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ABSTRACT OF DISSERTATION 

STABILITY ANALYSIS OF RECURRENT NEURAL NETWORKS WITH 

APPLICATIONS 

Recurrent neural networks are an important tool in the analysis of da ta with temporal 

structure. The ability of recurrent networks to model temporal da ta and act as dynamic 

mappings makes them ideal for application to complex control problems. Because such net­

works are dynamic, however, application in control systems, where stability and safety are 

important, requires certain guarantees about the behavior of the network and its interaction 

with the controlled system. Both the performance of the system and its stability must be 

assured. Since the dynamics of controlled systems are never perfectly known, robust control 

requires that uncertainty in the knowledge of systems be explicitly addressed. Robust con­

trol synthesis approaches produce controllers tha t are stable in the presence of uncertainty. 

To guarantee robust stability, these controllers must often sacrifice performance on the ac­

tual physical system. The addition of adaptive recurrent neural network components to 

the controller can alleviate, to some extent, the loss of performance associated with robust 

design by allowing adaptat ion to observed system dynamics. The assurance of stability of 

the adaptive neural control system is prerequisite to the application of such techniques. 

Work in [49, 2] points toward the use of modern stability analysis and robust control 

techniques in combination with reinforcement learning algorithms to provide adaptive neural 

controllers with the necessary guarantees of performance and stability. The algorithms 

developed in these works have a high computational burden due to the cost of the online 

stability analysis. Conservatism in the stability analysis of the adaptive neural components 

has a direct impact on the cost of the proposed system. This is due to an increase in the 
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number of stability analysis computations that must be made. The work in [79, 82] provides 

more efficient tools for the analysis of time-varying recurrent neural network stability than 

those applied in [49, 2]. Recent results in the analysis of systems with repeated nonlinearities 

[19, 52, 17] can reduce the conservatism of the analysis developed in [79] and give an overall 

improvement in the performance of the on-line stability analysis. 

In this document, steps toward making the application of robust adaptive neural con­

trollers practical are described. The analysis of recurrent neural network stability in [79] 

is not exact and reductions in the conservatism and computational cost of the analysis 

are presented. An algorithm is developed allowing the application of the stability analysis 

results to online adaptive control systems. The algorithm modifies the recurrent neural 

network updates with a bias away from the boundary between provably stable parameter 

settings and possibly unstable settings. This bias is derived from the results of the stability 

analysis, and its method of computation is applicable to a broad class of adaptive control 

systems not restricted to recurrent neural networks. The use of this bias term reduces the 

number of expensive stability analysis computations that must be made and thus reduces 

the computational complexity of the stable adaptive system. An application of the proposed 

algorithm to an uncertain, nonlinear, control system is provided and points toward future 

work on this problem that could further the practical application of robust adaptive neural 

control. 

James N. Knight 
Department of Computer Science 
Colorado State University 
Fort Collins, Colorado 80523 
Summer 2008 
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Chapter 1 

Introduction 

Solutions to real world control problems often make simplifying assumptions to enable 

automated design techniques. To ensure that the resulting controllers behave as expected 

on the actual system, the simplifications made for analysis generally involve constructing a 

set of simpler systems which cover all the behaviors of the real world plant. These types of 

relaxations generally result in controllers that are suboptimal with respect to the desired 

performance metric and the plant of interest. Adaptive control techniques allow the initial 

design to be modified with the goal of improving performance based on observations of the 

plant 's actual behavior. The application of adaptive control systems to real world control 

problems is, however, often impossible or too risky because of a lack of guarantees about 

the adaptive system's performance and stability. 

Most existing research on stable adaptive control takes a specific algorithm and proves 

stability on some class of plants. For example, a Lyapunov function might be constructed 

showing tha t a certain gain scheduling procedure is stable for a class of linear, time-invariant 

plants [64]. A second approach is to ensure stability by restricting the updates an adaptive 

system makes to the controller parameters [49, 62]. This type of approach is not restricted 

to a given adaptive control or learning algorithm, but it requires online monitoring of the 

control parameter updates. Compared to the first approach, online update monitoring 

increases the computational cost of the adaption, sometimes considerably. On the other 

hand, this type of approach is more general. 

This document focuses on the second approach for ensuring the stability of adaptive 

control systems. Specifically, the use of recurrent neural networks in adaptive control sys-
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tems is considered. Recurrent neural networks are capable of representing a wide class of 

both static and dynamic mappings. In fact it can be shown that recurrent neural networks 

are capable of approximating a many dynamical systems arbitrarily well [32]. This makes 

them suitable for many different uses in control systems. For example, a recurrent neural 

network can be used as a controller or as an estimator of system parameters or unobservable 

states. Since recurrent neural networks are dynamic systems, they have their own stability 

properties which must be understood. The first part of this dissertation analyzes existing 

techniques for assessing the stability of recurrent neural networks and extends them in sev­

eral ways to improve their performance. Recurrent neural network stability is analyzed in 

terms of the input-output relationship of the nonlinear, time-varying mapping defined by 

the network parameters. The main stability analysis tool that is applied is the theory of 

integral quadratic constraints [59]. Stability properties are framed in terms of the feasibility 

of certain matrix inequalities. Such formulations are addressed mathematically and compu­

tationally by semidefmite programming [92]. The second part of this dissertation proposes 

an algorithm for ensuring the stability of a recurrent neural network that is adapted as 

part of a larger control system. The algorithm is applicable to the adaption of recurrent 

neural networks in isolation or in a loop with a controlled plant. Examples are presented 

of application in both of these situations. 

1.1 A Motivating Example 

Reinforcement learning is a term used to describe a large class of problems and algorithms 

that involve learning through observation of, and interaction with, an environment. While 

the theory and practice of reinforcement learning for control has improved dramatically over 

the last two decades, applications of this approach for online adaptation on real systems 

remain elusive. Two problems persist that impede the deployment of reinforcement learn­

ing systems: guarantees of performance and guarantees of safety. Much of the progress in 

reinforcement learning has come in the form of proofs of convergence and characterizations 

of solutions. Sufficient conditions for the convergence of reinforcement learning algorithms 

have emerged for increasingly large classes of algorithms and problems. This body of re-
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search gives results concerning the properties of the resulting controllers. More recently, 

literature addressing the dynamic behavior of these algorithms has appeared [49, 67]. Here, 

the research seeks to address the problem of providing guarantees of safety. The dynamic 

effects of reinforcement learning algorithms interacting with a controlled system must be 

understood. 

Consider a class of problems in which the goal is to drive the state of a system to some 

operating point. This class of problems includes stabilization of unstable systems, reference 

tracking problems, and regulation problems. Controllers for these problems must meet some 

performance goal while also guaranteeing stability of the closed loop system. A large body 

of research exists that addresses the problem of designing and characterizing controllers for 

these types of problems. These design methods are generally restricted to time-invariant 

linear systems and controllers that are linear in their inputs. In most cases, however, the 

system that is to be controlled will exhibit nonlinear dynamics that change over time. To 

specify the discrepancy between the design assumptions and reality, linear, time-invariant 

(LTI) models can be derived with the unmodeled dynamics of the system — its time varying 

components and its nonlinearities — characterized as uncertainty in the basic LTI model. 

Robust control theory provides methods for designing controllers for these uncertain models 

and for characterizing the uncertainties. 

Robust controllers, however, can exhibit suboptimal performance because of restrictions 

in their design. In this situation performance can be improved through the use of adaptation. 

Rather than adapting the given robust controller, an extra adaptive component can be added 

to the control loop. Retaining the fixed controller gives the system a guaranteed level of 

initial performance. The adaptive component is allowed to have a more general structure 

than the fixed controller. The actual control signal is generated by combining the output 

of the fixed controller and the adaptive controller. The stability of the closed loop system 

is given for the fixed controller case, but the addition of an adaptive component can drive 

the system to instability. This instability can result in damage to the physical plant or 

its environment and an associated decrease in performance. Thus, a method is needed to 

guarantee the stability of the system with the adaptive component. In Chapters 5 and 6 
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Figure 1.1: A simple spring-mass-damper. 

such a method is given using recurrent neural networks as the adaptive component. 

Consider the simple spring-mass-damper system in Figure 1.1. This system can be 

described by a second order, nonlinear, differential equation in the variable y, giving the 

distance from the equilibrium point. The equation describing the system is 

my + (c + Cf)y + ky + ka2y3 = u, (1.1) 

where c is the damping coefficient, c/ is the coefficient of friction, k is the spring constant 

and a is the spring hardening constant. A force, u, can be applied to the mass. A control 

system similar to this simple spring-mass-damper is described in Chapter 6. 

A control problem for this system is defined by requiring the mass to be held at a certain 

position, r(t), tha t can vary with time. For expository purposes a simple proportional 

integral (PI) controller is defined for this problem. The controller has the form 

u(t) = Kpe(t) + K% / e{r)dT 
Jo 

e(t) = y(t)-r(t) 

where Kp and K^ are controller parameters. Values of the parameters giving good perfor­

mance and stability can be derived using standard control techniques and tuning on model 

systems. An example trajectory of the controlled system is shown in Figure 1.2. 

A simple, single node neural network is added to the system as the adaptive controller 

component. A schematic of the control system is shown in Figure 1.3. The neural controller 

is described by the equation 

a(t) = w0{t) tanh(io/j(i) e(t)) 
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Figure 1.2: Behavior of the spring-mass-damper system with different controllers: 
PI controller (left-top), PI with stable NN controller (right-top), and PI with un­
stable NN controller (bottom). The dashed line is the reference point, and the 
solid line is the position of the mass. The parameters used were m = 1.0, c = 1.2, 
cf = 0.05, k = 0.5, a = 0.1, Kp = 1.0 and Ki = 0.2. 
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controller. 

and has two adjustable parameters, the hidden weight, Wh, and the output weight, w0. 

In later chapters more neural networks with recurrent connections will be used, but here 

a simple forward network suffices. By adjusting these parameter values away from zero, 

the behavior of the system can be modified. It is then necessary to answer the following 

question: what setting of these parameters gives optimal performance under the stability 

constraint? In general, performance will be measured as some function of the tracking error, 

e, over time, and stability will require that the system's states do not grow without bound 

for bounded reference signals. 

The stability of the system is analyzed, using the methods presented in Chapters 2 

and 3, for parameter values (u>h,w0) £ [—4,4]2. The region of the parameter space that 

can be proved to result in stable behavior is shown in Figure 1.4. The average tracking 

error over a fixed amount of time is estimated for all parameters settings of the neural 

controller in the same range. The estimated performance for stable parameter settings is 

shown in Figure 1.5. These results show that stable, performance improving parameter 

settings exist for this problem. Examples of stable and unstable behavior of the system are 

shown in Figure 1.2. The stability analysis methods developed in Chapters 2, 3, and 4 can, 

to a certain extent, distinguish the parameter settings that result in unstable behavior from 

those that result in stable behavior. 

To guarantee stability during learning, transitions from one controller to another must 

be considered. The stability analysis presented in Chapter 4 considers a range of possible 

controllers and assesses whether or not the system will remain stable as the controller 

changes within this range. In Figure 1.6, for example, several regions are shown in which 

Plant 
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Stable Region of Controller Parameters 

-1 0 1 
Hidden Weight 

Figure 1.4: An analysis of a finite mesh of controller parameters reveals the struc­
ture of the region of static stability. 

Estimated Performance in Stable Region 

Output Weight _2 

- 4 _ 4 
Hidden Weight 

Figure 1.5: Tracking error is estimated over a range of NN parameter values. The 
estimated average tracking error is shown only for statically stable controllers. The 
plot shows that the error can be reduced for values that result in statically stable 
controllers. 
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Dynamic Stability Regions 

-1 0 1 
Hidden Weight 

Figure 1.6: Regions of provably stable dynamic stability are shown for the example 
problem. 

the control parameters can vary while not making the control loop unstable. Notice that 

the regions are smallest near the stability boundary. This means that the controller can 

vary only a little when its parameters are in this part of the space. This in turn can 

degrade learning performance by restricting the amount of change that can be made to 

the controller. In this example good parameter settings for the neural controller are not 

near the boundary between stable and unstable controllers, but it can be the case that the 

parameters resulting in the most improved performance lie near the boundary of instability. 

When this happens, this type of approach can become quite inefficient. 

Because of this problem, it is useful to consider whether or not the stability analysis 

provides information that can be used to influence the updates made to the adaptive con­

troller. The stability analysis that resulted in Figure 1.4 produces an upper bound on the 

gain around the feedback loop — the amount of amplification of the input signal — between 

the plant and controller. These upper bounds are shown in Figure 1.7. The gain increases 

rapidly near the stability boundary and is useful for biasing the learning algorithm away 

from this boundary. These ideas are explored more fully in Chapter 5, where a method of 

exploiting this information is developed. 



Estimated Gain 

2s 

o> 
4 

\ 

• - ' " « \ I 

ll ' 
mdMrnkh ! i 1 id. 

II 

-2 

Hidden Weight 2 

4 -4 Output Weight 

Figure 1.7: The estimated gain for points in the stable region of the parameter 
space. 

1.2 Objectives 

The immediate goals of this research are two fold: to improve the state of the art in 

the analysis of recurrent neural network stability and to provide a method for efficiently 

applying such stability analysis to the online adaptat ion of recurrent neural networks in 

control systems. Improvements in stability analysis techniques can be measured along two 

axes. The first is the conservativeness of the analysis. A conservative analysis provides 

only sufficient conditions for stability as opposed to conditions that are both sufficient and 

necessary. Less conservative methods provide conditions which are closer, in some sense, 

to the necessary conditions of stability. The second axis is computational complexity. The 

methods presented in the following chapters rely on testing the feasibility of certain matrix 

constraints. Reducing the size or number of such constraints allows the stability analysis 

to be applied to larger or more complex systems. Often, reduction in conservativeness and 

reduction in computational complexity are at odds. Understanding the relationship between 

the two allows better choices to be made in practical systems. Improvements along both 

axes are presented in Chapters 3 and 4. 

Improvements in the stability analysis of recurrent neural networks are only applicable 

to adaptive control systems in a framework tha t considers the whole control system. The 
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second goal of this research is to develop a method that allows recurrent neural networks to 

be adapted in control systems with guarantees of stability for the entire system. This type of 

system has been proposed in earlier work [49, 50, 2]. This research pointed to a problem with 

naively applying the proposed stability analysis techniques to an adaptive control system. 

Often the adaptation drives the system to the boundary in the parameter space between 

parameter settings for which stability could be proved and those settings for which it could 

not. When this occurs, an increasingly large number of stability analysis computations must 

be made. This, in turn, makes the method very expensive computationally. The objective 

in proposing a new algorithm here is to reduce the cost of guaranteeing stability of adaptive 

control systems with recurrent neural network components and make such methods more 

practically applicable. 

A secondary goal of this document is to illustrate some practical aspects of working 

with the proposed stability analysis computations and stable adaptation algorithms. To 

this end computational comparisons are made throughout the document between different 

formulations of problems and different optimization algorithms. Rather than attempting 

to provide a comprehensive picture of the computational aspects of these problems, results 

are presented simply to give a sense of the class of computations involved. 

1.3 Document Outline 

The basic ideas presented in the motivating example will be developed more fully in the 

remaining chapters of this document. In Chapter 2 background material on recurrent neural 

networks and stability analysis is presented. A formal definition of stability is established, 

and the basics of integral quadratic constraints analysis are explained. The presentation 

assumes some knowledge of dynamical systems theory and analysis, but briefly covers all of 

the necessary control theoretic material used in the dissertation. Pointers to more thorough 

presentations of the material are provided. Previous work in this area is described at the 

end of the next chapter. Some limitations of this previous work are described. 

Chapter 3 is an in-depth study of the integral quadratic constraint approach to the 

stability analysis of recurrent neural networks. Theoretical as well as computational aspects 

10 



of the approach are considered. Specifically, work in [19, 52] is applied to reduce the 

conservativeness of the stability analysis. Also, it is shown that for solving the resulting 

matrix constraint feasibility problems, the augmented Lagrangian method of [46, 47] is 

much more efficient than standard semidefinite programming algorithms. These results are 

important for practical application of the algorithm presented in Chapter 5. 

When applied in an adaptive control context, the parameters of recurrent neural net­

works vary with time. Chapter 4 examines the stability analysis of recurrent neural networks 

in the time varying case. The application of integral quadratic constraints analysis to re­

current neural networks requires formulation of the networks as feedback systems between 

linear, time-invariant components, and the nonlinear, time-varying and uncertain parts 

of the system. A new formulation of time-varying recurrent neural networks as feedback 

systems is developed in Chapter 4. Experiments show that compared to the formulation 

developed in [79], this results in a less conservative stability analysis. Modifications of the 

basic stability problem that improve its numerical conditioning are also presented. 

The example earlier in this chapter hinted at how certain problems might arise in the 

application of stability analysis techniques to time varying neural networks in a feedback 

loop with a plant. Naive application of these techniques requires a large number of stability 

analysis problems to be solved. Since these problems can be expensive, this limits the 

applicability of these results to extremely simple systems. In Chapter 5 a general algorithm 

for filtering parameter updates to ensure stability is described. A method of biasing the 

parameter trajectory away from the stability boundary is developed. This bias reduces the 

number of expensive stability analysis computations that must be performed. On the other 

hand, it requires the solution of many smaller, but non-trivial problems. A technique for 

reducing the cost of solving these problem is also presented. 

In Chapter 6, the proposed algorithm is applied to a multiple spring-mass-damper system 

with nonlinear friction. The example demonstrates the capability of the algorithm to ensure 

stability of an adaptive controller for a non-trivial system. The example also exposes some 

remaining problems with the approach tha t are proposed as future research. Some general 

conclusions and a description of this future research are presented in the final chapter. 
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Chapter 2 

Background 

This chapter presents some background material useful for understanding the later chapters. 

Specifically, a class of dynamical systems known as recurrent neural networks is introduced. 

Then, after a brief review of some of the basic notions of stability for dynamical systems, 

a general framework for the analysis of feedback systems, known as integral quadratic con­

straints (IQC) analysis, is described. The IQC analysis method addresses stability analysis 

in terms of optimization problems with matrix constraints. The basics of numerical methods 

for solving this type of optimization problem are covered in Section 2.4. Two main classes 

of methods are considered: interior point methods and augmented Lagrangian methods. 

Both methods will be used throughout the remaining chapters. Finally, in Section 2.5, 

some previous work in the area of recurrent neural network stability is examined. 

2.1 Recurrent Neural Networks 

Recurrent neural networks (RNNs) are a large class of both continuous and discrete time 

dynamical systems. RNN formulations range from simple ordinary differential equation 

(ODE) models to elaborate distributed and stochastic system models. The main focus of 

this work is on the application of RNNs to control problems. In this context, RNNs can 

be seen as input-output maps for modeling data or acting as controllers. For these types 

of tasks, it will be sufficient to restrict attention to continuous time RNN formulations, 

primarily of the form 

x — -Cx + W$(x) + u 
(2.1) 

y=-x. 
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Here, x is the state of the RNN, u is a time varying input, y is the output of the network, 

C is a diagonal matrix of positive time constants, W is the RNN's weight matrix and $ is 

a nonlinear function of the form 

$(x) = [0(xi) 0(x2) . . . 4>(xn)}
T. 

The function </>(x) is a continuous one dimensional map, and generally a sigmoid like func­

tion, such as tanh(x). Since the RNN will be applied as an input-output map, the output, 

denoted by y, is defined to be the state x. More general models allow the selection of 

certain states as outputs or an additional mapping to be applied at the output layer. These 

modifications do not affect the stability analysis of the RNNs dynamics, but will need to 

be considered when the network is used in a control system. 

The stability analysis and stable learning methods constructed in this work are, in 

principle, applicable to other RNN structures such as discrete time RNN models or other 

continuous time models; an example is the echo state network [37]. Continuous time echo 

state networks have the form 

x = - (-ax + $(Wx + Winu + Wfby)) 

While some of the specific details of the proposed methods must be changed for application 

to this type of network, its structure is similar enough to (2.1) that the general principles 

will be the same. 

The dynamic system (2.1) can exhibit a wide variety of dynamics. Equation 2.1 can 

have a single, globally attractive fixed point whose value varies with different constant input 

signals. The ability of an RNN to have multiple fixed points allows it to be used as a type 

of associative memory since regions of the input space can be associated with the different 

fixed points. An example of an RNN with three fixed points is shown in Figure 2.1. The 

figure on the left shows the time evolution of the two states of the RNN. The figure on the 

right depicts the trajectory in state space with the arrows representing the direction of flow 

in the system. 

13 



Figure 2.1: An example of a recurrent neural network with three fixed points. On 
the left is a sample trajectory over time and on the right is the same trajectory in 
state space. 

RNNs can also possess limit cycles in the constant input case [73]. Figure 2.2 shows 

example dynamics of such a network. Time-varying input signals obviously can lead to 

even more complex dynamics, but even when the inputs are not time-varying (2.1) can 

exhibit chaotic dynamics [6]. The stability analysis that will be presented considers the 

case of time-varying input signals explicitly, but the results are intimately connected to 

these different dynamic situations in the constant input case. 

2.2 Input-Output Stability of Dynamical Systems 

Since the focus of this work is on the stability analysis of RNNs and control systems with 

RNN components, it is important to make clear what stability means in this context. This 

section provides an overview of important concepts from nonlinear systems analysis, and a 

working definition of stability is established. More thorough introductions can be found in 

[20, 42, 44, 91]. The presentation here follows along the lines of [44]. 

For the purposes of this document, an m-dimensional signal, u, will be defined as a 

mapping from the time interval [0, oo) to Mm. The most important class of signals for the 

analysis that will be presented is the space of signals that are piecewise continuous and 

square integrable. This space of signals in combination with the norm defined by 

\u\\cf — \ uT(t)u(t) dt, u(t) G 
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Figure 2.2: An example of a recurrent neural network with a stable limit cycle. 
On the left is a sample trajectory over time and on the right is the same trajectory 
in state space. 

forms a normed vector space denoted £™ or £™[0, oo). When the dimension of u(t) is 

unimportant the superscript m will generally be dropped. Also, the restriction of u to the 

interval [0, oo) will be assumed and the simpler notation, £2 will be used. 

The space £2 is of interest for stability analysis purposes since it describes the space of 

signals with finite energy. The following inner product can be associated with £2 

(u,v) 
1 f°° 

(t)v(t)dt = — u*(ju)v(JLu)du> 
27T J_00 

where u(jw) and v(jto) are the Fourier transforms of the signals, u and v. Since £2 is also 

a complete space, the addition of the inner product defines a Hilbert space. Hilbert spaces 

have important properties that will be exploited in the development of the stability analysis 

results that follow. Other classes of signals can be defined in a similar manner. For instance, 

the space of piecewise continuous, bounded signals with the norm 

IMI^m = sup ||«(i)||, u(t) € Rm, 
°° t>o 

is also a normed vector space and is denoted £™. 

A nonlinear system such as (2.1) can be viewed as an operator mapping an input signal, 

u, in some signal space to an output signal, y, into another signal space. It is the properties 

of this operator that determine the stability of the system. While it is tempting to define 
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an operator as a mapping from say, L™ ~^ £-2> a m o r e general definition is necessary. It is 

possible that an operator such as (2.1), call it H, can map a signal u G £™ to a signal that 

is not bounded on the interval [0, oo), in other words, not in C\. To address this difficulty, 

the notion of extended spaces must be introduced. The extended space, £™e, is defined as 

£™ = {u | uT e £™, V r e [ 0 , o o ) } 

where uT represents the restriction of the signal u to the time interval [0, r ) . Given this 

definition, the operator H is taken to be a mapping from £™e to Cpe. This definition 

allows poorly behaved operators, H, to be dealt with within the same framework. While 

an operator may map u e £2 to some unbounded signal not in £21 the truncation of this 

unbounded signal, (H(u))T, will often be in the extended space, Liz-

Before proceeding to define stability, one further definition is necessary. An operator, 

H, is said to be causal if (H(u))T = {H(u)T)T. Causal operators depend only on signal 

values in the past and not on any value of signals in the future. Systems such as (2.1) that 

have state space representations are causal by definition. With the basics in place, a formal 

definition of stability can be given. 

Definition 2.1 (Finite Gain Cp Stability [44]). An operator H : C™ —* £pe is finite gain 

Cp stable if there exists a non-negative constant 7 such that 

\\(H(U))T\\C« <7lKllqr-

for all uT in d™ and r in [0, 00). The constant 7 is called the gain of the system. 

Finite gain, stable operators that are also causal can be shown to satisfy the additional 

property [44] 

\\H(u)\\c$ <l\Mcp-

The choice of p and thus of signal space affects the meaning of the definition. When p 

is taken to be 00, finite gain £oo stability of an operator H implies that it maps point-wise 

bounded signals to point-wise bounded signals. When the space of signals is taken to be 

£.2 the definition implies that a stable operator H maps signals of finite energy to signals 

of finite energy. For complex systems, computational methods of assessing the stability of 
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an operator are very useful. The choice of p determines the applicability and complexity 

of some of these computational approaches. In what follows, the space of signals is taken 

to be £2- This choice gives the resulting stability analysis an interpretation in terms of 

energy amplification in the system. The stability analysis tha t is developed for RNNs will 

determine if an RNN is finite gain £2 stable and can produce an upper bound on this gain. 

2.3 Establishing Stability 

For linear operators, £2 stability analysis is straightforward. Consider the linear system 

x = Ax + Bu 
(2.2) 

y = Cx + Du, 

tha t has the associated transfer function, G{s) = C(sl — A)B + D. A transfer function 

relates the input of an LTI system to the output in the space of the Laplace transform of 

the signals, Y(s) = G(s)X(s). The Laplace transform is given by the equation 

/

oo 
x{t)e-stdt. 

- 0 0 

A necessary and sufficient condition for the stability of (2.2) is that all eigenvalues of the 

matrix A have real part less than zero. Such a matrix is called a Hurwitz matrix and the 

associated transfer function is also called Hurwitz. The £2-gain, 7, of the system is given 

by its so-called #00 norm 

IIGO'UOIIJ/OO = sup | |G( jw) | | 2 = s u p a m a x ( G ( j w ) ) , 

where crmax(-) denotes the largest singular value of a matrix argument. 

Consider two systems, with operators Hi and H2, connected in a loop as in Figure 2.3 

and given by the equations 

ex = u\ - H2(e2) 

e2 = u2 - -ffi(ei) 
(2.3) 

yi = -ffi(ei) 

2/2 = H2{e2). 

The system is said to be well posed if for all inputs ei,e2 6 £2 the system has a unique 

solution. In other words, u\, u2, yi , and y2 exist and are unique. A sufficient condition for 
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Figure 2.3: A feedback loop with interconnection noise. 

stability of the feedback loop, that is, of the mapping from u — [u\ u-2\T to y — [y\ y2\T is 

given by the small gain theorem. 

T h e o r e m 2.1 (Small Gain Theorem [44]). / / the feedback system given by (2.3) is well 

posed and the operators Hi and H2 are finite-gain C2-stable then the feedback loop (2.3) is 

finite-gain Li-stable if 

H#l lMI#2 | |< l . 

A proof is given in [44] • 

The small gain theorem gives an efficient test for stability of interconnected components 

when the computation of the necessary operator norms is efficient. Notice, however, tha t 

the theorem only states a sufficient condition for stability, and it is thus possible for the 

condition to be conservative. In fact, this condition is known to be quite conservative in 

many cases and techniques for reducing this conservativeness have been developed [15]. 

Another characterization of stability can be made in terms of the passivity of operators. 

Passivity theory is derived from the theory of linear circuits, and passivity signifies a prop­

erty that can be likened to the dissipation of energy in a circuit. The following definition is 

from [42]. 

Defini t ion 2.2 (Passivity). A causal operator, H : £,2e ~~> ^2e, is said t° be passive if 

((H(u))T,u}>0 

for all u E £2e and all r > 0. The operator is said to be strictly output passive if there 
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exists an e > 0 such that 

{(H(u))T,u)>e\\(H(u))r\ 

for all u G C2e and all r > 0. 

A system tha t is strictly output passive has an /^-gain less than 1/e [44]. The following 

passivity theorem is proved in [42]. 

T h e o r e m 2.2 (Passivity Theorem [42]). Assume that the feedback system (2.3) is well 

posed and that u2 — 0. If H\ is strictly output passive and H2 is passive then the system is 

stable in the sense that | |e2T | | < ^ I I^ITII for all r > 0. If additionally, H2 is bounded then 

\\eir\\ < C I I U 1T| | for all T > 0 and some c > 0. 

Like the small gain theorem, the passivity theorem is only a sufficient condition for 

stability. The application of loop transforms and multipliers can significantly reduce the 

conservativeness of the stability condition. The use of loop transforms and multipliers will 

be introduced in the context of a slightly modified feedback loop. Many nonlinear and 

uncertain systems can be viewed as the connection of an LTI system with some nonlinear 

or uncertain operator in a feedback loop. A general feedback system of this type is depicted 

in Figure 2.4, where the LTI operator G has the block form 

G(s) = 

Gi 'i] 

'Gn(s) G12(s) 
G2i(s) G22(s) 

disI-A^Bj + Dij 

with the matrices, A, Bi, d, Dij derived from the corresponding state space realization 

x = Ax + B\u + B2w 

y = C\x + Dnu + Di2w 

v — C2x + D2\u + D22w 

w = A(v). 

A common short hand for the operator, G, is 

(2.4) 

G 

A 

C i 

C2 

B\ B2 

A i £ 1 2 

-D21 -^22 
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Figure 2.4: An extended system for performance analysis. 

Since the operator G is LTI its £2-gain, 71, and passivity coefficient can be computed 

explicitly. Often the gain, 72, of the nonlinear operator A can also be computed, or at 

least bounded. Nevertheless the small gain theorem may prove to be conservative. On the 

other hand, by transforming the feedback loop as in Figure 2.5, it is often possible to show 

that the conditions of the passivity theorem are satisfied for the modified system. Under 

certain conditions stability of the transformed system is a necessary and sufficient condition 

for stability of the original loop. The first transformation considered is the addition of 

the additive operators, H\ and H2, to the loop. If Hi and H2 are bounded, causal, linear 

operators and the transformed loop is well-posed, then stability of the transformed loop is 

equivalent to stability of the original loop [42]. The input and output signals of the feedback 

loop are unaffected by the transformations. On the other hand, the passivity conditions are 

now applied to the operators (G — H2){I + HiG)^1 and (A + H\){I — H2A)"1. If operators 

Hi and H2 can be found that make the modified feedback loop passive, then stability can 

be assured. 

A second transformation that can be made is the introduction of an invertible operator 

M into the feedback loop. This operator is called a multiplier. The multiplier approach 

to stability analysis originated in the works of Popov [70], Zames [97] and Brockett and 

Willems [11]. A good summary of the approach can be found in [91]. Under the conditions 

of the following theorem, the stability of the multiplier transformed loop implies stability 

of the original system. A proof can be found in [20]. 

T h e o r e m 2.3 (Multiplier Theorem [31]). Take the system in Figure 2.4 with A a set of 

£2 —* £2 operators. Given a multiplier of the form 

M{s) = Ml(s)M2{s) (2.5) 
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Figure 2.5: The extended system of Figure 2.4 transformed by various loop ma­
nipulations. 

with M\{s) and M2(s) Hurwitz, and a constant e > 0 such that 

/

oo 

Re[v*(ju)M(joj)w(ju)}dw>0, v 6 £2 , w = A(i>), A e A, 
-oo 

and 

M*(jw)G(jw) + G*{ju))M{ju) •< -el, V u e R , 

i/ien £/ie system is £.2 stable for all A € A.. 

(2.6) 

(2.7) 

The two conditions of the theorem ensure that the transformed nonlinear operator is passive 

and that the transformed LTI operator is strictly passive thus ensuring the stability of the 

feedback loop by the Passivity theorem. 

Rather than deriving a multiplier for each particular problem of interest, the search for 

multipliers can be automated. For some class of systems, such as RNNs with a tanh(x) 

nonlinearity, a set of valid multipliers, M, must be specified. The following problem, if 

solvable, finds a valid multiplier. 
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Problem 2.1 (Multiplier Opimization Problem). 

maxe s.t. 

M{jco)G(ju) + G*(JLu)M(juj) ^ -el, V w e l , 

M eM, 

e > 0 . 

The constraint, M € M, poses both theoretical and computational problems. For 

Problem 2.1 to be efficiently solved the set A4 should be convex. Additionally, the repre­

sentation of M by linear matrix inequalities and simple linear constraints allows standard 

LMI software to be applied to Problem 2.1. The determination of a valid set M and a 

computationally feasible representation is a difficult problem, but some examples will be 

seen in the next chapter. 

Solving Problem 2.1 requires ensuring that the semi-infinite constraint (2.7) is satisfied. 

The problem is clearly computationally infeasible, but two approaches exist to circumvent 

the difficulty. The first approach tests the condition over a finite grid of frequencies, u [1, 65]. 

While this is computationally attractive, the approach can not always guarantee stability. 

An alternative approach gives an exact solution but at a higher computational expense. 

Application of the following lemma converts the infinite dimensional constraint (2.7) into a 

finite dimensional constraint with the addition of another decision variable. A proof of the 

lemma can be found in [72]. 

Theorem 2.4 (Kalman-Yakubovich-Popov (KYP) [72]). Given A e KnXn, B € RnXp, M = 

MT € R(n+P)x(n+P), with det(jwl - A) ^ 0 , for u e R, the statements 

{juI-A^B 
I M 

{juI~A)-lB) 
I 

<Q V w G R U J o o } (2. 

M + 

are equivalent. 

ATP + PA PB 
BTP 0 

-< 0 for some P = P1 e Rn X n (2.9) 

When n is large, the cost of introducing the additional variable, P, can be prohibitively 

expensive for standard LMI software. These solvers generally have a complexity of 0(m 3 ) 
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per step where m is the number of variables. For KYP problems they have a complexity 

of 0(n6) per step since the number of variables, m, is of order n2. Special purpose solvers 

have been developed for problems derived from the KYP lemma that can be much more 

efficient for large n [89]. 

Restricting the multipliers to be causal and decomposable in the multiplier stability the­

orem restricts the types of multipliers that can be applied. In [59] the method of integral 

quadratic constraint analysis (IQC) was introduced. The IQC approach to system analysis 

derives from much of the same literature and research as the multiplier approach and gen­

eralizes the multiplier theory by simplifying the conditions on valid multipliers. The main 

benefit of the IQC formalism is that it allows complex systems to be analyzed by considering 

descriptions of the system's various components. Also, the IQC paradigm allows general 

purpose software to be constructed for piecing together IQC models for complex systems 

and automating the derivation of the necessary optimization problems [43]. 

An integral quadratic constraint describes the relationship between two £2 signals, v 

and w in the following way 

v(ju) 
w{ju) nc/o/) W(JUJ) 

du > 0, (2.10) 

where v and w are the Fourier transforms of the two signals [59]. Pairs of signals satisfying 

the constraint are said to satisfy the IQC given by II. The IQC II is taken to have the form 

li(ju) = G){ju)MGf{ju), (2.11) 

with Gf a bounded, LTI operator and M a constant, symmetric matrix. Some IQCs, called 

static IQCs, have no dynamic component and consist only of the static matrix M. 

IQCs that are satisfied by the pair of signals, (v, w), in the feedback system in Figure 2.4 

will be of particular interest due to the following theorem proved in [59]. 

Theorem 2.5 (IQC Stability [31]). Take the system in Figure 2.4 with G a stable, linear, 

time-invariant operator mapping £2 —* £2 and A a causal £2 ~* £2 operator with bounded 

gain. The system is stable if 

1. for every r € [0,1], the interconnection of G and T A is well-posed; 
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2. there is an IQC, H, such that for every r € [0,1], (2.10) is satisfied for (v, TA(V)); 

3. there exists an e > 0 such that 

'G(JLO) 

I 
n(jw) 

G(ju) 
I 

1 -el, V w e l (2.12) 

The three conditions of the theorem require further elaboration. As previously discussed, 

well posedness means that for each input the system has a unique solution. For the particular 

feedback configuration of interest well posedness is given by invertibility of the operator, 

(/ — TGA), which can often be checked easily. In regard to the second condition, the 

following remark from [59] is important. An IQC, II can generally be partitioned as follows 

n = nn n 12 

n 1 2 1I22 

If III 1 ^ 0 and II22 h 0 then condition two of the theorem is satisfied for all r if and only if 

it is satisfied for r = 1. Since most IQCs satisfy these inequalities, the second condition of 

the theorem is usually simple to verify. The third condition is a semi-infinite condition that 

can be addressed computationally by application of the previously stated K Y P lemma. In 

addition, the search for a valid IQC can be formulated as an optimization problem much as 

the search for a valid multiplier was formulated. In fact, the IQC approach generalizes the 

Multiplier approach. To see this, take the restricted set of IQCs 

UUCJ) = 
0 M(jco) 

M(Ju)* 0 
(2.13) 

where M(s) is a multiplier satisfying (2.6). Note tha t the IQC approach does not require 

the factorizability condition (2.5) of the multiplier M(s). Both the multiplier and additive 

loop transformations can be treated by application of the IQC [42] 

U(jco) = 
I 

Hi{ju) 
-H2(ju) 

I 
0 M(juj) 

M(ju>y 0 

/ -H2(jcu) 
Hi{ju)* I 

In addition to analyzing stability, IQCs can be formulated for performance analysis [43]. 

In particular, an IQC can be constructed tha t bounds the £2-gam of a system. Consider 
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the extended system depicted in Figure 2.4 and given, in general, by the equations 

x ~ Ax + B\u + B2W 

y = C\x + D\\u + D\2tv 

v — C2X 4- D2\u + D22W 

w = A.(v). 

Assume the relation v = A (to) satisfies the IQC given, in the time domain, by 

C A (A)= / 
Jo 

0 0 

V 

w 

T 

n(A) 
r -1 

V 

W 

T 

dt>Q 

where II is linearly parameterized by A. Also, define the performance IQC by 

iT 

J
re 

0 

I 0 
0 - 7

2 / 
dt < 0. 

If a solution to 

inf7
2 s.t. <7p(7

2) + o-A(A) < 0 
72,A 

(2.14) 

exists, then its square root is an upper bound on the /Vgain of the system. The CTA 

condition ensures stability of the system, and the performance IQC ensures that 

iT 
I 0 
0 - 7 2 / 

dt „2„T„ y y — 7 u udt < 0 

|2 ^ 2 | | i|2 
|y||£2 < 7 

Thus, 7 is an upper bound on the £2-gain of the system. 

Application of the KYP theorem to the frequency form of the constraints in (2.14) 

results in the following problem 

Problem 2.2 (IQC Performance). 

inf 7 s.t. 
7,A,P 

ATP + PA PBX PB2 

BfP 0 0 
BjP 0 0 

+ E ^ 0 , 
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where £ = Si + £2 and 

T 1 
0 -

T 

n(A) 

0 

7 2 / 

"c2 
0 

"Ci £>n 
0 / 

D21 D22 

0 / 

£12" 
0 

v Ci Z?n Du 

. 0 / 0 

C*2 -D2I -^22 

0 0 / 

Problem 2.2 can be, efficiently solved when II is linearly parameterized by A and A is 

restricted to a convex set. The cost of directly estimating the £2-gain is an expansion of 

the main LMI constraint from a size of (2n)2 to (3n)2. 

When the use of a single IQC is insufficient for proving stability or gives a poor estimate 

of the ^2-gain, multiple IQCs can be applied. The application of multiple IQCs creates 

non-convex constraint sets which are difficult to optimize over. A relaxation known as the 

5-procedure reduces the non-convex constraint set to a single convex constraint. 

Let V be a linear vector space and ak : V —> 1Z for k = 0 , . . . , N. The 5-procedure 

is essentially a Lagrangian relaxation technique for converting the generally non-convex 

condition 

51 : tr0(!/) > 0 V y € V such that ak{y) > 0, k = l,...,N 

into the convex sufficient condition 

N 

52 : 3 rk > 0, k = l,...,N such that aQ(y) - ^ Tkok{y) > 0 V y 6 V. 
k=i 

Under certain conditions the convex condition, 52, is both necessary and sufficient for 

condition 51 [42]. Even when it is only sufficient, however, it is useful for constructing 

computationally tractable constraint conditions. 

If the pair of signals, (v,w), can be described by multiple IQCs a less conservative 

analysis can often be achieved. The resulting set of conditions 

G{ju) 
I n f c ( j t 

G(JLO) 

I 
X -el, k = l,...,N 

are converted, via the 5-procedure, to the constraint 

N 

Y,Tk G(JLU) 

I H-kiJoj) 
G(ju) 

I 
-< -el. (2.15) 
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Under the additional constraint that there exists a pair of signals, (v,w), such that 

ank(v,w) > 0 for k = 1 , . . . , N, Theorem 2.5 with constraint (2.15) is, in fact, both nec­

essary and sufficient. This is not to say that the conditions of the theorem are necessary 

for stability of a given system — since the IQCs may be satisfied by multiple operators, A 

— only that the use of the 5-procedure to incorporate multiple IQCs into the theorem's 

conditions does not introduce further conservativeness. If the IQCs are linearly parameter­

ized by some A '̂s in a convex cone then the r^ variables can be absorbed into the A/t's and 

removed from the problem [42]. 

2.4 Solving LMI Problems 

A brief introduction to linear matrix inequality problems of the type derived from the KYP 

lemma will be useful for understanding developments later in the paper. More complete 

discussions of LMIs and semidefinite programming can be found in [33, 9, 92]. 

A strict LMI is a constraint of the form 

n 

A(x) = A0 + Y^XiAi -< 0 

with i £ l " and A{ 6 §"• A non-strict LMI relaxes the constraint to allow equality with 

zero. Optimizing a linear constraint subject to an LMI results in the following problem. 

min c x 
(2.16) 

s.t. A{x) -< 0 

The LMI optimization problem (2.16) can be written as a standard semidefinite program 

(SDP) in dual form, 

T mm c x 

s.t. A(x) + S = 0 (2.17) 

SyO, 

where S € Sn is called a slack variable [92]. The associated primal form problem is an 

optimization problem over Sn given by 

max AQ • X 

s.t. A*(X) + c = 0. (2.18) 

X hO 
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where X • Y = tr XTY and 

'Ai • X" 

A*(X) = : 

A • X 

The SDPs that arise in this paper will all be written naturally in the dual form. The primal 

form of the problem is important, however, since the pair of problems (2.17) and (2.18) are 

related and under certain conditions have the same optimal value. 

Linear SDP problems are convex and can be solved in polynomial time. Interior point 

methods are generally considered to be the most efficient and robust algorithms for solving 

SDPs. See [93] for a good reference. Primal-dual interior point methods a t tempt to solve 

problems (2.17) and (2.18) simultaneously by minimizing the gap between the objective 

functions subject to the constraints. A good description of the method can be found in the 

appendices of [89]. Since the number of steps the algorithm takes is independent of problem 

size, the asymptotic run-time complexity of the primal-dual interior point method for SDPs 

is determined by the cost of solving the set of linear equations that give the updates for 

the decision variables. Throughout this paper the Sedumi software is used to solve LMI 

problems [83]. 

A different approach that is directly applicable also to nonlinear SDPs is the augmented 

Lagrangian, or penalty-barrier, approach of [46, 47]. The augmented Lagrangian approach 

works solely with the dual problem (2.17). The dual problem is modified with a penalty 

function, 

min c x 

s.t. $(A(x),p) r<0. 

The penalty function is chosen to ensure, among other things, tha t when p > 0 

A(x) d 0 ^ $ ( 4 ( x ) , p ) r< 0. 

The Lagrangian of the modified problem is 

F(x, U,p) = cTx + U • $ (A(x) ,p ) 

where U is the Lagrange multiplier and p is a penalty variable. The algorithm consists of 

repeated steps of minimizing F(x, U,p) for fixed U and p, followed by updates to U and p. 
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The unconstrained minimization of F(x,U,p) is the most computationally expensive step 

of the algorithm. Much like the interior point methods, the computational complexity of 

this step is determined by the cost of solving a set of linear equations, specifically, Newton 

equations derived from the Hessian of the Lagrangian, V^F(x,U,p). Rather than solving 

the Newton equations via a standard Cholesky decomposition, preconditioned conjugate 

gradient methods can be used. For SDPs with many variables compared to the size of the 

constraints the conjugate gradient approach has much better time complexity. In addition, 

the Hessian need not be formed explicitly since it is only used in matrix-vector products. 

This drastically reduces the memory and run time requirements of solving large scale SDPs 

since actually forming the Hessian matrix can account for a large portion of the run time 

and requires a large amount of memory. In the next chapter the primal-dual interior point 

method and the augmented Lagrangian method will be compared on a set of problems 

derived from RNN stability conditions. The augmented Lagrangian approach of [47], be­

cause of the way it solves the Newton equations, has much better overall time and space 

complexity. 

2.5 Previous work on Stability of RNNs 

The stability of RNNs has been addressed from many different viewpoints. Much of the 

work in this area considers the RNN as a sort of dynamic memory device mapping constant 

input signals to different fixed values. Stability in this context means that the network 

states converge for constant inputs. Often the stability analysis allows some uncertainty in 

the knowledge of the nonlinearity, delays in the interconnections, or noise in the connection 

weights. This allows application of the stability results to hardware implementations of the 

networks where heat, defects, and other types of noise affect the behavior of the system. 

The literature is this area is quite vast but not immediately applicable to the problem at 

hand where time-varying inputs are the rule. A representative sample can be found in the 

references [5, 14, 94, 16]. 

The main point of origin for the research presented in this dissertation is the work 

of Steil in [79, 82, 80]. Of the most interest are LMI conditions developed in [79] for 
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the stability of both time-invariant and time-varying RNNs with time-varying inputs. In 

addition, a method of approximating the maximal allowable bounds on weight variations is 

given in [82]. The conservativeness of these LMI conditions is analyzed and also reduced in 

Chapters 3 and 4 of the present document. 

An LMI condition, identical to the one in [79], is presented in [9] for the analysis of the 

so called Lur'e system. The Lur'e system is given by the equations [9] 

x — Ax + Bpp + Bww 

q = Cqx 

z — Czx 

Pi(t) = fa{<n{t)), v i = l , . . . , np, 

where p(t) € W1" and the fa satisfy the conditions 

0 < (rfa(a) <a2, V a eM.. 

This type of system has been studied since the 1940's, beginning with the work of Lur'e and 

Postnikov in [56]. The class of RNNs considered in this dissertation are clearly a subclass 

of the Lur'e systems, so it is no surprise that similar stability analyses have resulted. The 

analysis in Chapter 3 applies recent results tha t reduce conservativeness in the case when 

all of the fa's are the same. In Chapter 4 the case when Bp is time-varying is considered. 

The work of Chu in [17, 18] considers the subset of Lur'e systems where the fa's are equal. 

Taking this fact into consideration, Chu derived an improved analysis for this specialized 

class of systems. Papers by D'Amato et al. [19] and Kulkrani and Safonov [52] present 

similar results to the work of Chu in the context of the multiplier and IQC theory. These 

results are considered in detail in the next chapter. 

The class of recurrent networks known as echo state networks (ESN) was mentioned 

briefly early in this chapter. The defining property of ESNs is the echo state property 

which says that , in the long term, the dynamics of the network are independent of initial 

conditions and that similar inputs produce similar state trajectories [36]. This class of 

networks is popular because there exist efficient, well behaved learning algorithms for the 
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weights of ESNs [38]. The efficiency comes from the fact that only a subset of the weights 

is adapted and tha t the resulting optimization problem is convex. More general adaptation 

like tha t used in standard RNN algorithms gives rise to nonconvex problems with many 

local minima. The well-behavedness of the learning algorithms comes from the fact that 

the networks satisfy the echo state property and only the output weights are adapted; 

the networks do not pass through bifurcations during adaptation [13]. Such bifurcations 

plague learning algorithms for s tandard recurrent network architectures by introducing 

discontinuities into the error surface [21]. 

Necessary and sufficient conditions can be derived for the echo state property based on 

algebraic properties of W [37, 12]. For certain classes of weight matrices, such as upper 

triangular W, these conditions are known to be both necessary and sufficient [12]. The echo 

state property is essentially an incremental stability property. A system tha t is incremen­

tally stable maps input signals that are close to state trajectories tha t are close in the same 

sense. This type of behavior is analyzed in the work of V. Fromion, specifically [29] which 

gives conditions that ensure the incremental stability of RNNs. The results presented in the 

following chapters do not always guarantee incremental stability and so do not, for instance, 

always guarantee the echo state property. The results do, however, allow bifurcations in 

network dynamics to be avoided during adaptation. A more in depth study of the relation 

between the work presented here and the echo state network literature is left for future 

research. 
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Chapter 3 

Analysis of Time-Invariant RNNs 

Research on the stability of recurrent neural networks has yielded a large variety of results. 

Typically, these results are limited to a particular configuration of the RNN. For example, as 

discussed in the previous chapter, RNNs can be used as a type of associative memory when 

the inputs are not time varying. In this situation it is necessary to show that the RNN does 

indeed converge to a fixed point for some set of constant inputs. Many such results exist; 

see for example [5, 14]. For time-varying inputs, an RNN is generally seen as a nonlinear, 

input-output map, and the type of stability of interest is input-output stability. Several 

stability results are known for this situation. For instance, it is known that when W has 

a maximum singular value less than one, the RNN will have stable dynamics [36]. Often 

these criteria are too conservative and limit the optimization of some broader objective. 

Unfortunately, analytically characterizing the complete set of matrices that result in stable 

dynamics is difficult, and a computational approach must be taken. In this section an 

approach is developed that casts the stability analysis of RNNs as a convex optimization 

problem using the IQC method described in Chapter 2. The method presented here is 

similar to that in [79], but provides less conservative stability conditions. This will be 

useful in later chapters where the stability analysis is applied to RNNs in a feedback loop 

with a controlled system. 

Throughout this chapter attention will be fixed on the RNN described by the equations 

x — -Cx + W$(x) + u 
(3.1) 

y = x 

where u is the time-varying input signal and y is the output . The matrix C is a fixed, 
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diagonal matrix of positive time constants, and the matrix W represents the time-invariant 

connection weights between the neurons of the network. In Chapter 4 the case of time-

varying W is considered. The function $ (x ) will be taken as 

$(cc) = [tanh(iri) t anh(x2) . • • tanh(a;n)] 

unless explicitly specified otherwise. Determining the stability of such a nonlinear dynamic 

system is difficult. The approach considered here relaxes the problem such tha t the stability 

analysis instead involves sets of linear systems. The problem is relaxed by replacing $ with 

a set of operators, A , that contains $ but has a more tractable representation. This can 

also be viewed as finding a description of the operator, $ , tha t is more amenable to analysis. 

The methods considered below use descriptions of the nonlinear operator in terms of integral 

constraints on its behavior. For example, the constraint 

(v,M$(v))>0, VMeM 

can convey useful information about <5 if M. can, in turn, be described by a set of linear 

constraints. These types of integral constraints will often be satisfied for nonlinearities 

other than <!>; the set of all operators satisfying such constraints is denoted by A . Given de­

scriptions of this type, feasible computational methods for stability analysis can be derived. 

These methods, however, will capture stability information about the set of systems derived 

from A , and as such, will generally be conservative for the particular nonlinearity of inter­

est. More descriptive constraints on the nonlinear operator will reduce the conservatism of 

the stability results, but will generally increase the cost of the computational analysis. 

The RNN defined by (3.1) can be viewed as a feedback loop between a linear, time-

invariant (LTI) system and a nonlinear or uncertain operator. The LTI operator G and 

state space matrices are given by 

" -C 
I 
I 

I 
0 
0 

w 
0 
0 

where w — <&(v). Since the system has no feed-through terms, D^j = 0, it is well posed for all 

inputs in £2- The sections that follow develop a number of different stability criteria for (3.1) 
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ranging from simple small gain criteria to complex LMI based tests. These different results 

are compared in terms of conservativeness and computational complexity in Sections 3.5 

and 3.6. 

3.1 Stability by the Small Gain Theorem 

Stability of (3.1) can be proved via the small gain theorem if 

| | G | | | | $ | | < 1 . (3.3) 

In general the norm of <3?(x) will be denoted by f3. With (fr(x) = tanh(x), (3 — 1, and the 

small gain theorem simply requires that ||G|| < 1. Since G is an LTI operator its norm is 

readily computed. First note that 

G(JU) = (jui + cy'w, 

and that when C = I, as assumed for this Chapter, that ||G|| = ||W||. So the small gain 

theorem gives a very simple test for stability of the RNN. This condition is equivalent to 

that developed in the echo state network literature for ensuring the so called echo state 

property [36]. The examples in Section 3.5 show that the small gain condition is quite 

conservative. This conservativeness can be reduced by applying a scaling to the operators 

[12]. Essentially, a multiplier is introduced into both paths in the feedback loop, resulting 

in 

GQU) = TG{juo)T~~l, and * = T - 1 $ r . 

Since the operator $ is assumed to be diagonal, it commutes with a diagonal scaling T 

resulting in $ = T~1T<& = $. Applying the small gain theorem to the modified feedback 

loop results in the condition 

WTWT^W < 1. 

To reduce the conservativeness of the condition the norm should be minimized over all 

positive, diagonal matrices, denoted T>+. The resulting optimization problem is 

min7 s.t. WTTW -< -y2T, T e T>+ 

34 



which is an instance of the generalized eigenvalue problem [9]. The problem is quasi-convex 

and can be solved efficiently using special interior point methods. If a T can be found such 

that 7 < 1 then the RNN is shown to be stable. 

3.2 Stability with Multipliers and Transformations 

In [79] an LMI based method for analyzing the stability of RNNs is developed. The LMI is 

derived by introducing multipliers and loop transformations, and then applying the passivity 

theorem and K Y P lemma. The nonlinearity 4>(x) is assumed to lie in the sector [0,/?]. A 

loop transformation, Hi = fi~xI, is applied to normalize the sector and give the modified 

operator (&(x)(I — /3 _ 1 $(a ; ) ) _ 1 a gain of one. The loop transformation operator, H\ is taken 

to be zero. The resulting forward pa th operator is G — (3"lI. 

To apply Theorem 2.3 to the modified RNN feedback system it is necessary to find a 

class of multipliers that satisfies the first two conditions of the theorem for the nonlinearity 

&(x). When the function <fi(x) is bounded in a positive sector, tha t is, when it satisfies the 

condition 

ax2 < X(/>(x) < j3x , 

0<a<(3 a, (3 e R, 

it is easy to show that the set of diagonal matrices with positive entries, T>+, is a valid set 

of multipliers. Taking M(s) = T g T>+, condition (2.6) becomes 

/

oo 

Re[z*(juj)T<S>(z(JLu))}dLU > 0. 

This condition holds for all z € £2 since 

n n 

x T $ ( x ) = Y^<kxi<l>(xi) > Y d i x i a ^ ° V x e nn-

The set T>+ is convex and has an efficient representation as a set of n linear constraints of 

the form da > 0. Given this set of multipliers the stability of an RNN can be assessed by 

solving the LMI feasibility problem, Problem 2.1. 

The full problem can be derived as follows. Call the modified feed-forward operator, G 

and let G = (G - Z?"1/), also let M(ju) = T eV+. Condition (2.7) of Theorem 2.3 can be 
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written as follows 

TG(jto) + G(jcu)T = TG(ju) - P~XT + G(ju)T - p^T 

"0 T 
T -2p~xT 

G(JOJ) 

I 
G{ju) 

I 
-< -el. 

At this point the KYP lemma can be applied. It yields the condition 

-< -el -< 0 
-CP-PC PW + T 
WTP + T -2p~lT 

(3.4) 

where P — PT > 0. This result appears multiple times in the literature, see Chapter 6 of 

[9] for example. In [79], this condition is written as 

CP + PC PW + T 
WTP + T 2(3~lT 

y ei (3.5) 

but the two formulations are equivalent due to the following result from [8]. 

Theorem 3.1 (Theorem 1.3.3 from [8]). If A, B >: 0 then the block matrix 

A X 
X* B 

1 V* is positive if and only if A>z XB X 

Applying the theorem to both (3.4) and (3.5) shows the equivalence. 

3.3 IQC Stability Analysis 

Integral quadratic constraint analysis [59] is a formalism for the analysis of complex, nonlin­

ear, and uncertain systems made up of connections between different components. The IQC 

theory generalizes the multiplier theory by removing some of the constraints on multipliers. 

It also leads to automated analysis tools such as the IQC/? toolbox [43]. While this tool is 

not used for the work described here, it is a convenient way to automate the construction 

of the type of LMIs developed here. This is of particular importance, say, when an RNN is 

used in a feedback loop with a complicated nonlinear plant that must also be modeled with 

IQCs. 

To formulate the RNN stability problem in the IQC framework it is necessary to find 

a set of IQCs describing the nonlinearity in the system. A simple IQC describing diagonal 
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nonlinearities in the sector [0,1] is given by 

n(ju,) = 
0 T 
T -IT 

(3.6) 

where T e V+. For this IQC, condition (2.10) is easily verified for A(z) = $(2) with 4>(zi) 

bounded in the sector [0,1]. To see this, consider 

U(JUJ) = <5>{z)'Tz + z'T$(z) - 2&(z)'T$(z) 

n n 

= 2^2uzi(j>(zi) -2^2tl4>2{zi) 

n 

= 2^2ti{zi<l>{zi)-j>{zl)
2)>Q. 

The last step relies on the relation 

(0(zi) - azi)((/)(zi) - 0Zi) = <f>(zi)2 - Zi^z,) < 0 

which follows from the definition.of a sector bounded nonlinearity. Notice that this IQC 

results in the same stability conditions derived in the previous section by application of loop 

transformations, multipliers, and the passivity theorem. With this IQC in hand, stability 

can be proved by finding a particular T G T>+ for which condition (2.12) is satisfied. 

The /Vgain of an RNN is the maximal amplification of energy in the input signal 

observed in the output signal. To estimate the £2-gain of an RNN, Problem 2.2 can be 

specialized for (3.1). Taking the IQC defined in (3.6), the specialized problem is as follows. 

Problem 3.1 (RNN IQC Problem). 

inf 7 s.t. 
1,T,P 

-CP -PC-VI P PW + T 
P - 7 / 0 

WTP + T 0 _2T 
-<0, P = P T T ev. 

3.4 Additional IQCs for the RNN Nonlinearity 

In the previous section a test for the stability of an RNN was developed using the IQC for­

malism. A simple IQC describing nonlinearities restricted to a positive sector was described 
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and applied to the $(:r) function in the RNN system (3.1). While the test in Problem 3.1 

is sufficient for proving stability of an RNN, more exact conditions can be constructed by 

the application of multiple IQCs. Additionally, more descriptive IQCs can be developed 

for the nonlinearity $(x). In this section several IQCs are described and applied to the 

RNN stability problem. The 5-procedure introduced in the previous chapter is applied to 

combine the multiple IQC constraints. 

3.4.1 Popov IQC 

The nonlinearity $(x) does not vary with time, but the simple diagonal multipliers and 

corresponding IQC (3.6) considered thus far do not account for this and are equally valid 

for time varying nonlinear operators. An IQC derived from the Popov criteria [70] is only 

valid for time invariant nonlinear operators and therefore provides a more exact description 

of the RNN nonlinearity. Results in [79] show that incorporating this constraint can reduce 

conservativeness in the stability analysis. 

The Popov IQC is a dynamic IQC of the form 

0 JOJ 
, q>0. 

This IQC is not bounded on the imaginary axis and must be used in combination with the 

loop multiplier, M(s) — -^-j- [59], which yields the combined IQC 

0 

1-ju 

3^ 

0 

The modified IQC is bounded and can be applied in combination with the previously pre­

sented IQC. The resulting LMI stability condition has the form 

-CP-PC PW + T-QC 
WTP + T-QC QW + WTQ-2(3-1T -< -el -< 0 

where Q £ P_i 

3.4.2 IQCs for Repeated Nonlinearities 

In addition to using multiple IQCs to reduce conservatism in the stability analysis, better 

IQCs — those that account for more properties of the nonlinearity — can further improve 
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the results. The IQC (3.6) is valid for nonlinearities in which 4>i{x) and 4>j{x) a r e different 

sector bounded functions. In [19] an IQC is developed for repeated nonlinearities which have 

the restricted form 

$(x) = [0(xi) 0(x2) . . . (j>(xn)]
T. (3.7) 

A further restriction can be made to the case when <f)(x) is an odd function, such as tanh(x). 

The following result is proved in [19], 

Theorem 3.2 (IQC for Repeated, Odd Nonlinearity). Take $ : £2 —• £2 to be a static 

diagonal operator of the form (3.7) with <p an odd function. Let T e snXn and satisfy 

n 

Tu> J2 lTiil Vi = l. . .n. (3.8) 

Then for any z € £2 the following two conditions hold. 

1. If 4> is monotonically non-decreasing and belongs to a finite sector [0, A;], then 

($(z),Tz)>0. (3.9) 

2. If <f> has slope in the interval (a, (5) then 

{§{z) - az, T(Pz - §(z))) > 0. (3.10) 

Matrices satisfying (3.8) are called diagonally dominant and denoted Sdd- All diagonally 

dominant matrices are also positive definite, but the converse is not true. The set of 

positive diagonal matrices is a subset of the diagonally dominant matrices. Since tanh(x) 

is a monotonically non-decreasing, odd, function with slope in the interval (0,1 + e) the 

condition (3.10) holds. This condition is equivalent to (2.10) with 

U(JUJ) -
0 (1 + e)T 

(l + e)T - 2 T 

Numerically, the (1 + e) term is irrelevant since e can be taken arbitrarily small. Compared 

to the IQC (3.6), less conservative results are achievable with this new IQC because the 

resulting set of valid IQCs is larger. This means that better estimates of the ZVgain bound 

of the system can be computed and that some systems that could not be proved stable 

using (3.6) can be proved stabled. 

39 



A result from [52] shows that T need not be diagonally dominant, or even symmetric, 

to satisfy the conditions of a valid multiplier; T must only satisfy 

n 

Tu > 2_, l^ijl V i = l . , . n , and 

n 

Tu > ^ \Tji\ V i = 1 . . . n. 
3 = 1, j^i 

Matrices satisfying this condition are called doubly dominant, and the set of such matrices 

is denoted MM- The set contains the diagonally dominant matrices and also the positive 

diagonal matrices. The larger set of IQCs tha t results can further improve the gain estimates 

for RNNs and reduce the conservatism in the stability analysis. Since T is not symmetric, 

the resulting IQC is of the form 

nCM 
0 T 

(3.11) 

The second condition of the IQC theorem can be simplified as described in Chapter 2 

because the lower right hand corner of II satisfies ~(T + TT) y 0. 

Using these new IQCs in Problem 3.1 requires restricting T to be in S^d or Aidd- Fol­

lowing [19] the set of diagonally dominant matrices can be described by the equations 

T = T+ -T~, 

T+,T~ e S n x n , 

T+>0 V i , j = l , . . . , n , 

T^ > 0 V i,j = l , . . . , n , 

Tr = 0 V i = l , . . . , n , 
n 

n>Y,iTti+T-3) V* = l,...,n. 

Implementing these constraints requires the introduction of n{n — 2) decision variables for 

T + and T~ and n 2 linear constraints. The constraints for T ~̂ are implemented implicitly 

— in the dual form problem — in the definition of T~. For the IQC of [52], twice as 

many variables and constraints are necessary since T is not symmetric. Whether or not the 

additional computational cost is worthwhile depends on the application. In the next section 
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several examples are developed that highlight the difference in cost and conservativeness of 

the different IQCs. 

3.5 Experimental Evaluation 

In this section the stability analysis described in the previous sections will be illustrated 

on a few example networks. The different IQCs are compared on various network sizes to 

provide insight into the trade-off between computational cost and conservativeness in the 

stability analysis. For all of the examples in this section <f>(x) is the tanh function and time 

constants are all equal to one, C — I. 

3.5.1 Analysis of Simple Network 

An analysis of a simple RNN with W £ Wnxn will illustrate some important properties of 

the different stability conditions. Define the matrix W(a,b) as 

W(a,b) = 
-.4326 a 

b .2877 

By allowing a and b to vary over the range [—8, 8] the conservativeness of different conditions 

can be compared visually. The first experiment compares the set of weight matrices that 

could be proven stable using the small gain theorem, the scaled small gain theorem, and the 

IQC method with IQC (3.6) (equivalently, the LMI (3.4) from [79]). The results are shown 

in Figure 3.1. The results show that the small gain theorems results in a more conservative 

analysis than the LMI approach, even with a simple IQC. On the other hand, the two small 

gain theorems — especially the simple condition (3.3) — are more computationally efficient. 

Figure 3.2 shows the set of (a,b) pairs for which stability could be proven by the IQC 

approach in Problem 3.1 with different IQCs. Three cases were compared where T was 

restricted to be in V+, Sdd, or M.dd- I n the 2 x 2 case the IQC from [19], with T diagonally 

dominant, does not produce much of a reduction in conservativeness. As shown in the next 

section, this is not the case for larger networks. The IQC of [52], with T doubly dominant, 

does reduce the conservativeness quite a bit, but as the next example will show, inclusion of 

the Popov IQC provides a much greater reduction in conservativeness for this small network. 
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Figure 3.1: A comparison of the diagonal IQC approach with the small gain and 
scaled small gain theorems on a 2 x 2 RNN. 
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Figure 3.2: A comparison of different IQCs applied to a 2 x 2 RNN. 
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Figure 3.3: The set of matrices for which stability is given by the IQC 3.6 and the 
Popov IQC. 

Figure 3.3 shows the set of weight matrices proved stable by the use of the diagonal 

IQC and the Popov IQC. Addition of the Popov IQC expands the set of provably stable 

weight matrices and makes the stable sets for the three nonlinearity IQCs the same in this 

2 x 2 example. Note, however, that the computed gains are not the same and more complex 

IQCs result in better upper bounds. 

3.5.2 £2-gain Est imation Examples 

Applying the IQC stability analysis allows an upper bound on the ^2-gain of an RNN to 

be computed. A good estimate of this gain can allow the small gain theorem to be applied 

when the RNN in connected in a loop with other nonlinear systems. Better estimates of 

the gain allow a wider range of interconnected systems to be proven stable. To illustrate, 

upper bounds on the £2-gains for the RNN from the previous section are computed using 

the doubly dominant IQC. These gains are shown in Figure 3.4. The bound on the /Vgain 

increases exponentially as the weight matrix nears the stability boundary. This makes sense 

because the stability analysis declares stable only RNNs for which a finite upper bound on 
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Figure 3.4: The estimated £2-gains for the stable weight matrices from application 
of the doubly dominant IQC. There are some edge effects in the figure due to the 
coarseness of sampling. 

the gain can be computed. 

In the next experiment, gains are computed for RNNs with the following four weight 

matrices 

W3 = 

Wi = 

0.3274 

0.2341 

0.0215 

-1.0039 

-0.9471 

-0.4326 

-1.6656 

-0.3744 

-1.1859 

-1.0559 

1.4725 

0.0557 

W 4 

0.1253 

0.2877 ; 

-1.2173 

-0.0412 

-1.1283 

-1.3493 

-0.2611 

e M30x> 30 

W2 = 5Wi, 

0.9535 -0.2624 

0.1286 -1.2132 

0.6565 -1.3194 

-1.1678 0.9312 

-0.4606 0.0112 

The weight matrix W4 has elements drawn independently from a standard normal distri­

bution. It has the following properties: max Re (X(W)) — 0.8368, |A m a x (W) | — 0.8805 and 

||W|| - 1.8666. 

The following definitions are made for brevity: 
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Wi 

w2 
w3 
w4 

1*9 

-
-
-
-

Issg 

20.5633 
-
-
-

Id 

1.8374 
-

77.3804 
-

id 

1.8304 
-

8.2504 
-

Idd 

1.8315 
27.8302 
2.7857 
17.7149 

idd 

1.8304 
12.2278 
2.1354 
15.4765 

Iks 

1.8304 
21.3654 
1.9689 
13.6553 

7L 

1.8304 
12.2278 
1.8552 
13.2346 

Table 3.1: Results for estimating the gain of several RNNs using different tech­
niques. A '-' signifies the inability of the given approach to prove stability. 

• 7Sff is the gain estimated using the small gain theorem [79], 

1 
Isg 

i-\\w\V 

7 s s g is the gain estimated by the scaled small gain theorem [79], 

IITIIIIT-1!! 
7s so — 1 - I ITWT- 1 ! 

• 7d is the gain estimated using the IQC approach with IQC (3.6) and T G T>+, 

• jdd is the gain estimated using the IQC approach with IQC (3.11) and T € Sdd, 

• 7fcs is the gain estimated using the IQC approach with IQC (3.11) and T e M-dd-

To denote addition of the Popov IQC, the notations j ' d , 7 ^ , and j ' k s are used. The results 

of the different gain estimates are shown in Table 3.1. The results illustrate the decreasing 

conservativeness of the more computationally involved approaches. In the next section 

the question of conservativeness is addressed in more detail. In Chapter 5 the effect of 

conservativeness in the stability analysis on the ability of an adaptive system to optimize 

performance will be illustrated. 

3.6 Discussion 

The experiments in the previous section illustrated the general behavior of the proposed 

stability analysis method and showed the effects of different IQCs on the analysis. In this 

section three properties of the stability analysis are addressed in more detail. In the presence 

of constant inputs the stability analysis ensures that the RNN (3.1) is asymptotically stable. 

There is then a relationship between the space of weights matrices for which static stability 
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can be proven and points in the weight space at which bifurcations of the RNN dynamics 

occur. This is discussed in more detail in the next section. Closely related is the issue of 

continuity in the network dynamics and the relationship of continuity to stability. The use 

of different IQCs affects the meaning of the stability results, in the sense that the use of 

some IQCs ensure, in addition to stability, continuity of the solutions. Finally, a number of 

computational issues related to solving Problem 3.1 are explored in the last section. 

3 . 6 . 1 S t a b i l i t y a n d B i f u r c a t i o n s 

The idea of input-output stability is related to the more common notions of stability, such as 

Lyapunov stability for unforced systems. If a system is input-output stable then the origin 

is an asymptotically stable fixed point for the zero input case [44]. The relationship ties 

the notion of input-output stability over a set of RNN weight matrices to the occurrence of 

bifurcations. In Figure 3.5 two phase diagrams are shown. The phase diagrams depict the 

RNN flow with a constant zero input. In the left plot, the weight matrix has a — b — 1 which 

is a point just inside the region of provable stability. There is a single globally attractive 

fixed point at the origin. In the right plot, the weight matrix has a = b = 1.1 which is a 

point just outside the stable region. The system has three fixed points: an unstable fixed 

point at the origin and two stable fixed points, symmetric about the line y — —x. This 

behavior is typical of a system passing through a pitchfork bifurcation [69]. The key feature 

of this example is that the IQC stability analysis is non-conservative with respect to this 

feature at this particular point in the weight space. 

Standard nonlinear systems analysis [69] shows that a fixed point is stable if all the 

eigenvalues of the system's Jacobian have negative real part at the fixed point. When 

evaluated at the origin, the Jacobian of the RNN equation (3.1) is given by 

~dF\~ 

where F(x) is the right hand side of (3.1). The fixed point at the origin is stable if 

= W-I 

ReXi(W-I)<0, V i € l , . . . , n , (3.12) 

where Aj is the zth eigenvalue of its argument. This condition is necessary for input-output 

stability as defined in Chapter 2. To see this consider the case where another point besides 
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a - b = 1, Y = 104.5521 a - b = 1.1, y „ - . 

\ \ \ \ \ \ 

Figure 3.5: An example of a bifurcation occurring in the zero-input dynamics 
of an RNN. In the left plot, there is a single stable fixed point at the origin. In 
the right plot, there are three fixed points marked by large dots; the system has 
passed through a pitchfork bifurcation. The stability analysis with any IQC is non-
conservative with respect to this transition. Sample trajectories are shown with the 
starting points marked by the smaller dots. The arrows represent the vector field 
induced by the zero input RNN equations. 

the origin is an asymptotically stable fixed point. For zero input, the state will converge to 

this nonzero fixed point for some initial conditions, and thus the output will have unbounded 

norm; there can be no finite gain bounding this signal amplification. While the condition 

is obviously necessary it is not necessarily sufficient. 

For the 2 x 2 RNN example, the set of weight matrices that satisfy this necessary 

condition is shown in Figure 3.6. Clearly, the set is equivalent to the set of weight matrices 

proven stable by use of the diagonal and Popov IQCs. In this 2 x 2 case it appears that (3.12) 

may be both necessary and sufficient. The next example explores the issue further. 

Take W to be the 3 x 3 matrix 

W = 

0 2 0 
0 0 2 
a - 2 0 

(3.13) 

Some example dynamics of this system were shown for a = —4 in Figure 2.2 of Chapter 2. 

The system has a stable limit cycle and an unstable fixed point at the origin. When a > —4 

the origin is an attracting, stable, fixed point. So, as the system passes from a > —4 to 

a < — 4 it passes through a Hopf bifurcation [69]. In passing through this bifurcation, two 

of the eigenvalues get a positive real part . This explains why the origin is no longer an 

asymptotically stable fixed point. Passing through the bifurcation, makes / V g a i n stability 
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Figure 3.6: Weight matrices with Re A«(W - I) < 0. 

of the system impossible. Table 3.2 shows the minimum value of a £ [—4,0] at which 

different combinations of IQCs are able to prove stability. 

It appears from these results that the scaled small gain theorem is not as conservative 

as the IQC approaches with respect to this transition. The use of doubly dominant IQCs 

with the Popov IQC, however, also transitions from stability to instability at a — —4 and 

so appears to be non-conservative in this case. These two examples suggest that there may 

exist conditions where the eigenvalue condition (3.12) is sufficient as well as necessary for 

stability. To understand the problem in more detail, the issue of continuity needs to be 

discussed. 

3.6.2 Incremental Positivity and Continuity 

The stability results presented thus far give sufficient conditions for an input-output opera­

tor, in particular (3.1), to map signals from £2 to £2- Following the definition of Zames [97], 

stability also requires that the input-output operator be continuous. To establish continuity 

in terms of the IQC or multiplier theory, it is necessary not only for the IQC or multiplier 

to preserve positivity (2.6), but also to preserve incremental positivity [20]. An operator, 

, Re X < 1 
+ max 
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asg 

-

Qssg 

-3.998 

<*d 

-

< 

-3.235 

add 

-

a'dd 

-3.420 

aks 

-2.815 

a'ks 

-3.999 

Table 3.2: Minimum value of a € [—4,0] at which different combinations of IQC 
give stability of an RNN with weight matrix 3.13. Recall that a' represents the 
addition of the Popov IQC. 

F, is incrementally positive if [53] 

{x-y,F(x)- F(y)) = 

/

oo 
(x(jco) - y(ju))*(F{x(Ju)) - F(y(ju;)))du > 0, Vx,y,F(x),F(y) € C2. 

-oo 

For example, the operator $ in the RNN is incrementally positive since it is monotone 

increasing. 

For a multiplier, M, to preserve incremental positivity of an operator, F, it must satisfy 

(x-y,M(F(x)-F(y)))>0. 

The following example shows that the multipliers in Sad and M.dd do not preserve incre­

mental positivity. Consider the diagonally dominant matrix 

G = 

30.1273 -4.3628 0.0000 5.5058 ' 

-4.3628 46.9257 -11.0083 -0.0000 

0.0000 -11.0083 33.6067 0.0000 
5.5058 -0.0000 0.0000 93.3303 

Let the two signals, x and y, have the constant values 

x = [1.3683 16.1398 0.8666 1.4473] and 

y = [3.1623 1.9500 -0.2566 1.4126] 

for t G [0,2] and to be zero elsewhere. Also, take F(x) to be the tanh(-) function. The 

signals are clearly in £2, yet 

(x-y,F(x)-F{y)} = 3.6862, 

and 

{x-y,G(F(x)-F(y))) x(t)-y(t)YG(F(x(t))-F(y(t)))dt 
0 

-18.5472 / dt 
Jo 

< 0. 
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The multipliers in Sdd and Mdd do not in general preserve the incremental positivity of 

the nonlinearities of the RNN, and thus the multiplier theory does not in general give a 

sufficient condition for continuity of the RNN when these multipliers are used. The same 

result can be shown for the IQC conditions when T is in Sdd or Mdd- So, while the 

output of the system is guaranteed to be bounded and in £2, it may be critically sensitive 

to the input. That is, a small perturbation of the input may produce a change in the 

output that is unbounded [30]. In [53] the Popov multiplier is also shown not to preserve 

incremental positivity. Additionally, it is proved that the inputs for which non-continuity 

can be observed are always time varying. 

Having made these observations, it is then important to realize that even though the 

results of the previous section suggested the possibility that the eigenvalue condition on 

W might be necessary and sufficient for stability in certain cases, that the condition does 

not address sensitivity to inputs. The importance of this distinction is, to some extent, 

application dependent. For example the continuity property is essential to the definition of 

the echo state property [36], and the eigenvalue condition is not sufficient for this application. 

For other applications it may be sufficient to ensure that the output signal is in C2, and for 

these applications it might be possible to prove sufficiency of the eigenvalue condition for 

certain cases. 

3.6.3 Computat ional Issues 

There are a number of computational considerations that must be made when solving the 

IQC or multiplier optimization problem. In this section some run-time and complexity 

comparisons are made between an interior point solver, Sedumi [83], and an augmented 

Lagrangian solver, PENBMI [46, 47]. First, two results that reduce the complexity of the 

LMI problems are developed. Recall the main LMI stability constraint derived from the 

multiplier theory, 

>Z el. (3.14) CP + PC PW + T 
WTP + T 2(3~lT 

It was noted in [72] that if the upper left corner of M in the KYP lemma is positive 

semidefmite, the existence of a solution implies that P is positive definite. Thus it is not 
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necessary to explicitly constrain P to be positive definite for (3.14), since for the constraint 

considered the upper left block of M, specifically 0, is positive semidefinite. Additionally, 

when T is taken to be a positive diagonal matrix an explicit constraint on the positivity of 

T is not necessary. The following relation from [98] is useful; if A y 0 then 

yO^By X*A~1X. (3.15) 

Since C is assumed to be a positive diagonal matrix and P y 0, the matrix A = CP + PC 

is also positive definite. Let the matr ix B — 2(3~1T and X = PW 4- T. The relation (3.15) 

implies that 

2Q~lTy (PW + T)*(CP + PC)-l(PW + T) y0. 

The last inequality follows from two basic properties of positive definite matrices. First, if 

Ay 0 then A-1 y 0. Second, if Ay 0 then B*AB y 0 for any matrix B of conforming size 

[34]. So, by the previous arguments, T must be positive definite if the LMI (3.14) is satisfied. 

Applying these observations reduces the complexity of implementing the stability result by 

removing one order n 2 matrix constraint and n scalar constraints. Similar arguments can 

by applied to the IQC derived constraint in Problem 3.1. 

Since the number of variables in the LMI conditions grows with the square of the dimen­

sion of the RNN and the complexity of an iteration in the SDP solvers is on the order of the 

cube of the number of variables, the overall complexity should grow as n 6 . The PENBMI 

software, which implements an augmented Lagrangian approach to solving SDPs, avoids 

explicitly forming a Hessian matrix and uses a preconditioned conjugate gradient to solve 

the Newton equations at each iteration [47]. The method generally takes more iterations 

than interior point methods, but overall a significant time and space savings are achieved 

by this technique. 

The PENBMI solver was compared to the interior point method solver, Sedurni [83], on 

a set of RNN stability problems of increasing size. The LMI condition (3.5) was used, and 

a comparison was made between T € T>+ and T € M-dd- I n the diagonal case there is a 

single 2n x 2n LMI constraint and n(n + 3) /2 decision variables. In the doubly dominant 

case the problem has one 2n x 2n LMI constraint plus 2n linear constraints for ensuring 

A X 
X* B 
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Figure 3.7: Average running times for LMIs of increasing sizes with PENBMI and 
Sedumi. The left figure shows the average run times when using the simple diagonal 
IQC. The figure on the right shows the run times for using the doubly dominant 
IQC. Note that in the case of T e V+ Sedumi fails for n > 90 and for T € Mdd 
Sedumi fails for n > 55. These failures are due to excessive memory consumption. 

that T E Mdd- The problem has 5n(n — l) /2 decision variables for representing P and T. 

Figure 3.7 shows the time spent in the SDP solver for different values of n averaged over 

ten random, but stable, RNNs. 

The results clearly show both the added expense of taking T € M.dd but also the benefit 

of not explicitly forming a Hessian matrix. Further analysis shows that the run time of 

Sedumi does indeed grow at a rate dominated by an n6 term for both IQCs. For the 

PENBMI solver, the run time of the diagonal IQC problems grows at a rate of n3, and 

the doubly dominant IQC problems grow at a rate of n4. This difference is likely due to 

the effect of T being diagonal on the complexity of evaluating the Hessian-vector products 

necessary for solving the Newton equations. 

Estimating the ZVgain of a network directly, as in Problem 3.1, creates a computational 

difficulty when RNNs are almost unstable. For these RNNs the computed upper bound on 

the £2-g a i n is v e r v large. This leads to ill-conditioning of the resulting LMI problem as 

the 7 variable is much larger than the other decision variables. In Figure 3.8 run times for 

solving the 2 x 2 RNN stability problems from the previous section are shown. For this 

example T is restricted to be doubly dominant. The run times trend higher as the £2-g&in 

increases for both solvers. For the PENBMI solver the run times for detecting infeasibility 
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Figure 3.8: Estimating the £2-gain directly as part of the LMI problem makes the 
problem ill-conditioned near the stability boundary. The ill-conditioning increases 
the run time of the solvers. 

of the LMI problem are on average higher than the run times for feasible problems. For 

Sedumi the opposite is true, but the difference is less pronounced. 

The results suggest that the PENBMI solver is a good choice due to the low complexity 

of the iterations. On the other hand, the PENBMI solver does exhibit increased run times 

for infeasible problems that the Sedumi solver does not suffer from. Other general purpose 

SDP solvers were applied to the LMI problems developed in the chapter and all performed 

similar to Sedumi. This suggests that the cost of general purpose interior point methods 

for SDPs is prohibitive for the analysis of large RNNs. The special purpose solver in [89] 

is efficient for SDPs derived from the KYP lemma, but only in the case where B has fewer 

columns than A (see Theorem 2.4). For the LMI derived for RNN stability B has at least 

as many columns as A and more if 7 is estimated as part of the optimization problem. 

Whether or not a suitable modification exists that makes the method efficient for these 

types of problems is left as a question for future research. 

3.7 Conclusions 

In this chapter a method for assessing the stability of recurrent neural networks with time-

invariant weights was developed in the framework of IQC analysis. The method was com­

pared to an LMI approach developed in [79] and shown to be the same when simple diagonal 
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multipliers are used. Better IQCs were incorporated into the analysis and shown to reduce 

its conservatism. In the next chapter when the maximal amount of allowable variation in 

the RNN weights is sought, this reduced conservatism is helpful. The computational cost of 

the LMI stability conditions was reduced by exploiting some of the properties of the main 

IQC LMI constraint. Additionally, the PENBMI solver was shown to drastically reduce the 

run times for the analysis of large networks because it does not explicitly form a Hessian 

of the problem's Lagrangian. In Chapter 5 a large number of these LMI problems must 

be solved as part of a stable adaptive control framework. The ability to solve this type 

of LMI problem quickly is very important. Unfortunately, the conservatism and computa­

tional complexity of the stability analysis are clearly at odds even when an efficient LMI 

solver is available. Further reduction in the complexity of the analysis is important and 

may for example require the use of multipliers that lie somewhere in between the diagonal 

multipliers and the doubly dominant multipliers. For example, a block diagonal matrix T 

consisting of doubly dominant blocks could be constructed for use in the IQCs. This type 

of construction would allow a more fine grain control of the trade-off between complexity 

and conservativeness. 

The use of the IQC (3.11) from [52] in combination with the Popov IQC was shown 

to result in a non-conservative analysis with respect to certain bifurcations in two different 

examples. The exact relationship between the necessary stability condition of A m a x (W) < 1 

and the sufficient conditions given by the LMI problems is, however, still unclear. The 

examples provided suggest that further exploration of this relationship is warranted and 

may produce simplified stability conditions under certain assumptions. The relation of the 

stability conditions presented in this chapter and the so-called echo state property is also 

not completely clear. At least for the case when T is positive diagonal and the Popov 

IQC is not used, the LMI conditions may provide a less conservative test for the echo state 

property. 
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Chapter 4 

Stability of Time-Varying RNNs 

The stability analysis presented in the previous chapter is applicable to time-invariant recur­

rent neural networks. Often, however, the weights of an RNN are tuned online to improve 

some performance measure. It is important in this situation to assure more than the stabil­

ity of each individual RNN visited during the adaption. The transitions between different 

weight matrices must be considered explicitly. This chapter addresses the problem of deter­

mining the stability of time-varying RNNs. In Section 4.1, a sufficient condition for stability 

is formulated as a feasibility problem with matrix constraints. This result is applicable to 

RNNs whose weights are known to vary within fixed ranges. For application to adaptive 

control systems it is useful to compute the largest ranges of variation under which stability 

can be assured. In Section 4.2, a method for solving this problem is described. Computa­

tionally, this problem is more difficult than those of the previous chapter and the problem 

in Section 4.1. Several different solution methods are described and compared on example 

problems. 

4.1 Analysis of RNNs with Dynamic Weights 

Establishing the stability of an RNN with time-varying weights is not as simple as estab­

lishing the stability of the RNN at each value of W through which it passes. To see why 

this is not sufficient consider the pair of linear systems, x — AiX, with 

- 0 . 9 10 " 
0 - 0 . 9 ' 

A, 
-0.9 0 
10 - 0 . 9 

A,= 
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Each system is stable — the system x = Aix converges for all x(0) — since Amax(.Aj) = 

—0.9 < 0. Nevertheless, the time varying system 

{ A\x It J is even, 

A2X [t\ is odd, 

is unstable. The system has the solution [77] 

x{t) = [e^(W)(^W)e(W/2)(A1+^) ]a : (0) 

which grows without bound for x(0) ^ 0 since Xmstx(Ai + A2) > 0. From the example 

it is obvious that considering only the stability of the individual values of W will not be 

sufficient for guaranteeing stability of the time varying system. 

Since the variation of the RNN weights must be explicitly accounted for in the stability 

analysis, the RNN equations from Chapter 3 must be modified. The variation in the RNN 

weights is written as an additive perturbation to some fixed weight matrix, W, with the 

equations 

x = -Cx + {W + AW)$(x) + u, 
(4.1) 

y = x. 

Other formulations, such as writing the variation as a multiplicative perturbation are also 

possible, but the additive perturbation is more easily analyzed. The elements of AW, AWij, 

vary independently with time in the ranges [—AJ-,AJJ]. For convenience the following 

definitions are made 

A = diag{An, A12, • •., Ann}, and 

A = d i a g { A n , A 1 2 , . . . , A n r J . 

The stability analysis of (4.1) can be framed in two ways. First, is (4.1) stable for a given 

set of variation bounds, A and A. Second, for a given W and C, what is the maximum 

amount of variation under which stability of (4.1) can be guaranteed. A more concrete 

definition of maximum amount of variation will be given in Section 4.2, where the problem 

is addressed in detail. 

The stability of a time-varying system such as (4.1) can be addressed in a number of 

ways. In this chapter the IQC theory is applied to the problem and results in a characteri­

zation of stability involving matrix constraints. To apply the IQC method the time varying 
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parameters and nonlinearity must be separated from the LTI part of the system into a 

feedback formulation. With the appropriate IQCs defined the IQC theorem from Chapter 2 

can then be applied. 

4.1.1 IQC Analysis of Time-Varying R N N s 

IQC models of the RNN nonlinearity were discussed in the previous chapter. All of the IQCs 

defined there are applicable in the time-varying case as well. There are several approaches 

to modeling the time varying parameters with IQCs. If AW is known to vary within a 

polytope, V = <fo{Ai,... ,A^} then the relation w(t) — AW(£)i>(£) satisfies the IQC [59, 

43] 

du>0 
w(ju) 

Z Y 
YT -X 

v(ju)) 

if X = XT y 0, Z = ZT, and 

" i " 

A 
T ' Z Y ' 

YT -X 
r 

A 
> 0 V i e 1,. ,N. (4.2) 

When nothing is known about the variation of AW, a full rank polytope must be used. In 
2 

other words, /SW is allowed to vary in a hypercube defined by 2n vertices. This results in 

an exponential number of constraints of the form (4.2). Obviously, this is an unreasonable 

computational burden when n is large. 

Rather than modeling the time-varying parameters as a group, [79] proposed to model 

each parameter individually. An IQC for such time-varying scalars can be derived from the 

polytopic IQC by considering the one dimensional polytope [a, b}. The IQC has the form 

du > 0 (4.3) 'v(ju) z y 
y -x 

V(JUJ) 

w(ju) 

if x > 0, 

"1' 
a 

T z y 
y ~x. 

T 
a 

> 0, and 
Y 
b 

T z y 
y ~x. 

"i" 
b_ 

> 0 . 

For a time varying scalar, 6(t), that varies in the range [0,1] the conditions simplify to 

x < 0, z > 0, and z + 1y — x > 0. Under these conditions, the IQC is easily shown to be 

true since 

' v(t) 
S(t)v(t) 

T 
z y 
y -x 

' v(t) • 

S(t)v(t) 
= zv2{t) + 2y6(t)v2(t) - xS2(t)v2(t) 

= v2(t) (z + 2y5(t) - x52(t)) > 0 
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because S2(t) < S(t). An IQC for time varying scalars can also be derived from the multiplier 

approach. Recall the multiplier condition (2.6) 

/

oo 
Re[v*(ju)M(ju)w{ju)]duj > 0, v € C2, w = A(v), A € A. 

-oo 

When w{t) = 5(t)v(t), 5{t) <E [0,/3], and M{ju) = y € R+ 

/

OO /"CO / * 0 0 

Re[v*(JLu)M(ju})w(JLu)}du = \ Re[v(t)y8(t)v(t)}dt = / yv2(t)6(t)dt > 0. 
-oo JO JO 

From this simple positive multiplier, the IQC 

can be defined. Clearly this parameterized IQC is contained in the more general set of 

IQCs described above. This positive multiplier approach is used in [79] to model the time 

varying scalar RNN weights. Finally, note that a time-varying scalar in the sector [0, /3] is 

essentially a nonlinear, sector bounded function, and the IQC 

nfc/) = 
0 y ' 

y - 2y 
(4.4) 

is also applicable. In fact, this IQC is also contained in the set defined by (4.3). Preliminary 

results revealed that when the IQC (4.3) is used the resulting instance is always of the 

form (4.4). Thus, the more general IQC did not provide any reduction in conservativeness 

but did increase the cost of the optimization. For this reason the simpler IQC (4.4) is used 

throughout the remainder of this chapter and those that follow. 

4.1.2 Time-Varying R N N s as Feedback Sys tems 

To apply the IQCs of the previous section to time-varying RNNs, the weight variations 

must be written in terms of multiplication by positive, time-varying scalars. To facilitate 

such a representation, [79] suggested writing the variation as 

AWl3 = \3{t)El3 - 5l0\t)Ai3, Suit), 5l3{t) e [0, l]. 

Additionally, the system (4.1) can be rewritten as 

x(t) = -Cx(t) + WA(x(t), t)KRx(t) + u{t) (4.5) 
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where 

W = W W -W t,nx(n+2n2) 

W = [ei *n. ei e2 . . . en] e K ( n x n 2 ) , 

K = diag{/,A,A}, 

R=[I I *?? / ] r
6 R("+2n 2 )xn 5 

0 < <Ji(Xi(*)) < 1, 0 < £y(i) < 1, 0 < £y(*) < 1. 

Note that since <p{x) is in the sector [0,1], it can be written as 6i(xi(t))xi(t). Then, 

bWijitMxiit)) = 5ii(t)«5i(xi(t))^(*) ~iiAtMxiityxiit) = ~5lJ(t)xi(t) -SiAQxiit), 

since multiplication by Si(xi(t)) does not change the sectors of the time varying parameters. 

The formulation can be simplified when only certain elements of W are time-varying. 

For example, consider an RNN with W € Rnxn and the W\\ and Wn elements time-varying 

in the range [—3,2]. The model parameters are 

W = \W W -W 

W= [J Jl eM(2x2), 
K = diag{l, l ,2,2,3,3}, 

(2x6) 

R=[I I I]T e x2) 

The modified RNN system (4.5) can be written in the form of a feedback system with 

G 
-c 
I 

R 

I W ' 
0 0 
0 0 

A = K 
<b 

(4.6) 

Keeping with the assumption that </> is bounded in the sector [0,1], a loop transformation, 

H.2 — —K_1, is introduced to normalize the gain of the nonlinear operator A. The modified 

feedforward operator is G(s) = R(C + sI)~lW — K~x. The multiplier and IQC theorems 
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can be applied to construct LMI conditions whose feasibility is sufficient for stability of the 

time varying network. Using the IQC from the previous section to model the time varying 

scalars and one of the IQCs from the previous chapter for the nonlinearity <f>, an IQC for A 

is given by 

n ~W 
Y 

Y 

T 
Y 

Y 
(4.7) 

where T is either positive diagonal, diagonally dominant, or doubly dominant. The variables 

Y and Y_ are positive, diagonal matrices. Let the matrix T be defined as T — diag{T, Y, Y}. 

Applying the loop transformation, Problem 2.2 results in the main LMI condition, 

--CP - PC PW + RTf 
WTP + fTR -(f + f^K-1 <0 . (4i 

The details of the derivation can be found in Appendix A. Appendix A also shows how 

to include gain estimation terms and the Popov IQC in the problem. Equation (4.8) is an 

LMI in T, Y, and P and can be solved by standard SDP software. When T is taken to be 

positive diagonal, this condition reduces to an LMI presented in [79]. When K is not fixed, 

but is instead intended to be part of the optimization problem, condition (4.8) is no longer 

an LMI constraint. The difficulties this presents will be discussed in Section 4.2 

The formulation of time-varying RNNs in (4.5) does not fully exploit the power of the 

multipliers in SM and MM- The terms AWJJ</>(XJ) are modeled as purely unstructured 

time-varying scalars. This ignores the fact that the nonlinearity </>(;Ej) — ^(XJ)XJ and 

the time varying components <%(£) are fundamentally different. The IQCs for the time 

varying components do not account for the repeated structure of $(x). This will introduce 

conservativeness into the analysis so a new approach is proposed here. 

An alternative way to write (4.1) is 

x(t) = -Cx(t) + W 

A>(<)) = 6ia,g{6i(xi(t))} 

A(t) = diag{a(i), «£(<)} 

7 ^0 
0 A(t) 

KRA(x{t))x(t) + u(t) 

(4.9) 
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or equivalently as a feedback system with forward operator 

G = 

~ -c 
I 

I 0" 
0 0 

I 
0 

0 

w 
0 

"0 0" 
R 0 

~ 

R=[I x2n 

and the nonlinear, time-varying, feedback operator (4.6). Since the feedback operator has 

the same structure as the formulation (4.5), IQC (4.7) can be applied to this formulation 

as well. An LMI stability condition can be derived from Problem 2.2 and is given in 

Appendix A. In the next section the two LMIs developed thus far are compared on some 

example problems. 

4 . 1 . 3 E x a m p l e s 

In the first example, all of the weights of the 2 x 2 RNN with weight matrix W\ are allowed 

to vary in the range [—8,8] for three values of 8: 0.25, 0.30, and 0.32. An upper bound on 

the £2-gain is computed using the six combinations of IQCs used to model the nonlinearity 

in the previous chapter. The computations were repeated for both formulations of the time 

varying RNN: (4.5) and (4.9). The computed bounds on the gain are shown in Table 4.1. 

There are several trends visible in the data. The first and most obvious is that the computed 

upper bounds on the C2-g&m increase as the amount of variation allowed in the weights 

increases. Much like the gain bounds computed for the time-invariant RNNs, the bounds 

computed here increase rapidly near the boundary between an amount of variation that can 

be tolerated and an amount that can not. The second trend to notice is the decrease in the 

gain bounds as more complex IQCs are applied to model the nonlinearity. This is not so 

much of a trend in the case of formulation (4.9) as a phase shift, but for larger networks this 

transition is smooth and the trend is obvious. Finally, note that in all cases the formulation 

in (4.9) results in smaller ZVgain bounds. More accurate modeling due to the complete 

separation of the nonlinearity and time-varying parameters results in a less conservative 

analysis. 

The second example repeats the first experiment on a larger network with weight matrix 

Ws and takes 8 € {0.25,0.35,0.45}. The trends observed in the first experiment are more 
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Wi,<5 = 0.25 

Wi,<S = 0.30 

Wi,<J = 0.32 

Wi,5 = 0.25 
Wi,5 = 0.30 
Wi,<S = 0.32 

Id 

9.5010 

61.2402 

-

7.6177 

20.0857 

57.7000 

ia 
8.2631 

29.4420 

-

7.4700 

18.7144 

46.4455 

Idd 

8.6793 

35.3116 

-

7.4700 

18.7144 

46.4455 

idd 

8.0019 

25.3251 

190.3413 

7.4700 

18.7144 

46.4455 

Iks 

7.9741 

24.9618 

170.3540 

7.4700 

18.7144 

46.4455 

iks 

7.5941 

20.7134 

67.4899 

7.4700 

18.7144 

46.4455 

Table 4.1: Results for estimating the gain of an RNN with weight matrix Wx 

using different IQCs. The weights are allowed to vary in the range [-5,5] with 
5 = .25, .30, .32. The results in the top half of the table were computed using for­
mulation (4.5). The results in the bottom half were computed using the formulation 
in (4.9). 

clear in this example. The use of formulation (4.9) results in a larger reduction in conserva-

tiveness than for the smaller network. Also, the benefit of using more complex IQC models 

of the nonlinearity is more apparent. The results suggest that the least conservative analysis 

is achieved by application of the Popov IQC in combination with a doubly dominant T and 

formulation (4.9). 

4.1.4 Computat ional Considerat ions 

The LMI problems presented so far in this chapter are more expensive to solve than those 

in Chapter 3. When all of the weights of an RNN are allowed to vary, the cost can be much 

greater because an additional 2n2 variables are added to the problem. Before proceeding to 

examine the cost of working with these LMIs, a few arguments from the previous chapter 

should be recalled. No explicit constraint on the positive definiteness of P is needed. Since 

the IQCs used here are essentially the same as those applied in the previous chapter, the 

arguments applied there are still valid. In the same manner, when T and Y are taken to 

be positive diagonal, no explicit constraints on the positiveness of T and Y are needed. 

Since Y can be of order n 2 , this can drastically reduce the number of constraints in the 

optimization problem. Problems -with ill-conditioning due to large values of -y exist in these 

problems as well. The problem is somewhat more pervasive since the amount of variation 

allowed in the system is often taken to be large resulting in large 7. 

For problems with a number of variables n tha t is large relative to the size of the LMI 

constraints, the run time of SDP solvers is dominated by the n 3 cost of solving a set of 
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W3,8 = 0.25 
W3)<& = 0.35 

W3,<J = 0.45 

W3,8 = 0.25 
W3,5 = 0.35 
W3,5 = 0A5 

Id 

-
-
-

-
-
-

ia 
-
-
-

683.6985 
-
-

Idd 

7.5793 
22.9458 

-

4.7750 
6.8962 
14.1467 

idd 

4.8872 
10.4151 

-

3.1480 
4.3408 
8.0225 

Iks 

4.8980 
10.6142 

-

3.0335 
4.3382 
8.2289 

iks 

4.4094 
9.1089 

458.3935 

2.8275 
4.1482 
7.9151 

Table 4.2: Results for estimating the gain of an RNN with weight matrix W3 using 
different IQCs. The weights {Wi,2, Wb.i, Wi,3, Wi,4, Wi,s} are allowed to vary in 
the range [—6, S] with S = .25, .35, .45. The results in the top half of the table were 
computed using formulation (4.5). The results in the bottom half were computed 
using the formulation in (4.9). 

linear equations. For a fixed size RNN, allowing m weights to vary should increase the cost 

on the order of m 3 since each new weight that is allowed to vary adds two decision variables 

to the problem. Analysis of the run time data in Figure 4.1 shows that the cost grows at a 

slower rate for both the Sedumi and PENBMI solvers. The data was generated by testing 

feasibility of the LMI derived from either (4.5) or (4.9) for an increasing number of t ime 

varying weights. The simple IQC with T positive diagonal is used, but results were similar 

for the other IQCs. The RNN tested had a 10 x 10 weight matrix, and all instances of 

the resulting LMI were feasible. Results in the previous chapter showed that the PENBMI 

solver is considerably slower on infeasible problems than on feasible problems. Ensuring 

that all problem instances were feasible gave a more meaningful comparison. Growth rates 

for the cost of increasing the number of varying weights were estimated to be between m 2 

and m 3 for Sedumi and ma for PENBMI. Two factors may be contributing to the less than 

expected growth rates. First, the n 3 cost model assumes tha t the size of the constraints 

stays constant as the number of variables grow. Here, however, the size of the constraint is 

growing at a rate of 2m. Second, the lower right hand corner of the LMIs is extremely sparse; 

it is a diagonal block. This may improve the cost of constructing the Newton equations, in 

the case of PENBMI, and the linear update equations in Sedumi. 

The experiment also shows that the cost of using the new time-varying RNN formu­

lation (4.9) and the cost of using the formulation (4.5) are nearly the same. This seems 

reasonable since comparison of the different LMIs reveals relatively minor structural dif-
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Figure 4.1: Run time results for an increasing number of time-varying weights in 
a 10 x 10 RNN and a 30 x 30 RNN. 

ferences. Since it is no more expensive and produces less conservative results, use of the 

formulation (4.9) appears to be the best choice. 

4.2 Maximizing the Allowable Variation 

The ability to prove stability and estimate the £2-gain of an RNN with time-varying weights 

is useful in certain situations where some fixed amount of variation needs to be accommo­

dated. In other problems, it is more useful to compute the largest Ay and A^ values under 

which stability can be proved. A simple approach to the problem is to apply a bisection 

algorithm and repeatedly evaluate the LMI conditions of the previous chapter. This was 

done, for example, in [49], but is very expensive because of the large number of LMI prob­

lems which must be solved. In [79] it was proposed to maximize the sum of the Ajj's and 

Aj 's directly as part of an optimization problem subject to the stability constraints. Such 

a problem is computationally difficult, and some of the computational problems it poses are 

explored in this section. For expository purposes, the constraint (4.8), will be used through­

out the development presented here. The results are equally applicable to the conditions 

derived from formulation (4.9) and to versions of the constraints with gain estimation terms. 

When the bounds on the variations of the individual weights, A and A, are fixed, 

testing the feasibility of the stability constraints is computationally tractable. To compute 
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maximum variation bounds as part of an optimization problem, A and A must be made 

decision variables. Beyond simply increasing the number of decision variables, this presents 

a serious problem for the following reason. The modified constraint is no longer linear in the 

decision variables since it contains terms of the form Yy Aj • . Such a constraint is known as 

a bilinear matrix inequality (BMI) [74]. BMI problems are not generally convex, and there is 

no known polynomial time algorithm for verifying the existence of feasible solutions for such 

constraints [87]. Despite the general difficulty of such problems, several relatively efficient 

algorithms exist for finding locally optimal solutions to optimization problems involving 

BMIs. 

To formulate a concrete optimization problem for maximizing the allowable variation, 

this quantity needs a formal definition. Several objective functions can be said to describe 

maximum allowable variation. In [79] the problem is defined as maximizing the sum of the 

bounds, 

max J^fa + A^). (4.10) 

ij 

The objective function has the advantage of being linear and is also a reasonable definition 

for the goal of the optimization problem. An alternative is to maximize the volume of the 

space within which the weights can vary. Such an objective function is given by the product 

of the length of the individual ranges 

max \[ (Aij + A^.) = max log J ] (A,, + A^) 

«J \ii ) (4.11) 

= max Y^ log (A~ij + &ij) • 

While not linear, the function is convex, and a log transformation of the objective results in 

a form that is easy to handle using epi-graph formulations [10]. Initial results for problems 

using this objective function, however, proved to be difficult to solve and resulted in poor 

solutions. That is, the volume of the resulting bounding box was smaller than that computed 

using the simpler additive objective function (4.10). For this reason, the additive objective 

function is used throughout the remainder of the section. 
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4.2.1 M e t h o d s 

Different approaches exist for optimizing (4.10) subject to the BMI constraint (4.8). A 

convex approximation developed in [79] is described first. To help assess the quality of 

the convex approximation, three approaches to directly solving BMI problems are then 

discussed. In Section 4.2.3 the methods presented here are applied to some sample problems 

to illustrate the differences in behavior between the algorithms. 

4.2.1.1 A Convex Approximation 

To remove the bilinear terms from the LMI constraint a set of auxiliary variables, Hij — 

Yij\j and H_^ — Y^A^ 1 can be substituted into the matrix constraint. Since the Ajj 

variables only exist in the objective function of the modified problem, the objective function 

is unbounded and essentially meaningless. An approximate objective function involving the 

auxiliary variables must be used. In [79] the objective function is defined as 

m a x ^ {Yi-Hij + Yi-Hij) = max J ] (^i ( l - i ) + Y_t (l - J - ) ) . (4.12) 

Maximizing such an objective function requires making the Yfj's large but also making the 

ii/ij's small. This implies that optimization of the objective will result in large values for 

the Ay's. These modifications result in a standard LMI problem that can be solved with 

the SDP software previously described. 

4.2.1.2 Alternating Minimization Method 

The alternating minimization method for finding approximate solutions to BMIs solves a se­

quence of LMIs generated by fixing alternating groups of decision variables. For example, in 

the RNN stability problem the Y{j variables could be held constant while the objective func­

tion is optimized over the Ay variables. Fixing the Yij variables makes the constraint (4.8) 

convex and the optimization problem solvable by standard software. The second step is to 

then fix the A^ variables while the objective function is optimized over the Y^ variables. 

Unfortunately, the Yij variables do not have a direct effect on the objective function, but an 

auxiliary objective function, such as minimizing the trace of Y can be used. The sequence of 

steps is repeated until some halting criteria is met. Unless the BMI is convex, the algorithm 
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will not generally converge to the optimal solution and may fail to converge at all. The 

algorithm was implemented using Sedumi to solve the convex subproblems. When applied 

to the examples later in the section, the method always produced solutions that were nearly 

the same as those produced by the augmented Lagrangian method but at a much greater 

cost. For this reason and for conciseness, the results for this algorithm are not given in the 

examples that follow. 

4.2.1 .3 Sequent ia l Semidef ini te P r o g r a m m i n g 

The sequential semidefinite programming (SSDP) method is an extension of the sequential 

quadratic programming algorithm used to solve nonlinear programming problems [25, 26]. 

Like the alternating minimization method, SSDP proceeds by solving a sequence of LMI 

subproblems, but SSDP generates them differently. The SSDP method, as given in [26], is 

designed to solve a very general class of problems of the form 

min bTx s.t. x eM.n, 

B(x) •< 0, 
(4.13) 

c(x) < 0, 

d(x) = 0, 

where b E R n , B : M.n - • Sm, c : R n -* W, and d : R n -> W. The function B{x) is a 

nonlinear, matrix valued function such as a BMI constraint. The function c(x) and d(x) 

describe element-wise nonlinear constraints on the decision variables. The Lagrangian of 

the problem is given by 

C(x, Y, u, v) = bTx + B{x) • Y + uTc{x) + vTd{x) 

where Y, u and v are Lagrangian multiplier variables [26]. 

The SSDP algorithm solves a sequence of subproblems of the form 

min bTAx + -(Ax)THKAx s.t. Ax e Mn 

B(xk) + DxB(xk)[Ax] r<0, 

c(xk) + Dxc(xk)Ax < 0, 

d(xk) + Dxd(xk)Ax = 0, 
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where Hk is the Hessian of the Lagrangian at step k. If Hk € S+ then the problem can 

be converted to an SDP and solved efficiently [90]. Unless the original problem is convex, 

however, this will not be the case, and a positive semidefinite approximation to Hk must 

be computed. For example, the projection of Hk onto the cone of positive semidefinite 

matrices can be used [39]. Updates for the Lagrange multipliers are easily computed from 

the dual variables of the SDP subproblem [26]. 

The generality of the optimization problem (4.13) allows some alternate formulations of 

the BMI constraint to be constructed. Obviously, the BMI formulation can be used directly. 

On the other hand, since the number of nonlinearities is small, it may be more computa­

tionally efficient to introduce auxiliary variables, Hij — Yij/Aij and H_tj = Y_^l A^. By 

introducing these variables into the BMI it becomes a standard LMI constraint. Rather 

than using an alternative approximate objective function as suggested in [79], the aux­

iliary variables can be constrained using element-wise nonlinear constraints of the form 

HijAij — Yij. These constraints are not convex, so the lack of convexity has simply been 

shifted out of the matrix constraint. On the other hand, the Hessian of the Lagrangian is 

simplified considerably in this formulation since the Hessian of the term B{x) • Y is now 

zero. Unfortunately, analysis of the SSDP method in [90] shows that while the algorithm 

exhibits good global convergence properties it converges linearly near the solution. Any 

gain in the efficiency of solving the LMI subproblems is trivial compared to the cost of this 

linear convergence. The SSDP algorithm was implemented using Sedumi to solve the LMI 

subproblems. The method was applied to the examples in the next section, but the linear 

convergence was clearly evident. This resulted in the necessity of solving a large number of 

LMI subproblems which made the algorithm tremendously slow. The SSDP method does 

not appear to be appropriate for solving the BMI problem under consideration. 

4.2.1.4 Augmented Lagrangian Approach 

The augmented Lagrangian approach to solving linear SDPs that was described in Chapter 2 

can also be applied to nonlinear SDPs. Certain modifications must be made to the algorithm 

to solve non-convex problems. The algorithm is modified to add a small multiple of the 
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identity to the Hessian of the augmented Lagrangian to ensure its positive definiteness. Its 

similarity with the other BMI methods is that it solves a sequence of simpler subproblems. 

In this case, however, the subproblems are unconstrained, nonlinear, optimization problems 

solved by preconditioned conjugate gradient methods. Also like the other BMI methods, 

the augmented Lagrangian algorithm is not guaranteed to converge to the globally optimal 

solution. The PENBMI software applied earlier to linear SDPs includes the necessary 

modifications for application to nonconvex problems. As the examples that follow will show, 

the PENBMI software produces very good solutions compared to the LMI approximation 

problem, but it has longer run times for large problems. 

4.2.2 Problem Simplifications and Modifications 

The BMI optimization problem for determining the maximum amount of allowable variation 

is not appropriate for all applications. One modification, designed mostly to decrease the 

cost of solving the problem, is to restrict all of the AjjS and AjjS to be the same. The 

restriction has two benefits: a reduction in the number of decision variables and a reduction 

in the problem difficulty. The simplification can be implemented simply by replacing all 

of the Aij decision variables with a single decision variable 5. For example, the BMI 

constraint (4.8) becomes the constraint 

-CP-PC PW + RT T
Q y 

\TT + T 0 1 X ° -

L L o - P Y \ . 
While the constrain is clearly not an LMI, it is a special type of constraint called a linear-

fractional constraint. Optimization problems with linear-fractional constraints can be solved 

efficiently as generalized eigenvalue problems [9]. PENBMI does not explicitly exploit this 

problem structure, but it solves this simpler problem more quickly than the general case 

and is used in the examples below. Certain a priori knowledge about the expected weight 

variation can be incorporated into this problem formulation. For example, the IQC variables 

Y and Y_ can be multiplied by a constant, positive, diagonal matrix expressing the relative 

amount of expected variation in the weights. If it is known that, say, weight W\\ varies more 

than weight W\2, then F n and Y\\ can be multiplied by two everywhere these variables 
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occur in the constraints. Such a modification keeps the simpler problem structure, but 

allows different bounds on the variation of the different weights. 

Another modification that can be made to the problem is the imposition of minimum 

values for the A ^ s and A^-s. These types of constraints are easily handled by standard 

SDP software and do not seriously impact the cost of solving the optimization problem. 

For the convex LMI approximation, however, it is unclear how such constraints can be 

enforced by themselves without constraints on other variables since the Ay variables have 

been removed from the problem. Such a constraint can be enforced indirectly by bounding 

both the Y variables and the H variables. In addition to imposing minimum values on the 

Aij variables, it can be useful to place an upper bound on the £ 2 - g a m - Using the BMI 

condition in Appendix A, such a constraint can easily be enforced by placing an upper 

bound on 7. This constraint can be used to ensure stability of a feedback loop between an 

RNN and some other system. The small gain theorem states that the feedback loop will 

be stable if the gain of the RNN is less than l/jp where 7 p is the gain of the other system. 

In this way a certain amount of variation in the RNN weights can be allowed while still 

ensuring stability of the entire feedback loop. 

4.2.3 Examples 

The first example in this section uses the simplified optimization problem in which all of 

the AjjS and Aj s are constrained to be equal to some value 5 > 0. Since the A^- variables 

do not show up directly in the convex LMI approximation, it is unclear how to adapt the 

approximation to this particular problem. So, for this example only the PENBMI solver is 

used. The RNN had weight matrix W3, and only the weights {^1,2, VI/2,1, Wi,3i Wi,4, ^1,5} 

were allowed to vary. The six different combinations of IQCs applied in previous experiments 

were used here, and both formulations of the time-varying RNN equations were compared. 

The results are shown in Table 4.3. The results show that , as expected, the use of better 

IQCs results in reduced conservativeness and thus an increase in the value of 5. Clearly, 

separately modeling the nonlinearity and the time-varying components as in (4.9) also 

reduces conservativeness. 

70 



Formulation 

(4.5) 
(4.9) 

Id 

0.0112 
0.0248 

id 
0.0751 
0.2525 

Idd 

0.4001 
0.5321 

idd 

0.4426 
0.5595 

Iks 

0.4400 
0.5595 

TL 

0.4521 
0.5604 

Table 4.3: The results of maximizing 5 for weight matrix W3 using the different 
IQCs and both formulations of the time-varying RNN equations. The PENBMI 
solver is used to generate the results. 

In the second example, the first experiment is repeated, but the A;JS and A^s are not 

constrained to be equal. For this example the convex LMI approximation of the stability 

constraint can be applied, and it is compared with the PENBMI solution of the BMI version 

of the constraint. The trends obvious in the first example are clear in this example as well. 

Better IQCs result in less conservative analysis, and the problem formulation in (4.9) also 

reduces conservativeness. Additionally, in this problem it is clear that directly solving the 

BMI problem gives better solutions than solving the LMI approximation. In two cases the 

BMI solution is twice as large as the solution to the approximate problem. These results 

suggest that there is some slackness in the LMI approximation, which is to be expected. 

The relative computational costs of these two approaches are compared in the next section. 

Solutions to the convex approximation problem and the BMI problem have a qualitative 

as well as quantitative difference. The approximate problem tends to produce solutions 

where at least some of the Ays'are zero. Solutions to the BMI problem on the other hand 

tend to have all of the A^s with positive values. For example, solving the two optimization 

problems with a combination of diagonal T the Popov IQC for W = W3 results in the 

solutions 

A L M I = [0.023 0.581 0.000 0.123 0.297 0.284 0.190 0.475 0.526 0.000] , 

A BMI = [°- 2 3 4 ° - 4 9 2 ° ' 2 8 1 ° - 5 8 5 ° ' 3 6 7 ° - 3 6 2 ° - 3 1 0 ° ' 4 2 7 0 J 5 9 °-143] ' 

with objective function values of 2.4967 and 3.9496, respectively. Bounding the Y.-tj and H-bj 

variables in the approximate problem improves the conditioning and the solution to some 

extent. For example, using the bounds, 10~3 < Y^ < 103 and 102 < Hij < 103 results in 

the solution 

ALMI = I"0-107 ° - 8 8 5 ° - 0 1 2 ° - 0 9 1 ° - 5 5 2 ° - 7 7 7 ° ' 4 4 8 ° - 6 9 0 ° - 2 5 0 °-00°] 
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Formulation 

(4.5) 
(4.9) 

(4.5) 
(4.9) 

Id 

0.0257 
0.4832 

0.1777 
0.7211 

id 

1.0846 
2.4976 

2.3244 
3.9142 

Idd 

2.9710 
3.7931 

4.7165 
5.7217 

idd 

3.8680 
6.1525 

5.2476 
8.1077 

Iks 

3.1947 
4.9405 

4.8831 
6.8020 

7L 
4.2511 
7.8575 

5.3251 
8.2610 

Table 4.4: The results of maximizing (4.10) for weight matrix Ws using the dif­
ferent IQCs and both formulations of the time-varying RNN equations. The 7 in 
this column titles simply refers to the combination of IQCs used. The numbers 
in the table are sum of variation bounds and not £2-gains. The top two rows of 
results were generated using the convex LMI stability constraint and the approxi­
mate objective function (4.12). The numbers in parentheses were computed using 
a modified objective function described in the next section. The bottom two rows 
were generated using the BMI constraint and the PENBMI solver. 

with an objective function value of 3.8104. The last value in the solution is 10~5 . Note tha t 

bounding Yij and Hij implies the bounds 10~6 < A ; J < 10. Imposing the same constraints 

on the BMI problem does not changes the solution. To avoid the problem with the LMI 

solutions it makes sense to bound the minimum values of the A variables from below by 

some minimum acceptable value. This is rather arbitrary, however, and it can not be known 

a priori whether or not such constraints can be satisfied. 

Returning to the 2 x 2 RNN example from the previous chapter, Figure 4.2 shows three 

examples of computed bounds on weight variation. For these computations the combined 

Popov and doubly dominant nonlinearity IQCs were used. The two different time-varying 

RNN formulations were compared along with the two different computational approaches: 

the BMI problem and the LMI approximation. Like the previous examples, the results here 

show that the formulation (4.9) and the direct BMI problem generally produce better results. 

There is, however, an exception in this example. At the origin, the LMI approximation 

results in a larger sum of variation bounds, 4.29, than the BMI problem, 4.04. Neither 

method, however, produces the solution that maximizes the sum of the A's . This solution 

is achieved by making one pair of A and A vanishingly small and the other increasingly 

large. Such solutions can be found and do satisfy the stability constraints. On the other 

hand, the solutions actually returned by the software, while not optimal, are, in a practical 

sense, better. This suggests that in some cases actually optimizing the given optimization 

criterion might produce bad solutions. Placing bounds on the maximum and minimum A 
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Figure 4.2: Examples of stable variation ranges for different formulations and 
solution techniques. 

values or on the maximum difference in magnitude between any two A's would improve 

the objective function. These types of constraint are easily included in the BMI problem, 

and can be included implicitly in the LMI approximation. Many such constraints can be 

imagined, but the simple objective function works well enough in most cases and is used 

throughout the remainder of the document. 

4.2.4 Computational and Numerical Considerations 

Ill-conditioning can occur for a number of reasons in the optimization of (4.10) subject 

to the BMI stability constraint (4.8). Inclusion of gain estimation terms easily leads to 

ill-conditioning unless a bound is placed on the £2 gain, 7. For both computational and 

numerical reasons these terms should not be included unless such an explicit bound is 

required. It is possible for the difference in magnitudes among the Ajj variables to be quite 

large, and for this difference in scale to result in ill-conditioning. For instance, the amount 
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of negative variation allowed for a self feedback connection, a weight Wu, is unbounded. 

Placing a bound on the maximum magnitude of the Ai} variables can improve conditioning 

in cases like this without affecting the usefulness of the computed solution. In other words, 

since there is often little point in allowing some weight to vary on a scale which is orders of 

magnitude different from the other weights, it is preferable to limit the variation to some 

extent to improve the problem conditioning. 

In Figures 4.3 and 4.4 timing and performance results are given for experiments on a 

5 x 5 weight matrix and a 10 x 10 weight matrix. Three variation maximization methods 

are used: the BMI formulation, the LMI approximation and the simplified problem where 

all Ay ' s are restricted to be the same. The two time-varying RNN formulations (4.5) 

and (4.9) are compared. In this experiment the Popov IQC is not used and T is taken to 

be positive diagonal. The top left plots show the objective function values for an increasing 

number of time-varying weights. The top right plots show the average A ^ value for the 

same increasing set of time varying weights. The bot tom plots show the run time of each of 

the methods. PENBMI is a local solver, and the solution can differ in different runs. The 

reported results for the BMI solutions are an average of five trials. In both experiments it 

is clear that formulation (4.9) generally produces the best results regardless of the solution 

method without much cost in terms of run time. The BMI solution is generally better than 

the LMI solution and always better than the restricted problem solution. The BMI solution, 

however, has a large computation cost that grows rapidly with the number of time varying 

weights. The LMI approximation solution for formulation 4.9 is also quite good and has a 

run time cost near to and sometimes less than the restricted problem. A final observation 

that can be made from these results is tha t while the cost of computing the variation bounds 

grows quickly with the number of weights that are allowed to vary, the average amount of 

variation allowed in the solution decreases rapidly. There is clearly a trade-off between 

flexibility in the adaptation of an RNN's weights and the amount of variation that can be 

tolerated with known stability. This suggests that limiting the number of weights that are 

allowed to vary may be wise in terms of a cost benefit trade-off. There are examples of 

algorithms, such as ESN approaches, where only the weights for a subset of neurons are 
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adapted and good performance can still be achieved [81, 36]. 

4.3 Conclusions 

The results in this chapter give sufficient conditions for the stability of RNNs with time-

varying connection weights. Starting from a formulation of the problem in [79], a novel 

formulation of the time-varying RNN equations was developed. This new formulation re­

duced the conservativeness of the stability analysis. The problem of finding the maximal 

amount of weight variation under which stability can be assured was developed as a BMI 

problem. Through several example problems, it was shown that directly solving the BMI 

problem produced better results than those obtained with the convex approximation de­

veloped in [79]. On the other hand, it was shown that as the problem size increases, the 

convex approximation is more computationally tractable. 

The analysis in this chapter used a simple IQC model of the time-varying RNN parame­

ters and assumed tha t all the parameters varied independently. A more general IQC for the 

time-varying parameters was introduced, but did improve performance in preliminary ex­

periments. Further exploration of this problem will provide insight into the reasons for this. 

The IQC presented in this chapter bounded only the values of the time-varying parameters 

and not their derivatives. Additional reduction in conservativeness can be achieved if the 

rates at which the parameters vary are bounded. Often, however, the parameter variation 

is dependent on some error signal and the rates of change are not naturally bounded. Even 

when such bounds are available the cost of exploiting this information in an IQC is a factor 

of three increase in the number of decision variables. For these reasons it might be better 

to accept some conservatism in the analysis for the sake of computational tractability. 
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Figure 4.3: The allowable variation under stability constraints is computed using 
three approaches: the BMI problem, the LMI approximation, a restricted problem 
where all Ay's are equal. The RNN weight matrix is of size 5 x 5 and the number of 
time-varying weights varied from 1 to 25. The Popov IQC is not used and the matrix 
T € V+. Both time varying RNN formulations, (4.5) and (4.9), are compared. The 
top left plot shows the objective values attained, the top right plot shows the mean 
Aij value, and the bottom plot shows the run times. 
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Figure 4.4: The allowable variation under stability constraints is computed using 
three approaches: the BMI problem, the LMI approximation, a restricted problem 
where all Ay's are equal. The RNN weight matrix is of size 10 x 10 and the 
number of time varying weights varied from 5 to 60. The Popov IQC is not used 
and the matrix T € T>+. Both time varying RNN formulations, (4.5) and (4.9), are 
compared. The top left plot shows the objective values attained, the top right plot 
shows the mean Ay value, and the bottom plot shows the run times. 
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Chapter 5 

Stable Learning with RNNs 

Adapting RNNs in an off-line setting, whether as controllers or models, generally requires no 

stability analysis. In a control setting, off-line adaptation of recurrent neural networks uses 

interaction with model systems that may not accurately reflect reality. Online adaptat ion 

allows RNN components observe the actual properties of the controlled plant and track 

the changes of that system over time. Using RNNs in online adaptive systems, however, 

requires that their stability be guaranteed during adaptation. In this chapter an algorithm 

is presented which ensures the stability of an adaptive RNN. The algorithm is applicable 

to many systems that can be modeled and analyzed using the approach described in the 

previous chapters. For instance, the algorithm is easily extended to cover an RNN in 

a control loop with an uncertain plant model. In the next chapter, such an extension 

is developed more fully. Here, however, the exposition is focused on simply maintaining 

stability of an RNN under adaption from some arbitrary algorithm. This removes some 

distractions and keeps the focus on the basic properties of the algorithm. 

In Chapters 3 and 4 a stability analysis was developed for RNNs with fixed and time-

varying weights, respectively. Both types of analysis are necessary for enabling the algorithm 

proposed in this chapter. Because the stability analysis computations are expensive and 

generally have worse asymptotic complexity than the computation of weight updates, they 

dominate the run time of the proposed algorithm. Steps are taken to minimize the number 

of stability analysis computations thereby reducing the cost of ensuring the stability of 

adaptive RNNs. As shown in the previous two chapters, there is a direct trade-off between 

the conservativeness of the stability analysis and its computational cost. Conservativeness 
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in the stability analysis impacts the online stable learning algorithm in two ways. Increased 

conservativeness reduces the amount of variation allowable in the weights of an RNN and 

will tend to increase the number of necessary stability computations. Also, conservativeness 

can limit optimization of the overall control objective by over zealous restriction of the 

RNN weight settings. Whether or not the increased cost of a single analysis computation is 

worthwhile in terms of its effect on the total number of stability computations is dependent 

both on the size of the network and the problem under consideration. 

In the next section, a simple example problem is introduced. It is used throughout the 

chapter to illustrate the properties of the proposed stable learning algorithm. The later 

sections will develop the necessary components of the algorithm, beginning with initializa­

tion of RNNs to stable weight settings, through the basics of the algorithm and ending with 

some techniques to improve its performance in certain situations. 

Before proceeding to the example problem some notation is introduced. Define the set 

Ws™ as all n x n weight matrices that result in stable RNN dynamics. The analysis of 

Chapter 3 produces an inner approximation of this set whose quality is dependent on the 

choice of IQCs. The set Ws™ is not generally known explicitly and to limit the notation 

somewhat, the symbol Ws" is also used to represent approximations of it. The specific set 

of IQCs used to determine the approximation is not indicated in the notation but is made 

clear when it is important. 

5.1 An Example Adaptive System 

To illustrate the behavior or the proposed algorithm, a simple RNN learning problem with 

stability constraints is formulated in this section. The problem will be to train a recurrent 

neural network to model a given dynamic system subject to constraints on the stability of 

the RNN. The problem simulates the type of situation in which the proposed stable learning 

algorithm will be applied and helps to illustrate many of the underlying issues which must 

be considered. 
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5.1.1 P r o b l e m Definition 

The dynamic system that the RNN is trained to model is itself another RNN. The problem 

can be constructed to have an optimal solution with weights in the set of stable weights or 

outside of it. Also the solution can be made to lie near to or far from the boundary of Ws". 

The problem has the following form, 

N 

min 2_,(X(U) ~ x{U)) where 

0 < t\ < ti < • • • < tn e R, 

x(t) = [ -Cx{j) + W<f>{x{j)) + U{T) dr, x(0) = 0, 
Jo 

x(t) = / -CX(T) + W 0 ( X ( T ) ) + U(T) dr, x(0) = 0, and 
Jo 

F sin(t) 
{ ' |_2cos(t/2)_ 

The input to the adaptive system will be the instantaneous error, E(t) — x(t) — x(t), 

generated by continuously running versions of the optimal network and the adapted network. 

The times, ij specified in the problem definition are used only for evaluating the performance 

of the adaptive network. The task is to find an RNN with a 2 x 2 weight matrix that 

reproduces the behavior of the optimal RNN on a given input sequence using only the 

available error signal. The optimal RNN has a weight matrix W that is chosen to illustrate 

different properties of the stable learning algorithm. For illustrative purposes the diagonal 

elements of W will be fixed to the corresponding values in W. The resulting problem has 

a two dimensional parameter space and allows the dynamics to be easily visualized. The 

matrix C is taken to be the identity and 4>(x) is taken to be the tanh(-) function. 

5.1.2 Learning Algori thm 

Many algorithms exist for adapting the weights of recurrent neural networks. A survey of 

gradient based approaches can be found in [66]. To solve the example learning problem in 

this chapter, the Real Time Recurrent Learning (RTRL) algorithm is applied. RTRL is 

a simple stochastic gradient algorithm for minimizing an error function over the parame­

ters of a dynamic system. It is used here because it is an online algorithm applicable in 
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adaptive control systems. Computing the gradient of an error function with respect to the 

parameters of a dynamic system is difficult because the system dynamics introduce tempo­

ral dependencies between the parameters and the error function. Computation of the error 

gradient requires explicitly accounting for these dependencies, and RTRL provides one way 

of doing this. A brief description of the algorithm follows, and a sample implementation is 

given in Figure 5.1. 

Recall the RNN equations 

x = F{x, u; C, W) = -Cx + W${x) + u 

y = x 

The gradient of the error function E(\\x(t) — x{£)\\^) with respect to the weight matrix, W, 

is given in RTRL by the equations 

dE _ [ll d-E 
9W ~ Jt0

 7 V 
07 _ dF[x, u; C, W) dF{x,u;C,W) 

dt ~~ dW + dx 7 

where 7(^0) = 0. The variable 7 is a rank three tensor with elements 7*- corresponding 

to the sensitivity of x\ to changes in the weight Wij. RTRL requires simulation of the 7 

variables forward in time along with the dynamics of the RNN. The gradient, however, need 

not necessarily be integrated. The weights can instead be updated by 

for the update time t. The parameter 7/ is a learning rate that determines how fast the 

weights change over time. The stochastic gradient algorithm requires that this parameter 

decrease to zero over time, but often it is simply fixed to a small value. The listing in 

Figure 5.1 shows a discrete time simulation of the RTRL algorithm using an Euler method, 

but the simulation can also be done using other numerical integration techniques. The 

algorithm has an asymptotic cost of 0(n 4 ) for each update to 7 when all the RNN weights 

are adapted. For large networks the cost is impractical, but improvements have been given. 

For example an exact update with complexity ©(n3) is given in [84] and an approximate 
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R E A L - T I M E - R E C U R R E N T - L E A R N I N G ( A , 77) 

Initialize W(0), x(0) <- 0, 7 (0 ) <- 0, Jfc +- 0 
r e p e a t 

yfc^-fc + l 
x(A;) = s(fc - 1) + At (-Ca;(A: - 1) + W<j>{x(k - 1))) 

7{7-(fc) = 7 | i ( A : - l ) + A t ( - 7 i - ( A : - l ) 

+ Sn^Xjik)) + Em^lmik - l)</>'(xm(k))>y%(k - 1)) 

Wij(k) = Wij(k - 1) -vT,i(%i(k) - Xi(fc))7{j-(fc) 

Figure 5.1: The RTRL Algorithm 

update with an 0 ( n 2 ) cost is given in [3]. The basic algorithm is practical for small networks 

and is sufficient for illustrating the properties of the proposed stable learning algorithm. For 

this reason it is used throughout this chapter and the next. 

5.1.3 Application of RTRL to the Sample Problem 

For the example problem, W is taken to be the matrix 

^ _ ["0.0756 1.0663 " 
~ [1.2691 -0.4792 ' 

Using the least conservative stability analysis described in Chapter 3, the Popov IQC in 

combination with T doubly dominant, the / V g a i n is bounded above by 149.1788. Using 

these IQCs an approximation to Ws" is computed over the weights W\2 and W21. In Fig­

ure 5.2 a sample of weight trajectories generated by RTRL are displayed along with the 

approximation to Ws". The optimal solution, given by W, is near the boundary of W^-

Two weight trajectories are shown for each of two starting points. The different trajectories 

were generated using different learning rates. For higher learning rates the trajectories tend 

to be more erratic and can leave Ws". This is to be expected since RTRL has no knowledge 

of the stability constraints. Higher learning rates also allow more rapid optimization of the 

objective function. The purpose of the stable learning algorithm proposed in this chapter 

is to constrain the trajectories to the set Ws" and to ensure tha t the weight matrix tran­

sitions do not lead to instability. Forcing the trajectory to remain within Ws" can allow 

larger learning rates to be used safely and thus provide an improvement in the rate at which 
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Figure 5.2: Examples of weight trajectories induced by training an RNN to re­
produce the output of dynamic system using RTRL. The space of RNNs with fixed 
weights that can be proved stable is shown in blue. Only the off diagonal weights 
of the 2 x 2 RNN weight matrix are modified. The diagonal weights are set to the 
optimal values. Some trajectories leave the provably stable region. 

performance is improved. 

5.2 Generating a Stable Initial Network 

Any algorithm designed to ensure the stability of adaptive systems needs to ensure the 

stability of the system at the initial parameter settings. The algorithm presented in the 

next section requires tha t the initial weight matrix, W, of the RNN be in the set Ws". Many 

heuristic and algorithmic approaches for initializing RNNs based on a priori information 

about a problem or problem domain exist. For example an RNN can be trained in a 

simulation environment before being used on a real system. Literature on the echo state 

network (ESN), a special type of RNN, contains many examples of heuristics for constructing 

RNN weight matrices [36]. The focus of this section is the development of methods that 

take some arbitrary matrix, W, and modify it to ensure satisfaction of the initial stability 

condition. Two optimization problems are developed for finding a matrix W tha t is in >VS™ 
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and is, in some appropriate sense, close to W. 

5.2.1 Scaling W into W™ 

As discussed in Chapter 3, a sufficient condition for W E Ws™ is that ||W||2 < 1- If this 

condition is not satisfied, a simple procedure for constructing a stable approximation to W 

is to scale it by a where a" 1 = (1 + e)||W||2 and e > 0. In other words, make W <— aW. 

This approach is used throughout the ESN literature and is sufficient for constructing an 

RNN with the so called echo state property, a strong form of stability. 

The norm condition on W is, however, very conservative compared to the LMI condi­

tions developed in Chapter 3. To reduce the effect of this conservatism on the initialization 

procedure — and hopefully to retain more a priori information encoded in W — an opti­

mization problem is formulated to find a maximal a such that W E VVJJ. The scaling, a, is 

the solution to the problem 

max a s.t. 
a,T,P 

-<0, P = PT, 
-CP-PC aPW + T 

aWTP + TT -(T + TT) 

TEV+, Sdd, ovMdd, 

(5.1) 

0 <a < 1. 

This problem is not linear in the decision variables, but the introduction of an auxiliary 

variable allows it to be written as a generalized eigenvalue problem. Recall that GEVPs 

can be solved efficiently using special interior point methods. To formulate the problem as 

a GEVP, first define the matrix P — aP and rewrite the constraint as 

- i ( _ C P - P C ) PW + T] 
WTP + TT -(T + TT)\ 

Second, introduce the auxiliary variable I g S " , and rewrite the optimization problem as 

min A s.t. 
\,T,P,X 

-X PW + T 
WTP + TT -(T + TT)_ 

< 0, P = PT, X = XT, 

X x A (CP + PC^ 

CP + PCy 0, 

T e V+, Sdd, or Mdd. 

(5.2) 
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The optimal scaling is given by a = min{l/A, 1}. Despite the fact that such problems can 

be solved in guaranteed polynomial time [9], the introduction of the auxiliary variable, X, 

can make the problem expensive. 

5.2.2 Projecting W onto Ws 

Considering only scalings of W restricts what it means for an approximation W to be close 

to W. A more general definition of closeness is to measure the magnitude of the difference 

in some matrix norm, \\W — W\\. The resulting optimization problem must find a W € Ws" 

that minimizes this value. The solution of this problem is a projection of W onto the feasible 

set W™s. The problem is formulated as follows 

min \\W — W\\ s.t. 
W,T,P 

•-CP-PC PW + T] T 

WTP + TT -(r + rT)J^u' 
T € T>+, Sdd, or MM, 

where clearly the matrix inequality is now bilinear in the decision variables W and P. In 

addition to the bilinear term, the optimization problem has a convex quadratic objective 

function. An epi-graph representation [10], can be used to convert this into a linear objective 

at the cost of an additional variable and additional constraints. 

To transform the objective function, first introduce the auxiliary variable t > 0 and 

change the objective of the optimization problem to 

min t. 
t,W,T,P 

Second, add the constraint, \\W - W\\ < t to the problem. It is clear that minimizing t 

results in minimizing the norm of W — W. For both the two norm and the Frobenius norm 

it is possible to transform the constraint into an LMI. The procedure differs depending on 

the choice of norm. In the case of the 2-norm, the constraint can be written as an equivalent 

LMI via the following transformations [10] 

\w-w\\2<t2 => (w - w)T(w - w) < t2i 
r ti w-w 

^ [(W-W)T ti 

85 

yo. 



The last step is a consequence of Schur's complement theorem [98, 9]. The resulting LMI 

is of size 2n x In. In the case of the Frobenius norm the transformation results in an LMI 

of size ( n + 1 ) x ( n + 1 ) . The transformation is [9] 

\\W-W\\F<t =*• t r ((W - W)T(W - W)\ < t 

i i 

=*• ||vec (W-W)\\2 <t 

[ / vec (W -W)\ 

^ [(vec (W - W))T t J ~ 

5 . 2 . 3 E x a m p l e s 

Figure 5.3 shows an example of four different initialization methods for a weight matrix 

W £ Ws™. The two scaling methods produce weight matrices on the line between W and 

the origin. It is clear that scaling by the norm of W is more conservative than scaling based 

on the LMI stability conditions. Also, the two projections are much closer to W than the 

two rescalings. It is not exactly clear how to interpret closeness in terms of the 2-norm in 

this context. The projection based on the Frobenius norm has a lower computational cost 

and a more intuitive meaning. Ideally, the projection would change the dynamics of the 

network as little as possible. It may be impossible however, to preserve the dynamics, since 

projecting the network weights might cause them to cross a bifurcation boundary of some 

kind. Using the Frobenius norm, causes the projection to minimize the changes made to the 

weights. Because of this, the Frobenius norm projection will tend to preserve the weight 

values of parts of the network that are not contributing to instability and may preserve 

more of the dynamics. 

When compared in terms of computational cost, however, the Frobenius projection 

method is much less appealing. In Figure 5.4 performance and run time results are given for 

the different initialization approaches. Initial weight matrices were generated with normally 

distributed elements. The results are averages over ten different random weight matrices for 

each value of n £ 2 , . . . , 11. The results produced by the Frobenius projection method are 

much better than the other approaches, but the run time of this approach grows rapidly with 
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Figure 5.3: An example of the differences between several scaling methods for 
generating stable networks from initial weight matrices. 

n. The Frobenius projection method introduces n2 variables into the problem to represent 

W. Along with the non-convexity of the matrix inequality condition, this causes the rapidly 

increasing cost. 

Two methods were used to compute a scaling based on the LMI stability conditions. The 

first method solved the BMI problem (5.1) directly using PENBMI. The second approach 

solved the GEVP version of the problem in (5.2) using the GEVP solver from LMILAB [4]. 

The PENBMI solver was slightly faster, but both methods produce very similar scalings. 

Further experimentation, however, revealed that as n grows larger the PENBMI method 

becomes much more efficient due to the cost of the additional variables in the GEVP version. 

The initialization methods described find stable weight matrices that are close to some 

existing weight matrix that, itself, may or may not result in a stable RNN. The cost of these 

initialization methods is only worthwhile if there is useful information encoded in the initial 

W. If W is generated randomly, for example, there is no reason to expect one method to 

be better than the other, and a simple scaling of W by its norm is sufficient to generate a 

stable initial system. If, on the other hand, an RNN is adapted to some model system, it 

can be useful to find the closest approximation to it that is guaranteed to be stable. 

LMI Scaling 
of W LMI Closest 

Frobenius-Norm 
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F i g u r e 5.4; A comparison of the performance and run times of the different initial­
ization methods. On the left is a plot of the distances of W from W. The distances 
tend to grow with n because W was with normally distributed elements and on 
average is further from the Ws™ as n grows. On the right is the log of the run times. 
The Frobenius projection method has a rapidly growing computat ional cost. 



5.3 Maintaining Stability of an Adaptive RNN 

Given a stable initial RNN it is now possible to consider adapting the weights of the network 

to optimize an objective function. As discussed in the introduction, it is necessary to 

guarantee the stability of the system as it changes through time. Consider a simple approach 

to this problem. Compute a set of bounds on the variation of the RNN weights within 

which stability is guaranteed, and then filter out any weight updates tha t put the weights 

outside of the computed bounds. Such an approach is at one end of a trade-off between 

computational cost and conservativeness. Only a single stability analysis is required, and 

the cost of rejecting weight updates that can not be proved stable is trivial. On the other 

hand, the initial weights may not be close to the optimal weights and the bounds may limit 

optimization of the problem objective. In [79] this approach was applied to training an 

RNN to model a chaotic system. Given a good initial weight matrix, the learning algorithm 

was able to improve the model within the specified stability bounds. In general, however, 

it can not be expected tha t the optimal weight matrix for a problem, W, will be reachable 

from W while still respecting the initial stability constraints. The relative inexpensiveness 

of this approach has as its price a reduction in the achievable performance. At the other end 

of the spectrum is an algorithm that recomputes the bounds on weight variations at every 

update to the weights. The algorithm does not ensure tha t every update is accepted, but it 

does, in theory, result in the acceptance of many more updates than the simple approach. It 

also allows, again, in theory, better performance to be achieved. The computational cost of 

the algorithm is, however, prohibitively expensive because of the large number of stability 

analysis computations required. The algorithm proposed in this section falls somewhere 

between these two extremes allowing better optimization of the objective than the first 

approach with less computational expense than the second. 

An algorithm, called the S T A B I L I T Y - C O N S T R A I N E D - L E A R N I N G algorithm, is listed in 

Figure 5.5. The algorithm assumes that changes to the weight matrix are proposed by 

an external agent, such as RTRL, at discrete time steps indexed by the variable k. The 

algorithm ensures the stability of an adaptive RNN by filtering weight updates that can not 

be guaranteed stable. A constraint set, Cj(W) is a set of bounds, {A, A } , on the variation 
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S T A B I L I T Y - C O N S T R A I N E D - L E A R N I N G 

j <- 0, k - 0 
update <— false 
Initialize W(0) 
Compute constraint set Co (W(0)) 
r e p e a t 

Jfe<- fc + 1 
Compute A W 
if W(k - 1) + A W G Ĉ  

W(ifc) 4- W(k - 1) + A W 
update —̂ t r u e 

e lse 
if update 

3 <- J + 1 

Compute constraint set Cj(W(fc — 1)) 
update <— false 
if W(k - 1) + A W e Cj 

W(k)<-W(k-l) + AW 
update <— t r u e 

Figure 5.5: The stability constrained learning algorithm. 

in the RNN weight matrix centered on the fixed matrix W. Variations in W(k) tha t stay 

within these bounds can be assured not to result in instability. The constraint set, Cj(W) 

is a hypercube centered on W with each element of W(k) constrained by 

Wij-AijKWijWKWij + Aij. 

When an update causes W(k) to lie outside of the constraint set, a new set of constraints is 

computed if updates to W(k) have occurred since the last set of constraints was constructed. 

Otherwise, the update is rejected. Given this new set of constraints centered on the most 

recently seen stable W, the current update W(k — 1) + A W is again checked for validity. 

If the update fails to satisfy the new constraints it is then rejected. Rather than rejecting 

the update outright, the proposed procedure makes better use of the available weight up­

date suggestions from the adaptation algorithm. Figure 5.6 illustrates the behavior of the 

proposed algorithm. 

In Figure 5.7 the result of applying the stability constrained learning algorithm to a 

weight trajectory generated by RTRL for the example problem described in Section 5.1 is 
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Figure 5.6: Given an initial stable point, the update ^i(r) is proposed and accepted 
since it satisfies the stability constraints. The next update is also accepted. Update 
<!>2(T) violates the stability constraints, so the constraints are updated. The proposed 
update violates the new constraints as well, and so is rejected. Update 62 (T + 1) is 
accepted since it satisfies the new constraints. Update ^ ( r ) violates the constraints, 
and causes the constraints to be updated again. Since it still violates the new 
constraints the update is rejected. 

shown. The weight matrix W was initialized using a scaling by its 2-norm. The constraint 

sets were generated using the BMI method described in the previous chapter applied to 

time-varying RNN formulation 4.9. The Popov IQC was used in conjunction with the 

repeated nonlinearity IQC, taking T to be doubly dominant. The example is ideal in that 

very few sets of stability constraints were computed and the optimal weight matrix was in 

Ws™. In later examples it will be seen that this is not always the case. 

Figure 5.2 shows an example of starting from an initial point generated by the Frobe-

nius projection method and adapting the weights using the RTRL algorithm. Without 

constraints on the weight updates it is clear tha t the learning algorithm does not respect 

the stability constraints. This is not to say that the algorithm produces unstable behavior, 

only tha t stability can not be guaranteed along the trajectory induced by the unconstrained 

RTRL algorithm. Such excursions from the stability region could have more damaging ef­

fects if the RNN was in a control loop with some actual physical system. 

Applying the proposed algorithm forces the trajectory to remain in Ws™. The example 

shown in Figure 5.8 and Figure 5.9 illustrates an unfortunate problem with the approach. 
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Figure 5.7: Shown here are the results of applying the stability constrained learning 
algorithm to a sample trajectory. This is an ideal case where very few stability 
constraint sets are generated. 

In some instances, weight trajectories can remain near the boundary of Ws™. This results in 

the computation of a large number of constraints sets. Since this computation is expensive, 

its occurrence over the course of the weight adaption should be minimized. Reducing the 

conservativeness of the stability analysis is not much help in this situation. If the error 

gradient points toward the stability boundary and the weight trajectory moves toward 

the boundary, allowing more variation in the interior of Ws™ does not help. To alleviate 

this problem the error gradient should be modified with a term that captures stability 

information. In the next section, a method is introduced that explicitly biases the trajectory 

away from the boundary of Ws™. 

5.4 A Stability Bias 

To bias learning trajectories away from the boundary of Ws™ a measure of closeness to 

this boundary is needed. Fortunately, as is obvious from its definition and illustrated in 

Figure 3.4, the £2-gain of the RNN with static weights grows rapidly near the boundary 
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: Optimal So In 

• 

Figure 5.8: Bounds on the variation of the RNN weights within which stability 
can be proved are shown in black rectangles. If the learning methods attempts 
to update the RNN weights outside the current region a new region is computed, 
centered at the last stable weight values. If the update falls outside this new region 
it is dropped and the algorithm proceeds to the next iteration of learning. Notice 
how RTRL causes the weight trajectory to proceed along the stability boundary 
and forces the continual recomputation of the stable variation region. 
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Figure 5.9: A close up of Figure 5.8 showing the weight trajectory. 
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of Ws™. So the ^2-gain acts as the inverse of distance to the boundary. The magnitude of 

the /Vgain is not immediately useful as a bias, however, since it contains no information 

about the direction of the boundary from a weight matrix. On the other hand, the gradient 

of this value with respect to W carries information about closeness to the boundary and of 

its direction from W. In this section it is shown how to compute this derivative. Its use as 

a bias for weight trajectories is illustrated using the sample problem. 

5.4.1 Optimality and SDPs 

Consider a general, nonlinear, semidefmite program given in [27] 

p* = m.mbTx s.t. i £ l n , 

B{x) < 0, 
(5.3) 

c(x) < 0, 

d{x) = 0. 

The optimization problem encompasses all of the stability problems constructed in the 

earlier chapters. The Lagrangian of this problem C : W1 x Sm x W x R9 —> E, is defined by 

[27] 

C (x, Y, u, v) = bTx + B{x) • Y + uTc(x) + vTd(x) (5.4) 

where Y £ Sm, u £ Rp, and v £ W are the Lagrange multiplier variables. The Lagrangian 

dual function, defined as, [10] 

g(Y, u, v) = inf C(x,Y, u, v) (5.5) 
X 

is a lower bound on the optimal value of (5.3) for all values of the multiplier variables. 

When the best lower bound given by (5.5), that is, 

d* = max#(y,it, v) s.t. Y h 0,u >r 0, (5.6) 
Y,u,v 

is equal to, p*, the optimal value of (5.3), the problem is said to satisfy a strong duality 

condition. For convex optimization problems a sufficient condition, known as Slater's con­

dition, for strong duality is the existence of a strictly feasible point. So, if B(x), c(x), and 

d(x) are convex functions of x, and there exists an x satisfying, B(x) ^ 0 and c(x) < 0 then 

d* =p*. 
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Often, rather than considering a single SDP a set of related SDPs parameterized by 

some data 9 is of interest. For example, the LMI stability condition for RNNs with time 

invariant weights forms a set of SDPs parameterized by W. For parameterized SDPs, the 

Lagrangian, p*, and d* are functions of the problem data and are written C(xtY,u,v;6), 

p*(0), and d*{9). Of specific interest is the set of 6 for which the SDP satisfies the strong 

duality condition. Over this set, the affect of perturbing the data, 9, on the optimal solution, 

p*(9), can be estimated with a Taylor series expansion using the gradient defined by 

V»p-(9) = w"m _d_ 
d*{9) 

d _ - _ _ ' 
—C(x,Y,u,v;9) 

This gradient is well defined when the Lagrangian is differentiable with respect to the data 

which is always the case when it is linear in the parameters of interest. The gradient is 

a first order approximation to the function p*(9) and gives the direction in the parameter 

space in which p*(9) increases the most in this approximation. 

5.4.2 Application to R N N Stability Conditions 

Consider the optimization problem from Chapter 3, 

7 = inf 7 s.t. 

-CP -PC + I 
p 

WTP + T 

P PW + T 
- 7 / 0 
0 - 2 T 

< 0, P = P' >T Tev+, 

(5.7) 

(5.8) 

associated with proving the stability of a time invariant RNN. Here, the decision variables 

are x = (7, T, P). An upper bound on the gain of the RNN with weight matrices C and W 

is given by y/j. The LMI constraint in the problem has an associated Lagrange multiplier 

denoted Y. Take the Lagrangian to be a function of the weight matrix, W, and write 

C (x, Y; W). The problem is convex and by the definition of Ws™ satisfies Slater's condition 

for all W in Ws". The Lagrangian takes the value 7 at the solution to (5.7). Since the 

Lagrangian is linear in W, and thus differentiable, the gradient of 7 with respect to W can 

be computed by the formula 

d 
Vw7 = 

dW, 
-£(x,Y;W) (5.9) 
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For conciseness Vwl w m be denoted by Vs throughout the remainder of the chapter. The 

Lagrangian in (5.4) specializes to 

C(x,Y;W) = 7 + £ ( x ) - Y 

in this case. The function B(x) corresponds to the left hand side of the LMI constraint in 

(5.8). It is a function of the problem da ta W given by 

B(x]W) = ^jxiB^{W) 
i 

where the B^s are linear functions taking W into S m . Since this is the only point at which 

the problem da ta enters the Lagrangian, its gradient is easily computed as 

d „ ,_ ,-, „TJ / A _ d 
m-C{WW)\ = ( J>^«WJ .?. (5.10) 

Since B(x;W) is linear in W, the partial derivatives -Q^-B^\W) are constant and can be 

computed without the knowledge of a specific W. Evaluation of the gradient is a simple 

operation, but requires the optimal values x and Y associated with a given W. This 

in turn requires tha t the optimization problem (5.7) be solved for each evaluation of the 

stability bias. Solving the optimization problem (5.7) dominates the computational cost of 

computing V s . As discussed in Chapter 3, this computation has a run time on the order of 

©(n3) to ©(n6) depending on the IQCs used and the choice of SDP solver. 

Figure 5.10 shows the computed gradients of the C2-gain at a sample of weight matrices 

from the example problem. It is clear from the example that Vs contains the desired 

information. Tha t is, the gradient points away from the stability boundary toward the 

interior of VV,™ and has a greater magnitude when W is nearer to the boundary. It appears 

that biasing weight trajectories using the gradient Vs will successfully push the weight 

trajectories away from the stability boundary. Nevertheless, the effect of the bias on the 

optimization of the overall problem objective still needs to be considered. 

Ideally, the stability bias would affect only the path the parameters take to an optimal 

solution and not the final point to which they converge. To achieve this ideal behavior 

the effect of the stability bias on the weight trajectories should be small relative to the 
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Figure 5.10: Examples of Vwl with respect to the two off diagonal weights of W\. 
See Figure 3.4 in Chapter 3 for the actual £2-gain values. 

effect of the updates given by the learning algorithm and should diminish over time. For 

example, the update rule might scale the magnitude of Vs with respect to the magnitude 

of the learning update, r\Vj, where, for example, V; = l{t)-^j^ in the case of RTRL. Such 

an update would look like 

9y(t) 

Wi-W-lTiVi + m \\!i3kVs 
s 112 

(5.11) 

with r/2 < 1 and decreasing with time. A potential problem with this approach is tha t 

the effect of the stability bias is small regardless of closeness to the boundary of Ws". An 

alternative updating scheme varies the scale of the stability bias with the magnitude of the 

£2-gain bound, 7. The update is given by 

m r / 2 | ( t a n h ( 7 - 7 ) + 1) 

W ^W - r?V + 773 ll«,v< IV II I vsll2 

(5.12) 

where 772 < 1 and decreases with time as before. The scaling, 773 is a monotonically increasing 

function of 7 with a transition from low to high centered at 7. This approach has the benefit 

of not affecting the weight trajectory when it is far from the boundary of Ws™, but requires 
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Figure 5.11: The same problem, but with the stability gradient incorporated into 
the weight update. Notice how the trajectory is further from the stability boundary 
and fewer recomputations of the stable variation region are needed. 

the transition point 7 to be chosen. The scaling 772 must decrease to zero with time to 

ensure that asymptotically the stability bias has no effect. If a certain maximum gain value 

is desired for the system, allowing 773 to remain positive and setting 7 to the intended gain 

bound helps to bias the system toward satisfying this condition. Methods for choosing a 

decay schedule for the parameter 772 are rather ad-hoc, but the learning rate 77 for the RTRL 

updates has the same requirements and associated problems. 

5.4.3 Example 

The example from Figure 5.8 is repeated in Figure 5.11 but with a stability bias added to 

the weight updates. The update formula (5.11) is used and 772 = 0.1 throughout the run. 

The BMI approach was used to generated the constraint sets as in the previous example. 

The bias clearly improves the performance of the algorithm by reducing the number of 

constraint sets that must be computed. In the example shown in Figure 5.8 a constraint set 

was computed at almost every update. Replacing these expensive computations with the less 

costly stability bias computations reduces the cost of the STABLE-LEARNING-ALGORITHM. 

To explore the effect of the stability bias further, four trials of 1000 steps were run 

:: Optimal Soln 

Stopped at 
Iter 2868 

3 3 = 3 — 

?TS?SSS^»" 
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No Bias 

(5.11) 

(5.12) 

Rejected Steps 

38 
0 

24 
0 
38 
0 
26 
0 
0 
0 
0 
0 

Constraint Sets 

220 
5 

145 
2 

174 
5 

171 
2 
8 
4 
10 
2 

Mean Variation 

0.0794 
1.8751 
0.2538 
4.2041 
0.0836 
1.4834 
0.1451 
4.2116 
1.0029 
2.0527 
1.3200 
4.2041 

\\w-wf\\F 

1.9957 
2.0885 
1.5252 
2.5307 
2.2487 
2.0700 
1.5538 
2.5377 
1.0968 
2.0393 
1.0911 
2.5314 

Table 5.1: Results of applying the stable learning algorithm with and without the 
stability bias. 

from different starting points in Ws™. The starting points are (3.95,0.3), (—0.4,-3.0), 

(0.3,4.0), and (—4.0,0.0). During the trials the number of rejected updates and constraint 

set computations were counted. Also, the mean amount of variation allowed in a weight was 

measured, and the distance of the final solution from the optimal solution was recorded. 

Three configurations of the stable learning algorithm are compared. The first uses no 

stability bias. The second uses a stability bias with the update rule (5.11) and r?2 = 0.001. 

The third configuration uses the update rule (5.12) with 772 — 1-0- The results for this 

experiment are shown in Table 5.1. The four rows in each box correspond to the results for 

the four different starting points. The matr ix Wf is the final weight matr ix reached during 

the 1000 steps of learning. 

The results contain several interesting features. For the first and third starting point 

the use of the stability bias update (5.12) significantly reduces the number of constraint 

sets that are computed, the number of rejected updates, and the distance from the optimal 

solution after 1000 steps. Also, the average amount of weight variation allowed is larger 

when using (5.12) due to the trajectories begin further from the stability boundary. The 

differences on the second and fourth start ing points are minimal, but the stability bias 

does not seem to have a negative impact. Increasing 772 to 0.1 for use with (5.11) improves 

its performance to about the level of (5.12) in the reported results. Nonetheless, the up­

date (5.12) seems to be preferable because it has zero impact when the trajectory is far from 
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the stability boundary. This simple experiment illustrates the benefit of using the proposed 

stability bias. The cost of computing the bias is still prohibitive, since it is done every step. 

In the next section a method for reducing the cost of the bias computation is developed. 

5.5 Solving Perturbed SDPs 

The computation of the proposed stability bias requires that the semidefinite program (5.7) 

be solved for each W at which the gradient, Vs is evaluated. While this SDP is smaller 

and less computationally burdensome than the SDP associated with computing a new set 

of variation constraints, computing its solution at each update to W is still costly. Updates 

to the RNN weights, however, are generally small and give rise to SDPs that are mild 

perturbation of the SDP associated with the previous weights. If the perturbation is small 

enough, it is reasonable to assume that the solutions of the original and perturbed problems 

will be similar. Analysis in [26, 28] shows that this is indeed the case under certain conditions 

on the problem. The details of this analysis are discussed below. In this section the cost of 

evaluating the stability bias over a sequence of weight matrices is significantly reduced by 

making use of similarity between the solutions of (5.7) for W and W + AW. 

5.5.1 A Warm-Start Method for SDPs 

Optimization methods that use the solutions of previous problems to speed up the opti­

mization of new problems are known variously as warm-start or hot-start methods. These 

methods make the most sense and have the greatest impact when the problems being solved 

are related in some way. For example, consider a sequence of linear programs where a con­

straint is added in each new problem. In the context of computing the proposed stability 

bias, the problems are related through perturbations of the problem data. A successful 

warm-start method reduces the cost of solving the set of problems in sequence relative to 

the cost of solving them all individually. Unfortunately, simply initializing the problem 

variables to the values of the previous problem's solution does not generally make a suc­

cessful warm-start method. In fact, using such an initialization can sometimes increase the 

cost of solving the sequence of problems. This slow down effect has been observed in the 
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case of interior point methods for linear programming [95]. 

While interior point methods (IPMs) are generally the most efficient methods for solv­

ing semidefinite programs and other convex optimization problems [47], it has proved quite 

difficult to successfully benefit from warm-start information in IPMs [95, 95, 41]. Because of 

this deficiency in IPMs, methods that are less generally efficient, but better able to leverage 

warm-start information may preferable in the context of solving sequences of related prob­

lems. In the context of semidefinite programming, there is very little published research on 

warm-start techniques for solving perturbed problems. A method was suggested specifically 

for application to the Max-Cut graph partitioning problem where constraints are added se­

quentially to a sequence of SDP problems [51]. More general purpose approaches are lacking 

in the current literature. 

Completely addressing the issue of warm-start for semidefinite programming is beyond 

the scope of this work. Nonetheless, the basic outline of a warm-start procedure is devel­

oped and successfully applied to the problem of computing the stability bias at a sequence 

of weight matrices. The findings reported in this section indicate that the augmented 

Lagrangian algorithm described in Section 2.4 and developed in [46, 47] is capable of cap­

italizing on available warm-start information. When the solution to a nearby problem is 

known, the number of iterations of the augmented Lagrangian algorithm needed to solve a 

problem can be significantly reduced. Furthermore, the results in [27, 28], characterize the 

effect of da ta perturbations on the decision variables and Lagrange multipliers of an SDP as 

the solution to a linear program. At little additional cost, this characterization can be used 

to modify a given warm-start solution in the direction of the perturbed problem's solution. 

Improving the warm-start information in this way further reduces the number of iterations 

necessary in the augmented Lagrangian algorithm. 

5.5.2 Warm-Start and the A u g m e n t e d Lagrangian M e t h o d 

In the light of the known problems with warm-starting IPMs and given the results in 

Chapter 3 demonstrating the efficiency of the augmented Lagrangian method [47] on the 

SDPs of interest, a simple warm-start procedure for the augmented Lagrangian method is 
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PENSDP 

Initialize xo, YQ y 0, and po > 0, k <— 0. 
repea t 

Xk+i <- argminxeRn F(x,Yk,pk) 
Yk+1^D$(B(xk+1),p)[Yk] 
Pk+i *~ /(Pfc) where /(jpfe) < pk. 

Figure 5.12: The PENSDP algorithm. The notation D$(B(xk+1),p){Yk] denotes 
the derivative of the augmented Lagrangian with respect to the Lagrange multiplier 
evaluated at Yk. 

presented. Before describing the warm-start approach, some details of the algorithm in [47] 

are discussed. Recall that the augmented Lagrangian approach involves solving a sequence 

of minimization problems over the augmented Lagrangian function 

F(x, Y,p) = bTx + $(B(x),p) • Y 

where p > 0 is a penalty parameter and $(•) is a penalty function satisfying the condition 

B(x) ^ 0 «• $(S(x),p) r<0. 

The algorithm alternates between finding the minimum of F(x, Y,p) for fixed Y and p and 

updating Y and p. The solutions of the minimization problem, x, are required to satisfy 

the penalty barrier constraint, §(B(x),p) ^ 0. By decreasing p feasible solutions can be 

approached if they exist. The problem becomes ill-conditioned as p approaches zero, but 

it can be shown that if a solution exists it will be found with p > 0. The basic algorithm 

is given in Figure 5.12 and details about <£>(•) and the updates to the Lagrange multiplier 

variables and the penalty parameter can be found in [46, 47]. 

The naive approach to warm-starting the augmented Lagrangian algorithm is to simply 

initialize x and Y to the solution of the previous problem. The experiments later in the 

chapter show that, unlike IPMs, the augmented Lagrangian algorithm is able to use this 

warm start information successfully. When the perturbations are small the cost of solving 

the perturbed problem is significantly reduced by initializing the solver with the warm start 

solution. 
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5.5.3 Improving the Warm-Start Data 

The experiments in the next section show that the augmented Lagrangian method can 

successfully use warm-start data to decrease the cost of solving a perturbed SDP. The cost 

can be further reduced by applying some SDP analysis results from [26, 28]. In this section 

it is shown how to improve the warm-start data at the cost of solving a linear program. The 

solution of the linear program gives a perturbation of the warm-start data that is closer to 

the true solution of the perturbed SDP problem. The augmented Lagrangian solver starting 

at this improved initial point requires fewer iterations to solve the perturbed SDP. 

The following discussion is a simplification of results in [26] to the case of linear SDPs. 

Consider an SDP of the form 

min6Ta; s.t. x <E Rn 

(5.13) 
A[x) + C < 0 

where A(x) : W1 —• Sm is an affine function. The problem (5.13) can be viewed as being 

parameterized by the data V — [A, b, C). Given a perturbation to this problem data, AV = 

[AA, Ab, AC], related perturbation of the problem solution, (x,S,Y), can be computed. 

Here, x is the decision variable, S is the slack variable, and Y is the dual variable associated 

with the matrix constraint. A solution, (x,S, Y) of (5.13) is called a stationary point if it 

satisfies the conditions 

A{x) + C + S = 0, 

b + A*(Y) = 0, 
(5.14) 

YS + SY = 0, and 

?,syo. 

The point is called a strictly complementary stationary point if it is a stationary point and 

satisfies the condition 

Y + S^O. (5.15) 

The following theorem concerning the effect of the perturbation, AV, on the solution, 

(x,S,Y), is proved in [26]. 
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Theorem 5.1. Assume that (5.13) satisfies Slater's condition. That is, assume there is 

at least one feasible x e Kn. Let the point, (x,S,Y), be a locally unique, and strictly 

complementary stationary point of (5.13). For sufficiently small perturbations, AV, there 

exists a locally unique stationary point, (x(V + AV), S(V + AV), Y(T> + AV)) of the per­

turbed program (5.13) with dataV-\-AV that is a differentiate function of the perturbation. 

The derivative Dv (x(V),S(V),Y(V)) of (x(V),S(V),Y(V)) with respect to V evaluated 

at (x, S, Y) is characterized by the directional derivatives 

(x,s,y) = ih> (X(V),§(V), Y{V)) [ A P ] (5.16) 

for any A P . The point (x,S,Y\ is the unique solution of the system of linear equations, 

A(x) +S+AC+ AA{x) = 0, 

A*{Y) + Ab + AA*(Y) = 0, (5.17) 

YS + YS + SY + SY = 0, 

for the unknowns i eK™ and 5 , F £ § ™ . 

The system of linear equations describing the directional derivative, (5.16), has m2 + 

m + n equations, (5.17), and m2 + m + n unknowns, the entries of (x, S, Y). The LP has 

many more variables than the original SDP problem, but if it can be solved more quickly 

than the original SDP and if the perturbed warm-start data significantly improves the run 

time of the SDP solver an overall speedup may be achieved. 

The application of Theorem 5.1 to the warm-start problem is straightforward. Given the 

solution to an SDP, (x, Y, S), and a perturbation of the problem data, AV, solve the linear 

program (5.17). Update, (x,Y, S), by adding to each the associated part of the computed 

solution, (x,S,Y). The point, (x + x, S + S, Y + Y), will not generally be the exact solution 

of the perturbed SDP. The quality of the approximation given by the LP will degrade as 

the magnitude of the perturbation to the problem data increases. The modified data can, 

however, be used to initialize the augmented Lagrangian solver which can compute the 

exact solution to the perturbed SDP. 

The RNN stability analysis problem (5.7) is easily written in the form of (5.13). Multi­

ple LMI constraints and scalar linear constraints can be treated as a single LMI by diagonal 
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augmentation of the constraints into a single matrix. Modifications of the RNN weight 

matrix affect the A(x) da ta but do not affect b and C. This simplifies the constraints (5.17) 

slightly. The perturbation to A(x) will affect all of the problem variables, (x,Y, S). As 

previously discussed, for stable RNNs, the stability analysis problem has a strictly comple­

mentary solution that will be unique because of the problem's structure. Perturbations to 

the weight matrix may not be sufficiently small, and the LP will only give an approximation 

to the solution of the perturbed problem. Modifications to the weight matrix that are too 

large can cause the approximation to be very poor. Using these poor approximations to 

update the warm-start solution may actually increase the solution time of the augmented 

Lagrangian solver. Another problem that may be encountered is that the computed solu­

tion to the previous SDP may not be exact or of high enough accuracy. The inaccuracy 

leads to inconsistencies in the linear program and bad approximations to the solution of 

the perturbed SDP. Both of these problems occurred in the experiments in the next section 

on occasion. These problems can generally be detected by analyzing the magnitude of the 

LP solution. Since the weight perturbations are typically small, solutions of the LP with 

magnitudes much larger than the magnitude of the perturbation most likely signify that one 

of these problems has occurred. In these cases, no update to the warm-start da ta should be 

made. The next section analyzes the proposed warm-start procedure experimentally and 

shows tha t the correction given by the solution of (5.17) further reduces the cost of solving 

the perturbed SDPs relative to the naive warm-start approach. 

5.5.4 Experimental Evaluation 

The PENBMI software used in the previous chapters for examining the augmented La­

grangian approach does not support the initialization of the Lagrange multiplier variables 

needed to test the proposed warm-start method. In the evaluation here a Matlab imple­

mentation based on the publications [47, 46] is used. The implementation is not as efficient 

as the software available from the authors, so the evaluation is not performed in terms of 

actual run times. Instead, the evaluation is presented in terms of three counts: the number 

of iterations of the main algorithm, the total number of iterations in the minimization of 
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the Lagrangian, and the total number of conjugate gradient steps in the same minimization 

problem. When the modified Newton's method is used to minimize the augmented La­

grangian, the run time of the algorithm is governed by the cost of forming and solving the 

Newton's equations. The total number of steps in the minimization then acts as a surrogate 

for total run time. If the conjugate gradient approach is used, the run t ime is governed by 

both the cost of preconditioning and the cost of the conjugate gradient steps. In this case, 

both the number of steps in the minimization and the total number of conjugate gradient 

steps should be considered. The number of steps in the main algorithm captures the the 

total cost of updating the Lagrange multipliers. These updates are relatively cheap com­

pared to solving the minimization problem but are not trivial. The updates require a matrix 

inverse and the computation of a quadratic matrix product, ABAT. A large increase in the 

number of main steps can slow the algorithm down. 

A simple first experiment is constructed using the matrix 

W 

and the perturbation 

AW 

-0 .1153 0.3176 -0 .0498 0.0304 0.0785 ' 
-0 .4442 0.3171 0.1935 0.2845 -0 .3563 
0.0334 -0 .0100 -0.1569 0.0158 0.1905 
0.0767 0.0873 0.5822 -0 .0255 0.4329 

-0 .3057 0.0466 -0.0364 -0 .2220 -0 .1845 

0.0009 -0.0004 0.0007 -0 .0016 0.0005 ' 
0.0013 0.0007 0.0012 0.0003 0.0002 

-0.0016 0.0008 -0.0012 -0 .0011 -0 .0009 
-0 .0014 0.0007 -0.0000 0.0014 -0 .0022 
0.0006 0.0013 -0.0002 -0 .0008 -0 .0001 

Problem (5.7) is solved for W to derive the warm start information. The minimization 

subproblems in the augmented Lagrangian algorithm are solved by the conjugate gradient 

algorithm. Since the augmented Lagrangian method implemented for this experiment is 

rather basic, the multiplier T was taken to be positive diagonal, and the Popov multipliers 

were not used in the stability analysis and bias computations. The iteration counts for using 

no warm start information, using the naive warm start approach, and using the augmented 

warm start da ta to solve the stability problem for W + AW are shown in Table 5.2. A 

clear trend is visible in the data: using the warm start methods decreases the number of 

inner iterations and conjugate gradient steps at the cost of more multiplier updates. The 
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No Warm Start 
Warm Start 

Augmented Warm Start 

Main Iteration Count 

32 
41 
57 

Minimization Problems 

69 
12 
6 

CG Steps 

271 
126 
34 

Table 5.2: Iteration counts for the different warm start approaches applied to a 
single 5 x 5 weight matrix and perturbation. 

use of the augmented warm-start da ta reduces the number of conjugate gradient steps of 

the naive warm-start approach by a factor of four. The cost of solving the LP needed to 

produce the augmented warm-start da ta is discussed at the end of this section. 

The naive warm-start approach and the LP augmented approach are compared using 

the conjugate gradient method to solve the minimization subproblems. The methods were 

evaluated on sequences of weight matrices generated by applying the stability biased RTRL 

algorithm to the test problem in Section 5.1. Three sequences of 100 weight matrices were 

generated starting from different stable starting points. The actual stability bias used in 

the updates was computed by solving problem (5.7) to high accuracy using Sedumi. This 

ensured that the sequences of weight matrices in different runs did not differ due to slight 

differences in the solutions computed by the methods under comparison. The solution 

computed by Sedumi were not used in the augmented Lagrangian computations in any way. 

When warm-starting was not used, the penalty parameter p was initialized using the 

s tandard approach from [46]. In the warm-start case two different settings of p were tested: 

the s tandard initialization and a fixed initialization of p = 1. In Table 5.3, average iteration 

counts over the three weight sequences are shown for the various algorithm configurations. 

It is clear from the da ta that using warm-start information provides a drastic reduction 

in the cost of solving the sequence of perturbed SDPs. Furthermore, initializing the penalty 

parameter p to one can more than double the performance improvement. For the augmented 

warm-start data, however, fixingp to one decreases the performance. In fact, the naive warm 

start solution with p initialized to one provides the most efficient solution of the sequence of 

problems. This suggests tha t while the augmented warm-start da ta can improve the solution 

cost in some cases, the necessary LP computation may not be worthwhile. Additionally, 

solution of the LP with freely available software generally took longer than solving the 
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No Warm Start 
WS, p def 
WS, p = 1 

WS Aug, p def 
WS Aug, p = 1 

Main Iterations 

2235.66 
2941 

1331.40 
2476.00 
2673.33 

Minimization Problems 

4787.66 
803.66 
387.60 
684.00 
744.00 

CG Steps 

9432.66 
4231.33 
1890.40 
3554.00 
3828.33 

Bad LPs 

0 
0 
0 

0.33 
0 

Table 5.3: Average iteration counts for solving three sequences of 100 slightly 
perturbed SDP problems. The sequences of problems are solved with three different 
methods: no warm-start, naive warm-start, and augmented warm-start. The naive 
warm-start method with a fixed initial p—1 performs the best. 

perturbed SDP from scratch. While this may not be the case with bet ter performing, 

commercial LP solvers, the results suggest tha t the approach may not be cost effective. 

5.6 Conclusions and Contributions 

In this chapter an algorithm has been proposed tha t ensures the stability of an adaptive 

recurrent neural network under the adaption of an arbitrary agent. This so called S T A B L E -

L E A R N I N G - A L G O R I T H M filters updates proposed by the adaptation mechanism to ensure 

that the RNN remains within the space of stable RNNs and that the variations in the 

weights do not lead to instability. The cost of this algorithm is the computation of bounds 

on the allowable variation in the weight of the neural network. Under certain circumstances 

these bounds must be computed very often. This often occurs when the weight trajectory 

is near the boundary of the set of stable RNNs, WJJ. A method for biasing the trajectory 

away from this boundary was developed and shown to reduce the number of constraint sets 

generated by the stable learning algorithm. The computation of this stability bias is not 

cheap, however, and requires the solution of an SDP. When the weight matr ix changes in 

small steps, the cost of computing the stability bias can be reduced by applying warm-start 

methods. An approach to solving a sequence of perturbed SDPs was developed using a 

perturbation analysis of SDPs and the augmented Lagrangian method. Experiments in the 

previous section showed that the warm-start method could significantly reduce the cost of 

computing the stability bias. 

Maintaining the stability of an RNN under adaption is not often useful or necessary on 

its own. On the other hand, when the RNN is introduced into a control system, stability 
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becomes very important. Stability of the RNN is a first step toward ensuring the stability 

of the entire closed loop control system, but it is not sufficient. In the next chapter the 

stable learning algorithm and stability bias techniques developed here are applied in the 

context of a robust, adaptive, neural control system. 
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Chapter 6 

Robust Adaptive Neural Control 

The control of physical systems requires dealing with uncertainty. Uncertainty enters the 

control problem in at least three ways: unmeasured states, unknown dynamics, and uncer­

tain parameters. Robust control is the problem of ensuring stability and performance in 

uncertain control systems. Modern robust control theory is based on explicit mathematical 

models of uncertainty [23]. If it is possible to describe what is unknown about a system, 

stronger assurances can be made about its stability and performance. The automation 

of robust controller design relies on the tractable representation of the uncertainty in a 

system. For example, some types of uncertainty can be described by IQCs and lead to 

representations of uncertainty as convex sets of operators. Linear systems are a particularly 

tractable type of model, and the design of feedback controllers for linear systems is a well 

understood problem. Thus, linear models of physical systems are particularly attractive. 

Most physical systems, however, exhibit some nonlinear dynamics and linear models are 

generally insufficient for accurately describing them. Unmodeled nonlinear dynamics can 

often be treated within the same framework as uncertainty. The recurrent neural network 

stability analysis presented in Chapters 3 and 4 relies on this approach. Because robust 

controllers must be insensitive to inaccuracies and uncertainties in system models, perfor­

mance is often sacrificed on the actual system to which the controller is applied. Additional 

loss in performance is introduced by restricting controllers to be linear and of low order. 

These properties are generally desirable because low order, linear controllers can be easily 

analyzed and understood. Performance can often be improved by the use of nonlinear and 

adaptive control techniques, but guaranteeing stability and performance is more difficult in 
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this environment. In this chapter the use of adaptive, recurrent neural networks in control 

systems is examined within a framework of robust stability requirements. 

Recurrent neural networks are, in some respects, ideal for applications in control. The 

nonlinearity in neural networks allows for the compensation of nonlinearties in system dy­

namics tha t is not generally possible with low order, linear controllers. The dynamics of 

recurrent neural networks allow internal models of unmeasured states to be produced and 

used for control. The histories of the measured variables can often be used to internally 

model the behavior of the hidden dynamics. The difficulty in applying recurrent neural 

networks in control systems is in the analysis and prediction of the system's behavior for 

the purpose of stability analysis. 

The control of a nonlinear, uncertain, multiple spring-mass-damper system is considered 

in this chapter. The system is a simple instance of a larger class of models representing 

physical systems such as flexible manipulators and active suspension systems. The goal 

of this chapter is to construct a neural controller for the system with guaranteed stability 

during operation and adaption. The stable learning algorithm presented in the previous 

chapter is applied to the problem, but suffers from conservativeness in the stability analysis 

of the closed feedback loop. Several modifications to the basic algorithm are considered. An 

alternative algorithm tha t ensures that the feedback loop is stable for each static setting of 

the RNN weights visited during adaption of the controller is developed. The algorithm gives 

up the guarantee of dynamic stability given by bounding the variation in the RNN weights. 

This compromise reduces the computational cost of the algorithm and allows the RNN to 

successfully adapt a stable control strategy for the system. The stability bias described 

in Chapter 5 is used to keep the weight trajectory from getting stuck near the stability 

boundary. Without the bias, the adaption algorithm produces many updates that must be 

rejected, stalling the progress of learning. A comparison is made to a controller adapted 

without stability constraints. The unconstrained controller exhibits instability during its 

adaption that decreases its performance. 

The next section introduces the control system under consideration and the associated 

models used for stability analysis and simulation. Also, an IQC analysis of the uncertain 
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plant model is developed. Section 6.2 describes the control configuration used and develops 

an IQC analysis of the closed loop, control system. Also, details of the reinforcement learn­

ing algorithm used to train the adaptive controller are given. An experimental evaluation 

of the stable adaptive control system is reported in Section 6.3. The example illustrates 

the ability of the simplified stability algorithm to improve control performance by removing 

instability from the control loop. The stability bias proposed in the previous chapter is 

integral to the success of the approach. The final section gives a summary of the results 

and discusses some of the remaining deficiencies in the algorithm. 

6.1 Two Degree of Freedom Spring Mass Damper 

In this chapter, the stable learning algorithm of the previous chapter is used to adapt a 

controller for an uncertain, nonlinear spring mass system. The model is adapted from the 

work in [45]. To simplify the experimentation, the algorithm is applied to a simulated model 

of the actual system. Certain features of the simulated model are considered unknowns and 

not used explicitly in the adaption of controllers or stability analysis. The nonlinear model 

and simulation details are provided in this section. Additionally, an uncertain model of the 

plant is developed, and an IQC analysis of the closed loop control system is described. 

6.1.1 The Simulated Sys t em 

A diagram of the simulated plant is shown in Figure 6.1. Two masses are connected by 

nonlinear springs and linear dampers. The first mass is attached via a spring and damper 

to a stationary point. A control force is be applied to the first mass which is also acted 

upon by a nonlinear, static, friction force. A position sensor is attached to the second mass. 

The goal of the control problem is for the second mass to track a time-varying reference 

signal given by an external agent. 

The plant dynamics are governed by the ordinary differential equations 

m\X\ + c\X\ + c2{x,\ - x2) + k\X\ + k2(x\ - x2) + h\x\ + h2(x\ — x2)
3 = u - f{x\) 

(6.1) 
7712X2 + C2(X2 - X\) + k2{x2 - X\) + h2{x2 ~ X\f = 0 

where u is the control force applied to the first mass. Actuator dynamics are ignored for the 

purpose of these experiments, and the control enters the system linearly. The parameters c\ 
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/ u 
Figure 6.1: A multiple spring-mass-damper system. 

and C2 govern the damping force of the two dampers. The spring dynamics are governed by 

the spring constants k\ and k^ and the spring hardening constants h\ = h2k\ and /12 = h2k2 

with h > 0. The spring hardening constant was set to h = 0.1 for all simulations of the 

system. The friction force is modeled by the equation 

f{xi) = g-j(gi(tanh(02ii) - t a n h ^ i i ) ) + 54 tanh(^5i;1) + gsx{) 

with 

(5i, 52,53,54,55,56,37) = (12.5,50,1,11,50,9,0.05). 

The magnitude of the friction force is shown in Figure 6.2 for ±\ € [—5,5]. The friction 

equation and parameters are taken from [58] and model both stiction and Coulomb type 

friction. 

All simulations of the system were performed using a variable step size, Dormand-Prince 

algorithm with an absolute error tolerance of 10 - 5 . Changes in the control signal occur at a 

rate of 10Hz, and observations are sampled at the same rate. For the purposes of simulation, 

the parameters were set to m\ — 2, 1712 = 2.01, c\ = 1.05, C2 = 0.97, k\ = 5.3, and ki = 4.8. 

6.1.2 A n Uncerta in Linear Plant M o d e l 

For the purposes of controller design and stability analysis the parameters of the system are 

measured as m\ = mi = 2, c\ = a — 1, k\ = ki — 5 with an uncertainty of 2%, 10%, and 

10%, respectively. The parameters are thus assumed to lie in the ranges mi 6 [1.96,2.04], 

Ci € [.91.1], and fcj € [4.5,5.5]. The simulated plant's parameters are within the assumed 

measurement errors, and uncertainty models based on these error estimates will be valid. 
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Figure 6.2: A continuously differentiable friction model. 

A linear model of the plant is easily constructed for use in control design and analysis. 

Ignoring the hardened spring and friction effects in (6.1) yields the linear model 

"m 
V2 

J/4. 

= 
1 

m i 
m2 

0 0 1 0 ' 
0 0 0 1 

-(ki + k2) k2 ~ ( c i + c 2 ) c2 

k2 -k2 c2 - c 2 

The set of linear models derived by taking the parameters in the given uncertainty ranges 

does not completely capture all of the possible dynamics of the system tha t is to be con­

trolled. The uncertainty model should also account for the nonlinearity in the spring re­

sponse and the friction force. It is also possible that the system exhibits other unmodeled 

dynamics. To account for the effect of the unmodeled dynamics, a multiplicative input 

uncertainty is added to the model. If G(s) is the transfer function of the nominal linear 

plant model, then the uncertainty model looks like 

G u n c (s) = G(s ) ( l + 0.2A l t i) 

where Ajti is an unknown, linear, t ime invariant system with ||Aiti||oo < 1- The unknown 

LTI system can model up to a 20% deviation in the plant input. 

An uncertain real scalar, such as any of the parameters of the linear plant model, can 

be modeled with the representation p — (pn + 5pmp) where pn is the nominal value of the 

parameter, 5P is an unknown constant satisfying \6P\ < 1 and mp is a scaling factor on the 

uncertainty [57]. To represent the uncertain parameter, k\ e [4.5,5.5], for example, take 

pn — 5 and mp = 0.5. The uncertain parameters in the model are assumed to be constant. 
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The representation of time-varying parameters is essentially the same, but 5P is allowed to 

vary with time. Time varying parameters can have a more varied impact on a system's 

behavior than constant uncertain parameters. The stability analysis presented below takes 

advantage of the fact that the parameters are constant to reduce the conservativeness of 

the analysis. 

To perform robustness analysis and control design for the uncertain plant, the uncer­

tainties must be factored out of the plant to form a feedback loop between the known LTI 

plant and the uncertainties: Aitj and the <5p's for the uncertain parameters. The details 

of this procedure can be found in standard robust control references such as [57, 23]. The 

factored system is of the form depicted in Figure 2.4. Standard robustness analysis shows 

that the linear plant model is stable for all possible values of the uncertain parameters and 

all possible input perturbations allowed by the model [57]. The IQC model developed in 

the next section is used to show the same result. 

6.1.3 IQC Analysis of the Plant 

Recall that the uncertain parameters in the linear model are represented by p — (pn + Spmp) 

where 8P is unknown but satisfies \8P\ < 1. If w,v 6 £2, the relation w — Spv satisfies IQCs, 

with II(s) of the form 

n^__Ks) z(s)' 
1 j ~ [z*(s) -x(s) 

x{s) > 0 

where x(s) and z(s) are bounded, measurable functions [59, 43]. This type of IQC is known 

as a dynamic IQC, as opposed to the static IQCs used in the earlier chapters. To work 

with the IQC, the functions x(s) and z(s) need computationally tractable representations. 

Generally, the functions are described as a linear combination of a finite set of simple basis 

functions. Increasing the number or complexity of the basis functions enlarges the set of 

IQCs but also increases the size of the resulting LMI constraints. For the analysis done in 

this section and the next, the function x(s) is represented as the combination of a constant 
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function and a simple scaled transfer function 

1 
x(s) — XQ + x\-

•s + 1 

The function z(s) has the representation 

The representation of the resulting IQCs as LMIs is described in detail in Appendix B. 

Essentially, the representation requires the extension of the plant state with states repre­

senting j^v and j^fW. This extension increases the dimension of the system by two and 

adds 2n + 3 decision variables in the KYP matrix P. Also, three decision variables are 

added for XQ, X \ , and z\. Enforcing the constraint x{s) > 0 requires application of the K Y P 

lemma and adds a further decision variable and a 2 x 2 matrix constraint to the resulting 

problem. Modeling uncertain parameters can quickly become expensive, even when x(s) 

and z(s) are restricted to be linear combinations of only two basis functions. 

Unmodeled LTI dynamics, of the kind used in the uncertain plant model developed 

above, can also be described with IQCs. If Ai t i is an LTI operator with norm less than one, 

then the relation w(s). = A(s)v(s) satisfies all IQCs of the form 

U(s) = 
x(s) 0 

0 -x(s) 

x(s) > 0 

with x(s) a bounded, measurable function of the form used in the previous IQC [59]. The 

unmodeled dynamics IQC increases the number of decision variables by 2n + 6 and adds an 

additional 2 x 2 LMI constraint to the resulting problem. 

A stability analysis of the uncertain plant model can be constructed using the IQC 

stability theorem from Chapter 2. Application of the theorem requires that the uncertainties 

be factored out of the model into a feedback formulation. This type of representation 

is known as a linear fractional representation and was used to describe recurrent neural 

networks in the earlier chapters. The details of constructing such a representation can be 

found in [57]. A depiction of the nominal plant with uncertainty feedback is shown in 
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Figure 6.3: The closed loop control system. 

Figure 2.4. The uncertain operator in the feedback model is structured as 

A(s) = diag{Aiti(s), tiki, 5k2,5Cl,5C2}. 

A bound on the £2-gain from u —> y, computed using the IQC stability theorem, has a 

value of 7 = 1.4755. The finite gain is a proof of stability for all plants covered by the 

uncertainty model. 

6.2 Robust Adaptive Control of the Multiple Spring-Mass-
Damper 

The closed loop control system under investigation is depicted in Figure 6.3. A reference 

signal enters the system from an external source and specifies the desired value of the plant 

output. In this case, the position of the second mass in the spring-mass-damper system is 

to be controlled. For the experiments that follow, the reference signal takes values in the 

range [-2,2] and can change every 50 seconds. The reference signal might represent, for 

example, the desired position of a read head in a hard drive or the desired location of the 

end point of a flexible manipulator. 

Standard robust control designs for reference tracking problems generally use the error 

signal, e = r — y, as the input to the controller. This particular representation is invari­

ant with respect to the position of the observed mass in the multiple spring-mass-damper 

system. It does not allow the controller to adequately compensate for nonlinearity in the 

spring, since the nonlinearity in (6.1) is a function of x\ and x\ — x-i- Even though the 

position of the first mass is unobserved, the trajectory of X2 contains information about the 

true state of the system and thus x\. It is possible for a recurrent neural network to use 

this inferred information to improve control performance. For this reason y is also included 

as an input to the RNN controller. The output of the RNN is the control action, u. The 

control signal is fed directly into the plant since actuator dynamics are being ignored. 
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6.2.1 Recurrent Neural Network Control Structure 

The basic RNN equations must be adapted to fit the desired control structure. The simple 

RNN model considered in earlier chapters had the same number of inputs, outputs, and 

states. In the desired control configuration the network has two inputs, a single output, 

and a number of states set to determine the learning complexity. Input and output weights 

are added to the RNN in the following way 

xr = -Cxr + W$(xr) + Wi\e y\T 

(6.2) 

u = W°xr. 

Different configurations of W1 and W° affect the behavior of the network. A common 

configuration, see for instance [75], feeds each input into a different node and reads the 

output from another node. This leads to 

"1 0" 
0 1 

W'1 = ° ° and r = [0 0 1 0 . . . 0] . 

0 0_ 

A similar configuration removes feedback from the output node by fixing certain weights in 

W, in this case 103,1V i 6 1 , . . . , n, to zero [24]. In echo state models, W1 and W are often 

assigned fixed, random values while W° is fully adjustable [36]. For the experiments that 

follow the first configuration was used throughout. 

The RNN stability analysis presented in Chapters 3 and 4 can easily be adapted to 

include the input and output weights. These weights do not affect analysis of the internal 

stability of the RNN, but they do affect the gain measured from the input to output signals. 

For instance, if the output weights are all zero then the gain from input to output is zero 

regardless, even, of the internal stability of the network. It is important, then, that these 

weights be included in the analysis since the measured gain affects the stability analysis of 

the closed loop control system. The weights, W1 and W° only enter the analysis through 

the main KYP condition. As an example, consider the LMI constraint derived from (6.2) by 

adapting the analysis presented in Chapter 3. The IQC stability theorem can be applying 
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by modifying G in (3.2) to be 

" -C 

w° 
I 

Wl 

0 
0 

w' 
0 
0 

and solving Problem 2.2. 

6.2.2 IQC Analysis of the Closed Control Loop 

The analysis of robust control systems focuses on two properties of an uncertain system 

model: robust stability and robust performance. A robustly stable system is stable for all 

systems in the given uncertainty set. A system with robust performance, on the other hand, 

is guaranteed to meet certain performance requirements for all systems in the uncertainty 

set. Robust stability is necessary for robust performance, but it is not sufficient. Robust 

stability of a set of uncertain systems implies stability of an actual physical system, if the 

physical system is adequately described by the uncertain model. Increasing the size of 

the uncertainty set — that is, increasing the range of system dynamics it covers — can 

allow bet ter assurances to be made about the stability of an actual system. At the same 

time, increasing the size of the uncertainty set can make it more difficult to prove robust 

performance. 

Performance of a robust control system is measured by the Tioo norm of the system. In 

other words, performance is measured in terms of the ^2-gain from the system's input to 

its output . Performance objectives in robust control systems are specified by augmenting a 

given control system with weighted outputs that specify the desired behavior. For example, 

the weighted outputs might be designed to penalize large actions or low frequency deviations 

of the plant output from the reference signal. Robust performance of a system is given if the 

gain from the input to the weighted outputs is less than one. Robust controller synthesis 

methods, such as the D-K iteration [23], are computational approaches to designing linear 

controllers tha t have robust performance for a given uncertain system model. 

The synthesis of neural controllers with robust performance guarantees is a difficult 

problem. The main difficulty arises from treating the RNN nonlinearity as uncertainty in 

the analysis. The uncertainty descriptions of recurrent neural networks given in Chapter 3 in 
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terms of IQCs have the serious drawback that they do not explicitly model the boundedness 

of the nonlinearities. The resulting uncertainty model and analysis can not distinguish 

between say, 4>(x) = x and </>(x) = tanh(x) . Obviously, the resulting dynamics of the two 

RNNs will be very different. Recent work in [35] on generalized sector conditions may 

provide a way to incorporate the boundedness of (j>(x) into the analysis, but at present 

this work is in its infancy. Until such improvements can be made, it is necessary to restrict 

at tention to the analysis of robust stability in neural control systems. The inaccuracy in the 

analysis is slightly less troublesome here because the question being addressed — stability 

of the uncertain, closed loop system — is less specific. The analysis requires only that the 

gain from reference input to plant output is finite and not that it meet a prescribed bound. 

While a robust synthesis method for neural controllers would be useful in generating the 

initial neural control design for a system, adaptation is necessary to specialize the controller 

to a given plant. In the context of adaptive control, robust performance is forgone in the 

name of performance on a specific plant. This is convenient in the case of neural control 

because of the problems discussed above with analyzing the robust performance of recurrent 

neural network controllers. Robust stability, however, is still desirable. Given that the 

plant is not completely known, and tha t even models adapted to the plant online can not 

be completely accurate, assuring stability with respect to a set of plant models makes sense. 

The robust stability of the closed control loop can be addressed using the IQC descriptions 

of the plant and recurrent neural network derived earlier. 

A linear fractional representation of the closed loop control system is needed to apply 

the IQC analysis results. Representations of the control loop containing an RNN with time-

invariant weights and an RNN with time-varying weights are both needed. The details of 

constructing LFRs can be found in [57]. The uncertain, non-linear operator in the resulting 

model has the structure 

A(s) = diag{A l t i(s) , Smi, 5m2, Skl, 6k2,SCl, 6C2, $ ( • )} , 

when the RNN weights are static. The operator is augmented with the time varying coeffi-
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cients for the full, time-varying control loop model, 

A(s) = diag{Alti(s), 
" m i ) "7712 7 ®kl ) ^fe2 ' c l ' C2 » 

Using IQCs for the different uncertainties and nonlinearities that have been previously 

described, an LMI problem can be constructed to assess the stability of the closed loop 

system and compute a bound on its gain. If the resulting LMI is feasible, the control loop 

is proved stable for all plants in the uncertainty set and additionally, for all controllers 

satisfying the IQC description of the RNN. 

An an example, consider the RNN with n = 3, C = / , and 

W = 
-1.4992 0.5848 0.5417 
0.3425 0.4623 0.4551 
0.7165 0.0323 -0.2045 

The gain across the RNN is bounded from above by 7r — 0.9751. The bound was computed 

using the Popov IQC and taking T £ Mdd, the doubly dominant nonlinearity IQC. Since 

the gain of the uncertain plant model is bounded by 7p = 1.4755 and 7r > 1/7P ~ 0.6777, 

the small gain theorem fails to prove stability. The full IQC analysis, on the other hand 

provides a gain bound of 7ci = 1.7938 proving the stability of the closed loop for all systems 

in the uncertainty set. A sense of the effect the plant uncertainty has on the analysis of 

the closed loop can be gained by measuring the gain of the RNN in a loop with just the 

nominal plant. The gain of this system is bounded above by 7n = 1.4830. In this particular 

case the plant uncertainty has only a mild effect on the estimated loop gain, but this is not 

always the case. 

Bounds on the allowable variation in the RNN parameters can be computed using a 

similar approach to the one used in Chapter 4, but using the full closed loop system model 

in the analysis. For the weight matrix given above variation bounds are computed as 

A = 

0.1000 0.1000 0.1000 

0.1000 0.1000 0.1000 

0.1000 0.1000 0.1000 

and A — 
0.3409 0.1210 0.2290 
0.8891 0.4266 0.3296 
1.8523 0.2090 0.4622 

using the LMI approximation approach from Chapter 4 and restricting the bounds to be 

greater than or equal to 0.1. The uncertainty in the plant has a large effect on this particular 

computation. Computing the variation bounds using just the nominal plant model leads to 
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an increase in the sum of the bounds by 1.8220 and for some weights doubles the amount 

of variation that can be tolerated. Inaccuracies in the uncertain plant model can thus 

negatively impact the performance of the stable learning algorithm presented in the previous 

chapter by allowing less variation in the weights than can be safely tolerated by the actual 

system. Another feature of this example is that the lower bound constraint is active for all 

of the positive variation bounds. As discussed in Chapter 4 this is an artifact of the LMI 

approximation approach and a price tha t is paid for its relatively low computational cost. 

6 . 2 . 3 R e i n f o r c e m e n t L e a r n i n g for A d a p t i v e C o n t r o l 

In the previous chapter, the weights of an RNN were adapted using a supervised approach 

that trained the RNN to reproduce a given temporal sequence. For adaptive control an 

alternative approach must be taken since the desired output of the RNN is not explicitly 

known. In the experiments that follow the RNN weights are adapted using a reinforce­

ment learning approach that is described in this section. Reinforcement learning is an 

unsupervised learning approach characterized by its focus on learning through interaction. 

When applied to control problems, reinforcement learning can be viewed as a class of direct, 

adaptive, optimal control algorithms [85, 78]. 

A reinforcement learning formulation of the reference tracking problem considered in 

this chapter can be formulated following [22]. Since the algorithms are generally applied in 

discrete time to sampled data, the following presentation uses a discrete time representation 

of certain parts of the problem. Given a deterministic, dynamical system 

x — f(x, u) 

where x G R n is the system state and u £ R m is the control input, find a control law, or 

policy, n(x) : R n —• R m , mapping x to u tha t minimizes 

f°° ,-t 
V»(x(t))= e~~c(x(s),u(s)) ds, u(t) = fj.(x(t)). (6.3) 

The function c(x, u) : R™ x R m —> R describes the cost of being in a particular system state 

and taking a particular control action. For example, in the reference tracking problem, 

a simple cost function is c(x(t),u(t)) = \\r(t) — x(t)\\ where r(£) is the current reference 
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signal. The design of the cost function is one of the most important parts of the problem 

specification since it determines the behavior of the optimal solution [55]. The parameter, 

r, is a discount factor that determines the time horizon over which the algorithm attempts 

to minimize the cost. For small values of r the optimal policy will be rather myopic; only 

the near term effects of actions are considered. As r increases the optimal control policy 

considers more of the long term impact of actions. Selecting an appropriate value for r is 

another important design decision in the construction of the reinforcement learning problem, 

but it is not always straightforward [55]. 

The function V^ (x) is called a value function and captures the long term cost of following 

a particular policy starting from a state x. When working with sampled data the value 

function is written 

oo 

Vixfo)) = J2 e - ^ c ( x t e ) , u(ti)), u(ti) = Ms(ti)), 
i=0 

where the tj's are the sample times and to is Ju s t the point of reference in time for some 

given sample. If the sample time is a constant, At, let 7 = 1 — ^ and write 

0 0 

V»{x(t0)) = J^1
ic{x(ti),u(ti)), u{U) = n{x{U)). 

i=0 

Another value function, often called a Q-function or state-action value function, is defined 

as 

0 0 

tt (6-4) 
= c(x(t0),u(t0)) + 'yV'i(x(t1)) 

and captures the cost of taking a particular action in a given state and from then on following 

the policy [i. 

These value functions satisfy several useful relations that lead to a wide variety of 

algorithms for finding — or more often, approximating — \x. The optimal value functions 

are evaluated at the optimal policy, which is denoted /x*. They are defined by 

V^(x(t0)) = V*(x(t0)) - m i n V ^ ( t o ) ) 

Q^>( t 0 ) ,u ( t 0 ) ) = Q*{x(t0),u(t0)) = mm Q^{x{t0),u{t0)). 
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The minimization over policies requires an ordering relation which is defined by 

V"1 (x) < V2{x) V x € Rn => MI < M2-

The optimal value functions satisfy Bellman's equation, or in continuous time the Hamilton-

Jacobi-Bellman equations. Bellman's equation is a recurrence given by 

V*(x(t0)) = mm Q^(x(t0),u) = min c(x(t0),u)+ iV*(x(ti)) 
u u 

and 

Q*(x(t0),u(tQ)) = c(x(t0),u{t0)) + n/mmQ*(x(ti),u). 
u 

If exact representations of V or Q are available for every policy, then the reinforcement 

learning problem, finding the optimal policy, can be solved using policy iteration. Policy 

iteration is a simple algorithm that iterates between two steps: policy evaluation and policy 

improvement. In policy evaluation, a value function for the current policy is determined. 

In the policy improvement step, the policy is made greedy with respect to the current value 

function. In other words 

fi(x) <— avgmmQfl(x, u), V x. 
u 

If only V is available, and not Q, then a model of the system dynamics is necessary to 

perform policy improvement since the results of taking a particular action at a given state 

must be known. Also, an explicit representation of (i is not strictly necessary since it can 

be computed implicitly from Q or V. 

Obviously, when x and u are in continuous spaces, exact representation of the value 

functions is not generally possible. Exact evaluation of the policy improvement step is even 

less tractable. To proceed, it is necessary to find computationally tractable representations 

of one of the value functions. Parametric representations of V and Q are commonly used, but 

non-parametric representations have also been explored [63]. Parametric representations of 

V and Q are denoted V$ and Qg where 9 is the current set of parameters, for example, a 

set of neural network weights. Many algorithms for approximating the value function for a 

given policy are based on minimizing the temporal difference error of the approximation. 
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A temporal difference error is an error of the form 

5td - c(x(tQ),u(t0)) + -f maxQe(x(t1),u) - Qo(x(t0),u(to)) 
u 

If the parametric architecture is capable of representing the policy's value function exactly 

then at the optimal 9 the architecture will produce no temporal difference errors. A general 

procedure for producing an approximation of a value function is to modify the parameters 

of the representation to minimize the temporal difference errors observed over some sample 

trajectories generated by following the policy. When an exact representation of the value 

function is not possible minimizing the temporal difference errors of an approximation can 

still produce a value function that is close to true value function in some appropriate sense 

[60, 76]. The convergence of such temporal difference learning schemes is not guaranteed 

and has been explored extensively [71, 86, 96, 7, 88]. Given an approximate representation 

of one of the value functions, an approximate form of policy improvement can be performed. 

When these approximations are involved, convergence of the policy iteration algorithm is 

not necessarily assured [68, 54, 60]. Despite the lack of formal guarantees of convergence 

great success has been reported with temporal difference approaches and approximate policy 

iteration. 

To use a reinforcement learning approach within the context of the proposed stable 

learning algorithm, an explicit representation of the policy is needed. When an explicit 

representation of the current policy is used in the policy iteration framework, the resulting 

algorithms are called actor-critic algorithms. In actor-critic methods, policy evaluation and 

policy improvement correspond to updating the critic, a Q function representation, and 

the actor, fi, respectively. Since the Q function and policy can not be represented exactly, 

function approximators are used in both cases [48]. The parameters of the critic are denoted 

6C, and the parameters of the actor are denoted 6a. Stochastic gradient descent on temporal 

difference errors is used to update the parameters of the critic. The parameters of the actor 

are updated using the derivative of the critic, Q(x,u), with respect to the control input. 

This update directs the actor to choose actions that minimize the Q-value for a particular 

state. In actor-critic methods policy evaluation and policy iteration are often interleaved. 

Tha t is the actor is updated from the critic before the critic has converged. The dynamics 
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of the learning system are quite complex in this case and care is needed to ensure reasonable 

behavior [55]. 

The specific details of the reinforcement learning algorithm used in Section 6.3 are now 

described. Two of the basic assumptions of the reinforcement learning approach are tha t 

the state of the environment is fully observable and that the dynamics satisfy the Markov 

property. The Markov property requires that the observed effect of a control action at t ime 

t is a function of only of the state at the current time and does not have any dependence on 

the past s tate trajectory. The two assumptions of state observability and Markov dynamics 

are closely related. In the control problem under consideration, the state of the plant is 

not fully observable. Because of this, the observed dynamics do not satisfy the Markov 

property. One approach to solving this type of problem requires modeling the control 

problem as a type of partially observable Markov decision process or POMDP. Another 

approach requires that a representation of the system that satisfies the Markov property be 

developed. Recurrent neural networks are useful for this purpose because of their ability to 

model temporal sequences and model hidden dynamics [13]. In this approach a recurrent 

neural network is used to model the value function. The internal dynamics of the network 

are used to construct, implicitly, a model of the system satisfying the Markov property. 

Because the focus of this chapter is on the proposed stable learning algorithm and not 

reinforcement learning per se, an unrealistic approach is used here to simplify the dynamics 

of the learning system. A standard feedforward neural network is used to model the value 

function and is given the full state of the plant as part of its input. The other inputs are 

the tracking error and the control signal. The output of the critic network is the value of 

the Q-function at the given state and control inputs. The network has 50 hidden nodes and 

uses the sigmoid nonlinearity, a(x) = 1
 1

e_x. A constant bias input is provided to all of the 

neurons. The network equations are 

Q{x,u) = W° a(wl[x u l ] T ) 1 

The critic is trained by s tandard backpropagation of the temporal difference errors using 
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the equations 

dStd 
W° <- W° - r?0 

Wi ^Wi - 77, 

dW° 
dStd 

dWi 

The learning rates, r\0 and rn, have the values, 0.001 and 0.01, respectively, throughout the 

experiments. 

The actor is a recurrent neural network of the design described in Section 6.2.1. The 

RNN used for the actor has three states, thus W G M 3 x 3 . Updates to the actor weights are 

made using stochastic gradient descent on the gradient of the Q-function with respect to 

the control inputs, 

w^w-Va
dQix>u)du 

du dW 

The update can be computed by using — g^ a s the error function in the RTRL algorithm. 

The learning rate is varied for some experiments, but as a default 77 = 0.001. The updates 

to the actor weights proposed by this algorithm are the update monitored by the stable 

learning algorithm to ensure stability. The updates to the critic need not be considered in 

the stability analysis because the critic is not directly part of the control loop. 

A few other specifics of the actor-critic method should be discussed. In order to find 

the optimal policy, or even a good policy for tha t matter , the critic requires observations of 

all of the actions in all of the states. In continuous spaces the condition is slightly different, 

essentially the critic needs to experience a large variety of state action combinations. This 

is generally referred to as exploration. Often reasonable exploration can be achieved by 

causing the actor to deviate slightly from its preferred output. In the simulations that 

follow random perturbations are occasionally added to the output of the controller. These 

random perturbation are generally small, and can be adequately addressed in the stability 

analysis by the input-multiplicative uncertainty that already exists in the plant model. For 

the actor-critic model to converge to a reasonable solution the amount of noise injected into 

the actions should decrease over time. In the experiments below the noisy actions are taken 
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with a probability that depends on time and is given by the schedule 

'(0.09,2.0) : 0 < i < 5 0 0 

(0.08,1.6) : 500 <t< 1000 

* (0.05,1.0) : 1 0 0 0 < £ < 4 0 0 0 ' 

(0.01,0.2) : 4 0 0 0 < i < 8 0 0 0 

The first value of the pair is the probability of corrupting the action and the second value 

is the magnitude of the random perturbation added to the actor output. 

6.3 Experimental Evaluation 

In this section the stable learning algorithm developed in Chapter 5 is applied to the control 

of the multiple spring-mass-damper system using the actor-critic method discussed in the 

previous section. The experiments are designed to illustrate the properties of the stable 

learning algorithm more than to simulate the actual application of these techniques in 

practice. For instance, in practice, a robust controller would be designed for the plant and 

the actor-critic model would simply modify the output of the robust controller in some way. 

This was done in [2] for example. The combination of robust controller and actor-critic 

system allows a certain amount of performance to be guaranteed at the deployment of the 

system. In the experiments that follow less attention is payed to the quality of the learned 

control law than to the stability properties of the adaption. 

The actor and critic models were initialized by simulating them for 5000 seconds on the 

nominal, linear, plant model described in Section 6.1.2. The simulation was done without 

regard for stability since the actor and critic adaption was performed on a model and not 

the real system. Initializing the actor and critic in this way allowed them to be hooked into 

the real system with some a priori knowledge. All of the experiments that follow begin 

with these initialized actor and critic parameters. 

6.3.1 Actor-Critic Learning without Stability Analysis 

Beginning with the actor and critic trained on the nominal, linear plant model, the control 

system was simulated for 1000 seconds on the actual plant without any constraints on the 

stability of the system. At a sampling rate of 10Hz, the actor and critic weights were 
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Figure 6.4: An example of unstable behavior exhibited during the training of the 
actor-critic system. 

updated 10000 times. In Figure 6.4 a portion of the recorded system behavior is shown. 

Clearly, the system exhibits instability for reference signals near zero. 

In Figure 6.5 the results of simulating the actor with the weights from the 3600 second 

mark and a reference input of r = 0.2 are shown. The actor weight matrix has the values 

W = 
1.5808 -0.2169 -0.5501" 
4.1411 0.1407 0.5892 
2.9354 0.8355 -0.1111 

The closed loop system can not be proved stable by the IQC analysis developed in Sec­

tion 6.2.2. This type of instability should be avoided during the training of the actor and 

critic. The algorithm from Chapter 5 is applied in the next section to prevent this type of 

behavior. 

6.3.2 Stable Actor-Critic Learning 

To avoid the instability seen in the previous example the stable learning algorithm from 

Chapter 5 is used to filter the actor updates. The stability bias is used with two slight 

modifications. First, to make better use of the available information, updates that are 

rejected by the original algorithm are instead rescaled such that they satisfy the current 

constraint set. This allows progress to be made at every step. Second, rather than compute 

the stability bias at every step, the bias computation is turned on and off based on whether 

or not the previous steps were accepted without modification. Initially, the stability bias is 

not used, but after a sequence of three updates in a row have been rescaled due to violation 
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Figure 6.5: An example of an unstable RNN controller visited by the actor-critic 
learning algorithm during training. The controller is unstable for small reference 
inputs. 

of the constraints the stability bias computation is turned on. The bias computation remains 

on until a sequence of five steps in a row are accepted without scaling. 

The initial actor weights, generated by training on the linear plant, can not be proved 

stable. To initialize the stable learning algorithm the weights are scaled down to satisfy the 

stability constraints. The resulting initial network weights produced a gain of 7^ = 0.600. 

The initial variation bounds were 

0.1000 0.1000 0.3313" 
0.1013 0.1000 0.2957 
0.1000 0.1183 0.1095 

and A — 
'0.3474 0.3970 0.1141' 
0.1775 0.3067 0.1497 
0.2674 0.1949 0.3359 

A minimum value of 0.1 was enforced on the variation bounds, but like in Chapter 5 this 

was allowed to decrease if a set of bounds could not be found that satisfied this constraint. 

The system was simulated for 1100 seconds and the following results were observed. 

Unlike the previous example, no instability was observed in the controlled system during 

the adaptation. Out of the 11,000 updates generated by the actor-critic algorithm, 2,541 — 

roughly one in four — required rescaling to satisfy the stability constraints. The stability 

bias was computed 4200 times, or on almost half of the steps. The stability bounds were 

recomputed 6540 times. The mean variation allowed per weight over these constraint sets 

was 0.028. Because of repeated failures to find bounds that satisfied the minimum con­

straint, the lower bound was decreased repeatedly. The amount of variation allowed in the 
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weights is, on average, very little. This causes the number of constraint computations to 

rise and increases the cost of the algorithm drastically. The gains computed in the stability 

bias computations remained relatively small, 7 < 5, during the simulation. This suggests 

that the small amounts of allowable variation are not due to closeness of the controller to 

the boundary of the stable weight set, Ws". It appears that conservativeness in the analysis 

of the time-varying RNN is hindering the application of the stable learning algorithm. The 

algorithm succeeds in keeping the control system stable, but has an excessive cost. In the 

next section, the stability constraints are loosened somewhat and a modified version of the 

algorithm is applied. 

6.3.3 Step-wise Stable Actor-Critic Learning 

Because the conservativeness in the analysis of the time-varying RNN limits the amount 

of variation that can be tolerated under the stability constraints, it seems worthwhile to 

consider what benefit might be had from accepting weaker stability guarantees. Rather 

than constraining the variation in the weights using the analysis developed in Chapter 4, 

the weights of the actor are simply constrained to remain in Ws™ at all times using the 

analysis of Chapter 3. Weight updates that push the weights out of W™ are rejected. This 

guarantees that stopping the adaptation at any point will always result in a stable controller. 

This type of stability guarantee has been called step-wise stability [55]. The weaker stability 

algorithm does not protect against the type of instability due to switching problems like 

the one described in Chapter 4. Such problems might occur due to cycles in the weight 

settings cause by a non-decaying step size in the actor updates. This type of problem was 

never encountered during simulation, however. 

Starting from the scaled actor used in the previous section, this new algorithm was sim­

ulated for 5,000 seconds on the actual plant. Of the 50,000 updates generated, only 10,364 

were accepted. The updates were rejected when the weights approached the boundary be­

tween provably stable and possibly unstable weight matrices. The behavior during the last 

1000 seconds is shown in Figure 6.6. No instability was seen over the entire 5000 second 

history. The weight trajectories over the entire adaptation period are also shown. 
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Figure 6.6: Example of the behavior and weight trajectories of the step-wise stable 
adaption. 
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6.3.4 Actor-Crit ic Learning w i th a Stabil ity Bias 

Only one in four updates to the actor was accepted using the simple step-wise stability 

algorithm. In the last chapter the addition of a stability bias to the weight updates was 

shown to increase the number of updates accepted by the stable learning algorithm. To test 

whether this result carries over to the modified step-wise stability algorithm, the previous 

experiment is repeated with the addition of a stability bias term to the weight updates. 

The weight update in (5.12) was applied over two 5000 second adaption trials. The weight 

update is parameterized by 7 which determines at what C^-gain the bias begins to have a 

major effect on the updates. The first trial used 7 = 5 and the second used 7 = 50. The 

weighting parameters, 772 followed the decay schedule 772 = 8gooo^ • Figure 6.7 shows the 

last 1000 seconds of the episode and the weight trajectories for 7 = 5. Figure 6.8 shows the 

same data, but from the trial with 7 = 50. Several observations can be made about the 

data. Compared to the previous experiment where no stability bias was used, both trials 

of this experiment perform better at tracking the reference signal. Also, the weights grow 

larger in these two trials. The lack of stability bias in the previous experiment caused the 

actor to suffer from a lack of progress due to discarded updates. 

In the case of 7 = 5 all 50000 updates were accepted. When 7 = 50 nearly 82% of 

the updates were accepted. The larger value of 7 in this trial allowed the network weights 

to approach the stability boundary more closely. This increases the likelihood that weight 

updates will be rejected. The dynamics of the plant output in the low 7 experiment are 

smoother than those of the high 7 trial. This is due, again, to the soft bound on the network 

gain that results from the update functions dependence on 7 and 7. 

The performance of the two actor-critic systems was compared by running the systems 

for an additional 5000 seconds and comparing the mean squared tracking error and mean 

squared control output over the 5000 second window. The trial with 7 — 5 had a mean 

squared tracking error of 0.1858 and a mean squared control output of 23.1557. For the 

7 = 50 case these values were 0.2050 and 26.1874 respectively. Neither of the controllers 

perform extremely well, but the system with the lower 7 value performs slightly better. 

This may be due to the fact tha t the smaller gain constraint results in smoother dynamics 
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Figure 6.7: Example of the behavior and weight trajectories of the step-wise stable 
adaption and a stability bias. 
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Figure 6.8: Example of the behavior and weight trajectories of the step-wise stable 
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Init 
NS 
SS 

SSB 

MSTE 

0.3493 
0.1084 
0.2478 
0.1004 

MSC 

6.3065 
24.9356 
8.9198 
17.1258 

7 

13.623 
oo 

643.933 
3.999 

Table 6.1: After 5000 seconds of training the learned controllers were tested on 
a fixed sequence of reference changes. Three cases were compared: no stability 
analysis (NS), step-wise stability (SS), step-wise stability with the stability bias 
(SSB). 

which may in turn help to regularize the learning dynamics. 

To complete the analysis, the controllers learned after the 5000 step trials of this and 

the previous section were compared on a fixed set of reference changes over 1000 steps. No 

adaptation was performed during these test trials. The mean-squared tracking error and 

mean-squared control action were recorded. These results are reported in Table 6.1 along 

with the gain of the controllers. The results reported for the stability bias trial are for 

7 = 5.0. The results show that the step-wise stability approach with the stability bias has 

the best overall mean-squared tracking error and a lower mean-squared control output than 

the unconstrained case. The gain of the controller in the step-wise stability constrained 

trial where no stability bias was used is very large. This is further evidence of the controller 

parameters getting stuck near the stability boundary. 

6.4 Conclusions 

Application of the stable learning algorithm from the previous chapter proved to be to re­

strictive and computationally expensive for application to the multiple spring mass damper 

system. By relaxing the stability constraints to consider a weaker step-wise stability, the 

computational cost was considerably reduced and better performance was achieved. The 

stability bias developed in Chapter 5 improved the ability of the actor-critic system to learn 

under the step-wise stability constraints. Instability was observed in an actor-critic con­

trol system when no stability constraints were explicitly enforced. Application of even the 

relaxed step-wise stability constraint kept the actor from instability. 
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Chapter 7 

Conclusions 

The problem of stability is vastly more difficult when artificial neural networks 
are used either for identification or control and the system is nonlinear. Unlike 
linear systems, simple algebraic conditions are not available for assuring the 
stability of the overall system. ... All these indicate that our knowledge of the 
stability of dynamical adaptive systems using artificial neural networks is quite 
rudimentary at the present time and that considerable work remains to be done. 
. . . It is precisely in problems where the system has to adapt to large uncertainty 
that controllers based on neural networks will be needed in practical applications. 
For such problems, new concepts and methods based on stability theory will have 
to be explored. 

Adaptive Control Using Neural Networks [61], K.S. Narendra 

The combination of reinforcement learning and recurrent neural networks provides a 

powerful architecture for automatic control. On the other hand, both the nonlinearity and 

the adaptat ion make the stability analysis of such control systems challenging. Almost 

twenty years after [61] was published, the quote from Narendra remains true. In this work, 

several steps toward a practical, adaptive, neural control system have been reported. 

State-of-the-art analysis of the stability properties of neural networks involves the con­

struction and solution of linear matrix inequality problems. These conditions are compu­

tationally expensive and generally not exact. One contribution of this work is a reduction 

in the conservativeness of the existing stability analysis for recurrent neural networks. For 

time-invariant networks, this reduction comes from the use of bet ter IQCs for the descrip­

tion of the network's nonlinearity. For time-varying networks, this reduction is achieved by 

a novel formulation of the time-varying network equations. Reducing the conservativeness 

in the analysis allows a larger class of systems to be proved stable. In addition to the 
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reduction in conservativeness, some reductions in computational complexity were achieved 

by analysis of the LMI problems. Some of the constraints on the decision variables in these 

problems were shown to be unnecessary. Finally, it was shown that the augmented La-

grangian, or penalty-barrier, method is much more efficient than standard interior point 

methods for the LMI problems of interest. 

The algorithm presented in Chapter 5 for maintaining the stability of adaptive, recur­

rent neural networks has its roots in the work of Kretchmar in [49]. One of the main 

contributions of this work is the development of techniques for reducing the computational 

cost of the algorithm. Two developments allowed the reduction in computational cost. The 

bounds on the allowable weight variation were solved for directly, rather than through a 

bisection approach as in [49]. The cost of this step was thus reduced to that of solving a 

single LMI, or possibly BMI, problem. More importantly, a stability bias was introduced 

in Chapter 5 that biased the weight trajectories of an adapting network away from the 

boundary of the stable weight set. Use of this bias reduces the number of times the vari­

ation bounds must be computed. Additionally, the stability bias improves the behavior 

of the constrained reinforcement learning algorithm even when only step-wise stability is 

enforced. A reasonable computational cost for the stability bias was achieved by applying 

a novel approach to warm-starting the augmented Lagrangian SDP solver. 

7.1 Summary 

In Chapter 3, a stability analysis was derived for continuous time recurrent neural networks 

from the theory of integral quadratic constraints. The resulting optimization problems were 

solved efficiently using a recently developed approach [47] to semidefinite programming that 

avoids the explicit formulation and solution of Newton equations. 

In Chapter 4 the conservativeness of an existing analysis from [79] of recurrent neural 

networks with time-varying weights was reduced. A new formulation of the time-varying 

RNN equations was developed which improved the accuracy of the stability analysis and 

allowed more of the power of certain IQCs to be applied to the problem. Additionally, 

the problem of finding maximal bounds on the variation of an RNN's weights under which 
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stability can be assured was addressed. In [79] this problem was addressed using an LMI 

approximation of an underlying BMI problem. In Chapter 4 the BMI problem was solved 

directly and shown to produce qualitatively better results. The LMI approximations seems 

to suffer from some deficiency which causes it to set many of the variation bounds to zero. 

The BMI solutions did not exhibit this pathology. 

In Chapter 5 an algorithm for maintaining the stability of adaptive, recurrent neural 

networks was developed. By restricting the variations in an RNN's weights to satisfy the 

type of variation bounds computed in Chapter 4, stability of the evolving network can be 

assured. A basic problem with this approach is that , in general, the learning algorithm in 

charge of adapting the weights of the network has no knowledge of the stability constraints. 

This ignorance can lead to situations where the weight trajectory evolves along the border 

of the set of stable weight matrices. When this occurs the stable learning algorithm must 

repeatedly compute new sets of constraints on the weight variations. Because this com­

putat ion is expensive, its occurrence should be minimized. Knowledge about the stability 

properties of the network can be included in the weight updates through the use of a stabil­

ity bias. The stability bias is the gradient of an £2-gain bounding function with respect to 

the weights of the network. It points to the interior of the set of stable weight matrices, and 

its magnitude grows proportionally to the closeness to the estimated stability boundary. 

A weighting rule for the stability bias was devised that limits the impact of the bias 

when the weights are far from the boundary of the stable weight set. More importantly, it 

was shown how the cost of computing the stability bias could be drastically reduced by ap­

plying warm-start methods to the necessary semidefinite programs. Experimental analysis 

revealed that augmented Lagrangian methods, such as [47], for solving SDPs are capable of 

capitalizing on available warm-start information. If a sequence of slightly perturbed prob­

lems must be solved — this is the case for computing the stability bias — initializing the 

SDP solver using the previous problem solutions reduced the cost of solving the perturbed 

problem. A perturbation analysis of linear SDPs given in [27] was applied to improve the 

quality of the warm start information. The improvement, however, comes at the cost of 

solving a linear program and may not provide an overall benefit in terms of run time. 
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The proposed stable learning algorithm and stability bias were applied, in Chapter 6, 

to the problem of robust, adaptive, reinforcement learning control of an uncertain, nonlin­

ear, multiple spring-mass-damper system. The stable learning algorithm was extended to 

ensure stability of the closed loop between the RNN controller and nonlinear plant, even in 

the presence of uncertainty. Unfortunately, conservatism in the stability analysis makes ap­

plication of the algorithm computationally expensive. A modified algorithm was proposed 

that ensures a weaker step-wise stability of the learning system. The weakening of the 

stability constraint allowed the computational complexity of the algorithm to be reduced. 

Even under the weaker stability conditions the algorithm was shown to prevent instability 

during the adaptation of the RNN controller. Use of the stability bias further improved the 

behavior of the algorithm and allowed the actor-critic system to improve the performance 

of the controller in the presence of stability constraints. 

7.2 Future Work 

The algorithm presented in Chapters 5 and 6 is a very general purpose tool for stable, adap­

tive, neural control in the presence of uncertainty in the plant behavior. If an uncertainty 

model can be constructed for a given plant in terms of IQCs the algorithm can be applied to 

ensure stability of the closed loop control system. The adaptation of the RNN controller can 

be performed by any algorithm since the stable learning algorithm is a general purpose filter 

for weight updates. The combination of the stable learning algorithm with reinforcement 

learning is particularly interesting, however, as it provides an approach to solving difficult 

control problems with guarantees of stability. The reinforcement learning algorithm applied 

in Chapter 6 was rather basic and made inefficient use of the available data. The resulting 

control performance, was therefore not extremely good. The stable learning algorithm can 

be applied as-is to more advance reinforcement learning designs such as dual heuristic pro­

gramming approaches [78]. The improved learning efficiency of these algorithms combined 

with the explicit stability guarantees of the stable learning algorithm could make a powerful 

general purpose tool for adaptive control. 

Two major barriers to the practical application of the proposed algorithm point the 
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way toward future research. The first barrier is the computation expense of the algorithm. 

Even with the improvements made by application of warm-start methods, it is unlikely tha t 

the solution of the stability LMI problem could be performed in real-time. One possibility, 

however, might be to adapt the work in [40] tha t describes an analog neural circuit for 

real-time semidefmite programming. Other possibilities include heuristic approaches tha t 

limit the computation of the stability bias to certain time samples or based on the time 

constraints of the system. Even if such advances were made, application to very large 

recurrent neural networks will probably remain elusive. The high cost of the using the 

KYP lemma in systems with many states requires more analysis in terms of the specific 

structure of the LMI related to an RNN's stability. As in [89] it might be possible to 

take advantage of some particular feature of the LMIs to decrease the size of the resulting 

problems. 

The second barrier to practical application of the algorithm is the remaining conserva-

tiveness in the IQC analysis of the recurrent neural network. As mentioned in Chapter 6, 

the analysis ignores the boundedness of the nonlinearity. Following up on the recent work 

in [35] could prove extremely fruitful. The analysis in [35] explicitly account for bounded­

ness in the modeling of nonlinear operators by covering the nonlinear system with a set of 

switched, saturated, linear systems for which a tractable analysis can be performed. Because 

the boundedness of </>(•) is an essential feature and differentiates the dynamics of the RNN 

from a linear network with similar weights accounting for it in the analysis could provide a 

drastic reduction in conservatism. Additional conservatism enters the analysis throughout 

the consideration of the time varying weights. An alternative approach that limits the rate 

at which the controller switches between different sets of weights might allow the strong 

dynamic stability constraint to be recovered in what is currently the algorithm that ensures 

step-wise stability of the system. Some relevant work can be found in [62] where a similar 

idea is applied to linear, adaptive systems. Also, the vast literature on switching systems, 

for example [77], might also provide insight into this problem. 
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Appendix A 

LMIs for Time-Varying RNNs 

A recurrent neural network with time-varying weights can be written as the equation 

x(t) = -Cx{t) + WA(x(t), t)KRx(t) + u{t) (A.l) 

where 

W W W -W 

W = ei ei ei 

hnx(n+2n2) 

en\ e 
i)(nxn2) 

K = dmg{I,A,A}, 

R=[I I *?? / ] T G M ( n + 2 n 2 ) x n , 

A(z(t),t) = diagtoM*)).^•(t)<Jt(a;i(t)))5ii(t)<Ji(x<(t))} G M("+2™2)*("+2™2), 

0 < Si(Xi(t)) < 1, 0 < £,-(*) < 1, 0 < < -̂(*) < 1-

See Chapter 4 for details. The stability of this system is implied by the feasibility of the 

LMI condition 

" zCP-PC PW + RTf 1 
WTP + fTR -(f + f^K-1] K ' 

In this section additional LMI conditions are given which include the Popov IQC and 

terms for estimating the £2 gain of the time-varying system. Also, equivalent LMI conditions 

are given for the time-varying network equations (4.9). 

A.l Adding the Popov IQC 

The Popov IQC is a dynamic IQC, and the techniques described in Appendix B are required 

for constructing the resulting LMIs. The details are left out for conciseness and only the 
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main LMI is given. Define the matrix Q as 

Q = dmg{qi,...,qn,0,x2»?,0} 

where the e/j are positive decision variables. The Popov IQC results in the LMI 

T 

> 0 . 
IC 
0 

-RW 
I 

' 0 

-Q 
-Q 

0 
RC 

0 
-RW 

I 

The resulting LMI condition is 

_ -CP -PC _ FW^- CRTQ + ^ f 
WTP-QTRC + fTR QRW + WTRTQ-(f + fT)K-1 

A.2 LMI for Gain Estimation 

<o. 

The gain of a time varying network can be estimating by augmenting the LMI from the 

previous section. In this case the Popov IQC results in the LMI condition 

II —l) Uf ' _ « M / _ U 

>0. 
RC 

0 
-RW 

I 
-R 
0 

" 0 

_-Q 
-Q 
0 

RC 
_ 0 

--RW 
J 

-R 
0 

The main LMI condition is given by 

^ -CP-PC + I ^PWj-CRTQ + RTf P' 
WTP-QTRC + frR QRW + WTRTQ-(f + fT)K-1 QR 

P RTQ - 7 I 
<0. 

A.3 LMI Conditions for the Modified Time-Varying RNN 
Equations 

A modified version of (A.l) is given in Equation 4.9. These equations are 

KRA(x(t))x(t) + u(t) x(t) = -Cx{t) + W 

A(x(t)) = diag{<5i(xi(t))} 

A(t) = dmg{S(t),8{t)} 

0 A(t) 
(A.3) 
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It is easier to write the LMI stability condition derived from this formulation in its unex-

panded form. The feedback system is defined by 

A = -C, Bx = 1, B2 = W, 

C\ = In, C*2 G ]^(n+2n2) Xn 

£>u = 0 G M.nx(-n+2n \ D1 2 = 0G E n x n , 

"0 0" 
R 0 

D22 = 0 eR("+2n2)xn j 

# 2 1 = 
^ i™(n+2n2)x(n+2n2) 

where Jn is the n x n identity matrix and 

R=[l x?? /] 

The main LMI is 

where 

-CJ^-PC PW P 
WTP 0 0 

P 0 0 
+ Sx + S 2 + E3 < 0 

Si = 
Cl #11 P l2 
0 0 / 

T r 
Cl #21 #22 
0 / 0 

/ 0 
0 - 7 / 

0 f 

Ci Dn D12 

0 0 / 

£3 = 
fiC -RW 

0 / 
-/? 0 -Q 

-Q 0 
AC 
0 

C\ D2\ D22 

0 / 0 

- W -R 
I 0 
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Appendix B 

LMIs from Dynamic IQCs 

In this short appendix, an explanation of the implementation of dynamic IQCs is given. 

Dynamic IQCs are used in Chapter 6 to describe uncertain parameters and unmodeled 

linear time invariant dynamics. First some basic details are recalled. 

IQCs are generally applied to model the operator A in the feedback system given by 

the equations 

x = Ax + B\u + B%w 

y = C\x + D\\u + D12W 

v — C2x + D2\u + D22W 

w = A(/u). 

The IQC terms enter the main LMI from the KYP theorem through the equation 

(B.l) 

Ci D21 D22 

0 0 / 

- i T 

n(A) C2 D21 D22 

0 0 / 

The structure of this equation comes from the fact that the inputs and outputs of the IQC 

are constructed by the equation 

C2 -D21 
0 0 

D22 
I 

X 

01 
it 

_W_ 

The first n rows of the matrix multiplier construct the input v and the last n rows construct 

the output w. For implementing dynamic IQCs it is necessary to augment the inputs and 

outputs of the IQC and thus change the matrix multiplier in the above equations. 
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Figure B. l : A feedback system with unmodeled LTI dynamics. 

B.l Unmodeled LTI Dynamics 

The implementation of the IQC for unmodeled LTI dynamics is illustrated on the simple 

system shown in Figure B. l . The plant operator is G(s) = s,\n0 and the operator A(s) 

is an LTI operator with | |A(s)| | < 1. The system can be represented in the format of the 

feedback system (B.l) by taking 

A = - 100 , Bi = 1, B2 = - 1 , Ci = -100 , C2 = - 1 0 0 , 

•Da = 1,-Di2 - -1 , -D 2 i = 1,£>22 = - I -

Recall from Chapter 6 that the relation, w(s) = A(s)v(s), where A(s) is an unknown 

LTI operator satisfying | |A(s)| | < 1, satisfies the IQC given by 

x(s) 
11(8) = 

0 
0 -x(s) 

x(s) > 0. 

Here, x(s) is a bounded, measurable function that is represented for computational purposes 

as 
1 

x(s) = xo + ^ i — -

where xo and xi are real-valued decision variables. 

The constraint x(s) > 0 is enforced in the LMI problem by application of the KYP 

lemma. Rewrite x(s) in the s tandard operator form, Cx(sl — AX)~1BX + Dx, by letting 

Lyx %i, Ax = — 1, Bx = 1, and Dx — XQ. The KYP lemma results in the constraint 

AT
XP + PAX PBX - CT

X 1 
BT

XP-CX -{Dx + Dl 
T < 0, P = P1 > 0, 
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or 
-2P P - x1 

P — x\ — 2XQ 
<o, Pe 

in the specific case of interest. 

The part of the main LMI contributed by the IQC is constructed in the following way. 

The dynamic parts of the IQC are extracted leading to the representation 

v 

- to 

XQ 

X0 

X\ 

Xi 

>0 . 

Multiplying out the left hand side of the condition gives 

V XQV — W XQW • 
s + 1 

V X\V w w 

= V [ XQ + X\ 
s + 1 

s + 1 

V — W [ XQ + X\ 
S + 1 w 

'x(s) 0 
0 - x ( s ) 

To construct the left-hand and right-hand multipliers in the IQC, two states must be added 

to the system to represent -^p[V and Tpjw. This means augmenting the main system 

matrices as 

A = 
-100 
-100 

0 

0 
- 1 
0 

0 
0 

- 1 
,Bi = 

1 
1 
0 

,B2 = 
- 1 
- 1 
1 

Ci = [-100 0 0 ] , C 2 = [ - 1 0 0 0 0] . 

The augmented system has three states and two signals. The first state of the augmented 

system is the state of the plant. The second state is -^v, and the third state is ^p[W. 

The left- and right-hand multipliers for the IQC can be constructed by selecting the correct 

signals and states. The multipliers are 

L 

R = 

-100 0 0 0 0 
0 0 0 0 - 1 
0 1 0 0 0 
0 0 - 1 0 0 

- 1 0 0 0 0 0 0 ' 
0 0 0 0 1 

- 1 0 0 0 0 0 0 
0 0 0 0 1 

and 
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The LMI for the IQC is constructed by 

\XQ xo 

L T x0 

X\ 
R + RT XQ 

X\ 
L 

X\ X\ 

where the second term exists to ensure symmetry and does not effect the meaning of the con­

straint. This term must be added to the main KYP constraint and the term for estimating 

the £2 gain to construct the complete LMI. 

B.2 Uncertain Parameters 

The relation w = 6v with 5 e [—1,1] can be described by the IQC 

\x{s) z(s) 
1 J ~ |_z*(s) -x(s) 

x(s) > 0 

where x(s) is the same as in the previous section and 

z(s) = zx 
1 1 

7^1 = -2Zl 
1 

+ 
1 

^S+1J S + l _ 

The positivity of x(s) can be enforced using the KYP lemma as shown in the previous 

section. 

The IQC has three decision variables and can be written in the alternate form 

V 

w 
V 

J+Tw 

L s + 1 J 

T 
x0 

x0 

Xi 

X\ 

z\ 
zl. 

V 

—w 

* < 

—w 
V 

-w 

Multiplying out the equation and adding to it its transpose gives the desired IQC. The rest 

of the construction process follows the one used in the previous section for the unmodeled 

LTI dynamics and is not repeated here. 
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