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ABSTRACT 
 
 
 

SKILLFUL LONG-RANGE FORECASTS OF NORTH AMERICAN HEAT WAVES FROM 

PACIFIC STORM PROPAGATION 

 
 

Extreme heat poses major threats to public health and the economy. Long-

range predictions of heat waves offer little improvement over climatology despite the 

continuing improvements of weather forecast models. Previous studies have hinted at 

possible relationships between tropical West Pacific convection and subsequent 

anomalous near-surface air temperature and rainfall over the North American Plains. 

We show that the later stages of propagation of the Boreal Summer Intraseasonal 

Oscillation (BSISO) can be used to skillfully hindcast a number of Great Plains heat 

waves between 1948 and 2016 with a three-month lead time. Possible teleconnection 

mechanisms are investigated, with no mechanism appearing more likely. Our results 

are the first to demonstrate that a West Pacific weather event can be used to skillfully 

forecast US Plains heat waves with a lead time of three months.  
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CHAPTER 1—INTRODUCTION 
 
 
 

 The adverse health outcomes due to exposure to extreme heat have been 

thoroughly documented [Portier et al., 2010]. The United States (US) Great Plains is a 

particularly sensitive region, where evapotranspiration by plants exceeds precipitation, 

making the region especially prone to drought [Melillo et al., 2014], and thus heat 

waves through soil moisture-precipitation feedbacks and the association of near-

surface air temperature with soil moisture [Eltahir, 1998; Koster et al., 2004]. More 

accurate forecasts of heat waves would enable better preparation, which could 

alleviate some of their human and economic tolls. Unfortunately, state-of-the-art 

numerical predictions of extreme heat struggle to offer much improvement over 

climatology [Luo and Zhang, 2012].  

There has been some success in statistical forecasting of weather	events using 

the observed relationships between intraseasonally varying climate phenomena and a 

target predictand [e.g. Barnston, 1994; Drosdowsky and Chambers, 2001; Slade and 

Maloney, 2013; McKinnon et al., 2016]. Convective variability in the Indian Ocean/West 

Pacific region has been shown excite teleconnections that affect weather in the 

extratropics [Hoskins and Karoly, 1981; Ferranti et al., 1990; Donald et al., 2006]. 

However, a causal link between this convection and US summer heat waves has not yet 

been identified. The boreal summer intraseasonal oscillation (BSISO) is a complex, 
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leading mode of intraseasonal convective variability in the Indian Ocean-West Pacific 

region [Yasunari, 1979; Lau and Chan, 1986; Wang and Rui, 1990; Wang and Xie, 

1997], that has previously been linked with North American fluctuations of surface air 

temperature and precipitation [Moon et al., 2013]. Here, we test whether the BSISO 

can be used as a predictor of US heat waves.  

We confine our analysis of spring BSISO propagation to May and of summer 

heat waves to August. Extending the analysis to include other spring and summer 

months severely weakens forecast skill. This may be due to the sensitivity of the 

teleconnection response to the seasonal cycle of the atmosphere’s background state; 

previous work has suggested that North American weather responds most readily to 

low-frequency forcing from the West Pacific (e.g., the BSISO) given the spring-time 

configuration of the mean circulation over the Pacific [Newman and Sardeshmukh, 

1998]. A possible additional factor is the seasonality of the BSISO itself, which occurs 

from May to October [Wang and Rui, 1990] but changes significantly between the 

beginning and end of summer [Kemball-Cook and Wang, 2001].  
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CHAPTER 2—METHODS 
 
 
 

2.1 Data 

 Daily maximum temperature observations are from Global Historical Climatology 

Network-Daily [Menne et al., 2012]. We use weather station data, instead of a gridded 

reanalysis product, because values represent actual in-situ measurements, instead of 

smoothed model output.  

We identify the BSISO using outgoing longwave radiation (OLR) and 850 hPa 

zonal wind from the NCEP/NCAR Reanalysis 1 [Kalnay et al., 1996]. Four-times daily 

values of the OLR are averaged to daily means and then re-gridded, using bilinear 

interpolation, to the same grid (2.5° x 2.5°) used for the zonal wind data. We use this 

reanalysis dataset because it extends further back in time (1948) than newer reanalysis 

products, thus allowing identification of a larger sample of heat waves, which are rare 

events. Because of the limited accuracy of OLR from reanalysis datasets, we repeat the 

analysis with BSISO indices [Lee et al., 2013] that use an OLR product measured from 

satellites (Advanced Very High Resolution Radiometer [Liebmann and Smith, 1996]) and 

a newer reanalysis product for zonal wind (NCEP-DOE Reanalysis 2 [Kanamitsu et al., 

2002]). Despite some differences in skill and the number of heat waves correctly 

forecast, forecasts made from BSISO indices that use satellite data and a newer  
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reanalysis dataset still give a significant (p < 0.01 for BAT = 0.0 to 0.7) increase in 

forecast skill relative to climatology (see Figure A.1).  

Geopotential height data at 200 and 500 hPa are from the NCEP/NCAR 

Reanalysis 1 [Kalnay et al., 1996]. For all data hitherto described, anomalies are 

constructed by removing the long-term mean and the first three annual harmonics.  

Daily rainfall data is from the Climate Prediction Center unified gauge-based 

analysis of daily precipitation [Chen et al. 2008]. We use the standardized precipitation 

index (SPI) [McKee et al., 1993] to diagnose integrated anomalous precipitation. 

Rainfall is highly spatially inhomogeneous, and fits more closely to a gamma 

distribution than a Gaussian. The SPI is thus useful because it presents accumulated 

rainfall anomalies as standardized departures from a climatological mean. We use an 

accumulation period of 60 days as a proxy for soil moisture, and of 15 days to diagnose 

late-spring precipitation anomalies prior to August heat waves.  

2.2 Defining BSISO phases  

A previous study defined a BSISO index using the leading two empirical 

orthogonal functions (EOFs) of anomalous daily OLR and zonal wind at 850 hPa for the 

region 10°S-40°N, 40°-160°E [Lee et al., 2013]. To construct a principal component 

(PC) time series for the time period being evaluated (1948-2016), we project daily 

anomalies of the same variables onto these aforementioned EOFs. Anomalies are 

constructed as described previously, except that we also subtract the running mean of 
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the previous 120 days to remove any long-term variability or trends [Wheeler and 

Hendon, 2004]. The daily two-dimensional standardized phase space defined by the 

two PCs can be used to diagnose the BSISO phase (see Figure 3c for an example) [Lee 

et al., 2013; Wheeler and Hendon, 2004]. BSISO amplitude, defined as the square root 

of the sum of each squared, standardized PC, quantifies the degree to which that day’s 

pattern in OLR and zonal wind resemble the idealized pattern defined by the phase. 

2.3 BSISO propagation  

We identify unique spring BSISO propagation events as time periods for which 

there is progression from either Phase 4 to 7 or Phase 5 to 8 (the events that progress 

from Phase 4 to 8 are counted only once), with the additional requirement that the first 

day of the progression is in May (see Figure 1 for a physical representation of BSISO 

phases). Progression must occur within 30 days or less from the first day of the starting 

phase, and movement two phases forward or backward is permitted. It is useful to 

classify propagation events using a BSISO amplitude threshold (BAT), such that low-

amplitude events are excluded from the analysis. For each BAT considered, forecasts 

are made requiring that at a given BAT, at least half of the days during the propagation 

exceed that amplitude.  Propagation through consecutive, monotonically increasing 

BSISO phases does not happen often in our data. Thus, restricting propagation to only 

allow for backwards movement in phase value by one or not at all reduces the number 

of spring propagating BSISO events in our sample (for example, at a BAT of one, we  



 6 

 

Figure 1: Outgoing longwave radiation (shading) and 850 hPa wind (vectors) for BSISO 
indices. From Lee et al. (2013).  
 
identify 36 events when allowing for jumps in phase value by two, but only 17 when 

requiring that phase propagation only be forward in increments of one).  

 In hindcasts, lags in time are counted from each day of the fourth phase in the 

propagation (e.g., each occurrence of Phase 7 if propagation began at Phase 4). A 
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correct forecast is counted when there is a heat wave day exactly Nlead days later (here, 

we present skill for forecasts made for a lead time of Nlead equal to 80 days; see Figure 

A.2 for skill for lead times between 70 and 90 days). For example, for a spring BSISO 

propagation event where the last phase has multiple days of occurrence, each of those 

days that is followed by a heat wave day exactly Nlead days later is counted towards the 

true positive rate. The true positive rate is the number of correct forecasts divided by 

the total number of spring days that are the fourth phase of propagation.  

Despite the long lead times, we use a window of exactly one day for forecasts 

rather than a larger window of a few days. This is because of the large amount of 

memory both in heat waves and in BSISO propagation. That is, we use consecutive 

days of May BSISO Phase 7 or Phase 8 to forecast heat wave days, which are also by 

definition consecutive. This, combined with the short window of time for which 

forecasts can be made (the month of August), and the fact that our heat wave 

definition identifies heat waves in most Augusts during the time period being analyzed 

(44 of 69 years), makes the likelihood of a correct forecast by chance very high when 

using a window longer than a day. For heat wave forecasts, we compare skill to the 

climatological rate of August heat wave days, which is equivalent to the likelihood of a 

correct forecast by chance when using a window of one day.  
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2.4 Defining heat waves  

Following a previous study [McKinnon et al., 2016], only weather stations that 

have data for at least 70% of June, July, and August for at least 70% of the years 

considered (1948-2016) are chosen for the analysis. For the Plains region, 414 weather 

stations satisfy this requirement. We define heat waves as two or more consecutive hot 

days, where hot days are those for which the spatial 95th percentile [McKinnon et al., 

2016] of temperature anomalies in the Plains domain is larger than 7.5°C. We choose 

this definition because it gives a climatological rate of August heat waves of about 

13%, a rate small enough so that they qualify as rare events, but large enough to give 

enough heat waves during the 69-year record (1948 to 2016) to yield reliable statistics. 

Hot days that occur less than two days after a heat wave, and the days in between, are 

counted as part of the heat wave. With this definition, we identify 72 August heat 

waves, with a median event duration of 3 days. 

2.5 CGT index 

 Following a previous study [Ding and Wang, 2005] we create a circumglobal 

teleconnection (CGT) index (CGTi) using summer seasonal mean (June through 

September) anomalies of 200 hPa geopotential heights over the Northern Hemisphere 

(0° to 90°N), which are monthly averaged from daily anomalies and then averaged for 

the summer season. Figure 2 shows the second EOF of these heights, which represents 

the spatial CGT pattern [Ding and Wang, 2005]. The PC time series is constructed by  
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Figure 2: Circumglobal teleconnection (CGT) pattern, shown as the second empirical 
orthogonal function (EOF2) of seasonal (JJAS) mean 200 hPa heights from 1948-2016.  
 
projecting band pass filtered, daily anomalies of Northern Hemisphere 200 hPa 

geopotential height onto this EOF pattern. In filtering, we use two moving average 

boxcar windows of 11 days and 365 days: We first remove high frequencies by creating 

a lowpass filtered time series using a window of 11 days (T1), and then remove low 

frequencies by subtracting from T1 the time series constructed using a window of 365 

days on T1. Standardization of the resulting time series gives the CGTi used here. 

2.6 Statistics  

For all significance tests, we use bootstrapping with 10,000 samples. We use a 

one-tailed block bootstrap to test the significance of heat wave forecasts after BSISO 

propagation. To do this, we randomly select from all Mays NBAT blocks of length XBAT 

consecutive days and forecast heat waves as described previously for each of these 

NBAT × XBAT May days. NBAT is the number of spring BSISO propagation events and XBAT 

is the integer-rounded average number of forecast-used days (i.e., consecutive 



 10 

instances of Phase 7 or Phase 8) contained within each propagation event for each 

BAT. Significance of forecast skill is tested at the 99% confidence level. We use a two-

tailed, classic bootstrap test at the 95% confidence level for all other significance tests. 

For these tests, we are randomly sampling years within our data’s time domain (1948-

2016).  
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CHAPTER 3—BSISO-BASED FORECASTS OF PLAINS HEAT WAVES 
 

 
  

BSISO phases are defined using anomalies of OLR and zonal wind at 850 hPa 

over the Indian Ocean/West Pacific region [Lee et al., 2013]. Each day can be given a 

phase value between 1 and 8 and an amplitude (see methods). The phase value is 

indicative of the general location of convection (see Figure 1): Phase 1 convective 

centers are in the equatorial Indian Ocean and slowly propagate northeastward in a 

northwest-southeast tilted band through later phases until Phase 8 (after about 30-60 

days), where convective centers reach the subtropical West Pacific [Lee et al., 2013].   

Composites of high-amplitude BSISO phases (those with BATs greater than 1.5, 

see methods) prior to August Plains heat waves reveal a preferred pattern of 

propagation from Phase 4 to Phase 8 roughly 100 to 80 days prior to the heat wave 

(Figure 3). While the distribution of BSISO phases 100 to 80 days prior to non-heat 

wave August days (Figure 3b) is generally uniform (with some preference for Phases 6 

through 8), that for heat waves (Figure 3a) has an increased representation of Phases 4 

and 5 for earlier lags (100 to 96 days), and a transition to an increased representation 

of Phases 7 and 8 for later lags (85 to 81 days). This transition suggests that the BSISO 

is propagating from Phases 4 and 5 to Phases 7 and 8 in the 100 to 80 days prior to 

August Plains heat waves. Physically (see Figure 1), this manifests as convective activity 

oriented along a large northwest-southeast band extending from India to the West 
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Pacific Ocean just north of Papua New Guinea during BSISO Phase 4. This band 

migrates northeastward in Phase 5, and becomes a zonally extended (between about 

100° to 160°E) cyclone at about 15°N in the West Pacific by Phase 6. The cyclone 

moves further northeastward by Phases 7 and 8, and shrinks in its zonal extent in Phase 

8.   

Averages of the PCs used to identify BSISO phases (see methods) between 120 

and 80 days prior to heat waves, for days where the standardized PCs exceed 1.06 

(equivalent to a BSISO amplitude of 1.5), similarly reveal this preferred pattern of 

propagation through the later phases of the BSISO (Figure 3c). Henceforth, we refer to 

BSISO propagation as progression through four BSISO phases, counting from the first 

May instance of either Phase 4 or 5 (see methods).  

Using the observed pattern of BSISO propagation as a heat wave predictor, we 

show significant (p = 0.00005) improvement in eighty-day nonprobabilistic (yes/no) 

heat wave day forecasts relative to those based on climatology. The darker values 

(numbers indicate the number of unique heat waves correctly forecast) in Figure 4 show 

the true positive rate (ratio of hits to sum of hits and false alarms, considering individual 

days rather than entire heat wave events) of heat wave day forecasts as a function of 

the BSISO amplitude threshold (BAT, see methods). At low BATs, 12 of the 72 August 

Plains heat wave events (event hit rate of 16.7%) were correctly forecast, with a true 

positive rate of 26%, a 13% improvement over climatology. Forecast skill generally 
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Figure 3: a, Composites of BSISO phases prior to August Plains heat waves and b, non-
heat wave August days between 100 and 60 days prior to the August day. Only days 
with amplitudes exceeding 1.5 are included. c, Composite BSISO phase space 120 to 
80 days prior to August Plains heat waves.  Only days where the standardized principal 
component (PC) amplitudes exceeds 1.06 (roughly equivalent to a phase amplitude of 
1.5) are included.  
 
increases with BAT for BATs larger than 1.5; however, the concurrent sharp decrease in 

sample size implies that this apparent increase in skill, although significant, should be 

viewed with caution. Forecasts are made for a lead time of exactly 80 days. However,  
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Figure 4: Skill of May BSISO propagation in predicting August Plains heat wave days. 
Vertical position shows skill in true positive rate (proportion of May days that predict a 
heat wave day 80 days later) for BSISO Phases 7 and 8 (grey numbers), and for BSISO 
Phases 7 and 8 that are preceded by BSISO propagation (black numbers). Skill is shown 
as a function of the BSISO amplitude threshold. Black dotted line is the climatological 
rate of August heat waves, and red asterisks indicate forecast skill significance at 99% 
confidence computed using a block bootstrap. Numbers indicate the number of 
unique heat wave events correctly forecast.  
 
skill remains significant for BATs up to 1 (p < 0.01) for forecasts made with lead times 

between 78 and 87 days (see Figure A.2 and Table A.1.)  Both skill and the number of 

heat waves correctly forecasted peak for a lag of 80.  

 These forecasts are made from each daily instance of the end phase of BSISO 

propagation (i.e., each successive day classified as either Phase 7 or 8). Relaxing the 

forecast metric to include also those spring Phase 7 and 8 days not preceded by BSISO 
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propagation drastically weakens the forecast skill, offering no improvement over 

forecasts based on climatology (grey numbers in Figure 4). This suggests that BSISO 

propagation, rather than a West Pacific convective pattern that happens to look like a 

BSISO Phase 7 or 8, is essential to the chain of events that leads to heat waves roughly 

80 days later.  

To test whether our results are sensitive to the definition of heat waves, we 

repeat the analysis from the previous section but now define hot days as those where 

at least 20% of the Plains experiences a maximum daily temperature of at least 35°C 

(95°F). Station temperatures are now the actual temperatures reported at each 

location, rather than filtered anomalies where seasonality has been removed. We 

choose 20% because it produces a climatological heat wave rate of 14%, which is close 

to the climatological rate obtained with the previous definition. We identify 76 August 

heat waves between 1948-2016 with a median duration of 3 days. Forecasts of these 

heat waves using the metric previously described have almost identical skill to those 

made with the previous heat wave definition (see Figure A.3). BSISO propagation 

forecasts 11 of these 76 heat waves (an event hit rate of 14%). Additionally, there is 

substantial overlap in the heat wave events correctly forecast between the two 

definitions (10 out of the 11 events forecast with this definition were also forecast with 

the previous definition). Thus, statistical heat wave forecasts using BSISO propagation 

as the forecast metric are not sensitive to the specific way a heat wave is defined.  
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Thus far, we have shown that a number of August Plains heat waves can be 

skillfully forecast using propagation of a West Pacific storm pattern—the BSISO—with a 

three-month lead time. However, the physical mechanisms controlling this 

teleconnection are still unclear. In the following chapter, we explore some possible 

atmospheric and oceanic systems that could be physically connecting spring BSISO 

propagation to summer Plains heat waves, either directly, or as a third-party driver of 

both phenomena.  
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CHAPTER 4—TELECONNECTION MECHANISMS 
 
 
 

A three-month lead time is implausible for a teleconnection communicated 

solely through the rapidly-varying and chaotic troposphere. This suggests that the 

"memory" of BSISO propagation is held in some form other than a tropospheric mode 

of variability. Here, we consider some possible teleconnection mechanisms involving 

slowly-varying systems: the El Niño Southern Oscillation (ENSO), a soil moisture-

precipitation feedback, and an actively-participating extratropical Pacific ocean. We 

also suggest a possible teleconnection through a low-frequency mode of summer 

circulation variability.  

4.1 El Niño  

 ENSO is known to influence forecast skill in seasonal prediction models [Pepler 

et al., 2015]. In addition, previous work has shown that interannual variability of the 

BSISO is tied to ENSO [Teng and Wang, 2003; Lin and Li, 2008]. That is, during the El 

Niño-developing (decaying) summer, BSISO propagation is enhanced (weakened) [Lin 

and Li, 2008]. ENSO could modulate our heat-wave forecast skill by acting as a third-

party amplifier of both BSISO propagation and August mean temperature, and/or 

through regulation of the BSISO-heat wave teleconnection. We use the January Niño 

3.4 index [Trenberth, 1997] as an indicator of the ENSO-decaying mode. A positive 

(negative) January Niño 3.4 index would indicate an El Niño (La Niña)-decaying year. 
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We reject the former possibility because we find no significant difference between 

August mean temperatures for years with and without detected BSISO propagation 

(mean p = 0.23 for BATs from 0 to 1), and also because we find that the proportion of 

years with BSISO propagation that also have heat waves is the same or less than the 

proportion of all domain years with heat waves in the Plains region (see Figure A.4). In 

addition, we find that the mean January Niño 3.4 indices do not differ between years 

with and without Plains heat waves (p = 0.11). This further supports the notion that May 

BSISO propagation is a causal precursor to the predicted August heat waves.  

We do find some evidence that ENSO may be modulating the BSISO-heat wave 

teleconnection by influencing the interannual variability of BSISO propagation. 

Previous studies suggest that BSISO intensity is weaker in El Niño-decaying summers 

[Lin and Li, 2008]; however, we find that the mean January Niño 3.4 index for years 

where our algorithm detects May BSISO propagation is significantly higher than for 

years with no detected propagation, indicating that May propagation is favored in El 

Niño-decaying years (p = 0.01). This is not necessarily in disagreement with previous 

studies that focus on BSISO intensity (amplitude, here); we simply find that May 

propagation through later phases of the BSISO is favored in El Niño-decaying years. 

Although we do find that the mean Niño 3.4 index is larger for years where BSISO 

propagation predicts heat waves than for years where BSISO propagation fails to 

predict heat waves, this difference is not significant (p = 0.09). Thus, on the basis of the 
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evidence at hand, we cannot reject the possibility that the BSISO has greater influence 

on Plains heat waves in El Niño-decaying years than in other years.  

4.2 Soil Moisture Feedbacks  

In the US Great Plains, coupling is strong between local precipitation and soil 

moisture in summer [Koster et al., 2004] and between spring precipitation and 

subsequent summer precipitation [Duerinck et al., 2016]. Additionally, soil moisture is 

understood to influence near-surface air temperature by regulating the partitioning 

between surface and latent heat fluxes [Eltahir, 1998]. When there is little soil moisture 

to support evapotranspiration, the energy of the absorbed solar radiation is returned to 

the atmosphere primarily as sensible rather than latent heat. The reduced 

evapotranspiration leads to less rainfall, and increased near-surface air temperatures. In 

this way, a dry spring can lead to a hot, dry summer.   

Here we use the standardized precipitation index [McKee et al., 1993] (SPI) with 

an accumulation period of 15 days (SPI-15) to show short-term accumulated rainfall 

anomalies, and with an accumulation period of 60 days (SPI-60) as a proxy for soil 

moisture (see methods). Figure 5 shows composites of 500 hPa geopotential height 

anomalies averaged over a 15-day period 84 to 70 days prior to correctly forecasted 

heat waves, SPI-15 based on the same 15-day period, and SPI-60 based on the 60 days 

prior to the heat waves. All fields have been averaged first over all days within a heat 

wave event and then composited over heat waves so as not to give more weight to  
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Figure 5: Composited geopotential height anomalies at 500 hPa (red: positive, blue: 
negative; increments of 5 m, beginning at 5 m) averaged over a 15-day period 84 to 70 
days prior to heat waves, 15-day standardized precipitation index (SPI, black hatching; 
single hatch < -0.25, double hatch < -0.50) at 70 days prior to correctly forecasted heat 
waves, and 60-day SPI at the time of heat waves. Composites are averaged first over all 
days within the heat wave event, and then between each event, so as not to give more 
weight to heat waves longer in duration. The green square encloses the Plains region.  
 
heat waves of longer duration; averaging over all heat wave days would 

disproportionally highlight the fields unique to longer heat wave events, whereas we 

are interested in characteristics shared by all correctly forecasted heat waves. The 

composite suggests that for correctly forecasted events, there appears to be a 

relationship between a blocking high and low spring rainfall. However, this is not 

collocated with dry summer soils at the time of the heat waves. Additionally, 

examination of the same fields for individual correctly forecasted events (Figure A.5) 
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reveals a high amount of variability in each of these fields and no event-to-event 

systematic patterns. Thus, there does not appear to be strong evidence that Plains soils 

retain the memory of spring BSISO propagation in a way that favors August heat 

waves, providing evidence against a soil moisture mechanism. 

4.3 Pacific Ocean 

Ocean temperatures exert a global influence on the atmosphere [Ropelewski 

and Halpert, 1987]. Previous studies have shown an association of the extratropical 

Pacific sea surface temperature (SST) with the summer large-scale atmospheric 

circulation [Liu et al., 2006; Frankignoul and Sennéchael, 2007] and Great Plains 

drought [Namias, 1982]. One particular Pacific SST pattern has even recently been 

shown to skillfully predict heat waves in the Eastern US [McKinnon et al., 2016]. These 

studies suggest that it is possible that the extratropical Pacific SSTs act as an 

intermediary between the BSISO and the Plains heat waves. Although not explored 

further here, it is possible that the ocean sea surface temperatures retain the memory 

of BSISO propagation and play an active role in the chain of events eventually leading 

to August Plains heat waves. 

4.4 Circumglobal Teleconnection 

 The circumglobal teleconnection pattern (CGT) is a boreal summer low-

frequency wavenumber-5 mode of the extratropical Northern Hemisphere circulation, 

and has a positive center located over high latitudes of North America (see Figure 2) 
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[Ding and Wang, 2005]. Additionally, the CGT is believed to be strongly influenced by 

variable heating in the South Asian region [Ding and Wang, 2005].  Thus, due to the 

quasi-stationary nature of the CGT, it is possible that BSISO propagation is linked to 

Plains heat waves through excitation of the CGT to produce a persistent summer high 

pressure system that extends over the Plains region and suppresses local precipitation. 

Land-atmosphere feedbacks may then come into play. Figure 6 shows the composited 

CGTi (see methods) prior to the first day of correctly forecasted heat waves. A positive 

(negative) CGTi here denotes high (low) geopotential heights over North America and 

the four other centers of action associated with this pattern. A CGTi close to zero 

indicates that there is no correlation between the day’s geopotential height pattern 

and that of the CGT EOF. Here, we see that from about 90 days prior to the start of 

forecasted heat waves, the CGTi is only slightly positive. Inspection of the CGTi for 

individual heat waves reveals that it varies considerably between events, and does not 

appear to have any consistent, systematic behavior prior to correctly forecasted heat 

waves. We conclude that the CGT is unlikely to be involved in the teleconnection 

between May BSISO propagation and August Plains heat waves.  
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Figure 6: Circumglobal teleconnection (CGT) index (CGTi) prior to composited 
correctly forecasted heat waves (thick black line), +/- 1 standard deviation (grey 
shading), and for individual events (thin blue lines).   
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CHAPTER 5—CONCLUSIONS 
 
 
 

 The results presented here utilize a previously suggested link between West 

Pacific convection and North American temperature and rainfall anomalies [Moon et 

al., 2013] to skillfully forecast Plains heat waves with a three-month lead time (see 

Figure 4). May propagation through the later phases [Lee et al., 2013] of the BSISO a 

leading mode of boreal summer convective variability in the Indian Ocean/West Pacific 

region [Yasunari, 1979; Lau and Chan, 1986; Wang and Rui, 1990; Wang and Xie, 

1997], is used to hindcast August Plains heat waves with a roughly eighty-day lead 

time. During this BSISO propagation, convective activity begins in a northwest-

southeast tilted band extending from India to the West Pacific, just north of Papua New 

Guinea. The convection migrates northeastward and becomes associated with a large 

cyclone in the subtropical Western Pacific (see Figure 1).  

Our results suggest that the BSISO-Plains heat wave teleconnection is direct, 

rather than the result of a third-party driver of both phenomena, because we obtain an 

increase in forecast skill when we make the predictor (May BSISO Phases 7 and 8) more 

discriminating by requiring that these days be preceded by BSISO propagation. 

Additionally, we do not find a significant difference between August mean 

temperatures for years with and without BSISO propagation. This is evidence against a 

third-party amplifier of both BSISO propagation and August heat.  



 25 

Nonetheless, we do not find any strong evidence for a single physical 

mechanism linking BSISO propagation to Plains August heat waves. We looked for 

evidence that the memory of BSISO propagation is held in the land surface. However, 

there does not appear to be any systematic drying of summer Plains soils due to a 

spring BSISO teleconnection that causes decreases in spring rainfall.  

We also looked for pre-heat wave systematic changes in the circumglobal 

teleconnection, a boreal summer quasi-stationary mode of Northern Hemisphere 

circulation variability [Ding and Wang, 2005]. It is possible that the CGT may influence 

Northern Hemisphere heat waves in some way; however, we find no evidence 

connecting May BSISO propagation to Plains August heat waves though the CGT. 

Finally, we found some evidence suggesting that the teleconnection may be 

modulated by the El Niño Southern Oscillation, operating primarily in El Niño-decaying 

years. 

This study demonstrates that a weather anomaly in the tropical Western Pacific 

can be used to forecast US Plains heat waves at three-month lead times with more skill 

than current seasonal forecasts [Luo and Zhang, 2012], thus allowing more time for  

preparation.   
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Figure A.1: Comparison of forecast skill between BSISO indices created using different 
datasets for years 1983 to 2013. Top panel: Outgoing longwave radiation (OLR) and 
zonal wind at 850 hPa (U) from the NCEP/NCAR Reanalysis 1 product. Bottom panel: 
OLR from Advanced Very High Resolution Radiometer (AVHRR) satellite product and U 
from NCEP/DOE Reanalysis 2 product. See Figure 2 for formatting information.  
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Figure A.2: Heat wave forecast skill at lead times between 70 and 90 days. Skill for 80 
days has been omitted here, because it is shown in Figure 2. See Figure 2 for 
formatting information.  
 
 
 
Table A.1: August Plains heat wave events correctly forecasted at lead times between 
70 and 90 days. An ‘x’ denotes a correct forecast.  
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Figure A.3: Same as Figure 2, but now heat waves are defined as occurring when at 
least 20% of the Plains experiences a daily maximum temperature above 35°C (95°F).   
 

 
 

Figure A.4: Fraction of years that have BSISO propagation, that also have August heat 
waves in the Plains (scatter points). Fraction of all years (1948-2016) with heat waves 
(dashed line).  
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Figure A.5: As in Figure 5, but for individual correctly forecasted heat wave events. 
Note the different scale for SPI-60. Geopotential height anomalies at 500 hPa are now 
in increments in 10m, beginning at 10m.   
 


