

 The committed progenitors of the myeloid and lymphoid branches, CMP and CLP, 

respectively, further differentiate to ultimately populate and produce a multitude of mature 

cells (Figure 6). In the vav cKO model, CMPs and CLPs were significantly increased 

whereas in the mx1 cKO, the CLPs were significantly decreased and the CMPs were 

modestly decreased (Figure 24). The loss of SMYD2 in the vav cKO suggests that further 

blocks exist downstream of these cells in both lineages while the mx1 deletion suggests 

that only lymphocytes would be affected.  

 

SMYD2 deficient CMPs and CLPs contribute to increased pDCs  

Previously shown in figure 24, the SMYD2 vav cKO resulted in increased 

populations of both CMPs and CLPs. This is may prove significant in regard to 

plasmacytoid dendritic cells (pDCs) as they can be derived from either lineage [144]. 
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Dendritic cells, in general, are responsible for taking up antigen circulating in the 

bloodstream and presenting them to T and B cells in order to illicit an immune response 

[145, 146]. Their unique shape, upon activation, creates a net type effect to capture 

antigen as well as to maintain contact and adhesion with T and B cells. Dendritic cells are 

also highly motile surveying the blood and migrating to locations of concentrated T or B 

cells primed for activation.  There are several subtypes of these antigen presenting cells 

and we focused primarily at the pDC. The pDCs tend to be associated with lymphocytes 

based on their resident localization and B cell lineage (B220+) marker [144, 147, 148]. To 

determine if the resulting increase in both the CMP and the CLP also affected pDCs, flow 

cytometry was used to investigate the effect on pDCs from both the bone marrow and 

spleen.  

Considering the impact pDCs have in the immune system, their increase could 

skew the ability of the cells to properly react to antigen. pDCs produce type I interferons 

(IFNs) which at basal levels help to initiate the immune response. However, higher 

concentrations of IFN can result in immunosuppression and reduce further signaling. 

Consequently, the T and B cells, which directly interact with pDCs may be impacted with 

regard to population size and/or function. Our experiments showed that pDCs were 

indeed increased in both cKO models (Figure 25).  

 

mx1 cKO reduces T cell populations 

The gene expression data indicated high expression of SMYD2 through most of T 

cell differentiation (Figure 9). While SMYD2 did not prove to be vital for T cell development 

in the vav deletion, the immature (double negative) and the CD4+ cells were significantly 
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decreased by the mx1 SMYD2 deletion. Decreased levels of CD4+ T cells have been 

associated with CML [149, 150].  

 

B cell progenitors most affected by SMYD2 depletion 

B cells mature from a pre-progenitor-B cell through a series of intermediate states until 

they finally mature and are subsequently activated to antibody secreting plasma cells 

(Figure 27) [151-153]. B cell development starts just downstream of the CLP. From here 

the lineage begins with a pre-progenitor B cell (pre-pro B), also known as Hardy’s fraction 

A [154]. This cell continues to mature in a linear progression accumulating different cell 

surface markers as the (v)ariable, (d)iversity, and (j)oining gene (VDJ) chain 

rearrangement occurs [155]. B220+ is the indicator for any dedicated B cell and is 

expressed from the progenitor B (pro B) cell or Hardy’s fraction B and onward. The pro B 

will eventually enter into the stage of the large pre B where VDJ rearrangement has halted 

and it begins actively dividing and proliferating. The divided large pre B cell gives rise to 

smaller nonproliferaing small pre B cells which ultimately produce the immature B cell 

(imm B).  

The expression data (Figure 9) indicated that SMYD2 was only present very early 

in B cell development. Therefore, the deletion of SMYD2 was not expected to have a 

severe impact on B cells beyond their earliest stages. However, in both the vav and mx1 

cKOs, the loss of SMYD2 greatly affected B cell progenitors with the mx1 deletion causing 

a dramatic loss of cells contrary to an increase in the vav deleted cells (Figure 28). 

Beyond pro-B cells, the vav cKO cells were not further impacted. In contrast, mx1 cre 

cells exhibited a significant perturbation in the small pre-B cell. The small pre-B cell is 
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associated with the site of transformation for pre B-ALL. This suggests a potential role for 

SMYD2 in both early B cell development and the initiation of ALL. 

As B cells continue to mature, a vast majority can be found in various splenic 

localizations. Follicular B cells make up follicles of B cells in the white pulp of the spleen. 

These cells are primed and organized around dendritic cells for fast activation. Marginal 

zone B cells reside in the red pulp region of the spleen and do not circulate. These cells 

are also primed to be recruited to assist in immunity by T cell activation. Marginal zone 

cells more rapidly differentiate to plasma cells. In these mature cells the deletion of 

SMYD2 facilitated by vav versus mx1 resulted in differing outcomes. The mx1 deletion 

continued its trend of depleted populations from immature spleen cells through 

transitional 1 B cells. However, the vav deletion resulted in only modest increases of cells 

in the mature, follicular and marginal zone B cells (Figure 29).  

To test the functionality of mature cells, a B cell specific SMYD2 cKO was 

generated using mb1 cre. The use of this cre results in the deletion of SMYD2 prior to the 

pre-B cell. For specific function of B cells devoid of SMYD2, we immunized mb1 cKO and 

control mice. Their blood sera were analyzed over time to determine if the absence of 

SMYD2 had an effect on the antibody repertoire produced. IgM, IgA and IgG isotypes 

were not heavily impacted in the mb1 cKO mice (Figure 30).    

  



 

79 
 

 
 

 

Figure 23: SMYD deficiency results in loss of HSC population in vav and adult cells. 
(A) Flow cytometric scatter plots of fetal and adult bone marrow. HSC populations from 
fetal livers were relatively normal (B) A graphical representation of cell numbers from 
adult bone marrow. Both the vav and mx1 SMYD2 deletions exhibited a loss of a smaller 
HSC population. In the mx1 cKO model, early cell populations continued a trend of 
decline. This culminated to a significant decrease of LMPPs. However, in the vav deletion, 
there was an increase in the MPP cells in addition to a significant increase in LMPP 

A. 

B. 

C. 
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population. HSC, MPPs and LMPPs share similar transmembrane receptor expression in 
that they are all lineage negative, Sca-1+ and c-kit high. However, they have varying 
expression of Flt3 with HSC expressing none, MPPs exhibiting an intermediate level of 
expression and LMPPs with high expression of Flt3. (C) Illustrates the early stages of 
differentiation of the HSC towards a committed lineage progenitor. The total number of 
cells was determined by: [(total number of femur/spleen/thymus cells harvested/# of cells 
collected in a sample via flow cytometry) * (# of cells in a gate)] 
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Figure 24: Depletion of SMYD2 affects early lineage progenitors. (A) Scatter plots 
and (B) graphical representations indicated that both the myeloid (CMP) and the lymphoid 
(CLP) committed progenitors were affected by the loss of SMYD2. The vav cre exhibited 
drastic increases in both cell types while mx1 cre demonstrated decreased populations, 
particularly in the CLPs.  
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Figure 25: Increase of plasmacytoid dendritic cells (pDCs) in SMYD2 deletion. The 
populations of pDCs were increased in both HSC promoter deletions of SMYD2.  
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Figure 26: Thymic T-cell populations are only impacted in mx1 cKO.  SMYD2 did not 
prove to be vital for T cell development in the vav cKO. Two of the T cell populations were 
affected by the mx1 SMYD2 deletion. The immature double negative and the CD4+ cells 
were significantly decreased. 
 

A. 
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Figure 27: Linear development of B cells. (A) B cells mature from a B cell progenitor 
downstream of the CLP known as the pre-progenitor B cell. After this stage they express 
B220+, the lineage marker for B cells. B cells enter a proliferative state at the Large pre-
B cell and arrest division at the small pre-B stage. Immature B cells migrate out of the 
bone marrow to other resident organs including the spleen where maturation continues. 
Mature B cells circulate through the bloodstream and differentiate into plasma cells if 
activated by antigen. Plasma cells secrete one type of antibody and aid in the adaptive 
immune response.  (B) Cell marker expression varies throughout B cell maturation. Cells 
can be distinguished from one another based on the extracellular markers.  
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Figure 28:  Bone marrow B cell development in the absence of SMYD2.  The vav 
ckO exhibited modest increases of each bone marrow B cell population resulting in an 
overall significant increase in the total immature bone marrow B cells. The mx1 cKO, 
however, severely decreased overall immature, and pre-B cells, specifically affecting the 
small pre B cells. The small pre-B stage is associated with the site of transformation for 
B-ALL.  

Avg control Vav cre Avg cKO Vav cre Avg control mx1 cre Avg cKO mx1 cre 
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Figure 29: The effect of SMYD2 deletion in mature splenic B cell populations. (A) A 
scatter plot showing the shift of mature spleen cells to the follicular and marginal zone B 
cell populations in the mx1 cre. (B) Only the mx1 deletion of SMYD2 showed significant 
changes in the mature B cells. Overall splenic B cells were reduced from immature 
through transitional 1 B cells. The vav deletion resulted in modest increases of cells in the 
mature, follicular and marginal zone B cells. * statistical significance p=<0.005 

A. 
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Figure 30: Antibody response in B cell specific (mb1) deletion of SMYD2. Analysis 
of the antibody production and response to immunization showed little difference between 
SMYD2 B cell deleted cells and control cells. While the response was robust in both 
groups, no statistical difference was seen.   
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B. CONCLUSION 
 

I conclude that SMYD2 is required for proper hematopoietic development. The 

initial loss of a small HSC population was evident in both deletion models. Aberrations 

continued in the pathway, of note, in the committed progenitors of both the myeloid and 

lymphoid lineages. I further propose that SMYD2 plays a role in lymphocyte development. 

B and T cells were most significantly impacted at their earliest immature progenitors 
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CHAPTER 6 – DISCUSSION 
 
 
 

The ultimate goal of this research was to better understand the function of SMYD2 

and SMYD3. Analysis of the SMYD3 structure (Figure 10) revealed that a relatively large 

space near the post-SET domain and N-terminal portion of the CTD along the inner wall 

of the pocket is decorated by polar residues from the CTD (mainly residues from N324-

C333 of helix 4) (Figure 11). Conserved clustering suggests that these polar residues 

might cooperate with the post-SET residues to restrict the histone substrate on both sides 

of the methyl-lysine. In this context, the CTD could function as a cap necessary to bind 

substrates effectively and selectively. Consistent with this hypothesis, deletion of CTD 

helices 1–9 [SMYD3(1–279)] eliminated basal HMTase activity of SMYD3 for histone H4 

(Figure 12A). 

Further investigation of the unanticipated role of the SMYD family’s TPR-like CTD in 

intra-nuclear trafficking may provide insight into the potential for more specific localization 

of proteins regulated by the TPR-HSP90 interface. Experiments involving HSP90 

chaperone inhibitors, such as geldanamycin, together with cells expressing either WT or 

mutant SMYD3 proteins, might lead to a better understanding of the interplay between 

these proteins. Significant research, however, still remains in order to fully delineate the 

influence of HSP90 conformation and activation state on the ability of its C-terminus to 

interact with TPR and TPR-like motifs, as well as its ability to influence cell localization 

and nuclear trafficking. Additional experiments which isolate the nuclear localization 

sequence of SMYD3 and its transporter would also be of value.  
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The CTD mediated stability of the SMYD3 active site also implies that the CTD is a 

potential pharmacologic target for the selective knockdown of SMYD3. Most HMTases 

share a sizable affinity for the methyl donor, S-adenosyl-methionine (SAM), making such 

a site less desirable as a drug target. Small molecule inhibitors which target the substrate 

binding site of other HMTases have achieved reasonable potencies and selectivities 

against those HMTases [46, 47]. That even the most distal portions of the CTD are 

necessary for basal function, despite predictions of less direct involvement in substrate 

binding, implies a non-competitive, allosteric means to regulate SMYD3 activity.  

The cooperation between HSP90 and SMYDs in oncogenesis presents a novel 

direction for the clinical management of the resulting malignancies from an HSP90 

perspective as well. If its association with SMYD3 is a primary driver of its oncogenic 

potential, blocking that association could have positive clinical outcomes. HSP90 has 

been the target of many novel cancer therapeutics which eliminate its chaperone function. 

Unfortunately, unintended consequences of eliminating the chaperone activity of this 

broadly expressed protein include off-target toxicities, such as a variety of gastrointestinal 

side effects [48]. The development of a drug which blocks HSP90-SMYD3 interactions 

via binding the CTD of SMYD3 may remove transformative avenues of HSP90-driven 

malignancy without inducing the unintended side effects associated with broad spectrum 

HSP90 chaperone inhibition. This would still allow basal signaling of SMYD3 in the 

cytoplasm, thus affecting its nuclear signaling selectively. To ascertain the utility of this 

approach, development of probe compounds which target SMYD3 and specifically 

compete with MEEVD binding will be necessary.  
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Analysis of SMYD2 via three in vitro hematopoietic malignant models underscored 

its potential role in oncogenesis. Further studies of these tumors and examination of 

tumor suppressor methylation may elucidate the mechanisms by which SMYD2 affects 

proliferation. SMYD2 is known to methylate residue K370 of p53 hindering its function of 

mediating apoptosis. The absence of SMYD2 in the cre mediated deletions and the 

resulting cell death further imply that SMYD2 plays a potential regulatory role of p53. The 

presence of the constitutively active tyrosine kinase, bcr-abl, may enhance SMYD2 

repression of p53 even when not overexpressed. Future experiments analyzing 

methylation, gene expression and cell viability with an overexpression of SMYD2 in the 

presence of the transgene will be informative. In addition, in vivo overexpression and 

induced cKO studies without bcr-abl would reveal if inhibition of SMYD2 alone is sufficient 

to reduce and eliminate HSC tumors.  

 Considering that much like SMYD3, SMYD2 activity can be enhanced by HSP90 

interactions [85, 156, 157], investigating this too in our tumor models would be of value. 

The bcr-abl construct may heighten the ability of HSP90 to bind to SMYD2 and thereby 

increase its methylation activity. Experiments aimed toward determining SMYD2 

methylation in a system with and without both bcr-abl and HSP90 could prove to be of 

merit with regard to therapeutic development. Although, as previously mentioned, since 

targeting HSP90 results in unintended consequences, understanding the many potential 

mechanisms that contribute to SMYD2 activity is important to its targeted inhibition.    

 Utilizing our vav and mx1 cre SMYD2 deletion models, we sought to determine the 

overall role of SMYD2 in hematopoiesis, ultimately investigating potential sites of tumor 

initiation in this pathway. The deletion of SMYD2 resulted in loss of an initial HSC 
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population. Thus, SMYD2 may be a factor in stromal signaling that drives HSC 

differentiation. Further analysis of the variations in cell populations in a SMYD2 

overexpression model would be especially telling if the depleted population remained 

and/or increased. In addition, isolating the HSC and conducting cell cycle analysis would 

determine if the population lost was of a proliferating or senescent nature. Every 

aberration observed downstream was likely linked to this initial depleted population of 

cells.  

B cell progenitors were altered due to the deletion of SMYD2. Many lymphomas 

and leukemias are directly associated with transformations during B cell development and 

SMYD2 may contribute to those. Although progenitor B cells were affected by the loss of 

SMYD2, mature B cells exhibited a normal response when stimulated. Considering the 

known SMYD2 interactions with tumor suppressors p53 and RB1, its role may be better 

revealed if the system was subject to stressors. DNA damage would provide insight to 

the potential regulation of p53 and RB1 by SMYD2. Hypoxic, heat and toxic stressors 

would not only allow analysis of tumor suppressors but also of chaperone proteins 

expressed under these conditions. Observing these in both an overexpression and 

knockout model could reveal a clearer picture of the role of SMYD2 in these regulatory 

pathways.  

At the onset of this study, we were unsure if we could trigger the deletion of SMYD2 

in vitro via our mx1 cre constructs. The in vivo, mx1 cre requires multiple injections of a 

double stranded RNA mimic, PI:PC, which induces an interferon response ultimately 

activating the cre-recombinase. In vitro, were unsure of how to deliver a proper dosage 

to elicit the deletion of SMYD2 and therefore, the YFP reporter. Utilizing a co-culture of 
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OP-9 cells and cytokines, we cultured bone marrow cells toward the B cell lineage and 

were able to maintain cell viability and effectively knockout SMYD2 (Figure 31). This 

approach could be used to subject cancer cell models to stress both before and after 

SMYD2 deletion to better understand how and when therapeutics might be most effective.  
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Figure 31. In vitro deletion of SMYD2 with mx1 cre. Mx1 cre bone marrow cells were 
plated on a co-culture of OP-9 cells with cytokines. PI:PC was either, (A) not administered 
(NO PIPC), (B) administered in the same time frame as in vivo, once every other day for 
five days (1 x 5) or (C) all at once in one day (5 x 1). Cells were harvested and analyzed 
by flow cytometry at day 10. Row 1 exhibits the size and granularity of the total cell 
composition with forward scatter plotted against side scatter. The scatter plots in row 2 
show that the slower administration over several days yielded the highest deletion of 
SMYD2 indicated by presence of YFP (B. Row 2). 83% of cells expressed YFP in the (B) 
1 x 5 dosing versus 25% in (C. Row 2) the 5 x 1 dose. Cells progressed towards early 
pre-B cells normally as indicated in rows 3 and 4.  
 

  

 

 

        1                            2                           3                             4   

A. 
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LIST OF ABBREVIATIONS 
 
 
 
ABBREVIATION MEANING PAGE 
AGM Aorta, gonad, mesonephros 9 
ALL Acute lymphoblastic leukemia  11 
BLP B cell lineage progenitor 20 
CD Cluster of differentiation 20 
CD4+ CD69- (referring to cell markers on T cells) 20 
CD4+ CD69+ (referring to cell markers on T cells) 20 
CD8+ CD69- (referring to cell markers on T cells) 20 
CD8+ CD69+ (referring to cell markers on T cells) 20 
cKO Conditional knockout  14 
CLP Common lymphoid progenitor 12 
CML Chronic myeloid leukemia 12 
CMP Common myeloid progenitor 12 
DN1 Double negative 1 (referring to T cells) 20 
DN3 Double negative 3 (referring to T cells) 20 
DN4 Double negative 4 (referring to T cells) 20 
DP CD69- Double positive (referring to T cells) 20 
DP CD69+ Double positive (referring to T cells) 20 
EP Erythroid progenitor 20 
Ery Erythrocyte 20 
Flt3 fms-like tyrosine kinase 3 10 
Fo B Follicular B cell 20 
gGMP Pre granulocyte/macrophage progenitor 20 
GMLP Granulocyte/macrophage-lymphoid progenitor  10 
GMP Granulocyte/macrophage progenitor 20 
GRAN Granulocytes 20 
H(x)-K(x) Histone(x)-Lysine(x) 3 
HAT Histone acetyltransferase 9 
HDAC Histone deacetyltransferase 2 
HKMT Histone lysine methyltransferase 2 
HMTases Histone methyltransferases  40 
HSC Hematopoietic stem cell 9 
IFN Interferon 78 
IL-3 Interleukin 3 10 
IL-7 Interleukin 7 10 
Imm B Immature B cell 20 
iNK Natural Killer 20 
LMPP Lymphoid primed multipotent progenitor  10 
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ABBREVIATION MEANING PAGE 
LSD1 Lysine demethylase 3 
MACRO Macrophage 20 
Mat B Mature B cell 20 
Me 1/2/3 Mono/di/tri methylation 3 
Megak Megakaryocyte 20 
MEP Megakaryocyte/erythroid progenitor 10 
MKP Megakaryocyte progenitor 20 
MLL Mixed lineage leukemia 66 
mNK Natural Killer 20 
MONO Monocytes 20 
MP  Monocyte progenitor 20 
MPP Multipotent progenitor  10 
MT Methyltransferase 3 
MYND Myeloid-Nervy-DEAF1 4 
Mz B Marginal zone B cell 20 
New B Immature B cell 20 
pCFU Pre colony forming units 20 
PCR Polymerase chain reaction 24 
pDC Plasmacytoid dendritic cell  77 
Plt Platelets 20 
pMEP Pre megakaryocyte/erythroid progenitor 20 
Pre-B  Pre B cell   10 
Pre-B-ALL Pre B cell acute lymphoblastic leukemia 11 
Pre-pro B Pre progenitor B cell 11 
Pro-B Progenitor B cell 19 
RB1 Retinoblastoma 6 
RBC Red blood cells 9 
SAM S-adenylsylmethionine 4 
sCMP Common myeloid progenitor 11 
SET Suppressor of variegation, enhancer of zeste and trithorax  4 
skNAC Skeletal nascent polypeptide-associated complex alpha 5 
SMYD SET and MYND domain containing protein 4 
T1 B Transitional B cell 1 20 
T2 B Transitional B cell 2 20 
TPR Tetratricopeptide repeat 8 
VDJ Variable, diversity, and joining genes 79 
   
   

 


