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ABSTRACT 

A search for a structural model for the time series of daily river flows 

is undertaken by the author. First, records of daily runoff from 17 river basins 

chosen on the postulat ed absence of trends induced by manmade improvements 

are analyzed. As a result, the model envisaged is a superposition of a cyclic 

deterministic process and a stochastic component. In the analysis of records, 

spectral methods are used to detect cycles whi ch are then removed by sub­

tracting from the original series a periodic function obtained by harmonic 

analysis. To alleviate the effect of a changing variance during the course of 

the year, the series of standard deviations is simularly fitted with a harmonic 

function which is used to standardize the series. After standardization, all 

the residual series are found to satisfy the second order autoregressive 

representation: 

where a 1 and a 2 are the autoregressive coefficients and 11t is an independently 

distributed random variable. The adequacy of fit is judged on the agreement 

between the theoretical and explained variances. 

vii 



STOCHASTIC MODEL OF DAI LY RIVER F LOW SEQUENCES 

by Rafael G. Quimpo* 

CHAPTER I 

INTRODUCTION 

An important facet in the planning of a water re­
source project is the prediction of characteristics of 
future water s upply, the most common of which are 
rainfall and runoff. For prediction, use of the latter 
seems to be more practical since it is less suscep­
tible to intermediate processes which could radically 
change final quantitative estimates of available water 
and since it, at the same time, admits to facility in 
measurement. It is, thus, natural that records of 
river flows should be the subject of an intensive in­
vestigation of structural characteristics most suit a­
ble for mathematical modeling and prediction purposes. 

With the ever -increasing demand fo r water, esti­
mates of water needs, expressed in lumped quantities 
averaged over a year or more, are no longer suffi­
cient. Specificati on of river runoff in t erms of mean 
annual flow or flow duration is gradually giving way 
to description of flow in terms of time sequence and 
distribution, the knowledge of which allows for better 
regulation and control of water, e. g. , by storage 
reservoirs. 

Runoff from a basin is the combined effect of 
variables which may be deterministic or stochastic 
in nature. T he i nteraction of these variables has 
thus far defied a complete mathematical analysis. 
Therefore, the engineer who has to make a projected 
estimate of flow must rely on statistics. At this 

time, prediction procedures properly belohg to this 
discipline. 

Obtecti ve - The purpose of this study is to investi­
gate t e structure of the time series of daily river 
flows, to detect and isolate the deterministic com ­
ponent from the stochastic of the time series, and to 
reconstruct the underlying process in terms of a 
mathematical model which will adequately describe 
the structure qf the underlying mechanisms which 
generate the process. 

Approach - River runoff is a continuous process. 
To be able to c l osely examine the properties of the 
continuous time process, one must work with the 
shortest time interval possible. Although it has been 
measured by c ontinuous recorders in many sites, 
problems in information retrieval has limited pub­
lished data to equi-spaced records of average values. 
The analysis of daily river flows is offered as an 
attempt to improve the accuracy of predictions. 

Definition - Daily river flow as defined in this 
study is the average daily runoff at a section of a 
river, the aver aging being done either from a continu­
ous record of an automatic recorder or from river 
stage measurements taken at representative time 
intervals to make interpolation and averaging consist­
ent. 

"' Former graduate student of Colorado St ate University, and at present Assistant Professor, University of 
Pittsbur gh . 



CHAPTER II 

MATHEMATICAL TECHNIQUES* 

The statistical analysis of a time series is best where 
approached as a study of random functio ns . In that 
case, a random function X(t) is defined as a function 
whose values are random variables. If X(t) is taken 
as the result of a n experiment or the record of a proc-
ess, then X(t) is called a realization or a sample func-
tion. 1f t is allowed to represent time, one gets a 
p r obabilistic repr esentation of an observational t ime 
series. 

A time series is called stationary if it i s tem po­
rarily homogeneous, i. e. , if its s t atistical properties 
do not vary with time. Otherwise, the t im e s eries is 
called non-stationary or evolutive. Actually, com plete 
temporal homogeneity is difficult to show except in 
very special cases . Because of this, most statisti ­
cal i nvestigations have been limited to a less rigid 
definition of stationarity, based on the first two mo­
ments of the distribution function: 

1-1(t) = EX(t) 

C(t, s) • E[X(t) -1-l(t)] [X(s) -1-l(t)] (2. 1) 

where E( · ) denotes the mathematical expectation. 

Thus, X(t) is said to be weakly stationary or 
stationary in the wide sense if its mean is equal to a 
constant and its autocovariance function C(t, s) is a 
function only of the difference (t- s), i.e. , 

EX(t) = m 

E [ X(t)-ml [X(s)-ml =C(t - s ) . (2. 2) 

T his study will be confined to time series which 
may be assumed stationary, as defined abo ve, or t o 
those that can be reduced to such stationarity . 

It should be noted that the use of probabi lity theory, 
i n the above definition of terms, implies an ensemble 
of time series. Although in practi ce usua lly only a 
single realization is available, i t is still possible to 
calculate the characteristics of a stationary random 
function because of the ergodic theorem which gener­
ally applies when the conditions of stationarity are 
met. According to the ergodic theorem , the mathe­
matical expectation of both X(t) and X(t) X(s) obtained 
by averaging over an ensemble of time series c_a~ be 
replaced by the time average of the same quantltles 
over a realization. 

2. 1 The General Model. Consider a realization 
of a random process taken at equal intervals of time 
and denote it by X , the discrete equivalent of X(t). 

t 
A general heuristic model used to describe such a 
sequence is given by 

(2. 3) 

Rt is a trend component, 

Pt is a periodic or cyclic component , and 

€ is a nondeterministic or s t ochastic 
t component. 

Let it be assumed that the re .is no trend. Such a n 
assumption does not necessarily lim it the a pplicability 
of later results since, when a t rend does exist, ther e 
are ways of isol ating it a nd subt r acting it from the 
time series. However, the procedures for doing so 
are outside the scope of the present study which must, 
therefore, proceed on the above assum ption. To con­
tinue, eq. 2. 3 may then be written as the sum of a 
periodic component and a stochastic component 

(2. 4) 

The main problem in applying scheme 2. 4 is the 
separation of the periodic component from the non­
deterministic part. 

Z. 2 The Periodic Component. The classical 
approach to the detection of periods is by use of . 
Schuster ' s periodogram obtained through a harmomc 
analysis. In this approach, if Xt is assumed to have 
a period p, then the function Xt must satisfy the 
relation 

X - X = 0 
t t-p 

(2. 5) 

for any t. T he solution of eq . 2. 5 m ay be wr itten a s 

(Z71'kt .1. ) 
Xt = X + !: Ik cos ----y:- + '~'k 

- ( 2;. kt B . 2;. kt) 
= X+ !: Ak cos ----y:- + k sm -y;- (2. 6) 

where 

to L L-1 
k runs from T or - 2-

-Bk 
(J = arctan ( -A ) , ( - ~ ~ l'>k ~ f ) · 

k k 

On the basis of eq. 2. 6, an approach function may be 
considered, composed of superposed harmonics each 
having an amplitude Ik2

, a phase 0k' and an angular 

frequency \k given by 

* T h e reader who is we ll familiar with the aut ocor relation and spectral a nalysis technique s in t he invest igation 
of time series may del ete t he reading of this chapter. 
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A = Z1rk 
k L 

(2. 7) 

Thus. one obtains a gener al function, a composed 
harmonic of the form 

s 
X(t) = X + !:: Ik cos (A.kt + t\) 

k= t 

s 
X + :E (Ak cos A.k t + Bk s i n A.k t) . 

k=1 
(2. 8) 

The basic difference between eq. 2. 6 and eq. 2. 8 is 

that in eq. 2. 6 the periods pi = {11" are true fractions 
k 

of p, whereas in eq. 2. 8 they are not restricted. 
Thus, limiting A.k between 0 and 1r in eq. 2. 8 would 

not a ffect its generality. The essential problem in 
applying scheme 2. 8 is evaluating the frequency num­
bers A. k which would give the best poss ible fit to 

empirical data. For a sample of size n, the formulas 
required are: 

2 n 
Ak = n !:: x t cos A.kt, 

t = 1 

2 n 
Bk - !:: xt sin A.kt , n t= 1 

(2. 9) 

Ik 
z 

Ak 
2 + B z 

k 

1 
n 

t 
For A.k = 11", Bk = 0 and Ak = 2 :E ( - 1) x t . 

t = 1 

A widely used description of this scheme is 
the empirical periodogram i n which Ik 2 is plotted as 

ordinate against A.k. A variant of this plot is the 

integrated periodogram wherein Ik 2 is' replaced by 

sk defined by 

(2. I 0) 

The periodogram is analogous to the spectrum of • 
light in optics in the sense that, as the lines in the 
spectr um of light cor respond to the power of the 
respective wave component, the periodogram ordinate 
corresponds to t he contribution to the variance by the 
harmonic of a given frequency. 

2. 3 The Stochastic Component. Assuming t hat 
t he periodic component Pt has been det ected and 

subtracted from eq. 2. 4, the residual series, 

(2. 11) 

will now be considered. According to Doob's termi­
nology (8] , E: t belongs to a class of nondeterministic 

processes which include autoregressive, moving 

3 

average, and other schemes of linear regressions. 
In these schemes of linear regression, the inte.rde­
pendence between successive terms is assumed to be 
probabilistic rather than functional. 

then E:t can be represented by 

00 

E: = :E bl. T)t- i 
t i=o 

( 2 . 1 2) 

It i s possible that the summation extends only over a 
finite number of terms. This representation is 
called, in t he l iterature, the scheme of moving 
averages. 

Another type of linear regression 
which uses the same set of primary variables Tlt • 

is written in the form, 

T) = t 

00 

!:: 
i=o 

( 2. 13) 

This representation is called the scheme of linear 
autoregression. 

While the infinite representations are 
theoretically sound, the fact is that in all processes 
the effects of past values on the present decrease 
with t im e di stance and a finite summation very often 
suffices. Further, if the degree of required preci­
sion is fixed, only a finite number of terms will be 
required and hence the a lt ernative representations 
are: 

m 

n 
:E 

i= 1 

:E a i E: t-i = Tlt · 
i =o 

(2. 14) 

(2. 1 5) 

Wold [21] shows that a necessary condition for the 
existence of an autoregressive scheme (2. 15) is the 
inclusion of the roots of the characteri stic equation, 

(2. 16) 

all inside the unit circle of the compl ex plane. 

Wold shows that the coefficients (a ) 
of eq. 2. 15 are related to the coefficients (b) of 
eq. 2. 14 and t hat each set defines the other. 

2. 3. 2 Estimation of Parameters. Consider 
a finite - ordered aut oregressive representation of 
the form 2. 15: 

(2. 17) 

and the moving aver age scheme: 

(2. 18) 



Eq. 2. 18 may be rewritten for any k as 

( 2 . 19) 

Multiplying eq. 2. 17 by eq. 2. 19 and taking expecta­
t ions, one obtains 

(2. 20) 

s ince t he TJ'S a r e uncorrelated. Re peat ing this pro­
cedure foe h consecut ive values of k (k = I, 2, ... , h) 
the system of linear equations is obtained: 

0 

(2. 21) 

Since the system 2. 21 is linear with respect to the a ' s, 
it may be solved for [a] = [a1, a 2 , .. . , ah] and thus 

the coefficients of the autoregressive scheme are 
obtain ed [21]. Furt her, after solving for the set [a] , 
the exi stence of a l;tationary scheme 2. 17 may be 
verifi ed by substituting the a ' s in eq. 2. 16 and check ­
ing whether the root s of the characteristic equation 
all lie in the unit cirCle of the complex plane. 

There are other methods of estimating 
t he parameters [a] . Yule [ 24] al so used the equiva­
l e nt p rocedure of minimizing residuals. a very con­
venient method for lo we r-ordered sche mes and one 
which will b e used in a later section. 

The use of the system 2. 21 employing 
empirical values of the aut ocorrelation coefficient s 
y ie lds a set of a 's which minimizes the var iance of 
Tlt in eq. 2. 17. Further , the first h autocorrelation 

coefficient of the der i ved process will coinc ide with 
the empirical values. However, Wold warns t hat the 
hypothetical correlogram will not in its whole range 
coincide with the empirical correlogram. 

Consider the first or der autoregr es­
s ive scheme (taking n = 1 in eq. 2. 14). With a s light 
change i n notation, it may be rewritten as: 

(2. 22) 

Thus, the least s quare estimat or of p may be shown 
t o be equal to r 

1
. 

For the second order autoregressive 
scheme (taking n = 2 in eq. 2. 14), consider: 

(2. 23) 

The use of system 2. 21 or the method of least s qua r es 
yields estimat es for a 1 and a 2: 

4 

a1 
r 1 ( 1 -. r 2) 

- r z 
1 

and (2. 24) 

r - r z 
2 1 

az. 
- r z 

I 

2. 4 Autocorrelation Analysis and the Correlogram. 
In detecting patter ns of movement , a logical question 
is whet her or not successive values of a time series 
a r e interdependent. A measure of this dependence 
i s give n by the autocorrel ation coefficient --the equi va­
le nt of the correlation coefficient between t wo varia­
b'les. For a discret e time series, it is defined as: 

E xt xt+ k - E xt E xt+ k 

EX z - (EX ) 2 

t t 

( 2. 25) 

If pk i s plotted against k and if the plotted 

points are connected by straight lines, one obtains a 
correlogr am. It is obvious that if t he t erms of the 
series are uncorrelated, the corr elogr am will h ave 
a value of 1 at k = 0 and an expected value of zero 
at a ll other poi nts. Kendall [ 16) further shows that 
if the series has a single sinusoidal component, the 
correlogram, given a large sample, will have the 
same period as the sinusoi dal com ponent a nd the 
correlogram will be an undamped cosine function. 
If the series has a composed harmonic component, 
however, while the correlogram will s till s how 
sinusoidal characteristics due to amplification and 
cancellation of amplitudes, the correlogram may be 
so di storted as to prevent visual detection of cycles 
present. 

In the c ase of the scheme of m oving averages, 

n-k 
:E b i b i+k 

i = 1 

0 

n 
:E b. z 
i= 1 l 

var e 
n 
!: b . z 

i = l 1 

for n > k 

for n < k 

var e 

(2. 26) 

In the case where b . =b . (i = j 1, 2, . . . ,), 
l J 

eq . 2. 26 becomes 

(n- k) biz n-k -~ n>k pk = 
nb .2 n n 

l 
(2. 27) 

= 0 n < k 

so that t he correlogram consists ·of a b r oken line 
composed of the segment joining (0, 1) and (k, 0) and 
the x-axis from (k, 0) onwards. 



For aut oregressive schemes, the correlo­
grams may take a number of characteristic shapes 
depending on t he order of t he scheme . The correl o­
gram for the first order autoregressive model, also 
known as the first order Markov model, is 

(2. 28) 

and t he correlogram for the second order autore ­
gressive, or second order Markov model, is 

where 

a
2
k/ 2 sin (kB+ r/;) 

Pk = s in l/i 

e = arccos 

1 - a 2 
tan r/J = - - - tan e 1 + a 2 

( 2. 29) 

and 

It can be seen that the correlogram i s a har­
monic function with frequency e damped by a factor 
(a2)k/2 [ 16] . 

Theoretically, the characteristic shapes of t he 
correlograms reviewed above furnish the discrimi­
nating tools in the determination of the scheme whi ch 
is applicable in a particular probl em. Thus, an 
undamped s inusoidal correlogram would signify a 
cyclic series, while a correlogram which goes to 
zero at the kth lag would signify a moving average 
scheme. Further, a damped s i nusoidal correlogram 
would indicate an autoregressive representation. 

The cases encountered in practi ce, however, 
present some difficulties. Sampling f luctuations, 
especially for relatively short s eries, often obscure 
the asymptotic behavior of a fir st order autoregres­
sive scheme on the correlogram, which m ay vanish 
at a lag k. The complication caused by the super­
position of two or more harmonics has been previ­
ously cited as another source of confusion. This 
will be dealt with in mor e detail in a later section. 
A more perplexing situation arises when the s eries 
under study is generated by a linear combination of 
the above ment ioned schemes . This is almost always 
the c ase encountered in practice. 

2. 5 Aspects of Spectral Theory. The transition 
from autocorrelation analysis to spectral m ethods 
may be followed in Wold 's work [21]. On th e bas is 
of a theorem due t c Khintchine for the cont inuous 
case, Wold shows that, given a sequence pk(k =O, J;.I , 

+ 2 •... ), a necessary and sufficient condition for the 
existence of a discrete stationary process with pk 

for correlation coefficients i s t hat pk values are t he 

Fourier constants of a non-decreasing function W(x) 
such that W(O) = 0 and W(1r) = 1r , with 

11' 

pk = * J cos kx dW(x) 
0 

(2. 30) 

Reverting to the continuous case, Cramer [7] 

5 

has shown that any s tat ionary process X(t) has the 
spectral representation 

(2. 31) 

where z(f) is an orthogonal s et function with 

E I dz(f)j 2 = dG(f) . 

Assume an actual process, roughly stationary, 
with EX(t) = 0 and EX(t) X(t+k) = C(k) . It might also 
b e noted t hat the covariance function C(k) is r elated 
to the autocorrelation coefficient by the expression 

_ _Q(_hl 
Pk - CTOT · (2. 32) 

Using Cramer 's representation, it can be shown that 

00 00 

C(k) J ' 2' ifk dG(ij f '2
" ifk P( ij df 

- co - co 

(2. 33) 

with the eq. 2. 33 b eing valid if G(f} is differentiable. 
Here, G(f) is the s pectral distribution function, and 
P(f), the spectral density function of the process . 

It may further be shown that eq. 2. 33 may be 
inverted to gi ve t he spectral density function as t he 
Fourier transform of the covariance functio n: 

co 

P(f) = J e - 211'ifk C(k) dk 

-oo 

(2.34) 

Since X(t) i s real, C(k) is symmetric about k = 0 so 
that C(k) and P(f) may be represented simply as 
cosine transforms: 

C(k) I: P(ij oo' z,fkdf . {P(ij oo' z,fkdf } 

00 00 

P(f) 1 C(k) cos 211' fkdk = 2 I C(k) cos 211' fkdk . 

- co 

(2. 35} 

The equi valen ce of Wold's representation 2. 30 and the 
second half of eq. 2. 35 is at once apparent. 

According to Cramer 's r e prese ntation, the 
process X(t) m ay be considered an integral over the 
frequency interval (-11', 11'). Thus, t he function, 

may be interpreted as the part of the total variance 
attributable to the fre quency band (f2 - f 1). The 

integral over the whole range gives the total variance 
and hence the equally appropriate name --variance 



s pe ctrum. In a stretche d context, t he spectral dis­
tribution fu nction is essentially an int egrated periodo­
gram of eq. 2. 10. 

In retrospect, it may be recalled that Wold' s 
theor em and Cr amer' s spectra l represent ation a r e 
both premised on the stationa r ity of X(t) . When X(t) 
is not' stationary and if the covariance C(k) is used to 
estimate the s pect rum, then, as Grange r and Hatanaka 
[9] show, the r esult is not the t rue spect rum but an 
average spectr um. Although t his presents certain 
theor et ical difficult ies, it s hould not cau s e too much 
concern s ince, in practic e, one will be dealing with 
discrete values of Xt whi ch are, to begin with, 

averag es over the sampling time i nter val. Thus, one 
can only work with, at most, the precision of the 
aver aging procedure in the data assembly . An average 
spectr a l estimate should s uffice for practical pur­
poses. 

In the expr ession for dG(f), i f t h e b and 
(f 2 - f 1) is narrow enough or, to use the communica-

tion engi neer's t er minology, with a fi ne enough reso­
lution, the spectral density may be used to detect 
cycles i n the time series i n exactly the same way 
that significant ordinates in the per iodogram are 
used. In the analysis of discrete data, one is never 
able to obta in a continuous density funct ion. Instead, 
he obtains the average power smudged over a fre ­
quency interval. Then, the identification of powers 
at t ributable to adjacent frequenc ies is attained by 
resolving the power into na rrow bands of frequencies . 
The resolution is a meas ure of the concentration of a 
spectr al es t imate expre ssed in units of frequency. 
Following Tukey, t his study a c cepts i t a s equal t o 
the reciprocal of the maximum number of lags taken 
i n computing autocovariances. Thus, increa sing the 
lag im proves the r esolving power. T here is, how­
e ver, a limit to the fineness of resolution practicable 
b e cause of the effect on t he variability of estimates . 
Grenander and Rosenblatt [ 10] have shown that, given 
a length of data n, the variance of Tukey ' s estimate 
is propor tiona l to the maximum num ber of lags m 
taken in computi ng autocovariances . Although an in­
c rease i n variance requires a compromise between 
r e soluti on a nd va riability. 

The ana lysi s of equi- spaced records immedi­
ately impos es a n upper bound on the spectrum. Since 
at least two points are necessary in order to fit one 
frequency, the fastest s i ne wave that can be detected, 

gi ven a sampli ng inter val .c.t is z!t cycles per unit 

time. Since 21r radians equal one cycle, a ll fre -
. " f ld. f " f 2

-;r - 1r quenc1es above a o mg requency, n = 2At - c;r- , 
will not be detect e d. The wave that oscillates three 
times du r i ng th e s ampling interval cannot be distin­
guished from the one that oscillates only o nce f~om 
t he one which oscillates t wice . Thus, the dens1ty 
which is mea sured at f is a ctually: 

00 

P (f) = k~o P(f± 2kfn) (k = 1, 2, ... n) . (2 . 36) 

T herefore, befo1·e any a nalysis is made, one must be 
s ure that P(f) is negligible for f > fn. The choice of 

the sampling interval is decided on the basis of how 
much power remains above f and the largest fre-
quency that i s of interest. n 

6 

2. 5 . 1 Estimation of the Spe ctra. For th e 
discrete case, an expression equivalent to the second 
par t of eq. 2. 35 yields the spectral density, 

1 Q) 1 I 
P (f)= z- [C +2 2: Ckcos 21rfk] ( - z;~f ~2), (2 . 37) 

1T 
0 k=1 

if the power is confined in a ba nd (- ;r , 1r) . 

Given a finite s ample of obse rvations, 
x 1, . .. , xn, one can at most obtain only an estimate 

of spectral density since only n - 1 autocovariances 
can be calculat ed. Thus , one finds that : 

n- 1 
"' I ] P(f) = - [C + 2 2: Ck cos 21r fk • 

27r 0 k =1 
(2.38) 

In practice, even a lesser number of lags is some­
t imes used for r easons which will be discussed later. 
As rega r ds the estimate in eq. 2. 38 , J enkin [ 121 has 
shown that it is related to the ordinates of Schuster's 
periodogram defined by eq. 2 .6 . However, it can be 
shown t hat Schuster 's perio dogr a m ordi nates do not 
give a consistent estimate of P(f ) [ 1 11 . This has led 
to estimates of the form arrived at by means of t he 
following equation, 

n- 1 
= i; [C D (f) + 2 2: 

1T 0 0 k= 1 

This is equivalent to the application of a filter or 
kernel function Dk on t he covariance function Ck 

Blackman and Tukey [61 have explained t hat the 
multiplication of Ck by a suitabl e even function Dk 

makes the transform of the product a respectable 
estimate of the smoothed values of the spectral den­
sity . Various forms of the kernel fu nct ion have bee n 
suggested. This study used the function, 

(f) .;,. ( t + corns 1T k) Dk = "-

= 0 ( 2.40) 

whose transform takes the form, 

I I I 1 
0k = !Q(f) +-;r [ Q(f+~)+ Q(f -~)l 

m m 
( 2.41) 

where m is the maximum number of lags used in 
computing autocovar iances a nd whe re m is a lso equa l, 
for unit time int erval, to the maximum ti me lag T m 

used in estimating the spectrum. 

In the actual analysis of discrete time 
data, there are two ways of a rriving at estimates 
P(f) . One is to multiply the covariances by the c hosen 
kernel function before performing the Fourier trans ­
formation; another is to make the Four ier cosine 
transformation fir st and then form linear combina ­
tions of the results according to eq. 2.41. These t wo 
approaches are both possible because of the equiva­
lence of multiplication and convolution under Fourier 
transformation [ 20] . 



To summarize, t he estimation of the 
spectrum of a process involves: 

( 1) Choice of t he maximum number of lags 
m necessary in calculating autocovar iances . This 
dec i sion is governed by the desired resolution (which 

for unit t ime interval, is equal t o ..!... ) , but only aft er 
m 

c onsideration has been given to the adverse effect 
of an incr eased m on variability. 

(2) Computation of m + 1 autocovariances, 
co. ct' ' ' . , e m . 

( 3) Applicati on of a finite cosine series 
transform to the sequences of autocovariances. This 
takes the form, 

I m - 1 k' 
vk = - [ c + 2 :1:: c. cos ~ + c cos k7T J 

m o j= 1 J m m 
(2.42) 

wh ere the values of V 
0 

and V m are taken as half of 

their computed values. 

(4) Formation of linear combinations of Vk 

using t he coefficients in eq. 2.41 as weights. 

2. 6. I Significance Test for Spectral Estimates . 
.Jenkins [ 12] has demonstrated that the distribution 

· of P(f) may be appr oxim ated by a Chi-square distri­
bution with an equivalent number of -degrees of free­
dom which depend on the kernel function used. In 
the case of the kernel in eq. 2.42, the equivalent 
number of degrees of freedom v is approximately 
2n . In place of n, Tukey ( 20) suggested the substi­
m 
tution of an effective length of record T n = n - -T so 

t hat 

2(n - -Tl 
v = m 

2n 
m 

2 
3 

This then provides the basis for establishing confi­
dence limits and for testing for significance. Tukey 
[ 20) has also tabulated values for the confidence 

limits for the ratio ~(f) . 
(f) 

2.6.2 Test for Autoregressive Schemes . The 
statistical test used for testing the adequacy of finite 
ordered autoregressive schemes is derived f rom 
Quenouille [ 17]. According to this t est, the kth 
ordered autoregressive representation m ay be written 
thus: 

( 2.4 3) 

Qu enouille de fines a function ¢ (x), two sets of con­
stants [A l and [P], and a t est parameter R. by t he 

J 
equations: 

¢(x) 
k . 
!: a . xJ 

j=o J 

7 

ro 
A . xj 

2k 
Aj xj , ¢JZ(x) !: !: 

j:- oo J j=o 

00 

pj =.!: P1P· - i 
l" -oo J ' 

00 2k 
R. = . !: Ai p.- i = !: Ai P j- i J 1= -oo J i=o 

where p ' s are the autocorrelation coefficients. He 
has shown that, if Xt satisfies eq. 4. 23, then 

Rk+ 1' • · • ' Rk+ f follow asymptotically norma l distr i ­
bution with mean zero, and variance 

1 2k 
- L A . P. 
n j=o J J 

This provides a test for the hypothesis that the equa­
tion, 

has a Chi -square distribution with f dldgrees of free­
dom . The empirical autocor r e lation coefficients 
may be used for the p' s . 

For the first order Markov model, 
direct substitution into the above equation yi elds 

k+f 
2: 

j=k+1 

as the test par ameter with f degrees of freedom 
where 

Similarly, for the second order Markov 
model, t he Chi-square distributed parameter is 

k+f 
!: 

j=k+1 

where 

{ 

( 1 + a2) lz 
-( -1 -_ -a-2)_ (_(1_+_:a:._2_) z- _- a_1_z_] r nR .2 

J 

. 2.6. 3 Test for Independence of Residual 
Senes. In the use of autoregressive schemes, a 
measure of the a dequacy of the representation adopted 
is the i ndependence of the resi dua l series obtained 
after subtracting t he autoregressive scheme from the 
non-deterministic component E t' Anderson [ 1 J has 



given a two- tailed test for p L = 0 at a given signifi­

cance level a . His test was derived for a circular 
time series but may also be applied to an open 
series--if due consideration is given to its limitations. 
For the present case, the value of p 

1 
is of interest. 

8 

The confidence limits at 95% level of s ignificance are 

S(a) = -1 ± ~~sp 
where N is the number of observed values. 



CHAPTER Ill 

RESEARCH DATA ASSEMBLY 

3. 1 Source, Reliabilit , and Accurac of Data. 
Runoff recor s o dai y ows or most o the rivers 
and t hei r t r ibutar ies in the United Stat es have been 
compiled by the U. S. Geological Survey. At regular 
intervals , these records have been published in the 
Wat e r Supply papers. Initia lly , only figures for the 
more important rivers were compiled. Then, the 
list was gradually expanded to include data from all of 
the present network of several thousand gagi ng sites. 

During the early stages of compilation, the 
mean daily flows wer e computed from daily mean 
gage heights as obtai ned from staff gages. This 
im m ediat ely made the ea r ly recor ds s ubject t o the 
freque ncy of observations taken dur ing a day. T he 
advent of continuous water stage recorders which 
gr a dua lly replaced the staff gages alle viated this situa­
tion somewhat. Conversion from the daily mean gage 
heights to flows was made by t he use of stage-dis­
charge rating curves. 

Where t he stage-di scharge relation is subject 
to change due to frequent or conti nual alter ations in 
the physical features of the control, the mean daily 
dischar ge is det ermi ned by the s hifting control method 
which involves the applicati on of correction factor s 
based on individual measurements. This method is 
al so used to correct for t em por ary changes in the 
control s ection due to debri s or aquatic growth. 

T he crudeness of instrumentation in the early 
period was further aggravated by the lack of sufficient 
personnel to make frequent observations. This neces­
s itated, in some i nstances, the estimation of unmeas­
ured flows using correlation procedures before actual 
data were published. The perennial problem of ice 
reduci ng t he are a of t he control s e ction dur ing win­
ter was another source of error. 

Be cause of s uch difficulties, the records pub­
lished by the U. S. Geological Survey are classified 
as excellent, good, fair, or poor depending on whether 
the e rror s i n them ar e le ss than 5, 10, or 15 pe r cent, 
or greater than 15 per cent, r espectively. 

3. 2 C riteria for the Selection of Stat ions . The 
limited scope of this study precluded the analysis of 
non- homogeneous records. Gaging stations whose 
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flows have been significantly altered by man-made 
diversions or flow regulation upstream through the 
construction dams and reser voirs were autom atically 
excluded. Minor diversions, up to a maximum of one 
per cent of the average a nnual flow, were, however, 
tolerated. 

Stations were s elected basically on the virginity 
of their flows . Ideally, radical changes in the con­
sumptive use in a basin should have been considered, 
but becau s e of t he imposing if not i m possible t ask 
that would have e ntailed, homogeneity in thi s aspect 
was assumed. The absence of short term trends was 
also postulate d- '- i n s pite of the fact t hat it has been 
demonstrated r 14, 231 that extensive agricultural 
exploitation, among other things, can cause percep­
tible trends i n r iver runoff. 

3. 3 Stations Selected for Anal*sis . With the 
above limitations i n m i nd, a r oug survey of t he 
records published by the U. S. Geol ogical Survey 
yielded 17 runoff gaging stations which sati sfied the 
above c riteri a and which ha d records of s uffici·ent 
length. An arbitrary minimum of 34 years was 
assumed. The approximate geographic locations of 
the s tations s elect e d are s hown in fig. 1. 

The mean annual hydrographs obtained by 
£aki ng the aver age flow for each day of the y e ar ove r 
the total number of years of record, for the sites in 
fig. 1, is shown i n fig . 2. Also plotted are the 
standard deviations about the mean daily values of 
each hydrograph. 

It may be noted that the limitation caused by 
the homogeneity requirement imposed a restriction 
on t he size of the dr ainage basin. The locat ion, drai n­
age area, mean flow, and other pertinent information 
for each of the stations selected are tabulated in 
Table 1. 

Although some of the records were relatively 
l ong, for rea s ons of possible incons istencie s due to 
improved instrumentation or more frequent obser­
vations during the later years, only r ecor ds t ak en 
after 1921 wer e used. In addition, a cut- off year of 
1960 was used. The choice of both of these dates was 
again arbitrary. 
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Fig. 1 Geographic distribution of stations selected 
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TABLE 1 STATIONS SELECTED FOR ANALYSIS 

Station Location Area Records Mean Standard Remarks on 
Number River Latitude Longitude (Sq. Mi.) Available Daily Flow Deviation Accuracy of Record 

43°06' 73°251 

Good. Fair during 
lB. 3295 Batten Kill at Battenville, N . Y. 394. 0 1923 - 1960 722.9 722 . 9 periods of ice effect. 

42°07' 77°08' 
Excellent. Fair during 

lB. 5265 Tioga near Erwins, N. Y. 1370 . 0 1921 - 1960 1378. 6 2777. 8 periods of ice effect. 

2A. 0160 Cowpasture near Clifton Forge, Va. 37°48' 79°46' 456.0 1926- 1960 515. 6 762 . 3 Good 

37° 44' 80°38' 
Good. Fbor during 

3A. 1835 G1·eenbrier near Alderson, W.Va. 1357. 0 1921 - 1960 1885. 5 3053. 4 periods of ice effect. 

3A. 2695 Mad near Springfield, Ohio 39°55' 83°52 ' 1474. 0 1921 - 1960 487.2 686.7 Good 

3B. 5320 Powell near Arthur, Tenn. 36°321 
0 

83 38 ' 683. 0 1921 - 1960 1116. 1 1739. 0 Good 

44°521 88°18' 
Good. Fair during 

I 4.0710 Oconto near Gillett, Wisconsin 678. 0 1921 - 1960 543 . 5 441. 0 periods of ice effect. 

45°18' 90°57' 
Good. Fair during I 

5. 3620 Jump near Sheldon, Wisconsin 574. 0 1921 - 1960 505 . 0 1162. 0 periods of ice effect. 

..... 
~ 

0 
111°041 

Excellent. Good during 
6A . 0375 Madison near W. Yellowstone , Mont 44 39' 419. 0 1924 - 1960 458.6 190. 7 periods of ice effect. 

39°21 1 95°27 1 

Good. Fair during 
GB. 8905 Delaware at Valley Falls Kansas 922 . 0 1923 - 1960 375 . 9 1617.7 periods of ice effecl. 

Good. Poor during 
7 . 0670 Current at Van Buren, Mo. 37°00' 91°011 1667. 0 1922 - 1960 1921 . 0 2694. 3 periods of ice effect. 

8 . 0335 Neches near Rockland, Tex. 31°021 94°24' 3539. 0 1924 - 1960 2385. 2 3813 . 0 Good 
Good . Fair during 

11 . 2750 Falls Creek near Hetch-hetchy, Cal 37°581 119° 461 45. 2 1923 - 1960 141.2 234. 2 periods of ice effect, 
Merced at Pohono Br. , 

37°43 ' 119° 40 1 11. 2665 Yosemite, Cal. 321. 0 1921 - 1960 595. 7 979.4 Good 
Good. Poor during 

12. 4 150 St. Maries near Lotus, Idaho 47°15' 116°38' 437 . 0 1923 - 1960 515. 0 762. 3 pe riods of ice effect. 

43°401 115° 441 

Excellent. Good during 
13. 1850 Boise near Twin Springs, Idaho 830 . 0 1921 - 1960 1172. 7 1458. 6 periods of ice effect. 

14. 1590 McKenzie at McKenzie Br. , Ore. 44°11' 122°081 345 . 0 1924- 1960 1638.2 74'1. 4 Excellent 
--



CHAPTER IV 

DATA PROCESSING AND RESULTS 

4 . 1 Aims in Representation. The analysis was 
designed to obtain a mathemat ical representation 
which would fit the time series of daily flows. The 
model envisaged is of the general representation 2.4 
sinc e the choice of the gaging sites was made in such 
a way that the trend component is absent or relatively 
insignificant. The adequacy of the model was based 
on the amount of the variance explained and the inde­
pendence of the residual series upon subtraction of 
deterministic, and stochastic dependence components 
found. Thus, a relatively small explained variance 
would be acceptable if it could be shown that after 
removing the periodic and autoregressive model, the 
residual series could be approximated by an independ­
ently distributed random series. 

4. 2 Spectral Analysis. The detection of the har­
monic component of the time series was achieved by 
estimating the variance spectrum of the process and 
inspecting the spectrum for prominent peaks. The 
general procedure outlined in Sec. 2.5 .1 was followed. 

Since it was almost a certainty that the annual 
cycle would show up in the spectrum, provision was 
made to obtain estimates of the corresponding fre ­
quency and those of its harmonics. In order to have 
estimates at the frequency 0.00273 cycles per day 
(corresponding to one cycle per year) , the maximum 
number of lags m was narrowed down to a choice 
over multiples of 365. A value of m = 365 gives 
estimates at intervals of 0.00137, but since this would 
smudge the estimates over too wide a band of fre­
quencies, a value of m "' 365 was deemed inadequate. 
Similarly, m = 730 was rejected as not giving enough 
resolution. Although not entirely satisfactory, a 
maximum lag of 1095, giving a resolution of 0.000457, 
was selected as a compromise in consideration of 
computation time. As to its variability, even that 
number was found to be too high. 

The sampling interval of one day yielded a 
folding frequency of one cycle every two days, which 
is a much higher frequency than had previously been 
thought to be of interest, and the problem of aliasing 
did not arise. 

The sample autocovariances were computed up 
the value of m = 1095 using the formula, 

which is equivalent to the second part of eq. 2. 2. 

In so doing, the Fourier cosine series trans­
form was applied by using eq. 2.42, and then linear 
combinations of the raw estimates V . 's were formed 

J 
using the coefficients in eq. 2.41 to find the estimate 
of the variance spectrum. 

The spectra of the original time series for the 
seventeen rivers selected are showninfig. 3. It can 
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be seen that generally the most conspicuous peaks 
fall on the frequencies corresponding to the annual 
cycle and its subharmonics. 

For comparative purposes, the covariances 
obtained were divided by the variance, and the cor­
~elogra.ms were also plotted in fig. 4. A cursory 
mspect10n of the two sets of figures ( i. e. , the 
spectra and the correlograms) provide a graphic 
illustration of the features of both methods . Whereas 
the harmonics are distinctly obvious in the spectra, 
in the correl ograms sinusoidal components are indeed 
present with the fundamental cycle so confounding all 
other harmonics that distinction between them becomes 
quantitatively impossible. A further illustration is 
presented in figs. 5 and 6. .For Boise River at 
Twin Springs. Idaho, the cycles were gradually re­
moved starting with the fundamental harmonic down 
to its fourth harmonic . The effect on the spectrum 
was just the obliteration of the peak corresponding to 
the sinusoid. In the correlogram, however, the re­
moval of harmonics gave prominence to the least ­
ordered harmonic remaining which was not at all per­
ceptible before removal of cycles with longer periods. 

A Chi- square test was made but was not used 
to test for significance of the peaks because of the 
high variability in the estimates, compromised earlier 
to give a good resolution. The alternative was to 
determine the variances explained by the cycles cor­
responding to the peaks in the spectrum. 

4.3 Harmonic Analysis and Removal o!the Periodic 
Component. An analysis of variance due to the annual 
cycle was made. This was compared to the explained 
variances corresponding to the annual cycle and its 
subharmonics, these being equal to the ordinates of 
Schuster' s periodogram obtained by harmonic analysis. 

The harmonic analysis was done using formula 
2. 9. A maximum of six harmonics was fitted. The 
results and the variance explained by the analysis of 
variance are shown in Table 2. 

From the last two rows of Table 2, it may be 
seen that, except for the Delaware River, the six 
harmonics accounted for more than 80 per cent of the 
explained variance due to the annual cycle and its 
harmonics. 

It is noted further that in some rivers the use 
of more sub- harmonics did not incr ease the variance 
explained by the cyclic component appreciably. In 
the interest of representing the series by as few 
parameters as possible, two methods of removing the 
cyclic component were attempted- -one using all six 
harmonics and another using just the harmonics which 
contributed s i gnificantly to the explained variance. 
The number of harmonics used to represent the peri­
odic component for each river is shown in Table 4. 
The removal of the cyclic component was achieved by 
subtracting from the original series those cyclic 
functions whose parameters were obtained from the 
harmonic analysis. 



4. 4 Approximation of Wide-Sense Stationarity. 
Subtraction of the periodic component from the series 
leaves a stationary residual, 

(4. 2) 

where Pt is the periodic component characterized by 

parameters determined through harmonic analysis. 
Fig. 2., however, shows that the variances of the seven­
teen series are not constant with time. The harmonic 
representation of the time series itself suggests that 
the series of standard deviations may be similarly 
fitted by a periodic function. A harmonic analysis of 
the series of standard deviations was made yiel ding 
harmonic function St. The results are tabulated in 
Table 3. 

As for the cyclic component, two methods were 
used to represent St• one using all six harmonics and 

another using only those harmonics which contribute 
significantly to the variance of St as shown in Table 4. 

With harmonic representations for t he periodic 
component of the time series and for the series of 
standard deviations, a standardized residual was ob ­
tained: 

(4.3) 

While this transformation does not necessarily insure 
a wide- sense stationary series, its merit s can only be 
judged by the final results after the complete mathe­
matical fitting procedure has been made and a check 
on the properties of t he residual series is done. It 
might be noted that this standardization does not re­
sult in a series with mean zero and variance unity. 
To achieve these convenient properties, another stand­
ardization was necessary, and was done by subtracting 
the mean of the new series from each term and divid­
ing each result by the new standard deviation; i.e., 

Yt- y 
2 t = -?s,.--­

y 
(4. 4) 

4. 5 Autoregressive Representation. The choice 
of the autoregressive scheme to be applied on the 
residual series 4.3 was based on the fulfillment of the 
requirement that the roots of the characteristic 
equation 2..16 must all lie in the unit circle. A pre­
liminary check showed that various possible schemes 
for each of the stations analyzed met this condition. 
The logical choice is the scheme which requires the 
least numbe r of parameters and yet adequately de­
scribes the series. Thus, lower ordered schemes 
were first investigated, and, if they proved unsatis­
factory. the order was progressively increased until 
a satisfactory scheme was found. 

In fitting the fir st order linear Markov model, 
p was estimated by its least square estimator r 

1
. 

Using this estimate, a primary series, 

(4.5) 

was obtained. If the representation 4.5 is adequate, 
then the T) 1S should be uncorrelated with the Z's and 
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(4. 6} 

F ulfillment of this requirement was the test of the 
validity of a scheme. The results are summarized 
in Table 5. 

The second order autoregressive scheme, 

( 4 . 7) 

was then tried. Values of a 1 and a 2 were estimated 

using eq. 2.. 2.1. For all rivers, the roots of the 
resulting characteristic equations were within the 
unit circle of the compl ex plane. 

The variance of the residual was then obtained 
and compared with the value given by Kendall: 

var !J 2. z z 1 - a { ) 
var z " ~ ( 1 + az) - a1 · 

( 4. 8) 

The results are tabulated in Table 6 for the residual 
series after removing the harmonic s in Table 4 for 
the residual series after removing six harmonics are 
tabulated in Table 7. 

The correlograms of the primary series ryt 

were also obtained and plotted in fig. 7. Anderson's 
test fo.r s ignificance for rL was made, but because 

of the size of the sample, the confidence band was 
found to be too narrow for practical use. 

Although the results of the second order auto­
regressive fitting were quite satisfactory, a third 
order autoregressive scheme was tried for the series 
which satisfied the conditions imposed on the roots 
of the characteristic equation. Wold's general pro­
cedure was used in estimating the paramters a 1, a 2, 

and a 3. On checking the roots of tne .;;haracteristic 

equation, only N:ches River failed to satisfy the. 
requirement. The variance of the series, 

( 4. 9) 

was then obtained and compared with the explained 
variance assuming a multiple regression. Results 
are tabulated in Table 8. 

4.6 Quenouille' s Tests. The tests suggested by 
Quenouille were applied to the first and second order 
autoregressive schemes. Despite the validity of the 
models. as evidenced by Tables 5 and 6, Quenouille 's 
test rejected the model. Similar results were ob ­
served for all the other stations which were found 
to satisfy the second order autoregressive repre­
sentation. 

4. 7 Computer Program. It is quite apparent that 
with the volume of data used and the calculations in­
voled, the task of making s tatistical inferences would 
be impossible without the aid of a computer. All but 
the simplest arithmetic calculations were done at 
first on a high speed digital computer and at a later 
stage on a faster high speed computer. Where it 
was convenient a.nd practicable, the plotting of figures 
was also done on a data plotter, a cathode- ray tube 
device hooked up to the computer used and from which 
photographic prmts were made. 
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TABLE Z RESULTS OF HARMONIC ANALYSIS AND ANALYSIS OF VARIANCE OF ORIGINAL TIME SERIES OF DAILY FLOW 

Harmonic 
Batten Cow.. Green- Mad.i- Dela- t."Ur- St. Me -

Kill Tioga pasture brier Mad Powell Oconto Jump son ware rent Neches Falls Merced M.arica Boitte Kenzie 
River River River Rlver River River Rlver River River River River River Creek River River River River 

A ·503. 1 · 1274.7 · 344. 0 ·1482. 0 · 261. 8 ·888. 3 ·200.3 · 338. 0 ·60. 2 ·98.6 · 1014. 0 ·2225.4 · 133. 0 · 563. 5 · 563. 8 ·867. 9 -414.0 

B 71.1 245.3 147.8 753.2 62. 8 510.0 ·112.4 ·259.4 ·116. 1 ·252.4 ·128.8 477. 0 ·135.1 -625.9 -6.8 -1014.0 125.2 
Explained 
Variance 0.1843 0. 1092 0 . 0975 0. 1483 0. 0769 0.1734 0 . 1356 0. 0672 0. 2350 0 . 0 140 0. 0743 0 . 1781 0. 3274 0.3697 0.2736 0.4187 0. 1689 

A 193.6 613.5 79.0 1>10.8 -8.7 -20. 3 145.4 310.8 -48.5 -46.3 112.1 -33.0 ·485 -166. ~ 198.8 -228. 3 - 164.0 

B 199, 8 268. 6 -46. 1 -276.1 
Explained 

· 31 . 8 - 311.0 185. 0 286. 7 99.7 92 .. 5 303. 2 349. 0 125.3 558. 0 193 . 7 900.5 130.9 

Var!.llnce 0,0552 0 .0291 0.0058 0 . 0052 0 . 0 012 0.0161 0,1423 0 . 0661 0 .1691 0.0020 0 . 0072 0.0042 0 . 1646 0.1767 0. 0663 0 . 2028 0 . 0379 

A ·192. & · 501. 4 -31. 5 -140 . 4 17.8 -17.6 -85.5 - 137. 1 69, 3 56.8 '1!9.5 418.9 62. 4 278. 2 - 100.9 422.2 12.9 

8 ·128. 5 ·42. I -12.2 -29. 2 2. a 
Explained 

- 1. 5 -79. 9 · 132.8 ·9. 7 71.8 ·87. 4 · 218. 5 · 9. 8 -114.9 -158. 4 · 180. 1 -70. 9 

Variance 0.0383 0.0164 0.0008 O. OOll 0.0003 0,0001 0 . 0352 0.0135 0.0674 0.0016 0.0007 0.0077 0.0364 0.0472 0.0304 0.0495 0. 0059 

A 

B 
t:xplalned 
Variance 

A 

8 
Expla ined 

80. 6 238. 8 

72.8 ·194. 4 

0. 0084 o. 0046 

-47. 6 -219. 6 

-57.6 129. 9 

4. 4 24.5 

·9. I ·66, 1 

0 . 0001 o . 0003 

· 27. 3 -58. 9 

16. 9 121. I 

17. 1 ·6. 2 58.0 174.2 - JO. Q 65.0 -$9. 2 ·342. 1 -14.3 -124. 6 28.1 -145. 5 -18. 6 

11. 5 11. 0 65. 6 83,5 - 33. 3 -60. 0 8. 6 -96. 0 -29. 5 - 95. 3 63.2 -113.0 · 43. 8 

0. 0005 0.0000 0 . 0197 0 . 0138 0.0284 0.0015 0.0001 0.0043 0 . 0098 0,0128 0 . 0041 0 . 0008 0 . 0020 

-43.4 13 , 6 -39. 8 - 146.4 -8. 9 -49. 0 -68. 2 17.0 -7. 1 9, 7 3. 1 ·15.9 22.8 

-7 . 8 5. 4 ·72. 5 - 173. 0 26.9 ·77. 9 13. 5 188. 2 1.0 56. 9 - 53 . 8 36. 6 18 . 8 

Variance 0.0040 0.0042 0.0007 0.0010 0.0021 0.0000 0.0176 0 , 0190 0 .0111 0. 0016 0.0005 0.0012 0 . 0005 0.0017 0,0025 0.0004 0.0008 

A 15. 5 89.8 13.2 41. 0 13. 5 7. 9 7. 4 13. 8 5. 8 ·22. 2 8 . 8 67.3 10. 1 6. 2 2. 2 9. 7 

B ·5. 5 · 136. 0 11.2 -26.5 -4. 6 23. 9 27.8 66.9 l. 6 63.2 2. 6 -192.0 7. 4 ·2. 8 47.2 34.9 24.4 
Expl,.ined 
Variance 0.0002 0 . 0017 U. 0002 0.0001 0.0002 0 . 0001 0.0021 0 .0017 0. 0005 0 . 0009 o. aooo o.oo!4 o.ooos o.ooo1 o . oo2o o . ooo3 o. ooos 

Varianc:.e Ex­
plained lby 6 
HBrmon!ca o . 2904 0 . 1632 0. 1051 o. 1560 0 . 0812 0 . 1897 0.3525 0. 1813 O. SllS 0 . 0216 0 . 0828 0. 1969 0. 5387 o. 6082 0. 3789 0. 6725 0 . Zl61 

Total Var! -
ance Explained 
byAnnua1Cycle0.3019 0.1840 0.1210 0,1709 0. 1003 0 . 2029 0.3584 0.1970 0. 5152 0.044.5 0.0994 0.2029 0.5463 0.6120 0. 3894 0 .6818 0.2256 

Harm-onic 

TABLE 3 RESULTS OF HARMONIC ANALYSIS OF THE TIME SERIES OF STANDARD DEVIATIONS 
ABOUT INDIVIDUAL VALUES OF DAILY MEANS OF ANNUAL H YDROGR.APH 

Batten Cow- Green· Mad!- Dela- Cur- St. Me-
Kill Tioga pasture brier Mad .Powell Oconto Jump son ware rent ~eehes Falls Merced Maries Boise Ken:tie 

River River River River River River River River River River River Rivor Creek River River River River 

A ·269.3 ·1286.6 -278. 5 - 1222. 8 - 302. 5 -798. 3-123. 3 - 194. 4 -18, 6 · 137, 8 · 1372 . 9 · 1938. 8 - 49. 5 -229. 3 -383. 0 ·462. 8 - 186. 0 

B 
Expl.ained 
Variance 

A 

B 
Explained 

143.3 485. 0 180. 3 925. 2 154.4 6~8. 3 ·85. 6 ·406. 3 ·79. 4 ·739. 7 · 63 . 6 398. I -47.6 ·259. 7 202. 7 ·480. 5 280. 4 

o. 3081 0. 3574 o. 2799 0 . 4822 o . 3228 0 . 6009 o . 2706 0.1862 o. 5578 o . 2065 0 . 3375 o . 5104 o. 1759 o. 2916 o. 6556 0. 6102 0 . 5157 

78. 8 565. I 77,2 -79.2 · 93.G -235.9 141.6 439.5 -30.9 -127.5 ·11. 5 · 167. 5 · 61.5 -214.2 11.4 ·133.6 -203.6 

67.0 287,5 - 15. 1 - 246. 4 - 51. 2 - 267. 6 105. 7 226.7 41. 3 240. 0 ~58. 6 1179, 0 81. 1 342. 3 91. 7 455. 7 78.6 

Varl~nce o. 0354 0.0760 o . 0157 o. 0137 o . 0318 o. 0723 o. 3750 o. 2244 o. 2233 o. 0269 o. 0376 o. 1848 o. 3855 o. 3961 o.o298 o. 3092 o. 2170 

A - 142.3 -386. 3 ·4. 6 -133. 8 91. 6 11. 8 -66. 4 - 75. 7 29. 9 107. 7 95,0 373. 2 9. 9 s2. 3 -so. 1 142. 2 13.0 

8 · 10 . 8 168.1 ·6. 1 ·44. 5 14.5 -47.8 - 46.2 -105,2 -11.8 199.7 -143. 4 -371.6 4, 9 ·42. I · 108. 9 ·92. 2 -25. 4 
Explained 
Variance 0.0674 0.0336 0 . 0001 0. 0041 0.0240 0.0014 0.078 6 0.0154 0,0868 0, 0188 0 . 0053 0. 0361 0 . 0046 0 , 0208 0,0502 0.0394 0 . 0037 

A 91.7 168. 5 ·23.4 -14.6 27.4 - 47.3 75. 7 236.0 -20.5 199. 1 ·77 .0 ·755. 7 2. 8 ·40. 4 8. 0 ·I. 5 -7. 6 

4 ~~B~~----1~5~.~3 __ -~2~6~7~.0~~-~27~.~2~~-~~-~7~--~2~4.~8~~3~1~.~4~~3~1.~7~~-~10~7~.~4--~·~1~7~. 7~~·~12~1~.~2~--~8~·~8~-~1~1~6.~5~~-3~1~·~4~-~1~2~5~,3~~-2~0~·~1--~·~4~8~·~9--~·~4~8.~5~ 
Expl.aine d 
Vano.nce 0.0286 0.0188 0 . 0033 0.0000 0 . 0038 0 .0018 0.0809 0.0617 0.0616 0.0198 0 . 0011 0,0762 0.0370 0,0421 0 , 0016 0 . 0033 0.0110 

· 18. 3 - 243.6 48 . 0 15.0 · 124.0 2.4 -47.2 -259.6 -9.6 - 109.5 -235.2 200.6 2. 9 26.0 29.3 - II .& -ll . 7 

S ~~B~~----~13~·19~~3~2~0~. 3~--~5~1.~9~~1~8~7~. 9~--~-~4.~1~_:·3~0~.~7~·~4~3~.2L_~·~20~6~.~6~_21~4~. 4!_~·=2~69~.~8~_28~7~·~0--~1~1~0~.2L_~-~10~.=2 __ _21~3~.2~~-~12~.~2~-·~1~5~.~6--~·~2~3~. 5~ 
ExpLained 
Variance 0.0017 0,0306 0.0127 0.0073 0.043I 0.0005 0.0492 0.1010 0,0250 0. 0309 O.Oll2 0 . 0068 0. 0042 0 . 0021 0 , 0035 0.0005 0,0031 

6. 6 117. 5 28. 4 3. 8 38. s 3. 0 8. 6 -41. 7 -0.5 -75. 1 12.0 90.6 1. 8 25.0 10.9 ·3. 1 10.9 

B ·115.8 -207 . 2 -6.4 - 10. 1 - 30 . 1 -52. 5 4. 3 -59.0 6 . 8 138. 5 -o. 5 -288. 2 s. 7 24. 1 39. 6 55.3 44.7 
J::xpl.a!ned 
Variance 0,0446 0. 0107 0 . 0022 0. 0000 0. 0061 0. 0016 0. 0011 0. 0048 0. 0039 0 . 0091 0 . 0000 0 . 0119 0.0013 0 . 0029 0 . 0059 0 . 0042 0 . 0097 

Variance Ex­
plained by 6 
Hannonlcs 0.4858 0.5271 0.3139 0,5073 0 . 4322 0 . 67850.8554 0.5935 0.9584 0 . 3120 0 . 3927 0 . 8262 0.6085 0.7556 0.7466 0.9668 0 .7602 
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Riv~r 

Batten Klll 

Tioga 

Cowpasturc 

Greenbrier 

Mad 

Powell 

Oconto 
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Current 
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TABLE 4 NUMBER OF HARMONICS USED TO REPRESENT Pt and St 

p 
t 

Total Exp. 
Number Percent of Variance Number 

of Explained due to of 
Harmonics Variance Annual Cycle Harmonics 

3 0. 2778 0. 3019 6 

3 0. 1547 0. 1840 6 

2 0.1033 0.1210 5 

I 0. 1483 o. 1709 2 

I 0. 0769 0.!003 5 

I 0. 1734 0.2029 2 

5 0. 3504 0. 3584 5 

5 0.1796 o. 1970 5 

5 0. 5110 0.5152 5 

1 0.0140 0. 0445 6 

I 0.0743 0.0994 5 

1 0. 1781 0. 2029 4 

4 0. 5382 0. 5463 4 

4 0. 6064 0.6120 4 

3 0. 3703 0.3894 3 

3 0. 6710 0.6818 3 

2 0. 2086 0.2256 2 

TABLE 5 RESUL TS OF FITTING FIRST ORDER AUTORE•GRESSIVE 
SCHEME TO STANDARDIZED STOCHASTIC COMPONENT 

(after removing harmonics or Table 4) 

Variance of 
Residual Series 

RIVER -al = p = r I Theoretical Computed 

Batten Kill 0.78956 0.37660 1.27026 

Tioga River 0.59174 0. 64984 0. 87947 

Cowpasturc 0.65989 0.56455 1. 03938 

Greenbrier 0.70010 0.50986 1.09418 

Mad River o. 63625 0. 59519 0.85853 

Powell River 0.84002 0. 29437 1. 45685 

Oconto River 0.79593 0. 36650 0.73138 

.Tump Rive r 0.67083 0.54999 0. 59837 

Madison River 0.93719 0.12168 0.65934 

Delaware River 0.58911 0.65295 0. 6ll52 

Current River 0. 71192 0. 49317 0. 92779 

Neches River 0.96823 0.06253 0.74477 

Falls Creek 0. 80647 0. 34961 o. 72066 

Merced River 0. 82632 0.32720 0.14579 

St. Maries River 0.55836 0.68824 o. 84098 

Boise River 0.95457 0.08880 I. 06296 

Mcl<enzie River o. 93866 0. 11892 0.72816 

23 

st 

Total Exp. 
Percent of Variance 
Explained due to 
Variance Six Harmonics 

0. 4858 0. 4858 

0.5271 0. 5271 

0.3117 0.3139 

0.4959 o. 5073 

0.4255 0.4322 

0. 6732 0.6785 

0.8543 o. 8554 

0.5887 0. 5935 

0.9535 0.9584 

o. 3120 0. 3120 

0.3927 0. 3927 

0.8075 0. 8262 

0. 6030 0.6()85 

0. 7406 0. 7f>56 

0. 7356 0. 7466 

0.9588 0.9668 

0. 7327 0. 7602 



TABLE 6 RESULTS IN FITTING SECOND ORDER AUTOREGRESSIVE SCHEMES TO STANDARDIZED STOCHASTIC COMPONENTS. 
(After removing harmonics of Table 4) 

Abtoluta Value ot Vurtance of Residual Serlae 
River al •z tho Roou of the 

Cbaracte rlstlc Equation Theoretical Computed 

Batten Kill -0. 908!>0 +0. 15065 o. 69023 and 0. 21827 0. 3642 0. 3681 

Tioga -0.60930 +0.02967 o . 55593 and 0.05337 o. 6493 0. 6486 

Cowpasturc -0. 71559 +0. 08441 0. 56661 and 0. ].1897 0. 5605 0 . 5G06 

Greenbrier - 0.77385 +0. 1053 4 0. 5R755 and o. 17629 0. 5042 o. 5043 

Mad -0.60875 -0 . 04321 0. 67295 and 0. 06421 0. 5941 0. 5941 

Powell -I. 07380 +0. 27830 0.63671 and 0.43709 0.2716 0. 2714 

Oconto -o. 54176 -o. 31933 0. 89754 and 0.35578 0.3291 0 . 3292 

Jump -0. 58300 -0. 13094 o. 75617 and 0. 17317 0. 5405 0.5406 

Madison -0. 92528 -0. 01270 0. 95069 and o. 02559 0. 1217 0. 1218 

Delaware -o. 65798 +0.11690 0. 34192• o. 6440 0. 6448 

Current -o. 73531 •o. 03285 0. 77756 and 0. 04224 o. 4926 o. 4927 

Neches -I. 32541 --o. 36890 0. 92780 and 0. 39760 0.0540 0. 0543 

Falla Creek -0.94554 • 0.17244 0.69876 and 0.24678 0. 3392 0. 3393 

Merced -0 . 80397 -0. 02704 0 . 83630 and ;). 03234 0 . 3175 0 . 3176 

St. Mules ·0. 42437 -o. 023998 0. 78219 and " · 35783 o. 6486 0. 6487 

Boise -I. 03034 +0 . 07937 0. 94648 and 0. 08386 0.0882 o. 0882 

McKenzie -0. 98179 •'l.'l4594 0. 93252 and 0.04926 0.1186 0 . 1186 

* Roots are complex conjugates. 

TABLE 7 nt::SULTS OF FITTING SECOND O RDER AUTOREGRESSIVE SCHEMES TO STANDARDIZED STOCHASTIC COMPONENTS 
(After rcmovln.r 6 harmonics ) 

Absolute Values or Var1ancc of Residual Series 
River al •z the Roo1a of the 

Characteristic Equation Theorcuc3l Computed 

Batten Kill ·0. 93028 •0.1601 I 0. 70231 and 0 . 22797 O. H77 o. 3470 

T ioga -0. 62523 +0. 04096 o. 25873 and 0 . 21777 o. 6289 0. 6375 

Cowpasture -0. 71181 +0.08103 0.569~6 and 0 . 14226 0. 6827 0. 5628 

Greenbner -;). 78026 ~.12609 0.62167 and 0.15859 0.5124 0 . 5125 

Mad -0. 60685 -o. 05580 0.68828 and 0 . 08144 0. 5851 0 . 5852 

Powell -I. 0872 4 +0. 33729 0. 58075" 0. 3001 0 . 3002 

Oconto -0. SG67 l -o. 30560 o. 90355 and 0 . 33683 0. 3027 0 . 3028 

Jump -o.:; 137o -o. 11211 0. 67543 and o. 16973 0. 8564 0.6566 

Madison -o. 92798 -o. oto6!> 0.91636 and 0 . 01162 0.1250 0 . 1252 

Delaware -o. 62514 ~- 11192 0. 33450• 0 . 6750 0.6758 

Current -0. 69157 ~. 00178 0. 68898 and o . 00260 o . 5233 0. 5234 

Neche. •1.4.5329 +0 . 50055 0.87315 and 0.56014 0. 0520 0. 0521 

Falls Creek -0 . 92855 +0. 15132 0.71772 and 0 . 11084 0. 3415 0. 3421 

Merced -0. 78877 -0.02332 0. 82730 and 0.02854 0.3475 0.3477 

St. Martes -0. 32864 -0. 21764 o. 65894 and 0 . 33030 o. 7845 0 . 7846 

Boise -0. 99132 ~.09326 o. 88606 and 0.10526 o. 1760 0. 1761 

McKenzie -0.96222 +0. 04026 0. 91865 and 0 . 04357 o. 1442 0 . 1443 

• Roots a ro complex conjugates 
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(10) Delaware River 
{ 11) Current River 
( 12) Neches River 
( 13) Falls Creek 
( 14} Merced River 
(15) St. Maries River 
( 16) Boise River 
( 1 7) McKenzie River 

TABLE 8 RESULTS OF FITTING THIRD ORDER AUTOREGRESSIVE SCHEMES TO STANDARDIZED STOCHASTIC COMPONENTS 
(after remo,lng harmonics of Table 4) 

Absolute Value of Roots Variance o! Residuals 
River a l 32 a3 of Characteristic Equation Theoretical Computed 

B:>tten Kill -0.92708 +0.26266 -0. 12328 0. 79198 and 0.39454 0.36805 1. 46139 

'fiol!a -0.61216 +0.08856 - 0 . 09666 0.68775 and 0. 37490* 0.64927 0.89314 

Cowoasture -0. 72772 +0. 18718 -0. 14361 0. 73783 o.nd 0. 44118* 0. 56052 1.10 120 

Greenbrier -0.78669 +0. 19979 -0. 12208 o. 73971 and 0.40625* 0.50420 1.17584 

Mad -0. 60199 +0 . 05223 -0.15677 0. 78811 and 0. 44600* 0 . 59408 0.84960 

Powell -1. 13961 +0.53231 -0.23658 0 . 84115 and 0.53034* 0.27157 2. 04490 

Oconto -o. 497 15 ·0.24365 -0. 13970 0 . 92428 and 0.388769* 0. 32912 0. 61660 

.Jump -0. 58630 -0.14566 +0.02525 0.73740 and 0 . 27542* 0.54056 0 . 56842 

Madison - 0.92460 +0.03762 -0.05438 0.94563 and 0. 23980* 0. 12166 0.65124 

Delaware - 0.67158 +0.19351 -0. 11645 0,64964 and 0.42338* 0 . 64403 o. 64000 

Current -o. 74003 +0 . 13817 -0. 14322 0.79340 ancl 0.42487* 0,49262 0.95634 

Neches +0. 28416 -0.13857 -1.36961 1. 06161 and! 1. 13584* ---- ----
Falls Creek -o. 97591 +0.33889 -0. 17601 0 . 82388 and 0.46220* 0.33921 0 . 85846 

Merced -0. 83044 +0. 24541 - 0. 29145 0.91193 and 0 . 54904* 0.31i54 0 . 14579 

St. Maries -0.39148 -0. 18184 -o. 13702 0. 81831 and 0,40920* 0.64860 0.76772 

Boise -0.95637 +0.00686 +0.00199 0. 94690, o. 05088 & 0 . 04140 0.08824 1. 06502 

McKenzie -0.98834 +0. 18620 -o. 14287 0. 95057 and 0 . 38768 .. 0. 11867 0 . 78011 

* Roots are complex conjugates. 
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CHAPTER V 

DISCUSSION OF RESULTS 

5. 1 On the Reality of Short-Period Cycles . T he 
reality of cycles corresponding to 4-month and 3-
month periods as s uggest ed in the spectra is not ex­
plainable in physical terms. It appea.rs that since a 
single harmonic does not fit the correlograms in 
fig. 4, the fitting of a harmonic functi on to the 
time series needs s ub-harmonics that do not neces ­
sarily occur in nature. It i s quite possible that the 
emergence of short period cycles with the gradual 
removal of lower- ordered harmonics has beeninduced 
by the choice of a harmonic function to describe its 
behavior. 

5_. 2 . Number of Harmonics Used to· Re present 
Penod1c Com ponent. While the higher harmonics 
~ay not be justifiable in physical terms, their use 
m representing the periodic component has t o be con­
side r ed in the light of the adequacy of fit. 

It appears from Table 10 that it is not neces­
sar y to ~se all six harmonics to adequat ely describe 
the cychc component. Thus, with the use of only 
those s ub - harmonics which contribute signifi cantly 
toward$ the expl anation of variance, a reduction of 
parameters is effecte d in the equation, 

€t x t - Pt 
Yt = s; = st 

If n harmonics are use d to describe Pt' ( Zn+ 1) para me 

ters will have to be estimated (i.e. , X, A 
1
, ... , An' 

B 1, · . • , Bn). If m harmonics are used to describe 

st. other (2m +1 ) parameters will be introduced so 

tnat Z(n+m + 1) par ameters v.'ill have to be estimated 
exclusive of the coefficie nts of the autoregressive 
scheme and the parameters characterizing the dis­
trib.ution of Tit. 

5 . 3 General Applicability of Results. A prima r y 
object of this investigation is to seek for a general 
model- -in this case, to determine the order of the 
autoregressive scheme which may be applied to the 
residual series. While the results of Tables 6 and 7 
strongly support the second order autoregressive 
model, t he cases of the Delaware and Jump Rivers 
present two exceptions. Tabl es 5 and 8 s how that a 
first order scheme (with p = r 1) and a third order 

r epresentation are also valid in addition to the s econd 
order scheme which has been found to be generally 
applicable . 

Thorough inspection of Tabl es 5, 6, and 8 will 
reveal the heart ening s imilarity in t he parameters 
describing the three applicable schemes for the 
Delaware River. The pertinent information from the 
above tables is summarized in Table 9. In com­
parison with the generally applicable second order 
representation, the parameter p for the first order 
scheme is not much different from a 1 in the second 

order scheme. T he slight change seem s to be 
attributabl e to the reduction in t he number of parame 
ters (i.e., from two to one) . Similarl y, in the third 
order autoregressive model, the addition of another 

27 

par a meter a 3 necessitat ed the adjustment of the 

values of a 1 and a 2 in the second order Markov 

model t o allow for the effect of the t hird parameter. 

One result shown in Table 9 is the progressive 
increase in explained variance with the increased 
order of the autoregr essive schem e . The rate of 
increase seems to give the answer as to what scheme 
one may settle for. If the addition of another parame­
ter (i.e. , increasing the order of the scheme by one), 
i s not accompanied by a significant increase in ex­
plained vari ance, then one may as well decide on the 
next lower ordered representation. 

A summary of the results i s shown in Table 10 
wherein two schemes representing St and P t a re 
composed. 

5.4 Diffi culties in Statistical Inference . A recur­
ring problem throughout this inveshgation was the 
difficulty met in the application vf statistical tests 
where the volume of data was brought to bear on. In 
the test for significance of peaks in the spectrum, 
failure to use a Chi-square test suggested by Tukey 
m ay be justified since it was previously decided to 
sacrifice increas ed variability for bett er resolution. 

In the application of Anderson' s test for p 1 = 0, 

however, despite a value of r 1 = 0. 05, the size of 

the statistical sample was such t hat even this was, 
according to the t est, still significantly different 
from zero. The same difficulty was e ncountered in 
applying Quenouille 's test to the first and second 
order autoregressive schemes . 

In view of this, all inferences were based on 
the agreement of the computed variance of the residual 
series with t h e theoretical variance of r esiduals if 
t he r epresentation was valid. In all cases where the 
representations were accepted, these variances 
differed only in the third decimal place . 

TABLE 9 COMPARISON OF PARAMETERS OF 3 
POSSIBLE SCHEMES FOR DELAWARE 
AND JUMP RIVERS 

R iver 
Dela­
ware 

Jump 

Para-
meter 

a , 
a z 
a3 

Explained 
Variance 

a l 

a2 
a3 

Expl ained 
Variance 

Order of autoregressive scheme 
1 2 3 

-0.58911 -0.65798 -0. 67158 
+0. 11690 +0 . 19351 

- 0. 11645 

0. 347 0,356 0.357 
-0. 67083 -0.58300 -0. 58630 

- 0. 13094 -o. 14566 
+0.02525 

0.450 0 . 460 o. 461 



N 
oc 

-

-

TABLE 10 VARIANCES EXPLAINED BY STOCHASTIC MODELS 

P t and St Fitted with P t and Sl Each Fitted with 

Harmonics in Table 4 6 Harmonics 

River 
P eriodic Autor egres - No. of P e r iodic Autoregres-

Component sive Co mponent Total Parameters Component sive Component Total 
Used* 

Batten Kill 0 . 2778 0 . 4564 0 . 7342 22 0 . 2904 0 . 4627 0 . 7531 

Tioga o. 1547 0 . 2970 0 , 4515 22 0. 1632 0 . 3033 0,4665 

Cow pasture 0 , 1033 0 . 3940 0 . 4973 18 0 , 1051 0 . 3912 0 , 4964 

Greenbrier 0 . 1483 0 , 4222 0,5705 10 o. 1560 0 .41 21 0 , 5681 

Mad 0 , 0769 0 , 3747 0 . 4516 16 0 , 0812 0. 3811 0,4623 

Powell 0. 1734 0 .6021 0 . 7755 10 0 . 1897 0,5670 0 . 7567 

Oconto 0 . 3504 0 . 4358 0 . 7862 24 0.3525 0 . 4514 0 . 8039 

Jump o. 1796 0 . 2769 o. 45.65 24 o. 1813 0 . 2813 0 . 4626 

Madison 0 . 5110 0 . 4294 0 . 9404 24 o. 5115 0 . 4273 0 . 9388 

Delaware 0 .01 40 0 . 3502 0 . 3642 18 0. 0216 0. 3170 0. 3386 

Current 0 , 0743 0 . 4696 0. 5139 16 0 . 0828 0 . 4371 0 . 5199 

Neches 0 . 1781 0 . 7773 0. 9554 14 0 . 1969 0. 7613 0.9582 

Falls Creek 0 . 5382 0 . 3501 0 . 8433 20 0 . 5387 0 . 3035 0 . 8422 

Merced 0 . 6064 0 . 2412 0.8476 20 0, 6082 0 . 2556 0 . 8638 

St. Marie s 0 . 3703 0 .2212 0,5915 16 0 . 3787 o. 1338 0.5127 

Boise 0.6710 0 . 3000 o. 9710 16 o. 6725 0 . 2699 0.9424 

McKenz ie 0 . 2086 0 . 6974 0. 9060 12 0 . 2161 0.6708 0 . 8869 
-·-···- ---- -* Exclusive of parameters describing residual series Tit 

No. of 
P arameters 

Used* 

28 

28 

28 

28 

28 

28 

28 

28 

28 

28 

28 

28 

28 

- 28 

28 

28 

28 



CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

After consideration of the foregoing results and 
uncertainties, the writer ventures the following con­
clusions: 

1. In detecting periodicity in a hydrologic time 
series, spectral method complements autocorrelation 
analysi~. If the periodic component is a composed 
harmoruc, the sub-harmonics are easily identified by 
the characteristic peaks that they induce in the spec­
trum , but if the component is not a composed har­
monic, the fundamental cycle confounds all other har­
moni.cs i n the correlogram . It may, h owever, be 
poSSlble that the secondary peaks are due to the intrin­
sic property of the harmonic function used. 

2. In general, no other periodicities are percep­
tible in the time series of daily river runoff except 
that corresponding to the annual astronomic cycle 
and its sub-harmonics. 

3. In removing the periodic component from a 
time series, the amount of variance explained by each 
harmonic may be used as a criterion in determining 
how many harmonics are necessary to compose the 
periodic component. 

4. For a trend-free time series of daily river 
flows, after the deterministic periodic function has 
been sufficiently removed, the residual series may 
in general be represented by a second order autore­
gressi.ve scheme. T he inverse relation, correspond­
ing to eq. 4 , 3 and applied to eq. 4,7, yields : 

st st st 
xt +at~ xt-1 + a2 -s- xt- 2 " Pt + a1 s:--:- Pt- 1 + 

t-1 t-1 t - 1 

st 
+ a2 -s-- pt-2 + 5t J")t 

t- 2 

29 

where a 1 and a 2 are the parameters of the second 

order autoregressive scheme, Pt is a periodic func­

tion representative of the periodic component of the 
series, and St is another periodic function used to 

describe the series of standard deviations. 

5. Where the first or third order autoregressive 
s chemes are applicable, the variances explained by 
t hese schemes do not differ appreciably from the ex­
plained variance obtained by the second order auto ­
regressive representation. 

In view of the difficulties encountered, two major 
areas where more intensive study would serve to 
shed light on certain aspects of this investigation are: 

1. Determination of how the volume of data could 
be reduced and yet still give consistent results for 
statistical inference. This might be approached in 
the light of obtaining an optimum sampling time inter­
val that would yield maximum information. 

2. Analysis of time series like that ofthe Delaware 
Ri ver, which is amenable to several autoregressive 
representations. This might involve looking into the 
basin's physical characteristics and would be a sig­
nificant departure from the purely statistical approach, 
serving to bridge the two seemingly divergent view­
points tn looking at the same problem. 



BIBUOGRAPHY 

1. Anderson, R. L. 1941, Distribution of the serial 114. 
correlation coefficient. Annals of Mathematical 
Statistics, Vol. 13, pp. 1-13. 

2. Bartels, J . , and S. Chapman, 196 2, Geomagnet­
ism. Vol. 2. Oxford, Clarendon Press, pp. 545-

Julian, P. R. , 196 1, A study of the statistical 
predictability of stream runoff in the upper 
Colorado River Basin. Research paper of the 
High Altitude Observatory. University of 
Colorado. Boulder, Colorado, 98 p . 

605. 15. Kendall, M . G. , 1944, On autoregressive time 
series. Biometrika, Vol. 33, pp. 105 -12 2. 

3. Bartlett, M. S. , 1946, On the theoretical speci­
fication and sampling properties of autocorrel ated 
time series. Suppl. Journal Royal Statistical 
Society, Vol. 8, pp. 27-41. 

4 . Bartlett, M. S., 1950, Periodogram analysis 
and continuous spectra. Biometrika, Vol. 37, 
pp. 1- 16. 

5. Bartlett, M. S. , and J. Mehdi, 1955, On the 
efficiency of procedures for smoothing periodo­
gr am of time series of continuous spectra. 
Biometrika, Vol. 42, pp. 143- 150. 

6 . Blackman, R. B. , and J. W. Tukey, 1958, The 
measurement of power spectra from the point 
of view of communications engineering, New York, 
Dover Publications Inc. , 190 p. 

7. Cramer, H. , 1940, On the theory of stationary 
random processes. Annals of Mathematics, 
Vol. 41, pp. 215 - 230 . 

8. Doob, J. L. , 1953, Stochastic processes. New 
York, Wiley and Sons, 654 p . 

9. Granger, C. W. J., and M. Hatanaka, 1964, 
The spectral analysis of economic t ime series. 
Princeton, University Press, 299 p. 

10. Grenander, U., and M. Rosenblatt, 1957, 
Statistical analysis of stationary time series . 
New York, Wiley and Sons, 300 p. 

11. Hannan, E. J. , 1960, Time series analysis . 
London, Methuen, 152 p . 

12. Jenkins, G. M. , 1961, General consideration in 
the a nalysis of spectra. Technometrics, Vol. 3, 
pp. I 33-1 66. 

13. Jenkins, G . M., and M. B. Priestley, 1957, 
The spectral analysis of time series. Journal 
Royal Statistical Society B. , Vol. 19, pp. 1-12. 

30 

16. Kendall, M. G., 1948, The advanced theory of 
statistics . Vol. 2. London, Charles Griffin a nd 
Co., 521 p . 

17. Quenouille, M. H., 1949, A large sample test 
for the goodness of fit i n autoregressive schemes. 
Journal Royal Statistical Society, Vol. 110, 
pp. 123-12 9. 

18. Quimpo, R. G. , 1966 , Stochastic analysis of 
daily river flows. Ph. D. Dissertation, Colorado 
State University, 96 p. 

19. Slutsky, E ., 1937, The summation of random 
causes as a source of cyclic process. Econo­
metrica, Vol. 5, pp. 105-146. 

20. Tukey, J. W., 1959, An introduction to the 
measurement of spectra. P robability and statis­
tics, Edited by U. Grenander. Stockholm, 
Almquist and Widsell, pp. 300-330. 

21 . Wold, H. , 1954, A study in the analysis of 
stationary time series . Uppsala, Almquist and 
Wiksell, 2 36 p. 

22. Yaglom, A. M. , 1962, An introduction to the 
theory of stationary random functions . Engle­
wood Cliffs, Prentice Hall, 223 p . 

23. Yevd,j evich, V. M. , 196 1, Some general aspects 
of fluctuations of annual runoff in the Upper 
Colorado River Basin. Colorado State Univer­
sity, Fort Collins, CER61 VMY54. 

24. Yule, G. U .. 1962, On a method of investigating 
periodiciti es in distrubed series with special 
reference to Wolfer's sunspot numbers. Philo­
sophical Transactions, Royal Society A. Vol. 
226, pp. Z67-298 . 



Key Words: Uydrology, T ·ime Seriee, Dally Rlv~r Flows, Autor~gresslve Sch~me.s, Spectral 
Analyal•, Slochaetlc: Model. 

Abstract: A search for a structural model for the time- se-ries of daily river flows is under­
~the author. First. records of daily river runoff from 17 river basins chosen on 
the postulated absence of trend.l induced by manmade improvements are aoaly2.ed. As a 
result, the model envtaa.ged Ia a auperpoettlon of a cyclic deterministic process and a 
stochastic component. In the an~~lyeis of records, spectral methods are u.sed to detect 
cycles which are then N:moved by aubtractl ng from the origi nal series a periodic function 
obtained by harmonic enaJ..yela. To aUeviate the effect of a chancing variance during the 
course of the yea a·, the a~riea of atandard deviation& is atmularly fitted with a harmonic 
function which ie used to standardhe the .series. After slandardi-Lation~ all Ute r~sidual 
sed~s are found to satisfy the second order autoregressive representation: 

z, + •, zt-1 ~ •z zt-z • "' 
where a 1 and a z a re tho DUIOre11reulve coeCflclents and ~~ is an independently distr ibuted 
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a nd explaln~d variances. 
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Abstract: A aearch for a etnactural model for the time aer lea of daily river n.ows is under­
~the author. Firat. records of dally river runoff from 17 river basins chosen on 
the postulated absence o f trends f_nduced by manmade Improvements are analy-z.ed. As a 
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Abstract: A sl!a_rch for a structural model for the time aeri~• of daJly river flows is under­
taken by the author. First, records of daily river runoff from 17 river ba8fnJJ cholen on 
the poatuJated abaence of trends induced by manmad~ lmproveme!'nta are analy&ed. As a 
result, the model envisaged is a superposition of a cyclic determlnl.atlc process ond a 
atochaaUc component. ln the analysts of rec:os·ds. spectral methods are uaed to detect 
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