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ABSTRACT
DIURNAL CYCLE OF THE THERMAL STRUCIURE AND A MESOSCALE WIND
ON THE WEST SILOPE OF THE COLORADO ROCKIES

The west slope of the Colorado Rockies has topographical features
consisting of mesas in the western portion and high mountainous terrain
in the eastern portion. Observations from this region show the
existence of an intermediate layer exhibiting diurnal variations in
both wind and thermal structure. This intermediate layer is a vertical
layer above mesa top heigt;t and below mountain top height, 2.5 km to
3.5 km above sea level. As the night progresses, the intermediate
layer's westerly flow of the late afternoon changes to winds increasing
in velocity and rotating in a clockwise direction with increasing
height. |

The first of two physical mechanisms which can explain the
existence of this diurmal variation in the wind structure cbserved in
the intermediate layer is the development of an east to west thermal
gradient. In an evening with clear, dry comditions, the air within the
intermediate layer nearer to the high terrain will cool more relative
to the air farther away. Because of this cooling process, the
intermediate layer should develop a pressure gradient on a constant
height surface with the higher pressure in the east near the mountains.
A thermally driven circulation initiated with this cooling pattern will
support the diurnal variation of the winds observed in the intermediate

layer.
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Deep stability growth during the night leads to a second physical
mechanism explaining the existence of the wind structure's diurnal
variation cbserved in the intermediate layer. During days with a
neutral or weakly stable convective boundary layer, westerly winds have
little difficulty lifting over the mountainous terrain in the eastern
portion of the region. Evening stability grows well above the flat
mesas adjacent to the high terrain up to approximately 3.5 km above sea
level. Because of this stability, the westerly flow will have less
potential to lift over the mountain barrier thus a blocking of the wind
can occur. An excess of mass will develop a higher pressure near the
mountains, which creates a pressure gradient within the intermediate
layer. A pressure gradient of thJ.s kind, like the thermal gradient,

will support the winds cbserved in the intermediate layer.
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CHAPTER I

INTRODUCTION

Thermal structure and wind flow regions of complex terrain have
been studied for many years with particular interest in the diurmal
cycle of in-valley flow characteristics. For example, in the summer of
1989, The Journal of Applied Meteorology (JAM) devoted two issues to
the subject of complex terrain behavior. Many new theories and
findings emerged from these two editions concerning atmospheric
phenomena in complex terrain. McKee and O'Neal (1989) developed an
interesting theory explaining how the geametrical structure of a valley
will cause it to pool or drain during the night and cause up-valley
flow during the day. Neff and King (1989) studied the possibility of
Brush Creek valley, located in western Colorado, influencing its own
drainage by having its drainage pool into a basm south of the valley
mouth.

The possibility of external winds contributing to the in-valley
flow was also considered. Barr and Orgill (1989) were able to describe
changes in the depth of drainage and volume flux in terms of ambient
wind characteristics. In complex terrain, like western Colorado,
external winds reaching into the valley may have characteristics
different than the synoptic flow. Reiter and Tang (1984) studied winds
over, and in the vicinity of, the Great Basin. In their large scale
study, they showed that wind cbservations reveal the development of a

nocturnal high and a daytime low in the Rockies. Parish (1982) studied



the possibility of barrier winds along the Sierra Nevada Mountains. He
showed how cold air damming at the upwind side of a mountain barrier
can create a low level jet parallel to the mountain barrier. The cold
air damming will result in a pressure increase near the mountain
barrier thus creating a pressure gradient capable of supporting a low

level jet.
A. Objective

The west slope of the Colorado Rockies has had very 1little
industrial development. Western Colorado has a great deal of potential
' for large industrial development, in particular, the development of an
oil industry based on oil shale. This development can indeed lead to
pollution, which, in turn, is transported within the region.

The west slope of the Colorado Rockies is a location of complex
terrain. To the east is high mountainous terrain of the rockies, and
to the west are lower elevations of the mesas and valleys. Bader et
al. (1987) fourd, from limited wind data, a thin layer of winds present
above a valley on the west slope. It was determined the winds were not
synoptically induced, but, perhaps, topographically induced. Barr and
Clements (1981) cbtained data in western Colorado in August 1980. They
observed an east wind in a layer above 2.5 km Above Sea Ievel (ASL)
during the night hours on two consecutive days. The east wind was not
the focal point of their study, therefore they had no explanation for
what they observed.

The Department of Energy's Atmospheric Studies in Complex Terrain
(ASCOT) had an intense field project in northwest Colorado in September

of 1984 (ASCOT '84). The primary purpose of this study was to study



valley nocturnal drainage winds. The experiment included a set of deep
sounding sites to provide ocbservations of the diurnal behavior in the
atmosphere above the valleys in the region. The purpose of this study
is to define the diurnal evolution of an atmospheric layer from mesa
top height upward into the free atmosphere. Observations will be used
to establish the identity of an intermediate layer (IL) above the
mesas. Finally, a conceptual model will be presented to illustrate the
layer's diurnal evolution and to identify some physical processes

contributing to this layer.
B. Description of the Region

To better understand studies of wind and thermal structure in
western Colorado, a regional description is necessary. The region is
west of the Continental Divide, and figure 1.1 from Clements et al.
(1989) shows its location with respect to Colorado. The upper air
sounding sites located within the region of study are at the towns of
Rarngely, Meeker, and Rifle and the valley of Brush Creek. The western
portion of the region is near the Colorado-Utah border. The region
consists of mostly mesa-flattops with numerous valleys of various
widths amd depths cut into them by small streams and creeks. The White
River flows east to west through the northern portions of the region,
and the Colorado River flows east to west through the southern
portions. The terrain gradually slopes upward from west to east over
the mesa flattops. The east portion is very similar to the west, and
the only significant difference is that high mountainous terrain of the
Rockies lie adjacent to the east portion. To better understand the

elevations of the region, figures 1.2 (a-d) shows four different
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elevation contours of the region. Figure 1l.2a shows elevations greater
than 2.0 km ASL, and the valleys are very well defined. Figure 1.2b
shows elevations greater than 2.5 km ASL. The valleys become less
distinct, because much of the region lies below 2.5 km ASL. This
allows the Rockies to the east to show up very well. In figure 1.2c
only the eastern portion of the region is greater than 3.0 km ASL, and

figure 1.2d shows only the higher Rocky Mountains.
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CHAPTER I1

DATA
A. Collection of Data

The focal point of the ASCOT '84 experiment was the valley of Brush
Creek, in which a series of tethersondes were placed along the valley
floor. Within the wvalley and on its ridgetops are not only
tethersondes, but a wide range of instrumentation from acoustic
sounders to a doppler lidar to tracers. For a better description of
data collection in Brush Creek, the reader is referred to Clements et
al. (1989). All instrumentation and data collection was done in an
effort to understand valley drainage winds better than ever before. In
an attempt to understand how air flow above the valley will affect flow
characteristics in valleys, a four corner network of upper air
soundings was also established.

The four corner network included an upper air station at Meeker,
Rifle, and Rargely and in the valley of Brush Creek. Table 2.la gives
detailed locations and elevations of each site and table 2.1b the
sunset and sunrise in Mountain Standard Time (MST). The upper air
observations were designed to span a twenty one hour period
encompassing each experimental night. Three hourly soundings began at
16:00 MST and ended at 13:00 MST the following day. The ASCOT '84
field experiments attempted to choose clear sky and undisturbed
corditions with little temperature advection. Dry conditions reduce



Date

17-18
19-20
25~26
27-28

29-30

Exact locations and elevations of each upper air sourding site

Table 2.1la.

participating in the AScOT '84 field project.

STIE
Mecker
Rifle
Rangely
Brush Creek

IATTIUCE LONGTTUDE

40.06 107.9
39.53 107.8
40.06 108.78
39.56 108.43
Table 2.1b.

ELEV(m)
1947.7
1692.2
1607.5

1856.8

Listing of sunsets and sunrises at each site during the ASCOT '84
field project. All times are in Mountain Standard Time (MST).

Meeker
sets rises
18:19 6:00
18:16 6:03
18:02 6:05
17:59 6:07

17:56 6:09

Rifle Rangely Brush Creek
sets rises sets rises sets rises
18:19 6:00 18:22 6:04 18:21 6:03
18:16 6:03 18:19 6:07 18:18 6:06
18:02 6:05 18:06 6:09 18:05 6:08
17:59 6:07 18:03 6:11 18:02 6:10
17:56 6:09 17:59 6:13 17:58 6:12
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the role of moisture, and small advection keeps observed temperature

and wind changes a result of local phenomena.
B. Weather Conditions

During the experimental period, conditions were considered adequate
for the project. After studying the wind and thermal observations,
four nights were considered appropriéte for data analysis of the
atmosphere above the valleys for this study. The 27th-28th showed
large temperature advection in the upper atmosphere between the late
afternoon and the late night hours and was eliminated for the purpose
"of this study. The nights considered appropriate for data analysis are
the nights of the 17th-18th, 19th~-20th, 25th-26th, and 29th-30th.

Surface weather conditions are consistent from one experimental day
to the next with light winds and dry corditions, however, the synoptic
corditions were changing. Scattered light showers did persist along
and west of the Continental Divide during the experimental period, but
no precipitation fell at the experimental sites (McKee, 1984). Four
weather maps, if available, are presented for each night. The 00Z and
12Z maps contain height and temperature contours for 500 mb and 700 mb.
These maps presented in appendix A, are used in the following
discussion of weather conditions present on the nights of the
experimental period.

The experimental period began with the 17th-18th. Very good
weather conditions are present with 1little advection. The high
pressure at 700 mb over northern Utah moved into western Colorado and

centered over the experimental region by the end of the sounding period
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on the 18th, and 500 mb had the same pattern. High pressure was over
the region at 500 mb with little advection and light winds, less than
10 m/s.

On the 19th-20th, the charts show very little pressure gradient
through the region at 700 mb with only the slightest thermal advection
present. At 500 mb there is little pressure gradient and light winds
for this height, 4 m/s, and little advection.

Following a week of unsettled weather, the 25th-26th has better
conditions. A southerly flow at 500 mb starts the sounding period and
it becomes westerly by the end of the period. According to the charts,
there is 1little advection and little pressure gradient. The upper
level charts have little temperature advection or pressure gradient,
but the flow is strong with winds fram the west at 15-20 m/s.

A small pressure gradient with light winds existed at 700 mb on the.
29th-30th. Light winds and a small temperature gradient prevent large
advection. The winds at 500 mb are moderate from the west with little

indication of temperature advection.
C. Data Quality

1. Temperature measurements

Sondes are excellent devices for retrieving information from all
levels of the troposphere, however, they are not perfect. Recent
calibrations of sondes (AIR, ADAS, Intellisondes, CILASS) were done in
an attempt to gather information on the accuracy of the temperature
sensors. Calibrations were not done for the ASCOT '84 field
experiment. These calibrations were intended to give some indication

about the accuracy of the sondes used in the ASCOT '84 field work.
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Water was the material used to calibrate the sondes and thermo—
couples. One temperature measurement was done in room temperature
water and a second in ice water. The temperature of the sondes are
then compared to the temperature of the thermocouples. The sondes had
temperature differentials of +0.4C to -0.4C from one sorde to the next.

Differences such as these may seem rather insignificant, but they
are not. When it becomes necessary to use the temperature measurements
from one sounding to the next, these differentials can becaome
increasingly important. With these errors involved, calibrating
sondes prior to launching is highly recommended.

2. b Wind measurements

During ASCOT '84, Rifle, Meeker, and Rangely were rawinsonde
stations which used an auto tracking radiotheodolite, data acguisition
system, and a 1680 MHz radiosonde package. Winds were calculated from.
the tracking data using a 30 s averaging interval in the lowest layers
and a 60 s interval through the mid layers (Clements et al., 1989).

An optical theodolite was used to get wind data at the CSU site in
Brush Creek. Obtaining data with an optical theodolite requires time.
The pressure received from the airsonde is used to calculate the height
of the balloon, and the optical theodolite is used to measure azimuth
and elevation angles. Wind velocity and direction are calculated from
these three variables. The tracker needs time to get these measure-
ments with the theodolite. In general, thirty seconds is the length of
time involved, however, a time interval of thirty seconds is not
required. When everything is going well, the time interval may be
smaller, or if there are problems the time interval may be longer.
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Wind measurement resolution may not be very good sometimes, but the
lack of resolution does not mean wind errors.

These sites use different instrumentation, but data is collected
every thirty seconds. A rise rate of 5 m/s results in a data point
every 150 meters, therefore, wind resolution is a very important factor
to consider. In particular, to find a transition between one layer of

winds and ancther becomes very difficult.



CHAPTER IIT

OBSERVATIONS

A. Wind Structure

1. Introduction to wind structure

Above the valleys of western Colorado is an Intermediate Iayer
(IL), which has a diurnal evolution different from that of the valleys,
however, the characteristics of this layer are not well defined.

The wind observations from ASCOT '84 will be used to define the IL.
These observations will provide the thickness, depth and wind flow
structure of the IL. Observations analyzed here are obtained from
Meeker, Rifle, and Rangely on the night of the 19th-20th. Figures 3.1
(a—c) are the cbservations from these three sites in a time series
starting in the late aftermoon. Remaining wind observations, from
these sites on the 17th-18th, 25th-26th, and 29th-30th can be seen in
appendix B.

2. Wind cobservations

The sounding at 16:00 Mountain Standard Time (MST) starts the
evening of the 19th-20th. A westerly component to the wind starts the
late afternoon at all sites and all levels except within the valleys.
Individual in-valley topographical features are producing wind unique
to each site below mesa top height, 2.5 km Above Sea level (ASL).

At approximately one hour beyond sunset, the 19:00 MST set of

soundings has interesting changes different to each site. These



Fig. 3.la. Wind time series for Rifle on 19-20 September 1984.
Height is in kilometers Above Sea Level (ASL), and
Rifle is 1692 m ASL. Horizontal axis represents
sounding times in Mountain Standard Time (MST) with
sunset and sunrise at 18:16 MST and 6:03 MST,
respectively. Vectors point in the direction air is
going, ard north is the top of the graph. Lines A and B
represent mesa top and mountain top heights,
respectively.

Fig. 3.1b. Same as figure 3.la except it is for Meeker, which has
an elevation of 1947 m ASL.

Fig. 3.1c. Same as figure 3.la except it is for Rangely, which has
an elevation of 1607 m ASL, and sunset is at 18:19 MST
and sunrise at 6:07 MST
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changes do not occur in the upper levels, but rather below mountain top
height, 3.5 km ASL.

Rifle has same very distinct changes take place in the night hours
above mesa tops and below mountain top height (see figure 3.1a). At
19:09 MST, a strong northwesterly flow is present below mesa tops up to
mountain top height, and near mountain top height is a noticeable shear
in wind velocity. By 22:14 MST, thls flow has been replaced by two
layers. A valley drainage has replaced the flow below mesa top, ard a
southeasterly wind has replaced the flow between mesa top and mountain
top height. This flow is a distinct part of the IL wind structure. At
mountain top height is a shear of velocity and direction creating a
natural boundary between the IL wind and the free atmosphere. At night

the IL winds feature,

av
a7 > 0 (3.1)
and
G
az > 0 (3.2)

where V is wind velocity, Z is height, and ¢ is angle of diréction
the wind is going with ¢ = 0 being north. The IL ~ free atmosphere
boundary lowers progressively in elevation through the night.

Velocity profiles at Meeker are much different than those at Rifle
at 19:00 MST (see figure 3.1b). Rifle has a northwesterly flow between
mesa top height and mountain top height, but Meeker has a northeasterly
flow in the same regime, however, like Rifle, Meeker has a speed shear
at mountain top height. At 22:06 MST, a northeasterly flow is present
up to 3.0 km ASL. Above this winds are southwesterly from just above
mountain top height. 1Iater in the night, Meeker has the IL wind
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characteristics like those cbserved at Rifle. Meeker's IL - free
atmosphere boundary is lowering in elevation through the night.

Rangely doesn't have nighttime IL characteristics much different
than Meeker and Rifle (see figure 3.1c). To start the night, at 19:15
MST, Rarngely has a westerly component still present up to 3.0 km ASL
and a northwesterly flow up to mountain top height. At 22:04 MST, a
southeasterly flow has appeared below 3.0 km ASL, and a mountain height
speed shear distinguishes the IL from the free atmosphere above. ILate
in the night, Rangely has an IL characteristics similar to Meeker and
Rifle. These characteristics are an increase in velocity and direction
with increasing height, and the IL - free atmosphere boundary decreases
in height through the night.

Four hours after sunrise, at 10:00 MST, valley drainage at Rifle
and Rangely have noticeable changes. Missing data from Meeker in the
lowest in-valley layer makes it difficult to determine the result of
solar heating on its drainage. Above 3.0 km ASL, all sites cobserve a
westerly flow. Rangely, Meeker, and Rifle have the same IL char-
acteristics cbserved during the night except the layer is much thinner.

By early afternoon all sites cbserve a westerly component to the
wind, and a consistent velocity at all heights.

3. Sumary of wind structure

Three atmospheric layers, common to the experimental period, are
very apparent. One layer is the well known drainage wind present below
mesa tops. A second layer present is the free atmosphere above 3.5 km
ASI, which has no apparent diurnal phase shift. The third layer is
one not so well known. It is the IL found above valley drainage and

below the free atmosphere. The IL is characterized by an initial west
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wind in the late afternoon which changes to southerly camponent flow by
several hours after sunset. The nocturnal IL has a clockwise turning
of the winds with increasing height, and a velocity shear at the IL -
free atmosphere boundary. After becoming well established a few hours
after sunset this boundary progressively lowers in elevation through
the night. '

All nights of the observation period do not have the same IL - free
atmosphere boundary height. However, the boundary does not exceed
mountain top height, and the lowest boundary of the IL does not go

below mesa top height.

B. Thermal Structure

1. Introduction to thermal structure

Wind observations from Meeker, Rifle, and Rangely describe the
depth and thickness of the IL, however, a full understanding of the IL
canmnot be obtained from the wind observations done. Wind is not
independent of the thermal structure. Evolution of the thermal
structure is shown in Figure 3.2. Data is presented as potential tem-
perature since it does not change with vertical motion under adiabatic
conditions. In Figure 3.2 is an overview of the evolution for
September 19-20 given with three soundings at approximately 16:00 MST,
22:00 MST, and 4:00 MST.

The late afternoon begins with a nearly neutral convective boundary
layer (CBL). At Rangely the CBL extends 2.5 to 3.0 km above the ground
which is 0.5 to 1.0 km above the mountains to the east. The potential
temperature is about 314 K to 315 K. The sounding at Rifle is slightly

stable with a 2 K increase ina 2.5 km layer and the potential
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temperature above mountain top height are nearly the same. Meeker also
is slightly stable but potential temperatures above mountain top height
is similar to Rangely and Rifle. As the night progresses ithe potential
temperatures cool 10 K or more at the surface and the cooling extends
above the mesa tops to near the height of the mountains. Detailed
intercomparisons from one sounding to another are not easily
accomplished due to unknown error magnitudes. The discussion of
accuracy in chapter 2 indicated errors of +/- 0.4 C are possible.
Temperature advection was judged to be small above mountain top but can
not be assumed to be zero. Changes in potential temperature during the
night just above mountain top is small (1.0 K - 2.0 K) at Rangely, a
little larger at Meeker (2.0 K - 3.0 K), and larger yet at Rifle (3.0 K
- 4.0 K).

Data presented in Figure 3.3, 3.4, and 3.5 allaw a closer
examination of the diurnal evolution at each site. The nocturnal
c:oolingcanbedeséribedasacoolingandalsoasachangein
stability. Cooling appears at Rangely early in the eveninc and extends
nearly 1 km above the surrounding mesas. Rifle and Meeker also have
the cooling to mountain top height. Each site also has the remnants of
the CBL from the previous day seen as a neutral layer above mountain
top height. The IL identified in the wind analyses is seen in the
thermal structure also as a layer extending from the mesas up to
mountain top height. Possible errors in temperature cbservations limit
the analysis of sonde to sonde comparisons, but they do not limit an

analysis of atmospheric stability.



m)

HEIGHT AGL (k

W w A A
=] [%] (=] 9.4 (=}
T 1 |

N
2.]
—

N
D
—

+ 1626
01915
2+ 2204

o —————

POTENTIAL TEMPERATURE VS. HEIGHT

90
Potential Temperature (K)

T e e
Potential tomperature plots on 15-20

RANGELY: 9/19-20/84

5 O

4.5
» 0410
00702
| #1005
ao-
29

2.0t~

1.5
1.0

0.5~

280 290 00 0
Potential Temperature (K)

90 00 0 0
Potential Temperature (K)

b.) c.)

~ n -~ o~

pleiber 1984 for Rangley with

an elevation of 1607 m ASL. Sunset and sunrise are at 18:19 and 6:07 MST,

respectively.

All soundings are in MST.

(44






HEIGHT AGL (km)

2]

b

-

ot

@

N

N

—

(-]

o

POTENTTAL TEMPERATURE VS.

MEEKER: 9/19-20/84

+ 2206
00104
© 0404

0 5 0,
5} 4.5-
« 16811
ol- 40
L 51905 |
% 2208 35
ot 3.0
8- 25
L s
or- 20
5f 150
o 1o}
st 0.5
280 i) ) b 0286
Potential Temperature (K)
a.) ) b.)

290 00 0 20
Potential Temperature (K)

HEIGHT

50
45
4.0
3.5-_

J 0

« 0404
00704
+ 1003

-------- J ---Mesa top

90 00 0 0 30
Potential Temperature (K)

Fig. 3.4(a-c). Potential temperatures on 19-20 September 1984 for Meeker. Meeker has
an elevation of 1947 m ASL, with sunset and sunrise at 18:16 and 6:03 MST,
respectively. All soundings are in MST.

A



HEIGHT AGL (km)

POTENTTAL TEMPERATURE VS. HEIGHT

RIFLE: 9/19-20/84

5 0 5 0 5 0
45} 4.5 4.5-
+ 1612 [ « 2214 i « 0407
4.0~ 4.01- 4.0
01909 00109 : 00705

3T s2214 2% 40407 3% 41007
aol- 3.0- 3.0-
251 25 2.5
201 20- 20

| e | === | T top
1 5 1.5 1.5}

L s .
1.0t 1.0 1.0}

| - < | mm—————e—_— P} e —--Mesa top
0.5 0.5 0.5
0 0 ol

280 90 00 0 0 280 290 00 0 0 30 2 90 00 0 0 30
Potential Temperature (K) Potential Temperature (K) Potential Temperature (K)
a.) b.) c.)
Fig. 3.5(a-c). Potential temperatures on 19-20 September 1984 for Rifle. Rifle has

an elevation of 1692 m ASL, with sunset and sunrise at 18:16 and 6:03 MST,

respectively. All soundings are in MST.

144



25

2. Atmospheric stability

a. stability criteria for a dry atmosphere

During the day, a clear, dry atmosphere will allow a great deal of
surface heating by the sun. As heating continues througt. the day, a
Convective Boundary Layer (CBL) will form as a result of surface
heating. As long as there is solar insolation on the surface, this CBL
will continue to grow. Several minutes prior to sunset, the atmosphere
near the surface will cool, and stability will become noticed in the
lower layers of the boundary layer.

Stability is defined here as the change of potential temperature,
®, with height, 2; stability criteria commonly used for a dry

atmosphere are (Holten, 1979):

% > 0, Stable (3.4)
%Z.; < 0, Unstable {3.5)
@ > 0, Neutral (well mixed). (3.6)

A vertical displacement of a parcel in an envirommert having a
positive potential temperature lapse rate will result in the parcel
oscillating about its initial position at a frequency equivelent to the

Brunt-VHis#114 frequency,
2 _ g de
8 dz (3.7)

where g is gravitational acceleration. An enviroment having
d8/dz > 0 will have a lapse rate greater than the dry adiabatic lapse
of -9.8 K/km (eg. dI/dz = -8.0 K/km, T = absolute temperature). If the
parcel is forced vertically dry adiabatically, it expands and cools.
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The cooling results in a cooler temperature than the envirorment it
enters. In return, the parcel is more dense than the enviromment and,
therefore, returns to its initial level.

A vertically displaced parcel in an enviromment decreasing in
potential temperature with height will not oscillate about its initial
level. Rather, if the parcel is forced vertically dry adiabatically by
any means, it will continue to rise. This enviromment has a lapse rate
less than the dry adiabatic lapse rate (eg. dI/dz = -10.0 K/km). A
parcel lifted dry adiabatically will expand and cool, but the final
temperature will be greater than the envirorment. As a result of its
initial displacement in the vertical, the parcel will continue to rise.

A parcel in an envirorment having no change of potential tempera-
ture with height will not accelerate upward or be returned to its
initial level. After its initial displacement in the vert:cal, it will
rise dry adiabatically. Since the enviromment is adiabatic, the parcel
will retain the same temperature as the enviromment. As a result, the
parcel remains where it has risen.

b. mean atmospheric stability

When discussing the stability of a region with the complexity of
western Colorado, it becomes helpful to understand how fthe stability
over this complex terrain differs from stability grow:h over flat
terrain. Under clear, dry, conditions, regions of flat terrain have
typical nocturnal stable boundary layer (NSBL) depths of 0.2 - 0.4 km
Above Ground level (AGL) (Stull, 1988), with little change in depth
over many horizontal kilometers. However, over complex terrain the
NSBL will acguire variable depths over a few kilometers and will be

much deeper than NSBIs over typical flat terrain. Even though the
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atmospheric conditions may be the same above both types of terrain, the
NSBL will be deeper over the complex terrain. Sensible hesat flux in
valleys act on a smaller volume of air. Furthermore, greater turbu-
lence can exist in regions of complex terrain and cause greater mixing
of cold air near the surface into higher layers (Bader et al., 1987).

A similar discussion can be made when considering the ccmparison of
the CBL over flat and complex terrain. Again, the CBL will generally
be deeper over regions of complex terrain, because valleys relp to heat
the smaller volume of air like they did to stabilize a smaller volume
of air. Figure 3.6 from Stull (1988) gives an excellent illustration
of the typical atmospheric cycle. It shows the depth of a CBL, and the
grow{:h of stability over flat terrain as the night progresses.

c. stability calculations from observations

Observations were made on four nights, and each night had its own
distinct evolution. Similarities do exist from night to night, and
analyzing one night will be sufficient to describe the characteristics
of each night. Data chosen for analysis are on the night of the 19th
and 20th. Figures 3.7 (a-c) will be used as a reference for the
analyses of the Rifle, Meeker, and Rangely soundings on the night of
the 19th-20th. Stability plots of the 17th-18th, 25th-26th and 29th-
30th are found in appendix D.

Starting the 19th-20th is the 16:00 MST sounding on th= afternoon
of the 19th. Solar heating is very strong at this hour, and Rangely
has the most neutral CBL of the three sites, while Meeker and Rifle
have a boundary layer of very weak stability. The depths of these
bourdary layers are not significantly different from site tc site, with

the heights varying from 4.0 km ASL over both Rangely and Rifle to 4.5
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Fig. 3.7a. Change of potential temperature with height for Rifle
on 19-20 September 1984. Height is in kilometers Abcve
Sea level (ASL) with Rifle at 1692 m ASL. Horizontal
axis represents soundings in MST ard stability. Rifle
has sunset and sunrise at 18:16 MST and 6:03 MST,
respectively. Lines A and B represent mesa top and
mountain top heights, respectively.

Fig. 3.7b. Same as figure 3.7a except for Meeker, which has an
elevation at 1947 m ASL.

Fig. 3.7c. Same as figure 3.7a except for Rangely, which has an
elevation of 1607 m ASL. Sunset and sunrise are at 18:19

and 6:07 MST, respectively.
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km ASL over MeeKker. Stability is present above these bourxiary layers,
with dg/dz = 3-5 K/km at each site.

At 22:00 MST, the sun has been down for almost four hours.
Stability is still shallow over Rangely, with a depth of 2.4 km ASL.
Strong stability greater than 5 K/km is below 2.25 km ASL (see figure
3.7c). A similar stability is over Rifle, but it is deeper, with
5 K/km at 2.5 km ASL and weak stability reaching up to 3.0 km ASL (see
figure 3.7a). Stability over Meeker is similar to that overr Rifle, but
strong stability of 5 K/Km extends slightly higher, and wezk stability
is up to 3.0 km ASL (see figure 3.7b). Above these stable layers are
remnants of the boundary layer cobserved prior to sunset extending to
heights originally observed. b

Ten hours after sunset, at 4:00 MST, stability depths ere reaching
maximum heights. Stability over Rangely has characteristics observed
throughout the experimental period; strong stability is present to 2.5
km ASL and weak stability extends an additional one kilometer above
this. Rifle has increasing stability strength up to 3.5 km ASL, and
strongest stability is less than 2.8 km ASL. Strong stability to 3.0
km ASI, is over Meeker with very little stability above this. The
remnants of the afternoon boundary layer are still present at each
site, but the depth and clarity of the remnants are diminishing with
time.

Between the 4:00 MST and 7:00 MST soundings, stability changes
little in depth or strength at each site. Surface heating is noticed
approximately four hours after sunrise, and a neutral atiosphere is

present over each site up to 2.0 km ASL. Remnants of the prior
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evening's stability are still present, but it is not as strong or deep
as it was in the 4:00 MST or 7:00 MST soundings.

Solar heating is once again a dominant force at 13:00 MST. A weak,
stable boundary layer, not as deep as the previous day, is noticed over
each site.

3. Thermal gradient in the IL

Figure 3.8(a—d) represents the cooling process observed over
Rangely, Rifle, and Meeker. These are plots of the change in
temperature, AT, with time taking place after 16:00 MST on the night
of the 19th-20th. Four layers are presented; a) the layer below mesa
tops, less than 2.5 km ASL, b) 2.5-3.0 km ASL, c¢) 3.0 - 3.5 km ASL, and
d) 3.5-4.0 km ASL. The average temperature is cobtained for each of the
layers, at each of the sites, for each sounding. After fhe average
temperature is obtained, the average of all four nights is calculated
for each layer and each site and each sounding. An average of four
nights should alleviate any problems associated with sonde temperature
errors. It was decided, after examining stability, that it would be
advantageous to divide the IL into two layers.

Cooling in the valley is large but different for all three sites.
The differences in the valley are not considered a factor to the IL,
because valley cooling will be associated with the structure of the
valley. Between 2.5 km and 3.0 km ASL, Rifle cools the greztest during
the night hours. At this elevation, Meeker and Rangely are cooling
very much the same. Above 3.0 km ASL, Rifle and Meeker are showing a
greater magnitude of cooling. The magnitude of cooling kecomes very

similar at all sights in the layer above the mountains.
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Using a program referred to in Cox and Griffith (1979), the amount
of radiative cooling in the rather dry atmosphere is calculated to be
approximately a degree celsius throughout the night. Therefore, the
radiative cooling cannot be neglected, but it is not considered a very
important factor in the observations. It does, perhaps, explain the
cooling well above mountain tops. '

It is apparent, from averaging the temperature data, II. cooling of
a greater magnitude takes place near the mountains. Rifle cools more
than either Meeker or Rangely, and Meeker more than Rangely.

4. Energy loss within the IL

Cooling comparisons among the sites within our experimental region
of Colora;do does show the presence of more cooling within the IL near
the mountains than farther away. However, the cooling may be a result
of mixing the air cooled by the mesa top into the IL. Calculations of
the energy loss will help determine whether mesa top cooling can be the
éole source of the cooling.

According to Whiteman et al. (1989), the mesa top sensible heat
loss at night is approximately 20 W/mz. This measurement was for the
night of the 25th-26th of the ASCOT '84 project, however, the sensible
heat loss from night to night should not vary greatly if the weather
conditions and sky cover are very much the same. Much of the air
cooled by the sensible heat loss will drain into adjacent valleys.
Gudiksen and Shearer (1989) studied the dispersion of tracers in the
valley of Brush Creek during the ASOCOT '84 project. They found that
perflurocarbon released from the mesa tops drain into the valley ard
get caught up in the valley drainage, which is in the lowest three

hundred meters of the valley. Also from the ASOOT project, the SRL
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site, located on the ridgetop (see Clements et al., 1989), took
tethersonde sourdings. They observed an inversion apprcximately 50
meters deep over the mesa top and a very light drainage of 2-3 my/s
flowing off the mesas into the valley.

A measure of the energy loss in the atmosphere above the mesas
within the IL can be done. The change in potential temperature from
one time to another is converted into an energy loss. This is done

with the use of the total derivative of the energy equation (ie. the

first law of thermosdynamics).

dg _ _ar_ _da_
at G ae T FPa (3.8)

where o« is the speciéic volume, 1/p , Co is the specific heat at
constant volume, and dg/dt in the first law is the rate of heating per
unit mass due to radiation, conduction and latent heat release. We
will neglect latent heat release because of dry conditions and the lack
of clouds. Combme equation (3.8) and the total derivative of the

equation of state,

Gp _do _ _ar_
a-g— o+ P-% = R—%x (3.9)
to get
dinT _ dinP  _ _dq
TC S TR "3t = & (3.10)

where Cp = C, * R, 1004 J/k/kg. Then substitute the total derivative

of the logarithm of the potential temperature

C = C

dinpP
p~a - Spa - Ra (3.11)

into equation (3.10) to get
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2 - S d}dfc‘e '3.12)
which is the final relationship between the change of potent:ial temper-
ature with time and the change of energy in the atmosphere with time.

Equation (3.12) is used to find the amount of energy loss that has
taken place in the atmosphere at each site above mesa top, 2.5 km ASL,
up to mountain top height, 3.5 km ASL. Rifle had approximately 30 W/m’
cooling within the IL, Meeker approximately 15 W/m2 cooling, ard
Rangely approximately 7 W/mz. The value at Rifle is larger than the
the value of the sensible heat loss Whiteman et al. (198%9) observed,
_which indicates that the cooling at Rifle is probably more than just a
function of mesa top cooling. The 15 W/m® at Meeker is more than half
of the value given by Whiteman et al. (1989), which indicates that the
value of 15 W/m° cbserved leads to a reasonable probability that a
cooling source in addition to mesa tops is needed. At Rangley, 7 W/m2
can be caused by mixing upward the air cooled by the mesz tops, even
though much of the cooled air may drain into the valley.

Calculations of ene.rgy loss within the IL cannot completely verify
ancther source of cooling other than the mesas, but it does give some
indication that there is more. The sites close to the mountains cool
more than the site far from the mountains, and cooling near the
mountains may be more than mesa top cooling. It may be caused by the
mountains cooling the air around them and advecting that cool air into

the IL close to them.



CHAPTER IV

CONCEPTUAL MODEL
A. Conceptual Introduction

Above the valleys of western Colorado is an Intermediate Iayer (IL)
capable of supporting a diurnal evolution in wind and thermal struc-
ture. Observations of both structures identify these diurnal evo-
"lutions, which are separate from the atmosphere within the valleys and
the free atmosphere above mountain top height.

The wind structure behaves in a manner conceptually illustrated in
figure 4.1. In the conceptual model is an imaginary valley existing on
the west slope of Colorado. The daytime westerlies are present
throughout the atmosphere including the valley. This is a behavior
unique to this valley, because the valley has an east to west orien-
tation which is associated with a daytime flow from west to east and a
nocturnal drainage from east to west.

During the day, a neutral atmosphere is within and above the
valley. As the night progressés, stability will begin to grow from the
surface of the valley to elevations at approximately mcuntain top
height. This stability will enable the mountains to block the westerly
flow. Blocking will cause an east-west pressure gradient, and initiate
the winds seen during the night hours in the conceptual model; a
southerly component wind increasing in wvelocity and direction with

increasing height will be present in the II.
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In addition to mountain blocking, diverse cooling takes place
throughout the region on the west slope. The mountains will cool the
atmosphere around them and advect the cool air into the IL atmosphere
above the adjacent mesas. This advection fraom the mountains will cause
a more rapid cooling in the atmosphere close to the mountains than the
atmosphere farther fram the mountains. An east-west thermal gradient
will be in the region, which will result in a pressure gradient across
the region. This, like the mountain blocking, will initiate the IL
winds in the night hours.

In the later hours the IL wind and free atmosphere boundary lowers
progressively in elevation until the next morning. The stability and
thermal gradient both become eliminated by the heating of the day, and

the IL becomes dominated by the westerlies.

B. Physical Mechanisms
1. Thermal gradient

a. thermal gradient model

In the cbservations, a thermal gradient was found within the region
of western Colorado. Figure 4.2 is a conceptual model of the thermal
gradient on the west slope. 'The cooling shown is a conceptual view of
IL cooling taking place close to and far from the mountains since 16:00
Mountain Standard Time (MST).

From the model analyses, cooling is more dominant close to the
mountains (see figure 4.2). FHaving more cooling close to the mountains
will create an east-west pressure gradient on a constant height
surface. The higher pressure will be present in the east, because of
more cooling. More cooling in an open enviromment creates a higher

pressure. ‘The air becames more dense as it cools, ard in return more
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mass can be contained in the same volume, which creatss a higher
pressure.

b. results of thermal gradient

Take for example a hypothetical region that allows air to move
freely in and out of it. Initially, the absolute tenperature is
uniform and the air is calm. Now we suppose more cooling in the east
develops a higher pressure in the east. If the east has a higher
pressure on a constant height surface, the air will begin o flow from
the higher pressure to the lower pressure. Of course, the time for air
to flow from the higher pressure to the lower pressure will decide if
the coriolis parameter is an influence. If the time scale is lafge
" enough, the flow will become parallel to the iscbars. If the region
has a source to replace the mass leaving the east, the wind will
continue to blow from east tc west, or eventually from south to north
if coriolis is a factor.

However, the conceptual wind model presented in the previous
section did not have calm winds, but there is a moderate westerly wind
in the late afternoon. In figure 4.3a the wind and corresponding
pressure gradient is illustreted. The synoptic, regional westerlies
are created by a higher pressure to the south and a lower pressure to
the north.

Cooling near the mountains creates a higher pressure to the east
and a lower pressure to the west, and AP in figure 4.3b is the
increase in pressure near the mountains. The increase in pressure near
the mountains will cause the highest pressure in the region to be in

the southeast and the lowest pressure in the northwest.
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This southeast to nortkwest pressure gradient will create a
geostrophic southwest flow. The influence of coriolis is verified with

calculations of the Rossby nunber

Ro = (4.1)

U_
fL
where U is the velocity scale, L the distance scale, and f the
coriolis parameter taken to be 10 /s in mid latitudes. Tre following
calculation of the Rossby number is an estimation. If U is assumed
to be approximately 5 m/s ani L 1is taken to be 100 km , then the
Rossby mumber is approximately 0.5. The smallness of the Rossby number
indicates the coriolis influence is important for the present problem.
Since the coriolis parameter is now considered an influence, it is
of interest to understand in detail how a slight temperature gradient
will lead to a substantial geostrophic wind. It is first necessary to
put pressure in terms of temperature. We first start with the hydro-
static equation |
P = - pgdZ (4.2)
where P is pressure, Z is height, g is gravitational acceleration,
and 0 is the atmospheric density which is a function of pressure and
temperature. Therefore, we will substitute for density in eguation

(4.2) by using the equation of state

_ P
b= =5 (4.3)

where T is the absolute temperature in kelvin, and R is the universal

gas constant, 287 J/k/kg. This substitution will result ir

@ _ _ _ 9
= “m7 % : (4.4)
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which can be integrated vertically. Integrate the right side from Z1

to Z, where Z2 > Zl' and integrate the left side from the pressure at

Zl’ P(Zl) , to the pressure ai: Zz, P(Zz) to get
P(Z,)
—2 .. .9 -
In P(Zl) =z R T (22 Zl) (4.5)

where T' is the average temperature in the integrated layer, AZ =
Z, - Zl' We will assume from here on that P(Zz) = constant., therefore,

we solve for P(Zl) to get
P(Z,) = P(Z,) exp(ﬁ%, AZ ) . (4.6)

With this equation in mind we will now establish two siites X, and
Xy separated by 50 km. In the free atmosphere above these sites is a
layer, AZ =1 km. Both siles have the same pressure at 332,,

Py(2,) = P(Z,) = 700 mb

where the subscripts A and B represent sites XA and XB, respectively.
Initially we will assume both sites to have the same average
temperature within the layer = AZ (eg. ‘I"A = T'B = 273 K). Using
equation (4.6) we find that the pressure at both sites at height Zl is
793.26 mb.

Using the geostrophic wind equation in the y-component

=.1 9P
vg = "of % (4.7)

we find that with no pressure gradient there is no geostrophic wind
(assuming that there is no x--component wind).

Now some cooling has taken place at site Xy so that T'. = 272.5 K.

B
Using equation 4.6 and assuming that Z and P(Zz) remain unchanged

Po(Z) = Py(z,) exp(ﬁ.; AZ )
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which is

P(2,) = 793.44 mb .

Because of this cooling within the layer there has been a pressure
increase at site Xy at height Z,. Now returning to the geostrophic
wind in the y-component at height Zl between sites X and XB

v = 1L Pa%) = B(Z))
g pf 50 km

to get a geostrophic wind
Vg = 3.6 m/s .

In summary, a temperature gradient of 0.5 K will result in a geo—
strophic wind of 3.6 m/s.

c. summary of thermal gradient

A thermal gradient across the region of western Colorado will be an
instigator of winds similar to the winds observed in the IL. From the
thermal cbservations, a thermal gradient was shown to exist in the IIL,
as a result of the thermal gradient, a northwest to southeast pressure

gradient is created on a constant height surface.

2. Mountain blocking

a. explanation of blocking

Mountain blocking is a function of wind and stability. 1In the
afternoon, stability is considered very weak or even neutral. It was
explained earlier how a parcel in a neutral enviromment will behave;
the parcel forced vertically will not return to its initial level. 1In
this enviromment, the potentizl for the wind flow in the IL to 1lift
over the mountains is very large. The flow will lift very easily over
the mountains, because there is no restoring force to return the flow

to its initial level.
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The stability of the atwosphere increases throughout the night. A
parcel lifted vertically in a stable enviromment will resturn to its
initial level (see chapter 3). In this enviromment, the air will need
more kinetic energy to lift itself over the mountains. Therefore, the
potential for a parcel to 1lift over the mountains :in a stable
enviromment is vexy small.

b. stability model

Most clear, dry days of western Colorado begin with a weakly stable
or sometimes neutral Convective Boundary layer (CBL). 2s the night
progresses, atmospheric stability grows from the valley floor upward to
"heights well above valley tcop. Figure 4.4 is a conceptuval model of
stability for our imaginary valley in the region of western Colorado.

The afternoon has a neutral layer over 3.5 km Above Sea lIevel (ASL)
(see figure 4.4). At about an hour past sunset, a shallow stable layer
has formed in the valley, and the CBL is still present above the stable
layer. Several hours after sunset, stability grows to 0.5 km above the
valley top, but it is very weak above the valley. Seven hours after
sunset, stability is present up to mountain top height. At valley top,
stability is 5-10 k/km and weakens with increasing elevation. At ten
hours after sunset, stability has not increased in elevation any more,
but stability has strengthened.

Bader et al. (1987) explains the large effects shear has on the
depth of stability. Without the shear induced turbulence, the
stability was very strong hut shallow, therefore, the addition of
turbulence increases the depth of stability but weakens it. As the
nocturnal drainage winds form in valleys beneath and the w:nd changes
direction in the IL, the speed and direction shear relative to the
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westerlies above provide a mechanism to increase turbulent mixing and
to effectively mix cold air upward from the valleys and mesia tops into
the IL. The increase of stability above the mesa tops will also
increase the tendency for air west of the mountains to be blocked by
the mountains.

c. evidence of blocking (FFroude Number)

The amount of blocking in a region is a function of wind velocity,
stability, and the height cf the barrier. A representation of a

barrier's capability to block is the Froude number,

- ) ;
Fr = o - (4.9)

The Froude number is a ratio of kinetic energy to potential energy.
This basically shows whether the wind flow has sufficient kinetic
energy to compensate for the work represented by lifting the parcel a
distance, AZ, in an envirorment with stability, d8/dz. The larger the
Froude mumber, the less blocking. A small Froude number means the
wind's velocity is not capable of overtaking the potential energy
necessary to overcame the stability (ie. blocking). Generally a Froude
number less than 0.4 means that some blocking is present. A Froude
number less than 0.1 means that significant blocking is present. A
Froude number greater than 0.4 means that the flow is capable of
lifting over the barrier (Stull, 1988).

Calculations of the Froude number do require some initial
assumptions. The layer of calculations (in this case the IL) is
assumed to have a uniform wind velocity. Wind velocity is chosen

carefully for IL calculations on the night of the 19th-20th.
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Froude numbers for three times are given in table 4.1. The values

at 16:00 MST indicate essentially no blocking for the corditions at

Table 4.1

Froude numbers on September 19-20, 1984.
Times shown are MST.

Site 16:00 22:00 1:00
Meeker 0.31 0.23 0.25
Rifle 0.39 0.30 0.23
Rangely 1.40 0.33 0.31

Rangely but some blocking is irdicated at Meeker and Rifle. The Froude
mmbers for data times reflect the changes in wind direction which
yield a smaller speed perpendicular to the mountains. Changes in the
wind occur in less time than the three hours between soundings. A
diurnal increase in blocking is suggested by the values (pearticularly
at Rangely) but can not be proven with this data.

c. effects of blocking

The existence of blocking is now apparent. How does it affect the
IL over western Colorado? Ficure 4.5a and 4.5b are illustrations of
the air flow in the afternoon and night, respectively. The air will
1lift over the mountain in an afternoon with a neutral envirorment, and
nighttime stability will enhancs mountain blocking.

At night, the air flowing toward the mountain becomes blocked, the
air has few escapes and will continue to pile up against the mountains.
This means more mass will go into the region than out. The air piling
near the mountain will mcrease the pressure near the mountians. As a
result, an east-west pressure cradient will form on a constant height
surface, with higher pressure in the east. If the westerlies found in

the conceptual model are present: then a southeast to northwest pressure
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Fig. 4.5a. Schematic diagram of the wind flow lifting over the
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Fig. 4.5b. Schematic diagram of mountain bloc]ng.during ‘the night
when stability is present up to mountain top.
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gradient will develop with the higher pressure in the southeast (see
figure 4.3b). A pressure gradient of this kind, like the thermal
gradient, will initiate and support the IL winds observed on the west
slope of the Colorado Rockies.
3. Vertical Momentum Exchande

Meeker, Rifle, and Rangely each have a valley drainage with an
easterly camponent, and have daytime, up-valley flows in the afternoon.
During the day, no noticeable effect of wind direction is present
because the westerlies will simply enhance the up-valley flow as in the
conceptual model. At night, the valley drainage and westerlies have
momentum in the opposite direction, and the result is an increased
vertical shear of the wind. The increased shear should lead to an
increased vertical mixing of the air. The result would be to mix cold
air formed near the mesa tops upward to form a deeper layer of
increased stability. The effect of momentum exchange on wird direction
are not as cbvious. Each valleyishows a rapid transition of nighttime
winds parallel to the valley axis at night to a southerly wind
immediately above the valley.

A fourth valley which demonstrates this trait of wind direction is
Brush Creek. 1In figure 4.6 is a wind profile from the CSU site in
Brush Creek on the night of the 19th-20th. Brush Creek has a ridgetop
at approximately 0.6 km Above Ground Level (AGL), and drains from the
northwest to the southeast. The CSU site is located near ths middle of
the valley, and has an elevation approximately 1.9 km ASL. The figure
shows a valley drainage up to 0.3 km AGL, 2.2 km ASL, and the air is
calm up to 0.6 km AGL (2.5 km ASL). At 1:05 MST, the air above 2.5 km
ASL is from the south, which is the same direction observed at Mecker,
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Rifle, and Rangely. The valley is draining in a direction that should

enhance the westerlies.
Using Brush Creek as an example along with the other sites, the
wind direction cbserved in the IL is not consistent with a vertical

momentum exchange.



CHAPTER V

QONCLIUUSIONS

The west slope of the Colorado Rockies has topographical features
consisting of mesas in the western portion and high mountainous terrain
in the eastern portion. Observations from this region show the
existence of an intermediate layer exhibiting diurnal variations in
both wind and thermal structure. This intermediate layer is a vertical
layer above mesa top height and below mountain top height, 2.5 km to
3.5 km above sea level. As the night progresses, the intermediate
layer's westerly flow of the late afternoon changes to winds increasing
in velocity and rotating in a clockwise direction with increasing
height.

The first of two physical mechanisms which can explain the
existence of this diurnal variation in the wind structure «3bser§ed in
the intermediate layer is the development of an east to west thermal
gradient. In an evening with ¢lear, dry conditions, the air within the
intermediate layer nearer to the high terrain will cool more relative
to the air farther away. Because of this cooling process, the
intermediate layer should develop a pressure gradient on a constant
height surface with the higher pressure in the east near the mountains.
A thermally driven circulation initiated with this cooling pattern will
support the diurnal variation of the winds cbserved in the intermediate

layer.
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Deep stability growth during the night leads to a secord physical
mechanism explaining the existence of the wind structure's diurnal
variation observed in the intermediate layer. During days with a
neutral or weakly stable convective boundary layer, westerly winds have
little difficulty lifting over the mountainous terrain in the eastern
portion of the region. Evening stability grows well above the flat
mesas adjacent to the high terrain up to approximately 3.5 km above sea
level. Because of this stability, the westerly flow will have less
potential to lift over the mountain barrier thus a blocking of the wind
can occur. An excess of mass will develop a higher pressure near the
mountains, which creates a pressure gradient w1thm the intermediate
layer. A pressure gradient of this kind, like the thermal gradient,

will support the winds dbserved in the intermediate layer.
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APPENDIX A

NATIONAL WEATHER SERVICE MAPS FOR ASCOT '84

This appendix contains weather maps for the the ASCOT September

1984 field experiment. Contained in the appendix are 00Z ard 122 maps

for 700 mb and 500 mb. Lines of constant temperature are represent by

the dashed lines at an interval of 5 C. Lines of constant thickness

are represented by the solid lines at an interval of 30 m for 700 mb

and 60 m for 500 mb.
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Fig. A.1. The 00Z, 70) mb NWS map for 18 September 1984.
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Fig. A.2. The 00Z, 500 mb NWS map for 18 September 1984.
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Fig. A.3. The 122, 700 mb NWS map for 18 September 1984.
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Fig. A.4. The 12Z, 500 mb NWS map for 18 September 1984.
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Fig. A.5. The 00Z, 700 mb NWS map for 20 September 1984.

Fig. A.6. The 00Z, 500 mb NWS map for 20 September 1984.
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Fig. A.7. The 12Z, 700 mb NWS map for 20 September 1934.
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Fig. A.10. The 122, 700 mb NWS map for 26 September 1984.
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Fig. A.11. The 12Z, 500 mb NWS map for 26 September 1984.



66

T

&%.072 \5%-01
19 04
\

Fig. A.12. The 122, 700 mb NWS map for 30 September 1984.

Fig. A.13. The 12Z, 500 mb NWS map for 30 September 1934.



APPENDIX B

WIND OBSERVATIONS FROM ASCOT '84 SEPTEMBER

These are wind observations taken from the upper air sounding sites
during the ASCOT September 1984 field experiment. The cbservations are

from Rifle, Meeker, and Range.y on 17-18, 25-26, 29-30 September 1984.



Fig. B.la. Wind time series for Rifle on 17-18 September 1984.
Height is in kilameters Above Sea Ievel (ASL), ard
Rifle is 1692 m ASL. Horizontal axis represents
sounding times in Mountain Standard Time (MST) with
sunset and sunrise at 13:19 MST and 6:00 MST,
respectively. Vectors point in the direction air is
going, and north is the top of the graph. Lines A and B
represent mesa top and mountain top heights,
respectively.

Fig. B.1b. Same as figure B.la except it is for Meeker, which has
an elevation of 1947 m ASL.

Fig. B.lc. Same as figure B.la except it is for Rangely, which has
an elevation of 1607 m ASL, and sunset is at 18:22 MST
and sunrise at 6:04 MST
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Fig. B.2a. Wind time series for Ri.fle on 25-26 September 1984.
Height is in kilameters; Above Sea level (ASL), ard
Rifle is 1692 m ASL. Horizontal axis represents
sourding times in Mountain Standard Time (MST) with
sunset and sunrise at 1.8:02 MST and 6:05 MST,
respectively. Vectors point in the direction air is
going, and north is the top of the graph. Lines A and B
represent mesa top and mountain top heights,
respectively.

Fig. B.2b. Same as figure B.2a except it is for Meeker, which has
an elevation of 1947 m ASL.

Fig. B.2c. Same as figure B.2a except it is for Rangely, which has
an elevation of 1607 m ASL, and sunset is at 18:06 MST
ard sunrise at 6:09 MST
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Fig. B.3a. Wind time series for Rifle on 29-30 September 1984.
Height is in kilometers Above Sea lLevel (ASL), ard
Rifle is 1692 m ASL. Horizontal axis represents
sounding times in Mountain Standard Time (MST) with
sunset and sunrise at 17:56 MST and 6:09 MST,
respectively. Vectors point in the direction air is
going, and north is the top of the graph. Lines A and B
represent mesa top and mountain top heights,
respectively.

Fig. B.3b. Same as figure B.3a except it is for Meeker, which has
an elevation of 1947 m ASL.

Fig. B.3c. Same as figure B.3a except it is for Rangely, which has
an elevation of 1607 m ASL, and sunset is at 17:59 MST
and sunrise at 6:13 MST
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APPENDIX C

POTENTIAL TEMPERATURE PIOTS FROM ASCQOT '84

These are potential temperature plots from the upper air sounding
sites during the ASCOT September 1984 field experiment. The cbserva-
tions are from Rifle, Meeker, and Rangely on 17-18, 25-26, 29-30
September 1984. Each night has three separate graphs from each site.
Each graph contains only three soundings in order to alleviate

sloppiness.
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APPENDIX D

STABILITY FLOTS FROM ASCOT '84

These are stability plots firrom the upper air sounding sites during
the ASCOT September 1984 field experiment. The cbservations are from

Rifle, Meeker, and Rangley, on 17-18, 25-26, 29-30 September 1984.



Fig. D.la. Change of potential temperature with height for Rifle
on 19~20 September 1984. Height is in kilometers Above
Sea level (ASL) with Rifle at 1692 m ASL. Horizontal
axis represents soundinys in MST and stability. Rifle
has sunset and sunrise at 18:19 MST ard 6:09 MST,
respectively. Lines A axd B represent mesa top and
mountain top heights, respectively.

Fig. D.1b. Same as fiqure D.la excapt for Meeker, which has an
elevation at 1947 m ASL.

Fig. D.1lc. Same as figure D.la except for Rangely, which has an
elevation of 1607 m ASL. Sunset and sunrise are at 18:22

and 6:04 MST, respectively.
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Fig. D.2a. Change of potential temperature with height for Rifle
on 25-26 September 1984. Height is in kilameters Above
Sea Ievel (ASL) with Rifle at 1692 m ASL. Horizontal
axis represents soundirgs in MST and stability. Rifle
has sunset and sunrise at 18:02 MST and 6:05 MST,
respectively. Lines A énd B represent mesa top arnd
mountain top heights, respectively.

Fig. D.2b. Same as figure D.2a except for Meeker, which has an
elevation at 1947 m ASL.

Fig. D.2c. Same as figure D.la except for Rangely, which has an
elevation of 1607 m ASL. Sunset and sunrise are at 18:06

and 6:09 MST, respectively.
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Fig. D.3a. Change of potential temperature with height for Rifle
on 29-30 September 1984. Height is in kilometers Above
Sea Level (ASL) with Rifle at 1692 m ASL. Horizontal
axis represents soundingis in MST ard stability. Rifle
has sunset and sunrise at 17:56 MST and 6:09 MST,
respectively. Lines A ard B represent mesa top and
mountain top heights, respectively.

Fig. D.3b. Same as figure D.3a except for Meeker, which has an
elevation at 1947 m ASL.

Fig. D.3c. Same as figure D.3a except for Rangely, which has an
elevation of 1607 m ASL. Sunset and sunrise are at 17:59

and 6:13 MST, respectively.
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