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INTRODUCTION 

Flowing water has the capacity to carry varying amounts of sediment 

depending on the availability of sediment and the forces exerted by water on 

sediment particles. The amount of sediment transported ranges from 

virtually none at all in a crystal clear stream to over 50 percent by volume 

in mudflows as experienced at Mount St. Helens. Flows with high suspended 

sediment concentration are common in many part of the United States. 

Hyperconcentrations and mudflows have been observed in the San Francisco Bay 

area , in rivers downstream of Mount St. Helens, in Utah, in the Southwestern 

United States, and in other semi-arid areas throughout the world . In many 

cases when floods occur sediment concentrations are quite high with flow 

properties and sediment transport being considerably different than ~xpected 

from existing methodologies. 

The presence of suspended sediment and wash load (fine sediments 

carried in suspension with a particle size smaller than most sediment 

particles found in the bed of a stream) significantly affects the flow 

velocity and the sediment transport capacity of natural streams. When 

concentrations of sediments are low, effects are negligible, but at higher 

concentrations both the physical and dynamic characters of the fluid flow 

are different from clear water flow . The viscosity and specific weight of 

the fluid are increased, and turbulence intensity , velocity, sediment 

concentration distributions, flow resistance, and sediment transport 

capacity are changed. When the fluid become more viscous, the fall velocity 

of sediment particles in suspension decreases which allows them to remain in 

suspension for longer periods and total sediment transport rates are 

markedly increased. Fluid flow and sediment transport are affected by fine 

material in suspension even -at fairly moderate concentrations. This effect 



increases with increasing concentration such that at extremely high 

concentrations, including hyperconcentrated flows or mudflows, the mechanics 

of movement and flow properties are completely different from clear-water 

flow. Sediment mixtures have been observed to stop flowing due to high 

viscosity and yield stress and as yet no new relations or theory have been 

developed to fully explain these observations. 

This document stems from the far reaching goals of the ASCE Task 

Committee on Analysis of Laboratory and Field Sediment data accuracy and 

availability. With the general purpose to assemble and evaluate 

sedimentation data from laboratory and field investigations with regard to 

accuracy and availability, the problem of hyperconcentrations has also been 

included in the evaluation procedure . 

compilation of existing technology 

This document issued from 

on laboratory analysis 

provide guidelines for hyperconcentrated flows has been prepared .to 

a 

of 

th~ 

analysis of hyperconcentrations . Among the topics to be examined figure the 

definition and classification of hyperconcentrations. The terminology used 

in defining hyperconcentrated flow is rather complex and reflects the 

multitude of physical processes involved . The role played by particles of 

various sediment sizes is to be examined with respect to the cohesive 

properties of clay 

hyperconcentrations is 

particles. 

completely 

The rheological behavior of 

altered by the presence of large 

concentrations of sediment particles and small proportions of cohesive 

sediment particles. Laboratory measurements of rheological properties are 

essential to dissociate between yield, viscous, turbulent and dispersive 

stresses . In hyperconcentrations, the settling velocity of particles can be 

significantly reduced owing to the non-Newtonian behavior of water-sediment 

mixtures . The effect of hyperconcentration on veloci ty profiles and 

resistance to flow is also to be investigated . 
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I. DEFINITIONS AND CLASSIFICATIONS 

I-1. Terminology 

The following terminology is frequently referred to in this study: 

Hyperconcentrated flow~ defined as a highly sediment-laden flow in 

which the presence of fine sediments materially affects fluid properties and 

bed material transport compared with the flow without an appreciate quantity 

of fine sediments. From this definition it appears that hyperconcentrated 

flow includes flows changing from water-floods to landslides. In the next 

two sections, it may be seen that some investigators exclude mud/debris flow 

and landslide from hyperconcentrated flows. 

Kudflows ~ A mudflow is a flowing mass of predominantly fine-grained 

earth material that possesses a high degree of fluidity during movement. 

The degree of fluidity is revealed by the observed rate of movement or by 

the distribution of the resulting deposit . If more than half of the solid 

fraction of such a mass is coarser than sand, the term "debris flow" is 

preferable. In general , the water content of mudfi ow ranges from 10-60% 

according to various measurements. With an increase in water content, 

mudflows grade into loaded and clear streams; with a decrease in water 

content, they grade into earthflows and dry landslides. 

Mudflows possess a remarkable ability to transport very large masses of 

rock; this ability is in large part due to a relatively high specific 

gravity and the high viscosity . 

Landslides ~ Landslide is defined as a rapid downward movement under 

the influence of gravity of a mass of rock, earth, or artificial fill on a 

slope (see Varnes, 1958) . The motion may be either that of a slide, flow, 

or fall, acting si~gly or together. All are forms of slope failure arising 

3 



from a high shearing stress along a potential surface of rupture which 

exceeds the shearing resistance along a potential surface. 

Homogeneous flow ~ Homogeneous flows represents the flow regime in 

which the particles being transported are so small that the fall velocities 

are insignificant compared with the vertical motion of fluid, thus, the 

vertical distribution of sediment particles is nearly uniform . 

Heterogeneous flow ~ Heterogeneous flow is defined as the regime in 

which all solids are in suspension, but the vertical sediment concentration 

gradient is not uniform. 

I-2. Definition of Concentration 

Sediment concentration is defined as the amount of sediment in a unit 

amount of carrying water, usually expressed in volume or in weight . The 

common unit for expressing suspended sediment concentration is the milligram 

per liter computed as 1,000,000 times the ratio of the dry weight of 

sediment in grams to the volume of water-sediment mixture in cubic cen-

timeters . Other units, such as parts per million (ppm) or percent by 

weight, and percent by volume, have been used in the past to express 

suspended sediment concentration. In the analysis of hyperconcentrated 

flows, it is more convenient to use percent by volume as the measure of 

concentration. The conversion among these units is tabulated as follows; 

concentration, in milligrams per liter 

-A x (weight of sediment x 10 6 )/weight of water-sediment mixture 

-A x ppm 

-A x C xl0 6 
w 

=(kg/m3 )xl0 3 

- Ax (p C /(p + (p -p) C )) x 10~ s v s v 

4 

(1.1) 



in which the factor, A, is given by Table 1-1 and is based on specific 

weights of water and sediment of 1.00 g/cm3 and 2.65 g/cm3 , respectively, 

C is the sediment concentration measured by weight and p and p are the w s 

densities of water and sediment, respectively. 

I-3. Classification of Hyperconcentrated Flows 

The presence of suspended sediment affects the flow of natural streams. 

When concentrations of suspended sediment are low, the effects are 

negligible. At high concentration, however, both the physical and dynamical 

characters of the flows vary with different composition of sediments. These 

flow patterns are generally distinguished by different names, such as 

waterfloods, mud floods, mud flows, landslides , debris flows, etc ; depending 

on what kind of classification schemes is used by the authors. 

The classification schemes of hyperconcentrated flows vary from 

engineers, geologists, geomorphologists and researchers in different part of 

the world . Generally such flows have been classified (Bradley and 

Mccutcheon, 1985) according to: (1) triggering mechanism, (2) sediment 

composition, and (3) rheological and kinematic behaviors. 

Classification by flow triggering mechanism include groupings for 

lahars, till flows, semi-arid mountain mud flows, and alpine mud flows. 

Lahars are of volcanic origin and can be induced by related earthquakes, 

rapid melting of snow and ice, conversion of pyroclastic flows and dry 

avalanches to water borne flows, breaking or ejection of crater lakes, and 

saturation and failure of avalanches or debris dams (Higgins, et al . , 1983). 

Excessive rainfall can mobilize flows of material on volcano slopes which 

are also classified as laha rs. The flow may be hot or cold (Costa, 1984). 

Till flows originate in sediments on or near glacier, back-wasting of slopes 

composed of sediment and stagnant ice, melting of debris - lahar ice, and 
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Table 1-1. Factors A in
6

Eq. 3.11 for Computation of Sediment Concenrration in Milligrams per Liter When 
Used with 10 Times Ratio of Weight of Sediment to weight of Water-Sediment Mixturea 

Weight of sediment 
x 10

6 
A 

Weight of sediment x 10
6 

A Weight of sediment and water Weight of sediment and water 

(1) (2) (3) (4) 

0- 15,900 1.00 . 322,0v0-341,00 1. 26 
16,000- 46,900 1.02 342,000-361,000 1. 28 
4 7 • 000- 7 6 '900 l.04 362,000-380,000 1. 30 
77,000-105,000 1.06 381,000-398,000 1. 32 

106,000- 132,000 1. 08 399,000-416,000 1. 34 
133 '000-159 '000 1.10 417,000-434,000 1. 36 
16Q,000-184,000 1.12 435,000-451,000 1. 38 
185,000-209,000 1.14 452,000-467,000 1.40 
210,000-233,000 1.16 468,000-483,000 1.42 
234,000-256,000 1.18 484,000-498,000 1.44 
257,000-279,000 1. 20 499,000-513,000 1.46 

· 280,000-300,000 1. 22 514,000-528,000 1.48 
301,000-321,000 1. 24 529,000-542,000 1. so 

aBased on density of water of 1 . 000 g/ml, plus or minus 0.005 in the range of temperature 0°C-29°C, 
dissolved solids concentration bet~een 0 ppm and 10,000 ppm, and the specific gravity of sediment of 2.65. 
After ASCE "Sedimentation Engineering", 1975. 

Cv 

cw 

BAR CHART 
0 25 50 75 100 i 

0 46,9 7~.6 88.9 l~O % 
I 

ppm ~ .4p9 .7(.6 . §88 1
1
0 x 106 

mg/L ~ · 6p6 1. 3,21 1. ~JS 2165 x 106 

k 9I1113 I . 6 ~ 6 1 . 3.21 1 . ~ 18 216 5 x 10 
3 



erosion and mobilization of sediment by a catastrophic release of meltwater 

(Costa, 1984). Semi-arid mountain mud flows and alpine mud flows are 

triggered by the slumping or slipping of unconsolidated materials on steep 

slopes (Higgins, et al., 1983). Such movement usually occurs following soil 

saturation during fairly intense, short-duration rainfall events. 

While the above classifications have descriptive value, there is some 

overlap and lack of coverage, most notably for flows that are generated on 

lower gradient slopes. Consequently, classification by sediment content 

holds some advantage over schemes which are based on such a qualitative 

methodology. The most common classification schemes based on sediment 

content are given in Table 1-2 and some disagreements concerning terms and 

definitions are illustrated. These disagreements are mainly caused by the 

different composition of sediment samples used in the studies by different 

authors . Obviously, the physical and dynamic properties of flow with high 

concentration are affected not only by the sediment concentration, but also 

by the sediment size distribution, fine grain content, chemical properties, 

etc. For instance, with the same sediment concentration, flow with larger 

content of fine sediment has higher yield shear stress and its sediment 

concentration profiles are more uniform. This is why most hyperconcentrated 

flows with coarse materials in suspension in Japan are defined as debris 

flows or begin as debris flows, while most flows with fine materials in 

China tend to be fine-grained hyperconcentrated flows that grade into mud 

flows. Therefore, only sediment concentration is not sufficient to separate 

flow patterns . 

One of the disagreements is the division between hyperconcentrated 

flows and mud or debris flows. In this range the National Research Council 

(O'Brien and Julien, 1984) introduces a new term, mud flood, whereas 

hyperconcentrated flow may be more descriptive. Pierson and Scott (1985) 
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Table 1-2. Classification of Flow with High Concentration (after Bradley and Mccutcheon, 1985) 

Sediment concentration in volume (S.G. = 2.65) 
Sources 10 20 30 40 50 60 70 80 90 100 

Beverage, extremely 
and Culbertson high high hyperconcentrated flow mud flow 
(1966) 

Costa (1984) water flood hyperconcentrated fl ow debris flow 

NRG from O'Brien water flood mud flood mud landslides 
CX> and Julien (19 84) flow 

Takahashi (1981) debris grain fl ow !all, landslides, creep 
sturzstorm, pyroclastic flow 

Chinese ~ debris flow ~ 
investigators 

~ ~ (Fan, Dou, 1980) hyperconcentrated flow 

Pierson and Costa stream flow slurry flow granular flow 
(1984) hyperconcentrated (debris current) sturz-storm, debris 

debris and mud flows avalanche, earth flow 
solifunction soil creep 



have defined mud flows as having the strength by virtue of particle contact 

to hold interstitial water when the flow comes to a halt . Mud flow deposits 

are uniform and poorly sorted. They define hyperconcentrated flows where 

the sediment load separates into a suspended and bed load components. The 

fluid medium separates into two phases and sediment deposits are stratified 

or sorted. Pierson and Scott measured this transition between 

hyperconcentrated and mud flows for a 1982 lahar at Mt. St. Helens at 59 

percent by volume. This value is just below the 60 percent division 

assigned by Beverage and Culbertson (1964). Costa (1984) estimates the 

division between hyperconcentrated flow and debris flow at 47 percent by 

volume but notes that this can not be precisely defined. He refers to 

measurements of maximum concentrations by volume for hyperconcentrated flows 

ranging from 38 to 45 percent. The NRG assigns a fairly limited range for 

mud floods and mud flows. O'Brien and Julien (1984) seem to indicate that 

this arises because landslides are delineated over an extensive range, based 

on minimum and maximum packing of sediment particles. The packing of 

uniform spheres varies from 53 to 74 percent by volume while the packing of 

non-uniform silts, sands, and gravels ranges from 45 to 88 percent by 

volume . Evidently the lubricating action of interstitial water is ignored 

in assigning a range of 50 to 90 percent by volume to landslides . Further­

more, there are a number of observations of mud or debris flows in channels 

that fall within this range and thus dispute this classification . Fan and 

Dou (1980) note that concentration of 78 percent by volume have been 

observed in tributaries of the Yellow River, and 82 percent by volume in the 

Jiangjia Ravine debris flow. Fei (1983) notes measurements of 83 percent 

concentration by volume in the Yellow River. Costa summarizes debris flow 

concentrations falling in the range of 50 to 79 percent for flows in 
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Wrightwood Canyon in California, Rio Riventado in Costa Rica, Hunshui Gully 

in China, Bullock Creek in New Zealand, and Mayflower Gulch in Colorado. 

Pierson and Costa (1984) classified flows according to concentration 

and kinematic behaviors to avoid problems of using concentration as a single 

variable. The division between stream flow and slurry is assumed to be the 

transition from Newtonian and non-Newtonian behaviors. The break between 

slurry flow and granular flow is primarily a function of particle size and 

gradation. As of yet neither class can closely associated with specific 

concentration. Sediment size distribution, shape, cohesion or composition 

all seem to be important factors in such classification scheme . 

Since hyperconcentrated flow is such a complex flow phenomenon that a 

satisfactory classification is not available. As indicated by Bradley and 

Mccutcheon (1985), no single classification will describe all the components 

or describe the flow as channel geometry and sediment availability change in 

the downstream direction. Based on limited field evidence, the Beverage and 

Culbertson (1964) classification scheme seems to be more useful than the NRC 

scheme . The proposal by Pierson and Costa may be even more descriptive than 

that of Beverage and Culbertson, but the transition between 

hyperconcentrated flow and slurry flow remains difficult to estimate . 

I-4 . Sediment Size Distribution 

Many observations in flumes and some observations in rivers and deltaic 

deposits show that sediment size in hyperconcentrated flows is finer than 

that in mudflows or debris flows . A typical example is given by Pierson and 
~·· 

Scott (1~85) from the analysis of mudflows and hyperconcentrated flow from 

the Mt. St. Helens (Figure 1 - 1) . 

Field evidences indicate that there is a significant difference for 

sediment size distribution between debris/mud flows and hyperconcentrated 
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Figure 1-1 . 
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flows. Debris flows are characterized by poorly sorted deposits supporting 

coarse angular clasts (including pebbles) in a fine-grained matrix, while 

hyperconcentrated flow deposits are generally better sorted and may show 

stratification. Furthermore, they lack a fine grained matrix, levees, 

terminal lobate features, large clasts and have no preferred orientation of 

woody debris. 

The best parameters for distinguishing between debris and hyperconcen-

trated flows are sorting, kurtosis and percent clay. The sorting was 

determined by measuring the Inclusive Graphic Standard Deviation (Folk and 

Ward, 1957), oz, or the Trask sorting coefficient, Tr, which are defined 

respectively as; 

0 -z + (1.2) 

(1.3) 

in which ~ is defined as the particle diameter scale in terms of the 

negative logarithm to the base 2 of the diameter in millimeters (~ =log
2

D). 

It was reported (Costa and Jarrett, 1981; Pierson and Scott, 1985; etc.) 

that the Trask Sorting coefficient is much higher for debris and mudflows 

than for hyperconcentrated flow. Debris flows have kurtosis values near 1.0 

indicating even sorting , between the middle and extreme parts of the 

distribution curve. Hyperconcentrated flows are better sorted in the middle 

part of the distribution than at the extremes. The amount of clay in the 

debris flow deposits is greater than the amount necessary to exhibit yield 

strength . Hyperconcentrated flows do not have the necessary clay percentage 

to have a yield strength. 
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Sediment size distributions of mud flows and debris flows are also 

different although these flows have all been used to describe a flow regime 

with sweeping variations in the concentrations of solid materials. It is 

generally accepted that mudflow is simply a variety of debris flow in which 

the mud, although not necessarily quantitativ~ly predominant, endows the 

mass with specific properties and modes of behavior which distinguish it 

from flows of debris devoid of mud. Besides, debris flows have greater 

gravel content (larger than 50 %) than mudflow (Varnes, 1978) . 

I-5. Types of Sediment Transport 

Grain movement in flows with hyperconcentration differs considerably 

from that in clear water flow because of the frequent interaction of 

particles in the suspension. Generally, moving particles can be classified 

into: (1) contact load or bed load; (2) suspended ioad; and (3) neutral 

buoyant load; etc. 

Contact load is described as the transport of bed material in contact 

with bed surface either as rolling, sliding and jumping . Its submerged 

weight is counterbalanced by the impact caused by mutual collisions with bed 

particles. When the flow intensity (or flow velocity) is low, contact load 

may have frequent contact with the bed surface . When the flow intensity 

increases to a certain value, the movement of the grains will prevail in the 

layers below the surface, provided that the drag is large enough to overcome 

the frictional resistance of the surface layer . The particles moving or 

rolling in terms of this thin layer are thus called laminated load . In an 

ordinary sediment-laden flow, laminated load usually does not exist . Even 

if it does exist, it is relatively unimportant unless the slope of the river 

channel is larger than 1 percent (Qian and Wan, 1986). 
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Suspended load relates to sediment particles held in suspension by the 

interaction of vortices in turbulent flow with the particles and the 

interaction between particles. In most cases, potential energy from the 

flow is required to maintain the movement of suspended particles originated 

from turbulent energy. 

Neutral buoyant load exists in non-Newtonian flow because of the yield 

shear stress . The settling velocity of fine grains is zero and no relative 

sediment movement will occur unless the shear stress of the flow is greater 

than the yield shear stress. Consequently, particles with a certain 

submerged weight can be kept stationary without segregation with water owing 

to the existence of the yield stress. The maximum diameter of neutral 

buoyant particles D can be determined by the following formul a: 
m 

where k is a constant, r is the Bingham plastic yield shear stress, 
y 

(1.4) 

~s is 

the specific weight of particles, and ~f is the unit weight of mixture 

formed by water and particles finer than one fiftieth of D . m Experiments 

indicates that the constant K has an average value of 10 (Qian and Wang, 

1984). In fact, the neutral buoyant particles and water mix together to 

form a homogeneous fluid and moves in its entirety . 
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II. RHEOLOGY OF HYPER.CONCENTRATIONS 

II-1. Fundamentals 

Purely viscous, single-phase fluids and pseudohomogeneous multiphase 

fluid mixture that are stable even in the absence of turbulence may be 

classified in accordance with the nature of their response to shearing 

stresses under conditions resulting in unidirectional laminar flow. In 

other words, these fluid mixtures can be classified in accordance with their 

constitutive or rheological equation, namely , 

T - (2.1) 

where r is the shearing stress imposed on the fluid which is subjected to 

strain at a rate du/dy, which is the velocity gradient or the rate of shear. 

For purely viscous fluids this equation describes the rheology of the fluid. 

The graphical representation of the equation is known as the rheogram for 

the fluid. 

In the completely general case the functional relationship between the 

velocity gradient and the imposed shear stress is not a simple one . This is 

particularly evident with disperse multiphase mixtures as generally happened 

in hyperconcentrated flows. In general terms, then, we may e xpect the 

shearing stress within a fluid to be related not only to the rate of shear 

but to all other factors which determine the concentration and resistance of 

particles or particle agglomerates. This may be expressed as: 

(2 . 2) 
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where Cv' VP, Op, ~p are respectively, the concentration, average 

volume, orientation, and the shape of the particles or agglomerates 

at time t after the start of shearing; 

KPF and KPD are coefficients descriptive of the rate of formation or 

destruction of paTticles or agglomerates; 

KPA and KPM are coefficients descriptive of the rate of alignment or 

misalignment of the particles or agglomerates in the direction of the 

shear stress; 

E is measure of the elastic properties of the composite system. 

Although considerable effort has been expended in the search for exact 

relationship among the variables which ch?racterize the rheological behavior 

of fluids and fluid systems, thoroughly satisfactory constitutive equations 

have so far been derived only for the simplest case, the so-called Newtonian 

fluid. One of the major problems is the difficulty of determining, either 

theoretically or experimentally, the independent effect of each of the many 

influencing factors. On the other hand, it is possible, through reference 

to Equation 2.2, to explain qualitatively certain limiting forms of 

rheological behaviors, and this serves as a basis of classification. 

Fluids are classified into various rheological types on the basis of 

the form of their rheological equations or rheograms . 

classification is shown in Figure 2-1. 

The scheme of 

The major division is between fluids that are described as purely 

viscous and those that exhibit both viscous and elastic properties. Purely 

viscous fluids are those which, on removal of the shearing force, do not 

recover from any deformation they may have undergone under its action. The 

coefficients of any terms involving E in Equation 2.2 are zero. 

Viscoelastic fluids are those which, on removal of the shearing force, do, 

in fact, recover from the deformation they have undergone during the 
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Figure 2-1. 
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shearing action. Viscoelastic 

intermediate between purely 

fluids 

viscous 

may be 

fluids, 

considered as substances 

on the one hand, and purely 

elastic solids, which recover fully from deformation up to their yield 

stresses, on the other hand. The coefficients of terms involving E in 

Equation 2.2 are not all zero. In hyperconcentrated fluids, visco-elastic 

characteristics are generally not found and therefore in the following 

chapter we will not present the rheology of viscoelastic sediment-fluid 

mixtures. Interested readers may refer to Govier and Aziz's book (1972). 

The purely viscous fluids may be divided into the categories of time-

independent and time-dependent. The first category includes those fluids 

which, if they exhibit development of structure or orientation of particles, 

have rates KPF' KPD' KPA' and KPM which are sufficiently high that, for all 

intents and purposes, the fluids attain an equilibrium condition 

immediately. Such high values of the rate constants are equivalent to a 

situation where the coefficients of all terms involving t in Equation 2 ; 2 

are zero. The time-dependent category includes those other fluids _ that have 

lower rates of development or decay of structure or orientation, take a 

measurable time to attain their equilibrium conditions, and those behavior 

therefore depends both upon the rate constants and duration of shear 

measured from a time of known condition. The coefficients of terms 

involving t in Equation 2.2 are not all zero. 

The time-independent group of purely viscous fluids may be subdivided 

into several different types. The first category is that for which the 

rheological behavior is such that the rheogram passes through the origin of 

the r and du/dy coordinates. This means that the fluid responds to the 

smallest applied shearing stress or that there is no "yield" strength 

required to be overcome before flow commences. In the language of Equation 

2.2, this means that the rate constants are all high, that the coefficients 
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of terms involving E and t are all zero, and that C =0, or if C = 0, V , ~P' 
p p p 

and Op are such that the particles or agglomerates offer no resistance to 

the initiation of movement of the fluid. Within this "no yield" category 

are the Newtonian, the pseudoplastic, and the dilatant fluids. 

The second category of purely viscous fluids is that for which a finite 

shearing stress is required before flow commences. The rheogram for these 

fluids does not pass through the origin of coordinates but intercepts the T 

axis at a finite value known as the yield stress and characteristic of the 

fluid. In terms of Equation 2.2, this means that the rate constants are all 

high, that the coefficients of all terms involving E and t are zero, but 

that Cp=O and VP, ~P' and Op are such that the particles or agglomerates 

offer a finite resistance to the initiation of movement of the fluid. In 

this "yield stress" category of fluids are the Bingham fluids and the Yield 

pseudoplastics. 

The time-dependent group of purely viscous fluids includes the 

thixotropic and the rheopectic fluids. These are similar to the 

pseudoplastic or yield-pseudoplastic fluids except that their behavior is 

dependent upon the duration of shear. In Equation 2.2 the rate constants, 

or some of them, are not high, the coefficients of all terms involving E are 

zero, the coefficients of all terms involving t are not zero, and CP' VP, 

~P' and OP' or one or more of them, change with time. Details will not be 

given in this report because this type of flow merely occurs in 

hyperconcentrated flows or is not important. 

In the following sections, typical time-independent purely viscous 

fluid models of hyperconcentrations, including Newtonian, pseudoplastic, 

Bingh-plastic, dilatant, yield-pseudoplastic, yield-pseudodilatant, and 

quadratic, are discussed. The rheograms of these fluids are illustrated in 

Figure 2-2. Some of the empirical models which have been proposed for 
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relating shear stress to shear rate in these substances are given in Tables 

2-1 and 2-2, respectively, for those without and with a yield stress. 

II-2. Rheological Models of Fluids Without a Yield Stress 

2.2.1. Newtonian Model 

Newtonian fluids are so named because their rheological behavior 

follows the postulation of Newton that fluids might be expected to respond 

to an applied shearing stress by flowing in a manner such that the velocity 

gradient is strictly proportional to the applied stress. Newton postulated 

this for all fluids subject only to the restriction that the stress not be 

so high as to cause turbulence within the fluid. The Newton hypothesis is 

represented by the constitutive or rheological model (Schlichting , 1955) 

du 
T - µ dy 

(2 . 12) 

where µ is the kinematic viscosity of the fluids and du/dy is the velocity 

gradient or the rat~ of shear. 

In fact, hyperconcentrated fluids in the field generally do not follow 

the Newtonian model due to the existence of sediments and turbulence in the 

suspension. With no sediment or very limited sediments in the clear fluids, 

the rheological model can be described as 

(2.13) 

where ~ is Prandtl's mixing length and p is the mass density o f the fluid. 

For laminar flow, the second term on the right hand of Equation 2. 3 

disappears. 
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Table 2-1. Rheological Models of Hyperconcentrations Without a Yield Stress 

Equation 

2.3 

2.4 

2.5 

2.6 

2 .7 

Model 

Power law or 

Ostwald-de Waele 
(pseudoplastic or 
dilatant) 

Ellis 

Prandtl-Eyring 

Reiner-Phillippoff 

Sisko 

T -

T -

T -

Form 

(
du)n 

"P dy 

1 

-1 A sinh 

(~~) 

Reference 

Reiner (1949) 

Reiner (1960) 

Eyring (1936) 
Prandtl (1928) 

Phillippoff (1935) 

Sisko (1958) 

Table 2-2. Rheological Models of Hyperconcentrations with a Yield Stress 

Equation Model 

2 . 8 Bingham-plastic 

2 . 9 Herschel-Bulkley 

(yield-pseudoplastic 
or yield-pseudodilatant) 

2 . 10 Quadratic 

2 . 11 Rabinowitch-Mooney 

Form 

T - T + '7 y 

T - T + rJ y p 

f(r) - du 
dy 
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Reference 

Bingham (1922) 

Herschel and 

Bulkley (1926) 

O'Brien and 
Julien 1985) 

Rabinowitch 
(1929) 



2 . 2.2. Pseudoplastic Model 

Pseudoplastic fluids are those fluids for which an infinitesimal shear 

stress will initiate motion, and for which the rate of increase in shear 

stress with velocity gradient decreases with increasing velocity gradient. 

This type of behavior is widely encountered in solutions or suspensions in 

which large molecules or fine particles for loosely bounded aggregates or 

alignment groupings that are stable and reproducible at any given shear 

rate, but which rapidly and reversibly break down or reform with increase or 

decrease in shear rate. There is no single or simple form of constitutive 

equation that accurately describes the rheological behavio~ ~of pseudoplastic 

fluids, although several empirical equations are useful oy er limited ranges 

of velocity gradient. 
! 

These equations include the power l ~w wh i c h will be 
1 

discussed later, the Prandtl-Eyring equation (Eyring, 1936; Prandtl, 1928), 

the Ellis equation (Skelland, 1967), the Reiner-Philippoff equation 

(Philippoff, 1935), the Sisko equation (Sisko, 1958), and Cross equation 

(Cross, 1965). 

The widely used power law in engineering calculations is described by 

T = (2.3) 

where ry is the consistency index or power law coefficient and n is the flow 
p 

behavior index or power law exponent. The flow behavior index, n, is 

readily dete~mined as the slope of a plot of r versus (du/dy) on logarithmic 

coordinates. The value of n is less than unity for pseudoplastics. 

The power law fits experimental data for many pseudoplastics at 

intermediate velocity gradient and over a range of · 10 to 100 folds , but 

fails both at very low and very high velocity gradients ( Gov ier and Aziz, 

1972) . 
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2.2.3. Dilatant Fluid Model 

Dilatant fluids are those fluids for which an infinitesimal shear 

stress will start motion, but for which the rate of increase in shear stress 

with velocity gradient increases as the velocity ' gradient is increased. 

Mathematically they are similar to the pseudoplastic model and indeed the 

empirical equ~tions for pseudoplastics apply to the di la tan ts with 

appropriately different values of certain rheological constants. With 

reference to the power law, the flow behavior index, n, is greater than 

unity for dilatant fluids and less than unity for pseudoplastics. 

Dilatant fluids are much less common than pseudoplastics and dilatancy 

is observed only in certain ranges of concentration in suspensions of 

irregularly shaped solids in liquids and generally restricted to high shear 

rate ranges (Metzner and Whitlock, 1958). For example, it was found that in 

a highly sheared grain dispersion the shear stress, while neglecting the 

viscous shear stress , can be described by a dilatant model with the flow 

behavior index, n, equal to 2 (Bagnold, 1954; Takahashi, 1978, 1980). 

Unfortunately, the application of this model to actual hyperconcentrated 

flows was not convincing. 

II-3 . Rheological Models of Hyperconcentrations with a Yield Stress 

2.3.1. Bingham-Plastic Model 

The Bingham fluid is to some extent a limiting or idealized case . It 

is a fluid for which a finite stress is required to initiate motion and for 

which there is a linear relationship between the shearing stress in excess 

of the initiating stress and the resulting velocity gradient. The 

constitutive equation for a Bingham fluid is 

du 
T-T =~ 

y dy 
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where r =the yield shear stress, y 

~ -viscosity of the mixture or the coefficient of rigidity . 

Materials that behave as, or nearly as, Bingham plastics include 

pseudohomogeneous suspensions of ultrafine or fine particles in liquids at 

intermediate concentrations. Included among the suspensions which, within a 

range of concentration and especially at low shear rates, behaves as Bingham 

fluids are water suspensions of clay slurry or mud, fly ash, finely divided 

minerals, quartz, metallic oxides, and sewage sludge. 

Bingham-plastic model has long been used by many researchers (Thomas, 

1963; du Plessis and Ansley, 1967; Valentik and Whitmore , 1965; Fan and Dou, 

1980; Wan, 1982; Mills, 1983; Higgins, et al., 1983; Cao , et al ., 1983; Hou 

and Yang, 1983; etc.) in analyzing hyperconcentrated flows, esp e cially flows 

• 
with high fine-sediment concentration (for instance, mud or debris flows by 

most Chinese investigators). For narrow range of shear rates or low shear 

rate as happened in open channel hyperconcentrated flows, Bingham-plastic 

model has been successfully applied. 

2.3 . 2 . Yield-Pseudoplastic Model 

In many hyperconcentrated suspensions there exists a yield stress, as 

in the case of Bingham plastics, but the relationship between the shearing 

stress in excess of that initiating flow and the resulting velocity gradient 

is not linear. Commonly the ~elationship exhibits convexity to the shear 

stress axis, the fluids showing this behavior may be called yield-

pseudoplastics. (In the less common case when the curve is concave to the 

shear stress axis the fluid could be described as yield-dilatant . ) Many 

clay-water and similar suspensions behave as yield -pseudoplastics, 

particularly at intermediate levels of concentration. A wi dely used y ield-

pseudoplastic model is given by 
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T = (2.9) 

where and n are the characterizing coefficients . This three-parameter 

equation, first proposed by Herschel and Bulkley (1926) , was strongly 

supported by Chen (1983,1985) in modelling mud flows. Chen reported that 

Equation 2.9 is a generalized model that can cover the spectrum of 

Newtonian, Bingham-plastic, pseudoplastic, dilatant· and power law models 

depending on how the yield stress, r , the consistency index , ry , and flow y p 

behavior index, n, are chosen. 

2.3.3 . Quadratic Model 

Based upon physical reasoning, the shear stre ss e ncoun te r e d in fluids 

with large concentration of sediments should include components to describe: 

(1) cohesion between particles; (2) internal friction between fluid layers 

and sediment particles; (3) turbulence; and (4) .impact: of pa rt i cles. The 

resulting yield-dilatant model proposed by O'Brien and ~ulien (1985) can be 

written in a quadratic form: 

(2.10) 

where ry is the dynamic viscosity and ~ is the turbulent-dispersive 

parameter. In Equation (2.10) the third term on the ri ght hand side is 

referred to as the turbulent-dispersive stress combining t h e effects of 

turbulence and the effects of dispersive stress induced by the collisions 

' 
between sediment particles. The conventional expression for the turbulent 

stress in sediment - laden flows combines with Bagnold ' s d ispe rsiv e s t ress 

relationship because both stresses are proportional to t h e second power of 
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the rate of shear. The combined turbulent-dispersive parameter, r, can be 

written as: 

2 2 2 
r =- p .2 +ap .A D 

mm s s 
(2.14) 

where p and .2 are the density and mixing length of the suspension, D is m m s 

the diameter of suspended particle, a is the empirical parameter defined by 

Bagnold, and p is the density of sediment particles, and .A is the linear 
s 

concentration defined as the ratio of central distance between two particles 

and the diameter of the particles in suspension. .A can be expressed as a 

function of sediment concentration as 

.x ~ [ccvm;cv)l/3_1]-1 

where C is the maximum obtainable concentration with a value of .65 for vm 

natural sediment and .74 for sperical particle. 

Equation 2.10 has been tested against data from Govier et al. (1957), 

Savage and McKeown (1983) and Bagnold (1954). It is claimed that Equation 

2.10 is a sound physically-based rheological model for hyperconcentrated 

flows (Julien and Lan, 1989). 

2 . 3.4. Rabinowitch-Kooney Relations 

Instead of trying to develop a rheological relation to predict the 

shear stress as a function of shear rate and other parameters , Rabinowitch-

Moonay's relation states that shear rate can be expressed as a function of 

shear stress. The constitutive equation is written as 

f(r) - du 
dy 

(2.11) 

which was first developed by_ Herzog and Weissenberg (1928) and later 

emphasized by Rabinowitch and Mooney actually. 
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Many rheological equations, including the equations said above, and the 

Metzner and Reed's equation for viscoelastic fluids , can all be classified 

in to this relation. 

2.3.5. Metzner and Reed's Generalized Equation 

A generalized approach applicable to the laminar pipe flow of any time-

independent fluid has been developed by Metzner and Reed (1955), based on 

the Rabinowitsch equation in the form of Equation 2 . 15 

where n'= 

8V 
D [

1+3n' ] 
4n' 

d .£n(D.6P /4L) 
d .£n(8V/D) 

(2.15) 

The coefficient n' is determinable from the slope of a log-log plot of 

D~P/4L versus 8V/D where ~P/L is the pressure gradient at a flow velocity V 

in a pipe or capillary tube of diameter D under laminar flow conditions. 

The shear stress on the wall of the pipe of capillary tube, on the other 

hand, is obtained easily from force balance as, 

T 
w 

D~P 

4L 
(2.16) 

Equation 2.15 has been verified by Metzner and Reed (1955) for a variety of 

non-Newtonian fluids including pseudoplastic, yield-pseudoplastic, and 

Bingham-like fluids over an intermediate range of Metzner and Reed Reynolds 

number ReMR which is defined as 

n' 2-n' 
ReMR = D V p/fi (2.17) 
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where /3 = K'8n' -1 

and K' is defined in the equation 

D~P 

4L 
(2.18) 

The Metzner and Reed generalized equation has been also verified for 

dilatant materials by Grisky and Green (1971). The generalization of 

Metzner and Reed are of great value in instances where the rheological 

behavior of the fluids is not adequately described by one of the simpler 

constitutive equations, or when one is involved in the direct scale-up from 

data taken in a small diameter pipe . 
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III. RHEOLOGICAL KF..ASUREKENTS AND ANALYSIS 

Most engineers are familiar, at least in a general way, with the 

techniques of obtaining and interpreting laboratory data to determine the 

viscosity of a Newtonian fluid, but the measurement and interpretation of 

the rheological properties of non-Newtonian fluids and mixtures are less 

well understood. Skelland (1967) discusses these matters clearly and 

precisely. Here only a brief review will be given with emphasis on data 

interpretation rather than details of apparatus. 

III-1. Viscometric Equipments 

-Three different types of apparatus are in common use for measuring 

viscosity or other rheological properties. Each of these is designed to 

create conditions of laminar shear and to permit the measurement of 

quantities from which the shear stress and the rate of shear may be 

determined. The types are the following [Skelland,1967]: 

a. The capillary viscometer is a device that causes a sample of fluid 

to flow at a measured rate in laminar motion under a measured pressure 

gradient through a precision bore capillary tube of known diameter and 

length. A schematic illustration of this viscometer is shown in Figure 

3-l(a) . Precautions are taken to maintain constant temperature conditions, 

and corrections are applied for entrance and kinetic energy effects, and 

effective slip near the tube wall. This viscometer has the advantage of 

mechanical simplicity and of permitting the attainment of high rates of 

' shear. On the other hand, the sample is subjected to a rate of shear that 

varies from zero at the axis of the capillary to a maximum at the wall. 

Also ordinary capillary viscometer do not permit the same sample of fluid to 
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be subjected to sustained flow and thus are not suitable for measuring the 

behavior of time-dependent fluids. 

b. The concentric cylinder or rotational viscometer permits a sample 

of fluid placed in the annular space between a stationary and a rotating 

cylinder to be subjected to shear, and the torque acting upon the stationary 

cylinder to be measured, as shown schematically in Figure 3-l(b). 

Generally, the outer cylinder is rotating and the inner one is stationary, 

which ensures the stable condition of flows required in the test. The rate 

of shear is determinable from the geometry of the system and the speed of 

the rotating cylinder . The shear stress is obtained from the measured 

torque. A variant of the design involves the use of a single rotating 

cylinder, which may be immersed in a sample of the fluid in any suitable 

container. Again precautions must be taken to ensure laminar flow and 

constant temperature, and end-effect corrections may be required. 

The rotational viscometer is suitable for use over a wide range of 

rates of shear (although not the highest). With a small annular gap the 

shear rate is nearly constant through the fluid and this, coupled with the 

fact that a particular sample can be subjected to sustained shear, makes it 

a most useful instrument for the study of the viscous properties of non­

Newtonian fluids. 

c. The cone-and plate viscometer or the similar p a rallel-plate 

viscometer is designed to subject a sample of fluid maintained in the narrow 

space between a rotating, flat, circular plate and an inverte d cone or a 

parallel plate to laminar shear, as shown schematically in Figure 3-l(c). 

Generally, in the absence of strong secondary flows, these instruments are 

useful over a reasonable range of shear rates and are ide al fo r the study of 

viscous properties of non-Newtonian fluids at low and modera t e shear rates. 

For the cone-and plate geometry, the angle between the cone face and the 
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flat plate is normally less than 1 degrees. Measurements of the rotational 

speed and the torque permit the calculation of the rate of shear and the 

shear stress. Precautions are required to ensure isothermal conditions and 

the absence of secondary flows, but end effect corrections are usually 

negligible. One of the chief differences resulting from the cone-and-plate 

and the parallel-plate arrangements is the near constancy of the rate of 

shear in the cone-and-plate geometry. This allows a direct calculation of 

shear rate and shear stress without the necessity of differentiating the 

torque-rotational speed data, as must be done with the parallel-plate 

geometry. It should be noted, however, that the analysis for the cone and 

plate is only approximate for situations where elastic effects are present, 

and that secondary flows may cause errors in the interpretation of the data. 

The secondary flows are minimized by using small cone angles and low 

rotational . speeds. A detailed discussion of these effects and indications 

of the range of utility of the cone-and -plate viscometer has been presented 

by Ginn and Metzner (1969). Generally, for an unknown fluid it is not 

possible to predict the magnitude of the secondary flows in the cone-and­

plate geometry and the parallel plate device is preferable. Notwithstanding 

this, the cone-and-plate data of Ginn and Metzner and of Meister and Biggs 

(1969) show excellent agreement with capillary tube data and suggest that, 

with proper corrections for inertial effects, a cone-and-plate instrument 

with a cone angle of less than 2 degrees will give results suitable for most 

applications. 

III-2. Determination of Rheograms 

The interpretation of the laboratory measurements for engineering use 

involves the calculation of points to define the rheogram or flow curves for 

the fluid and, in the case of viscoelastic fluids , the calculations of the 
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normal stresses. This means the calculations of the rates of shear from the 

measured data and the corresponding shear stresses, and the normal stress 

difference in the case of viscoelastic fluids, and requires a complete 

understanding of the details of the flow of the fluids in the instrument. 

3 . 2.1. Capillary Viscometer 

With the capillary viscometer, the measured data related to the viscous 

properties, after application of any appropriate corrections, are: 

Q - volumetric flow rate, 

D inside diameter of capillary, 

L effective length of capillary, and 

t::.P pressure drop due to laminar friction over length L. 

The average fluid velocity is 

2 
V - 4Q/1rD (3.1) 

Under conditions of steady, fully developed flow through the vertical 

capillary tube the following force balance applies: 

2 

or 

(1rD /4)!::.P - 1rDLr 
w 

(3.2) 

(3.3) 

where T is the shearing stress at the wall of the capillary . The rate of 
w 

shear of the capillary wall may be determined from the general equations of 

Rabinowitsch (1929) and Mooney (1931), i.e., Equation (2.15). The slope, 

n', may vary and the applicable value should be used for each value of 8V/D. 

For Newtonian fluids n' -1. 

The interpretive procedure is, therefore, 

a. to calculate T from the data after any appropriate corrections, and 
w 

Equation 3.3, 
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b. to plot T versus 8V/D on logarithmic coordinates and determine n' 
w 

as a function of 8V/D; 

du 
c . to calculate (- ~d ) from Equation 2 . 15; 

r w 
du 

d. to plot T versus (- ~) on lines or logarithmic coordinates as w dr w 

preferred, and 

e. if desired, to fit an appropriate one of the constitutive equations 

to the data to determine the expected rheological parameters. 

3.2.2. Cylindrical Viscometer 

The viscous property data obtained with a concentric cylindrical 

viscometer are: 

Ri - diameter of the inner cylinder or the bob assumed to be 

stationary, 

R0 diameter of the outer cylinder or the rotating cup, 

8 spring deflection being a measure of the torque on the stationary 

cylinder, 

h height of stationary cylinder immersed in fluid, corrected for end 

effect, 

N speed of rotating cylinder, 
-1 

sec 

Neglecting end effects at the base of the bob, a simple force balance 

yields the following equation to calculate the torque acting upon the 

stationary bob; 

or 

2K8 
2 

~R.h 
i 

(3.4) 

(3.5) 
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where T is the torque on the stationary cylinder, rRi is the shear stress on 

the stationary bob, and K is a suitable spring constant. 

The relationship between the rate of shear and the geometry of the 

system is given by an equation due to Krieger and Maron (1954); 

wheres - R0 /Ri. 

FKM - the Krieger-Maron correction factor, 
2 

FKM - 1 + s 2) [1 + ! fo sW" -1] 
2 

s - 1 [ 1 · 2 d(l/n"-1)] + ----2- ..en s (n" -1) + d ..en T 
6s 

(3.6) 

( 3. 7) 

n" - d(.2n T)/d(.£n N) is the slope of a logarithmic plot of T versus N. 

When n' is constant, or nearly so, · the equation simplifies somewhat and 

may be approximately by a series expansion. 

Calderbank and Moo-Young (1959) have calculated values of FKM from the 

approximate equation for series of values of sand n". These are given by 

Skelland (1969). For Newtonian fluids, n" -1 and FKM-1. 

If the annular gap between cup and bob is made very small (i.e., s ~ 

1.0), the shear rate approaches a constant value across the annulus and is 

given by 

du 
--d - 2~RN/(R0 -R.) r 1. 

(3.8) 

The procedure for interpreting data from the concentric cylinder 

viscometer is, therefore, 

a. to calculate rRi from 8, Equation 3.5 and the appropriate value of 

K· I 
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b. to plot 8 versus N on logarithmic coordinates and determine n" as a 

function of N; 

c . to calculate FKM for the value of s and N of interest from Equation 

3. 7; 

du 
d . to calculate (dr)Ri from Equation 3 . 6 with appropriate values of N, 

du 
e. to plot TRi versus (dr)Ri on arithmetic or logarithmic coordinates 

as preferred, and 

f . if desired, to fit an appropriate one of the constitutive equations 

to the data. 

For rotating cylinder viscometer , the procedure is the same as for the 

concentric cylinder instrument except that the shear rate at the surface of 

the rotating cylinder is given by 

du 
- 47rN/n" dr 

3.2 . 3. Cone-and-Plate Viscometer 

(3.9) 

The interpretation of the viscous behavior data from the cone-and-plate 

viscometer is easiest of all . The data consist of 

R diameter of the stationary plate, 

0 angle between the cone and plate, 

N rotational speed of cone, rps, 

8 spring deflection being a measure of the torque on the plate. 

The rate of shear at a radius r is given by 

21frN 21fN 
::::::: 

rtanO 0 
( 3 .10) 
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since for small angles tanfl ~ 0. As mentioned earlier, for the range of 

cone angles employed, the rate of shear is essentially independent of r, 

i.e., is constant through the fluid. 

If T - K8 is the torque (where K is a suitable spring constant), then 

from a force balance, and since T is constant under the constant rate of 

shear, we have 

R 2 
T - 21fTf0 r dr 

from which 

T -
3K8 

3 
21rR 

From these relations the interpretation procedure is 

(3.11) 

(3.12) 

a. to calculate T from the deflection, and spring constant using 

Equation 3.11; 

du b. to calculate dr from the cone speed and Equation 3 . 12; 

du 
c. to plot T versus dr on arithmetic or logarithmic coordinates as 

preferred; 

d. if desired, to fit an appropriate one of the constitutive equations 

to the data. 

III-3. Analysis of Rheograms 

3.3.1. Determination of Yield Stress 

Yield stress, as it is defined, is the minimum shear stress required to 

initiate motion in the sediment suspension. It can be evaluated graphically 

as the shear stress at zero shear rate from the rheogram obtained hereby. 

Here precautions must be taken to ensure data points in the low shear rate 

38 



region, otherwise yield stress may be over/under estimated considerably 

because rheological relationship of the suspension at low shear rate region 

may not follow the same at high shear rate region. Figure 3-2 shows typical 

rheograms of mud and bentonite suspensions from O'Brien and Julien (1985) 

and Engelund and Wan (1984) illustrating this particular phenomena. 

In hyperconcentrated flow (including mud and debris flows) study, a few 

empirical equations have been supposed to relate the yield stress to the 

concentration of the sediment particles, mostly basing upon the assumption 

that the suspension behaves as a Bingham fluid. The first equation was 

developed by Arrhenius and later extended by Thomas (1963) 

3 
k 1 C 

v 
T y (3 . 13) 

where k 1 is constant characterizing the suspension and dependent on the 

particle size and shape and electrolyte concentration. Thomas has studied 

the dependence of k 1 on the shape and size of particle, he finds 

(3.14) 

2 
where k 1 is in units of lbf/ft d is the particle diameter in microns, and 

~ 1 is a shape factor given by 

(3.15) 

where sp surface area per unit volume of the actual particles, 

s 0 surface area per unit volume of a sphere or cube of equivalent 

dimension - 6/d 

These equations appear suitable for particles of irregular crystalline shape 

but not for spheroidal particles for which ~ 1 is approximately 0.1. 

Thomas (1963) has extended the above work on dispersed ultrafine and 

fine particles to cover floes of such particles of overall dimensions up to 

115 microns. He shows that 

(3.16) 
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- 2 2 
where k 1 - l.SSxlO lbf/ft , 

a - ratio of the volume of immobilized dispersing fluid to the volume 

of solids related approximately to the particle and floes apparent diameters 

through the equation 
2 

df/dapp - (l+a ) (3.17) 

where df - apparent floe diameter and d -apparent particle diameter given app 

by 
2 

dapp - d(s 0 /sp)exp(-0.Sln a) 

where a - logarithmic standard deviation. 

(3.18) 

Street (1958) and Thomas (1963) suggested an exponential relationship 

between yield stress r and sediment concentration by volume . Such relation 
y 

has been later verified by many researchers (Qian et al., 1980; O'Brien 

et al., 1988) through studies o.f mudflow, debris flow or clay suspensions. 

This exponential relation is generally expressed as 

/32Cv 
e (3.19) 

where coefficient a 2 and 132 depend on the type and concentration of 

particles in the mixture. A summary of the results is given by O'Brien and 

Julien (1988) in Table 3-1 . 

Similar formula has been given by Fei (1983), 

ry - a exp[M(C -C )/C ] 
V VO vm (3.20) 

where C is the critical concentration for the formation of Bingham fluid, 
VO 

C is the maximum attainable concentration for maximum viscosity, and 
vm 

M _ { 8.45 
6.87 

for sediment slurry 
for coal slurry 

When the suspension does not appear to show Bingham properties, the 

above equations can not be applied to calculate the constitutive parameters 

of the mixture . 
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Table 3-1. Yield Stress and Viscosity of Mudflow Matrices (after O'Brien 
and Julien, 1988) 

f32Cv /31Cv 
T =- a 2e ,., = a 1e y 

Source 
a2 

/3 
al 

(dynes/cm2 ) (poises) {3 
(1) (2) d) (4) d) 

(a) Relationships Found in Field 

Aspen pit 1 1. 81 x 10- 1 25.7 3.60 x 10- 2 22.l 

Aspen pit 4 2. 72 10.4 5.38 x io- 2 14.5 

Aspen natural soil 1. 52 x 10- 1 18.7 1. 36 x 10- 3 28.4 

Aspen mine fill 4.73 x 10- 2 21.1 1. 28 x 10-l 12.0 

Aspen natural soil 3.83 x 10- 2 19.6 4.95 x 10- 4 27 . 1 
source 

Aspen mine fill 2.91 x 10-l 14.3 2.01 x 10- 4 33.1 
source 

Glenwood 1 3.45 x 10- 2 20.1 2.83 x 10- 3 23.0 

Glenwood 2 7.65 x 10- 2 16.9 6.48 x 10-l 6.2 

Glenwood 3 7.07 x 10-4 29.8 6.32 x 10- 3 19.9 

Glenwood 4 1. 72 x 10- 3 29.5 6.02 x 10- 4 33.1 

(b) Relationships Found in Literature 

Iida (1938) 3.73 x 10- 5 36.6 

Dai et al. (1980) 2.60 17.48 7.5 x 10- 3 14.39 

Kang and Zhang 1. 75 7.82 4.05 x io- 2 8 . 29 
(1980) 

Qian et al. (1980) 1. 36 x 10-3 21. 2 

-5.0 x 10- 2 -15.48 

Chien and Ma (1948) 5 . 88 x io- 2 19.1-32.7 

Fei (1981) 1. 66 x 10-l 25.6 

-4.7 x 10- 3 -22.2 
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3 . 3 . 2. Determination of Viscosity 

The viscosity or the coefficient of rigidity of Bingham suspension can 

also be expressed as a function of solid particle concentration by volume. 

A widely applied formula is 

-m 
µ - (1-c;c ) r v (3.21) 

where µr is the ratio of the viscosity of the suspension to that of clear 

water at the same temperature, ~ is a coefficient related to the size, shape 

and composition of the sediments in suspension, and m is an exponent with ·a 

common value of 2.5 .. Considering that both the particles themselves and the 

bonded water, which is strongly attached to the surface of fine grains with 

a thickness of 6, contribute to the viscosity of the suspension, Fei (1983) 

derived the same formula and an equation to calculate the coefficient e, 
(3.22) 

where a is a coefficient and ~P. is the percentage of particles with 
1. 

diameter D .. 
1. 

If we let Cvm-1/c;, µr becomes infinity when Cv=Cvm C is 
vm 

then called the maximum concentration for maximum viscosity . . And Equation 

5 . 22 can be rewritten as 

-m 
µ =- ( 1-C IC ) 

r ir vm (3.23) 

where m equals 2 . 5, which is exactly the same formula as used by Landel et 

al. (1963) to calculate the viscosity of Newtonian suspension of fine 

particles. 

Thomas (1963) also .related the viscosity of the suspension to the 

sediment concentration in an exponential form as, 

(3.24) 

where k 2 is a coefficient given by 

(3.25) 

in which ~2 is a second shape factor defined as 
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l/12 - Jsp/so , (3.26) 

and d, sp, s 0 are as defined above. 

A more general regression relation has been given in a similar 

exponential form as Equation (3.19), i.e. 

f31Cv 
'1 = a 1e 

which is popularly used all over the world (Thomas, 1963; Dai and Wan, 1980; 

O'Brien, 1986; O'Brien and Julien, 1988, etc.). A summary of tested results 

by O'Brien and Julien for the c oefficients a 1 and 131 is also given in 

Table 3-1. 

"Apparent viscosity" of a non-Newtonian fluid, µa, is defined as the 

ratio of sh~ar stress to the corresponding shear rate, that is, 

µ -a r/(du/dy) ( 3 .-2 7) 

Generally the apparent viscosity of a suspension is a function of 

particle size and shape, composition of solid particles, and shear rate 

applied to the fluid. For Bingham plastic fluids, µa is independent of the 

shear rate, while for pseudoplastic fluids, µ declines from µ 0 at du/dy=O. 
a 

asymptotically to a limiting value µ
00 

as du/dy ~ oo • 

3.3.3. Dispersive Shear Stress 

Dispersive shear stres s was introduced by Bagnold (1954) to denote the 

shear stress induced by interparticle collisions in the suspension when the 

solids concentration is high. It is included in the turbulent-dispersive 

shear stress term in the quadratic model (Eq. 2.10). The theoretically 

derived expression for the dispersive shear stress is 

2 du 2 
a 1 p (AD.) (~d) sina 

s 1 y T -D 
(3.28) 

where a is the angle of internal friction, and the other parameters are as 

defined before (Equation 2.14). Equation 3.28 is based on the assumption 

that uniformly dispersed, spherical particles of equivalent mass exchange 
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momentum in an elastic collision and viscous stresses in the suspension are 

negligible. This assumption may not be true since collisions between non-

uniform, angular particles of different sizes, traveling through a fluid at 

different velocities are generally inelastic, which implies that a 

calibration is required in the equation. On the other hand, the 

proportional coefficient a 1 in the equation is a variant being a function of 

sediment concentration (Bagnold, 1954) and possibly flow velocity in the 

open channel flows (Takahashi, 1980). 

Bagnold used a flexible rubber inner cylinder wall in his concentric 

cylindrical viscometer to measure the shear stress of hyperconcentrations 

under high rates of shear. At low rates of shear, viscosity dominates and 

the stresses are linearly proportional to the shear rate. Under high rate 

of shear, Bagnold suggested that the dominant shear stress can be 

contributed to interparticle friction and collisions. In this grain inertia 

region, both the normal and shear stresses depend on the second power of the 

shear rate. The rheograms he obtained from neutral buoyant suspension are 

presented in Figure 3-3(c). It was from the high shear region where the 

slope of rheogram is two in the log-log graph, that the dispersive shear 

stresses were determined. The coefficient a
1 

obtained thus by Bagnold are 

functions of concentration A as shown below 

<14 
14.5 
17 . 0 

0.034 
0.043 
0 . 17 

although suspension with concentration A > 14 is unrealis ti c in natural 

stream; while Takahashi gave different values of a
1 

from different discharge 

of inertial flows generated in a flume (Takahashi, 1980) 
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with no measurement on sediment concentration. 

Equation 3.28 has been utilized by Lowe (1976), Takahashi (1978, 1980), 

and Savage (1979) and Savage and McKeown (1983) to investigate momentum 

exchange in grain flows. Takahashi (1980) applied it to open channel mud 

and debris flows to predict the flow velocity distributions, but the results 

were not convincing due to the unreasonable ignorance of other shear stress 

components such as turbulence in the suspensions. Obviously this simulation 

will be improved if the total shear stress set to equal to the sum of 

dispersive stress, viscous stress and turbulent stress, as described in the 

Quadratic rheological model (Equation 2.10). 

3.3.4. Example of Analysis of Rheogram Using the Quadratic Model 

The rheological properties of hyperconcentrated sediment mixtures have 

been studied by Julien and Lan (1989) using the quadratic model (Eq. 2.10) 

and experimental data sets from Bagnold (1954), Govier et al. (1957), and 

Savage and McKeown (1983). Despite the dissimilarities of sediment sizes, 

types and rates of shear, it is found that Eq. 2 . 10 fits these three data 

sets extremely well, as shown in Figure 3.3. The parameters r I YJ I y 
and r 

thus obtained for each data set are compiled in Table 3-2, which indicates 

that these three parameters increase with increasing sediment concentration. 

Equation 2.10 can be rearranged to give its linearized dimensionless 

form, that is, 

* * * r = 1 + (1 + T ) a D a v 
(3.29) 
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Table 3-2. Coefficients, T ' YJ and r as Functions of Sediment Concentration 
and Types of Sediment (after Julien and Lan, 1989) 

1. Govier et al.'s (1957) 

d mm 0.0218 0.0218 0.0218 0 . 0218 0.0218 0. 0218 s 

c % 39 . 7 34.l 30.3 24.9 21. 8 16.8 v 

T dynes/cm2 78.4 20.7 y 9.84 5.00 3.20 2.61 

YJ poises .351 .290 .137 .093 .067 .0315 

r g/cm 3.15xl0 -3 2.4xl0 -4 l.28xl0 -4 3 . lOxlO -5 3 . 8x10 -5 6.34xl0 -5 

2. Savage and McKeown's (1983) 

d mm 0.97 0.97 1. 78 1. 78 1. 24 s 

c % 42.9 53.0 53.0 42.9 53.0 v 

T dynes/cm2 1. 96 1. 75 3.59 0.14 6.61 y 

YJ poises . 715 .975 1. 34 .882 .983 

r g/cm 5.8xl0 -3 2.55xl0 -3 1. 88x10 · 2 2. 72xl0 -3 2 . 63x10 -2 

3. Bagnold's (1954) 

d mm 1. 32 1. 32 1. 32 1. 32 1. 32 1. 32 1. 32 s 

c % 60 . 6 57.0 51.1 45.6 38 . 5 32 . 0 23 . 0 v 

T dynes/cm2 8.15 6 . 72 3.00 4.20 2 . 93 2.18 0 . 00 y 

YJ poises 0.75 .485 . 300 .185 . 126 . 083 . 067 

r g/cm .0342 .0224 .0088 .0048 .0025 . 00144 .00064 
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in which the three dimensionless parameters are defined as 

(1) 

(2) 

(3) 

* T 

* D 
v 

T - T 

~(~0 dimensionless excess shear stress; 

(du) d" · 1 d " · I · · d dy , imens1on ess ispers1ve viscous ratio; an 

dimensionless turbulent/dispersive ratio. 

* * When r is plotted versus D in Figure 3.4, it is observed that data 
v 

sets from Bagnold, Govier et al . , and Savage and McKeown can fit in a 

straight line together. * Besides, it's clear that the parameters D can be 
v 

used to delineate particular cases of the quadratic model . The . results 

* shown in Figure 3.4 indicate that T is sufficiently close to unity when 

* * D < 30 to justify the use of Bingham plastic model . On the other hand, r 
v 

* exceeds four when D is roughly larger than 400 , which indicates that in 
v 

this region the turbulent-dispersive stress is dominant. 
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IV. SETILING VELOCITY 

The settling velocity of a given particle in a sediment-laden flow is 

expected to be different from that of the same particle in clear water 

because of the mutual interaction between particles and of a hydrodynamic 

interference between particles and the suspending medium, even without fine 

sediment. Generally , one might expect hydrodynamic interference, 

the rule rather than the interparticle collision, and interaction to be 

exception at volumetric concentrations in excess of 2 or 3 percent, and 

where the particles do not agglomerate the settling velocity is reduced. 

The magnitude of settling velocity reduced then depends upon the total 

sediment concentration, fine sediment concentration, and physical properties 

of sediment particles, etc. 

IV-1. Settling in Mixtures of Fine and Coarse Particles 

With both fine and coarse particles in suspension the settling 

properties of particles become much more complicated. Collisions and 

flocculation might occur after the sediment concentration reaches a certain 

value. Generally three categories of settling are to be expected 

to the concentration as well as the sediment constituent, 

according 

which is 

represented by the concentration for maximum viscosity. These categories 

are: 

category 1, restricted settling of discrete particles and discrete 

floes; 

category 2, settling of discrete 

flocculent structure; 

particles in suspension 

category 3, slow settling of flocculent structure as a whole. 
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In category 1, the fine particles gather into floes but the flocculent 

structure has not developed yet. Coarse particles and floes freely settle 

in discrete form with interference between them. In category 2, flocculent 

structure starts to be formed by the fine particles and yield shear stress 

appears. Coarse particles, while settling across the flocculent structure, 

are subject to a large drag by the latter. In category 3, all the particles 

transform into neutral buoyant load. The flocculent structure prevents the 

coarse particles from settling freely and all the particles settle slowly as 

an entirety. Following an increase in concentration the settling of 

sediment will gradually transform from category 1 to category 2, and then to 

category 3. The coarser the sediment constituent, the higher the 

concentration at which transition takes place. 

Over the past few decades, investigations on the settling velocity of 

particles in hyperconcentrated flow concentrated on category 1., leaving a 

blank in the studies of categories 2 and 3. And clearly, most of these 

studies are based on the assumptions that the suspension has Bingham fluid 

properties. Among these studies , Pazwash's, Valentik and Whitmore's, 

Plessis and Ansley's, and Ansley and Smith's retain most attention . 

4 . 1 . 1 . Plessis and Ansley's Method (1967) 

Plessis and Ansley treated semi-theoretically the drag force of Bingham 

fluid on various boundary geometry . First the yield force was obtained by 

integrating the yield stress over the surface of the sphere and then the 

submerged weight of the particles was again assumed to be the counterbal-

anced by the stokes drag force and the yield force . The derived expression 

for drag coefficient, CD' is written as 

(4.1) 
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where c0 is related to the fall velocity of particles in the suspension, w, 

as 

2 
,W i.. (4.2) 

Fot g~netality . Plessis and Ansley expressed c0 as; 

] - f (P) (4 . 3) 

2 2 
in which He 'is the particle Hedstrom number defined as pD r y/'1 and ReB is 

the Bingham Reynolds number defined as pDw/71 , P was called the plasticity 

number in their study. With experimental data from a concentric cylindrical 

viscometer, Plessis and Ansley obtained by least square analysis that 

(4 . 4) 

with a regression coefficient r - . 96 . 

Ansley and Smith (1967) combined in a little different manner from that 

of Plessis and Ansley the two dimensionless terms, i.e ., ReB and He, into a 

single parameter . They expressed the dynamic state of the Bingham fluid 

around a moving sphere in the ratio of a characteristic inertia to the sum 

of a viscous stress and a yield stress as 

c = 
D [ 

Re~ ] 
f ReB+KHe 
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The parameter, K, in the above expression was treated as the ratio of the 

contribution of the yield stress and viscous stress terms to the drag of the 

sphere. The value of K was determined to be 7~/24 by a flow model which is 

composed of the field envelop sheared around the sphere. As a matter of 

fact, Equations (4.4) and (4 . 5) are the same kind. 

4.1.2. Valentik and Yhitmore's Method (1965) 

In this method, Valentik and Whitmore attempted to resolve the problem 

by assuming that a moving sphere is surrounded by a concentric sphere of 

influence, that is, the concept of "the unsheared envelope". According to 

them, the submerged weight of a sphere in clay suspension is counterbalanced 

by two forces, yield force and drag force, which is expressed by 

2 
~o 
__!:! 

4 (4.6) 

in which D is the hypothetical diameter of the unsheared envelope u 

surrounding the sphere with a uniform thickness. Generally, D has a value 
u 

ranging from .90 to 1 . 60 . Then the drag coefficient is expressed as 

p -p 2~r 
C - ~ &Q (D._) 2 (-s-) - ___:_t.2 

D 3 2 D p 
w u pw 

(4.7) 

4.1 . 3. Pazwash's Method (1970) 

Pazwash's · approach toward this problem is no other than Plessis and 

Ansley's. For the drag on a sphere in a Bingham fluid flow, he assumed that 

the Stokes creeping motion is valid with ~ instead of µ. He postulated that 

ff (r 0 sin8 + pcos8)dS s 
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and (4.9) 

in which r 0 is the boundary shear stress; p is the pressure on the boundary; 

and r is the radius of the sphere. The drag coefficient was obtained by 

1f1' 

c - 24 + ~ (4.10) 
D ReB pU~/2 

in which is 
1 2 

the velocity of approaching Bingham fluid, ry/(2 pU 0 ) was 

designated as "The Plasticity number" . Equation 3 . 14 was generalized by an 

empirical factor, K , which depends on the shape of the boundary, as 
p 

2K He 
C - 24 _Q_ 

D R + Re 2 
eB B 

4.1.4. Evaluation of Each Method 

(4.11) 

A straightforward way to evaluate a method is to compare the results of 

calculations with the actual measurements in hyperconcentrated fluids. 

Here, the method of Valentik and Whitmore is discarded from this evaluation, 

since it is not directly related to the fall velocity prediction and its 

physical reasoning was pointed out to be unrealistic (Woo, 1986). The data 

obtained by Valentik and Whitmore, along with data obtained by Pazwash, 

Plessis and Ansley, Xu and Wu, however, were used for the evaluation of 

other methods. On the other hands, it is easily observed that the 

abovementioned three formulations to calculate the drag coefficient c
0 

are 

essentially the same, they all can be written as 

(4.12) 
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with which K is 1.0 in Plessis and Ansley's method, 7~/24 in Ansley and 

Smith's method, and 1.5 in Pazwash's method. Therefore comparison of only 

one of these methods with the measurements is necessary. Herein, Ansley and 

Smith's method is chosen to compare with experimental measurements in Figure 

4-1. The data points scatter below the Newtonian curve although the 

correlation using Pazwash's data only appears to be improved. The 

scattering appears to be due primarily to the inaccuracy of experimental 

data, namely r and~. rather than the inadequacy of the equations as y 
pointed by Pazwash (1970). As applied by many researchers, r and~ were 

y 

determined by drawing a straight line passing through the experimental 

points in the rheogram of the suspension in a certain region of shear rate. 

This may overestimate or underestimate these coefficients if the rheogram of 

the suspension do not possesses a straight outline, i.e., the suspension can 

not be strictly described as Bingham fluid, for instance the kaoline 

suspension used by . Valentik and Whitmore. This implies that only adequate 

rheological model can accurately evaluate the settling velocity of particles 

in hyperconcentrated flows. Unfortunately, the rheology of 

hyperconcentrated which is to be discussed in the last chapter is not well 

simulated up to now, which makes it difficult to determine the settling 

velocity of particles accurately . 

IV-2. Settling in Mixtures of Coarse Particles 

The gross settling of uniform coarse grains generally obeys the 

formula: 

(1-C )m 
v 

(4.13) 
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in which w is the gross settling velocity, w0 the settling velocity of a 

single particle in an infinite mass of . fluid and the exponent m is a 

function of the Reynolds number Re=w 0 D/v, in which D is the diameter of 

sediment particles and v is the kinematic viscosity of clear water. 

According to Richardson and Zaki's study (1954), m approaches a maximum 

constant value of 4.46 for Reynolds number smaller than .4 and app~oaches a 

4 3 
minimum of .3 when Re is greater than 10 10 . Other researchers reported 

higher m value as shown in Figure 4-2, which implies that th~ exponent m is 

not only a funatio~ of grain Reynolds number but also a function of other 

factors. Yue (1983) contends that m should decrease with concentration. It 

appears that the scattering of experimental points in Figure 4-2 is yet to 

be properly explained . 

In nonuniform suspensions, Equation (4 . 13) may not apply. After 

considering the effects of bonded water on the particle surface on the 

mixture's properties, Chu (1982) developed a new formula to calculate the 

gross settling velocity of a swarm of non-flocculated particles for high 

concentration, which is expressed as; 

- [l - e K.. c J
3

·
5 

Wo b-b V 
(4 . 14) 

where ~ is the ratio of the volume of bonded particles to that of unbonded 

particles and eb is the coefficient of the pores caused by collision between 

particles. Commonly, Ob is taken to be 1.4 and~ is expressed as 

1 

~ - 1 + 6 f 0 (o/D) dP (4 . 15) 

in which o is the thickness of the bonded water on the part i cle surface, 

o = 1 mm according to Woodruff's experiments and dP is the percentage of the 
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volume of a certain particle diameter to the total particle volume. 

Equation (4.14) becomes 

w/w0 - {l - 1.4 (1 + 6 J~(5/D)dP]C }3 · 5 
v 

or for convenience of application 

w/w0 - {l - 1.4 [1 + 6L(8/D.)6P.)C }3 · 5 
1 1 v 

Then 

(4.16) 

(4.17) 

Equation (4.17) was compared with experimental data from various 

investigators and the result is shown in Figure 4-3 . It is suggested that 

Equation 4.17 can predict the settling velocity of non-uniform particles 

without flocculation extremely well. 
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V. VELOCITY DISTRIBUTIONS OF HYPERCONCENTRATED FLOWS 

As long as sediment particles exist in the flows the velocity 

distribution does not obey the general laws applying to clear water flows 

due to the interactions between particles and the fluids. The interactions 

between particle and fluids not only change the viscosity of the suspension, 

cause yield stress, destroy or damp the turbulent eddies, but also may turn 

the suspension into multiphase flows. Investigations into this area are 

still very limited and empirical. So a thorough understanding of velocity 

distribution of hyperconcentrated flows cannot be presented in this chapter. 

Instead, this chapter will emphasize on the review of field observed 

velocity distributions and the general laws fitted by different types of 

hyperconcentrated flows. Similar to clear water flows, . the 

hyperconcentrated flows will be divided into laminar, transition, and 

turbulent flows from low flow regime to high flow regime. Also pipe flows 

and open channel flows are distinguished. In the pipe flows, the treatment 

is restricted to steady-state isothermal flow in plain pipes. 

V-1 . Steady-State Laminar Flows 

5 . 1 . 1 . Laminar Flows in Pipes 

For steady-state isothermal hyperconcentrated flows in plain pipes, a 

simple force balance on a cylindrical element of radius r and length dL 

yields, 

from which 

2 
-~r dP - 2~rrdL = 0 

T = 
:r dP 
2 dL 

(5.1) 

(5.2) 
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and when r = R 

2 
-1rR dP (5.3) 

where r and r denote the shear stress at radius r and R , respectively. 
w 

Combining Equation 5.2 and Equation 2 . 11 then yields velocity distribution 

after appropriate integration. Typical results, for Bingham-plastic, 

pseudo-plastic, yield-pseudoplastic, dilatant fluids, etc ., are given in 

Table 5-1, where the parameters are defined in Chapter 2. Other results for 

other fluids are referred in Skelland (1967) and Govier and Aziz (19 72) . In 

Figures 5-1 to 5-3 , velocity profiles corresponding to these typical fluids 

models are drawn . 

In application to hyperconcentrated sediment flows, velocity 

distributions of Bingham-plastic and yield-pseudoplastic fluids are the most 

widely accepted. The former is suitable for flows with high content of fine 

sediments (for instance slurry mud flow and debris flows, etc . ) and the 

later is for flows with coarse materials (for example the debris flows 

described by many Japanese researchers such as Takahashi, 1980 , etc .). 

In those flows with a yield stress , a core region with a constant 

velocity near the centerline of the pipe exists . This core flow region is 

called "plug flow" of which the thickness is proportional to the yield 

stress and inversely proportional to the pressure gradient along the pipe. 

As the flow in the pipe develops from laminar flow to turbulent flow this 

"plug flow" will disappear gradually . 
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Table 5-1. Velocity Profiles of Hyperconcentrated Laminar Flows in Pipes 

Equation Model 

5.4 Bingham-plastic 

5.5 

5 . 6 

5.7 

Yield-pseudoplastic 

Pseudopastic 

or dilatant 

Quadratic model 

Velocity Distributions 

1 [ dP 2 2 
T (R-r)] r< R u - - --(R -r )- r < ,, 4dL y . p 

1 [ dP 2 2 
T (R-r )] 0< u - - --(R -r )- r< r ,, 4dL p y p p 

dP 
r - 2r /(--) p y dL 

u -
(l/'IP)l/n __n_ [ l+n _ ( _R dP n 
(-dP/2dL) l+n 2 dL -ry) 

_ ( _ .I. dP _ T ) 

2 dL y 

l~n] 

for r < r<R. For O<r<r , u=u(r=r ) in p p p 

which r is given as above. 
p 

1 d ] l/n n 
~ ~ <1+n) 

p 

[ 
l+n l+n] 

R
n n - r 

R d ] 3/2 [ 2 .r. fil2. ] 3/2} 
+ 2 ~) - ,, - 4r<ry + 2 dL) 

for r < r <R; for 0< r < r , u is given 
p p p 

by Equation 6.7 with r=r . 
p 
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5 ; 1.2. Laminar Flows in Open Channels 

Velocity distributions of steady-state laminar flows in open channels 

are more complicated than that in pipes due to the complexity of its 

geometric boundary. The problem can be solved by combining the continuity 

equation, equations of motion, and the appropriate rheological equations of 

the suspensions. From authors' knowledge, no theoretical analysis has been 

accomplished up to now even to the two-dimensional flows. For a one-

dimensional laminar motion of an incompressible hyperconcentrated fluid, the 

equation of motion of the suspension is described by 

au au _l an + l Qz. + u- - gsin8 - ~ at ax pmax pmay 
(5 . 8) 

where pm is the density of the mixture, u is the velocity in the downstream 

x-direction, p is the internal pressure, g is the gravitational 

acceleration, sin8 is the channel slope and y is the upward distance above 

the channel bed perpendicular to the flow. For a uniform one-dimensional 

flows, Equation 5.8 can be simplified to 

T - p g(H-y)sin8 - p g(H-y)S m m (5.9) 

from which the velocity distributions of hyperconcentrated suspensions can 

be derived after combining with the appropriate rheological equations. 

Typical results, for Bingham-plastic, pseudoplastic, yield-pseudoplastic, 

dilatant, and quadratic, are given in Table 5-2. These velocity 

distributions can be easily illustrated in accordance with Figures 5-4 to 

5-7. 
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Table 5-2. Velocity Profiles of Hyperconcentrated Laminar Flows in Open 
Channels 

Equation Model 

5.10 Bingham-plastic 

5 .11 Pseudo-plastic 

5.12 Yield-pseudoplastic 

5.13 ·Quadratic 

Velocity Distribution 

u .. 

l~ 
[y - 2 H ] 

T 

_y , 0 < Y < Yo 
t'/y 

where Yo - plgS (r 0 -r ) and r 0 - p gHS. 
m y m 

u - - (H-y) 

l+n 
n 

for 0<y<y 0 ; for y 0 <y<H, u=u(y=y 0 ) in 

which y 0 is defined as above . 

u - - !L H { [ 2 ] 3/2 2,. y + --2- t'/ -4r<ro-Ty) 
:> 12r T 

0 

for 0<y<y0 ; for y 0 <y<H, u is given by 

equation 5.13 with y=y 0 . 
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V-2. Steady-State Turbulent Flows 

Studies on turbulent flow of non-Newtonian or hyperconcentrated fluids 

have been rather limited, partly because turbulence is encountered less 

frequently with these materials than with Newtonian systems. In the early 

years contributions to this area include those from Dodge and Metzner 

(1959), Tomita (1959), and Clapp (1961) to power law fluids, that of 

Torrance (1963) to power law, Bingham, and Yield-pseudoplastic fluids. In 

the recent years, a lot of efforts have been attributed to study the effects 

of sediment concentration on the turbulent intensity as well as velocity 

distributions of sediment-laden flows (Einstein and Chien, 1955; Coleman, 

1981; Woo, 1986; Lau, 1983; Parker and Coleman, 1986; etc.). Although the 

flows these researchers investigated . are hardly considered to be typjcal 

hyperconcentrated non-Newtonian flows, their r~sults gave a lot of 

implications how velocity profiles change with sediment concentration in the 

flows . 

In turbulent flows of hyperconcentrated fluids, the flow region is also 

assumed to be composed of laminar sublayer, transition (or buffer) zone and 

turbulent core as applied to Newtonian fluids. The effects of turbulence 

are considered to be negligible in the laminar sublayer, but the effects of 

turbulence and viscous shear are of the same order of magnitude in the 

transition zone. The effects of viscosity are assumed to be negligible in 

the turbulent core. However, the effects of dispersive shear is assumed to 

be as important as other major terms in the equation. 

5.2.1 . Log Law Velocity Distribution of Hyperconcentrated Flows 

It has been evidently proved that in flow with high sediment 

concentration the logarithmic law of wall for the velocity distribution is 

still applicable, that is, 
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+ + u = A Lny + B 

where 
+. 

U lS the dimensionless velocity defined as + y 

(5.14) 

is the 

dimensionless distance from the wall, and A and B are integration constants. 

Generally, y+, A and B are functions of flow regime and rheological 

properties of the fluids. For Newtonian turbulent flow, 

A -
l 
K, 

and B = 5 . 5 

For high sediment-laden .flows, early researches (Vanoni, .1946, Einstein and 

Chien, 1955; Vanoni and Nomicos, 1960; etc.) indicates that the von Karman 

constant "" of the suspension decreases as sediment concentration increases. 

The relationship between these two parameters can be well described by the 

well-known graphs by Einstein and Chien (1955, Fig.15) and by Vanoni and 

Nomicos (1960), based on Vanoni's disputable hypothesis tha~ the turbulence 

is damped by the sediments. 

On the other hand, Coleman (1981) re-examined the data from earlier 

experiments to show that the change in "" was caused by the incorrect 

interpretation of the logarithmic velocity distribution to the outer flow 

region where the log law is not really valid. He was able to quantify the 

effect of suspended sediment on the flow in terms of the wake strength 

coefficient of the velocity profile, which was first used by Coles (1956) 

to describe the deviation of velocity from the logarithmic law in turbulent 

flow. This velocity distribution is given by 
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+ u = l Lny+ + B + ~u + Il B(y/6) 
"" u* "" 

(5.15) 

where IT is the Coles' wake strength coefficient. The function B(y/6) 

denotes Coles' wake flow function, which is normalized to have the 

properties B(l)=l, and B(O)=O and 6 denotes the boundary layer thickness. 

The term ~U/U* denotes the downshift in the velocity distribution because of 

wall roughness . 

Coleman used Equation 5.14 to examine von Karman constant K. from 

straight line fitting to experimental velocity profiles in the lower 15% of 

the flow, in the region where the wake flow terms are negligible and not out 

in the more central regions of the flows. He observed that K. is essentially 

a constant over a wide range of flow conditions from sediment-free flows to 

flows carrying a near capacity load of suspended sediment. Also Coleman 

showed that the wake strength coefficient IT for uni~orm non-separating flows 

varies directly with the gross-flow Richardson number as shown in Figure 

5-8 (Fig. 4 in the original paper) . 

The finding that K. is not dependent on sediment concentration is far-

reaching and important as claimed by Coleman. However, the invariance of K. 

is accompanied with a wake flow function which requires further 

investigations (Julien and Lan, 1988). Also, the effect of sediment should 

be concluded in the changes of viscosity, coefficient B and possibly the 

rheological model . When the rheology of the sediment-water suspension turns 

to be non-Newtonian fluids as behaved in most hyperconcentrated flows, the 

rheological properties of the suspension are more important in formulating 

the velocity profiles of the flows. This will be demonstrated in the 

following sections. 
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Dodge and Metzner's Formulations. 

Dodge and Metzner (1955) carried out a semitheoretical analysis of the 

turbulent flow in smooth pipes of non-Newtonian fluids described by the 

power law. His results can be expressed in a log-law form as 

+ u + A Lny + B n n 

+ where y is defined differently as 

Y+ - z~n -
n(U )2-n 

y * p 

'7p 

Z - Rn (U )2-n/ 
p * '7p 

e - y/R 

(5.16) 

and R is the diameter of the pipe. In Equation 5.16, A and B are 
n n 

integration constants depending on the component n of the power law. In the 

turbulent core, the constants A and B are given by 
n n 

A - 5 . 66/n°·
75 

n 

B - - . 566/n1 · 2 + 3 ·
475 

[1.96 + 0.815 n - 1.628 nLog (3 + l)] 
n 0. 75 n 

n 
(5.17) 

Bogue and Metzner (1963) reviewed the earlier work of Dodge and Metzner 

and proposes as an improvement on Equation 5.16. They concluded that within 

the range studied (0.45 ~ n ~ 1.0), the turbulent non-Newtonian velocity 

profiles are substantially the same as those for Newtonian fluids when 
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expressed either in terms of U/V versus € or in terms of (U - u)/U* max 

versus€, as shown in Figures 5-9 and 5-10. The interested reader is 

referred to the original work for details. 

Clapp's Equations 

Clapp (1961) proposes the following rheological relationship for 

turbulent power-law fluid flows; 

T - (5.18) 

to derive a universal velocity profile for the turbulent power-law fluid 

flows in a smooth tube after following analogous analysis to the Prandtl and 

von Karman approach to Newtonian fluids. The results are 

Laminar sublayer: 

(5.19) 

Sn < + + 
y < Y2 Buffer layer: 

+ (5 . 0) 2.303 .fog 
+ 

3.05 u y -n (5 . 20) 

Turbulent Core: + + 
y > Y2 

+ Q 2.303 log y + 
+ H/n u 

n (5.21) 

where + 
Y2' G, and H are constants to be evaluated from experimental data. 

Correlation of these equations with experimental data results in G=2.78 and 
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H=3.8, as proposed by Deissler (1951) for Newtonian fluids . Comparison of 

experimental data with Equations 5.16 and 5.21 by Clapp shows that Clapp's 

equation suits his data better than does the Dodge and Metzner's 

relationship (Clapp, 1961) . 

5.2.2. Polynomial Form of Velocity Profiles 

A way to avoid the discontinuity of velocity profiles for different 

flow regions has been developed by Pai (1957), who used a single polynomial 

expression for the complex velocity distribution. The velocity distribution 

is assumed to be represented by three-term power series: 

1L 
u 

m 
(£)(n+l)/n (£)2m 

1 + a1 R + a2 R (5.22) 

The series is limited by the available boundary conditions, which are 

just sufficient to evaluate the coefficients in a three-term expression. 

The exponent (n+l)/n on the middle term is chosen to reduce to the known 

form for power law fluids in the limiting case of laminar flow. m is an 

exponent to be determined by experiment. By applying the boundary 

conditions, Pai obtained the expressions for coefficients a 1 and a 2 : 

s -m 
al = m-(n+l)/2n ' 

(n+l) On-s 
a2 =- m-(n+l)/2n 

where 
2 

[P (U*) ] l/n _...!L s = '7 ( 2U ) 
p m 
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Equation 5.22 is claimed to give the velocity distribution for power 

law fluids across the entire pipe, from wall to centerline . 

5 . 2 . 3. Turbulent Flow of Bingham Fluids or Fluids with a Yield Stress 

For hyperconcentrated flows with a yield stress, a "plug" always 

appears in the laminar regime. As the turbulence in the suspension 

increases the thickness of the "plug" diminishes until it is down to zero 

for fully developed turbulent flows. Field and experimental observations 

show that in this fully developed turbulent flows the logarithmic law of 

velocity distribution is still applicable (Tomita, 1959; Torrance, 1963; 

Fei, 1983; etc . ) . The integration constants in the equation can be 

determined from experiments . Unfortunately, detail investigations have not 
• 

been conducted by now . 
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VI. FLOW RESISTANCE OF HYPER.CONCENTRATED FLOWS 

Resistance of hyperconcentrated flows has received most attention in 

the study of hyperconcentrated flows, not only because it is important in 

analyzing the energy loss or energy dissipation of the flow due to the 

presence of sediment but also it is the controlling factor in defining the 

flow regime . Einstein and Chien (1955), Vanoni and Nomicos (1960), Dodge 

and Metzner (1959), Hedstrom (1952), Montes and Ippen (1973), Dai et. al. 

(1980), Fei (1985), Chen (1983), etc., have already provided remarkable 

insights to the problem, although there still exists disagreement on how the 

sediment in the suspension affects the resistance of the flows. Among these 

studies, resistance of pipe flows receive~ the most attention due partly to 

the handy definition of resis-tance factor in pipe flows . In this chapter, 

emphasis then is on the resistance o f hyperconcent rated flows in pipes. 

Nevertheless, most formula from pipe fl ows are also suitable to flows in 

open -channels, which is similar to the Newtonian flows in pipes and in open 

channels. 

The coefficient used to measure the resistance of Newtonian and non-

Newtonian flows . is the Fanning friction factor defined as the ratio of the 

wall she ar stress, rw' to the kinetic energy per unit volume of fluids, 

2 
pV /2 . Since the wall shear stress is a measure of the energy gradient or 

energy loss of the flow , then the friction factor is considered to be the 

dimensionless quantity indicative of the kinetic energy loss of the flows, 

T 

" f = 
w 

(6.1) 2 
pV /2 

or f 
u* 

2c~) v (6.2) 
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where V is the cross-sectional average velocity and U* is the friction 

velocity defined as ~ . 
p 

The commonly used friction factor in civil 

engineering, however, is the Darcy-Weisbach resistance coefficient, f
0

, 

defined as 

f D 
2 

ro - p 
_;}__ 

4 2 
(6.3) 

8r 0 
or f - 2 D pV 

(6.4) 

where r 0 is the shear stress on the channel bed or boundary . 

Either Da rcy-Weisbach's or Fanning's friction factor will be used in 

this report whenever it is convenient. Nevertheless , these two friction 

factors are exchangeable since the Fanning's friction factor is one-fourth 

of the Darcy-Weisbach's friction coefficient . 

VI-1 . Resistance of Laminar Hyperconcentrated Flows 

The friction factor of non-Newtonian fluids can be obtained simply by 

integrating the velocity distribution over the cross-section of the pipe or 

channel . For time-independent non-Newtonian fluids, this friction factor 

can be eventually represented as a function of Reynolds number, Hedstrom 

number , Yield number and other specific parameters for that particular 

fluids . The following lists typical results for Bingham plastics, 

pseudoplastics (or dilatants) , yield-pseudoplastics, which are typical types 

of fluids in hyperconcentrated flows in civil engineering . 
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6.1 . 1. Power Law Fluids (pseudoplastic or dilatant) 

and 

f -D 
(6.5) 

(6.6) 

where Repl and Rep 2 are alternate forms of what may be called the "power law 

Reynolds number", defined as 

~2-n 
Re - D p 

pl '7p 
(6.7) 

and (6.8) 

6 . 1 . 2. Bingham-plastic Fluids 

f ,.. 1fu'L [1 ~ ~] 
DV p - 3 + 3 (6.9) 

T 

where x - J. 
T 
w 

4LT 
___:.t. 

DllP' 
Equation 6.9 can be rearranged to either a friction-

Bingham Reynolds number-yield number, or a friction-Bingham Reynolds number-

Hedstrom number form. The results are 

4 
_l_ L _Y_ + 16Y (6.10) 
ReB 16 6ReB 3 4 

3f ReB 

4 
_l_ L __lk_ 16He 

(6 . 11) or 
ReB 16 2 + 3 8 

6 ReB 3f ReB 
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Equations 6.10 and 6.11 can be plotted as of f versus ReB at constant values 

of Y or f versus ReB at constant values of the Hedstrom number He, which are 

shown in Figures 6-1 and 6-2. 

6.1 . 3. Yield-pseudoplastic Fluids 

Equation 5.5 can be integrated over the cross-section to obtain the 

average velocity of the flow as 

2V 
D 
~ 

3 
1rD 

2 2 

[ 
(r -r ) 2r (r -r ) r ] 

x w y + y w y + y 
(1+3n)/n (1+2n)/n · (l+n)/n (6.12) 

where r is the wall shear stress equal to (- DdP/4dL).. Unfortunately the 
w 

complexity of Equation 6.12 is such that it cannot easily be converted to 

friction factor form. But we may see that 

~2-n Dr 
f - ~(D 0 --S- terms involving n) 

D ~ ' V~ ' p p 
(6.13) 

6 . 1 . 4 . The Metzner and Reed Generalized Approach 

The Metzner and Reed Generalized approach has been introduced in the 

last section of ~hapter II. Further analysis indicated (Metzner and Reed, 

1955) that the friction factor of hyperconcentrated flow can be written as a 

function of a generalized Reynolds number, in a form similar to that for 

Newtonian fluids. The result can be represented by; 

f = 16/ReMR (6.14) 
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where ReMR is the generalized Reynolds number defined as 

in which 

I 2 I 

Re - Dn V -n p//3 
MR 

/3 - K'8n' -1 

(2.17) 

Equation 6.14 has been compared with experimental data from Metzner and 

Reed . Figure 6-3, taken from them, illustrates the conformity of data from 

a variety of non-Newtonian fluids over an intermediate range of ReMR. 

Metzner and Reed (1955) also demonstrated the relationship between n' ,K', 

and f3 and the actual rheological properties of the different types of 

fluids. For a Newtonian fluid, 

n' =- 1; /3 - µ; K' - µ 

For a power law pseudoplastic, 

n' - n; K' _ [1+3n] n. 17 p 4n ' /3 _ [1+3n] 8n- l 
17 p 4n 

For a Bingham plastic, 

4 4 
n' - (l-4x/3+x /3)/(1-x ); 

/3 - 8 ,,. 4 n'-1 [ Jn' 
w rw(l-4x/3+x /3) 

The generalizations of Metzner and Reed are of great value in instances 

where the rheological behavior of the fluid is not adequately described by 

one of the simpler constitutive equations, or when one is involved in the 
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direct scale-up from data taken in a small diameter pipe. For the simple 

cases of the power law pseudoplastic (or dilatant) and the Bingham plastic, 

however, previously derived relations are at least equally convenient. 

6.1.5. Chen's Equation for Open Channel Laminar Flows 

For hyperconcentrated flows of yield-pseudoplastic type in open 

channel, Chen (1983) developed a relationship between the friction factor 

and the Yield number, the generalized Reynolds nu:mber, and the Hedstrom 

number. The result can be simply expressed as 

where the "constant" c. and the generalized Reynolds number Repl are 

respectively as; 

c -
8 [ (l+n)/n Jn 

(ro/R)l+n l-(r 0 /R)n/(2n+l) 

2-n....n 
Re - ..._p..;..V __ ;;;.;;....K 

pl '7p 

(6.15) 

defined 

(6.16) 

(6.17) 

in which R is the hydraulic radius of the flow, and r 0 is the fictitious 

space coordinate corresponding to the yield-stress, r 0 /R is i called the 

yield-stress index by Chen. Further analysis leads to the following 

expressions 

[ 

SHel/(2-n)] (n+l) [ _n_ SHel/(2+n)]'n 
1 - 2/(2-n) 1 + 1 2/(2 ) f R +n f Repl -n epl 

(6 . 18) 
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where He is the Hedstrom number defined as 

He (6.19) 

Equation (6.18) has been claimed to give good agreement with experimental 

and field data (Chen, 1983). 

VI-2. Transition From Laminar to Turbulent Flows 

Regardless of the type of non-Newtonian fluid, laminar flow gives way 

to · turbulent flow at sufficiently high values of the Reynolds number. This 

critical Reynolds number, intuitively, varies for different fluids. For the 

past few centuries, various criteria have been proposed for defining the end 

of laminar flow regime (Ryan and Johnson, 1959; Hanks and Christiansen, 

1962; Hanks, 1963; Metzner and Park, 1964; Metzner and Reed, 1955; Meter and 

Bird, 1964; etc . ) . These criteria consist generally of empirical 

modifications, specifications, and generalizations of the conventional 

Reynolds number on the one hand and alternative criteria arising from 

manipulation of the basic equations of motion on the other . 

For Bingham-plastic fluids ·, the parameters defining the flow regime 

include Bingham Reynolds number, the Yield number, and Hedstrom number. 

They are defined as 

Inertial 
ReB - DVp/~ - Viscous 

Yield 
Y ~ He/ReB - TYD/(Vry) - Viscous force ' 

and He 
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respectively, where V is the mean velocity of the flow, D is the diameter of 

the pipe. Hanks (1963) shows that the transition from laminar to turbulent 

flow occurs at a critical value of ReB given by 

(6.23) 

where xc is the critical value of x defined by the relation 

3 
x /(1-x ) c c 

He 
(6.24) 16,800 

Hanks and Pratt (1967) solve these equations for (ReB)c and xc in terms of 

He and obtain the results shown in Figures 6-4 and 6-5 taken from their 

work . The predictions of Figures 6-4 and 6-5 are extensively confirmed by 

data of Caldwell and Babbitt (1941), Wilhelm, Wroughton, and Loeffel (1939), 

Alves, Boucher, and Pigford (1952), and others. The relationship of Figure 

6-4 may also expressed in terms of the yield number, Y. This is shown in 

Figure 6-6. 

Neglecting the small last term on the right hand, Equ~tion 6.23 can be 

changed into the following Equation 6.25 

DVe 3 2 
- 2,100/[(l-x ) (l+ Y/6) ] 

c 
(6.25) 

Further calculation indicates that 

3 2 
(1-xc) (l+ Y/6) ~ 1.0 

Then Equation 6.25 becomes 
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(6.26) 

which is of the same criteria for Newtonian fluids, withµ replaced by µe' 

the so-called effective viscosity defined as 

For pseudoplastic fluids, Ryan and Johnson (1959) proposed the criteria 

to define the end of laminar flow as 

(Re ) 2 =­
p · (l+3n)

2 (~1~)(2+n)/(l+n) 
2+n 

6464n (6.27) 

A generalized critical Reynolds number for all time-independent fluids 

is given by Metzner and Reed (1955) based on the generalized rheological 

model they developed (Equation 2.15). Similar to Newtonian flows in pipes, 

a Fanning friction factor f is defined as a function of the Metzner and Reed 

generalized Reynolds number, 

f - -1.L 
ReMR 

(6.28) 

where the generalized Reynolds number for non -Newtonian fluids is defined as 

in Eq . (2 . 17) 

n' 2-n' 
Re _ D V e 

MR /3 
(2.17) 

with which Equation § .~ 28 is analogy to the well known result for laminar 

flow of Newtonian fluids . 
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Metzner and Reed were able to correlate almost all the available 

published data for time-independent non-Newtonian fluids on the conventional 

plot of friction factor versus Reynolds number, their results being shown in 

Figure 6-7, 6-8 and 6-9 for high, medium and low Reynolds number ranges, 

respectively. From these figures, it is considered that stable laminar flow 

in tubes ends when the generalized Reynolds number reaches about 2100. The 

later work of Dodge and Metzner (1962) led to the generalized f-ReMR chart 

shown in Figure 6-10 . This plot indicates that laminar flow ends at 

generalized Reynolds numbers which increase slowly as n' decreases. In the 

limiting case of n'-0 there is no change in velocity profile with increasing 

Reynolds number . 

In cases where n' and K' are not constants, the following rearrangement 

of the generalized Reynolds number may facilitate calculation: 

n' 2-n' 
Re - D V P 

MR K'Bn'-1 
DVp 

(6.29) 
K'(8V/D)n'-l 

VI-3. Steady-State Turbulent Flows 

The theoretical or semi-empirical formulae for friction factor in 

hyperconcentrated turbulent flows in pipes generally resemble the 

counterparts for a Newtonian fluid in pipes. In a smooth wall pipe, the 

friction factor depends only on the rheological properties of the fluids and 

the flow Reynolds number, while in a fully rough wall the friction factor is 

a function of relative roughness of wall as well as the rheological 

properties of the fluids. In a partially rough wall the friction factor 

depends on both Reynolds number and relative roughness as well as the 

rheological properties of the flow. In the past few decades a number of 

advances have been made in our understanding of the turbulent pipe flow of 

power law pseudoplastics and Bingham plastics, some of this work is 
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applicable also to the turbulent flow of other time - independent viscous non-

Newtonians. Among these significant contributions of Dodge and Metzner 

(1959), Tomita (1959), Shaver and Merrill (1959), Clapp (1961), Torrance 

(1963), Thomas (1963), Daido(l970), and Dai et al. (1980) will be discussed 

in this section. 

6.3.1. Resistance of Hyperconcentrated Flows in Smooth Pipes 

The Shaver and Merrill Empirical Formula 

An empirical formulq similar to the Blasius's equation was developed by 

Shaver and Merrill (1959), who expressed the friction factor for a 

pseudoplastic fluid as 

f -D 
0.316 
5 E 

n Rep 2 

where Rep
2 

is defined in Equation 6 . 8 and the exponent e is defined as 

2 . 63 
E -

(10.5)n 

(6.30) 

Equation 6.30 was claimed applicable approximately in the range of 750 < 

Later inspection of Shaver and Merrill's experimental data 

indicates that Shaver and Merrill's equation is more favored to the 

viscoelastic fluids instead of pseudoplastics (Govier and Aziz, 1972). 

The Dodge and Metzner Relations 

Dodge and Metzner (1959) carried out a semi-theoretical a nalysis of the 

turbulent flow in smooth pipes of time-independent viscous non -Newtonian 

fluids described by the power law . Applying the t e chniques o f dimensional 
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analysis for the power fluid, as Millikan (1939) has done for Newtonian 

fluids , they derived the important equation 

1 [ (1-n'/2)] ~ - A: log Re f ff ln MR 
+ C' 

n 
(6 . 31) 

where C' _A !o (1 (2+6n')n'] + C . 
n ln g 8 n' n The terms A

1 
and C' are functions of n n 

n' to be determined experimentally . If n'-1, Equation 6 . 31 reduces to 

1 DVp rE ff - A(!og µ .tf) + C (6.32) 

which is of the same form as the Nikuradse equation, with A=4 . Q and C=-0.4. 

For the power law fluids , Dodge and Metzner found empiric~l~y that 

and 

A -ln 
4.0 

,0.75 
n 

C' - -0.4/n'l.
2 

n 

(6.33) 

(6.34) 

This relationship is reflected in graphical form in Figure 6 . 10 taken 

'· ' 
directly from Dodge and Metzner. These authors indicate excellent a greement 

between calculated and experimental friction factors over values of n' from 

0 . 36 to 1 . 0 and ReMR from 2900 to 36,000 with solid-liquid suspensions and 

polymeric solutions. They show that non-power law clay suspensions also 

conform to the correlation provided that the exponent n' is evaluated at a 

stress corresponding with the wall shear stress . 

The Tomita Relation 

The Tomita relation is defined as a relation between the modi f ied 

Fanning friction factor and a modified Reynolds number as follows : 
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(6.35) 

where fT and ReT are the modified Fanning friction factor and Reynolds 

number, respectively defined as 

f _ 1+2n 
T 1+3n 

(~) 
3 f - -

and ReT 
_ lcl+3n) 

4 1+2n Rep 2 

for pseudoplastic fluids, and 

and 

f - _L T 1-x 

for Bingham plastic fluids. 

2DdP (1+2n) 
2 (6.36) 

3pV dL (1+3n) 

_ 6[(1+3n)Ln]l-n ~2-n D e 
2nrc1+2n)/nl 7Jp 

(6.37) 

(6.38) 

(6.39) 

Tomita's relation is based on a similarity consideration and the 

Prandtl's mixing length theory. The approximate validity of this equation 

is confirmed by some 40 data points taken with starch pastes and lime 

slurries for pseudoplastics. For Bingham plastic fluids, this equation is 

confirmed over the range 2000<ReT<l00,000 by twenty data points covering a 

good range of diameter, a sevenfold range of yield stress, but only a slight 

variation in coefficient of rigidity. 

102 



The Clapp Relation. 

Based on the velocity distribution he derived from the mixing length 

approach, Clapp (1961) developed the following expression for the friction 

factor for power law fluids 

where 

l//f _ 2.69 _ 2 . 95 + 4.53 log(Re fl-n/2) + 0.68(5n-8) 
n n c n 

Re 
c 

2 
80V 

n_.2-n 
D v e 

n-1 8ry 
p 

(6.40) 

(6.41) 

"Equation 6.40 has been tested against the actual data for n values 

between .698 and 0.813 and for Re values betwee·n 5,480 and ~2,800, with a 
c 

maximum deviation of 4%. 

The Torrance Relations. 

An important analysis has been conducted by Torrance (1963) to the 

cases of yield-pseudoplastic fluids. By following the method of analysis of 

Clapp(l961) based on Prandtl's mixing length theory, Torrance obtained the 

relationship 

)1/f - [< 2~69 ) - 2. 9s] + 
4 ·~3 1og(l-x) 

+ (4.53 log Re fl-n/2) + 0.68( 5~_ 8 ) 
n c n (6 . 42) 

This general equation is represented graphically in Figures 6-11, 6-12, 

6-13, and 6-14. For a power law pseudoplastic, Torrance's equation 
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simplifies identically to Clapp's equation, i.e., Equation 6.40. For a 

Bingham plastic fluid, i . e., n=l and Rec-ReB, Torrance's equation becomes 

Jl/f - 4.53 2og(l-x) + 4 . 53 2og(ReB./f) - 2.3 (6.43) 

In recent years, many semi-empirical equations have been proposed due 

to the arising of hyperconcentrated flow analysis, for instance, by Thomas 

(1963), Daido (1970), Dai et al (1980), Fei (1985). However, those 

equations are no different from the above discussed equations. 

Verifications from these authors, nevertheless, solidify the validity of 

these equations . 

6 . 3.2. Resistance of Hyperconcentrated Flows in Fully Rou~h Pipes 

Resistance of hyperconcentrated turbulent flows in fully rough pipes 

has yet received much attention so far. It is expected, however, that the 

friction factor depends no longer on the Reynolds number of the flows. 

Torrance (1963) extended his analysis on turbulent flow in smooth pipes of 

yield-pseudoplastic fluids to the fully rough wall turbulent flows in rough 

pipes which for the power law fluid gives 

l/./f _ 4.07 log R + 6 . 0 _ 2.65 
n k n 

(6.44) 

where R is the pipe radius and k is the measure of roughness of the rough 

pipe . Equation 6 . 44 is not confirmed by experimental data but would appear 

suitable for the prediction of friction factors for the fully rough 

turbulent flows of power law yield-pseudoplastics, Bingham fluids, or simple 

pseudoplastics in rough pipes . If n=l, Equation 6 . 44 becomes e xactly the 

same formula for Newtonian fluids . On the other hand, Zhang and Ren (1982) 
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pointed out that in fully developed turbulent flow in rough pipe the 

resistance of hyperconcentrated flows is exactly the same as that of a clear 

water flow. 
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VII. DISTRIBUTION OF CONCENTRATIONS IN HYPER.CONCENTRATED FLOYS 

Flowing water has the ability to suspend large quantities of sediment 

particles depending on the availability of sediment and the transport 

capacity of the flow. The sediment concentration profiles depends upon the 

turbulent intensity, viscosity of fluid, particle fall velocity, etc. As 

suspended sediment concentration increases the gradient of concentration 

profiles decreases until the profiles become uniform which generally occurs 

in mud or debris flow. 

Sediment concentration profiles can be determined from convection-

diffusion equation of sediment, in association with velocity profiles and 

fall velocity . In the following sections, a brief review will be given. 

VII-1. Convection-Diffusion Equation for Sediment Suspension 

A well-known convection-diffusion equation was first developed by 

Schmidt (1925), applying the sediment diffusion in a steady two-dimensional 

uniform flow. The derived equation is described in Equation 7.1. 

(7.1) 

where C is the sediment concentration either by volume or by weight, w0 is 

the settling velocity of sediment particles in still water, and € 
s 

is the 

diffusion coefficient for sediment . The diffusion coefficient, € , is 
s 

generally a function of y that must be known before Equation 7.1 can be 

solved for C. 

Hunt (1954) also developed a differential equation for the suspension 

of sediment in two-dimensional steady uniform flow. The result is a little 

different from Eq. 7.1. 
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€ 
s 

d c d c 
__ v + C __y 

dy v dy 
(€ - € ) + (1 - c ) c w 

w s v v 0 (7.2) 

in which f - the diffusion coefficient for water such that the rate of flow 
w 

of water into a unit area normal to the velocity u is u(l-C ) 
v 

a(l-C ) 
v 

C = the sediment concentration by volume, and the other terms are defined 
v 

previously. Here w is the particle representative settling velocity in 

sediment-water mixture. When f w fs' Eq. 7.2 becomes 

€ 
s 

d c __ v 

dy 
+ (1 - c ) c w - 0 v v (7.3) 

that was also derived by Halbronn (1949) and which differs from Eq. 7.1 only 

in that the second member contains the qua~tity (1 - C ), which results by 
v 

taking into account of the continuity of sediment and water. When C is 
v 

negligible compared with unity, Eq. 7.3 becomes the same as Eq. 7.1. in 

hyperconcentrated flows, however, Eq. 7 . 3 is considered better suited to 

describe diffusion of suspension of sediment than Eq. 7.1 because C is no 
v 

longer negligible. 

A complete set of diffusion equations for unsteady, nonuniform 

distribution of sediment in a two-dimensional or three-dimensional steady 

uniform flow has also been developed so far. The interested readers are 

referred to the ASCE Sedimentation Engineering Manual (1975), or Qian and 

Wan (1983) for detail. 

VII-2. Equations for Distribution of Suspended Sediment in Turbulent Flows 

As long as the diffusion coefficient, fs' and particle settling 

velocity, w0 or w, are known, Eq. 7.1 or 7.3 can be integrated easily to 

obtain the equation for distribution of suspended sediment. Unfortunately, 
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unique equations describing w and e are still not available, which leads to 
s 

a great diversity of equations for distribution of suspended sediment 

(Rouse, 1937; Kalinske, 1943; Ippen, 1971, Karim and Kennedy, 1983; Woo, 

1985; etc.). 

7 . 2.1. Rouse's Equation 

Based on the following assumptions: 

(1) particle settling velocity is not affected by sediment 

concentration, i.e., w - w0 is a constant; 

(2) velocity profile is described by the universal log-law (Eq. 5.14); 

(3) only turbulent shear stress is considered in the rheological 

model; and 

(4) sediment diffusion coefficient, es' can be approximated by 

coefficient for momentum exchange of fluid as 

€ - /3 € s m 
(7 .4) 

with f3 as a numerical constant, Rouse found that 

(7.5) 

Substituting Eq. (7 . 5) into Eq. 7.1 and separating the variable and 

integrating gives 

£_ 
c 

a 

( !!:.y _JL) z 
y H-a 

(7.6) 

in which C denotes the concentration of sediment with settling velocity w0 a 

at the level, y - a, and 
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z ... 

7.2.2. Karim and Kennedy's Equation 

Instead of using log-law velocity distribution to derive the diffusion 

coefficient for sediment, Karim and Kennedy used a power-law velocity 

distribution as follows 

(7. 7) 

where e - y/H is the dimensionless depth; coefficients n1 and n2 depend on 

the flow characteristics. It was derived by Zimmermann and Kennedy (1978) 

that n2 + 1 and n2 - U*/KV, where V is the average flow velocity for 

open channel flow. From here the diffusion coefficient is derived as 

E: __ s_ 

H U* 
(7. 8) 

Substituting Eq. (7.8) into Eq. (7 . 1) and separating the variables gives 

where 

l dC + 
c de 

Integration of Eq. (7.9) yields 

- 0 (7.9) 
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ln ~ - - Zk J dE 1-n 
a a (1-e) e 2 

(7 .10) 

of which the right hand side has been expanded into a series integration to 

give 

Q_ c - exp - zk 
a 

7.2.3. Woo's Modified Equation 

(7 .11) 

In Woe's method (1985), Hunt's diffusion equation (Eq. 7.3) is 

preferred to Schmidt's formulation because it satisfies continuity of fluid 

and sediment. On the other hand, the effect of concentration on the fall 

velocity of particle and increased viscosity of suspension is considered in 

the derivation. Here, Eq . (4.13) is applied to determine the fall velocity, 

w, of the mixture and Eq. (2 . 10) with neglection of yield stress and 

dispersive shear stress is used to evaluate shear stress in sediment-laden 

turbulent flow . Noting 

e 
m 

- 12 
m l~~I 

then the total shear stress r is rewritten as 

r - p e (A C + 1) du + du 
m v dy 11 dy 

or r ""' P 
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where A is a correlation factor and g(C ) is a function of 
v 

concentration determined from the evaluation of viscosity of mixture in 

Chapter 3. In Woo's study, Thomas' equation is used to give 

g(Cv) - 1 + 2.5 CV+ 10.05 c; + 0.00273 exp (16.6 CV) (7.14) 

On the other hand, the total shear stress r depends on the unit weight 

of the suspension 1 and the energy gradient S of the flow, 
m e 

Equating 

H 
r - J 'Ym s dy e 

y 

H 
2 

P u* 
- J (1 + A C ) -- • dy 

v H y 

u2 
1 

- p ( 1 - ~ + A J c d0 * v 
~ 

(7.15) 

Eqs. (7.13) and (7 . 15), the diffusion coefficient, € , is obtained . s 

from the fluid momentum diffusivity , €m' according to the Reynolds analog 

(E - f3 E ) s m 

E - p ru; (1 - E + A J~ CV dE) - v g(Cv) ] 

s du (l + A C ) 1 + A Cv 
dy v 

(7.17) 

The vertical distribution of sediments in suspension is then obtained 

after substituting the turbulent diffusion coefficient (Eq. 7 . 17) and the 

representative fall veocity (Eq. 4.13) into the diffusion equation 

( Eq. 7. 3) . 
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d c Wo 

[v 
du f (C ) 

d€) l 
_::z_ d v 

(7. 18) 
dy /3 g(C ) 

du u2 (1 - e + A J~ c 
v dy * v 

in which f (C ) - C (1 - C )a+l (1 +A c ). Equation (7.18) is claimed of 
v v v v 

general applicability by Woo et al. (1988) and can be solved, provided the 

velocity profiles is accurately depicted. Woo (1985) gave numerical 

solutions to both log-law and power-law velocity distributions. For flows 

with low sediment concentration, a few terms in Eq. (7.18) can be simplified 

or neglected: (1) f (C ) - c (1 - C )a+l(l + A C ) =::: c 
v' (2) A Jl c de :::::: o. 

v v v v e v 

Then Eq. (7.18) reduces to Karim and Kennedy's equation (Eq. 7.9) after 

viscous shear stress is neglected and power-law velocity profiles is used, 

while it reduces to Rouse's equation when log-law velocity distribution is 

used. 

7.2.4. Comparison of Sediment Concentration Profiles with Experimental Data 

Theoretical sediment concentration profiles from Rouse, Karim and 

Kennedy, and Woo are compared with flume data collected by Einstein and 

Chien (1955) including seven runs with local volumetric sediment 

concentrations between 4% and 23% (Woo et al., 1988). For Woo's method, 

both log-law and power-la~ velocity di~tributions are used. The results are 

presented in Figures 7-1 and 7-2. It is clear that Woo's method gives 

excellent results in agreement with the measurements of Einstein and Chien, 

while Rouse's and Karim and Kennedy's profiles remain far from the observed 

profiles. 
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VIII. CONCUJSIONS 

The physical and kinematic behavior of hyperconcentrations has been 

delineated in this report with the ultimate objective to summarize recent 

and past developments in hyperconcentrated flow research . This report, 

emphasis is the laboratory analysis of hyperconcentrations, and 

particularly, flow classification, rheological models, settling velocity of 

particles, velocity profiles and concentration profiles. The following 

conclusions have been obtained from this study. 

The current classifications of hyperconcentrated flows are based on 

sediment concentration, composition and triggering mechanism, rather than 

the rheological behavior of the suspension . Many classification schemes are 

available, but none can satisfactorily describe such a complex flow 

phenomenon . The rheological behavior of hyperconcentrations should be 

better understood before promoting a comprehensive classification. 

Meanwhile, the classification schemes by Beverage and Culbertson (1964) and 

Pierson and Costa (1984) seem the most appropriate . 

Grain movement in hyperconcentrated flows can generally be classified 

into contact load or bedload, suspended load, and neutral buoyant load. 

Different from grain movement in ordinary sediment-laden flow, the 

interaction between particles in the suspension plays an important role in 

determining the flow kinematics . 

Hyperconcentrated flows behave differently from crystal clear water 

flows and ordinary sediment-laden flows because of the non-Newtonian 

rheological nature of the suspensions. Therefore, a successful analysis of 

hyperconcentrated flows depends on the description of the rheological 

properties of hyperconcentrations. Many rheological models have been 

proposed to describe the non-Newtonian behaviors of hyperconcentration . The 
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generalized Metzner and Reed model has been so far very successful in 

modeling time-independent purely viscous flow, but it has not been tested 

against flows with high dispersive shear stress. Consequently, the Bingham­

plastic model, the yield-pseudoplastic model, and the quadratic model seem 

most promising at this time. 

The rheological properties of 

determined from the rheograms 

hyperconcentrations 

which are obtained 

are generally 

by viscometric 

measurements. Three kinds of commercial viscometers are readily available: 

the capillary viscometer, the concentric cylindrical viscometer, and the 

cone-and-plate viscometer. Concentric cylindrical viscometer seems to be 

best suited for a wide range of shear rates. 

Rheological properties of hyperconcentrations are also formulated as 

functions of sediment concentration along with several coefficients to be 

determined by experiments. The most frequently applied empirical formulae 

are the exponential forms relating yield stress and viscosity versus the 

concentration, and the Bagnold's equation to calculate the dispersive shear 

stress . 

Settling of sediment particles in hyperconcentration is classified into 

two categories: settling in mixture of fine and/or coarse particles and 

collective settling in mixture of coarse particles . In the first category, 

the available methods to predict the settling velocity include approaches 

from Plessis and Ansley, Ansley and Smith, Valentik and Whitmore, and 

Pazwash . These approa~hes are generally based upon the assumption that the 

suspension acts as a uniform suspension . In the second category, it is 

found that Chu's formula is the best to predict the settling velocity of 

non-flocculated sediment in hyperconcehtration . 

The effect of hyperconcentrations on the velocity distribution is 

reflected in the changes of rheological properties . In laminar flows, the 
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velocity profiles are easily obtained by combining the momentum equation and 

the rheological equation. The obtained velocity profiles are listed in 

Tables 5-1 and 5-2. A general phenomenon found here is the "plugging" of 

flow at the central part of a pipe or the upper part of an open channel, due 

to the existence of yield shear stress in the suspension. In turbulent 

flows, theoretical results for the velocity distributions are still 

impossible, mainly because the effect of sediment concentration on the 

change of turbulence is not well understood. However, the universal log-law 

(or its modifications) seem to be applicable to turbulent hyperconcentrated 

flows unless the flows become a "plug"as a whole. 

Resistance of hyperconcentrated flows, expressed as Fanning or Darcy­

Weisbach friction coefficients, is obtained by integrating the velocity 

distribution over the cross-section of the pipe or channel. In laminar flow 

the friction factor is found always larger in hyperconcentrated flows than 

in clear-water flows. In turbulent hyperconcentrated flows, the theoretical 

or semi-empirical formulae for friction factor generally resemble the 

counterparts for a Newtonian fluid. In a smooth boundary pipe or channel, 

the friction factor depends on the rheological properties of the suspension 

and the flow Reynolds number, while in a fully rough wall the friction 

factor is a function of relative roughness of wall as well as the 

rheological properties of the fluids. In a partially rough wall, the 

friction factor depends on Reynolds number, relative roughness, and the 

rheological properties of the flows. Many empirical or semi-empirical 

formulae have been developed and reviewed in this report although none of 

them is considered general. 

Concentration profiles in hyperconcentrated flows with low 

concentration of fine sediments can be obtained by solving the convection-

diffusion equation for sediment suspension. In order to achieve this, 
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accurate prediction of velocity profiles and settling velocity of particle 

must be available. With relative high sediment concentration in flows, 

concentration profiles can be well predicted by Rouse' formula, Karim and 

Kennedy's formula, and also Woo's modified method. Unfortunately, these 

methods haven't been tested against hyperconcentrated flows with large 

concentration of fine sediments. 

In summary, research on hyperconcentrations is still at its early 

stage. A great effort must be committed in order to understand the rheology 

and transport mechanism of hyperconcentration. Since the rheology of 

hyperconcentrations is so essential in determining other behaviors of the 

flows, it is suggested that study on rheology must be emphasized first. 

Perhaps additional· researches could then be pursued on the sediment 

transport mechanism, and on the pulsating phenomenon observed in 

hyperconcentrations. 
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