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ABSTRACT 

 

 

PLANT SELENIUM ACCUMULATION AND 

THE RHIZOSPHERE EFFECT 

 

Hyperaccumulation is a unique phenomenon where large amounts of 

trace elements are stored in leaves, but it only occurs in less than 1% of all plant 

species.  Plants that hyperaccumulate trace elements are studied as a means to 

remediate polluted substrates, a process known as phytoremediation.  The 

legume genus Astragalus contains the majority of plants that hyperaccumulate 

Se.  My goal was to indentify if and how soil microorganisms may influence 

Astragalus Se accumulation.  I examined the root nodule symbiosis in Astragalus 

as a tractable interaction to explore the mechanism by which microorganisms 

mediate changes in plant Se accumulation.  I also investigated plant-based Se 

removal (phytoextraction) through screening different species.
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In the first chapter I summarized literature on how plants hyperaccumulate 

elements through their root systems.  Mechanisms related to physical and 

chemical characteristics of roots are discussed.  The microbial assemblage in the 

rhizosphere is also important in hyperaccumulation.  From this basis I explore 

how soil microorganisms interact in the rhizosphere of Astragalus Se-

hyperaccumulators.  I tested three hypotheses in the following chapters; (i) soil 

microorganisms affect Se accumulation in plants, (ii) specifically the root nodule 

symbiosis has a role in Se-hyperaccumulation, and (iii) the mechanism of root 

nodule symbiosis affecting hyperaccumulation is through nitrogen allocation into 

selenoamino acids. 

In Chapter 2 I investigated if Se-hyperaccumulators incurred a cost where 

their symbiotic interactions were disrupted because of their Se tolerance.  My 

experiments did not support evidence of a cost to the symbiosis.  I investigated 

organ [Se] in multiple legume species growing in field conditions, including Se-

hyperaccumulators.  In general, nodule [Se] were below the threshold used to 

define Se-hyperaccumulation by leaf concentrations, but they were still notable 

with some nodules having [Se] near 100 µg Se g-1 dry weight.  I also detected 

differences in root and nodule [Se] in the hyperaccumulator A. bisulcatus, which 

may point to a role in Se protecting belowground organs from herbivory.   

Through x-ray absorption spectra analysis I found that Se was distributed 

throughout the root nodule in the Se-hyperaccumulators A. bisulcatus, A. 
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praelongus, and A. racemosus.  The most abundant form of Se in the nodules 

was organic, C-Se-C.   

Following this I conducted further investigations on root nodules.  In 

Chapter 3 I found an effect of root nodule symbiosis in Se accumulation in A. 

bisulcatus, where shoot [Se] was positively correlated with shoot [N] and 

nodulated plants contained higher shoot [Se] than non-nodulated plants.  These 

effects were not evident in non-accumulators.  I determined that a mechanism by 

which root nodule symbiosis could affect A. bisulcatus [Se] was through a 10-fold 

increase in the selenoamino acid γ-glutamyl-methylselenocysteine. 

In Chapter 4 I studied soil microorganisms in general, without focusing on 

a specific group, and attempted to identify if soil inoculant source affected 

Astragalus Se accumulation.  I found a significant increase in root (approximately 

+200%) and shoot (approximately +70%)  [Se] in 6 Astragalus species when they 

were grown in soil inoculant derived from hyperaccumulators compared to 

inoculant derived from non-accumulators.  The 6 species included three Se-

hyperaccumulators and three non-accumulators.  These results indicate that Se 

accumulation is mediated by soil microorganisms in some way. 

Given the recent explosion of interest in hyperaccumulators as an 

environmental friendly means of remediating contaminated substrates I 

investigated Astragalus Se-hyperaccumulators for their ability to remove Se from 

contaminated biosolids produced in Pueblo, Colorado.  I found that the Se-

hyperaccumulator A. crotalariae performs better than the annual crop species 

Brassica juncea, but there is a lack of seed source and agronomic techniques to 
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move forward at a larger scale with the Astragalus.  Using the more conventional, 

fast-growing agronomic species Brassica juncea and B. napus I found that a 

dilution of 75% biosolids and 25% sand by volume achieved the highest Se 

removal potential.   Using the information I had gathered in Chapter 4 I attempted 

to increase plant [Se] in biosolids phytoextraction trials by applying an inoculant 

derived from soil obtained from the hyperaccumulator A. bisulcatus.  This 

approach did not significantly alter plant [Se] in my 13 species trial. 

Finally, in Chapter 6 I synthesize the results of my dissertation into my 

experience conducting scientific research.  I have found that often experimental 

results that are not consistent with research hypotheses can be the most 

interesting to pursue because they make you continuously wonder why the 

outcome occurred.   I conclude with potential future outlooks for my work. 

Although my dissertation has focused much on the root-nodule symbiosis in 

Astragalus this work has broader implications for ecological theory of 

mutualisms, the co-evolution of mutualistic partnerships, and the utilization of 

rhizosphere communities in phytoremediation. 
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Summary 

Some plants hyperaccumulate metals or metalloids to levels several 

orders of magnitude higher than other species.  This intriguing phenomenon has 

received considerable attention in the past decade.  While research has mostly 

focused on the above-ground organs, roots are the sole access point to below-

ground trace elements and as such they play a vital role in hyperaccumulation.  

Here I highlight the role of the root as an effective trace element scavenger 

through interactions in the rhizosphere.  I found that less than 10% of the known 

hyperaccumulator species have had their rhizospheres examined.  When 

studied, researchers have focused on root physical characteristics, rhizosphere 

chemistry, and rhizosphere microbiology as central themes to understand plant 

hyperaccumulation.  One physical characteristic often assumed about 

hyperaccumulators is that their roots are small, but this is not true for all species 

and many species remain unexamined.  Transporters in root membranes provide 

avenues for root uptake, while root growth and morphology influence plant 

access to trace elements in the rhizosphere.  Some hyperaccumulators exhibit 

unique root scavenging and direct their growth toward elements in soil.  Studies 

on hyperaccumulator rhizosphere chemistry have examined the role of the root in 

altering elemental solubility through exudation and pH changes.  Different 

interpretations have been reported for mobilization of non-labile trace element 

pools by hyperaccumulators.  However, there is a lack of evidence for a novel 

role for rhizosphere acidification in hyperaccumulation.  As for microbiological 
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studies, researchers have shown that bacteria and fungi in the hyperaccumulator 

rhizosphere may exhibit increased metal tolerance, act as plant growth promoting 

microorganisms, alter elemental solubility, and have significant effects on plant 

trace element concentrations.  New evidence suggests that symbiosis with 

arbuscular mycorrhizae may not be rare in hyperaccumulator taxa, even in some 

members of the Brassicaceae.  Although there are several reports on the 

presence of mycorrhizae, a cohesive interpretation of their role in 

hyperaccumulation remains elusive.  In summary, I present the current state of 

knowledge about how roots hyperaccumulate and suggest ways in which this 

knowledge can be applied and improved. 

 

Introduction 

Metallophytes can be defined by their ability to survive and reproduce on 

metal-rich soils without suffering toxicity (Baker et al. 2010).  Often these plants 

have been identified by the habitats in which they grow, but high levels of trace 

elements (defined here as elements other than the 8 most abundant rock-forming 

elements: Al, Ca, Fe, K, Mg, Na, O, and Si) in plants can also be achieved by 

growth in amended or contaminated substrates (Reeves 1988; Lombi et al. 2000; 

Szarek-Lukaszewska and Niklinska 2002).  Some metallophytes have a 

specialization to concentrate elements at levels that would be toxic to non-

accumulators.  This innate ability to hyperaccumulate trace elements in plant 

leaves has been observed in species that grow naturally on metal-rich substrates 
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(Brooks et al. 1977; Baker and Brooks 1989; Wenzel and Jockwer 1999), but the 

trace element accumulation potential in hyperaccumulators may not be solely a 

matter of their habitat, when Thlaspi caerulescens was subjected to amended 

substrates ecotypes originating from low-metal soils accumulated more than 

ecotypes originating from metalliferous soils (Escarré et al. 2000; Dechamps et 

al. 2005).   Clearly hyperaccumulators collect large quantities of soil trace 

elements and sequester them in their leaves, yet there is not a clear 

understanding of the ways roots achieve this.  Some hyperaccumulators amass 

large amounts of essential elements (Cu, Mn, Ni, Zn), but other species store 

non-essential elements (As, Co, Cd, Se).  The leaf has been the focus of much 

study because it serves as a storage site for elements where they are available 

to livestock and human consumers.  Meanwhile, the root, the site of initial and 

continuous element acquisition, has received far less attention.   

Plant access to trace elements is mediated by bioavailability and root 

location in relation to the element.  The rhizosphere, defined as the root-soil 

interface, where microorganisms, roots, and soil come together (Hiltner 1904), is 

the micro-ecosystem where roots access soil trace elements.   Multiple gradients 

co-occur in the rhizosphere (bulk density, elemental concentrations, root 

exudation, microorganisms, moisture, pH, redox potential); thus the rhizosphere 

is a dynamic system in time and space.  Within the rhizosphere additional 

differences are caused by variation in root activity among root classes (i.e. 

lateral, primary roots, etc.), root ages, and location (i.e. tip, elongation zone, 

maturation zone) (Doussan et al. 2003).  Given the vast complexity of the 
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rhizosphere, there is much to explore to explain the belowground aspects of plant 

hyperaccumulation. 

Hyperaccumulators have adapted to life rooted in high-metal soils.  Over 

geologic time the quantity and type of trace elements found in soils change, and 

in turn, local flora can adapt.  Naturally-occurring metalliferous soils foster unique 

assemblages of tolerant and/or hyperaccumulating plant taxa (Beath et al. 1937; 

Reeves 2002) and human-influenced metalliferous soils may develop similar 

types of metal tolerant plant populations (Malaisse and Brooks 1982).   Five 

different explanations for why hyperaccumulators may have evolved have been 

proposed (Boyd and Martens 1992; Boyd 2007).   The hypotheses put forward 

are (i) plants may hyperaccumulate trace elements because storing large 

quantities of metals may be a means of metal tolerance and disposal, (ii) 

hyperaccumulators may use metals as elemental allelopathy against nearby 

competitors, (iii) metals may serve as osmotic resistance to drought, (iv) 

accumulated metals may defend the plant against herbivores or pathogens, and 

(v) metal accumulation may be accidental.  This literature review addresses how 

hyperaccumulators work, rather than why they hyperaccumulate.  I review here 

what is known about the novel and conventional ways in which 

hyperaccumulators access and accumulate trace elements. 

There is a general lack of ecological knowledge about hyperaccumulators 

(Boyd and Martens 1992; Whiting et al. 2004), particularly with respect to 

rhizosphere processes (Abou-Shanab et al. 2003a).  Metallophytes are botanical 

curiosities. Their rhizosphere may have unique properties, yet also will retain 
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similarities to non-accumulating plant species.  Hyperaccumulators will continue 

to have exciting applications if we are able to identify their unique hypertolerance 

and hyperaccumulation mechanisms, including how they manipulate their 

rhizospheres. Trace element uptake depends upon plant roots; therefore this 

region merits extensive study in the context of hyperaccumulation.  Current 

information on rhizosphere conditions in hyperaccumulating plants is based on a 

small subset (less than 10%) of known hyperaccumulators.  Below I group 

rhizosphere processes into three categories – root physical characteristics, 

rhizosphere chemistry, and rhizosphere microorganisms.  Figure 1.1 illustrates 

several of the interactions occurring in the rhizosphere that have been described 

in the literature.   

 

Root Physical Characteristics 

Root system development determines the rhizosphere size, configuration, 

and plant access to soil-borne elements.  The root surface area plays a large role 

in nutrient uptake (Comerford 2005) and it therefore has a significant role in trace 

element uptake by hyperaccumulators.  Researchers have commented on the 

small root systems characteristic of some hyperaccumulators (Ernst 1996).  

While it is true some hyperaccumulators are slow-growing and small compared to 

many annual crop species proposed for phytoremediation, there are perennial 

hyperaccumulators with well-developed root systems (Kutschera and 

Lichtenegger 1992; Ernst 1996).  Root depth and morphology are important traits  
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Fig. 1.1  This conceptual diagram shows the many ways that processes in the 
rhizosphere influence trace element (TE) uptake in hyperaccumulators.  Roots 
search for trace elements and grow towards them by chemotropism (1).  Plant 
growth promoting bacteria can alter root growth by altering hormones such as 
indole-3 acetic acid or degrade ethylene in the rhizosphere or as endophytes 
living within the plant (2).  Trace element solubility can be altered by acid 
production (H+) by bacteria (3) or roots (4).  Hydrogen ions can then displace 
trace element cations adsorbed to soil particles.  Bioavailable trace elements can 
enter the plant through transporters located in the root (5).  Mycorrhizae can 
increase plant access to trace elements by increasing belowground surface area 
(6) where trace elements can enter transporters in the fungus (7). Finally, trace 
element solubility can be increased in the rhizosphere by complexation with 
dissolved organic carbon (DOC) that is deposited in the rhizosphere by roots (8) 
or microorganisms (9). 
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related to uptake, yet there are very few reports in the literature that compare 

root morphology between species and how it affects hyperaccumulation.  

However, it must be noted that comparisons may be challenging to conduct 

because root structure and length are constrained by soil physical 

characteristics.  Rather than conducting comparisons between species, studies 

have focused on root length, depth, and surface area within a single species. 

Several hyperaccumulators have been described with small, shallow (< 

0.5 m) root systems and a high proportion of fine roots that contribute to trace 

element accumulation (Keller et al. 2003; Himmelbauer et al. 2005).  Although 

these reports featured shallow-rooted plants, deep-rooted (2 m) herbaceous 

species such as Biscutella laevigata (Cd-hyperaccumulator) exist (Kutschera and 

Lichtenegger 1992), and roots of many hyperaccumulator tree species remain 

unexamined but could be large and deep. 

At the root surface, membrane transporters provide uptake sites for soil 

borne elements to enter the symplast.  Alternatively, trace elements may enter in 

the plant apoplast and enter the symplast through transporters in the endodermis 

that surrounds the root vascular cylinder.  Several hyperaccumulated metals are 

essential (Cu, Mn, Ni, and Zn), therefore specific transporters for these elements 

should be located in root membranes of hyperaccumulators.  Zinc (Lasat et al. 

2000; Assunção et al. 2001) and Ni (Gendre et al. 2007) transporters have been 

described for hyperaccumulator species, but transporters for Mn (Mizuno et al. 

2008) and Cu have not.  Transporters for these elements have been described 

for non-hyperaccumulator species (Grotz et al. 1998; Clemens 2001; Pittman 
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2005; Burkhead et al. 2009); although Ni transport is not well understood 

(Gerendás et al. 1999).  The difference in accumulation of some trace elements 

between hyperaccumulators and non-hyperaccumulators may be related to a 

higher expression level of the same transporters in hyperaccumulators than in 

non-hyperaccumulators, or the presence of transporters with different kinetic 

properties; there is more evidence so far for the former (Pence et al. 2000; Li et 

al. 2005a).  The constitutive upregulation of a root Zn transporter in 

hyperaccumulator Thlaspi caerulescens has been suggested to be caused by the 

roots sensing the plant to be continuously Zn-starved (Talke et al. 2006) and 

increased expression of HMA4 causes a similar response in Arabidopsis halleri 

(Hanikenne et al. 2008).   Besides transporters at the root surface, 

hyperaccumulators have other ways to promote metal accumulation in the 

shoots, such as reducing sequestration in root vacuoles so metals can enter 

xylem transport pathways (Lasat et al. 1998; Papoyan and Kochian 2004), and a 

highly lignified endodermis that prevents metal efflux out of the root vasculature 

(van de Mortel et al. 2006).  In addition, plant species vary in their levels of metal 

chaperones and chelators such as glutathione and phytochelatins, organic acids, 

histidine, and nicotianamine (Krämer et al. 1996; Salt et al. 1999; Freeman et al. 

2004; Kupper et al. 2004; Raab et al. 2004; Weber et al. 2004; Mari et al. 2006); 

some of these may facilitate metal transport within hyperaccumulator root cells 

and root xylem or serve roles in plant metal tolerance.  Rather than discussing 

these processes within the plant in more detail, I turn my attention back to the 

rhizosphere and the root surface. 
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Non-essential trace elements can enter roots through transporters for 

essential elements that have similar valence states and ionic diameters. For 

instance, As, Cd, and Se resemble the essential elements P, Cu/Fe/Mn/Zn, and 

S, respectively (Cataldo et al. 1983; Marschner 1995).  Given these less specific 

avenues for entry, there may be ways in which hyperaccumulator species 

acquire larger amounts of non-essential trace elements than non-

hyperaccumulator species.  Hyperaccumulators may have higher expression 

levels for essential element transporters.  For example, it was shown that higher 

S levels occurred in Se-hyperaccumulators than non-accumulators (Galeas et al. 

2007), if those transporters do not discriminate against Se this could contribute to 

higher Se levels in plants.  In addition, the transporters in hyperaccumulators 

could have higher affinities for non-essential elements than transporters in non-

accumulators (Bell et al. 1992; Zhao et al. 2002b; Poynton et al. 2004; White et 

al. 2007).  Once inside the hyperaccumulator, trace elements may be complexed 

and stored in vacuoles.  This has been suggested for thiol reductants in the As-

hyperaccumulator Pteris vittata (Webb et al. 2003), although the amount of As 

complexed in this manner is small (Zhao et al. 2003; Raab et al. 2004). 

In the soil, root transporters need to be in the vicinity of trace elements, so 

roots should be located in areas of bioavailable elements.  Directed root growth 

towards trace elements in soil (chemotropism) has been reported in some 

hyperaccumulator species or ecotypes, but the mechanisms are not understood.  

This response demands an adequate ecological interpretation because current 

thought on chemotropism relates solely to non-hyperaccumulators that can alter 
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root growth to dynamically compensate for spatial variability in soil nutrients 

(Jackson and Caldwell 1996; Robinson 1996; Bloom et al. 2002; Doussan et al. 

2003).  Many hyperaccumulators exhibit similar root proliferation in soil, but in 

response to elevated levels of trace elements including Cd, Ni, Se, and Zn 

(Schwartz et al. 1999; Whiting et al. 2000; Haines 2002; Goodson et al. 2003; 

Dechamps et al. 2008).  Nickel and Zn are essential, but Cd and Se are not; 

therefore the hypothesis of root-proliferation yielding increased plant nutrition 

only holds if non-essential elements are co-localized with nutrients. 

In contrast, there are known negative effects of high concentrations of 

some trace elements on root growth in non-hyperaccumulators (Robertson 1985; 

Barceló and Poschenrieder 1990; Paliouris and Hutchinson 1991; El Kassis et al. 

2007), but some hyperaccumulators can direct their root growth, and thus 

rhizosphere development, in a positive response toward trace elements in ways 

that non-hyperaccumulators could not (Whiting et al. 2000; Goodson et al. 2003).  

Additionally, some hyperaccumulator plant ecotypes responded positively to 

trace elements while other ecotypes within the same species did not (Whiting et 

al. 2000; Haines 2002; Li et al. 2005a; Dechamps et al. 2008; Li et al. 2009).  

Positive chemotropism may partially explain the higher trace element content in 

some hyperaccumulator plants, but not all hyperaccumulators have chemotropic 

responses to hyperaccumulated elements (Moradi et al. 2009).  These ecotype-, 

population-, and species-specific responses indicate that when possible, care 

should be taken in choosing seed sources and species for experimental studies.  

Similar to the ideas of using local ecotypes genetically adapted to specific 
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restoration settings (McKay et al. 2005), selecting appropriate hyperaccumulator 

ecotypes that exhibit chemotropic root growth may be important in some 

phytoremediation settings. 

Even though positive root chemotropism is not observed in all 

hyperaccumulators, these plants may provide a new framework to explain root 

behavior.  Instead of nutrition, what is directed growth in some 

hyperaccumulators used for?  One explanation may be that chemotropic growth 

causes increased access to trace elements that enhance plant herbivore 

defense.  There is no experimental evidence for this, but chemotropism could be 

an extension of the elemental defense hypothesis, where hyperaccumulators can 

reduce herbivore and pathogen attack because their tissues contain toxic 

amounts of trace elements (Boyd et al. 1994; Martens and Boyd 1994).  

Preferential root scavenging could increase access to elements and 

consequently increase concentrations within plants – leading to increased 

herbivore defense. 

Physical characteristics of hyperaccumulator roots have received some 

attention in the literature, but further work focusing on transport mechanisms, 

root turnover, trace element partitioning, and root morphology is needed.  

Investigating more species of hyperaccumulators is important to further our 

understanding of how roots respond to trace elements.  In addition, further 

studies should be conducted on root uptake and transport by hyperaccumulators; 

for example Co transport mechanisms have not been described.  Further, the 

study of root turnover in response to trace elements may be useful for studies in 
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carbon sequestration, but it would be particularly important for phytoremediation 

where root death could significantly reduce plant uptake.  Notably, leaf 

senescence and turnover from metal toxicity has received attention (Jana and 

Choudhuri 1982; Fuhrer 1983; Ryser and Sauder 2006), but corresponding 

analyses belowground are rare (Helmisaari et al. 1999).  Finally, describing trace 

element partitioning in roots can help us understand how hyperaccumulators 

work and relate to their environment.  For example, the fine and coarse roots of 

Alyssum murale (Ni and Zn-hyperaccumulator) have specific Ni and Zn 

localization where the metals were located in fine root vasculature and on the 

coarse root exterior (McNear et al. 2005).  One reason for this type of pattern 

may be xylem transport in the vasculature, but there could be various 

explanations for rhizoplane localization, such as an herbivore or pathogen 

defense strategy, deposition by root exudation, or association within a sheath of 

rhizosphere microorganisms.  Further research on root physical traits should be 

conducted.  If we learn the genetic mechanisms of chemotropic responses in 

hyperaccumulators there may be potential to transfer this trait to agricultural 

species to improve plant nutrition or herbivore defense.  Currently, we have a 

better understanding of root growth in hyperaccumulator species than trace 

element allocation patterns.  Root uptake of large amounts of trace elements is 

responsible for hyperaccumulation.  With such high uptake comes high demand 

for soluble trace elements in the rhizosphere.  How then do hyperaccumulators 

manage trace element dynamics in the rhizosphere? 
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Rhizosphere Chemistry 

There are four distinctive soils in which most hyperaccumulator plants 

have been discovered: serpentine soils (Ni), seleniferous soils (Se), calamine 

soils (Zn), and soils of the African copper belt (Co, Cu, Cr, Ni, Zn) (Reeves 

2002).  While there are characteristic soils in which hyperaccumulators typically 

evolve, some hyperaccumulators can be found in an array of soil conditions.  As 

an example, Pteris vittata (As-hyperaccumulator) has been found in multiple soils 

with one thousand fold differences in their As concentrations (Liao et al. 2004).  

Additionally, accessions of Pteris vittata from uncontaminated soils accumulate 

similar As concentrations as accessions from contaminated soils (Zhao et al. 

2002a).  Soil descriptions should be included in hyperaccumulator literature when 

studies occur in the field, particularly if new hyperaccumulators are described.  

Once background soil conditions are known we can examine how roots modify 

the rhizosphere. 

Roots alter soil chemistry in many ways, via exudation and uptake.  Roots 

may change soil chemical concentrations, pH, redox conditions, form organic 

acid complexes with nutrients, and chelate metals (Hinsinger 1998).  

Hyperaccumulators somehow manage to acquire large amounts of trace 

elements, likely at least in part through the same mechanisms as their non-

hyperaccumulating relatives.  Although novel ways of accessing trace elements 

in the rhizosphere may exist in hyperaccumulators, this remains in debate.  

There is some evidence for enhanced access of hyperaccumulators to non-labile 

soil pools, as will be reviewed in the next section. 
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Root Exudation Effects on Trace Element Solubility  

Some reports suggest potentially unique trace element solubilization by 

hyperaccumulators.  For example, it was shown that populations of Thlaspi 

caerulescens grown in pots amended with ZnS accumulated more Zn in their 

shoots than the calculated total water and ammonium-nitrate extractable Zn in 

pots, indicating that the plants were accessing less available pools of Zn (Whiting 

et al. 2001d).  Non-hyperaccumulators were not used in this study, so we cannot 

know whether or not these findings are indeed unique to hyperaccumulators, but 

due to the lack of high Zn accumulation in the ZnS treatment compared to the 

other Zn treatments, the mobilizing ability of these plants may not be very strong 

(Whiting et al. 2001d).  Another study found that the mobile Zn fraction in soil 

accounted for less than 10% of Zn within shoots in a Thlaspi caerulescens, while 

a related non-hyperaccumulator obtained 55% of shoot Zn from the mobile 

fraction (McGrath et al. 1997).   The authors suggested that the 

hyperaccumulator is therefore better able to access Zn from the non-mobile 

fraction; the route by which the remaining Zn was acquired remains unknown.  It 

is possible that the unaccounted Zn in both species was accumulated by the 

same undetermined mechanism(s), which could include microbiological activity.  

In both of these studies it is possible that no novel mobilizing mechanism exists, 

rather plant depletion of the mobile pool could shift the equilibrium from the less 

mobile to the mobile pool.  Although unique mechanisms of hyperaccumulators 

can be challenging to demonstrate, some reports of general changes in 

rhizosphere chemistry exist.  A Ni-hyperaccumulator decreased the residual Ni 
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pool in rhizosphere soil and increased the reducible and oxidizable fractions 

while a non-hyperaccumulator did not (Kidd et al. 2007).  Root exudation should 

be examined further because it may play a key role in metal solubilization.  For 

example, root exduates (and/or microbial activity) were proposed to be an 

integral part of Ni accumulation in Thlaspi goesingense where organic acids may 

participate in dissolution of Ni-bearing mineral surfaces (Puschenreiter et al. 

2005).  

Other studies have focused specifically on root exudate amounts and 

composition.  Plant exuded reductants can reduce Mn and Fe oxides that have 

adsorption sites for metals, increasing metal solubility, but the Ni-

hyperaccumulator Alyssum murale was found to produce less reductant than a 

non-hyperaccumulator (Bernal et al. 1994).  Twice as much dissolved organic 

carbon (DOC) and a different composition of exudates was produced by the As-

hyperaccumulator Pteris vittata than a related non-hyperaccumulator (Tu et al. 

2004).  However, in another study with Pteris vittata, DOC in the rhizosphere was 

shown to be similar in quantity to a non-accumulating plant (Cattani et al. 2009).  

DOC may have different functions in different plant species, e.g. DOC may 

immobilize and detoxify metals (Römkens et al. 1999), or rather increase trace 

element availability (Fitz and Wenzel 2002).  Field data coupled with modeling 

indicated that DOC may create ligand-induced mobilization of Ni, thus improving 

hyperaccumulation potential (Wenzel et al. 2003).  Water-soluble root exudates 

from hyperaccumulating plants increased trace element extraction (Tu et al. 

2004; Li et al. 2005b) and non-water soluble exudates or mucigel production may 
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influence metal desorption in the rhizosphere as well (Ingwersen et al. 2006).  

Further investigation may provide better insight into differences between species 

in exudate composition and their importance for hyperaccumulation, for example 

the role of histidine in Ni-hyperaccumulation in Alyssum lesbiacum has been 

better understood because of complementary studies with the non-accumulator 

Alyssum montanum (Krämer et al. 1996). 

Several studies so far have shown no indication that the root activity of 

Cd/Zn-hyperaccumulator Thlaspi caerulescens or Ni-hyperaccumulator Alyssum 

murale have a unique capability to mobilize trace elements in soil (Hutchinson et 

al. 2000; Zhao et al. 2001; Massoura et al. 2004; Hammer et al. 2006).  If 

hyperaccumulators have a novel mechanism for mobilizing trace elements in soil, 

they may be expected to increase accumulation in co-cropped plants (if 

competition is not a factor).  This effect was indeed seen in Hordeum vulgare co-

cropped with Thlaspi caerulescens (Gove et al. 2002), but most evidence so far 

points to the contrary (Whiting et al. 2001b; c; Liu et al. 2005a; Ingwersen et al. 

2006).   

Lowering rhizosphere pH has also been proposed as a mechanism for 

increasing metal hyperaccumulation in plants because it generally increases 

cation bioavailability in soil (Delorme et al. 2001).  Wenzel et al. (2004) reviewed 

this topic and presented a table showing that many studies that investigated this 

mechanism rejected this hypothesis, e.g. Cd/Zn-hyperaccumulation in Thlaspi 

caerulescens (Knight et al. 1997; Hutchinson et al. 2000; Luo et al. 2000); and 

Ni-hyperaccumulation in Alyssum murale (Bernal and McGrath 1994), Alyssum 
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serpyllifolium subsp. lusitanicum (Kidd et al. 2007), and Thlaspi goesingense 

(Puschenreiter et al. 2003; Wenzel et al. 2003).  In contrast, a recent study 

suggested rhizosphere acidification is important for the Mn-hyperaccumulator 

Chengiopanax sciadophylloides (Mizuno et al. 2006).  It must be noted that there 

are limitations in the interpretation of some of these results.  Without the use of 

microelectrodes or plants growing in agar containing pH indicators rhizosphere 

sampling can be poor and some cases may have reported differences in bulk soil 

pH rather than rhizosphere pH.  In addition, suitable controls must be used to 

determine if the amount of acidification by the hyperaccumulator is novel, or the 

result of typical rhizosphere acidification.  When Thlaspi caerulescens was 

compared to the non-hyperaccumulator Thlaspi ochroleucum, pH differences did 

not account for increased Zn uptake by the hyperaccumulator because both plant 

types had a similar rhizosphere pH (McGrath et al. 1997).  Although metal 

mobility in the rhizosphere can increase because of lower pH, from the data 

collected so far it appears hyperaccumulators are not novel drivers of this effect 

and this may not be a satisfactory explanation for hyperaccumulation (Wenzel et 

al. 2004).   

Amidst differing results and the small number of species investigated, 

much more work is required to understand the mechanisms by which 

hyperaccumulators differ from non-accumulators with respect to trace element 

mobilization.  We may find mechanisms used by hyperaccumulators for trace 

element extraction differ by plant species and elemental species.  The function 

and composition of root exudates should be examined in more detail.   
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Rhizosphere Microorganisms 

While we know very little about how roots work compared to aboveground 

organs, we know even less about other components of the soil ecosystems.  

What is the co-evolutionary legacy between roots and rhizosphere 

microorganisms playing out in the soils beneath hyperaccumulator populations?  

In general, soil microorganisms influence the rhizosphere by altering nutrient 

cycling and availability (Gobran and Clegg 1996), but these mechanisms could 

also influence non-nutrient trace element availability.  Table 1 summarizes 

several studies that have shown that hyperaccumulators grown with inoculated or 

non-sterilized soil often accumulated different amounts of trace elements 

aboveground than plants grown in uninoculated or sterilized soil.  Of the twenty-

six effects shown in Table 1.1, in sixteen instances plants accumulated more 

trace elements when they were inoculated; compared to seven instances where 

there was no effect and three instances where inoculation reduced the trace 

element concentration in plants.  Although these effects can be strong, seven of 

the effects reported increased plant concentrations by > 95%, the mechanisms 

responsible for these microorganism-associated changes often remain unknown.  

One possibility could be the effects of sterilization procedures on soil chemistry 

(Salonius et al. 1967; McNamara et al. 2003), however recent work on Ni-

hyperaccumulation has shown that rhizosphere microorganisms affected plant 

gene expression, as evident from differences in shoot proteome (Farinati et al. 

2009).  These findings warrant further studies of the interactions between 

rhizosphere microorganisms and plant hyperaccumulators.   
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Table 1.1.  The magnitude of the effect of microorganism inoculation on plant aboveground trace element 
concentrations.  §The equation ([TE]inoculated –[TE]control)/[TE]control expressed as a percentage was used to determine 
the magnitude of the effect.  Different control conditions were used as described in the original publications. 
Plant Species Microorganism Effect§  Reference 
Alyssum murale 
 
 
 
 
 

Microbacterium arabinogalactanolyticum 
M. arabinogalactanolyticum AY509225 
M. liquefaciens 
M. oxydans AY509222 
M. oxydans AY509223 
Non-sterile soil 
Sphingomonas macrogoltabidus 

↑ 32% [Ni] 
↑ 46% [Ni]* 
↑ 24% [Ni] 
↑ 41% [Ni] * 
↑ 35% [Ni] * 
↑ 95% [Ni] 
↑ 17% [Ni] 

(Abou-Shanab et al. 2003a) 
(Abou-Shanab et al. 2006) 
(Abou-Shanab et al. 2003a) 
(Abou-Shanab et al. 2006) 
(Abou-Shanab et al. 2006) 
(Abou-Shanab et al. 2003b) 
(Abou-Shanab et al. 2003a) 

Arabidopsis halleri Rhizosphere derived inoculant ↑ 100% [Cd], [Zn]* (Farinati et al. 2009) 
Berkheya coddii Glomus intraradices 

Native AMF 
↑ 167% [Zn] 
↑ 45% [Zn] 

(Turnau and Mesjasz-
Przybylowicz 2003) 

Pityrogramma 
calomelanos 

Soil derived bacteria 
Soil derived fungi 

No effect [As] 
↓ 31% [As] 

(Jankong et al. 2007) 
(Jankong et al. 2007) 

Pteris vittata Gigaspora margarita 
Gl. mosseae 
Gl. mosseae 
Gl. mosseae 
Soil derived inoculant 

No effect [As] 
No effect [As] 
↓ 33% [As] 
↑ 31% [As] 
↑ 42% [As] * 

(Trotta et al. 2006) 
(Trotta et al. 2006, Liu et al. 2009)
(Liu et al. 2005b) 
(Wu et al. 2009) 
(Al Agely et al. 2005) 

Sedum alfredii Burkholderia cepacia ↑ 243% [Cd] 
↑ 96% [Zn] 

(Li et al. 2007) 
(Li et al. 2007) 

Thlaspi 
caerulescens 

Mixed inoculant containing Enterobacter 
cancerogenes, M. sapherdae, and 
Pseudomonas monteilii 

↑ 100% [Zn] * 
No effect [Zn] 

(Whiting et al. 2001a) 
(Whiting et al. 2001a) 

Thlaspi praecox Soil inoculant - containing Gl. etunicatum, 
Gl. fasciculatus, and Gl. mosseae 

↓ 28% [Cd] * 
No effect [Pb, Zn] 

(Vogel-Mikuš et al. 2006) 
(Vogel-Mikuš et al. 2006) 

* Estimates from graphically presented values in original publications were used to calculate the effect.   
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Three specific mechanisms of how microorganisms may increase plant 

hyperaccumulation have been suggested:  they may increase root surface area 

and hair production, increase element solubility, or increase soluble element 

transfer from the rhizosphere to the plant (Whiting et al. 2001a).  In the next 

section we examine recent findings from the literature regarding rhizosphere 

bacteria and fungi, and discuss them in the context of these three mechanisms.  

Knowing more about these mechanisms and their consequences will improve our 

understanding of plant hyperaccumulation. 

 

Rhizosphere Bacteria 

Increasing root surface area and root hair production 

Bacteria did increase root hair production and root surface area when the 

non-hyperaccumulator Brassica juncea was grown with Se (de Souza et al. 

1999).  Rhizosphere bacteria that improve plant growth are known as plant 

growth promoting rhizobacteria (PGPR) (Benizri et al. 2001).  PGPR can 

increase root growth by restricting rhizosphere accumulation of ethylene, which 

inhibits plant growth; the bacterial mechanism involves ACC-deaminase activity.  

Also, some bacteria produce plant growth regulators that cause root cell 

elongation, such as indole-3-acetic acid (IAA, an auxin).  Both PGPR 

mechanisms have been found in association with Ni-hyperaccumulators Alyssum 

serpyllifolium and Thlaspi goesingense (Idris et al. 2004; Ma et al. 2009). 
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Another, highly specialized PGPR interaction occurs where legume growth 

is increased by symbiotic root nodule bacteria.  Although these bacteria have the 

largest effect on legumes when the bacteria infect the plants and live within the 

plant nodule, rhizobia also live in the rhizosphere.  Root nodules or nodule scars 

have been observed in several leguminous hyperaccumulators such as Se-

hyperaccumulators Acacia cana (Beadle 1964), Astragalus bisulcatus and 

Astragalus pectinatus (Wilson and Chin 1947), as well as the Ni-

hyperaccumulator Pearsonia metallifera (Corby 1974); but the metal content of 

the soil was not recorded at the time.  A study of two legumes growing on a 

copper mine containing 461 µg g-1 Cu indicate that nitrogen fixation occurred at 

similar levels in a copper tolerant population of Lotus purshianus compared to a 

population from a control meadow site, but Cu-tolerant Lupinus bicolor had a 

lower rate of N2 fixation than the control meadow population (Wu and Kruckeberg 

1985).   The symbiotic bacteria may be tolerant to trace elements.  For example, 

Sinorhizobium fredii and S. meliloti have been shown to be Se-tolerant (Kinkle et 

al. 1994), but further work is necessary to determine the trace element tolerance 

of rhizobia associated with metallophytes growing on high-metal soils and the 

effects of the symbiosis on plant metal accumulation. 

Other PGPR may also become endophytes within the plant xylem by 

infecting the plant roots (Gagné et al. 1987), although this infection route has 

never been verified in hyperaccumulators (Rajkumar et al. 2009).  Bacterial 

genera inside the roots and shoots of hyperaccumulators have been found to be 

both similar to soil bacteria in Alyssum bertolonii (Barzanti et al. 2007).  Yet 
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others have found that endophytes in Thlaspi caerulescens and Thlaspi 

goesingense were different from soil bacteria (Lodewyckx et al. 2002; Idris et al. 

2004).  The difference between habitats of plant roots, shoots, and the soil as 

well as infection modes may explain some of these observed differences (Idris et 

al. 2004; Barzanti et al. 2007).  The presence of endophytic bacteria in 

hyperaccumulators may increase plant growth because they can have ACC-

deaminase activity (Idris et al. 2004).  Other mechanisms may exist to promote 

plant growth but there are not many studies that focus on hyperaccumulators 

(Rajkumar et al. 2009).  The survival of endophytes within a hyperaccumulator 

with its high levels of metals indicates that those bacteria may have distinct 

adaptations for metal tolerance (Idris et al. 2004; Mengoni et al. 2010).  Further 

studies on PGPR could be an effective way to expand our knowledge of the role 

of bacteria in hyperaccumulation (Glick 2010); research in this area may prove 

fruitful because many modes of PGPR action have been described in non-

hyperaccumulator systems (Glick 1995).   

  

Increasing element solubility 

Microorganisms have the ability to improve trace element solubility in the 

rhizosphere, and thus may affect hyperaccumulation.  Indeed, increased acid 

production and metal solubility was described in the presence of rhizosphere 

bacteria from hyperaccumulator plants (Abou-Shanab et al. 2003b).  Besides 

acids, bacteria can produce other exudates that solubilize metals.  Whiting et al. 
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(2001a) found that bacteria solubilized Zn in soil without a change in pH, but 

specific exudates were not identified.  Although the bacteria increased water 

soluble Zn, only the Zn-hyperaccumulator Thlaspi caerulescens achieved higher 

Zn concentrations with the inoculation while the non-accumulator Thlaspi 

arvense did not (Whiting et al. 2001a).  Bacteria can also produce iron-chelating 

organic molecules called siderophores that may affect availability of Fe and 

perhaps other trace elements (Lodewyckx et al. 2002); the presence of such 

bacteria alleviated Fe deficiency in Ni-stressed plants (Mishra and Kar 1974).  

Rhizosphere isolates examined from the Ni-hyperaccumulators Alyssum 

serpyllifolium (Ma et al. 2009) and Thlaspi goesingense contained siderophores 

(Idris et al. 2004).  Endophytic bacteria of Alyssum bertolonii and Thlaspi 

goesingense may also have the potential to produce siderophores (Idris et al. 

2004; Barzanti et al. 2007).  Bacterial siderophore production can be induced by 

metals other than Fe (Abou-Shanab et al. 2006 and references therein), so there 

is opportunity for more investigation here. 

Another mechanism to increase solubility in the rhizosphere is bacterial 

phosphatase-mediated dissolution of metal phosphates.  However, when 

examined in the Ni-hyperaccumulator Alyssum murale there was no difference in 

siderophore or phosphatase activity between bulk soil and rhizosphere isolates 

(Abou-Shanab et al. 2003b).  Finally, trace element solubility may be affected by 

redox changes mediated by bacteria.  Di Gregorio et al. (2005) have identified 

Se-reducing bacteria from the rhizosphere of Astragalus bisulcatus that reduce 

selenite to elemental Se; this could influence plant Se uptake because reduced 
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Se forms are less soluble than oxidized forms.  Although mechanisms of 

solubilization may appear straightforward, it remains to be determined how much 

of the solubilized trace elements are then encountered by roots or leached away. 

 

Other Mechanisms 

In the rhizosphere bacteria are more abundant than in bulk soil, owing to 

root-released carbon compounds (Rouatt 1959; Grayston et al. 1998; Badri et al. 

2009).  Hyperaccumulator rhizospheres may provide a niche for specialized, 

metal-resistant bacteria, since hyperaccumulator roots typically harbor bacteria 

that are more resistant to metals than bacteria in the bulk soil (Mengoni et al. 

2001; Lodewyckx et al. 2002; Abou-Shanab et al. 2003b; Aboudrar et al. 2007; 

Becerra-Castro et al. 2009).  Higher resistance to Cd and Zn was found in 

rhizosphere bacteria and fungi isolated from Thlaspi caerulescens than from a 

non-hyperaccumulator, even though the hyperaccumulator had fewer 

rhizosphere microorganisms overall (Delorme et al. 2001).  Evidence of 

rhizosphere bacteria that exhibit increased trace element resistance is 

noteworthy, and the mechanisms driving these observations are unknown and 

deserve further study.   

One evolutionary explanation for the observed increased microbial 

resistance around hyperaccumulating plants is accumulation of trace elements in 

soil under hyperaccumulator litter, and subsequent adaptation by the 

microorganisms (Schlegel et al. 1991; Quinn et al. 2011).  Another explanation 
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may be root release of accumulated elements via excretion and/or root turnover.  

The mechanisms of bacterial resistance to elevated trace elements in the 

rhizosphere of hyperaccumulators have not been studied much.  Whether they 

are similar to (Mengoni et al. 2010 and references therein) or differ from known 

plasmid-borne metal efflux pumps in other bacteria (Idris et al. 2006) remains to 

be determined in many cases.  Bacteria also have the potential for metal uptake 

(Pal et al. 2007).  To learn more from these observations it is important to also 

determine the effect of these resistant microorganisms on plant 

hyperaccumulation.   

Altered levels of regulatory metabolites may also affect uptake of certain 

hyperaccumulated elements.  Bacteria have been shown to enhance selenate 

uptake in Brassica juncea (a Se accumulating species but not a 

hyperaccumulator) via a combination of enhanced root hair growth (as mentioned 

above) and higher rhizosphere levels of the amino acid serine/O-acetylserine.  O-

acetylserine is a known upregulator of plant sulfate/selenate uptake and 

assimilation (de Souza et al. 1999). 

 

Increasing soluble element transfer 

Although microorganisms affect trace element accumulation in 

hyperaccumulators, no evidence has been found that bacteria increase trace 

element movement towards the plant root in the rhizosphere (Whiting et al. 

2001a).  Hyphal foraging may make fungi better candidates for this.  
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Mycorrhizae, for instance, are well-known to transport P and other elements 

toward plant roots (Bolan 1991).  Fungi are discussed in the following section. 

 

Rhizosphere Fungi  

Arbuscular mycorrhizae are very important in plant nutrition.  Fungal 

hyphae can supply large portions of essential elements to plants, including up to 

60% of plant Cu, 80% of plant P, 25% of plant Zn, and have been implicated in 

transport of S to plants as well (Marschner and Dell 1994).  The similarity in ionic 

radius and charge to P, Cu/Zn, and S make the non-essential elements As, Cd, 

and Se candidates for hyphal transport also.  However, many hyperaccumulators 

are from the Brassicaceae, which is generally considered to be a non-

mycorrhizal family (Leyval et al. 1997).  Recently, arbuscular mycorrhizae have 

been found in several non-Brassicaceae hyperaccumulator species (Turnau and 

Mesjasz-Przybylowicz 2003; Perrier et al. 2006; Trotta et al. 2006; Amir et al. 

2007; Wu et al. 2007) and several metallophytes of the Brassicaceae (Orłowska 

et al. 2002; Regvar et al. 2003; Vogel-Mikuš et al. 2005; Pongrac et al. 2007).  

Although several hyperaccumulating species are woody, no associations with 

ectomycorrhizae have been reported yet.  

We now know arbuscular mycorrhizal symbiosis occurs in 

hyperaccumulators, but generally root colonization was found to be low (Trotta et 

al. 2006; Amir et al. 2007; Pongrac et al. 2007; Wu et al. 2007), and stronger 

hyperaccumulators have been reported to be less colonized by mycorrhizae 
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(Amir et al. 2007).  These findings are ecologically intriguing.  Does the incidence 

of low levels of mycorrhizal colonization in some hyperaccumulators point to a 

cost of trace element tolerance in these species, where plants can only weakly 

support mycorrhizal networks?  Although some hyperaccumulator species have 

low colonization, in others moderate to high colonization rates were found 

(Turnau and Mesjasz-Przybylowicz 2003; Vogel-Mikuš et al. 2006).  The amount 

of mycorrhizal colonization depends upon both plant and fungus; fungal isolate 

identity affected root colonization rates in the As-hyperaccumulator Pteris vittata 

(Wu et al. 2009).   

The factors determining mycorrhizal colonization rates in 

hyperaccumulators are largely unknown, but in Thlaspi praecox and other 

Brassicaceae it may be restricted by plant glucosinolates (Vierheilig et al. 2000; 

Pongrac et al. 2008), although this evidence does not exclude other factors.  In 

fact, percent root colonization by mycorrhizae has also been found to be related 

to metal content, but all types of correlations have been found.  Negative 

correlations between metal concentration and root colonization have been 

observed in some Ni-hyperaccumulators including Geissois pruinosa, 

Phyllanthus favieri, Psychotria douarrei, and Sebertia acuminata (Amir et al. 

2007).  Positive correlations have been observed in some species where higher 

metal concentrations were associated with higher root fungal colonization in the 

As-hyperaccumulator Pteris vittata and the Cd/Pb/Zn hyperaccumulator Thlaspi 

praecox (Al Agely et al. 2005; Vogel-Mikuš et al. 2006; Pongrac et al. 2007).  No 

correlation between metal content and mycorrhizal colonization was found in the 
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As-hyperaccumulator Pteris vittata and the Cd/Zn-hyperaccumulator Sedum 

alfreddii (Trotta et al. 2006; Wu et al. 2007).  The differences reported in the 

direction of these correlations may be related to how mycorrhizae respond to 

metals or plants.  Reduced spore germination and counts have been observed in 

the rhizospheres of several hyperaccumulators (Pawlowska et al. 2000; Amir et 

al. 2007), but this is not true for all hyperaccumulators (Turnau and Mesjasz-

Przybylowicz 2003).  Just like their plant hosts, some mycorrhizae have 

developed tolerance to metals (Adriaensen et al. 2006).  This could help them 

colonize hyperaccumulators, which are found in high-metal soils and contain high 

levels in their roots (Trotta et al. 2006; Vogel-Mikuš et al. 2006; Amir et al. 2007).  

In several hyperaccumulators roots meet the concentration criteria (0.01% Cd; 

0.1% for As, Co, Cu, Ni, and Se; and 1% for Mn and Zn on a dry weight basis) 

used to evaluate aboveground parts of plants as hyperaccumulators (Amir et al. 

2007; Barzanti et al. 2007; Wu et al. 2007; Barillas et al. 2011). 

Like the differences reported in rates of colonization and trace element 

tolerance, mycorrhizae have varying effects on hyperaccumulator trace element 

uptake (Table 1).  In some cases organs from mycorrhizae-inoculated plants had 

lower trace element concentrations than uninoculated plants; As concentrations 

were lower in inoculated Pteris vittata and the Cd/Pb/Zn hyperaccumulator 

Thlaspi praecox had less Cd in all plant parts as well as less Zn in roots when 

inoculated (Liu et al. 2005b; Trotta et al. 2006; Vogel-Mikuš et al. 2006).  In other 

cases higher trace element concentrations were found in inoculated 

hyperaccumulators, including the Ni-hyperaccumulator Berkheya coddii and the 
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As-hyperaccumulator Pteris vittata (Turnau and Mesjasz-Przybylowicz 2003; Al 

Agely et al. 2005; Wu et al. 2009).  In contrast to those effects, no differences 

were found between inoculated and uninoculated plants with regard to trace 

element concentrations with As in Pteris vittata or Cd, Pb, or Zn in Thlaspi 

praecox (Trotta et al. 2006; Vogel-Mikuš et al. 2006; Liu et al. 2009).  One 

possible mechanism for increased trace element accumulation in inoculated 

plants is increased absorptive surface area from mycorrhizae, but this 

mechanism has not been investigated in hyperaccumulators.  Differences in 

trace element concentration from inoculated and uninoculated plants may be 

explained by the increased growth rate and biomass in inoculated plants (Al 

Agely et al. 2005; Trotta et al. 2006).  Another variable playing a role in 

accumulation and plant allocation patterns is the translocation factor between 

roots and shoots in mycorrhizal plants.  This type of effect has been observed 

with Cd and Zn in Thlaspi praecox where the shoot: root translocation factor was 

higher in mycorrhizal plants (Vogel-Mikuš et al. 2006) and in Pteris vittata where 

the As translocation factor increased at least five times in inoculated plants 

(Trotta et al. 2006), however this did not increase the concentration of those 

elements in plants.   

From these studies we know mycorrhizal fungi can alter plant trace 

element accumulation patterns in different ways, but the mechanisms remain 

obscure.  Future research may shed more light on the role of mycorrhizae in 

trace element hyperaccumulation.  This is achievable if a single fungal species is 

studied, its metal tolerance is noted, and the mechanisms by which it affects 
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plant uptake are identified.  Specifically, we note that mycorrhizae are not all 

alike; like plants, they differ in metal tolerance (Adriaensen et al. 2006).  

Mycorrhizal species also occupy different niches in the rhizosphere; some have a 

majority of their hyphae within the root, while others have a majority outside the 

root (Maherali and Klironomos 2007). 

Fungal species not identified as mycorrhizae have also been found in 

hyperaccumulator rhizospheres (Jankong et al. 2007; Wangeline and Reeves 

2007).  The role of these organisms in hyperaccumulation has yet to be 

determined, but some have the ability to accumulate and volatilize trace 

elements (Wangeline 2007).  Information on hyperaccumulators and their 

microorganisms is continuing to amass, and findings thus far suggest significant 

roles for bacteria and fungi in hyperaccumulation (Table 1).  A mechanistic 

approach, as used by Whiting et al. (2001a) where alternative microorganism-

driven modes of action were investigated, will greatly enhance the applicability of 

these findings.  Reporting inoculation effects with accompanying mechanistic 

information will be beneficial for advancing phytoremediation because it will 

enable replication of processes in other systems. 

 

Conclusions 

Hyperaccumulators make use of conventional rhizosphere mechanisms to 

improve their trace element accumulation (i.e.  the same mechanisms as other 

plants) but also may have novel ways in which they manipulate their 
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rhizospheres.  Root surface area and nutrient transporters are known to be 

important in plant nutrition and these traits are important in hyperaccumulation as 

well.  Some hyperaccumulators possess unique root physical characteristics and 

are able to exhibit chemotropism towards non-nutrient trace elements. Some 

have altered expression levels or substrate specificities of trace element 

transporters.  Chemical characteristics in the rhizosphere are similar between 

hyperaccumulators and non-accumulators in that both types of plants manipulate 

the solubility of trace elements by root exudates, access labile trace elements in 

the rhizosphere, and alter rhizosphere pH.  In addition, hyperaccumulators may 

be able to mobilize trace elements that are non-labile.  Like the majority of land 

plants, hyperaccumulators make use of exudates produced by microorganisms, 

interact with PGPR, and support arbuscular mycorrhizal symbioses, all of which 

can affect plant trace element uptake in significant ways; yet there are distinctive 

characteristics of hyperaccumulators because they harbor rhizosphere 

microorganisms that are very tolerant to metals. 

Studies addressing a larger diversity of hyperaccumulator species are 

needed.  While I attempted to generalize patterns, studies of the roots and 

rhizospheres of less than 10% of known hyperaccumulators have been 

conducted.  From observations on this scant number of plants one cannot 

assume hyperaccumulator roots are all alike because results differ depending on 

trace element and plant species.  Some hyperaccumulators are quite rare and 

live in very specialized niches.  A greater understanding of how root mechanisms 

help these plants survive and thrive in such unique soils will contribute greatly to 
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their utilization.  Unfortunately, habitat destruction proceeds at alarming rates 

near some species (Whiting et al. 2004) and extremely valuable information 

could be lost.  If hyperaccumulator species disappear, so will our chance to 

elucidate and harness their unique capabilities.  Significant effects of soil 

microorganisms on plant hyperaccumulation have been demonstrated.  In the 

following chapters I focus on microbial effects on Se-hyperaccumulation in 

Astragalus species, with particular emphasis on symbiotic nodulation. 
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Chapter 2 

Observations of the Root Nodule Symbiosis in Astragalus 

Species with Emphasis on Selenium Hyperaccumulators 
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Summary 

A survey of the presence of the root nodule symbiosis and its interaction 

with selenium (Se) in Astragalus has not been conducted before.  Here I report 

the presence of root nodules in four species including A. crotalariae, A. 

praelongus, A. preussi, and A. racemosus.  In a greenhouse study I found that 

the hyperaccumulator A. bisulcatus concentrated 101% more Se in the nodule 

than in the root, yet there was no difference in the non-accumulator A. 

drummondii.   To assess these if these patterns occur under natural conditions I 

examined organ [Se] in Se-hyperaccumulators and non-accumulators from field 

collections.  While [Se] were routinely above the hyperaccumulator threshold 

level of 1,000 µg Se g-1 dry weight (DW) in leaves, flowers, and fruits from Se-

hyperaccumulators, root samples rarely contained that amount, and nodules 

never exceeded 110 µg Se g-1 dry weight.  Selenium concentrations in non-

accumulator legumes never reached 100 µg Se g-1 DW in any organ.  An 

evaluation of the nodulation index and nodule weights in Se-hyperaccumulators 

and non-accumulators indicated that there was no cost of Se tolerance on 

nodulation characteristics in hyperaccumulators.  Rather, I found that in Se-

hyperaccumulators under greenhouse conditions higher levels of Se treatment 

corresponded with higher nodule counts, indicating a potential role for dinitrogen 

fixation in Se-hyperaccumulation.  The effect was not found in non-accumulator 

Astragalus species.  Finally, Se localization and molecular Se speciation of root 

nodules was determined by x-ray absorption spectra and x-ray analysis of near 
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edge spectra for the Se-hyperaccumulators A. bisulcatus, A. praelongus, and A. 

racemosus.  All nodules had Se throughout with a majority of it stored as C-Se-C 

molecules.  These findings suggest that as the evolution of Se 

hyperaccumulation in Astragalus developed, root nodule symbiosis has played 

an integral role. 

 

Introduction 

Several hyperaccumulator taxa and metallophytes are members of the 

legume family (Fabaceae).  Many of these species are within the Papilionoideae 

subfamily, which has been reported to have more than 98% of its members form 

nodules (Allen and Allen 1981).  Hyperaccumulators within this group may be 

expected to form root nodules symbioses as well.  However, to date our 

knowledge of if and how leguminous Se-hyperaccumulators interact with 

symbiotic rhizobia is incomplete.  For metal tolerant symbiotic legumes to evolve, 

tolerance needs to occur in both the plant and the bacterial partner (Antonovics 

et al. 1971).  Bacteria within root nodules will be exposed to consistent 

environmental conditions and may have some protection from stress, but free-

living rhizobia will be more susceptible to stress and environmental fluctuations 

(Chalk et al. 2010).   

Some Astragalus species native to western North America 

hyperaccumulate Se.  The species that hyperaccumulate Se manage to amass 

large concentrations, but co-occurring congeners do not accumulate Se to any 
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large extent (Shrift 1969; Galeas et al. 2008).  Is there a co-evolutionary legacy 

of plant hyperaccumulation and root nodule microorganisms?  Three alternative 

pathways could have developed: plants that have evolved to hyperaccumulate 

Se may associate with rhizobia that have evolved to interact with high [Se] within 

hyperaccumulator plants and rhizospheres, the presence of Se in the system 

could disrupt the symbiosis entirely where Se-hyperaccumulators rarely nodulate 

or form ineffective partnerships, or there could be no effect (Fig 2.1).   

 

 

 
Fig. 2.1  At the top the curved arrows represent the strong, positive 
feedback between organisms in root nodule symbiosis in the absence 
of stress. When Se is introduced to the system it may exert a negative 
effect (dashed arrow) on the interaction.  The negative effects, Se 
toxicity in non-tolerant organisms or Se-induced inhibition of the 
symbiosis could result in similar effects where the magnitude of the 
positive feedback between organisms is diminished.  Alternatively, as 
shown on the right, Se may exert a neutral or positive effect (solid 
arrow) on the interaction by not changing the interaction or by 
increasing the specificity of the positive feedback between organisms. 
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Plants have been shown to require symbiotic associations under 

conditions of environmental stress.  As an example, thermal tolerance and salt 

tolerance were only achieved in plants growing in symbiosis with mycorrhizae 

(Rodriguez et al. 2008).  Some metal tolerant legumes have effective symbioses 

under stress conditions, as was observed for Lotus purshianus and its symbiont 

growing in copper mine waste (Wu and Kruckeberg 1985; Wu and Lin 1990).   

Alternatively, an example of the disruptive influence of abiotic stress has been 

shown in the legume genera Acacia where more salt tolerant plant species 

responded less to rhizobial inoculation than did salt sensitive host species; 

therefore plant salt tolerance results in less dependence on the symbiotic 

mutualism (Thrall et al. 2008).  In addition, cases of metal inhibition of nodulation 

and nitrogen fixation have been shown in other legumes (Chen et al. 2003; 

Manier et al. 2009; Saraswat and Rai 2011).  A recent analysis of symbiotic 

interactions in Ni-hyperaccumulators could indicate that a pattern of disrupted 

symbiosis is common across the hyperaccumulator taxa.  The strongest Ni-

hyperaccumulators were found to be the least infected by mycorrhizae (Amir et 

al. 2007).   

In relation to Se-hyperaccumulation, it is known that some rhizobia 

isolates are tolerant to 200 mM Se (IV) and 400 mM Se (VI) (Kinkle et al. 1994).  

However these strains are not known to form root nodules with Astragalus 

species.   Successful root nodule symbioses exist in both Astragalus 

hyperaccumulators and non-accumulators (Allen and Allen 1981).  Previous 

reports document that the Se-hyperaccumulators A. bisulcatus and A. pectinatus 
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are nodulated (Wilson and Chin 1947) , but no one knows how those interactions 

react to Se.  In A. bisulcatus root [Se] can reach levels that are used to define 

plants as Se-hyperaccumulators  based on shoot [Se] (>1,000 µg Se g-1 DW) 

(Barillas et al. 2011).  With roots having high [Se], nodules of hyperaccumulators 

potentially experience similar [Se].  I wanted to compare the role of Se in 

nodulation of Astragalus species that have evolved to hyperaccumulate Se and 

those that have not.  I address the question; does plant Se-hyperaccumulation 

negatively affect root nodule symbiosis? 

I checked for the presence of nodulation and investigated the [Se] in 

organs of several Astragalus hyperaccumulators and leguminous non-

accumulators.  I hypothesized that Se-hyperaccumulation incurred a cost on the 

symbiotic interaction, where hyperaccumulators have lost some of their ability to 

effectively interact with rhizobia.  I expected nodulation in Se-hyperaccumulators 

and non-accumulators to be reduced with Se addition.  To address these issues I 

conducted field surveys and examined differences in nodulation between Se-

hyperaccumulators and non-accumulators in greenhouse studies.  My 

observational studies also included Se localization and speciation studies within 

root nodules from the three Se-hyperaccumulators A. bisulcatus, A. praelongus, 

and A. racemosus to assess how bacteria in nodules are subjected to Se within 

these plants. 
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Materials and Methods  

Observational Study 1: Nodulation Occurrence in Se-hyperaccumulators 

Seeds from A. crotalariae were obtained from the Desert Legume 

Program (Tucson, AZ) and the USDA Western Regional Plant Introduction 

Station (Pullman, WA) provided A. preussi.  The seeds were mechanically 

scarified, soaked overnight, and then sown into soil collected from underneath A. 

bisulcatus growing near Fort Collins, CO.  After 2 months of growth, 50 µM 

sodium selenate solution (20 mL) was applied weekly for the remaining 4 

months, after which plants were removed from pots and examined for nodules.  I 

also excavated root systems of A. praelongus (Uravan, CO), A. racemosus 

(Pueblo, CO), and A. bisulcatus (Fort Collins, CO) growing in their native habitats 

to search for root nodules during the growing season. 

 

Experiment 1:  Root and Nodule [Se] Under Greenhouse Conditions 

This study was conducted in Fort Collins, CO at the Plant Growth Facilities 

in the University Greenhouse at Colorado State University.  Plants were grown 

from seed in 164 mL Ray Leach "Cone-tainers" (Stewe & Sons, Oregon) 

containing a HCl-washed, 1:1 (volume) mixture of sand and fritted clay.  The 

experimental design consisted of 2 species (A. bisulcatus and A. drummondii), a 

Se treatment of 20 µM sodium selenate (Na2SeO4), and an inoculation treatment 

(live soil slurry) with 10 replications for a total of 20 experimental units.  
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Astragalus seed was purchased from Western Native Seed (Coaldale, CO).  

Seeds were scarified with sand paper, sterilized with bleach for 2 minutes 

followed by 2 minutes in 90% ethanol, and soaked overnight in sterile water 

before planting in pots.  The seedlings were allowed to establish for 1 month 

before fertilizer treatments were applied.  Fertilizer solution (1.6 mM K2SO4, 

0.358 mM NH4NO3, 17.9 µM FeCl3, 16.9 µM Na2-EDTA, 2 mM MgSO4, 0.169 

mM KH2PO4, 0.833 mM K2HPO4, 0.6 mM CaSO4, 0.5 mM CaCl2, 23.1 µM 

H3BO3, 4.6 µM MnSO4, 0.8 µM ZnSO4, 0.3 µM CuSO4, 0.2 µM NaMoO4, and 0.5 

µM CoSO4) was applied twice a week.  The plants grew for 2 months with 

fertilizer additions, I then suspended fertilizer application for 2 weeks before 

inoculation and selenium treatments were applied. 

Two soil samples, one from each Astragalus species, were collected from 

plants growing in a grassland community in Fort Collins, CO (40⁰ 33’ 43.01” N, 

105⁰ 8’ 13.1” W) to make soil slurries for inoculation (20 g soil in 1 L sterile, 

distilled water).  The inoculant (20 mL) was added to pots directly by matching 

species with soil type.  Six days after inoculation the fertilizer treatments were 

resumed with ¼-strength fertilizer twice per week.  After another 6 days, Se 

treatments were started.  Sodium selenate solutions were mixed in distilled water 

and supplied as 50 mL applications once every week.  One month after Se 

treatments began the plants began to brown so fertilizer was reduced to once a 

week and Se treatments were reduced to once every 2 weeks for the duration of 

the experiment (10 more weeks).   Plants were harvested and separated into 

root, shoot, and nodule.  Each sample was dried at 50° C for one week before 
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analysis.  Twenty mg of dried plant samples were digested in 1 mL nitric acid for 

2 hours at 60° C and then 130° C for 6 hours.  Organ [Se] was determined by 

inductively coupled atomic emission spectra (ICP-AES) on this digest diluted into 

9 mL water.  For statistical analysis I compared root and nodule [Se] in each 

species by t-test in Systat v.12 (Systat Software, Chicago, IL). 

 

Observational Study 2: Organ [Se] From Field Collections 

To examine organ [Se] I excavated root systems of non-accumulators and 

Se-hyperaccumulators during the growing season (Table 2.1).  I collected the 

non-accumulators A. argophyllus and A. convallarius in non-seleniferous soil 

from the Piceance Basin near Meeker, CO.  In Pueblo, CO I collected samples of 

the non-accumulator Melilotus alba from seleniferous soil along with the 

hyperaccumulator A. racemosus.  The hyperaccumulators A. praelongus and A. 

rafaelensis were collected from seleniferous soils in Uravan, CO.  From Fort 

Collins, CO I collected the non-accumulators A. missouriensis, M. officinalis, and 

Oxytropis sericeus along with the hyperaccumulator A. bisulcatus growing on 

seleniferous soil.  Aboveground organs including leaves, flowers, and fruits were 

separated from the belowground organs in the field.  Within one day of collection 

the samples were returned to the lab and the belowground organs were washed 

and separated into roots and nodules.  All parts were dried at 40 ⁰C, weighed, 

and ground for ICP-AES analysis following the previously described conditions. 
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Table 2.1.  Collection locations of the plants including the closest 
Colorado town, the degrees latitude and longitude, and site elevation (m). 
Site and Species Latitude Longitude Elevation (m)
Fort Collins 

A. bisulcatus 
A. missouriensis 
M. officinalis 
O. sericea 

40⁰ 42’ 37.45” N 105⁰ 06’ 39.28” W 1597 

Meeker 
A. argophyllus 
A. convallarius 

39⁰ 34’ 35.24” N 108⁰ 24’ 45.67” W 2466 

Pueblo 
A. racemosus 
M. alba 

38⁰ 19’ 41.88” N 104⁰ 33’ 07.79” W 1536 

Uravan 
A. praelongus 
A. rafaelensis 

38⁰ 22’ 28.93” N 108⁰ 44’ 40.93” W 1504 

 

Experiment 2: Se Effect on Nodulation 

I grew A. bisulcatus, A. convallarius, A. drummondii, A. praelongus, A. 

shortianus obtained from Western Native Seed (Coaldale, CO), and A. 

racemosus from Prairie Moon Nursery (Winona, MN) in a mixture of 2:1 volume 

washed sand and field soil (sieved 2 mm).  The soil collection locations are 

shown in Table 2.2.  The plants received 0, 50, or 100 µM sodium selenate 

(Na2SeO4) and an N-free fertilizer solution (0.4 mM K2SO4, 4.475 µM FeCl3, 

4.225 µM Na2-EDTA, 0.5 mM MgSO4, 0.042 mM KH2PO4, 0.208 mM K2HPO4, 

5.775 µM H3BO3, 1.15 µM MnSO4, 0.2 µM ZnSO4, 0.075 µM CuSO4, 0.05 µM 

NaMoO4, and 0.125 µM CoSO4) weekly starting at 4 months of age.  After 2 

months of treatment shoots were harvested and dried at 50 ⁰C while roots with 

nodules were immediately frozen at -20 ⁰C until subsequent harvesting could be 

conducted.  After freezing, roots were harvested by washing to remove soil and 
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separating nodules.  Nodules were counted at harvest, then dried at 40 ⁰C, and 

weighed to determine dry weight. 

 

Table 2.2.  Soil collection locations for the 6 species including the closest 
Colorado town, the degrees latitude and longitude, and site elevation (m). 
Species Location Latitude Longitude Elevation (m)
A. bisulcatus Fort Collins 40⁰ 42’ 37.45” N 105⁰ 06’ 39.28” W 1597 
A. convallarius Meeker 39⁰ 34’ 35.24” N 108⁰ 24’ 45.67” W 2466 
A. drummondii Livermore 40⁰ 45’ 59.77” N 105⁰ 21’ 06.21” W 1946 
A. praelongus Uravan 38⁰ 22’ 28.93” N 108⁰ 44’ 40.93” W 1504 
A. racemosus Limon 39⁰ 21’ 00.59” N 103⁰ 51’ 27.43” W 1749 
A. shortianus Livermore 40⁰ 46’ 00.57” N 105⁰ 21’ 04.29” W 1940 

 

A comparison of the nodulation index (number of nodules per gram shoot) 

where hyperaccumulators were expected to have a lower value than non-

accumulators was conducted using a one-way t-test.  Similarly, a comparison of 

nodule size based on the average dry weight of each nodule in 

hyperaccumulators and non-accumulators was conducted using a one-way t-test 

where hyperaccumulators were expected to have a lower value.  Statistical 

analyses were conducted with Systat v.12 (Systat Software, Chicago, IL). 

 

Observational Study 3:  Se Localization and Molecular Speciation 

Root nodules were obtained from A. bisulcatus growing in the field along 

with A. praelongus and A. racemosus growing under greenhouse conditions with 

50 µM sodium selenate (as described in Observational Study 1).  Nodules were 

separated from the majority of the root, washed in water to remove external Se, 
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frozen in liquid N2, and then sliced in half.  The samples were kept frozen until 

analysis was complete to prevent changes in Se distribution and speciation.  

Nodule Se localization and speciation were determined using micro-focused X-

ray fluorescence (μXRF) mapping and X-ray absorption near-edge structure 

(μXANES) spectroscopy at the  Advanced Light Source beamline 10.3.2 of the 

Lawrence Berkeley National Lab (Marcus et al. 2004).  Frozen nodule samples 

were placed onto a Peltier stage kept at −33°C to minimize beam radiation 

damage.  I recorded μXRF elemental maps at 13 keV, using a 15 μm (H) × 6 μm 

(V) beam, 15 μm × 15 μm pixel size, and 50 ms dwell time per pixel.  The 

chemical forms of Se in selected areas were investigated using Se K-edge 

XANES.  This analysis can determine the oxidation state and can be used to 

identify chemical speciation when compared with well-characterized Se standard 

compounds (Pickering et al. 1999).  A seven-element germanium (Ge) solid-state 

detector (Canberra, ON, Canada) was used to record μXRF maps and μXANES 

spectra. Standard procedures were used to correct the spectra for deadtime, pre-

edge background, and post-edge normalization (Kelly et al. 2008).  The spectra 

were calibrated with red elemental Se (white line position set at 13074.73 eV).  A 

library of standard selenocompounds were compared to Se XANES spectra 

using least square linear combination (LSQ) fitting in the 12,630–12,850 eV 

range.  Se standards included: Na2SeO4 (S8295), Na2SeO3 (S1382), SeCystine 

(S1650) and SeMet (S3132) purchased from Sigma-Aldrich, and MeSeCys, 

γGMSC, SeCysth and SeGSH2 purchased from PharmaSe (Austin, TX, USA). 

SeCys was obtained by reducing SeCystine at 25°C overnight in 100 mM sodium 
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borohydride at a 1:1 molar ratio. Gray and red elemental Se were provided by 

Amy Ryser and Dan Strawn.  LabVIEW (National Instruments, Austin, TX, USA) 

programs were used for data processing and analyses at the beamline. 

 

Results 

Observational Study 1:  Nodulation Occurrence in Se-hyperaccumulators 

I provide the first report of nodulation in 4 Astragalus Se-

hyperaccumulators.  Nodules were observed in A. crotalariae and A. preussi 

grown with A. bisulcatus field soil under greenhouse conditions.  I also observed 

nodulation in A. praelongus (Fig 2.2B) and A. racemosus growing in their native 

habitats.  Nodulation in A. bisulcatus was confirmed in plants growing in the field 

(Fig 2.2A).   

 

 

Fig. 2.2  Large root nodules (> 2 cm wide) were collected from A. bisulcatus (A) 
and A. praelongus (B) growing in the field. 
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Experiment 1:  Root and Nodule [Se] Under Greenhouse Conditions 

Only in the Se-hyperaccumulator A. bisulcatus did organ [Se] significantly 

differ between roots and nodules (p = 0.013).  Nodules had a 101% higher [Se] 

than roots (Fig 2.3A).  There was no difference in organ [Se] in the non-

accumulator A. drummondii (Fig 2.3B).   

 

 

Fig. 2.3  Mean [Se] of roots and nodules with standard error are shown for A. 
bisulcatus (nroot = 6; nnodule = 4), a Se-hyperaccumulator (A) and A. drummondii 
(nroot = 6; nnodule = 5), a non-accumulator (B).  The asterisk indicates a significant 
difference between belowground organs. 

 

Observational Study 2: Organ [Se] From Field Collections 

Se-hyperaccumulator, non-accumulator Astragalus, and co-occurring 

legume species were collected from Colorado field sites (see Table 2.1) and 
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analyzed for [Se] in leaves, flowers, fruits, roots, and nodules.  Histograms show 

that the [Se] in both accumulators and non-accumulators was variable (Fig 2.4).  

No non-accumulator surpassed an organ [Se] of 100 µg Se g-1 DW.   In contrast, 

all organs except for nodules in hyperaccumulators had at least one case where 

the [Se] was higher than 1,000 µg Se g-1 DW.  One nodule [Se] of a Se-

hyperaccumulator exceeded 100 µg Se g-1 DW in this study.  The maximum 

nodule [Se] found among all the non-accumulators was 29 µg Se g-1 DW. 

Table 2.3 shows the maximum organ [Se] recorded for each species 

investigated.  The highest leaf (83 µg Se g-1 DW), pod (48 µg Se g-1 DW), and 

nodule (29 µg Se g-1 DW) [Se] in non-accumulators were recorded for A. 

missouriensis and O. sericea that occurred on the seleniferous site in Waverly, 

CO.  In contrast A. argophyllus growing on a non-seleniferous site had the 

highest flower (58 µg Se g-1 DW) and root (66 µg Se g-1 DW) [Se] of the non-

accumulators.  A. praelongus had the highest leaf (2,925 µg Se g-1 DW), flower 

(2,999 µg Se g-1 DW), pod (5,405 µg Se g-1 DW), and root (1,281 µg Se g-1 DW) 

[Se] of all the Se-hyperaccumulators.  The maximum nodule [Se] in the 

hyperaccumulators was in A. racemosus at 109 µg Se g-1 DW.  Data for the 

mean organ [Se] with standard errors in each species is shown in Appendix 1. 

 



64 

 

 

Fig. 2.4  Histograms of organ [Se] are shown for Se-hyperaccumulator leaves 
(A), flowers (C), fruits (E), roots (G), and nodules (I).  The organ [Se] in non-
accumulator legumes are shown for leaves (B), flowers (D), fruits (F), roots (H), 
and nodules (J). 
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Table 2.3.  Maximum [Se] (µg Se g-1 DW) in different legume organs 
collected from the field.  Some organs were not collected and elemental 
concentrations were not determined (--). 

Plant type Species Leaf Flower Pod Root Nodule 
Non-accumulator A. argophyllus 47 58 -- 66 0 

A. convallarius 77 -- -- 37 -- 
A. missouriensis 83 52 48 48 -- 
M. alba 39 40 28 17 26 
M. officinalis 61 -- -- 56 -- 
O. sericea 12 20 5 25 29 

Hyperaccumulator A. bisulcatus 436 606 291 65 77 
A. praelongus 2,925 2,999 5,405 1,281 91 
A. racemosus 422 81 83 87 109 
A. rafaelensis 689 2,151 1,263 -- -- 

 
 
 
 
Experiment 2: Se Effect on Nodulation 

The three hyperaccumulators did not exhibit a cost of Se tolerance on 

nodulation characteristics compared to the three non-accumulators.  I compared 

the nodulation index, which was determined by the number of nodules produced 

per gram of shoot biomass, and the weight of each nodule.  No reduction in 

either trait was found in the hyperaccumulators compared to the non-

accumulators (Fig 2.5).  Data for each individual species is shown in Appendix 2. 
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Fig. 2.5  There is no cost of Se tolerance associated with nodulation traits 
measured in three Astragalus Se-hyperaccumulators compared to three 
Astragalus non-accumulators.  Selenium-hyperaccumulators had a similar 
nodulation index (determined by the number of nodules produced per gram of 
shoot dry weight) as non-accumulators (A).  No difference was detected between 
the Se-hyperaccumulators and the non-accumulators in terms of the dry mass 
per nodule (mg) (B). 

 

 

Adding Se to the three Se-hyperaccumulators in my greenhouse 

experiment significantly increased (p = 0.017) the number of nodules formed by 

those plants, but there was no effect in the three non-accumulators (Fig 2.6).  
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Fig. 2.6  The effect of Se addition on the square root number of root nodules 
produced per plant growing under greenhouse conditions in Se-
hyperaccumulators (A) and non-accumulators (B) is shown by regression 
analysis.  Regression lines were included only if the statistical analysis results 
were significant. 

 

 

Observational Study 3:  Se Localization and Molecular Speciation 

From the µXAS results I found that Se was located throughout root 

nodules in Astragalus hyperaccumulators (Fig 2.7).  Molecular speciation by 

XANES showed that the majority (> 40%) of Se in the nodule of each species 

was C-Se-C, which was most similar to the methylselenocysteine standard 

(Table 2.6).  Each species also contained selenite (SeO3).  Both A. bisulcatus 

and A. praelongus contained some form of elemental Se (red or gray), but A. 

racemosus did not (Table 2.6).  Nodules from A. praelongus contained some 

selenocysteine while nodules from A. bisulcatus and A. racemosus contained 

some selenoglutathione. 
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Fig. 2.7  Images of nodules depicted by µXAS scans from hyperaccumulators A. 
bisulcatus (A), A. praelongus (B), and A. racemosus (C) are shown.  Selenium 
presence is indicated by red, calcium is indicated by green, and iron is indicated 
by blue. 

 
 
 
 

Table 2.6.  The percent of Se (%) in each molecular species from nodules in 
three Astragalus hyperaccumulators as determined by x-ray absorption near 
edge spectra (XANES). 
 SeO3 C-Se-C SeCys SeGSH2 Gray Se Red Se 
A. bisulcatus 3.8 88.9 0.0 1.5 3.0 2.7 
A. praelongus 2.4 69.5 21.6 0.0 6.0 0.0 
A. racemosus 19.3 44.8 0.0 31.7 0.0 0.0 

 

 

Discussion 

For the first time four Se-hyperaccumulators were found to form nodules 

under greenhouse or field conditions, including A. crotalariae, A. praelongus, A. 

preussii, and A. racemosus.  I also found nodules in A. bisulcatus under 

greenhouse and field conditions, which is consistent with reports from Wilson and 

Chin (1947).  I had the most success finding root nodules in the field from A. 
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bisulcatus and A. praelongus when the roots grew under rocks, in locations 

where moisture was retained. 

When I compared Se-hyperaccumulators to non-accumulators grown 

under greenhouse conditions I found no evidence of a cost of Se tolerance in the 

root nodule symbiosis in hyperaccumulators.  These findings are in contrast to 

reduced symbiotic dependence found in some hyperaccumulators.  Strong Ni-

hyperaccumulators native to New Caledonia had reduced mycorrhizal 

colonization compared to species that are moderate or weak accumulators of Ni 

(Amir et al. 2007).   When I added Se to hyperaccumulators under greenhouse 

conditions the number of nodules per plant increased with increasing Se doses.  

This was not the case in the non-accumulators where there was no significant 

effect of adding Se.  These effects for non-accumulator legumes agree with the 

finding that Se had no effect on nodule number in Melilotus indica, although Se 

additions did reduce mean nodule dry weight in that study (Wu et al. 1994).  

However, the Se-hyperaccumulators made more nodules when they were given 

more Se, indicating that in these species this belowground symbiosis is linked in 

some way to Se.  A. bisulcatus stores up to 99% of Se in young leaves as the 

selenoamino acid methylselenocysteine (Sors et al. 2005).  Perhaps increased 

nodule numbers increases plant N content, which and could help Se-

hyperaccumulators store more Se in organic forms.  At the very least this 

indicates that the symbiosis is tolerant to Se, similar to the findings of a 

successful symbiotic interaction in the metallophyte Lotus purshianus growing on 

an abandoned copper mine (Wu and Lin 1990). 
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While mostly investigated aboveground, the protective effect of trace 

element hyperaccumulation may also occur belowground.  To my knowledge the 

elemental defense hypothesis has never been demonstrated in belowground 

organs, although in some species belowground organs do satisfy the 

concentration criteria used to classify plants as hyperaccumulators (Amir et al. 

2007; Barzanti et al. 2007; Wu et al. 2007, Barillas et al. 2011).  My finding that 

nodule [Se] was higher than root [Se] under greenhouse conditions in A. 

bisulcatus suggests a possible role for Se in nodule defense.  No difference was 

found in these organs in the non-accumulator A. drummondii.  These results 

suggest that nodules, which are expensive organs for the plant to construct and 

maintain, are protected by Se in a hyperaccumulator, but not in a non-

accumulator.  Larval weevils of Sitona lepidus (Coleoptera: Curculinidae) feed on 

root nodules of clover (Johnson et al. 2004), but no studies have investigated 

root nodule herbivory in Astragalus.  While this study was not designed to test 

the elemental defense hypothesis, the results suggest new aspects to 

investigate.  

In contrast with my greenhouse findings, field observations showed that 

root and nodule [Se] were similar in Se-hyperaccumulators. The maximum organ 

[Se] for each species tested was shown to provide a reference to the 1,000 µg 

Se g-1 DW threshold for Se-hyperaccumulator leaves described in the literature 

(Brooks 1998).  I did not find nodule [Se] in hyperaccumulators at that level, but 

all other organs surpassed the 1,000 µg Se g-1 DW threshold.  Nodule [Se] did 

surpass the 100 µg Se g-1 DW level in a Se-hyperaccumulator. The leguminous 
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non-accumulators that I investigated never breached the 100 µg Se g-1 DW level 

in any organ, even when co-occurring with hyperaccumulators on seleniferous 

soil.  Nodule [Se] levels in Astragalus could relate to the promiscuity of rhizobia 

that associate with Astragalus hyperaccumulators and non-accumulators.  I did 

not address this issue, but different nodule [Se] between Se-hyperaccumulators 

and non-accumulators could be a selective force for rhizobia symbionts.   

Tolerance to inorganic Se forms at levels that well exceed the nodule [Se] 

in all my specimens have been observed in some rhizobia isolates (Kinkle et al. 

1994).  Inside the root nodules of Astragalus Se-hyperaccumulators the majority 

of Se was stored in organic forms, with the majority being C-Se-C compounds.  

The maximum nodule [Se] found under field conditions in this study was 109 µg 

Se g-1 DW.  This is much lower than the 200 mM Se (IV) or 400 mM Se (VI) 

minimum inhibitory concentrations (MIC) determined by Kinkle (1994) for 

Rhizobium leguminosarum bv. viciae.  Therefore it may be the case that Se-

hyperaccumulator and non-accumulator Astragalus may associate with the same 

bacterial isolates.  If that is the case, co-occurring Astragalus species may not 

have segregated symbionts, but rather each host species may promote the 

growth of the bacterial symbiont, thereby enhancing the inoculant size within 

sites where the two Astragalus groups co-occur.  Whether or not Se serves as a 

selective force, microsymbiont identity remains to be investigated by molecular 

methods.   

Selenium cycles through the plant and is proposed to move from the roots 

into the leaves in the spring, from the leaves into the flowers and fruits, and then 
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back to the roots during dormancy (Galeas et al. 2007).  This proposed 

mechanism does not account for root nodules.  The data I collected here was 

from actively growing plants when Se should be translocated from roots to 

aboveground organs.  There may be potential to detect differences in 

belowground organs when Se moves back belowground.  Perennial legumes are 

expected to have perennial nodules (Gurusamy et al. 2000), so Se cycling within 

plants could manifest in nodules as well.  If nodules are inactive during the 

overwintering process Se may not affect nodule physiology, but may rather affect 

their susceptibility to herbivory.  Even if nodule [Se] are elevated in 

hyperaccumulators bacteria inside nodules are separated from the plant cell by 

the peribacteroid membrane (Brewin 1991).   Therefore, nodule Se may be 

isolated from the bacteria.  However, free-living rhizobia must cross the Se-

enriched rhizosphere soil from Se-hyperaccumulators to infect the host root.  

Even though Astragalus Se-hyperaccumulators do not show evidence of reduced 

reliance on symbiotic root nodule interactions, the co-evolutionary effects of Se-

hyperaccumulation on bacterial symbionts remain to be determined. 

 

Conclusions 

Just like their non-accumulator congeners, Astragalus Se-

hyperaccumulators form root nodule symbioses.  They differed from their 

congeners in the fact that their symbiotic relationship is related to Se treatment 

and accumulation, while these effects did not occur in non-accumulators.  
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Selenium concentrations in nodules and the consequences of those levels for 

segregation of symbionts between co-occurring plant congeners remain to be 

determined in a more conclusive way.  From my findings I hypothesize that the 

increased number of nodules in Se-hyperaccumulators treated with increased Se 

levels may result in the symbiotic interaction helping plants acquire more N, 

which in turn helps the plant to store more Se as selenoamino acids in their 

shoots. 

 
  
 
  



74 

 

Literature Cited 

Allen ON and Allen EK (1981) The Leguminosae:  A Source Book of 
Characteristics, Uses, and Nodulation. The University of Wisconsin Press, 
Madison, WI 

 
Amir H, Perrier N, Rigault F and Jaffré T (2007) Relationships between Ni-

hyperaccumulation and mycorrhizal status of different endemic plant 
species from New Caledonian ultramafic soils. Plant Soil 293: 23-35 

 
Antonovics J, Bradshaw AD and Turner RG (1971) Heavy metal tolerance in 

plants. Adv Ecol Res 7: 1-85 
 
Barillas JRV, Quinn CF and Pilon-Smits EAH (2011) Selenium accumulation in 

plants - phytotechnological applications and ecological implications. Int J 
Phytoremediat 13: 166-178 

 
Brewin NJ (1991) Development of the legume root nodule. Annu Rev Cell Biol 7: 

191-226 
 
Brooks RR (1998) Geobotany and Hyperaccumulators. In: RR Brooks (ed) Plants 

that Hyperaccumulate Heavy Metals their Role in Phytoremediation, 
Microbiology, Archaeology, Mineral Exploration and Phytomining. CAB 
International, Cambridge, pp 55-94 

 
Chalk PM, Alves BJR, Boddey RM and Urquiaga S (2010) Integrated effects of 

abiotic stresses on inoculant performance, legume growth and symbiotic 
dependence estimated by 15N dilution. Plant Soil 328: 1-16 

 
Chen YX, He YF, Yang Y, Yu YL, Zheng SJ, Tian GM, Luo YM and Wong MH 

(2003) Effect of cadmium on nodulation and N2-fixation of soybean in 
contaminated soils. Chemosphere 50: 781-787 

 
Galeas ML, Zhang LH, Freeman JL, Wegner M and Pilon-Smits EAH (2007) 

Seasonal fluctuations of selenium and sulfur accumulation in selenium 
hyperaccumulators and related nonaccumulators. New Phytol 173: 517-
525 

 
Gurusamy C, Davis PJ and Bal AK (2000) Seasonal changes in perennial 

nodules of beach pea (Lathyrus maritimus [L.] Bigel.) with special 
reference to oleosomes. International Journal of Plant Sciences 161: 631-
638 

 



75 

 

Johnson SN, Read DB and Gregory PJ (2004) Tracking larval insect movement 
within soil using high resolution X-ray microtomography. Ecol Entomol 29: 
117-122 

 
Kelly SD, Hesterberg D and Ravel B (2008) Analysis of soils and minerals using 

X-ray absorption spectroscopy. In: AL Ulery and LR Drees (ed) Methods 
of Soil Analysis, Part 5 - Mineralogical Methods. Soil Science Society of 
America, Inc., Madison, pp 387 

 
Kinkle BK, Sadowsky MJ, Johnstone K and Koskinen WC (1994) Tellurium and 

selenium resistance in rhizobia and its potential use for direct isolation of 
Rhizobium meliloti from soil. Appl Env Microbiol 60: 1674-1677 

 
Manier N, Deram A, Broos K, Denayer FO and Van Haluwyn C (2009) White 

clover nodulation index in heavy metal contaminated soils - a potential 
bioindicator. J Environ Qual 38: 685-692 

 
Marcus MA, MacDowell AA, Celestre R, Manceau A, Miller T, Padmore HA and 

Sublett RE (2004) Beamline 10.3.2 at ALS: a hard X-ray microprobe for 
environmental and materials sciences. J Synchrot Radiat 11: 239-247 

 
Pickering IJ, George GN, Van Fleet-Stalder V, Chasteen TG and Prince RC 

(1999) X-ray absorption spectroscopy of selenium-containing amino acids. 
J Biol Inorg Chem 4: 791-794 

 
Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim 

YO and Redman RS (2008) Stress tolerance in plants via habitat-adapted 
symbiosis. ISME 2: 404-416 

 
Saraswat S and Rai JPN (2011) Prospective application of Leucaena 

leucocephala for phytoextraction of Cd and Zn and nitrogen fixation in 
metal polluted soils. Int J Phytoremediat 13: 271-288 

 
Sors TG, Ellis DR and Salt DE (2005) Selenium uptake, translocation, 

assimilation and metabolic fate in plants. Photosyn Res 86: 373-389 
 
Thrall PH, Bever JD and Slattery JF (2008) Rhizobial mediation of Acacia 

adaptation to soil salinity: evidence of underlying trade-offs and tests of 
expected patterns. J Ecol 96: 746-755 

 
Wilson JK and Chin CH (1947) Symbiotic studies with isolates from nodules of 

species of Astragalus. Soil Sci 63: 119-127 
 
Wu L and Kruckeberg AL (1985) Copper tolerance in 2 legume species from a 

copper mine habitat. New Phytol 99: 565-570 



76 

 

 
Wu L and Lin SL (1990) Copper tolerance and copper uptake of Lotus 

purshianus (Benth.) Clem. & Clem. and its symbiotic Rhizobium loti 
derived from a copper mine waste population. New Phytol 116: 531-539 

 
Wu L, Emberg A and Biggar JA (1994) Effects of elevated selenium 

concentration on selenium accumulation and nitrogen-fixation symbiotic 
activity of Melilotus indica L. Ecotox Environ Safe 27: 50-63 

 



77 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3 

Plant Selenium Hyperaccumulation - With a Little Help from 

Microbial Friends 
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Summary 

Root nodule symbioses exist to combat nitrogen limitation in plants, but 

nitrogen (N) obtained through fixation may also be used to construct defensive 

chemicals within the plant.  I investigated the influence of the rhizobia symbiosis 

in both selenium (Se)-hyperaccumulator and non-accumulator Astragalus 

species subjected to Se.  Using a group of 3 hyperaccumulators (A. bisulcatus, 

A. praelongus, and A. racemosus) and 3 non-accumulators (A. convallarius, A. 

drummondii, and A. shortianus) I investigated if shoot N levels were related to 

shoot Se levels.  In hyperaccumulators, shoot [Se] was positively correlated with 

shoot [N] (p < 0.05; Pearson’s r = 0.403), indicating a potential role for dinitrogen 

fixation in Se-hyperaccumulation.  No such correlation was found for the non-

accumulator Astragalus species.  In a comparative greenhouse study using the 

Se-hyperaccumulator A. bisulcatus and the non-accumulator A. drummondii I 

observed that in both species nodulated plants had increased growth and Se:S 

ratios.  Although there were similar effects on Se:S ratios in the two species, the 

nodulation effect was manifested in different ways.  The hyperaccumulator, A. 

bisulcatus, contained 74% higher [Se] in the shoots when it was nodulated, but 

there was no nodulation effect on shoot [S].  In contrast, in the non-accumulator 

A. drummondii nodulation did not alter shoot [Se], and reduced shoot [S] by 39%.  

To elucidate the mechanism of the observed positive effects of nodulation and N 

supply on shoot [Se] in hyperaccumulators I measured the levels of selenoamino 

acids in A. bisulcatus shoots.  I found that nodulated plants had a 10-fold higher 
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concentration of the amino acid γ-glutamyl-methylselenocysteine (γGMSC) than 

non-nodulated plants.  Selenium from γGMSC comprised 32.3% of the total Se in 

nodulated plants and only 2.3% in non-nodulated plants.  There was no 

difference in methylselenocysteine (MeSeCys) concentration between nodulated 

and non-nodulated A. bisulcatus.  My findings indicate that the root nodule 

mutualism can profoundly affect Se-hyperaccumulation.  No evidence of a similar 

effect was found in non-accumulator Astragalus species.  From my results I 

hypothesize that N contributed by the root nodule symbiosis in A. bisulcatus 

increases shoot [Se] through incorporation of this N (mainly as glutamate) into 

γGMSC.  These findings are of interest because they give better insight into the 

mechanisms of hyperaccumulation, particularly the importance of symbiotic 

interactions.  My findings may also be applicable in Se phytoremediation and 

biofortification, as selected hyperaccumulator symbionts may affect Se 

accumulation and speciation in related crop species. 

 

Introduction 

Astragalus is the largest genus in the legume family, with an estimated 

3,000 species of annual and perennial herbaceous plants (Osaloo et al. 2003).  

Livestock and wild animals commonly use members of this genus as forage, and 

32 species are utilized by humans for food, medicine, or cosmetics (Uphof 1968).  

Despite the many beneficial uses of Astragalus species, toxins are present in 

some species.  The three major toxic principles in the Astragalus genus are (1) 
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the aliphatic nitro compounds, (2) the indolizidine alkaloids including 

swainsonine, and (3) selenium compounds (Rios and Waterman 1997). 

Selenium hyperaccumulation occurs in several plant species from North 

America and Australia with the majority of them being species of Astragalus 

(Brooks 1998).  Shoot [Se] above 0.1% dry weight (1,000 µg Se g-1 DW) 

designate plants as Se-hyperaccumulators, but normal concentrations in plants 

are less than 2 µg g-1, and 100 µg g-1 may be considered extreme (Reeves and 

Baker 2000).  Astragalus species that hyperaccumulate Se manage to amass 

large concentrations; however co-occurring congeners do not accumulate Se to 

any large extent (Shrift 1969; Galeas et al. 2008; Sors et al. 2009).  Given the 

low concentrations of trace elements in neighboring plants and the ability of 

hyperaccumulators to amass trace elements at concentrations higher than that of 

the soil in which they grow, the ability to hyperaccumulate may serve a beneficial 

function (Boyd and Martens 1992; Boyd 2004).  The reason why plants 

hyperaccumulate Se remains in question, but the most evidence collected to date 

has focused on and found support for the elemental defense hypothesis (Boyd 

2007) where Se is thought to protect plants against herbivores and pathogens 

(Hurd-Karrer and Poos 1936; Hanson et al. 2003; Galeas et al. 2008; Quinn et al. 

2008).  In addition Se has recently been implicated in elemental allelopathy 

where Se enrichment in soil around hyperaccumulators inhibits Se-sensitive 

competitors (El Mehdawi et al. 2011). 

Sulfur and Se have similar physical and chemical properties, thus they 

follow similar metabolic pathways in plants including root uptake of inorganic 
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forms, transformation into amino acids, and methylation (Barceloux 1999; White 

et al. 2004; Sors et al. 2005a; 2005b).  However, unlike S plants do not require 

Se (Fu et al. 2002).  In bacteria and animals Se is essential in low 

concentrations, but it can become toxic to organisms at higher concentrations 

(Barceloux 1999).  In fact, concentrations of 8.1 µg g-1 in feed can cause 

toxicosis and death in pigs (Stowe et al. 1992).  In addition, Se poisoning in 

humans resulting from foods produced in seleniferous regions have been 

described (Yang et al. 1983; Dhillon and Dhillon 1997; Fordyce 2007).  Despite 

the risks that seleniferous flora present, a lack of Se in the human diet also poses 

a threat to human health (McLaughlin et al. 1999).  To combat deficiency and to 

serve as anti-carcinogenic foods, Se-fortified plants have been developed (Lyons 

et al. 2003; Broadley et al. 2006).  Hyperaccumulators are particularly interesting 

in this respect, because of their capacity to accumulate high levels of Se in a 

form that is particularly anti-carcinogenic (Ellis and Salt 2003).  Most plants 

accumulate selenate (the most bioavailable form of Se in oxic soils, and therefore 

the form that is taken up), but hyperaccumulators accumulate predominantly 

organic Se, particularly methylselenocysteine (MeSeCys) (Freeman et al. 2006).  

To be able to use hyperaccumulators more efficiently, we need to know more 

about their Se accumulation mechanisms.  In particular, very little is known about 

the belowground processes that allow hyperaccumulators of Se and other 

elements to amass large quantities of  these trace elements from soil (Alford et 

al. 2010; Barceló and Poschenrieder 2011). 
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Interactions between soil microorganisms and root systems can have 

significant impacts on the ability of plant hyperaccumulators to concentrate trace 

elements in their shoot systems (Whiting et al. 2001; Abou-Shanab et al. 2003; 

Turnau and Mesjasz-Przybylowicz 2003; Liu et al. 2005; Vogel-Mikuš et al. 2006; 

Jankong et al. 2007; Li et al. 2007; Farinati et al. 2009; Alford et al. 2010).  Both 

strong reductions and strong increases in plant trace element concentrations 

have been found in hyperaccumulators interacting with soil microorganisms.  Li 

et al (2007) found that Burkholderia cepacia increased [Cd] by 243% in Sedum 

alfredii.  A reduction of 33% was found in Pteris vittata [As] when it was 

inoculated with Glomus mosseae (Liu et al. 2005).  At times no effects of soil 

microorganisms on plants were found, as was found in [As] in Pityrogramma 

coddii inoculated with soil derived bacteria (Jankong et al. 2007). 

Many legumes form mutualistic relationships with dinitrogen fixing rhizobia 

in root nodules.  Adaption to stress in legumes is expected to be complex 

because successful tolerance requires adaptation of both the plant and bacterial 

symbionts (Antonovics et al. 1971).  In addition, plant survival during stress may 

be dependent on symbiotic interactions (Rodriguez et al. 2008).  Although 

symbionts can have strong effects on their partners, we do not always 

understand the role of symbionts in host adaptation to stress.  In Astragalus, 

nodulation has been found in nearly every species that has been investigated 

(Allen and Allen 1981), but the influence of mutualistic rhizobia on Se-

hyperaccumulators has never been investigated. 
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I hypothesized that symbiotic rhizobia would increase plant [Se] in both 

Se-hyperaccumulators and non-accumulators.  The mechanism could be through 

increased root surface area in nodulated plants, which controls root access to 

soil elements.  An alternative and/or complementary mechanism would be that 

rhizobia alter plant Se metabolism by affecting selenoamino acids through N 

inputs. 

 

Materials and Methods 

Experiment 1:  Relationship of N and Se 

A. bisulcatus, A. convallarius, A. drummondii, A. praelongus, A. shortianus 

were obtained from Western Native Seed (Coaldale, CO), and A. racemosus 

from Prairie Moon Nursery (Winona, MN).  The seeds were scarified, soaked 

overnight in tap water, and then sown in a mixture of 2:1 volume washed sand 

and field soil collected from each species (sieved 2 mm).    Sixteen plants of 

each species received 100 µM sodium selenate (Na2SeO4) and an N-free 

fertilizer solution (0.4 mM K2SO4, 4.475 µM FeCl3, 4.225 µM Na2-EDTA, 0.5 mM 

MgSO4, 0.042 mM KH2PO4, 0.208 mM K2HPO4, 5.775 µM H3BO3, 1.15 µM 

MnSO4, 0.2 µM ZnSO4, 0.075 µM CuSO4, 0.05 µM NaMoO4, and 0.125 µM 

CoSO4) at 4 months old and continued through the duration of the experiment (2 

additional months).  Shoots and roots that were separated from nodules were 

harvested, and then dried at 50 ⁰C. 

 



84 

 

Experiment 2:  Nodulation Effect on Shoot [Se] 

Scarified and surface sterilized seed (2 minutes with bleach and 2 minutes 

with 90% ethanol) of A. bisulcatus and A. drummondii (Western Native Seed, 

Coaldale, CO) were grown in 164 mL Ray Leach "Cone-tainers" (Stewe & Sons, 

Oregon) containing a HCl-washed, 1:1 (volume) mixture of sand and fritted clay.  

Fertilizer solution (1.6 mM K2SO4, 0.358 mM NH4NO3, 17.9 µM FeCl3, 16.9 µM 

Na2-EDTA, 2 mM MgSO4, 0.169 mM KH2PO4, 0.833 mM K2HPO4, 0.6 mM 

CaSO4, 0.5 mM CaCl2, 23.1 µM H3BO3, 4.6 µM MnSO4, 0.8 µM ZnSO4, 0.3 µM 

CuSO4, 0.2 µM NaMoO4, and 0.5 µM CoSO4) was applied twice a week 

beginning when the plants were one month old.  The plants grew for 2 months 

with fertilizer additions, then fertilizer application was suspended for 2 weeks to 

induce N deficiency before inoculation and selenium treatments were applied. 

Plants were treated with 20 µM sodium selenate (Na2SeO4) and were subjected 

to one of two inoculation treatments (live soil slurry or autoclaved soil slurry) with 

10 replications.  I did not use specific strains of rhizobia in my experiment 

because there were no cultures available from A. bisulcatus or A. drummondii 

hosts in the USDA-ARS National Rhizobium Germplasm Collection.  In addition, I 

have been unsuccessful in isolating rhizobia from A. bisulcatus nodules.  Instead 

two soil samples, one from each Astragalus species, were collected from plants 

growing in a grassland community in Fort Collins, CO (40⁰ 33’ 43.01” N, 105⁰ 8’ 

13.1” W) to make soil slurries for inoculation (20 g soil in 1 L sterile, distilled 

water).  The inoculant was added to pots directly or was autoclaved for 30 

minutes prior to application.  Twenty mL of inoculant was added to each pot by 
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matching species with soil type.  Six days after inoculation the fertilizer 

treatments were restarted with ¼-strength fertilizer twice per week.  After another 

6 days, Se treatments were started.  One month after Se treatments began the 

plants began to brown so fertilizer was reduced to once a week and Se 

treatments were reduced to once every 2 weeks for the duration of the 

experiment (10 more weeks).   Shoots were harvested and dried at 50° C for one 

week before analysis. 

 

Experiment 3:  Selenoamino Acids Study 

Astragalus bisulcatus was grown from seed collected near Fort Collins, 

CO.  The seed was scarified and sterilized for 2 minutes in 95% ethanol followed 

by 2 minutes in 50% bleach.  After several rinses with sterile water the seeds 

were soaked overnight before planting.  The seeds were planted the next day in 

pots containing a 1:1 mixture by volume of sand and sieved (2 mm) field soil 

collected from the same A. bisulcatus population.  The soil in the pots was from 

one of 2 treatments, autoclaved soil microorganisms (treatment) or live soil 

microorganisms (control).  The treatment soil underwent three consecutive 

rounds of autoclaving and immediate freezing of the mixture.  The control soil 

was not manipulated.  Seeds were allowed to germinate over 2 months on a mist 

bench.  After the germination period the plants were allowed to acclimate to 

greenhouse conditions for 10 days.  Then plants were treated with Se (100 µM 

sodium selenate, Na2SeO4) and a low N fertilizer (0.08 mM NH4NO3) on a weekly 

basis for 9 weeks.   Shoots were harvested and two leaflets per leaf were 
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removed and immediately frozen in liquid N2.  The leaflets were stored at -80 ⁰C 

until amino acid extraction could be performed.  The remaining shoot was dried 

at 50 ⁰C.  Roots were frozen and stored at -20 ⁰C until further analysis for nodule 

counts and root surface area could be conducted.   Frozen roots were thawed 

and subsequently washed.  Nodules were counted and removed.  Root surface 

area was immediately determined by scanning and analysis by WinRHIZO 

(Regent Instruments, Canada). 

To extract amino acids from leaflets, the frozen leaf tissue was ground in a 

mortar and pestle with liquid nitrogen.  Two mL of 50 mM HCl was added to the 

ground sample and it was left to thaw.   The sample was then centrifuged for 20 

minutes at 13,200 rpm.  The resulting supernatant was run through a Waters C18 

Sep-Pak® (Milford, MA) that had been previously charged with 5 mL acetonitrile 

and rinsed with 20 mL mass spectrometry grade water.  The sample was stored 

at -80 ⁰C until analysis.  Samples were run on a Waters (Milford, MA) quadrupole 

time of flight mass spectrometer coupled with ultra performance liquid 

chromatography (Q-TOF UPLC) at the Proteomics and Metabolomics Facility at 

Colorado State University.  Chemical standards of methylselenocysteine 

(MeSeCys) and γ-glutamyl-methylselenocysteine (γGMSC) were included to 

verify peak retention times and calibrate concentrations. 

 

Plant Elemental Analysis 

Twenty or 50 mg of dried and ground shoot samples from the previous 3 

experiments were digested in 1 mL nitric acid for 2 hours at 60° C and then 130° 
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C for 6 hours.  Organ [Se] and [S] was determined by inductively coupled atomic 

emission spectra (ICP-AES) on this digest diluted into 9 mL water at the Soil, 

Water, and Plant Testing Laboratory at Colorado State University.  For shoot [N] 

50 to 100 mg dried and ground shoot material was combusted in a Leco Tru-

Spec (St. Joseph, MI) at the Colorado State University Natural Resource Ecology 

Laboratory. 

 

Data Analysis 

Data analysis was conducted in Systat v.12 (Systat Software, Chicago, 

IL).  In experiment 1: the relationship of N and Se, correlation analyses were 

conducted separately for the 3 Se-hyperaccumulators and 3 non-accumulators 

using physiological attributes (log shoot [Se] and log shoot [S]), fitness attributes 

(log shoot weight and log root weight), and nodulation attributes (log nodule 

weight, square root nodule number, and log shoot [N]).  Comparisons of log 

transformed shoot [Se], shoot [S], and shoot [N] were conducted between Se-

hyperaccumulators and non-accumulators.  In experiment 2: the nodulation effect 

on shoot [Se], A. bisulcatus and A. drummondii nodulation effects were 

compared by t-test for log transformed shoot dry weights, the log ratio of Se:S, 

log shoot [Se], and shoot [S].  Finally, in experiment 3: the selenoamino acids 

study, A. bisulcatus plants in different soil treatments (autoclaved or live soil) 

were compared by t-test for log shoot dry weight, root surface area, log shoot 

[Se], log shoot [MeSeCys], and log shoot [γGMSC].  The amount of total shoot 
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Se derived from selenoamino acids was estimated by converting the fresh weight 

amino acid concentration to dry weight concentrations for each treatment. 

 

Results 

Experiment 1:  Relationship of N and Se 

Shoot [N] was positively correlated with shoot [Se] in hyperaccumulators, 

but there was no correlation in non-accumulators (Table 3.1).  In both the Se-

hyperaccumulator species and the non-accumulator species, shoot [S] was 

positively correlated to shoot [Se].  Significant negative correlations of shoot [S] 

to shoot root, and total nodule weights were detected in both hyperaccumulators 

and non-accumulators.  However, in the non-accumulators shoot, root, and 

nodule weights were also negatively correlated to shoot [Se] but no significant 

correlations were detected for those attributes in the hyperaccumulators.  In both 

plant types there were significant positive correlations of shoot, root, and nodule 

weights. 

Figure 3.1 shows a comparison of the shoot [Se], shoot [S], and shoot [N] 

between the three hyperaccumulator and the three non-accumulator species.  

Hyperaccumulators had a significantly higher (p = 0.010) shoot [Se] than non-

accumulators (Fig 3.1A).  No differences in shoot [S] (Fig 3.1B) or shoot [N] (Fig 

3.1C) were detected between the hyperaccumulators and non-accumulators. 
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Table 3.1.  Pearson correlation coefficients for physiological, fitness, and nodulation traits are 
shown for the three hyperaccumulator species (n = 40) and the three non-accumulator 
species (n =33).  Significant coefficients are shown in bold.  

Hyperaccumulators [Se] [S] Shoot wt Root wt Nodule wt No. nodules 
 [S] 0.529      
 Shoot wt -0.199 -0.574     
 Root wt -0.166 -0.447 0.873    
 Nodule wt -0.049 -0.452 0.869 0.857   
 No. nodules 0.045 0.145 -0.083 -0.051 0.124  
 %N  0.403 0.165 -0.169 -0.263 0.039 0.133 

Non-accumulators 
 [S] 0.639      
 Shoot wt -0.423 -0.577     
 Root wt -0.636 -0.363 0.450    
 Nodule wt -0.395 -0.534 0.660 0.503   
 No. nodules 0.081 0.300 -0.268 -0.130 -0.199  
 %N 0.159 -0.083 0.045 0.335 0.047 0.094 
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Fig 3.1.  A comparison of the three Se-hyperaccumulators (HYP; n = 40) and 
three non-accumulators (NON; n = 33) for the levels of the trace element Se (A) 
and the essential nutrients S (B) and N (C) in shoots is shown with standard 
error.  Significant differences are shown by asterisk. 
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Experiment 2:  Nodulation Effect on Shoot [Se] 

The hyperaccumulator A. bisulcatus and the non-accumulator A. 

drummondii were used to determine if nodulation status affected shoot [Se].  As 

shown in Figure 3.2, both species produced nodules and in both nodulation was 

associated with increased shoot biomass (p < 0.001 for both species). 

 

 

Fig 3.2.  The effect of nodulation is shown for shoot dry weights with standard 
error in the hyperaccumulator A. bisulcatus (A) and the non-accumulator A. 
drummondii (B).  Nodule absence (0) and nodule presence (+) were compared 
with significant differences indicated by different asterisk. (A. bisulcatus n0 = 12, 
and n+ = 6; A. drummondii n0 = 10, and n+ = 6). 

 

Both A. bisulcatus (p = 0.007) and A. drummondii (p = 0.044) had 

significantly higher shoot Se:S ratios when nodulated (Fig 3.3A, 3.3B). Although 

the effect of nodulation was similar overall, the changes in elemental 

concentrations were different between the two species.  While in A. bisulcatus 

shoot [Se] was higher in nodulated A. bisulcatus plants than non-nodulated 

plants (+74%, p = 0.033, Fig 3.3C), there was no such difference in A. 
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drummondii (Fig 3.3D).  Shoot [S] did not differ with nodulation in A. bisulcatus 

(Fig 3.3E), but it was significantly lower in nodulated A. drummondii plants than in 

non-nodulated plants (-39%, p = 0.048, Fig 3.3F).   

 

Experiment 3:  Selenoamino Acids Study 

 To obtain better insight into the contribution of bacterial N2 fixation to Se 

hyperaccumulation A. bisulcatus was grown in the presence or absence of 

rhizosphere inoculant obtained from the same species growing in its natural 

habitat; the treatment received autoclaved (dead) inoculum.  As shown in Table 2 

the live inoculum soil resulted in substantial nodulation, while the autoclaved 

inoculum did not give any nodules.  The nodulated Se-hyperaccumulator did not 

differ in shoot [Se] from plants without nodules, but did reach a significantly 

higher shoot dry weight (p < 0.001), and root surface area (p < 0.001, Table 3.2).  

Interestingly, the shoot concentration of the seleno-di-amino acid [γGMSC] was 

10-fold higher in nodulated plants (p = 0.009) than in plants without nodules 

(Table 3.2): in contrast, shoot concentration of the selenoamino acid MeSeCys 

was not significantly different between nodulated and non-nodulated plants.  

Differences between nodule numbers were not statistically tested because plants 

in the autoclaved soil did not have any variance in that attribute (Table 3.2). 
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Fig. 3.3  Mean elemental concentrations with standard error are shown for 
shoots of two legume species.  The panels show the effect of nodule absence (0; 
n = 8) or presence (+; n = 6) on shoot concentrations in the Se-hyperaccumulator 
A. bisulcatus and the non-accumulator A. drummondii.  
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Table 3.2.  The average value with standard error is presented for plants growing 
with autoclaved or soil live microorganisms.  Different letters across the rows 
indicates a significant difference between the two soil treatments. 

 n Autoclaved soil Live soil 
Shoot weight (mg) 21 79.8 ± 4.8 a 231.4 ± 11.9 b 
Root surface area (cm2) 10 70.1 ± 8.1 a 123.5 ± 9.5 b 
Number of nodules 21 0 ± 0 21.3 ± 2.7 
[Se] (µg g-1 DW) 21 3,179 ± 1,646 a 2,402 ± 566 a 
[MeSeCys] (µg g-1 FW) 7 589.5 ± 102.2 a 413.0 ± 42.8 a 
[γGMSC] (µg g-1 FW) 7 15.3 ± 9.9 a 152.8 ± 21.0 b 

 

 

To estimate what fraction of total shoot Se was γGMSC and MeSeCys I 

used the percentage dry weight of samples and converted the γGMSC and 

MeSeCys concentrations from a fresh weight basis to a dry weight basis.  I then 

calculated what fraction of total, acid-digestible Se was γGMSC or MeSeCys (Fig 

3.4).  A similar fraction of Se was MeSeCys in nodulated plants grown in live soil 

(50.3%) compared to non-nodulated plants grown in autoclaved soil (56.9%).  

The fraction of Se present as γGMSC was approximately 13 times higher in 

nodulated plants (32.3%) than in non-nodulated plants (2.3%).  The 

selenocompounds that made up the remaining Se were not identified, but 

accounted for 17.4% in nodulated plants and 40.8% in non-nodulated plants. 
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Fig. 3.4.  The percent of shoot [Se] on a dry weight basis is shown for different 
forms in A. bisulcatus (n=7) grown in autoclaved (A) or live (B) field collected soil.  
The fractions were calculated by setting the total acid-digestible Se to 100% and 
LC-MS was used to measure MeSeCys and γGMSC.  The percent of total Se 
unaccounted for by either amino acid is denoted as undetermined. 

 

Discussion 

Plant symbioses with rhizobia affect metabolism in both partners 

(Colebatch et al. 2004).  Since Astragalus species hyperaccumulate Se and 

predominantly store Se in the form of N-containing amino acids, I investigated to 

what extent rhizobia contribute to hyperaccumulation.   Using 3 species of Se-

hyperaccumulators and 3 non-accumulators I found that shoot [N] was correlated 

to shoot [Se] in the hyperaccumulators, but not in the non-accumulators.  Shoot 

[Se] in Se-hyperaccumulator A. bisulcatus was 74% higher when nodulated; 

there was no effect of nodulation on shoot [Se] in the non-accumulator A. 

drummondii.  Thus, the hypothesized positive effect of nodulation on [Se] was 
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observed, but was specific to Se-hyperaccumulators and did not occur in the 

non-accumulators. 

It is possible that symbiotic rhizobia increase N-based defenses in the Se-

hyperaccumulator A. bisulcatus because Se is stored in the leaf in several forms, 

including selenoamino acids (Shrift 1969; Pickering et al. 2003; Freeman et al. 

2006).  In the A. bisulcatus leaf Se is stored as MeSeCys and γGMSC, with 

minor fractions of SeO4
2-, SeO3

2- (Freeman et al. 2006).  I did not find differences 

between nodulated and non-nodulated plants for total shoot [Se] or [MeSeCys], 

but differences were observed in shoot [γGMSC], a product of the enzymatic 

coupling of MeSeCys to glutamate (Ellis and Salt 2003; Freeman et al. 2006).  

Both MeSeCys and γGMSC can safely be accumulated since they cannot be 

non-specifically incorporated into proteins (like SeCys or SeMet) and do not 

cause oxidative stress (like inorganic forms of Se), explaining the extreme 

tolerance of hyperaccumulators.  Nodulation-derived N could contribute to plant 

Se levels through incorporation into selenocysteine (SeCys, the precursor of 

MeSeCys), glutamate (the other substrate for γGMSC), or through the enzyme γ-

glutamyl-cysteine synthetase (ECS) that likely catalyzes the formation of γGMSC 

(Fig 3.5).  Even though the A. bisulcatus plants did not differ in shoot [Se] in the 

experiment where selenoamino acid levels were determined, the presence or 

absence of nodulation did affect the metabolic profile of Se in A. bisulcatus.  

Nodulated plants were estimated to derive 32% of their shoot Se from γGMSC 

while in plants without nodules this fraction was only 2%.  This finding that 

nodulation affected [γGMSC] but not [MeSeCys] suggests that the contribution of 
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the rhizobial N to overall Se accumulation in A. bisulcatus is primarily through 

providing N in the form of glutamate.  The rhizobia may also provide N for ECS 

synthesis, but this is likely a more minor contribution since the enzyme ECS is 

likely present at a much lower level than the metabolite γGMSC. 

My results suggest that symbiotic rhizobia play a role in Se-

hyperaccumulation in Astragalus, but not in accumulation of Se by non-

accumulators.  If rhizobia increase [Se] in Se-hyperaccumulators it could indicate 

that those microorganisms have played a role in evolution of Se-

hyperaccumulation in this species.  The nodulation effect on shoot [Se] may be 

critical during the early periods of growth in a young N2 –fixing hyperaccumulator 

because increased shoot [Se] helps defend plants from herbivores and 

pathogens (Hurd-Karrer and Poos 1936; Hanson et al. 2004; Galeas et al. 2008; 

Quinn et al. 2008). Previous work has shown that the leguminous symbiosis 

enhanced plant defenses in other species (Johnson et al. 1987; Briggs 1990; 

Valdez Barillas et al. 2007; Dean et al. 2009; Kempel et al. 2009), especially N-

containing defensive compounds.  Nitrogen fixing symbioses are known to 

contribute to plant secondary metabolites, such as alkaloid production in 

Oxytropis sericea (Valdez Barillas et al. 2007).  Linkage of Se hyperaccumulation 

to N nutrition, and thus symbiotic N2 fixation, was further supported by the finding 

that shoot [Se] was positively correlated with shoot [N].  This correlation was not 

significant in the non-accumulator Astragalus species.  Thus N2 fixation may 

facilitate Se sequestration in hyperaccumulators but not in non-accumulators.  

The nodule number and total nodule weight were not significantly correlated to 



98 

 

 

 

Fig. 3.5.  Model of how rhizobia in Astragalus hyperaccumulators may contribute 
to Se hyperaccumulation.  Bacteroids (Bac) within the nodule symbiotically fix N2 
and inorganic Se enters the plant through the root system.  Although N can enter 
through the root system, the pathway is not represented because it is not 
mediated by symbiotic rhizobia.  The elements are transferred through the xylem 
and enter the leaf where they can be used as building blocks for selenoamino 
acid synthesis in the mesophyll chloroplast (Chl) and cytosol.  Both Se and N can 
be incorporated into selenocysteine (SeCys) in the chloroplast.  This 
selenoamino acid can subsequently be methylated to form methylselenocysteine 
(MeSeCys).  Another N atom could be added when glutamate is added to 
MeSeCys to form γ-glutamyl-methylselenocysteine (γGMSC).  The likely enzyme 
mediating this process is γ-glutamyl-cysteine synthetase (ECS), which occurs in 
both the cytosol and the chloroplast.  N may also be utilized to produce ECS 
itself. 
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shoot [Se], and therefore shoot [N] may be a better predictor of shoot [Se] in A. 

bisulcatus, than the degree to which the plant is colonized by bacteria. 

To determine if the positive correlation found between shoot [Se] and 

shoot [N] in the hyperaccumulators was a result of differences in nutrient or trace 

element levels between Se-hyperaccumulators and non-accumulators I 

compared these attributes. The two groups of Astragalus species did not differ in 

nutrient (S or N) concentrations, indicating that plant nutrition levels were similar 

between the two groups.  Rather they only differed in shoot [Se], where as 

expected the Se-hyperaccumulators had a higher concentration than the non-

accumulators.  In the nodulation study the ratio of Se:S increased with nodulation 

in both A. bisulcatus and A. drummondii, but the change in the ratios was driven 

by different elements.  An increase in shoot [Se] was found to cause the 

enhanced Se:S ratio in the hyperaccumulator A. bisulcatus, while a decrease in 

shoot [S] caused the enhanced Se:S ratio in the non-accumulator A. drummondii 

A. bisulcatus and A. drummondii occurred on the same site and the soil 

beneath these plants was similar in total and water-extractable Se.  I used soil 

slurry to inoculate the plants in the greenhouse experiment; therefore soil 

properties other than the microorganisms and water soluble compounds should 

not have had much influence on these results.  The use of fertilizer in the 

experiment was intended to minimize effects from other nutritional root 

symbioses such as mycorrhizae.  However, I cannot rule out that the specific 

symbiotic interactions reported here showing differences in patterns of nodulation 

and [Se] in the two species resulted from different microorganism identities in the 
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two soil inocula.  It has been shown that different strains of rhizobia produced 

different effects in nodulated legumes, for example swainsonine production 

differed in Oxytropis sericea when it was nodulated with different strains (Valdez 

Barillas et al. 2007).  Rather, I demonstrated that in both Astragalus species 

nodulation created the traditional nutritional effect by increasing plant biomass, 

but only in A. bisulcatus did nodulation influence the accumulation of the non-

essential element Se.  In the experiment where six Astragalus species were 

compared with respect to the relationship between N and Se all plants were 

grown in the same soil, which was a composite derived from each species.  The 

Se-hyperaccumulators were found to differ from the non-accumulators in that 

they showed a positive correlation between shoot [Se] and shoot [N]. 

In view of my finding that rhizobial symbionts appear to play an important 

and potentially limiting role in Se hyperaccumulation in Astragalus species by 

providing N for γGMSC synthesis, future studies on hyperaccumulators ought to 

consider the influence of belowground root-microbe symbioses on the uptake 

and accumulation of trace elements by plants.  This could also lead to finding 

rhizobia that have the ability to enhance phytoremediation or biofortification 

potential.  Some rhizobia isolates have been shown to have high Se tolerance 

(Kinkle et al. 1994); rhizobial isolates from Se-hyperaccumulators have never 

been tested in this regard.  These unique Astragalus species may provide further 

biotechnological benefits by yielding new Se-resistant rhizobial isolates. 

Mutualisms have a large role in the ecology of ecosystems because they 

provide vital services such as nutrient exchange, pollination, and seed and spore 
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dispersal (Boucher et al. 1982).  Exploring mutualisms within the context of 

stress and tolerance are increasingly important because ecosystems are 

subjected to rising levels of stress as human-induced pressures build.  Therefore, 

it would be beneficial to learn how mutualisms persist under extreme conditions 

in natural ecosystems as well as understand how environmental stress has 

contributed to differentiation among sympatric mutualists.   

 

Conclusions 

Traditionally, the legume-rhizobia symbiosis is viewed as a nutrient 

exchanging mutualism where bacteria supply the plant with fixed nitrogen in 

exchange for fixed carbon.  I have found that in symbiosis with rhizobia the Se-

hyperaccumulator A. bisulcatus concentrated more of the non-nutrient trace 

element Se than non-nodulated plants.  This effect of the symbiosis did not occur 

in the non-accumulator A. drummondii. In addition Se-hyperaccumulators had a 

significant positive correlation of shoot [Se] and shoot [N].  The mechanism by 

which the root nodule symbiosis contributes to increased shoot [Se] in A. 

bisulcatus appears to be partially attributable to selenoamino acid production.  

These results indicate that symbiotic interactions with rhizobia are involved in 

Astragalus adaptation to Se-rich soils, and that similar interactions should be 

considered in applied contexts. 
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Chapter 4 

Soil Origin Mediates Plant Selenium Levels in Astragalus 
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Summary 

A few species of Astragalus hyperaccumulate selenium (Se) and are 

restricted to seleniferous soils.  The other species in this large genus do not 

hyperaccumulate Se and are not restricted to seleniferous soils.  I investigated if 

soil origin and its associated microorganisms influence plant Se levels in 3 Se-

hyperaccumulators, A. bisulcatus, A. praelongus, and A. racemosus, along with 3 

non-accumulators, A. convallarius, A. drummondii, and A. shortianus.  When 

plants were amended with 100 μM sodium selenate and grown in soil originating 

from hyperaccumulators both the Se-hyperaccumulator species and the non-

accumulator species had higher shoot and root [Se] than plants grown in soil 

originating from non-accumulators.  A 71% increase in shoot [Se] and 237% in 

root [Se] was observed in the Se-hyperaccumulators.  In non-accumulator soil 

the Se translocation factor from roots to shoots was higher for hyperaccumulator 

Astragalus species, indicating that transport of Se within the plant is affected by 

the soil and its associated microorganisms.  When growing in soil originating 

from hyperaccumulators non-accumulator Astragalus species had a 69% 

increase in shoot [Se] and a 178% increase in root [Se], but there was no 

difference in their Se translocation factors in the two soils.  No difference was 

observed in shoot or root [S] between soil origins in either Astragalus group, 

indicating that the effect was specific to Se.  The difference in organ [Se] was not 

driven by soil [Se] because when the plants were grown in each soil and no Se 

was added they showed no difference in shoot or root [Se].  Finally, dosing plants 
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with 100 µM Se increased shoot [S] by approximately 2,000 µg S g-1 dry weight 

(DW) and decreased root [S] by approximately 900 µg S g-1 DW compared to the 

0 µM Se control in both hyperaccumulator and non-accumulator Astragalus 

species.  In summary, soil origin and associated microorganisms can affect plant 

Se levels, indicating that microorganisms associated with seleniferous soils have 

a unique ability to increase Se uptake by Astragalus. 

 

Introduction 

Selenium hyperaccumulation occurs in approximately 20 species (Brooks 

1998).  The majority of these species are from the large legume genus 

Astragalus and they occur only on seleniferous soils in western North America 

(Barneby 1964).  Other non-accumulator species of Astragalus co-occur on 

seleniferous soils, but are not restricted to these soils and do not 

hyperaccumulate Se, even when co-occurring with hyperaccumulators (Shrift 

1969).  Since Se-hyperaccumulators are restricted to seleniferous soils even 

though Se is not essential for plant growth (Terry et al. 2000), the soil 

microorganisms that have evolved with Se-hyperaccumulators may contribute in 

some way to Se accumulation.  Selenium tolerant microorganisms found in 

rhizospheres from Se-hyperaccumulators and crop plants growing in seleniferous 

soils have the potential to alter Se availability to plants (Di Gregorio et al. 2005; 

Gupta et al. 2010).  If such an effect occurs, the microorganisms may be useful 
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for understanding the ecological basis and evolution of Se hyperaccumulation in 

addition to advancing rhizosphere-assisted phytoremediation.   

Soil microorganisms can significantly alter trace element uptake into 

hyperaccumulators through redox reactions, methylation, demethylation, complex 

formation, and biosorption (Adriano et al. 2004).  Researchers have found that 

inoculation with microorganisms can alter trace element levels in both 

hyperaccumulators and non-accumulators.  Abou-Shanab et al. (2003a; 2006) 

found that bacteria isolated from the rhizosphere of Alyssum murale were able to 

increase shoot [Ni] in the plant compared to an un-inoculated control.  Copper 

accumulation in Elsholtzia splendens was altered by addition of bacterial isolates 

(Chen et al. 2005).  Others have shown that plant Se accumulation and 

volatilization in non-accumulator plants could be enhanced by bacteria (Zayed 

and Terry 1994; de Souza et al. 1999a; de Souza et al. 1999b).  Becerra-Castro 

et al. (2009) found that the Ni-hyperaccumulator Alyssum serpyllifolium fostered 

a different rhizosphere community than a non-accumulator and that the solubility 

of Ni in the soil could be increased. 

Effects of soil microorganisms on plants can be driven by fungi as well as 

bacteria.  Mycorrhizae have been shown to increase As in Pteris vittata (Al Agely 

et al. 2005; Wu et al. 2009).  Nickel concentrations in Berkheya coddii were 

increased by mycorrhizal inoculation (Turnau and Mesjasz-Przybylowicz 2003).  

It is thought that mycorrhizae increase plant accumulation of immobile elements 

in soil because fungal infection of the root increases the absorptive surface area 

(Sanders and Tinker 1971).  However, mycorrhizal colonization was noted to be 
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negatively correlated with leaf [Ni] and infection was low in strong Ni-

hyperaccumulators (Amir et al. 2007).  Researchers have found that mycorrhizae 

can also reduce trace element concentrations in some hyperaccumulators (Liu et 

al. 2005; Vogel-Mikuš et al. 2006; Jankong et al. 2007).  

I wanted to conduct a comparative study to determine if soils and their 

associated microorganisms that support hyperaccumulators (seleniferous) and 

those that do not (non-seleniferous) affect Se accumulation in Astragalus.  I 

hypothesized that plants would grow best in their home soils and that plant [Se] 

would be higher in soil inoculant originating from hyperaccumulators.  Since Se 

shares similar physical and chemical properties with the essential element S I 

expected plant [S] to mirror what was found with plant [Se].  To see if I could find 

an inoculation effect I compared 6 species of Astragalus native to Colorado, 

USA.  Some of the species are Se-hyperaccumulators (A. bisulcatus, A. 

praelongus and A. racemosus) and some of the species are non-accumulators 

(A. convallarius, A. drummondii, and A. shortianus).  If there are differences in 

how these soils and their associated microorganisms affect plant [Se] it may 

indicate that there are unique characteristics of microorganisms from 

seleniferous soils that help plants hyperaccumulate Se. 
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Materials and Methods 

Soil Collection 

Soil was collected to a depth of 15 cm directly underneath the canopy of 

each of 6 Astragalus species (Table 4.1) growing in Colorado during the summer 

of 2009.  Soils were sieved (2 mm) and were then mixed according to their plant 

host type, Se-hyperaccumulators (A. bisulcatus, A. praelongus, and A. 

racemosus) or non-accumulators (A. convallarius, A. drummondii, and A. 

shortianus) in a 1:1:1 volume basis.  The composited soils were sent to the Soil, 

Water, Plant Testing Laboratory at Colorado State University for routine analysis 

along with total and AB-DPTA extractable Se (Table 4.2).  These soils became 

the inoculant source in the following greenhouse experiment. 

 

 

Table 4.1.  Soil collection locations for the 6 species including the closest 
Colorado town, the degrees latitude and longitude, and site elevation (m). 
Species Location Latitude Longitude Elevation (m)
A. bisulcatus Fort Collins 40⁰ 42’ 37.45” N 105⁰ 06’ 39.28” W 1597 
A. convallarius Meeker 39⁰ 34’ 35.24” N 108⁰ 24’ 45.67” W 2466 
A. drummondii Livermore 40⁰ 45’ 59.77” N 105⁰ 21’ 06.21” W 1946 
A. praelongus Uravan 38⁰ 22’ 28.93” N 108⁰ 44’ 40.93” W 1504 
A. racemosus Limon 39⁰ 21’ 00.59” N 103⁰ 51’ 27.43” W 1749 
A. shortianus Livermore 40⁰ 46’ 00.57” N 105⁰ 21’ 04.29” W 1940 
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Greenhouse Experiment 

Starting in January 2010 through July 2010 I grew 6 Astragalus species 

from seed in the University Greenhouse at Colorado State University.  Seeds of 

A. bisulcatus, A. convallarius, A. drummondii, A. praelongus, and A. shortianus 

were obtained from Western Native Seed (Coaldale, CO).  A. racemosus seeds 

were obtained from Prairie Moon Nursery (Winona, MN).  To start germination, 

seed coats were scarified by nicking with a razor blade and the seeds were then 

soaked overnight in tap water.  The following day seeds were planted into pots 

containing a 2:1 volume mixture of washed sand and composited field soil (as an 

inoculum).  My intention with this 2:1 mixture was to compare soil 

microorganisms from Se-hyperaccumulators and non-accumulators by 

Table 4.2.  Soil characteristics from composite soils used as 
hyperaccumulator and non-accumulator soils in the greenhouse 
experiment with Astragalus species.  Elements are presented 
as mg kg-1. 
 Origin 
 Hyperaccumulator Non-accumulator 
Texture sandy clay loam clay loam 
pH 7.6 6.6 
EC 1.1 0.4 
% OM 2.2 3.4 
NO3-N 33.4 9.8 
P 19.9 6.5 
K 609 261 
Zn 5.11 1.32 
Fe 7.05 18.4 
Mn 6.36 8.20 
Cu 3.12 1.93 
Total Se 2.02 1.21 
Extractable Se 0.71 0.90 
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attempting to control for other differences in soil properties.  Use of the sand 

should create a potting mixture that would not interfere with nutrient and Se 

availability in the treatments.  Plants were grown in their own soil inoculant 

(home) or soil inoculant from the other plant type (foreign).  In May 2010 Se 

treatments and N-free fertilizer treatments began.  Control treatments of 0 µM Se 

were applied as water only and treatments of 100 µM sodium selenate 

(Na2SeO4) were applied twice a week for the duration of the experiment.  A N-

free fertilizer solution (0.4 mM K2SO4, 4.475 µM FeCl3, 4.225 µM Na2-EDTA, 0.5 

mM MgSO4, 0.042 mM KH2PO4, 0.208 mM K2HPO4, 5.775 µM H3BO3, 1.15 µM 

MnSO4, 0.2 µM ZnSO4, 0.075 µM CuSO4, 0.05 µM NaMoO4, and 0.125 µM 

CoSO4) was applied once a week.  Additionally, a Ca-only fertilizer (0.15 mM 

CaSO4 and 0.125 mM CaCl2) was applied once a week.  Shoots were separated 

from the roots and harvested in July 2010.  Shoots were dried at 40 °C.  Samples 

of roots were immediately frozen and stored at -20 °C until they could be 

analyzed.  Root samples were thawed, rinsed, and separated from root nodules.  

These samples were dried at 40 °C for further analysis.  Dry weight was recorded 

for shoots and roots.   

 

Elemental Concentrations 

Dried and ground plant samples of 20, 50, or 100 mg were digested in 1 

mL nitric acid for 2 hours at 60° C and then 130° C for 6 hours.  This was then 
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diluted to 10 mL with deionized water.  Organ [Se] and [S] was determined by 

inductively coupled atomic emission spectra (ICP-AES) on the digest. 

 

Data Analysis 

Data analysis was conducted in Systat v.12 (Systat Software, Chicago, 

IL).  I conducted separate t-tests to determine the effect of soil type and Se 

treatments on log-transformed shoot and root biomass in hyperaccumulators and 

non-accumulators.  Separate t-tests were used to compare the effect of soil 

origin on the log-transformed shoot and root [Se] and [S] in hyperaccumulators 

and the non-accumulators in the 100 µM Se treatment.  Selenium translocation in 

the 100 µM Se treatment was compared for effects of soil origin by t-test in both 

hyperaccumulators and non-accumulators.  Effects of soil origin were compared 

for log-transformed shoot and root [Se] in the 0 µM Se treatment by separate t-

tests.  The Se-hyperaccumulators and non-accumulators were combined 

because no difference was detected in organ [Se] between the plant groups 

when no additional Se was used.   To test for the effect of Se addition on shoot 

[S] in the two plant groups I used a t-test to compare log-transformed values from 

the 0 µM Se and 100 µM Se treatments. 
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Results 

There was no difference in shoot or root biomass between the two soil 

origins (pooled Se treatment) in either the Se-hyperaccumulators or the non-

accumulators (Table 4.3).  No effect of Se treatment (pooled soil origin) on shoot 

or root biomass was detected in either plant group (Table 4.3).  Data for each 

species shoot and root dry weights are shown by individual soil and Se 

treatments in Appendix 3 and Appendix 4, respectively. 

 

 

 

Inoculation with soil originating from Se-hyperaccumulators significantly 

increased shoot and root [Se] in both hyperaccumulators (pshoot = 0.004; proot < 

0.001) and non-accumulators (pshoot = 0.006; proot = 0.001) compared to soil 

inoculation originating from non-accumulators when plants were amended with 

100 µM Se (Fig 4.1).  Shoots from hyperaccumulators and non-accumulators had 

higher [Se], with a difference of 327.1 and 220.1 µg Se g-1 DW, respectively, 

Table 4.3.  The effect of soil type and Se treatment are shown for mean organ 
dry weight (mg) with standard error (n =48) for the three hyperaccumulators and 
three non-accumulators.  No significant differences for each organ or treatment 
were found.   
  Hyperaccumulators Non-accumulators 

  Shoot Root Shoot Root 
Soil origin      
 Home 558 ± 64 393 ± 48 187 ± 16  165 ± 13  
 Foreign 449 ± 51 383 ± 46 246 ± 36  169 ± 16  
Se treatment      
 0 µM 519 ± 60 371 ± 44 232 ± 33 176 ± 14 
 100 µM 538 ± 57 405 ± 50 201 ± 22  158 ± 15 
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when grown in soil originating from hyperaccumulators.  Belowground 

hyperaccumulator and non-accumulator roots had more Se, 409.3 and 299.5 µg 

Se g-1 DW, respectively, when grown in soil from hyperaccumulators.  This was a 

71% increase in shoot [Se] and a 237% increase in root [Se] in the 

hyperaccumulators.  Similarly, a 68% increase in shoot [Se] and a 178% root 

[Se] was found in the non-accumulators. 

 

 

Fig. 4.1  Mean shoot and root [Se] is shown with standard errors by soil inoculant 
origin for both hyperaccumulators and non-accumulators.  Shoots are shown in 
solid bars and roots are shown by hatched bars.  Home soils are depicted in 
black and foreign soils are depicted in gray.  Significant differences (α = 0.05) in 
each organ are shown with an asterisk. 
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Although shoot and root [Se] were higher in hyperaccumulator plants 

growing in inocula derived from hyperaccumulator soil amended with 100 µM Se, 

the Se translocation factor from roots to shoots, measured as the ratio of shoot 

[Se] to root [Se], was significantly higher (p = 0.005) in non-accumulator soil 

inocula (Fig 4.2).  There was no effect of soil inoculant source on the root to 

shoot translocation factor in non-accumulators (Fig 4.2).  In the same treatments 

I found no effect of soil origin on shoot or root [S] in either plant group (Fig 4.3).  

 

 

Fig. 4.2  The effect of soil inoculant origin on mean Se translocation (shoot [Se] 
divided by root [Se]) with standard error is shown for hyperaccumulators and 
non-accumulators.  Significant differences (α = 0.05) are shown by asterisk.  
Black bars indicate home soil and gray bars indicated foreign soil. 
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Fig. 4.3  Mean shoot and root [S] are shown with standard errors by soil 
inoculant origin for hyperaccumulators and non-accumulators.  Shoots are shown 
by solid bars with black indicating plants growing in their home soil inoculant and 
gray indicating plants growing in a foreign soil environment.  Roots are shown by 
hatched bars with the same color pattern. 

 

Plants grown with no additional Se did not differ in shoot or root [Se] by 

soil inoculant origin (Table 4.4).  As shown in Fig 4.4 the addition of Se 

significantly increased shoot [S] (p < 0.001) by 1,953 µg S g-1 DW in 

hyperaccumulators and by 2,107 µg S g-1 DW in non-accumulators (p < 0.001).  

Selenium addition significantly decreased (phyp < 0.001; pnon < 0.001) root [S] by 

845 and 986 µg S g-1 DW in hyperaccumulators and non-accumulators 

respectively (Fig 4.4). 
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Table 4.4.  The mean Se concentration within the shoot and 
root (µg Se g-1 dry weight) of plants (hyperaccumulators and 
non-accumulators combined) growing in soil without added 
Se is shown with standard error (n = 48).  No significant 
differences in organ [Se] by soil origin were detected. 
Soil Shoot Root 
Hyperaccumulator 13.5 ± 2.1 25.0 ± 2.0 

Non-accumulator 11.6 ± 2.2 22.5 ± 2.2 

 

 

 

Fig. 4.4  The effect of Se addition on mean shoot and root [S] with standard error 
is shown for hyperaccumulators and non-accumulators.  Shoots are shown in 
solid bars and roots are shown in hatched bars.  Significant differences (α =0.05) 
between organ [S] by Se treatment are shown by asterisks. 
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Discussion 

Soil microorganisms can have strong effects on plant trace element levels 

by either increasing or decreasing plant trace element concentrations (Alford et 

al. 2010 and references therein).  In this experiment Se-hyperaccumulators had a 

71% increase, corresponding with a difference of 327.1 µg Se g-1 DW, in the 2:1 

mixture of sand and soil originating from hyperaccumulators compared to the 2:1 

mixture of sand and soil originating from non-accumulators.  A similar pattern 

was evident in non-accumulators where they had a 69% increase of 220.1 µg Se 

g-1 DW in soil from hyperaccumulators compared to soil from non-accumulators.  

Roots showed even stronger increases in [Se].  Roots from hyperaccumulators 

growing with a soil inoculant derived from hyperaccumulators had a 237% 

increase (409.3 µg Se g-1 DW) compared to plants growing in soil inoculant 

derived from non-accumulators.   Likewise, roots from non-accumulators growing 

with inoculant from hyperaccumulators had a 178% increase (299.5 µg Se g-1 

DW) compared to the plants grown in non-accumulator soil.   

Differences in shoot or root [Se] are not likely to be attributable to the 

baseline [Se] in the two soils because those concentrations were similar.  In fact, 

the soil originating from non-accumulators had a higher concentration of 

extractable Se than the soil originating from Se-hyperaccumulators.  No 

difference in shoot or root [Se] was detected in plants growing without Se 

amendment in inoculant derived from hyperaccumulator or non-accumulator 

soils.  The differences in shoot and root [Se] that were found when Se 
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amendment was added were not an artifact of plant growth differences because 

no effects of soil type or Se treatment on plant biomass were detected. 

In my experiment soil inocula originating from Se-hyperaccumulators 

increased shoot and root [Se] in both hyperaccumulator and non-accumulator 

Astragalus species.  In other studies several mechanisms have been proposed 

for the ability of bacteria to increase plant Se accumulation; bacteria may 

increase production of compounds that enhance trace element accumulation, 

bacteria may increase root surface area, bacteria may transform selenate into 

forms that are more readily taken up by plants, or bacteria may stimulate the 

plant sulfate transporters which can also take up selenate (de Souza et al. 

1999b).  There is evidence that the interaction of plants inoculated with bacteria 

produced a heat-labile compound that could cause an increase in Se 

accumulation in axenic plants subsequently treated with the compound (de 

Souza et al. 1999a).  Although I did not test for such a compound in this 

experiment, my results could be consistent with that mechanism. 

My results also do not refute the proposition that bacteria may transform 

selenate in the rhizosphere into forms that are more readily taken up by plants.  

As an example of different preferences for Se molecules, Brassica oleracea took 

up more selenomethionine than selenate, particularly when sulfate levels in the 

media were elevated (Zayed et al. 1998).  Although this may be a mechanism at 

work here, it must be noted that roots of Astragalus species have been shown to 

not differ much in their Se uptake potentials.  No difference was detected in root 

uptake of selenite or low concentrations of selenate between the Se-
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hyperaccumulator A. crotalariae and the non-accumulator A. lentiginosus (Ulrich 

and Shrift 1968).  Roots of the non-accumulator did not take up as much 

selenate at high selenate concentrations, which the authors attributed to possible 

Se toxicity (Ulrich and Shrift 1968).  Still, differences in plant uptake may be at 

work. 

An explanation of the effects I observed may lie in differences in Se 

translocation within the plants.  Different Se molecules have different rates of 

translocation inside plants, where more Se moved into shoots when supplied as 

selenate than as selenite (Arvy 1993; Hopper and Parker 1999; Li et al. 2008; 

Bitterli et al. 2010) and it has been shown that mycorrhizal infection can reduce 

shoot [Se] (Munier-Lamy et al. 2007).   Although, in Pteris vittata where the As 

translocation factor was increased at least five times in inoculated plants, it did 

not increase the [As] in plants (Trotta et al. 2006).  I did find that Se translocation 

factors differed between the two soil origins in Se-hyperaccumulators.  This may 

account for some differences in plant [Se].  However, it would be insufficient for 

describing the difference in organ [Se] in non-accumulators.  

A more detailed study of soil microorganisms would be required to 

determine the mechanism causing my observations.  However, my results do 

refute some of the potential mechanisms proposed by de Souza et al. (1999b).  

Increased root surface area may not explain the enhanced [Se] in plants in this 

study because no difference in other elements such as [S] was observed 

between soil origins in the 100 μM treatment.  In addition I did not detect any 

differences in root biomass between the two soil treatments.  Root surface area 
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was not shown to influence accumulation of other forms of Se such as selenite 

and selenomethionine in Brassica juncea (de Souza et al. 1999a) or selenate in 

A. bisulcatus as I showed in the previous chapter. 

Based on my findings it is not likely that bacteria were responsible for 

increased [Se] in Astragalus by increasing activity of sulfate transporters because 

there was no difference in [S] in plants grown in the two soil types, even though 

differences in [Se] were detected.  Rather than bacteria causing an increase in 

sulfate transporter activity in plant roots, it may be that higher [Se] in media may 

increase plant S uptake as seen in Bell et al. (1992).  Adding 100 µM Na2SeO4 to 

the plants increased the shoot [S] compared to the control where no Se was 

added.  Interestingly, the addition of Se also reduced root [S] in the two plant 

types.  Total plant S (µg) increased and the root and shoot allocation patterns 

changed in both plant types where more S was put into the shoots in the 100 µM 

Se treatment. 

Differences in soil properties may have contributed to effects observed in 

this experiment.  The ability of soil to fix Se, soil pH, and microbial activity 

strongly influence Se availability (Gissel-Nielsen 1971; Neal et al. 1987; 

Masscheleyn et al. 1990; Wu 2004; Eich-Greatorex et al. 2007).  Both of the soil 

inoculants used were composited mixtures from collections underneath three 

different Astragalus species.  A routine soil analysis of the mixtures determined 

them to be clay loams, with the soil originating from Se-hyperaccumulators being 

a sandy clay loam.  However, soil fixation of Se in the two soils could differ 

because plants growing on sandier soils would have had more Se available to 
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them since oxidized forms of Se are less likely to bind to sand particles than clay 

particles (Gissel-Nielsen 1971).   The soil inoculants also differed in organic 

matter content with the non-accumulator soil having a higher percent organic 

matter.  Organic matter can also fix selenite (Wu 2004), particularly at a pH > 6 

(Eich-Greatorex et al. 2007), but different forms of organic matter have been 

shown to have different effects on Se in soil.  Dissolved organic matter has been 

positively correlated with grass [Se], possibly through microbial Se mineralization 

of organic Se (Weng et al. 2011).  It is also known that the rhizosphere effect 

influences Se availability in some soils.  When Mn-oxides were present with 

organic acids typically exuded by roots, approximately 33% of selenite was 

oxidized to selenate, increasing Se availability to plants (Blaylock and James 

1994).  In addition, over a range of pH from 6.5 to 7.5 it has been shown that 

higher pH resulted in higher ryegrass Se uptake when selenite was added to soil 

(Gissel-Nielsen 1971).  Although the Se added in this experiment was in the form 

of selenate, which is generally bioavailable, factors mediated by the soil 

conditions and root exudates have the potential to have influenced the results. 

No difference in biomass was detected between the two Se treatments, 

however, visual signs of toxicity were evident, particularly in the non-

accumulators.  These included leaf chlorosis, leaf tip burn, and leaf necrosis.  It is 

likely that these effects did not contribute to biomass differences because Se 

treatments were not started until the plants had been growing for 5 months.  After 

Se additions began the plants did not add much more biomass.  Rather, I did find 

that soil inoculant originating from Se-hyperaccumulators significantly increased 
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plant [Se] in both Se-hyperaccumulator and non-accumulator Astragalus species 

in this greenhouse experiment.  Microorganisms that have contributed to the 

strong increase in plant [Se] in this experiment may help elucidate the ecological 

and evolutionary basis of Se hyperaccumulation and be useful in rhizosphere-

assisted phytoremediation to increase phytoextraction potential by increasing 

plant [Se]. 

 

Conclusions 

Shoot and root [Se] were elevated in both hyperaccumulators and non-

accumulators that grew in soil inoculant derived from hyperaccumulators 

compared to inoculant derived from non-accumulators.  This effect was specific 

to Se and not evident in shoot and root [S].  Soil microorganisms from Se-

hyperaccumulators should be investigated further to determine the mechanism 

responsible for this observation.  Such information will be beneficial to our 

understanding of the ecology and evolution of Se-hyperaccumulation as well as 

providing techniques to improve rhizosphere-assisted phytoremediation. 
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Chapter 5 

Screening Plants and Inoculant for Selenium Phytoextraction 

Potential from Municipal Biosolids 
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Summary 

I undertook a study to evaluate the use of plants to remove excess 

selenium (Se) from municipal biosolids.  Initially, biosolids were examined by x-

ray absorption spectroscopy (XAS) to determine Se localization and molecular 

speciation within the sample.  Selenium was distributed uniformly with the three 

major components being organic C-Se-C (similar to methylselenocysteine), 

elemental gray Se, and selenite.  I then began phytoextraction trials by growing 

plants in the municipal biosolids to create aboveground biomass enriched in Se, 

which can be harvested to reduce Se in the substrate.  In the first trial I compared 

four Se-hyperaccumulator Astragalus species (A. bisulcatus, A. crotalariae, A. 

preussi, and A. racemosus) with five non-accumulator legumes (A. cicer, A. 

convallarius, A. drummondii, A. utahensis, and Oxytropis sericea).  From this 

group I found that the most effective species for phytoextraction was the Se-

hyperaccumulator A. crotalariae.  In the second trial I compared plant growth and 

[Se] in three different dilutions of municipal biosolids to determine optimal 

phytoextraction conditions for Brassica juncea and B. napus.  Dilutions were 

50%-50%, 75%-25%, and 100%-0% mixtures of biosolids and sand by volume.  

Optimal Se phytoextraction occurred in the 75%-25% biosolids and sand mixture 

because both shoot weight and shoot [Se] were maximized.  Finally I used an 

inoculant of soil microorganisms from A. bisulcatus as a factor and tested 13 

species (Amaranthus retroflexus, Astragalus racemosus, Brassica napus, Carex 

pendula, Cortaderia selloana, Cyperus papyrus, Helianthus annuus, Melilotus 
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officinalis, Nicandra physalodes, Robinia neomexicana, Sorghum sudanese, 

Typha latifolia, and Zea mays) for their Se phytoextraction potential.  Inoculation 

did not affect plant phytoextraction potential in this trial.  The top 4 candidates for 

further studies on phytoextraction in that trial were Brassica napus, Melilotus 

officinalis, Helianthus annuus, and Astragalus racemosus.  

 

Introduction 

Biosolids are nutrient-rich organic material remaining after sewage sludge 

treatment.  They are disposed of in multiple ways in the United States through 

land application, incineration, or landfilling.  In Region 8 of the United States 

Environmental Protection Agency (Colorado, Montana, North Dakota, South 

Dakota, Utah, and Wyoming) 85% of biosolids are land applied (US-EPA 2011).  

Land application of biosolids is akin to addition of a slow-release fertilizer 

because of the high amounts of organic matter and plant nutrients such as N, P, 

and K.  However, composted wastes have higher metal concentrations than soils 

(García et al. 1990; Ciavatta et al. 1993) and there is risk of contaminating soil 

when biosolids are applied because of their elevated levels of trace elements.  

Biosolids with elevated levels of trace elements are restricted from land 

application in the United States according to the Resource Conservation and 

Recovery Act (RCRA). 

In Pueblo County, Colorado the average soil [Se] is 5.1 mg kg-1 (USGS 

2010).  This soil is thought to contribute to elevated Se levels in the municipal 
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biosolids generated in the city of Pueblo, CO.  Selenium is the only pollutant in 

the Pueblo municipal biosolids that is above the US-EPA regulatory limit for 

biosolids land application (Table 5.1).  Reduction of the amount of Se that occurs 

in excess in these biosolids could permit their beneficial reuse. 

 

Table 5.1.  Description of Pueblo, CO municipal biosolids analysis 
and US EPA 40 CFR §503.13 Table 1 pollutant ceiling concentrations 
(maximum allowable concentrations for land application).  All values 
are expressed on a dry weight basis.  The 2008 sample was used in 
the x-ray analysis, the Astragalus trial, and the dilution trial.  The 2010 
sample was used in the inoculation trial only. 
Attribute 2008 2010 Ceiling levels 
Paste pH 6.9 7.2 NA 
Total solids (%) 90.7 88.7 NA 
Volatile solids (%) 42.9 54.6 NA 
K (%) 0.266 0.318 NA 
P (%) 1.91 2.52 NA 
Organic N (%) 2.45 3.00 NA 
NH4-N (mg kg-1) 5,826 8,546 NA 
NO3-N (mg kg-1) 16.3 71.4 NA 
As (mg kg-1) 10.5 5.0 75 
Cd (mg kg-1) 16.3 19.4 85 
Cr (mg kg-1) 8.7 23.3 NA 
Cu (mg kg-1) 531 813 4,300 
Hg (mg kg-1) 0.151 < 0.05 57 
Mo (mg kg-1) 6.2 11.4 75 
Ni (mg kg-1) 31.1 37.2 420 
Pb (mg kg-1) 54.3 70.3 840 
Se (mg kg-1) 154.7 211.0 100 
Zn (mg kg-1) 83.4 1,141 7,500 

 

Plants have been suggested as a means to remediate contaminated 

substrates (Baker et al. 1994; Salt et al. 1995).  This approach has been utilized 

for Se contaminated soils in central CA (Bañuelos 2001).  Hyperaccumulators, or 

plants that accumulate and tolerate high levels of trace elements under natural 
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conditions, have been proposed for use in phytoremediation trials (Whiting et al. 

2004).  However, their slow growth rates and low biomass may prevent their 

wider use.  High biomass producing annuals may provide alternatives that 

perform better than the hyperaccumulators that amass large quantities of trace 

elements.  As an example, Brassica juncea and B. napus have been shown to be 

more efficient at Zn phytoextraction than the Zn-hyperaccumulator Thlaspi 

caerulescens (Ebbs et al. 1997). 

Microbial inoculation has been shown to improve plant uptake of trace 

elements.  Inoculating Alyssum murale with bacteria increased the shoot [Ni] in 

plants compared to an un-inoculated control (Abou-Shanab et al. 2003; Abou-

Shanab et al. 2006).  Microbial inoculants may increase plant biomass or 

tolerance to trace elements (Glick 2003) and alter plant trace element availability 

and toxicity (Ma et al. 2011).  Burd et al. (1998) showed that inoculation with a 

PGPR strain protected canola from Ni toxicity.  This was not through any change 

in plant [Ni], but possibly through alteration of plant stress hormones.  Bacterial 

inoculants altered Cu accumulation in the Cu-accumulator Elsholtzia splendens 

(Chen et al. 2005).  Most notable for this study is that plant Se accumulation and 

volatilization was shown to be increased by inoculation (Zayed and Terry 1994; 

de Souza et al. 1999a, 1999b).  However, inoculants can also immobilize trace 

elements in the rhizosphere (Di Gregorio et al. 2005) and reduce plant trace 

element concentrations (Liu et al. 2005; Vogel-Mikuš et al. 2006; Jankong et al. 

2007). 
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Plants have been grown in raw, undigested sewage sludge to try to 

reduce the elevated levels of contaminants that occur in those substrates.  Wu et 

al. (2007) have shown that Sedum alfredii could phytoextract Zn from sewage 

sludge.  This effect was significantly increased when S. alfredii was co-cropped 

with Alocasia macrorrhiza (Wu et al. 2007).  Others have examined crop plants 

for their ability to accumulate trace elements from biosolids to investigate risks of 

contamination in agricultural crops.  Liphadzi and Kirkham (2006) found that 

Helianthus annuus leaves had higher concentrations of Cd, Ni, and Pb without 

addition of EDTA compared to plants with EDTA because EDTA increased metal 

availability and thus plant toxicity. 

I attempted to reduce Se contamination in biosolids originating from 

Pueblo, CO through a phytoextraction approach.  To assess the feasibility of this 

the biosolids Se distribution and composition was measured by x-ray absorption 

spectra (XAS) and x-ray absorption near edge spectra (XANES).  Initially I 

screened Se-hyperaccumulators in the Astragalus genus along with non-

accumulator congeners for phytoextraction potential.  Then different mixtures of 

biosolids with sand were evaluated to determine which mixture would maximize 

Se recovery in Brassica juncea and B. napus.  Finally, I screened a large group 

of plants to determine if inoculation with soil microorganisms that naturally 

associate with the Se-hyperaccumulator Astragalus bisulcatus could improve 

plant Se extraction. 
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Materials and Methods 

Biosolids Characterization 

Biosolids were collected from the city of Pueblo, CO wastewater treatment 

facility in October 2008 and June 2010.  The 2008 samples were used for the 

Astragalus and Brassica phytoextraction trials while the 2010 sample was used 

in the inoculant trial.  The 2008 biosolids sample was also used to determine Se 

localization and molecular speciation.  A subsample of the biosolids was frozen 

in liquid N2 and shipped on dry ice to the Lawrence Berkeley Laboratory 

Advanced Light Source for analysis on Beamline 10.3.2 (Marcus et al. 2004) in 

May 2009.  Determination of the Se within the sample was conducted in a 

manner similar to Freeman et al. (2006).  Briefly, Se distribution in a few grains of 

the frozen sample was imaged by scanning in the focused beam at 13,085 eV.   

Selenium K-edge XANES were used to provide molecular speciation of the Se 

within the sample (Pickering et al. 2000).  The LabVIEW programs (National 

Instruments) available at Beamline 10.3.2 were used to analyze data. 

Samples of the 2008 and 2010 biosolids were analyzed by the Soil, Water, 

and Plant Testing Lab at Colorado State University in the same manner as 

Ippolito et al. (2010).   Briefly, the elemental composition was assessed by 

HClO4–HNO3–HF–HCl digestion and subsequent analysis with inductively 

coupled plasma – atomic emission spectrometry (ICP-AES). 
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Astragalus Phytoextraction Trial 

Seeds of A. bisulcatus, A. cicer, A. convallarius, A. drummondii, A. 

utahensis, and O. sericea were obtained from Western Native Seed (Coaldale, 

CO).  Prairie Moon Nursery (Winona, MN) provided A. racemosus seed.  The 

Desert Legume Program (Tucson, AZ) supplied seed of A. crotalariae and A. 

praelongus.  Seed from A. preussi (accession W6 26876) was obtained from the 

USDA-ARS Western Regional Plant Introduction Station (Pullman, WA).  Seed 

coats were nicked with a razor blade and soaked overnight in tap water prior to 

germination.  Plants were germinated in a sand layer overlying a mixture of 1:1 

volume biosolids and sand in SC10, Ray Leach Cone-tainers ® (Stewe & Sons, 

Tangent, OR) where they grew for the duration of the experiment.  Prior to mixing 

with sand, the biosolids were sieved (5.6 mm) to remove the large flocculated 

component.  Two types of plants were compared, Se-hyperaccumulators 

(Astragalus bisulcatus, A. crotalariae, A. praelongus, A. preussi, A. racemosus) 

were used for their ability to amass large quantities of Se in their tissues; and 

related non-accumulators (A. cicer, A. convallarius, A. drummondii, A. utahensis, 

Oxytropis sericea) that could potentially produce higher amounts of biomass.  No 

fertilizer treatments were applied; the plants received only water or recirculated 

leachate from the pots.  After five months of growth the aboveground biomass 

was harvested, dried at 45 ⁰C, weighed, and ground for subsequent elemental 

analysis. 
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Brassica Phytoextraction Trial 

The Se removal potential of B. juncea and B. napus growing in 50%, 75%, 

and 100% volume mixtures of biosolids (sieved 5.6 mm) combined with sand was 

compared.  Seeds of B. juncea (accession PI 173874) and B. napus (accession 

PI 649150) were obtained from USDA-ARS North Central Regional Plant 

Introduction Station (Ames, IA).  The seeds were soaked overnight in tap water 

before being planted in the biosolids mixtures in SC10, Ray Leach Cone-tainers 

® (Stewe & Sons, Tangent, OR).   The plants were grown for 2.5 months and 

received water only until they were harvested, dried at 45 ⁰C, weighed, and 

ground for Se analysis. 

 

Inoculation Trial 

A trial was established to examine the effect of soil microorganism 

inoculation on plant phytoextraction potential.  Thirteen species were used in the 

trial.  Fourteen replicate plants per species were grown in a 75% biosolids 

(sieved 5.6 mm) and 25% sand by volume mixture in SC10, Ray Leach Cone-

tainers ® (Stewe & Sons, Tangent, OR).  Seed of Amaranthus retroflexus was 

obtained from Azlin Seed Service (Leland, MS).  Astragalus racemosus seed 

was obtained from Prairie Moon Nursery (Winona, MN).  Seed of Brassica napus 

(accession PI 649150) came from the USDA-ARS North Central Regional Plant 

Introduction Station (Ames, IA).  Carex pendula, Cortaderia selloana, Cyperus 

papyrus, and Nicandra physalodes were from Pase Seed (North Collins, NY). 
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Seed from Helianthus annuus, Melilotus officinalis, Robinia neomexicana, 

Sorghum sudanese, and Typha latifolia was obtained from Granite Seed (Lehi, 

UT).  Zea mays seed was obtained from Jax Farm and Ranch (Fort Collins, CO) 

Astragalus racemosus and Robinia neomexicana seed coats were nicked 

with a razor blade prior to germination.  All seed was soaked overnight in tap 

water to increase germination before planting.  Seed was planted in SC10, Ray 

Leach Cone-tainers ® (Stewe & Sons, Tangent, OR) containing a 75% biosolids 

(sieved 5.6 mm) and 25% sand by volume mixture.  Plants were grown for 2 

months and received water or recirculated leachate.  Half of the pots (n = 7) were 

inoculated with 25 mL each of inoculant.  The inoculant was created by collecting 

field soil from a seleniferous soil site supporting the Se-hyperaccumulator 

Astragalus bisulcatus, sieving the soil through a 2 mm sieve, and mixing 20 g of 

soil with 2 L tap water.  Plants from each of the 13 species receiving inoculant 

were kept separate from the plants that were not inoculated.  After an additional 

one month of growth the plants were harvested, dried at 45 ⁰C, weighed, and 

ground for subsequent Se analysis.  Two-way ANOVAs examining the effects of 

species and inoculation on log transformed shoot mass, log transformed shoot 

[Se], or log transformed total shoot Se were performed. 

 

Plant Selenium Analysis 

The dried and ground plant samples of 20, 50, or 100 mg were digested in 

1 mL nitric acid for 2 hours at 60° C and then 130° C for 6 hours.  This was then 
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diluted to 10 mL with deionized water.  Shoot [Se] was determined by inductively 

coupled atomic emission spectroscopy (ICP-AES) of the digest. 

 

Results 

Biosolids Characterization 

The 2008 and 2010 biosolids samples contained 155 and 211 mg kg-1 Se, 

respectively (Table 5.1).  Except for Se, the elemental composition of the two 

biosolids samples were all below the United States EPA 40 CFR §503.13 ceiling 

concentration limits for land application of biosolids (US-EPA 1993).  The µ-XAS 

mapping and XANES analyses showed that Se was uniformly distributed within 

the biosolids (Fig 5.1A) and the three major forms of Se were C-Se-C (58%), 

which most closely matched methylselenocysteine, elemental gray Se (24%), 

and selenite (17%) (Fig 5.1B). 

 

 

Fig. 5.1  Selenium (indicated by red) is uniformly present throughout the 2008 
Pueblo, CO municipal biosolids sample (A).  Chromium content is indicated by 
green and copper is indicated by blue.  The three main Se-containing 
compounds in the municipal biosolids were C-Se-C, elemental gray Se (Se0), and 
selenite (SeO3

2-) (B).   
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Astragalus Phytoextraction Trial 

Figure 2 shows the Se phytoextraction potential, which was determined by 

multiplying shoot [Se] (Fig 5.2B) by shoot dry weight (Fig 5.2C) to yield the total 

amount of Se (µg) removed per plant (Fig 5.2A).  The species that removed the 

most Se per shoot (113.8 µg) was A. crotalariae.  The species that removed the 

next highest amount of Se was A. preussi with an average of 78.4 µg Se 

removed per shoot.  A. racemosus removed the third highest amount of Se in the 

trial at 56.8 µg per plant.  Three species (A. bisulcatus, A. convallarius, and A. 

drummondii) failed to germinate in the biosolids and yielded no data for Se 

phytoextraction. 

A. preussi had the highest shoot [Se] at 145.5 µg Se g-1 dry weight (DW), 

then A. crotalariae at 85.6 µg Se g-1 DW, and all other species had less than 70 

µg Se g-1 DW (Fig 5.2B).  A. praelongus had the third highest shoot [Se] (66.2 µg 

Se g-1 dry weight) and was slightly higher than A. racemosus (65.3 µg Se g-1 

DW).  The species with the highest amount of shoot biomass was A. cicer (1.78 

g) followed by A. crotalariae (1.33 g), A. racemosus (0.97 g), and A. preussi (0.86 

g). 

 

Brassica Phytoextraction Trial 

Both B. juncea and B. napus germinated and grew at all levels of 

biosolids.  Dilution of municipal biosolids with sand altered the amount of Se that 

the shoots were able to extract (Fig 5.3A).  These differences were a product of 
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Fig.5.2  Total amount of Se in shoot (A), shoot [Se] (B), and shoot dry weight (C) 
for each species from the trial to evaluate Astragalus Se-hyperaccumulators.  In 
this trial plants were grown in the 2008 Pueblo, CO municipal biosolids. 
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both altered shoot [Se] (Fig 5.3B) as well as biomass production in the species 

(Fig 5.3C).  Maximal shoot biomass for B. juncea was 4.2 g in 75% biosolids.  B. 

napus had similar results with a maximal shoot biomass of 4.0 g in 75% 

biosolids.  The highest shoot [Se] for B. napus was 24.9 µg Se g-1 DW in the 75% 

biosolids.  B. juncea reached the highest shoot [Se] at 25.1 µg Se g-1 DW in 

100% biosolids.  The largest amount of Se removed by the two species was in 

the 75% biosolids mixture, where B. juncea extracted 90.1 µg Se and B. napus 

extracted 98.0 µg Se. 

 

Inoculation Trial 

Inoculation with soil microorganisms from A. bisulcatus did not alter the 

phytoextraction potential in any of the 13 species tested, nor did it alter shoot 

biomass or [Se].  Since inoculation did not show an effect I combined data from 

the two inoculant treatments.   Brassica napus removed 29.0 μg Se per shoot, 

followed by 17.8 μg Se per shoot in Melilotus officinalis, and 13.4 μg Se was 

removed per shoot in Helianthus annuus (Fig 5.4A).  Astragalus racemosus 

removed 13.3 μg Se per shoot (Fig 5.4A) and had the highest shoot [Se] of 64.1 

μg Se g-1 DW (Fig 5.4B).  Brassica napus had the highest shoot dry weight at 

1.64 g of any species in the trial and was followed closely by Sorghum 

sudanense at 1.63 g (Fig 5.4C). 
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Fig. 5.3  Mean with standard error for the total amount of Se in the shoots (A), 
shoot [Se] (B), and shoot dry weight (C) of B. juncea (black bars) and B. napus 
(gray bars).  Plants were grown in the Pueblo, CO municipal biosolids collected 
in 2008. 
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Fig. 5.4 Mean with standard error of the total amounts of shoot Se (A), shoot [Se] 
(B), and shoot dry weight (C).  The data is presented here with soil inoculation 
treatments combined (n = 14) and plants were grown in the 2010 sample of 
municipal biosolids from Pueblo, CO. 
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Discussion 

Since Se was present throughout the municipal biosolids phytoextraction 

could be an appropriate approach to removing Se.  Anywhere that plant roots 

grow within the biosolids they will encounter Se.  The three most abundant 

molecular species of Se were identified as organic C-Se-C, elemental gray Se, 

and selenite.  Plants are able to take up organic Se forms and selenite, although 

the amounts of Se reaching the shoot differs between forms (Zayed et al. 1998).  

Without oxidation, elemental Se will likely not be accumulated by plant roots.  

Redox reactions occurring in the rhizosphere can alter Se availability to plants 

(Blaylock and James 1994) and microorganisms can slowly oxidize elemental Se 

to selenite and selenate in soils (Losi and Frakenberger 1998).  Oxidation of 

elemental Se could enhance phytoextraction potential by increasing Se 

bioavailability.  

Astragalus hyperaccumulators could be utilized effectively as species for 

Se-phytoextraction.  In general the Astragalus hyperaccumulators removed more 

total Se per plant than the non-accumulators.  In particular, A. crotalariae 

extracted the most Se from biosolids in any of the three trials.  This species 

produced the highest amount of biomass by a Se-hyperaccumulator.  Its high 

biomass production was coupled with a high [Se], resulting in removal of over 

100 µg Se.  Sors et al. (2005) observed that A. crotalariae was a stronger 

hyperaccumulator than A. bisulcatus or A. racemosus in their experiments.  

Given their success in my trial several Astragalus hyperaccumulators, including 

A. crotalariae, A. preussi, and A. racemosus, have potential for future 
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development for phytoremediation.  Currently a lack of available seed source 

precludes the large-scale use of A. crotalariae and A. preussi.  Seed from A. 

racemosus is more readily available, which is why only that species was used in 

the subsequent inoculation experiment.  However, use of any of the Astragalus 

species, like all hyperaccumulators, would require development of agronomic 

techniques to increase biomass production and harvestiblity to attempt 

phytoextraction on larger scales than greenhouse trials (Chaney et al. 2007). 

Sufficient biomass production coupled with high trace element 

concentrations have been discussed as prerequisites for successful 

phytoextraction (Chaney et al. 2000; Krämer and Chardonnens 2001).  Results 

from A. cicer show that high biomass production in Astragalus without a 

moderately high [Se] did not provide strong phytoextraction potential.  If A. cicer 

had the same [Se] in its shoot (21.5 µg Se g-1 DW), it would have to amass 5.3 g 

of shoot biomass to surpass the Se phytoextraction performance of A. 

crotalariae.   A. preussi removed the second highest amount of Se per plant after 

A. crotalariae.  This performance was achieved by the species amassing the 

highest [Se] of any hyperaccumulator, 170% more Se than A. crotalariae.  A. 

racemosus, which removed the third highest amount of Se per plant in the 

Astragalus trial, had a similar shoot [Se] to A. praelongus, but A. racemosus grew 

larger in the biosolids and was therefore able to acquire more Se.  Alternatively, 

A. cicer acquired more total Se than A. praelongus because A. cicer produced 

more biomass even though A. praelongus had a higher shoot [Se]. 
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In the Brassica phytoextraction trial I attempted to establish optimum 

mixtures of biosolids and sand to facilitate the highest amount of plant Se 

removal.  In both B. juncea and B. napus the highest amount of Se removed per 

shoot was in the 75% biosolids and 25% sand mixture.  This was achieved by the 

two species each growing largest in this mixture.  B. napus had its highest shoot 

[Se] in this mixture, but B. juncea had the highest shoot [Se] in the 100% 

biosolids mixture.  Mixing in sand at a rate of 75% volume of biosolids to sand 

provides a high level of Se phytoremediation potential balanced with a lower 

amount of additional inputs (sand).  Of these two species B. napus may be a 

more attractive phytoremediation crop because its seed can be harvested for oil 

production including non-food uses such as biofuel production (Bañuelos et al. 

2010). 

Inoculants that have increased plant trace element concentrations have 

often been conducted with single isolates (Abou-Shanab et al. 2003; Turnau and 

Mesjasz-Przybylowicz 2003; Abou-Shanab et al. 2006; Li et al. 2007; Wu et al. 

2009) that have often been ascribed a mode of action.  A potential risk of this 

approach is that the establishment of the isolate in the rhizosphere is not known.  

As an example, establishment of new rhizobial strains can be difficult when 

rhizobia populations were already present in soils (Brockwell and Bottomley 

1995).  In addition, the complex characteristics of the rhizosphere community as 

a whole cannot be mimicked with a single organism (Andrews and Harris 2000).  

Since we do not fully understand the role of the rhizosphere community, or how it 

influences Se-hyperaccumulation I opted for a more general approach where I 
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applied a mixed inoculant slurry from soil collected where the hyperaccumulator 

A. bisulcatus grew.  This approach has the same risk of not knowing if the 

microorganism community that was introduced produced an effective presence in 

the rhizosphere, plus the mode of action of the consortia is unknown.  The 

benefit is that this approach would be easy to implement and would require 

minimal laboratory preparation to apply at larger scales. 

Three distinct effects of microorganisms in Se cycling have been 

discussed in the literature.  Inoculation with soil microorganisms could reduce the 

bioavailability of Se because some bacteria are known to reduce Se oxyanions 

(Di Gregorio et al. 2005; Di Gregorio et al. 2006; Gupta et al. 2010).  

Alternatively, bacteria have been shown to increase plant Se levels in vitro (de 

Souza et al. 1999a; de Souza et al. 1999b).  In the rhizosphere Se bioavailability 

can be increased by oxidizing reduced forms of Se (Oram et al. 2011).  Finally, 

soil microorganisms can volatilize Se (Doran and Alexander 1976).   

I found no effect of inoculation on plant phytoextraction potential.   This 

could be a result of insufficient time to produce differences in the two treatments.  

Although I found effects of soil inoculant altering plant [Se] earlier as described in 

Chapter 4, the mechanism by which this was achieved was not determined.  

Without this determination I cannot ascribe a conclusive reason for the lack of 

inoculation effect reported here.  It may be that the amount of inoculum was a 

factor, as much less was used here in the phytoremediation trial than in the soil 

origin experiment.  In addition, existing microorganisms in the municipal biosolids 
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may have competed with the microorganisms from the inoculum and precluded 

their establishment or effectiveness. 

B. napus coupled moderate shoot [Se] (17.4 μg Se g-1 DW) with high 

shoot biomass to have the maximum phytoextraction potential in the inoculation 

trial.  The next two highest performers, M. officinalis and H. annuus, shared that 

similar strategy of high biomass coupled with moderate shoot [Se].  Astragalus 

racemosus had the highest concentration of shoot [Se], but had a relatively low 

biomass, which resulted in that species having the fourth highest phytoextraction 

potential.  Amaranthus retroflexus and Carex pendula appear to have 

concentrated more Se in their shoots than Astragalus racemosus, but this result 

is likely to be somewhat erroneous because of the small amounts of biomass 

used in the ICP-AES digestion process.  Regardless, their small biomass 

production precluded those two species from being effective at phytoextraction.  

Similarly, R. neomexicana produced little biomass, but it also had low shoot [Se].  

This species is a perennial tree that would likely require a longer growing period 

than two months to more accurately gauge its phytoextraction potential.  S. 

sudanense produced a large amount of biomass, but the shoot [Se] was too low 

for it to be very effective at removing Se from the biosolids.   

In all three trials the maximum Se phytoextraction potential occurred with 

Astragalus crotalariae, where it removed 113.8 µg Se per plant growing in 50% 

biosolids.  The next highest performing species was B. napus with 98.0 µg Se 

per plant removed in the 75% biosolids dilution trial.  To estimate the amount of 

harvests (x) it would take to remove enough Se to reach the Se ceiling 
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concentration allowable for land application, 100 µg g-1, I used the following 

calculation: 

 

x = 
(V Biosolids × BD Biosolids ሻሺ[Se] Biosolids െ 100ሻ 

Total Se Plant
 

   

The parameters are defined as the volume of biosolids in the pot (V Biosolids), the 

bulk density of the biosolids (BD Biosolids), the [Se] in the biosolids ([Se] Biosolids), 

and the total amount of Se removed by a shoot (Total Se Plant).  The constant, 

100, refers to the ceiling [Se] for land application of biosolids determined by the 

US-EPA.  Pot volumes of 131 cm3 and a biosolids bulk density of 0.56 g cm-3 

were used in the calculation.  I estimated that it would take 18 crops of A. 

crotalariae or 31 crops of B. napus to reduce the Se to ceiling concentration 

levels.   It must be noted that this calculation ignores the sand portion in the pots, 

which effectively dilutes the [Se] of the substrate within the pot.  Further analyses 

on the Se amount and concentration within the pots are required to fully assess 

the phytoextraction potential of these species.  Notably, Se volatilization could 

have contributed additional Se removal from the biosolids that was not measured 

in this experimental procedure. 

These trials were conducted under controlled greenhouse conditions 

which have been shown to have higher Se phytoextraction results than plants 

growing under field conditions (Bañuelos et al. 1998).  Although phytoextraction 

requires considerable time to achieve, Bañuelos (2006) suggested that the 
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development of products with beneficial uses could make phytoremediation a 

more financially attractive option.  An alternative use that may be explored for 

this substrate could be as a Se-rich fertilizer for Se-deficient soils.   Selenate 

application has been practiced on soils in Finland since the recommendation to 

include Se in fertilizer in 1983 (Venäläinen et al. 1997).  Selcote Ultra ® (Nufarm 

New Zealand, Auckland, New Zealand) and Top Stock ® (Frontier Agriculture 

Ltd., Witham St. Hughs, United Kingdom) are selenium fertilizers for use in 

agriculture.  Perhaps the use of Se-enriched green manures like the non-

accumulator legumes Astragalus cicer or M. officinalis could be investigated.  In 

addition, biofortification of crops with Se has been gaining interest in recent years 

(Lyons et al. 2003; Broadley et al. 2006; Zhu et al. 2009; Broadley et al. 2010).  

Appropriate precautions would need to be taken to ensure that any beneficial 

uses of these biosolids or Se-enriched plants derived from the biosolids are safe. 

 

Conclusions 

Developing successful phytoextraction technologies for these municipal 

biosolids would require either development of agronomic techniques and seed 

sources for Astragalus Se-hyperaccumulators, or a market for Se-enriched crops 

that may include canola or green manures.  I estimated that a best case scenario 

for phytoextraction would require 18 crops of A. crotalariae, but further 

examination of the remaining amount of Se in the biosolids must be conducted 

before final conclusions can be drawn. 



154 

 

Literature Cited 

Abou-Shanab RA, Angle JS, Delorme TA, Chaney RL, van Berkum P, Moawad H, 
Ghanem K and Ghozlan HA (2003) Rhizobacterial effects on nickel extraction 
from soil and uptake by Alyssum murale. New Phytol 158: 219-224 

 
Abou-Shanab RAI, Angle JS and Chaney RL (2006) Bacterial inoculants affecting 

nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil 
Biol Biochem 38: 2882-2889 

 
Andrews JH and Harris RF (2000) The ecology and biogeography of microorganisms 

of plant surfaces. Annual Review of Phytopathology 38: 145-180 
 
Baker AJM, McGrath SP, Sidoli CMD and Reeves RD (1994) The possibility of in situ 

heavy metal decontamination of polluted soils using crops of metal-
accumulating plants. Resources Conservation and Recycling 11: 41-49 

 
Bañuelos GS, Ajwa HA, Wu L and Zambrzuski S (1998) Selenium accumulation by 

Brassica napus grown in Se-laden soil from different depths of Kesterson 
Reservoir. Journal of Soil Contamination 7: 481-496 

 
Bañuelos GS (2001) The green technology of selenium phytoremediation. Biofactors 

14: 255-260 
 
Bañuelos GS (2006) Phyto-products may be essential for sustainability and 

implementation of phytoremediation. Environ Poll 144: 19-23 
 
Bañuelos GS, Da Roche J and Robinson J (2010) Developing selenium-enriched 

animal feed and biofuel from canola planted for managing Se-laden drainage 
waters in the westside of central California. Int J Phytoremediat 12: 243-254 

 
Blaylock MJ and James BR (1994) Redox transformations and plant uptake of 

selenium resulting from root-soil interactions. Plant Soil 158: 1-12 
 
Broadley MR, White PJ, Bryson RJ, Meacham MC, Bowen HC, Johnson SE, 

Hawkesford MJ, McGrath SP, Zhao FJ, Breward N, Harriman M and Tucker 
M (2006) Biofortification of UK food crops with selenium. Proc Nutr Soc 65: 
169-181 

 
Broadley MR, Alcock J, Alford J, Cartwright P, Foot I, Fairweather-Tait SJ, Hart DJ, 

Hurst R, Knott P, McGrath SP, Meacham MC, Norman K, Mowat H, Scott P, 
Stroud JL, Tovey M, Tucker M, White PJ, Young SD and Zhao FJ (2010) 
Selenium biofortification of high-yielding winter wheat (Triticum aestivum L.) 
by liquid or granular Se fertilisation. Plant Soil 332: 5-18 



155 

 

Brockwell J and Bottomley PJ (1995) Recent advances in inoculant technology and 
prospects for the future. Soil Biol Biochem 27: 683-697 

 
Burd GI, Dixon DG and Glick BR (1998) A plant growth-promoting bacterium that 

decreases nickel toxicity in seedlings. Appl Env Microbiol 64: 3663-3668 
 
Chaney RL, Li YM, Brown SL, Homer FA, Malik M, Angle JS, Baker AJM, Reeves 

RD and Chin M (2000) Improving metal hyperaccumulator wild plants to 
develop commercial phytoextraction systems: Approaches and progress. 
Lewis Publishers Inc, Boca Raton 

 
Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV and Sparks DL 

(2007) Improved understanding of hyperaccumulation yields commercial 
phytoextraction and phytomining technologies. J Environ Qual 36: 1429-1443 

 
Chen YX, Wang YP, Lin Q and Luo YM (2005) Effect of copper-tolerant rhizosphere 

bacteria on mobility of copper in soil and copper accumulation by Elsholtzia 
splendens. Environ Int 31: 861-866 

 
Ciavatta C, Govi M, Simoni A and Sequi P (1993) Evaluation of heavy metals during 

stabilization of organic matter in compost produced with municipal solid 
wastes. Bioresour Technol 43: 147-153 

 
de Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D and Terry N 

(1999a) Rhizosphere bacteria enhance selenium accumulation and 
volatilization by Indian mustard. Plant Physiol 119: 565-573 

 
de Souza MP, Huang CPA, Chee N and Terry N (1999b) Rhizosphere bacteria 

enhance the accumulation of selenium and mercury in wetland plants. Planta 
209: 259-263 

 
Di Gregorio S, Lampis S and Vallini G (2005) Selenite precipitation by a rhizospheric 

strain of Stenotrophomonas sp isolated from the root system of Astragalus 
bisulcatus: a biotechnological perspective. Environ Int 31: 233-241 

 
Di Gregorio S, Lampis S, Malorgio F, Petruzzelli G, Pezzarossa B and Vallini G 

(2006) Brassica juncea can improve selenite and selenate abatement in 
selenium contaminated soils through the aid of its rhizospheric bacterial 
population. Plant Soil 285: 233-244 

 
Doran JW and Alexander M (1976) Microbial formation of volatile selenium 

compounds in soil. Soil Sci Soc Am J 40: 687-690 
 



156 

 

Ebbs SD, Lasat MM, Brady DJ, Cornish J, Gordon R and Kochian LV (1997) 
Phytoextraction of cadmium and zinc from a contaminated soil. J Environ 
Qual 26: 1424-1430 

 
Freeman JL, Zhang LH, Marcus MA, Fakra S, McGrath SP and Pilon-Smits EAH 

(2006) Spatial imaging, speciation, and quantification of selenium in the 
hyperaccumulator plants Astragalus bisulcatus and Stanleya pinnata. Plant 
Physiol 142: 124-134 

 
García C, Hernández T and Costa F (1990) The influence of composting and 

maturation processes on the heavy metal extractability from some organic 
wastes. Biological Wastes 31: 291-301 

 
Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up 

the environment. Biotech Adv 21: 383-393 
 
Gupta S, Prakash R, Prakash NT, Pearce C, Pattrick R, Hery M and Lloyd J (2010) 

Selenium mobilization by Pseudomonas aeruginosa (SNT-SG1) isolated from 
seleniferous soils from India. Geomicrobiol J 27: 35-42 

 
Ippolito JA, Barbarick KA, Paschke MW and Brobst RB (2010) Infrequent composted 

biosolids applications affect semi-arid grassland soils and vegetation. J 
Environ Manage 91: 1123-1130 

 
Jankong P, Visoottiviseth P and Khokiattiwong S (2007) Enhanced phytoremediation 

of arsenic contaminated land. Chemosphere 68: 1906-1912 
 
Krämer U and Chardonnens AN (2001) The use of transgenic plants in the 

bioremediation of soils contaminated with trace elements. Appl Microbiol 
Biotechnol 55: 661-672 

 
Li WC, Ye ZH and Wong MH (2007) Effects of bacteria an enhanced metal uptake of 

the Cd/Zn-hyperaccumulating plant, Sedum alfredii. J Exp Bot 58: 4173-4182 
 
Liphadzi MS and Kirkham MB (2006) Availability and plant uptake of heavy metals in 

EDTA-assisted phytoremediation of soil and composted biosolids. S Afr J Bot 
72: 391-397 

 
Liu Y, Zhu YG, Chen BD, Christie P and Li XL (2005) Influence of the arbuscular 

mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As 
hyperaccumulator fern Pteris vittata L. Mycorrhiza 15: 187-192 

 
Losi ME and Frakenberger WT (1998) Microbial oxidation and solubilization of 

precipitated elemental selenium in soil. J Environ Qual 27: 836-843 



157 

 

Lyons G, Stangoulis J and Graham R (2003) High-selenium wheat: biofortification for 
better health. Nutr Res Rev 16: 45-60 

 
Ma Y, Prasad MNV, Rajkumar M and Freitas H (2011) Plant growth promoting 

rhizobacteria and endophytes accelerate phytoremediation of metalliferous 
soils. Biotech Adv 29: 248-258 

 
Marcus MA, MacDowell AA, Celestre R, Manceau A, Miller T, Padmore HA and 

Sublett RE (2004) Beamline 10.3.2 at ALS: a hard X-ray microprobe for 
environmental and materials sciences. J Synchrot Radiat 11: 239-247 

 
Oram LL, Strawn DG and Moller G (2011) Chemical speciation and bioavailability of 

selenium in the rhizosphere of Symphyotrichum eatonii from reclaimed mine 
soils. Environ Sci Tech 45: 870-875 

 
Pickering IJ, Prince RC, Salt DE and George GN (2000) Quantitative, chemically 

specific imaging of selenium transformation in plants. Proc Natl Acad Sci USA 
97: 10717-10722 

 
Salt DE, Blaylock M, Kumar N, Dushenkov V, Ensley BD, Chet I and Raskin I (1995) 

Phytoremediation - A novel strategy for the removal of toxic metals from the 
environment using plants. Bio-Tech 13: 468-474 

 
Sors TG, Ellis DR, Na GN, Lahner B, Lee S, Leustek T, Pickering IJ and Salt DE 

(2005) Analysis of sulfur and selenium assimilation in Astragalus plants with 
varying capacities to accumulate selenium. Plant J 42: 785-797 

 
Turnau K and Mesjasz-Przybylowicz J (2003) Arbuscular mycorrhiza of Berkheya 

coddii and other Ni-hyperaccumulating members of Asteraceae from 
ultramafic soils in South Africa. Mycorrhiza 13: 185-190 

 
US-EPA (1993) 40 CFR-Part 503, Standards for the Use or Disposal of Sewage 

Sludge; Final Rule US EPA Washington DC, USA 
 
US-EPA (2011) Region 8 - Biosolids.  http://www.epa.gov/region8/water/biosolids/. 
 
USGS (2010) Seleniun in counties of the central US.  

http://tin.er.usgs.gov/geochem/doc/averages/se/central.html. 
 
Venäläinen E-R, Hirvi T and Hirn J (1997) Effect of selenium supplementation on the 

selenium content in muscle and liver of Finnish pigs and cattle. J Agric Food 
Chem 45: 810-813 

 
Vogel-Mikuš K, Pongrac P, Kump P, Nečemer M and Regvar M (2006) Colonisation 

of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous 



158 

 

arbuscular mycorrhizal fungal mixture induces changes in heavy metal and 
nutrient uptake. Environ Poll 139: 362-371 

 
Whiting SN, Reeves RD, Richards D, Johnson MS, Cooke JA, Malaisse F, Paton A, 

Smith JAC, Angle JS, Chaney RL, Ginocchio R, Jaffré T, Johns R, McIntyre 
T, Purvis OW, Salt DE, Schat H, Zhao FJ and Baker AJM (2004) Research 
priorities for conservation of metallophyte biodiversity and their potential for 
restoration and site remediation. Rest Ecol 12: 106-116 

 
Wu FY, Ye ZH and Wong MH (2009) Intraspecific differences of arbuscular 

mycorrhizal fungi in their impacts on arsenic accumulation by Pteris vittata L. 
Chemosphere 76: 1258-1264 

 
Wu QT, Hei L, Wong JWC, Schwartz C and Morel JL (2007) Co-cropping for phyto-

separation of zinc and potassium from sewage sludge. Chemosphere 68: 
1954-1960 

 
Zayed A, Lytle CM and Terry N (1998) Accumulation and volatilization of different 

chemical species of selenium by plants. Planta 206: 284-292 
 
Zayed AM and Terry N (1994) Selenium volatilization in roots and shoots - effects of 

shoot removal and sulfate level. J Plant Physiol 143: 8-14 
 
Zhu YG, Pilon-Smits EAH, Zhao FJ, Williams PN and Meharg AA (2009) Selenium in 

higher plants: understanding mechanisms for biofortification and 
phytoremediation. Trends In Plant Science 14: 436-442 

 



159 

 

Chapter 6 

A Synthesis:  Soil Microorganisms Contribute to Se-

hyperaccumulation in Astragalus 
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Science is a process of learning.  It starts with observing things in nature 

and wondering how and why what you observe works the way it does.  Then you 

develop an idea or hypothesis about why and how these things work.  

Development of ideas comes with investigation of what others already know 

about the system.  Once ideas that have been constructed are recorded the 

process of testing those ideas by experimentation ensues.  By analyzing the 

results of the experiment you are able to refine your initial ideas about how the 

system you are investigating truly works. 

In my case I had happened upon the distinctive plant Astragalus 

bisulcatus by chance one day while I was engaged in other work.  I found the 

plant notable because of its large size and the garlicky smell emanating from 

magenta and purple flowers, rather than a light and sweet floral scent.  Since I 

am a legumeophile and Astragalus is the largest constituent in the Fabaceae I 

became instantly intrigued.  Through discussion I learned that the garlicky odor 

comes from methylated Se and A. bisulcatus has a somewhat unique trait of Se 

hyperaccumulation. 

From there I became interested in the root nodule symbiosis in this 

species and the other Se-hyperaccumulators in the genus.  I read about 

hyperaccumulation as a unique plant trait and found that little research had been 

conducted on these hyperaccumulators in the long history of plant science.  In 

fact, an explosion of interest in the entire group of trace element 

hyperaccumulators had only very recently begun.  Most of the information on 

hyperaccumulators focused on above-ground organs and interactions, while it 
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seemed obvious to me that belowground organs and interactions must be crucial 

for hyperaccumulation.  With the help of my committee members I formalized this 

into a review paper that was published in Plant and Soil and also serves as the 

first chapter in this work. 

From this viewpoint of realizing the importance of rhizosphere processes 

and the stark lack of investigation by others I developed the theme for my 

dissertation.  I was lucky that my personal interest intersected with a knowledge 

gap.  In addition, this knowledge gap has practical applications for biologically 

based pollutant remediation strategies. 

I decided to investigate if and how soil microorganisms affect Se-

hyperaccumulation.  My hypotheses were that (i) soil microorganisms affect Se 

accumulation in plants; (ii) specifically the root-nodule symbiosis has a role in Se-

hyperaccumulation; (iii) the mechanism for the role of root-nodule symbiosis in 

hyperaccumulation is through nitrogen allocation into selenoamino acids. 

In the preceding four chapters I described experiments that I have 

conducted to establish if there is a role for soil microorganisms in Se-

hyperaccumulation in Astragalus.  At all times I have conducted experiments with 

a consortium of soil microorganisms that served as inoculants for plants.  In 

Chapter 2 I found that Se occurs throughout nodules from Se-

hyperaccumulators.  I did not find evidence for a cost of tolerance where Se-

hyperaccumulators exhibited diminished nodulation ability compared to non-

accumulators.  Results from chapter 3 indicated that amidst the consortia used 

as an inoculant a role for symbiotic organisms could be detected.  Nodulation 
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increased shoot [Se] in Se-hyperaccumulators through increased levels of the 

selenoamino acid γ-glutamyl-methylselenocysteine.  In chapter 4 I found that the 

source of the soil inoculant mattered for plant [Se] in both Se-hyperaccumulators 

and non-accumulators, where inoculum originating from Se-hyperaccumulators 

produced higher [Se] in both plant types.   The experiments in Chapter 5 were an 

attempt to utilize this knowledge of inoculant effects on altering shoot [Se] to 

extract more Se from polluted substrates.  Although I did not observe an 

inoculation effect in my attempt, it shows the importance of knowing the 

mechanism of these effects, and that there is still much more to learn.  So, as is 

the way of science, it is back to the drawing board – time to refine the hypothesis 

and conduct more experiments so that the effect of inoculation can be effectively 

applied in other situations. 

Now that I have some information about the mechanism that causes 

nodulation to increase [Se] in hyperaccumulators, I am still left wondering: how 

does this work?  What is it about the metabolism of this symbiotic interaction that 

affects γGMSC?  There was no similar effect in MeSeCys, a molecule widely 

regarded as a significant detoxification mechanism in A. bisulcatus.  Is there an 

advantage for producing γGMSC?  And thus the scientific process continues, 

there is the wonder - how does this work? 

From this experience, I found that science requires a bunch of patience 

and persistence.  As I have told my students, “if you like being wrong, you might 

like being a scientist.”  I think this idea sums up much of the well-trodden path of 

scientific discovery.  The really intriguing part of science that I have discovered is 
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that often it is being wrong (in terms of your research hypothesis) that is more 

interesting and rewarding than the being “right”. 

In my work over the past 5 years I have significantly increased the amount 

of information regarding belowground interactions of Se-hyperaccumulators.  No 

one has previously shown an effect of nodulation on Se-hyperaccumulation.  This 

opens up new opportunities for further exploration of this root nodule symbiosis.  

In addition my findings may help shed light on the evolution and ecology of root 

nodule symbioses in general.  Perhaps this will help to eventually explain why 

there are so many species of Astragalus.  Is it related to their ability to specialize 

and adapt their symbiotic interactions to suit their lifestyle? 

I have also conducted one of the few projects that have investigated 

pollutant removal from biosolids.  Often researchers have investigated the effects 

of land applied biosolids or how plants extract trace elements from the substrate 

once it is applied to land.  My phytoextraction trials showed that upland plants 

can be successfully grown in 100% biosolids without any amendments.  In 

addition, I have shown that some species of Astragalus Se-hyperaccumulators 

have potential for use in phytoremediation settings.  My greatest joy in this work 

has been the ability to conduct basic ecological science that has informed the 

design and implementation of a project geared to help resolve a real-life issue.
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Appendix 1.  Mean [Se] (µg Se g-1 DW) with standard error in different legume organs 
collected from the field.  Some organs were not collected and elemental concentrations were 
not determined (--).  The asterisk (*) indicates that n = 1 for that sample. 
Species Leaf Flower Pod Root Nodule 
Non-accumulators 

A. argophyllus 28 ± 6 31 ± 9 -- 19 ± 9 0* 
A. convallarius 50 ± 14 -- -- 21 ± 11 -- 
A. missouriensis 52 ± 18 32 ± 16 26 ± 14 32 ± 8 -- 
M. alba* 39 40 28 17 26 
M. officinalis 35 ± 14 -- -- 35 ± 8 -- 
O. sericea 8 ± 2 16 ± 4 5* 18 ± 4 7 ± 7 

Hyperaccumulators 
A. bisulcatus 148 ± 35 252 ± 73 131 ± 80 13 ± 5 26 ± 6 
A. praelongus 600 ± 153 959 ± 340 1,557 ± 349 171 ± 59 40 ± 8 
A. racemosus 89 ± 36 57* 31 ± 12 31 ± 7 40 ± 14 
A. rafaelensis 487 ± 101 1,261± 890 975 ± 288 -- -- 
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Appendix 2.  Mean values for nodulation index and dry weight per 
nodule (mg) are shown with standard error for each of the 
Astragalus species. 
Species Nodulation Index Nodule dry weight (mg) 
A. bisulcatus 66.7 ± 7.6 0.822 ± 0.145 
A. convallarius 26.0 ± 3.6 1.642 ± 0.335 
A. drummondii 51.9 ± 6.2 0.972 ± 0.178 
A. praelongus 39.3 ± 6.4 1.852 ± 0.348 
A. racemosus 58.8 ± 5.8 1.292 ± 0.141 
A. shortianus 67.2 ± 9.2 0.920 ± 0.167 
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Appendix 3.  Mean shoot dry weights (mg) with standard error in different 
Astragalus species.  Soil origin (home or foreign) and Se treatment (0 µM or 100 
µM) are shown separately (n = 8). 
 0 µM  100 µM 
Species Home Foreign  Home Foreign 
A. bisulcatus 124 ± 25 167 ± 25  115 ± 21 164 ± 19 
A. convallarius 196 ± 38 583 ± 132  302 ± 60 388 ± 57 
A. drummondii 189 ± 14 222 ± 39  213 ± 29 132 ± 30 
A. praelongus 636 ± 133 387 ± 123  427 ± 71 735 ± 143 
A. racemosus 1,081 ± 114 716 ± 38  964 ± 84 825 ± 70 
A. shortianus 122 ± 14 81 ± 9  100 ± 21 69 ± 11 
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Appendix 4.  Mean root dry weights (mg) with standard error in different Astragalus 
species.  Soil origin (home or foreign) and Se treatment (0 µM or 100 µM) are shown 
separately (n = 8). 
 0 µM  100 µM 
Species Home Foreign  Home Foreign 
A. bisulcatus 144 ± 34 177 ± 36  120 ± 24 106 ± 19 
A. convallarius 88 ± 25 221 ± 37  165 ± 24 257 ± 45 
A. drummondii 159 ± 15 218 ± 38  142 ± 19 106 ± 28 
A. praelongus 408 ± 116 326 ± 130  285 ± 85 592 ± 164 
A. racemosus 699 ± 120 474 ± 29  703 ± 86 623 ± 73 
A. shortianus 250 ± 35 122 ± 24  188 ± 44 89 ± 19 


