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ABSTRACT 

 

 

 

PART I: DEVELOPMENT OF PLASMA SURFACE MODIFICATION AND 

CHARACTERIZATION STRATEGIES FOR THREE-DIMENSIONAL POLYMER 

CONSTRUCTS USED IN BIOLOGICAL APPLICATIONS 

AND 

PART II: EXPLORING GENERAL CHEMISTRY STUDENTS’ METACOGNITIVE 

MONITORING ON EXAMINATIONS 

 

 

 

Synthetic polymeric biomaterials have enormous potential for use in biomedical devices 

designed for regenerative tissue engineering, wound healing, and controlled-release drug 

delivery. A comprehensive understanding of interactions between biological species and the 

material of interest is critical for developing biomedical constructs for a targeted application. 

Constructs with intricate porous architectures are often suitable as biomedical devices because 

they mimic the structure of the extracellular matrix (ECM). Surface properties (i.e., chemical 

functionality and wettability), however, must typically be customized depending on the desired 

function. Disentangling the role surface and bulk properties play in controlling interactions 

between the synthetic construct and a specific biological system, however, represents a 

significant challenge for the advancement of such biomedical applications.  

Part I of this dissertation addresses this challenge through the fabrication, plasma 

modification, and characterization of polymer constructs, including porogen-leached scaffolds, 

electrospun fibers, and polymer films, fabricated using polycaprolactone (PCL), polylactic acid 

(PLA), Tygon®, and a polylactic-co-glycolic acid-based polymer (PLGH). Plasma processing –
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an attractive tool for tuning surface properties of delicate polymeric materials with complex 

architectures – provides a low-temperature, sterile environment for construct modification, where 

a variety of precursors were selected to impart specific surface properties. Following plasma 

treatment, materials were characterized using multiple methods including contact angle 

goniometry, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) 

to assess changes in wettability, chemical functionality, and construct architecture relative to 

unmodified materials. Interactions between plasma-modified materials and model biological 

systems, including human dermal fibroblasts (HDF), Escherichia coli (E. coli), and blood 

plasma, were evaluated as a means of assessing bioreactivity. 

Part I begins with a review of state-of-the-art of wettability measurements for plasma-

modified three-dimensional porous polymeric materials.  Specifically, inherent challenges 

associated with evaluating the wettability of these complex constructs are evaluated.  Issues 

associated with expanding contact angle goniometry-based techniques from two-dimensional to 

three-dimensional substrates are discussed, including the collection of both static and dynamic 

contact angle data. The importance of contextualizing wettability data by concurrently 

characterizing material surface chemistry and roughness is emphasized. This assessment strategy 

provides a holistic approach to evaluating the wettability behavior of three-dimensional 

materials, which persists throughout Part I of this dissertation as an essential piece of the 

research. 

As one example, this analysis process was utilized when assessing two different nitric 

oxide (NO) releasing polymer films fabricated using PLGH and Tygon® before and after water 

vapor (H2O) plasma modification. Film surface properties for both polymer systems, including 

wettability and chemistry, were altered dramatically upon plasma treatment while bulk properties 
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were maintained. Specifically, H2O plasma treatment rendered PLGH films more wettable than 

unmodified films, and XPS characterization suggested plasma treatment resulted in polymer 

rearrangement and implantation of oxygen-containing functional groups. Similar results were 

observed for NO-releasing Tygon® films, where H2O plasma treatment enhanced film 

wettability, doubled film oxygen content, and maintained surface roughness.   

Fluorocarbon (FC) plasma precursors, octofluoropropane (C3F8) and hexafluoropropylene 

oxide (HFPO), were used to deposit conformal FC films on PCL scaffolds using plasma 

enhanced chemical vapor deposition (PECVD) with the goal of customizing scaffold 

bioreactivity. Cross-sectional XPS data demonstrated that FC film deposition occurred both on 

the outer scaffold surface and throughout the 3D structure. SEM images confirmed that FC film 

deposition yielded conformal rather than blanket coatings as the porous scaffold structure was 

maintained after plasma treatment. After 72 h, HDF cells do not attach to modified, seeded 

scaffolds; moreover viability studies demonstrated the scaffolds are non-cytotoxic. 

Plasma copolymerization of allylamine (allylNH) and allyl alcohol (allylOH) on PCL 

scaffolds was utilized to expand upon the work with FC PECVD systems. Films with 

customizable and predictable nitrogen and oxygen content, as well as wettability, were deposited 

on PCL scaffolds using multiple allylNH/OH feedgas mixtures. Additionally, the bioreactivity of 

plasma-modified materials was evaluated using both HDF and E. coli attachment studies. 

Plasma-treated scaffolds showed enhanced HDF viability over unmodified scaffolds, 

demonstrating that both wettability and nitrogen content play a role in promoting cell attachment. 

The coagulation response of blood plasma in the presence of PCL scaffolds was 

evaluated as a means of expanding to more complex biological systems using 

thromboelastography (TEG). In this work, modified TEG cups (with 50% more volume than 
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commercial consumables) were fabricated to accommodate 3D constructs. Proof-of-concept 

experiments using polymer scaffolds with a range of wettabilities and chemistries demonstrated 

that variations in surface properties resulted in differences in blood plasma coagulation 

dynamics. For example, maximum rate of thrombus generation ranged from 

22.2 ± 2.2 (dyne/cm
2
)/s for FC coated scaffolds to 8.7 ± 1.0 (dyne/cm

2
)/s for nitrogen-containing 

scaffolds. 

Part I of this dissertation concludes by describing progress toward developing a repertoire 

of constructs with differing surface and bulk properties, highlighting the plasma modification of 

polymer films, scaffolds, and electrospun fiber mats. Initial exploration of assessment strategies 

(e.g., use of imaging analysis software such as DiameterJ for characterizing differences in fiber 

mat geometry), and a parameter space exploration of 1,7-octadiene (OD) plasmas are included. 

One key finding from the OD parameter space study is that substrates treated further downstream 

at lower applied rf powers are more hydrophilic, suggesting the absence of a hydrocarbon film. 

When applied power is increased, however, substrates placed downstream of the coil are more 

hydrophobic, indicative of film deposition. Altogether, Part I demonstrates that construct 

properties, and thus bioreactivity, can be customized depending on the choice of plasma 

parameters. 

 Part II of this dissertation includes chemistry education-focused research that targets 

metacognition in general chemistry courses, and begins with an investigation of students’ 

postdiction accuracies for a series of exams within a two-semester general chemistry course. 

Four of the research questions addressed are:  How accurate are general chemistry students at 

postdicting their exam scores? Are there gender differences in postdiction accuracy? How do 

general chemistry students’ postdiction accuracies relate to their exam performance?  How do 
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general chemistry students’ postdiction accuracies and metacognitive monitoring of their exam 

performance change over time? Results indicated that most general chemistry students are not 

accurate in their exam score postdictions and that higher-performing students make more 

accurate postdictions than lower-performing students.  

These findings inspired the design and creation of an intervention aimed at improving 

metacognitive monitoring on general chemistry exams. Part II of this dissertation concludes by 

presenting the protocol developed for such an intervention and a description of an initial 

implementation. The goal of this intervention was to explore relationships between general 

chemistry student participation in metacognition-based exam preparation workshops and 

different factors related to metacognition, including metacognitive monitoring and metacognitive 

awareness. Results from a pilot study conducted with a small cohort of students in the Fall 2014 

semester suggest there may be a difference in metacognitive awareness for exam preparation 

workshop participants when compared to test-taking strategy participants. Part II concludes with 

considerations for future studies related to the proposed intervention.  
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CHAPTER 1 

MATERIALS CHEMISTRY-FOCUSED RESEARCH: AN INTRODUCTION 
 
 
 

Millions of synthetic biomaterial devices are deployed in medical settings annually,1 and 

a recent review claims the global biomaterials market will reach a value of approximately $84 

billion by 2017.2 Synthetic biomaterial devices have enormous potential to improve quality of 

life for patients worldwide, which has created a critical need for the biomaterials industry to 

produce and deploy next-generation devices. Addressing the needs of this quickly expanding 

market requires targeted research and development efforts, including the design of customizable 

and multifunctional device platforms. Devices (often designed using polymeric and multi-

dimensional materials) can serve a range of crucial functions, including regenerative tissue 

engineering,3-5 wound healing,6 and controlled-release drug delivery.7 Deployment in these 

applications requires a comprehensive knowledge of interactions between biological species and 

the material of interest, where interactions are dictated by material properties. Although these 

properties (e.g., surface chemistry, wettability, porosity, and architecture) have the potential to 

control biological response, the inherent properties of synthetic devices can limit their translation 

across a broad range of applications. To overcome intrinsic properties associated with a specific 

device material, it is necessary to develop strategies to create devices with customizable 

properties and therefore, tunable biological response. This approach will propel efforts forward 

to meet the growing needs of the synthetic biomaterials market. 

Research presented in Part I of this dissertation builds a fundamental understanding of 

how polymer biomaterial surface and bulk properties affect the interplay at the material-

biomolecule interface. This chapter presents background information to frame these research 
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efforts, including the motivation for employing three-dimensional polymeric constructs in 

biomedical devices, modifying construct surfaces using low-temperature plasma processing 

techniques, and assessing interactions with biological species.  

1.1 Three-dimensional Polymeric Materials for Biomedical Device Applications 

Traditionally, the term biopolymer refers to biodegradable polymers produced by living 

organisms (e.g., cellulose, muscle tissues, and DNA). During the last few decades, however, 

researchers have developed synthetic biodegradable and bioresorbable polymers that mimic 

natural materials.
8-9

 The term “biopolymer” has thus grown to include natural and synthetic 

polymer constructs that elicit specific biological responses.
10-11

 Synthetic biopolymeric materials 

can be fabricated into an essentially unlimited number of architectures using a multitude of 

polymers, making them desirable for a variety of biological applications. Common polymeric 

materials for biomedical devices include those fabricated using polyesters such as 

polycaprolactone (PCL), polylactic acid (PLA), polyglycolic acid, poly(lactic acid-co-glycolic 

acid), and polyhydroxybutyrate, all of which are typically hydrophobic and, thus, often require 

surface modification to improve compatibility in biological (i.e., aqueous) environments. 

Three-dimensional biopolymeric scaffolds that comprise an interconnected porous 

network are of particular interest because they can be fabricated to mimic the extracellular 

matrix, both with respect to geometry and to mechanical properties.
12-13

 The morphology of these 

scaffolds is advantageous for mammalian cell, antibacterial agent, or pharmaceutical loading for 

applications including regenerative tissue engineering,
3-5

 chronic wound treatment,
6
 and 

controlled drug delivery.
7
 Despite the multitude of available 3D biopolymeric scaffold materials 

with desirable mechanical, morphological, and biocompatible/bioresorbable bulk properties, the 
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ability to customize surface properties remains an elusive key to tuning these 3D materials for 

specific biomedical device applications. 

Synthetic biomaterial surface properties control mammalian and bacterial cell attachment 

and proliferation – critical factors for improving the biocompatibility of a plethora of medical 

devices.
14

 Properties that directly influence biological species-surface interactions include 

surface chemical composition, surface free energy, surface topography, and surface wettability.
15

 

Although microorganism surface hydrophobicity, charge, and electronegativity also contribute to 

its interactions with material surfaces,
16-17

 manipulation of surface properties of synthetic 

materials is the most accessible path for controlling biological species-surface interactions and 

enhancing biocompatibility. Therefore, the ability to tune material surface properties while 

retaining the desirable bulk properties can allow for customizable interactions between synthetic 

biomaterials and biological environments. 

In particular, surface chemical composition and wettability greatly influence interfacial 

interactions between surfaces and biological components. For example, Arima and Iwata 

highlighted the effect of terminal functional groups for self-assembled monolayers on protein 

adsorption and cell adhesion.
14

 Increased protein adsorption was observed for surfaces with 

increasing hydrophilicity for many functional groups (e.g. OH, CH3/COOH). Additionally, 

endothelial and epithelial cells attached and spread significantly on surfaces with increased 

hydrophilicity (i.e. increase in surface COOH or NH2), which promotes wound healing and 

synthetic biomaterial device integration into a given biological environment. Parreira et al. 

reported a correlation between the presence of different functional groups on a surface (i.e., CH3 

and OH) and wettability with the increase or reduction of Helicobacter pylori (H. pylori) 

attachment.
18

 Although the 17875/Leb strain showed a distinctive preference for hydrophilic 
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surfaces, the remainder of the H. pylori strains exhibited the opposite behavior. This result 

indicated that bacterial attachment to surfaces is both surface- and strain-dependent. Collectively, 

observations that mammalian and bacteria cells demonstrate surface property-dependent 

behavior emphasizes the need to develop materials with tunable surface chemical composition 

and wettability to meet application needs. One such methodology for tuning construct properties 

is via plasma processing, discussed in Sections 1.2 and 1.3.  

1.2 Fundamentals of Plasma Modification  

A common approach for modifying polymer materials utilizes plasmas to etch, implant 

functional groups, or deposit conformal films, thereby providing a facile route to customize 

material surface properties. The objective of this discussion is to provide a broad overview of 

plasma processing fundamentals, with a more detailed account of plasma treatment of synthetic 

polymeric biomaterials included below (Section 1.3).  

Plasma, the fourth state of matter, is a partially ionized gaseous mixture containing 

neutral and excited state molecules, ions, electrons, photons, and radicals. Work in this 

dissertation utilizes low-pressure, low-temperature plasma (LTP) processing. By definition, the 

majority of species in LTPs are neutral precursor molecules (density ~10
15

 cm
-3

) such that the 

gas temperature is approximately room temperature (~300 K).
19

 The population of ions and 

electrons in LTPs is significantly lower than that of neutral species, ranging from 10
8
 – 10

12
 cm

-3
. 

An additional hallmark of LTPs is that the average electron energy is greater than the average ion 

energy, typically ranging from 1–10 eV depending on plasma parameters.
19

 Because of disparate 

electron and ion energies, LTPs are also referred to as non-equilibrium plasmas.  

A wealth of excitation, dissociation, and ionization reactions occur in LTPs, which 

depend on reactive species populations and energetics. These reactions are largely controlled by 
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the wide parameter space available in LTP modification, including precursor identity (i.e., the 

gaseous or low-vapor pressure liquid precursor(s) present in the plasma feed gas), applied power 

(P), system pressure (p), precursor flow rate (F), and plasma treatment time. Notably, all plasma 

processing reported in this dissertation utilizes radio frequency (rf) applied power, although 

microwave LTPs are also used in research and industrial applications.
20-23

 LTP complexity 

further increases upon addition of a substrate to the plasma, wherein reactions occurring at the 

plasma-surface interface dictate the type of processing that occurs. As mentioned above, plasma 

surface modification systems can be broadly classified as resulting in etching, implanting 

functional groups, or depositing thin films via plasma-enhanced chemical vapor deposition 

(PECVD). These processes are often competing within LTP systems, and the predominance of 

one over the other depends largely on the energetics of plasma species and on the substrate 

material properties. Another factor influencing inductively coupled LTP surface modification is 

the substrate position relative to the region of most intense plasma emission. For example, 

placing substrates downstream of this region typically reduces plasma etching. This type of 

downstream processing allows plasma etchant species to recombine before reaching the 

substrate, while deposition precursors (typically having longer lifetimes) can reach the surface. 

The identity of etching and depositing species depends on the LTP precursor(s) and parameter 

space. A detailed account of reactive species in each LTP system reported in this dissertation 

precedes the chapter introducing the system. 

Industrial and commercial applications of LTPs are ubiquitous owing to precise control 

of material surface properties achieved through the wide range of available processing 

capabilities. Although the most common industrial LTP-modified material systems are those 

involved in semiconductor processing (in the microelectronics field),
24-25

 substantial efforts have 
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focused on expanding LTP technologies to include modification of polymer constructs.
26-31

 

Plasmas can be used to create customizable polymer surfaces without disrupting construct bulk 

properties, which is especially advantageous for polymers as their surface properties limit 

translation across a broad range of applications. For example, polymers typically have low 

surface energies and may have poor durability which presents challenges for applications relying 

on polymer adhesion, wetting properties, and wear resistance. Multiple approaches to improve 

polymer surface properties using plasmas have been examined, including plasma-polymerized 

coatings (i.e., coatings fabricated using PECVD) for improving adhesion and  

wear-resistance.
32-33

 Additionally, LTPs can be utilized for surface cleaning and heat-sealing, 

both of which have applications in packaging.
33

 Another major area of active research is the LTP 

modification of polymers designed to interface with biological systems (Section 1.3), which is 

the focus of the present work. 

1.3 Plasma Processing of Polymeric Materials for Biologically-relevant Applications  

As discussed in Section 1.2, plasmas afford the ability to tune surface chemical 

composition and wettability by deposition of thin films or via implantation of desirable 

functional groups (typically nitrogen or oxygen-containing groups are incorporated when the 

goal is to enhance mammalian cell attachment and growth).
34

 In these approaches, several 

process variables introduced in Section 1.2, including precursor, P, p, F, treatment time can be 

adjusted to impact the efficacy of the plasma treatment.  

The type of polymer construct plasma modification can be broadly classified as resulting 

in either a bioreactive or non-bioreactive surface. Notably, these classifications are highly 

dependent on the desired surface-biological species interaction(s) for a specific application and 

are therefore presented here as a generalized set of guidelines rather than definitive rules. A 
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bioreactive modification is advantageous when the goal is to promote interactions between a 

synthetic biomedical construct and specific biomolecules at the construct surface (e.g., proteins, 

DNA, mammalian cells, and bacterial cells); these plasma modifications generally result in 

hydrophilic surfaces.
35

 Surface modifications that enhance material bioreactivity are more 

commonly reported than those that are non-bioreactive. This is primarily because aliphatic 

polymer materials commonly used when fabricating biomedical devices, including the polyesters 

highlighted in Section 1.1, are nominally hydrophobic.
36-37

 Although these materials present 

desirable bulk properties regarding biocompatibility, bioresorption, and mechanical strength, 

hydrophilic surfaces are generally preferred in applications requiring cell adhesion to 

biopolymeric constructs (e.g., tissue engineering). Thus, the ability to render the hydrophobic 

surfaces of these polyesters hydrophilic greatly expands their utility in many biomedical 

applications. For example, plasma treatments of hydrophobic biopolymeric materials using 

precursors such as allylamine (allylNH),
38-41

 O2,
42-43

 and NH3
44

 have resulted in hydrophilic 

surfaces, demonstrating an increase in cell adhesion relative to untreated materials. 

A non-bioreactive surface modification is necessary for applications wherein non-specific 

protein and bacteria attachment can lead to undesirable effects (e.g., loss of material properties 

and/or negative response from biological media).
35

 Non-bioreactive plasma surface 

modifications typically result in hydrophobic, low-fouling surfaces that minimize bacterial 

attachment and subsequent biofilm formation. Furthermore, such non-bioreactive materials could 

also be used in applications wherein cell attachment and proliferation are undesirable. 

Biomaterial modifications resulting in a hydrophobic surface, although less frequently reported 

than those resulting in hydrophilic surfaces, are important for applications requiring low-fouling 

or those that resist bacteria or mammalian cell attachment. In this arena, diethyl glycol dimethyl 
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ether has been used as a precursor to deposit polyethyleneoxide-like films, and fluorocarbon 

(FC) precursors (e.g., CxFy and hexafluoropropylene oxide (HFPO)) have been used to deposit 

Teflon
TM

-like films on biomedical materials, via PECVD.
45

 Studies on FC plasma deposition, 

however, have largely focused on coating stainless steel substrates used for stents,
46

 and thin 

metal wires
47

 rather than biopolymeric substrates. Indeed, there are relatively few reports on the 

deposition of hydrophobic films on biopolymeric substrates. One study involved PECVD of 

hexane on the exterior of PLA scaffolds that were previously modified via allylNH plasma 

polymerization,
40

 whereas another study utilized N2 plasma modification of PCL scaffolds 

followed by PECVD of ethylene.
4
 In these reports, the intended purpose of the deposited 

hydrophobic plasma polymerized films was to create a chemical gradient that discouraged cell 

adhesion solely on the exterior of the scaffold, and that encouraged cell migration into the 

polymer scaffold core. 

Regardless of whether bioreactive or non-bioreactive surfaces are desired, the breadth of 

available plasma precursors makes LTP processing an excellent candidate for modification of 

polymeric materials for biological applications. Specifically, polymer surfaces can be plasma 

treated to customize response between the material and the surrounding biological environment. 

Controlling response at the biomaterial-biomolecule interface provides a route to either promote 

or prevent attachment of biological species depending on the targeted application. 

1.4 Overview of Research  

Overall, this research is focused on creating model polymeric constructs that allow for 

control of interactions with biological species. Several themes connect the chapters herein, 

including material properties considerations for biomedical applications, fabrication of polymer 

constructs with complex 3D architectures, surface modification using plasma processing, and 
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analysis strategies for both material properties assessments and performance evaluation in model 

biological systems. 

Part I of this dissertation begins by presenting a detailed explanation of experimental 

methodologies used to conduct work presented in subsequent chapters, including 

characterization and biological assessment techniques (Chapter 2). A critical review of 

techniques used to evaluate surface wettability is presented in Chapter 3. As discussed in Section 

1.3, synthetic biomaterial wetting properties are of central importance for understanding 

interfacial interactions of such materials upon interfacing with aqueous environments. Wetting 

behavior evaluation of plasma-modified polymer materials having complex geometries, 

however, is not straightforward; this motivates the overview of state-of-the-art techniques 

discussed in Chapter 3. 

Chapters 4–8 focus on plasma modification, characterization, and biological assessment 

of different polymer constructs. The goal of the work described in these chapters is to customize 

polymer surface properties via plasma modification while maintaining bulk construct properties. 

Chapter 4 presents work from collaborative projects with Dr. Melissa Reynolds’ group, wherein 

the effects of water vapor plasma modification on two different nitric oxide-releasing polymer 

films are evaluated. The objective of this work is to create drug-releasing films with enhanced 

surface properties (e.g., wettability, surface chemistry) for interfacing with biological systems 

(initially targeting their efficacy as antimicrobial constructs). Specifically, this chapter presents 

contributions to the work focusing on characterizing construct surface properties before and after 

plasma treatment. 

Chapters 5–8 contain studies on plasma-modified polyester constructs, including 

porogen-leached scaffolds and electrospun fibers. Chapter 5 presents work on plasma modifying 
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PCL scaffolds using two different fluorocarbon precursors, octofluoropropane and HFPO to 

evaluate their potential to fabricate non-bioreactive 3D constructs. Chapter 6 details the use of an 

allyl alcohol and allylNH plasma copolymerization system for tuning nitrogen content and 

wettability of PCL scaffolds, with a focus on subsequent assessment of scaffold interactions with 

mammalian and bacterial cells. Chapter 7 discusses the analysis of blood coagulation activity 

upon interfacing human blood plasma with allyl alcohol, water vapor, and octofluoropropane 

plasma-modified PCL scaffolds. Chapter 8 includes initial fabrication and characterization 

efforts that are part of a larger research effort to develop a library of polymer constructs, 

systematically modifying surface and bulk material properties by varying the base polymer, 

construct geometry, and plasma modification parameter space.  

Chapter 9 includes a summary of plasma modification of polymer constructs and 

provides possible avenues for future directions of this research, namely plasma modification to 

customize properties of complex polymeric materials and subsequent construct assessment in 

biological systems. Materials having complex geometries are emphasized because of their 

relevance for biomedical device use (e.g., mimicking the extracellular matrix), such as for tissue 

engineering and wound healing applications. Collectively, this research enhances our 

fundamental understanding of how construct surface properties control interactions with 

biological species through providing a comprehensive evaluation, both in terms of materials 

characterization and performance evaluation in biological environments.  
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CHAPTER 2 

EXPERIMENTAL METHODS 

!

!

!

This chapter describes model synthetic biomaterial systems presented throughout this 

dissertation, including plasma modification strategies, fabrication methods, materials 

characterization techniques, and protocols for investigating material interactions in biological 

systems. These methodologies are also presented in publications that are the basis for Chapters 

3-7.
1-6

 This chapter includes four main sections: plasma reactor set-up and treatment conditions 

(2.1), substrate preparation and fabrication (2.2), material characterization techniques (2.3), and 

biological assessment strategies (2.4). 

2.1 Plasma Reactor Set-up and Treatment Conditions 

2.1.1 Plasma reactor set-up. All plasma treatments were performed using a home-built 

glass tubular reactor, inductively coupled to precursor gases via an 8-turn Ni-plated copper coil 

(schematic in Figure 2.1).
7-10

 Radio frequency (rf, at 13.56 MHz) power (P) was applied through 

a matching network using either an RFX 600 or RFPP power supply (Advanced Energy 

Industries Inc., Fort Collins, CO). Vacuum was maintained using a rotary vane pump, and 

reactor pressure (p) was monitored using a Baratron® capacitance manometer (MKS Instruments 

Inc., Andover, MA). The reactor was allowed to stabilize at the base pressure (<10 mTorr) 

before introduction of plasma precursors. After the introduction of gaseous or high vapor 

pressure liquid precursor(s), the pressure was allowed to stabilize at pressures indicated for at 

least 5 min before plasma ignition. 

2.1.2 Plasma treatments. Purity and manufacturer information for precursors used in 

plasma treatments are summarized in Table 2.1. Relevant plasma treatment conditions for these 
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Figure 2.1. Inductively-coupled plasma reactor schematic. Here, the substrate is depicted both in 

the coil region and 19 cm downstream of the coil region, illustrating the range of 

substrate positions in the reactor. 
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Table 2.1. Summary of plasma precursors used for work presented in this dissertation. 

Precursor 
Precursor chemical 

formula or abbreviation 
Purity Manufacturer 

1,7-octadiene 
a 

OD 98% Sigma-Aldrich 

Ultrapure deionized water 
a 

H2O ----- Millipore 

Octofluoropropane 
 

C3F8 99.96% Airgas 

Hexafluoropropylene oxide  HFPO 98% Sigma-Aldrich 

Allylamine 
a, b

 AllylNH ≥99% Sigma-Aldrich 

Allyl alcohol 
a, b

 AllylOH 98% Sigma-Aldrich 
a 
Liquid precursors 

b 
AllylNH and allylOH were used both independently and as co-precursors 
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Table 2.2. Summary of plasma treatment conditions used for work presented in this dissertation.  

Precursor 
P  

(W) 

Duty cycle 

(%)
 

Treatment time 

(min) 

p 

(mTorr) 

Flow rate 

(sccm) 
Substrate placement

 
Chapter(s) 

OD
 4 

100 
a
 

5 
100 0.35

 In coil 3 

4, 25, 50 1, 5, 8, 10, 20 In coil, 10 cm, 19 cm 8 

H2O
 20, 30, 50 

100 
a
 

1, 3, 5 200 0.70 
15 cm 

4 

20 4 150 0.53 7 

C3F8
 

50 
100 

a
 1, 5, 20, 60, 90 

50 5.00 15 cm 
3, 5, 7 

5 1 3 

HFPO 300 10 5, 20, 60, 90 85 10.0 15 cm 5 

AllylNH 50 5 15 100 0.35 15 cm 3, 6 

AllylOH 50 5 15 100 0.35 15 cm 6, 7, 8 
a 
100% duty cycle is equivalent to a CW plasma.  
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precursors are summarized in Table 2.2, many of which were chosen based on previous 

optimization studies reported elsewhere.
8, 11-13

 Parameters include the nature of the applied 

power, which was either continuous wave (CW) or pulsed. Pulsed power is reported in the form 

of duty cycle (d.c.), which is the ratio of pulse on time to total cycle time (e.g., a 5% d.c. 

represents 10 ms of on time in every 200 ms cycle). A d.c. of 100% is equivalent to CW plasma 

conditions. In Table 2.2, the power listed for each pulsed plasma condition is the peak power 

(i.e., the power applied during the on time), which can be converted into the equivalent CW 

power by multiplying the by the duty cycle (i.e., a pulsed plasma with a 5% duty cycle and 50 W 

peak power is equivalent to a 2.5 W CW plasma). 

Gaseous precursors were used as-received and introduced into the reactor with flow rate 

regulated through mass flow controllers (MKS Instruments Inc., Andover, MA). Liquid 

precursors (identified in Table 2.1) were subjected to a minimum of three freeze-pump-thaw 

cycles to remove trapped atmospheric gases prior to use, and introduced into the reactor from a 

50 mL Pyrex sidearm vacuum flask with a Teflon stopcock. Flow rates for liquid precursors were 

estimated following the methodology reported by Griesser and Gengenbach.
14

 Substrates 

(described in Section 2.2) were placed on glass slides 15 cm from the center of the induction coil 

(except for select OD treatments where substrates were placed in the center of the coil) and up to 

nine substrates were treated simultaneously. Plasma treatments were performed using a single 

precursor except in the case of treatments with the mixed feed gas system containing allylNH 

and allylOH. Here, feedgas compositions were 20, 40, 60, and 80% allylNH by pressure for Si 

wafer treatments and 25, 50, and 75% allylNH by pressure for scaffold treatments. The 

remainder of the feedgas was allylOH. 
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2.2 Substrate Preparation and Fabrication 

Three broad types of polymer constructs were fabricated in-house: porogen-leached 

scaffolds, electrospun fibers, and spin-coated films (Figure 2.2). In addition, silicon wafers 

(University Wafer, N-type 100) and glass slides (VWR micro slides, plain, 1 in × 3 in, 1.2 mm 

thickness) were used for select analysis, cut to approximately 1 cm × 3 cm rectangles and 

otherwise used as received. For work presented in Chapter 4, round glass slides were utilized as 

received (VWR micro cover glass, 12 mm diameter, 113 mm
2
 area). For cell culture experiments 

presented in Chapter 6, non-tissue culture (NTC) polystyrene disks (diameter = 13.5 mm) were 

cut from polystyrene petri dishes (Fisher Scientific). NTC disks also served as the underlying 

substrate for spin-coated polymer films (Section 2.2.3). 

2.2.1 Polymer scaffold fabrication. Polymer scaffolds were fabricated using the porogen 

leaching method (Figure 2.2a). Fabrication began by dissolving either PCL pellets (Sigma 

Aldrich, average Mn = 80,000), PLA pellets (NatureWorks IngeoTM Biopolymer grade 6202D), 

or a 50:50 mixture of PCL:PLA (by mass) in chloroform (CHCl3, Fisher Scientific, ≥ 99.8%) in a 

sealed Pyrex media storage bottle. The solution was held at room temperature until the polymer 

was fully dissolved (~2 h for PCL only, ~6 h for PLA-containing solutions). As received sodium 

chloride (NaCl, Sigma Aldrich) was sieved (particle size 150–300 µm), and used as the porogen 

material. The porogen was added to the dissolved polymer/CHCl3 mixture (5:95 w/w 

polymer:NaCl) and cast into Teflon molds that were machined in-house. Three different types of 

molds were used depending on the study: those with 18 10 mm x 3 mm wells (illustrated in the 

Figure 2.2a schematic), those with 16 20 mm x 3 mm wells, and those with 18 10 mm x 6 mm 

wells. After casting, scaffolds dried in the molds for 1 h under ambient conditions followed by 

submersion in absolute ethanol (Pharmco-AAPER®, ACS/USP) for 3 h, allowing for CHCl3  
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Figure 2.2. Overview of in-house substrate polymeric fabrication methodologies including (a) 

porogen leaching to create scaffolds, (b) electrospinning to make fiber mats, and (c) 

spin coating to produce polymer films. All materials began with a polymer solution 

containing either polycaprolactone, polylactic acid, or a combination of the two 

polyesters. 
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removal via phase separation and evaporation. Scaffolds were then placed in deionized water to 

allow for porogen leaching, where the water was changed three times a day for four days to 

ensure complete leaching (scaffolds were removed from the mold approximately halfway 

through the leaching process). Scaffolds were removed from the water and placed in a petri dish 

to fully dry under ambient laboratory conditions before use. Untreated and plasma-modified 

scaffolds were freeze-fractured by placing in liquid nitrogen for 4–6 s and slicing vertically using 

a scalpel for cross-sectional X-ray photoelectron spectroscopy and scanning electron microscopy 

analyses (outlined in more detail in Section 2.3). 

2.2.2 Polymer electrospun fiber fabrication. Electrospun fibers were fabricated using 

PCL, PLA/PCL, and PLA. Specific parameters for each polymer system studied are summarized 

in Table 2.3, and an overview of the electrospinning process is displayed in Figure 2.2b. 

PCL and PCL/PLA solutions were prepared by fully dissolving the polymer (either PCL 

or a 1:1 mixture of PCL:PLA) at room temperature. The PLA solution was prepared by 

dissolving the polymer in the solvent by heating in a vented scintillation vial placed in a water 

bath held at ~80 ºC for 4 h. This solution was cooled for 30 min before electrospinning. Polymer 

solutions were loaded into a 5 mL syringe (BD, Luer-Lok™ tip) equipped with a needle 

(Hamilton 90520). The syringe was placed in a syringe pump (Kent Scientific Corporation, 

Genie Touch) with a constant dispensing rate, and the pump was oriented such that the tip of the 

needle was 15 cm away from a conductive disk wrapped in heavy-duty Al foil (the collector). 

Positive and negative electrodes were attached to the collector and the needle, respectively, and a 

constant voltage was applied for the entirety of the electrospinning process using a high voltage 

power supply (Gamma High Voltage Research, Ormond Beach, FL).
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Table 2.3. Summary of electrospinning parameters used to fabricate electrospun mats 

presented in this dissertation. 

Polymer Co-solvent ratio 
a 

Solution 

concentration 

(w/v%) 

Applied 

voltage 

(kV) 

Flow 

rate 

(mL/h) 

Fiber 

spinning 

time (h) 

PCL
 

7:3 dichloromethane:methanol 8 16 5 1 

PCL/PLA
 

3:1 CHCl3:methanol 10 20 1 2 

PLA
 

3:1 CHCl3:dimethylformamide 12 20 0.5 1 
a
 Solvent manufacturers and grades are as follows: dichloromethane: EMD, HPLC grade; methanol: EMD, ACS 

grade, CHCl3: Fisher Scientific, HPLC grade; dimethylformamide: Fisher Scientific, ACS grade. 
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2.2.3 Polymer film fabrication. Polymer films were fabricated using a spin coater (Laurell 

Technologies, WS-650-23NPP/LITE), as shown in Figure 2.2c. Polymer solutions (17% w/v) 

were prepared by dissolving either PCL, PLA, or 1:1 PCL:PLA in CHCl3 using identical 

methodologies described in Section 2.2.1. To fabricate a spin-coated film, an NTC disk was 

loaded on the spin coater and the polymer solution was dispensed onto the center of the disk 

using a transfer pipette (solutions were too viscous for automatic pipette use). The spin coater 

program was set such that films spun in two steps: the first at 2000 rpm for 2 min and directly 

followed by the second at 3200 rpm for 1 min. After spinning, films were immersed in absolute 

ethanol for 1 h and fully dried under ambient laboratory conditions before further use. 

2.2.4 Nitric oxide releasing film fabrication. The full methodologies for preparation of 

nitrosated-PLGH cysteine and nitrosated Tygon® films are described elsewhere,
5-6, 15-16

 but a 

brief overview is included here to provide context for data presented in Chapter 4.  

For nitrosated-PLGH cysteine, a carboxyl-functionalized polymer was prepared from 

L-lactide, glycolide and 2,2-bis(hydroxymethyl propionic acid) (PLGH). The carboxyl group of 

the polymer segment was further functionalized with cysteine. To facilitate nitrosation, the t-

butyl nitrite (8.4 mg in 1 mL of 2 MeOH: 1 DCM) was added to the polymer solution, which was 

stirred and protected from light for 4 h followed by a 2 h vacuum step to remove the excess 

solvent. The final product was a pink-colored powder which is a visual confirmation of the 

success of the nitrosation process (nitrosation efficiency was ~35%, as quantified via modified 

Ellman’s assay).
16

 Films of the S-nitrosated PLGH-cysteine were prepared by re-dissolving the 

polymer in 2 MeOH: 1 DCM (50 mg mL
-1

). Aliquots of the polymer solution (100 µL) were 

dispensed on round glass slides (VWR micro cover glass, 12 mm diameter, 113 mm
2
 area) and 

dried overnight protected from light. 
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The base of the other NO-releasing film discussed in Chapter 4 is Tygon® (Formula 

R-3603, Saint-Gobain Performance Plastics, Akron, OH, USA). The NO donor used in Tygon® 

films is S-nitrosoglutathione (GSNO). GSNO was synthesized following the protocol published 

by Hart.
17

 Tygon® was dissolved in THF at a concentration of 0.075 g mL
-1

. Tygon® only films 

were used as controls, and were prepared by delivering 750 µL of the Tygon®/THF solution to 

the bottom of a 20 mL glass beaker. GSNO-incorporated films were prepared by incorporating 

either 5% or 20% w/w GSNO in Tygon® solution (denoted as GSNO5 and GSNO20, 

respectively) before casting into the beaker. Films were dried overnight at room temperature and 

protected from light. The resulting Tygon® films were transparent whereas GSNO5 and 

GSNO20 films are pink in color because of the GSNO donor. 

2.3 Material Characterization Techniques 

 A multitude of surface and bulk characterization techniques were used to evaluate 

material properties both before and after substrate modification. The values reported throughout 

this dissertation represent a minimum of three replicate measurements made on each sample with 

a minimum of three different samples (N ≥ 9), regardless of the analysis unless otherwise noted. 

All analyses were conducted immediately (<2 h) after plasma treatment with the exception of 

X-ray photoelectron spectroscopy on porogen-leached scaffolds and NO-releasing polymer 

constructs. Here, outgassing required samples to remain in the pre-evacuation chamber for 

approximately 8 h before introduction into the main chamber. 

2.3.1 Wettability analysis. Water contact angle (WCA) experiments were performed 

using a Krüss DSA30 goniometer. Substrates (described in Section 2.2) did not require further 

sample preparation for WCA analysis with the exception of electrospun fibers and NO-releasing 

Tygon® films, which were fixed to glass slides using a piece of double stick tape at each end.  
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Static and dynamic WCA data were collected depending on the nature of the substrate. 

Regardless of the type of data, deionized water (Millipore, 18 mΩ cm) was used, and ambient 

laboratory conditions were 23 ± 1 °C and ~25% relative humidity for all data collection. The 

probe liquid parameters (density = 0.9970 g/mL, viscosity = 0.0010 cP, and surface 

tension = 72.16 mN/m) were programmed into the onboard software and utilized when 

performing all WCA fitting. For non-sorbing materials, static WCA values were collected using 

drop volumes between 2 and 8 µL, depending on the substrate, where drops stabilized in <1 s. 

When WCA values were < 20º and >20º, the circle and tangent methods contained within the 

onboard software were utilized to fit static data, respectively (algorithms assumes circular and 

elliptical drop profiles, respectively). 

Different types of dynamic data were collected depending on the sample, all using the 

high-speed video recording capabilities of the goniometer. Regardless of the type of dynamic 

data, a program for video recording and drop dispensing was created using the onboard software, 

and the tangent method was used for fitting. Advancing and receding CA values on plasma-

treated substrates (Chapter 3) were collected by using a drop volume loop running from 0 to 2 to 

10 to 2 µL, where the first step occurred at a dispensing rate of 500 µL/s and subsequent steps 

occurred at a dispensing rate of 300 µL/s. Video data were collected over the duration of these 

dynamic experiments (typically 15 s) at 25 frames/s. CA values were plotted as a function of 

time to obtain advancing and receding angles, and hysteresis was calculated by subtracting the 

receding angle value from the advancing angle value. Different types of dynamic wettability data 

were reported in cases where measuring a static WCA was not possible (i.e., when the 

equilibrium CA was equal to 0º because of sorption or spreading phenomena). In these cases, 

time = 0 s is defined as the time the water drop first comes into contact with the construct 
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surface. In some cases, water absorption data reported in Chapters 3 and 6 were used to calculate 

average absorption rate by dividing drop volume by the time it took for the drop to be fully 

absorbed (determined from video analysis). Video data taken at 25 frames/s over 10 s were used 

to measure water sorption behavior for relevant constructs in Chapters 3 and 6. Wettability data 

for H2O plasma-treated PLGH constructs (Chapter 4) were collected at 64 frames/s for 10 s and 

are reported in terms of water spreading time (for PLGH films) or stabilized WCA values 

(Tygon® films). The tangent fitting method contained within the onboard software was utilized 

to fit all dynamic data, where CA values were plotted as a function of time.  

Contact angle titration experiments were performed for results reported in Chapter 3. 

Three different aqueous solutions (pH ~1, 7, 13) were prepared using Millipore water, 

hydrochloric acid (0.6 M, EMD, ACS grade) and sodium hydroxide (0.1 M, Mallinckrodt 

Chemicals, ACS grade), where pH was determined using a pH probe (Mettler Toledo, 

SevenEasy pH Meter S20). To avoid contamination between solutions, drops were delivered 

using an external syringe pump (New Era Pump Systems, Inc., Model NE-1000) equipped with a 

separate set of hardware (i.e., tubing, syringe, etc.) for each solution. A minimum of three 

different replicate measurements on two different samples were collected to determine the 

wetting characteristics of each plasma-treated substrate. 

2.3.2 Composition analysis. X-ray photoelectron spectroscopy (XPS) performed on a 

Physical Electronics PE5800 ESCA/AES system with a monochromatic Al Kα X-ray source 

(1486.6 eV), hemispherical analyzer, and multichannel detector provided information on surface 

composition and binding environments. All substrates with the exception of Si wafers were 

mounted on the sample holder using carbon tape. For porogen-leached scaffolds, both the argon 

ion and electron (~5 eV) neutralizers were used to minimize sample charging. For other 
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constructs, only the electron neutralizer was used. Survey spectra were collected for 2–5 min 

from 10 to 1100 eV (pass energy = 187.9 eV, resolution = 0.80 eV). High-resolution spectra 

were typically collected over 15 min for all elements with compositions >1% from survey 

spectra (pass energy = 23.5 eV, resolution = 0.10 eV), and high-resolution spectra were used for 

all quantification, including atomic composition ratios (i.e., F/C, N/C, O/C) reported in Chapters 

3, 5, 6, and 8. 

Charge correction and fitting of high-resolution C1s were performed using either 

XPSPEAK 4.1 software (Raymund Kwok, UK Surface Analysis Forum) or CasaXPS (Neil 

Fairley, Casa Software Ltd., Cheshire, UK). Spectra were charge-corrected using different peaks 

in the C1s high-resolution spectra depending on the sample. For fluorocarbon plasma treated 

materials, the CF2 component was used to index at 292.0 eV (Chapter 5). For all other constructs, 

the C-C/C-H component was used. Although reported binding energy values used to index the 

aliphatic environment cover the 285.0 ± 0.4 eV range,
18

 we opted to use 285.0 eV to index 

spectra. High-resolution C1s spectra were fit using multiple Gaussian fits corresponding to 

different carbon binding environments, where the FWHM value for each environment was 

constrained to be ≤ 2.0 eV (chi-squared values <1.5). More detail on specific binding 

environments included in C1s spectra can be found accompanying XPS data in each chapter. For 

comparison with plasma-modified materials throughout this dissertation, a deconvoluted high-

resolution C1s spectrum for untreated PCL scaffolds are shown in Figure 2.3. Also pictured in 

Figure 2.3 are the polymer structures of polyesters used for construct fabrication (PCL and PLA).  

2.3.3 Morphological analysis. Scanning electron microscopy (SEM) was performed using 

a JEOL JSM-6500F microscope to qualitatively evaluate substrate architecture. Samples were 

grounded with carbon tape. For scaffolds, an accelerating voltage of 1.0 kV and a working 
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Figure 2.3. Representative high-resolution C1s XPS spectra of a native PCL scaffold; chemical 

structures of polyesters used to fabricate polymer constructs for work presented 

throughout this dissertation (bottom). 
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distance of ~10.0 mm were typically used (Chapters 3, 5, and 6). For scaffolds, images were 

collected at 30, 100, and 270× magnification. PCL electrospun fibers were coated with ~5 nm Au 

prior to SEM analysis, accelerating voltage of 5.0 kV, and a working distance of ~10.0 mm were 

used (Chapters 3 and 8). For SEM evaluation of asymmetric polysulfone ultrafiltration 

membranes (US Filter Inc.) presented in Chapter 3, materials were coated with ~10 nm Au prior 

to analysis (accelerating voltage of 5.0 kV and working distance of ~4.0 mm). For PLGH 

constructs (Chapter 4), images were collected at 100, 250, and 500× magnification. Three to five 

images were taken of each sample with an accelerating voltage of 1 kV and a working distance 

of approximately 10.0 mm. 

Collecting quantitative morphological data on porogen-leached scaffolds is challenging 

because of their complex morphology. A quantitative assessment of polymer film roughness, 

however, was attainable using a Zemetrics ZeScope optical profilometer (Chapters 3, 4 and 8). 

For unmodified and plasma-modified glass slides (Chapter 3), scans were collected of 

2220 × 2200 µm
2
 areas using a 20× magnification objective with a scan length of 150 µm in the 

z-axis and a signal threshold of 1.0%. Two scans were collected on two independent samples for 

a total of n = 4. For NO-releasing polymer films (Chapter 4), a single scan was collected for a 

250 × 350 µm
2
 area using the same magnification objective, scan length, and signal threshold 

described above. Two to three scans were collected on each of 3 samples, for a total of n = 6 

(PLGH films) or n = 9 (Tygon® films) for each treatment. Both Ra and Rq values were 

determined from an average of the 6-9 scans using the ZeMaps measurement and analysis 

software (Fourier filter fit used), where Ra and Rq represent the arithmetic mean and root mean 

square roughness across a sample scan, respectively. For polymer films discussed in Chapter 8, 

three scans were collected on each type of film (unmodified, OD plasma treated, allylOH plasma 
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treated) for a 1280 × 960 µm
2
 area with the same objective, scan length, and threshold listed 

above. For OD films deposited on Si wafers (Chapter 8), a minimum of three scans were 

collected on each sample (scan length of 30 µm in the z-axis, signal threshold of 2.0%). Here, 

most data were collected using the 20× magnification objective (375 × 280 µm
2
 scan area), but 

the 100× magnification objective was used in the case of wafers placed 19 cm downstream and 

treated using 25 W OD plasmas for 20 min (47 × 35 µm
2
 scan area). 

2.3.4 Additional surface analysis. One important film characteristic presented in this 

dissertation is film thickness. Specifically, fluorocarbon and hydrocarbon film thicknesses were 

determined using a VB-400 VASE Ellipsometer (J.A. Woollam Co., Lincoln, NE). VASE 

spectra collected over a 300–1100 nm range in 20 nm increments at incident angles of 55º, 65º, 

and 75º. Isotropic scans (with depolarization) were collected for all VASE measurements. VASE 

spectra were fit with a four-layer model (bulk Si, amorphous Si, SiO2, and a Cauchy layer) using 

the WVASE modeling software. 

Initially, concurrently fitting all four components of the model (including thickness and 

optical constants) did not accurately reproduce experimental VASE data. This was likely because 

of wafer contamination. Thus, Si wafers were first pre-treated using an oxygen plasma (typical 

conditions: P = 100 W, p = 100 mTorr, treatment time = 5 min), which resulted in oxide layer 

growth. The oxygen plasma-treated wafer was then analyzed immediately using VASE, and the 

first three layers of the model (bulk Si, amorphous Si, and SiO2) were fit with regards to both 

thickness and optical constants. The same wafer was then treated using plasma deposition 

conditions of interest, and the fourth layer of the model (Cauchy layer) was fit separately.  

Systems evaluated following this methodology included films deposited from C3F8 and 

HFPO plasmas under identical processing conditions as PCL scaffolds (Chapter 5), as well as 
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films from OD plasmas were deposited on Si wafers under identical processing conditions as 

polymer constructs (Chapter 8). Notably, data collected on OD plasma deposited films were fit 

over restricted wavelength ranges (400–1100 nm for films deposited at P = 4W in the coil and 

800–1100 nm for films deposited at P = 25 W 19 cm downstream) because films absorbed at 

lower wavelengths. 

An additional methodology for assessing substrates treated with OD plasmas was Fourier 

transform infrared spectroscopy (FTIR). Specifically, FTIR was used to assess bulk chemical 

functionality after plasma treatment. FTIR spectra were collected in transmission mode using a 

Nicolet 6700 FTIR (Thermo Fisher Scientific, Madison, WI). Spectra were compiled from 120 

scans with a 4 cm
-1

 resolution. Baseline correction and atmospheric signal suppression were 

performed on each spectrum using Omnic 8.2. 

2.4 Biological Assessment Strategies 

2.4.1 Cell attachment and growth on fluorocarbon plasma-modified constructs. 

Interactions between fluorocarbon-modified materials and mammalian cells (presented in 

Chapter 5) were assessed using human dermal fibroblasts (HDF, ZenBio, Inc.). HDF were grown 

in media (Media 106 supplemented with 2% v/v fetal bovine serum, 1 µg/ml hydrocortisone, 10 

ng/ml human epidermal growth factor, 3 ng/ml basic fibroblast growth factor, 10 µg/ml heparin, 

125 µg⁄ml amphotericin B, 5 mg⁄ml gentamicin from Gibco®) on a tissue culture (TC) plate 

(VWR), and were collected from a 25T flask by adding 1 mL of a trypsin-EDTA (0.25%) 

solution and re-suspended at 50,000 cells/mL. Untreated scaffolds, C3F8 and HFPO plasma 

treated scaffolds were used in cell experiments. Representative FC plasma treated scaffolds (20 

min C3F8 and 60 min HFPO) were used as the F/C ratios on the scaffold tops and cross-sections 

reached a maximum value at these treatment times, and did not change (within error) upon 
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longer treatment times. All scaffolds were fixed at the base of a TC plate using a minimal 

amount of double-sided carbon tape to ensure complete immersion of the scaffold in cell culture; 

a 1 mL aliquot of cells was added to each well. Several wells of HDF cells only were used as 

positive controls and cells were also exposed to the double-sided carbon tape as a control 

experiment. All control sample wells were seeded with 50,000 cells/well. Samples were 

incubated for 72 h (37 °C, 5% CO2) and cell culture medium was replaced with fresh medium 

after 24 and 48 h. Samples were rinsed twice with 150 mM phosphate buffered saline (PBS), and 

fixed with 3.7% methanol-free formaldehyde in PBS for 10 min at room temperature. After 

rinsing samples twice with PBS and exposing to acetone cooled to 0 °C for 4 min, samples were 

rinsed twice again with PBS and stained using 0.5 mL of staining solution for 20 min at room 

temperature. Staining solution comprised DAPI and Alexa Fluor® 568 Phalloidin (Life 

Technologies) at concentrations of 7.60 µM and 6.60 µM, respectively, in PBS. Samples were 

finally rinsed three times with PBS, and scaffolds were placed in dry wells for >24 h before 

imaging. 

 Fluorescence microscopy images were taken using an Olympus IX73 fluorescence 

microscope. An excitation wavelength of 358 nm was used for DAPI (461 nm emission 

observed), and a wavelength of 578 nm was used for Alexa Fluor® 568 Phalloidin (600 nm 

emission observed). Images of cells on scaffolds are composed of three overlayed images 

(transmitted, DAPI, and Alexa), combined using the Olympus CellSens software, whereas 

images of cells on control wells comprise two overlayed images (DAPI and Alexa). 

2.4.2 Cell attachment, growth, and viability on allylNH and allylOH plasma-modified 

substrates. HDF were grown and collected as described in Section 2.4.1. Plasma polymer films 

(allylNH, allylOH, and copolymerized allylNH/OH) on scaffolds and NTC disks, as well as 
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untreated scaffolds and NTC disks, were used in cell experiments. Experiments were performed 

using 24 well plates wherein a 1 mL aliquot of cell solution (~50,000 cells) was added to each 

well. Several wells were used as positive controls, which were also seeded with 50,000 

cells/well. Samples were incubated for 48 h (37 °C, 5% CO2) and cell culture medium was 

replaced with fresh medium after 24 h. Samples were fixed, stained, and imaged following 

protocols described in Section 2.4.1.  

Viability assays were performed on allylNH/OH plasma treated materials. For each 

replicate, three wells (TC plate, positive control), three untreated substrates (either scaffolds or 

NTC disks), and three plasma-modified substrates were used for each plasma treatment studied. 

Media was removed from all samples and plasma modified substrates were moved to a clean 

plate. A CellTiter-Blue® solution was prepared by adding 20 µL aliquot of as-received 

CellTiter-Blue® reagent (Promega) for every 100 µl of warm cell media, and a 400 µl aliquot of 

this solution was added to each well. After 3 h incubation at 37 °C in a humid atmosphere (i.e., a 

pan of water was placed at the bottom of the incubator) with 5% CO2, absorbance readings were 

measured with a plate reader (BioTek Synergy 2) at 570 nm and 600 nm. 

2.4.3 Bacteria attachment and growth on allylNH and allylOH plasma-modified 

substrates. To further assess bioreactivity of the copolymerized materials, bacterial attachment 

on plasma polymer films deposited on glass slides was evaluated using Escherichia coli (E. coli). 

Lyophilized bacteria were reconstituted in warm nutrient broth media (NBM) and grown 

overnight at 37 
○
C and 150 rpm. The overnight culture was diluted 1:1 using a glycerol solution 

(30% v/v) and stored at −80 
○
C. Prior to each assay, a tube of bacterial culture was thawed and 

centrifuged at 4700 rpm for 10 min to collect a pellet. The pellet was re-suspended in warm 

NBM and incubated overnight at 37 
○
C and 150 rpm. The overnight culture was diluted with 
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fresh warm NBM to an optical density at 600 nm (O.D.600nm) of ~0.1 and incubated (37 ºC at 100 

rpm) until it reached the logarithmic growth phase (O.D.600nm ~0.3) prior to exposing the 

substrates to the bacteria solution.  

Substrates were placed in individual wells of a 6 well TC plate and covered with 4 mL of 

bacterial solution in the logarithmic growth phase. Samples used for attachment and growth 

assessment were incubated at 37 °C for 18 h in static condition and triple rinsed with sterile NaCl 

solution (0.85 % w/v). The viability of the bacteria cells was assessed by performing a live/dead 

assay where rinsed samples were exposed to propidium iodide (PI) and SYTO9 solution (3 µL 

PI, 0.5 µL SYTO9 in 0.85% w/v NaCl(aq)) and incubated at room temperature for 30 min, 

protected from light. Substrates were rinsed with copious amounts of ultrapure water and stored 

protected from light in clean 6-well TC plates until further analysis. The above procedure was 

repeated for control substrates, including a hydrophilic control (glass slide, WCA = 20.3 ± 1.4°) 

and a hydrophobic control (plasma polymerized C3F8 film, WCA = 110.3 ± 0.3°). 

Fluorescence microscopy images were acquired using an Olympus IX73 fluorescence 

microscope. An excitation wavelength of 543 nm was used for PI (617 nm emission observed), 

and a wavelength of 488 nm was used for SYTO9 (500 nm emission observed). All fluorescence 

images shown here are composites of PI and SYTO9 image combined using the Olympus 

CellSens software. 

2.4.4 Thromboelastography (TEG) analyses. Experimental methods presented in this 

Section correspond to experiments presented in Chapter 7, wherein a commercial 

thromboelastography instrument was modified to accommodate unmodified and plasma-

modified 3D PCL scaffolds.  



 36 

 

Figure 2.4. Overview of interfacing 3D printed consumables with the TEG instrument. (a) 
photograph of the 3D printed cups loaded into the TEG instrument. The red box in (a) 
shows the region of the TEG instrument illustrated in panel (b). (b) Expanded view 
CAD model of the 3D printed cup, PTFE spacer, and TEG stage (posts connecting the 
stage to load cell are cut off for clarity). (c) CAD model of 3D printed cup after the 
addition of the blood plasma solution (left) and after addition of the solid polymer 
scaffold (right).  
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CAD models of TEG cups were created using Google SketchUp Make 2015. Cups were 

designed such that all dimensions were identical to standard Cyrolite® plastic TEG consumables 

(Haemonetics Corporation) with the exception of the cup height. This resulted in a cylindrical 

cup with a sloped lip (Figure 2.4a) with the following dimensions: outer base radius = 5.44 mm, 

outer lip radius (i.e., closest to the top of the cup) = 7.5 mm, total height = 18.30 mm. SketchUp 

files were converted to .gcode files for 3D printing, and were printed with a LulzBot AO-100 3D 

printer (Aleph Objects Inc., Loveland Colorado) using a blue 2.85 mm acrylonitrile butadiene 

styrene (ABS) filament (ABS films have a water contact angle of ~80º 
19

). 3D printed cups had a 

volume of ~520 µL – approximately 50% larger than standard consumables. A white Teflon 

PTFE sheet (height = 0.188”, McMaster Carr) was machined to accommodate the 3D printed 

TEG cup (Figure 2.4), effectively serving as a spacer between the TEG stage and load cell.  

Porogen-leached scaffolds (section 2.2.1) were cut into quarters by slicing vertically 

using a scalpel such that they could be placed easily into the TEG cups (the volume of each 

sample was ~75 µL). Typically, two scaffolds (8 scaffold quarters) were plasma-modified 

simultaneously. Different low-temperature plasma precursors and treatment conditions were 

selected based on previous studies to create scaffolds with a variety of surface functionality 

(fluorocarbon,
2
 nitrogen-containing,

4
 alcohol-containing

4, 20
). In other words, bulk properties 

(porosity, geometry) were maintained and surface properties (chemistry, wettability) were 

varied. See Tables 2.1 and 2.2 for plasma parameters used. 

For the proof-of-concept experiments presented in Chapter 7, blood was collected from a 

single healthy, non-smoking volunteer individual on no medications with normal complete blood 

count, serum diagnostic panel, no evidence of inflammation, and a normal physical examination. 

The Colorado State University Institutional Review Board (IRB) deemed that IRB approval was 



 38 

not required. Blood was collected in tubes containing buffered sodium citrate (BD Vacutainer), 

and plasma was harvested from citrated human whole blood collected after centrifugation at 

4500 × g for 10 minutes. After processing, blood plasma aliquots (700 µL) were added to 2 mL 

cryogenic vials (Fisher Scientific) and stored in a −80º C freezer until use (less than two weeks).  

Before each run, one vial of plasma was removed from the freezer and rapidly thawed 

with shaking for approximately 1 min in a 37º C water bath. After thawing, the vial was kept on 

ice until use (<25 min). A TEG® 5000 Thromboelastograph® Hemostasis System (Haemonetics 

Corporation) was used for all TEG experiments. For each experiment, the disposable TEG pin 

was loaded in the instrument using standard TEG consumables (Haemonetics Corporation). The 

3D printed cup was loaded into the instrument over the machined Teflon®, assuring that the cup 

fit snugly into the instrument. 10 µL of freshly prepared tissue factor solution [TriniCLOT PT 

Excel Reagent (TCoag) and distilled water] were added, resulting in a 1% w/v final 

concentration in the cup. 330 µL of thawed plasma were then added to the cup. For experiments 

wherein a scaffold was added to the TEG cup, the solid scaffold was immediately placed directly 

into the plasma mixture (i.e., the scaffold was free floating in solution, Fig. 2.4c). After the 

solution was left to warm up to the temperature of the TEG (37
o
C, ~2 min), 20 µL of a calcium 

chloride solution (0.2 M, Haemonetics Corporation) were added to recalcify the mixture and 

initiate coagulation. After mixing several times via pipette, the TEG run was started and left to 

run for either 25 min or until maximum amplitude was reached. TEG experiments were 

performed within 24 h of scaffold LTP modification. TEG data were collected in triplicate for 

each type of sample (e.g., blank, untreated scaffold) to gauge reproducibility. 

Both standard thromboelastograph tracings and velocity curves were analyzed in this 

work, where velocity curves are the first derivatives of the thromboelastograph tracings. In 
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addition to the standard TEG parameters obtained from thromboelastograph tracings [reaction 

time (R), maximum amplitude (MA), and time to maximum amplitude (TMA)], clot lifespan 

parameters were collected:
21

 maximum rate of thrombus generation (TMRTG, the time interval 

observed prior to maximum speed of clot growth), maximum rate of thrombus generation 

(MRTG, the maximum velocity of clot growth observed), and total thrombus generation (TTG, 

the total area under the velocity curve during clot growth and a measure of overall clot growth). 

A detailed explanation of these parameters can be found elsewhere.
22-23

 Although there is 

controversy in the literature regarding the relative utility of the thromboelastograph tracings and 

the velocity curves,
21, 24

 these data collectively provide a reasonably comprehensive coagulation 

assessment.  

A one-way ANOVA was conducted to explore differences in the mean TEG 

measurement values (velocity curve data) of different materials. Significant differences were 

observed between materials for both the maximum rate of thrombus generation, MRTG 

[F(4, 10) = 37.3, p < 0.0001] and total thrombus generation, TTG [F(4, 10) = 25.8, p < 0.0001]. 

Effect sizes (η
2
) were >0.9. Post-hoc comparisons (Tukey HSD) were used to evaluate 

differences in MRTG and TTG, and significant differences from these comparisons are denoted 

in Figure 7.4 (p < 0.05 level). 
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CHAPTER 3 

INNOVATIVE APPLICATIONS OF SURFACE WETTABILITY MEASUREMENTS FOR  

PLASMA MODIFIED THREE-DIMENSIONAL POROUS POLYMERIC MATERIALS
 

 

 

 

This chapter addresses the current state-of-the-art of wettability measurements for 

plasma-modified, three-dimensional, porous, polymeric materials, providing an in-depth 

exploration of one characterization technique that we have used in the Fisher group. Specifically, 

inherent challenges associated with evaluating the wettability of complex constructs are 

evaluated. Issues associated with expanding contact angle goniometry-based techniques from 

two-dimensional to three-dimensional substrates, including the collection of both static and 

dynamic contact angle data, are discussed. Dynamic data refer to advancing and receding contact 

angle measurements, as well as measuring changes in static contact angle as a function of time, 

with a focus on complications that arise from the intricate architectures of these polymeric 

materials. Limitations in analysis and interpretation of wettability data are highlighted to explore 

how best to represent the wetting characteristics of plasma-treated porous constructs. Additional 

emphasis is given to the importance of placing wettability data in context by simultaneously 

assessing surface chemistry and architecture, providing a holistic approach to evaluating the 

wettability behavior of three-dimensional materials. A list of recommendations for best practices 

is provided.  

This chapter is based on work published in an invited review for Plasma Processes and 

Polymers by Morgan J. Hawker, Adoracion Pegalajar-Jurado, and Ellen R. Fisher, and is 

reproduced with permission, Wiley 2013.
1
 This work was supported by the National Science 

Foundation (CHE-1152963) and the Colorado Office of Economic Development via the 
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Biosciences Discovery Evaluation Grant Program. I would like to thank Dori Pegalajar for her 

contributions to this work, specifically in researching the debate outlined in Section 3.2.2 and 

many rounds of edits. I also want to thank Mr. John Wydallis for assistance with optical 

profilometry and Dr. Patrick McCurdy for assistance with SEM and XPS analyses. 

3.1 Introduction 

 

Three-dimensional (3D) porous polymeric materials have enormous potential for 

applications including, but not limited to, water filtration, tissue engineering, and wound healing. 

Their native surface properties, however, must often be specifically tailored to enhance 

performance for a given application. Over the past 15 years, there has been a significant increase 

in the number of reports of solvent-free, plasma-based techniques to modify 3D porous 

polymeric materials, with the overall goals of uniform surface modification, minimal 

environmental impact, and preservation of the bulk material properties desirable for the intended 

application. One property of plasma-treated materials most critical for a diverse set of 

applications, including water filtration, biomedical, and coating technologies, is material 

wettability.
2-9

 Characterization methods and data interpretation targeting accurate and reliable 

wettability measurements for plasma-modified 3D materials, however, represent significant 

challenges for the scientific community and remain disparate throughout the literature.  

Developing sound experimental methodologies is key to accurately assessing the 

wettability of plasma-modified porous 3D polymer materials. Thus, this chapter will focus on 

several polymeric materials and explore wettability measurements on different porous 

architectures fabricated out of those polymers, including scaffolds, membranes, and electrospun 

fibers. As shown in Figure 3.1, these architectures span a wide range of morphologies that can 

introduce specific challenges or concerns with respect to accurately collecting and analyzing  
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Figure 3.1. SEM images of (a) a water vapor plasma treated PCL scaffold (55X); (b) untreated 

PCL/PLA composite electrospun fibers (coated with 5 nm Au, 1500X); and (c) a 

water vapor plasma treated asymmetric PSF ultrafiltration membrane (coated with 10 

nm Au, 100X). Note that the scale for the SEM image shown in (a) is 100 µm, (b) is 

10 µm, and (c) is 100 nm. 
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wettability data. Adding an additional level of complexity, we focus on plasma-modified 

materials and categorize plasma treatments by separating those that result in materials exhibiting 

absorption behavior from those that do not. Furthermore, we will specifically focus on porous 

materials’ interactions with water [via water contact angle (WCA) measurements] as these 

constructs are typically fabricated with the goal of being used in aqueous-based devices or 

applications. Although this work does not exhaustively cover every possible combination of 

polymers, architectures, and plasma treatments, we will present wettability measurements on a 

variety of different systems with the intention of offering a critical analysis of the state-of-the-

field, and providing approaches to overcome characterization challenges when working with 

porous 3D materials.  

This work focuses on a variety of common polymer systems, including bioresorbable 

polyester scaffolds for biomedical applications [polycaprolactone (PCL), polylactic acid (PLA), 

polyglycolic acid (PGA) and polylactic-co-glycolic acid (PLGA)], as well as polymers typically 

applied in membrane technologies because of their flexibility and durability [polysulfone (PSF), 

polyethersulfone (PES), polycarbonate (PC), polyethylene (PE) and polyethylene terephthalate 

(PET)]. Regardless of material or architecture, attaining a complete understanding of the 

wettability of plasma-modified 3D substrates presents numerous challenges not observed with 

2D materials (e.g., thin films).  

This chapter highlights issues associated with wettability measurements on 3D porous 

polymeric materials and provides recommendations for addressing these concerns. Initially, we 

discuss controversies pertaining to wettability measurements on plasma-treated 2D materials, 

specifically concentrating on the debate previously published in Plasma Processes and Polymers 
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(PPP),
10-14

 and then link this discussion to wettability measurements on plasma-treated porous 

3D constructs. Previously reported methods for determining wettability of this class of materials, 

as well as alternative methods and corresponding data from our work, including new data 

specifically collected for the purposes of this chapter, will be outlined, and merits will be 

assessed using two guiding questions: What do we hope to attain when measuring the wettability 

of plasma-treated 3D materials?; and How should wettability measurements be used and 

interpreted? 

3.2 Background 

 

As discussed in Chapter 1, many traditional surface modification techniques are often 

performed at elevated temperatures and/or are solvent-based, thereby resulting in compatibility 

issues for delicate polymer structures that cannot withstand the required modification conditions. 

Additionally, these methods can produce residues that are incompatible with or harmful to the 

environment. Plasma-based techniques offer several advantages for the surface modification of 

intricate 3D polymeric materials, including that they typically take place at room temperature, 

allowing for preservation of 3D structures; can employ a multitude of gaseous and liquid 

precursors providing excellent tunability of resulting surface functionality; and offer a sterile 

environment for processing, which is ideal for biomedical applications. As plasma modification 

specifically targets the surface (i.e., the outermost portion of a material that acts as the interface 

between the surrounding environment and the bulk material), a variety of surface 

characterization techniques are required to gain a comprehensive understanding of plasma-

modified material surfaces. Notably, the collection of properties of interest may differ depending 

on the intended application. For example, composition can be assessed using Fourier transform 

infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary 
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ion mass spectrometry (ToF-SIMS), and near-edge X-ray absorption fine structure spectroscopy 

(NEXAFS); topographical features and architecture can be evaluated using scanning electron 

microscopy (SEM); surface charge can be assessed using zeta potential measurements; and 

surface roughness can be measured using atomic force microscopy (AFM) and profilometry. 

Data from these techniques can be coupled with surface tension and contact angle (CA) data to 

further inform our understanding of surface wettability. Although CA goniometry has proven a 

valuable technique in determining surface wettability on 2D substrates, we argue that the 

collection, interpretation, and analysis of CA data on plasma-modified 3D materials pose unique 

challenges that must be considered to fully understand a material’s interfacial behavior.  

3.2.1 Contact angle goniometry to measure wettability. One of the most prevalent 

techniques currently used to measure wettability is CA goniometry, wherein the static CA 

(typically using water as a probe liquid), serves as the “gold standard” for wettability 

measurements. Young’s equation (Equation 3.1), describes the relationship between surface 

tension and CA on an ideal smooth, planar surface: 

!!"!"#$ = !!" − !!"        (3.1) 

Here, γij represents the surface tension between the two indicated phases, phases included are 

solid, liquid and vapor; and θ represents the static CA, describing the edge of the two-phase 

boundary where it ends at a third phase, a 2D graphical representation of which is depicted in 

Figure 3.2a. A more detailed explanation of Young’s equation and its application is outlined 

elsewhere.
15-16

 In general, the more wettable a solid material is by a specific liquid, the lower the 

observed contact angle will be. 

 Specifically pertaining to WCA measurements, materials having WCA values <!90º are 

traditionally defined as hydrophilic, whereas materials with WCA values ≥!90º are traditionally  
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Figure 3.2. Schematic representations of (a) a static CA measurement between the liquid-vapor 

interface (γlv) and the solid-liquid interface (γsl), and dynamic measurements of the 

advancing and receding CAs via either (b) increasing and decreasing the drop volume 

or (c) using a tilting table. 
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defined as hydrophobic. There is, however, significant discrepancy regarding the quantitative 

values applied to distinguish between “hydrophilic” and “hydrophobic” as these terms are 

inherently ambiguous, and some authors recommend the use of these words only as qualitative 

adjectives.
17

 Moreover, the extent to which these definitions are used to appropriately describe 

the result of a surface modification process can become muddled depending on the starting 

material and the intended outcome or application. For example, when starting with a polymeric 

material possessing a WCA of ~85º, arguably relatively “hydrophobic” even though WCA < 90º, 

the goal might be to render the material less hydrophobic via plasma treatment. Thus, if the 

treatment produces a modified polymer surface with a contact angle of 75º, one might claim this 

was a success in the sense that the treatment did create a more wettable surface. Whether or not 

this could be considered truly “hydrophilic”, however, is a debatable question. Furthermore, the 

extent to which a material’s hydrophilicity can vary after modification (e.g., aging effects such as 

hydrophobic recovery,
18-21

 etc.) makes it difficult to claim that all materials below a specific CA 

value (e.g., 90º) should be broadly categorized as “hydrophilic”. Thus, we support the approach 

of using this terminology as qualitative descriptors. 

Goniometry techniques rely on geometric measurements to yield CA values. Modern 

goniometers come standard with onboard software for drop analysis, wherein the researcher can 

subjectively set a baseline at the solid-liquid interface (or, in the case of certain software, the 

software can automatically determine a baseline using image contrast algorithms). After the 

baseline is determined, different geometric fitting methods can be used to determine the CA. We 

use the Krüss DSA30 contact angle goniometer with the DSA4 onboard software in our 

laboratories, and this software allows us to fit drop shape with different methods depending on 

the CA range of the surface and the need to make dynamic (advancing and receding CAs or CAs 
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as a function of time) or static measurements.
22

 For example, our goniometer allows us to make 

static measurements on samples with symmetric drops having CAs <!20º either assuming circular 

arc contour shape or assuming a flattened curve with different curvature at every level due to the 

drop weight. Furthermore, we can perform “dynamic” measurements either assuming an 

elliptical arc drop shape or having no prior assumption about the drop shape (i.e., fitting the drop 

shape with a polynomial fit). These fitting methods are recommended for surfaces with CA 

values > 20º. Note that the term “dynamic” can refer to measuring the advancing and receding 

contact angles on a surface, but can also refer to measurement of the CA as a function of time 

(e.g., with porous substrates that adsorb the probe liquid). This will be elaborated on further 

below. CA data are fit by first defining the solid-liquid interface (i.e., the drop baseline), and 

then using the on-board software to fit the drop shape based on the selected fitting method. When 

performing CA measurements, it is critical that a consistent method is used and that the fitting 

technique(s) employed are reported.  

In addition to static CA measurements, dynamic CA measurements are a valuable tool for 

assessing surface wettability. Multiple methods can be used to make these measurements, 

including increasing and decreasing the drop volume (Figure 3.2b) or utilizing a tilting table 

(Figure 3.2c), each of which involves measuring the maximum and minimum observed CA 

values (termed the advancing and receding CA values). As surface roughness can profoundly 

affect CA values,
23-25

 roughness should be accounted for using such dynamic CA measurements. 

Indeed, rough materials can be considered as having a surface containing two distinct 

components, where the advancing CA represents the CA measured on a smooth, homogenous 

surface of the low energy component and the receding CA represents the CA measured on a 

smooth, homogenous surface of the higher energy component.
26

 CA hysteresis is thus defined by 
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the difference of the advancing and receding CAs. By definition, ideal flat surfaces have CA 

hysteresis values of 0º; in contrast, hysteresis values on rough surfaces can reach values as large 

as the advancing CA on those surfaces.
24

 CA goniometry can be utilized as a surface-sensitive 

analysis technique to measure wettability of plasma-modified substrates, even in the case of 

materials with considerable surface roughness. Expanding goniometric techniques from 2D to 

3D systems, presents several challenges for both dynamic and static CA measurements; in the 

next section we will outline and discuss these challenges, and their implications for data 

collection and interpretation. 

3.2.2 Challenges of measuring wettability on 2D and 3D substrates. Although static CA 

values are most commonly reported to assess the wettability of a material, they are not without 

controversy. Indeed, the dearth of experimental detail included in manuscripts reporting such 

measurements and the gross misinterpretation of wettability data obtained from these methods 

opened the door to significant debate within the plasma community. In 2010, Strobel and Lyons 

presented a debate-essay in PPP that addressed the misuse and misinterpretation of contact angle 

measurements on plasma-modified polymer surfaces.
13

 The authors highlighted the need to 

include CA data in any future PPP publications, calling for at least inclusion of advancing and 

receding CAs that are properly measured, reported, and analyzed, recognizing that plasma-

modified polymers can clearly represent non-ideal surfaces. In this debate-essay, Strobel and 

Lyons overviewed several techniques including the sessile-drop approach, the tilting plate 

method, and the Wilhelmy plate technique. The authors openly support the use of the Wilhelmy 

plate method for assessing the wettability properties of a plasma-modified material. 

Similarly, in continuing the debate, Di Mundo and Palumbo agreed with Strobel and 

Lyons that dynamic CA measurements are indispensable.
10

 They, however, strongly emphasized 
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the importance of contributions made by roughness and chemical heterogeneity to CA 

measurements, especially with hydrophobic, superhydrophobic surfaces (generally defined as 

having WCA > ~130º), and aged samples. Although Di Mundo and Palumbo likewise recognized 

the advantages of using the Wilhelmy plate technique, they also stressed the limitations of this 

technique when samples are inhomogeneous and detailed how the sessile drop method, when 

performed systematically (i.e., using identical methodological conditions), can provide more 

specific details about inhomogeneous surfaces. Müller and Oehr subsequently published a third 

debate-discussion paper in PPP.
12

 These authors argued that comparing contact angles is a more 

appropriate approach than trying to compare surface energies deduced from CA data. They also 

commented on the importance of using a standardized methodology when meaningful 

comparisons are intended. Müller and Oehr further observed that accurate measurements 

validated with quality statistical analysis are sufficient to corroborate deposition of films or other 

results of plasma treatments.  

In 2011, two other papers followed the initial debate by Strobel and Lyons.
13

  

González-Elipe et al. followed Di Mundo and Palombo’s comments about the importance of 

surface roughness on wetting behavior, focusing their discussion on how to accurately measure 

roughness parameters on non-ideal materials.
14

 For example, a minimum area of 5 µm x 5 µm 

was recommended for systems wherein surface roughness is expected to make significant 

contributions. The last of the debate-discussion papers, prepared by Kietzig,
11

 again addressed 

challenges related to measuring CAs on non-wetting surfaces. Kietzig highlighted the trend of 

researchers looking for inspiration from nature to understand the different wetting effects 

observed on modified materials, and how surface roughness and methodology used for 

measuring CAs affect the wetting behavior observed. Emphasis was placed on the need to 
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describe every experimental detail when performing CA measurements, including environmental 

factors, drop volume, dispensing rate and pressure applied to the droplet, among others.  

Overall, we agree with many of the points made by debate contributors. In particular, 

statistical analysis of the wettability data obtained on any substrate is an absolute requirement 

and when discussing wettability data, authors should take a more qualitative, comparison-based 

approach, rather than placing emphasis on the absolute quantitative values measured. 

Unsurprisingly, the remaining debate points regarding the best practices for measuring 

wettability on plasma-treated 2D substrates do not necessarily translate directly to 

morphologically diverse materials, which suffer from CA hysteresis effects arising from both 

functionality and roughness. Substantially developed models on rough substrates exist, including 

those of Wenzel and Cassie-Baxter, and have been thoroughly outlined in the issue of PPP 

where this debate was originally published
25

 and elsewhere.
24

 Although these models provide 

some insight regarding measurements on non-ideal substrates, they do not necessarily expand to 

describe the wettability of plasma-treated 3D substrates, specifically those that are porous. 

Indeed, 3D porous materials introduce additional complications when measuring wettability, 

most notably absorption behavior, whereby the drop of probe liquid is absorbed by the material 

during the measurement. 

Difficulties in measuring wettability in terms of absorption behavior have led multiple 

researchers to use non-goniometry based techniques. For example, Jansen et al. measured the 

capillary rise behavior of untreated and argon plasma treated PCL electrospun fibers upon 

immersion in deionized water.
27

 From the data presented, the measurement of the height of the 

water front on their samples reveals that Ar plasma treatment results in an increase in wettability 

relative to the untreated fibers. This technique, however, raises serious concerns about 
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reproducibility in distinguishing the liquid front on the material, as well as meaningful 

quantification of the results. Kang and Lee use a similar technique to explore the extent of blue 

dye absorption throughout the 3D network of PLGA scaffolds, both before and after air plasma 

treatment.
28

 By examining photographs of the cross sections of control (untreated) and plasma-

treated scaffolds soaked in a dye solution, the authors claim that they can distinguish differences 

in “wettability” based on the extent of penetration into the porous network. Similar to the water 

front data presented by Jansen et al., this methodology does not provide even semi-quantitative 

data, and is inherently highly subjective. Likewise, Dolci et al. took a gravimetric approach and 

reported “water uptake percentage” for control and oxygen plasma-treated electrospun PLA fiber 

samples. In this work, untreated samples displayed relatively low water uptake percentage of 

<10%. In contrast, all plasma treated fiber samples soaked for 3 to 24 hours exhibited water 

uptake of ~300%.
29

 Although this technique does provide comparative values, it is difficult to 

understand how the data relate to surface wettability or how it is affected by the amount of 

material being used in each experiment. Arguably, these descriptions move a step closer toward 

placing the wettability of a plasma-treated 3D material in context of more global material 

properties and capabilities. None of these approaches, however, provide a complete explanation 

of a specific material’s absorption behavior, nor do they deliver a satisfactory methodology for 

comparison between samples. Thus, the experimental methods used in these non-goniometry 

based techniques present serious reproducibility and repeatability issues, as well as limitations 

associated with using qualitative techniques to report quantitative or semi-quantitative 

comparisons. 

The combination of 3D architecture (including roughness and porosity) and surface 

chemistry of plasma-modified substrates is a major challenge when measuring wettability. A 
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multitude of materials with varying degrees of porosity have been explored for applications 

where understanding wettability is critical to predict function (Figure 3.1). Distinguishing 

between different porous structures (overall porosity and geometry) is an important aspect of 

measuring wettability as this can strongly influence absorption behavior. Furthermore, plasma 

modification can render a material more or less wettable than its untreated counterpart. More 

importantly, because of the variable architecture in 3D structures, areas of the surface may be 

unevenly treated such that the underlying material can still influence wetting behavior after 

plasma treatment.  

Measuring the wettability of some plasma-modified materials appears more clear-cut than 

others. For example, measuring the static WCA on a hydrophobic porous material with a smaller 

scale roughness (i.e., has a distinguishable baseline) is more straightforward than on materials 

with localized macroscopic roughness in the vicinity of the CA measurement. This is clearly 

demonstrated by two examples shown in Figure 3.3, O2 plasma-treated electrospun PLGA fibers 

(Figure 3.3a)
30

 and octafluoropropane (C3F8) plasma-treated PCL scaffolds (Figure 3.3b). In 

Figure 3.3a, the water drop has a distinctive baseline at the solid-liquid interface. In contrast, the 

solid-liquid interface shown in Figure 3.3b is more challenging to distinguish because of the 

larger scale roughness of the substrate. The relative roughness of the two samples can be 

elucidated from the SEM images shown as insets, where the scale bars differ by an order of 

magnitude. As alluded to above, baseline determination can have a major influence on the 

measured CA value. This is depicted in Figure 3.3c where the same image of a water drop on a 

C3F8 plasma treated PCL scaffold was fit with two different potential baselines, resulting in two 

different WCA values.  
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Figure 3.3. Image of a water drop on (a) oxygen plasma-treated PLGA fibers; 
30

 and (b) C3F8 

plasma-treated PCL scaffold (this work). Insets in each figure contain SEM images 

that reveal the micro-scale architecture of the substrates. Note that the scale for the 

SEM image shown in (a) is 10 µm and that (b) is 100 µm. Panel (c) contains two 

identical images of water drops on a C3F8 plasma-treated PCL scaffold, along with 

two different baseline fits to the same image.  

(a) Reproduced with permission.
30

 2007, Springer. 
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Regardless of fitting methodology, CA hysteresis must still be taken into account as the 

roughness and chemistry both influence drop hysteresis. For hydrophilic 3D materials, 

measuring static WCA values is often not viable due to drop absorption. Indeed, irrespective of 

the specific liquid or surface involved, wettability measurements become more complicated as 

the interactions of a particular probe liquid with the surface functional groups and the porous 

structure are intertwined and simultaneously affecting the measured CA value. 

The challenges of making wettability measurements on 3D porous materials, as well as 

the difficulty with interpreting these data, leads to the fundamental question of whether there is 

any value in making CA measurements on these types of substrates. We argue that establishing 

the relative wettability of a plasma-treated 3D porous material is more meaningful (and more 

realistic, given the aforementioned challenges) than measuring absolute wettability. In the 

following sections, we will substantiate this argument with findings from the literature, as well as 

recent work from our group, not published elsewhere, with the goal of developing a 

comprehensive picture of innovative wettability measurements on 3D porous materials. 

3.2.3 Simulations of drop dynamics on porous and rough substrates. As we alluded to 

above, numerous studies have reported experimental data pertaining to the wettability of porous 

constructs. Arguably, it is critical to develop the ability to predict wetting behavior on porous 

materials so as to provide further mechanistic and quantitative insight regarding experimental 

results on these complex substrates. A substantial body of literature aims to characterize the 

dynamics of liquid drops on porous surfaces via molecular dynamics modeling. Although this 

aspect of wettability on porous 3D substrates is not a primary emphasis of this chapter, we 

provide some illustrative examples of this work. For example, Sevano and coworkers proposed 

simple models of the wetting of a porous surface (composed of a series of isolated cylindrical 
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capillaries) with sessile drops of non-volatile liquids, and validated these models using molecular 

dynamics simulations. 
31-32

 This work demonstrated that developed models can accurately 

reproduce the wetting dynamics of simple porous surfaces, specifically pertaining to measuring 

CA, drop volume, drop base radius, and liquid height in the pore as a function of time.
31-32

  

Although models proposed and validated by Sevano, et al. provide insight regarding the 

wettability of porous materials, the authors acknowledge they do not account for any hysteresis 

effects in their models. More recent numerical modeling by Nosonovsky and coworkers has, 

however, considered the effects of hierarchical roughness on material wetting behavior, 

specifically aimed at developing a more comprehensive understanding of CA hysteresis 

phenomena.
33-34

 Work by Nosonovsky et al. differentiates between 1) surface roughness that 

results in the pinning of the solid-liquid-vapor triple line and 2) the influence of adhesion 

hysteresis in the solid-liquid contact area, and demonstrates the importance of both of these 

factors on the observed hysteresis via modeling.
33

 Furthermore, Nosonovsky, et al. expanded on 

the traditionally considered roughness factor (i.e., the ratio between the actual and projected 

surface area, appearing in the Wenzel model
24

) by defining the effective roughness factor. Here, 

the authors refer to the roughness factor corresponding to asperities that have the potential to trap 

air pockets, eliciting Cassie-Baxter behavior.
34

 Notably, the authors discuss limitations in 

measuring the effective roughness factor on rough surfaces, illustrating challenges in 

investigating the wettability of such materials. Overall, these examples demonstrate the 

multifaceted nature of the wetting behavior of rough, porous surfaces and simultaneously suggest 

modeling efforts can be combined with experimental data to provide a more comprehensive 

picture of wetting of complex 3D constructs. 
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3.3 Plasma-treated 3D Material Wettability Measurements 

Before discussing wettability measurements of plasma treated 3D materials, it is 

important to note that the native polymer materials listed in Section 3.1 are all nominally 

hydrophobic, especially in porous morphologies (i.e., WCAs > 90º). From this standpoint, 

researchers are typically interested in exploring how the wettability of a plasma treated material 

differs from that of the base material. At each extreme, there is interest in using plasma 

processing to both fabricate materials that are “superhydrophobic” and low-fouling (generally of 

interest when water penetration into the material is undesirable) and to fabricate materials that 

are hydrophilic to varying degrees. Again, the use of hydrophilic and hydrophobic (as well as all 

of their derivatives such as “superhydrophobic”) should be used as qualitative adjectives and 

specifically defined in the context of the work.
17

 In the context of plasma-treated, porous, 

polymeric, 3D materials, we differentiate between hydrophilic or hydrophobic materials by 

illustrating cases where plasma treatment results in 3D porous polymer constructs that do or do 

not completely absorb water on a time scale relevant to goniometry-based techniques. Although 

we categorize materials in this way, we are aware that the absolute study of absorption behavior 

requires different considerations regarding data collection and analysis.  

Regardless of the type of plasma treatment, one common criticism of wettability 

measurements is that results are often reported without considering changes in surface chemistry 

and/or material architecture, both of which influence wettability. Furthermore, these 

measurements are often discussed either without evaluating their meaning, or are incorrectly 

interpreted, in terms of the intended application for the plasma-treated material. We argue that 

assessing changes in wettability, as well as changes in surface chemistry and topography of a 

material, both before and after plasma treatment are absolutely essential to attain a 
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comprehensive understanding of the system of interest. Thus, our focus will be on placing 

wettability measurements in the context of potential changes in these other material properties. 

3.3.1 Plasma treated 3D materials that do not exhibit absorption behavior. When a water 

drop can stabilize on the surface of a porous 3D material, its interactions with water may be 

similar to that observed with non-porous materials. Thus, the measurement techniques used to 

evaluate the wettability of 2D materials can be extended to these 3D systems. The noted 

shortcomings associated with these techniques on 2D materials also extend to 3D materials. As 

discussed above, additional challenges arise from macroscopic roughness causing ambiguities in 

determination of the baseline necessary to perform geometric static or dynamic CA 

measurements. Returning to the examples shown in Figure 3.3, we can further explore the 

relationship between WCA measurements and other changes to a material upon plasma 

treatment. In the case of the PLGA fibers in Figure 3.3a, Park et al. state that the material likely 

becomes more hydrophilic upon oxygen treatment because of “the introduction of new polar 

groups…on the surface”.
30

 In this study, the authors collected XPS survey spectra and used these 

data to calculate changes in the composition of O-C functionality. Unfortunately, it is unclear 

how the percentage of O-C functional groups was calculated, as the fitting parameters of high-

resolution spectra were not included. In our work on fluorocarbon plasma modified PCL 

scaffolds, we observed an increase in WCA after plasma treatment, and attributed it to an 

increase in carbon/fluorine functionality as measured by elemental analysis obtained from high-

resolution XPS spectra (a more detailed discussion is included in Chapter 5).
35

 In both studies, 

the material architectures remain largely unchanged, as evidenced by SEM analysis. Thus, 

differences in wettability are attributed solely to changes in surface chemistry. Nonetheless, these 

two examples illustrate the importance of measuring CA, surface architecture and surface 
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composition so as to understand the mechanisms by which wettability changes upon plasma 

treatment. 

The two reports noted above focus exclusively on static WCA measurements, which are 

typically adequate for comparing relative changes in wettability before and after plasma 

treatment for hydrophobic 3D materials. Although static WCA values may be sufficient under 

some circumstances, assuming that replicate measurements are performed, more detailed 

information can be gained by also measuring advancing and receding WCAs, and therefore CA 

hysteresis. Kim and coworkers measured advancing CAs for O2 plasma-treated PSF 

ultrafiltration membranes, demonstrating that the advancing WCA decreases with increasing 

plasma treatment time.
36

 The authors did not, however, report the receding CA and any 

accompanying hysteresis that may have influenced the interpretation of the results. Without 

including hysteresis data, the measurements are virtually useless and do not add much to our 

understanding of how the plasma has modified the surface. In contrast, Intranuovo et al. 

measured both advancing and receding WCA values for PCL scaffolds treated with C2H4/N2 

mixed plasmas directly followed by either a short H2 or C2H4 plasma treatment. In this study, the 

plasma-treated scaffolds exhibited a larger hysteresis value than untreated scaffolds, indicating 

that the plasma treatment induced changes to either the surface chemistry and/or surface 

topography. The authors attributed larger hysteresis values to increased chemical inhomogeneity 

in their surfaces introduced by the second plasma treatment.
37

 No specific data are presented, 

however, that directly support this claim. Nevertheless, the measurement of CA hysteresis allows 

more insight into each of the plasma treatments than would have been possible without such 

information. We acknowledge it is extremely difficult to distinguish between contributions to 
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CA hysteresis from surface roughness versus those from surface chemistry within systems that 

contain inhomogeneities in both parameters (e.g., plasma modified scaffolds).  

To further explore this concept, we have plasma treated a variety of material architectures 

under identical conditions and examined them using XPS, SEM and WCA measurements. 

Table 3.1 contains both static and dynamic wettability data as well as XPS compositional data 

acquired in our laboratories on three different substrates (glass slides, electrospun PCL fibers, 

and PCL scaffolds). Glass slides were used as a model flat substrate to allow us to decouple 

surface chemistry from substrate architecture. Using two different plasma treatments, a CW 

1,7-octadiene system (discussed in more detail in Chapter 8) and a pulsed C3F8 system, we have 

created surfaces that are nominally more hydrophobic than the untreated materials, where C3F8 

plasma treatment creates the most hydrophobic surfaces. For 1,7-octadiene treatments, plasma 

modification occurs via hydrocarbon-rich film deposition,
38

 whereas C3F8 plasma treatment 

deposits a fluorocarbon film (a more detailed discussion of fluorocarbon film deposition with 

C3F8 can be found in Chapter 5).
35

 Regardless of substrate identity, advancing CA values are 

greater than receding CAs as expected. On glass slides, both plasma treatments result in a 

significant increase in static and dynamic CAs, as well as a substantial increase in hysteresis 

values. These results can be attributed to differences in surface chemistry (i.e., changes in O/C 

and F/C ratios), as the surface roughness of the plasma treated glass substrates is within 

experimental error of the untreated glass (~3 nm, as measured by optical profilometry).  

Static and dynamic WCA data on the 3D PCL constructs are more difficult to interpret, 

because they are strongly influenced by both surface chemistry and surface roughness, leading to 

much higher experimental errors relative to flat surfaces. All plasma treated 3D porous substrates 

have significantly higher static, advancing, and receding CA values than on glass slides, Table 
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3.1. This is expected as the roughness of the 3D materials is considerably greater than that of the 

glass slides. Both types of native PCL constructs have static WCAs ≥100°, indicative of the 

inherent roughness of these materials as flat PCL films have WCAs of 55 ± 5°.
39

 Notably, 1,7-

octadiene plasma treatment does not appreciably alter the WCAs of either 3D construct, whereas 

the C3F8 treatment results in a significant increase in both static and dynamic WCA values. 

Highlighting results from the scaffold substrates, we see that the chemistry of the treated 

scaffolds has changed dramatically after plasma treatment. For 1,7-octadiene treatment, the O/C 

ratio is significantly lower than that for the untreated material, clear evidence that a hydrocarbon-

rich film has been deposited. Given that the WCAs do not change appreciably upon 1,7-

octadiene plasma treatment but the surface chemistry is clearly altered, the porous architecture of 

the substrate must be the dominant factor that influences WCA measurement. Note, however, 

that the errors associated with these measurements decrease our ability to distinguish between 

the two contributing factors (chemistry and architecture). For C3F8 plasma treatment, significant 

amounts of fluorine are incorporated into both PCL constructs, Table 3.1, clearly indicative of 

fluorocarbon film deposition (similar fluorocarbon film deposition to that observed for different 

plasma treatment conditions, Chapter 5). This result, combined with the substantial change in 

WCAs, suggests that the change in surface chemistry is the primary cause of the WCA increase 

in this system. This is further substantiated by the observation that neither plasma treatment 

results in a detectable change in 3D material architecture (as measured with SEM). Finally, 

comparison of CA hysteresis (Table 3.1) provides further insight into the effects of plasma 

treatment. For flat substrates, we note that hysteresis increases significantly upon plasma 

treatment, regardless of precursor. As the surface roughness is not changing appreciably, this is 

fully attributable to changes in surface chemistry. For the 3D constructs, however, it is much less 
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a
For each plasma treatment, the substrates were treated under identical rf plasma conditions (for 1,7-octadiene plasma treatments, p = 100 mTorr, 

P = 4 W, 5 min treatment time; for C3F8 plasma treatments, p = 50 mTorr, pulsed plasma was used with 5% d.c. and peak P = 50 W, 1 min 

treatment time). 
b
Values represent the mean and standard deviation of three measurements made on three different samples (N ≥ 9). 

c
F/C values 

represent the mean and standard deviation of three measurements made on a single sample made to verify previously found
35

 F/C ratio 

 

Table 3.1. WCA and XPS elemental data for untreated and plasma-treated materials.
a
 

Substrate 
Static and Dynamic WCA Data

b 
XPS Elemental Composition Data 

θstatic (º) θadvancing (º) θreceding (º) Hysteresis (º) O/C F/C
c
 

Glass slides   

Untreated 20.3 ± 1.4 26.0 ± 3.0 7.3 ± 2.1 18.7 ± 3.2 0.56 ± 0.04 -- 

1,7-octadiene 98.3 ± 0.6 102.3 ± 2.5 77.3 ± 3.1 25.0 ± 2.7 0.03 ± 0.01 -- 

C3F8 110.4 ± 0.9 114.0 ± 1.6 80.0 ± 1.4 34.0 ± 2.4 0.13 ± 0.04 1.29 ± 0.08 

Electrospun PCL fibers   

Untreated 129.1 ± 4.2 131.4 ± 6.4 112.0 ± 7.7 19.4 ± 4.9 0.18 ± 0.02 -- 

1,7-octadiene 138.5 ± 3.9 130.3 ± 8.4 119.0 ± 6.1 11.3 ± 3.9 0.16 ± 0.01 -- 

C3F8 140.1 ± 2.0 143.0 ± 2.7 127.7 ± 3.5 15.3 ±4.2 0.07 ± 0.01 1.02 ± 0.07 

PCL scaffolds
   

Untreated 119.5 ± 1.6 125.6 ± 0.5 99.5 ± 10.5 25.8 ± 10.6 0.34 ± 0.01 -- 

1,7-octadiene 121.3 ± 5.3 127.0 ± 15.2 96.8 ± 15.2 30.2 ± 4.0 0.11 ± 0.02 -- 

C3F8 138.6 ± 3.0 135.8 ± 5.0 121.8 ± 7.3 14.0 ± 4.1 0.12 ± 0.01 1.00 ± 0.07 
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straightforward to interpret. Indeed, with a specific substrate, the differences in CA hysteresis 

can be as much as a factor of two (i.e., for the scaffolds), illustrating the difficulty in performing 

and interpreting dynamic measurements on plasma treated 3D surfaces, especially those that are 

porous.  

One of the important challenges with plasma treatment of relatively delicate 3D polymer 

materials is the potential for the plasma to induce significant damage.
40

 We have explored this 

issue with electrospun PCL fibers using our C3F8 plasma treatment. Figure 3.4 contains an SEM 

image of untreated fibers, Figure 3.4a, and two images of these fibers treated in pulsed and CW 

C3F8 plasmas, Figure 3.4b and c, respectively. The image in Figure 3.4b shows no apparent 

change in overall substrate architecture; in contrast, the image in Figure 3.4c shows CW plasma 

treatment considerably fragments the fibers. Interestingly, the O/C and F/C ratios of PCL fibers 

treated under the two different plasma conditions are the same within experimental error. Thus, if 

surface chemistry was measured in the absence of topographical information, one might 

conclude that these were identical surfaces. The static CA of the pulsed plasma treated fibers is, 

however, significantly lower than that of the CW plasma treated fibers (130.3 ± 6.3° and 

140.1 ±!2.0°, respectively). Not only does this example illustrate the effect of roughness on 

apparent WCA, but it also highlights the importance of exploring changes in surface roughness 

and surface chemistry in conjunction with CA measurements. 

An additional challenge with dynamic measurements on porous materials arises from 

measuring advancing and receding CAs if any absorption of the water drop is occurring, even if 

the material does not completely absorb the water drop. Clearly, this becomes a more critical 

issue with more hydrophilic materials, which is discussed in some detail in Section 3.3.2. 

Nevertheless, if measurements are being performed on porous substrates, the effect of probe
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Figure 3.4. SEM images of (a) untreated (1400X) and (b) pulsed C3F8 plasma treated (1000X) 

and (c) CW C3F8 plasma treated electrospun PCL fibers (1000X). The applied rf 

power conditions for the pulsed C3F8 plasma treatment were 5% d.c., peak P = 50 W 

(b) and those for the CW C3F8 plasma treatment were P = 50 W. In each plasma 

treatment, the sample was treated for 1 min with p = 50 mTorr. 

  

10 µm10 µm

a cb
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liquid absorption into the material should be taken into consideration in evaluating resulting CA 

values. In some instances, measuring the CA as a function of drop age using a goniometer 

equipped with a high-speed camera can more thoroughly elucidate wettability behavior.  

 To further explore this approach, we present data from two plasma treatments of two 

different 3D porous polymer constructs: PCL scaffolds and PET membranes (0.2 µm and 3.0 µm 

pore diameters). First, Formosa et al. examined Ar/O2 plasma treatment of PCL scaffolds and 

reported WCA as a function of drop age, Figure 3.5a.
41

 These data demonstrate a case wherein 

the plasma treatment renders the surface more hydrophilic but the water drop is not fully 

absorbed by the substrate and therefore stabilizes over time. In comparing the data for the 

untreated and treated materials, we note that collecting WCA data over the course of three 

minutes with relatively long (10-30 s) intervals between data points (also reported by Wang and 

coworkers
42

) is inappropriate, as the WCA does not continually decrease or change over the 

entire time period. Moreover, when data are collected with long intervals between points, 

researchers may fail to capture changes in WCA that occur initially after the water drop contacts 

the surface. In addition, reporting data over a relatively long time period may introduce artifacts 

resulting from drop evaporation or other destabilizing events, potentially interfering with 

interpretation. The second treatment entails H2O plasma treatment of track-etched PET 

membranes (Figure 3.5b) with two pore diameters.
20

 Here, the plasma treatment results in much 

more hydrophilic surfaces than the untreated materials, but the water droplet stabilizes on the 

porous substrate, and thus the WCA can be measured reliably as a function of drop age. 

These two examples also provide us with the opportunity to comment on the importance 

of understanding CA, architecture and compositional changes upon plasma modification. In 

addition to collecting WCA data on plasma-modified PCL scaffolds, Formosa et al. explored  
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Figure 3.5. WCA as a function of drop age for (a) untreated (squares) and Ar/O2 plasma treated 

honeycomb PCL scaffolds (triangles) 
41

 and (b) untreated and water plasma treated 

track-etched PET membranes with two different pore diameters.
20

 

(b) Reproduced with permission. 
20

 2013, Elsevier. 
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concomitant changes in architecture and surface chemistry using SEM and FTIR.
41

 The SEM 

images showed the Ar/O2 plasma treatment resulted in observable etching of the scaffold 

structure. Similarly, FTIR data on flat PCL films treated in the same plasma system showed 

exposure to the plasma eliminated the characteristic vibrational bands of PCL. Notably, the 

authors did not analyze changes in surface chemistry using the 3D construct, thus it is difficult to 

know precisely how the plasma affected scaffold surface chemistry. Given that there are both 

changes in surface topography and chemistry, assuming the FTIR results from the flat substrate 

translate directly to the scaffolds, it is difficult to discern the contributions of each to the overall 

change in surface wettability. In contrast, Tompkins et al. further characterized their untreated 

and H2O plasma treated PET membranes using SEM and XPS. For short treatment times (i.e., 

2 min), there was no discernable change in pore diameter or overall morphology, whereas that 

same plasma treatment nearly doubled the O/C ratio. Thus, it is clear that the observed increase 

in wettability (>30º change in WCA) is a result of changes in surface chemistry and not 

topography. These studies demonstrate nicely that simply reporting the stabilized WCA does not 

fully describe the wetting behavior of the material, and that plotting CA data as a function of 

time is far more informative. Perhaps more importantly, combining such dynamic CA data with 

both morphological and compositional data is vital. We will revisit and expand upon dynamic 

CA data collection in the next section. 

3.3.2 Plasma treated 3D materials that exhibit absorption behavior. The polymer 

materials listed in Section 3.1 are usually chosen for deployment in specific applications because 

of their desirable bulk properties, such as biodegradability, system compatibility, and/or 

mechanical stability. Plasma modification can, however, be used to selectively modify the 

polymer material’s surface properties, further enhancing the ability to tailor a material for a 
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given application. For the majority of biomedical and environmental applications, the most 

desirable outcome of the plasma modification of 3D porous polymeric materials is to 

permanently increase their hydrophilicity. As such, the majority of literature on plasma treating 

these constructs centers on plasma systems that either deposit thin films or implant functional 

groups that produce a more hydrophilic surface than that of the untreated material. As noted 

above, inherent challenges exist in accurately measuring the wettability of 3D hydrophilic 

materials, especially when the substrate fully absorbs the probe liquid. As such, the static WCA 

cannot be measured and alternative methods must be used to measure and report wettability 

behavior.  

In one often used approach, polymer film analogs of porous materials are employed to 

elicit wettability behavior without the complications of a porous architecture. In these studies, 

many authors have argued that this approach primarily reveals differences in wettability 

attributable to changes in surface chemistry. For example, studies conducted by Park et al. (PLA, 

PGA, and PLGA films treated in oxygen/acrylic acid mixed plasmas),
43

 Khang and Lee (air 

plasma treated PLGA films),
28

 and Ma et al. (PCL films treated in air plasmas) all discuss 

wettability data on polymer films either exclusively or in conjunction with 3D porous materials 

fabricated out of the same polymers.
44

 Park et al. used polymer films exclusively for WCA 

measurements and although they found an increase in film wettability after plasma treatment and 

acrylic acid grafting, it is unclear how plasma modification altered the wettability of 3D 

constructs. Presenting wettability data for a 2D material and combining that directly with 

morphology and composition data acquired using the 3D architecture paints an inadequate 

picture of plasma surface modification effects.  
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An alternate approach employed by Intranuovo et al. entailed fabricating a model pore 

system to optimize plasma parameters and thereby maximize the extent of plasma penetration 

into the model pore. In this model system, which is arguably closer to a 3D construct, a mask 

with a 0.7 µm diameter hole is used to track film deposition, which is then likened to deposition 

within a pore of a 3D porous PLA scaffold.
45

 In this study, a WCA gradient was created by 

measuring WCA spatially across the model pore. These data provide valuable insight into 

deposition uniformity within a single model pore, but do not address issues associated with 

making WCA measurements on a polymer network containing a plethora of interconnected 

pores. Although we agree that important information can be gleaned from evaluating the 

wettability of a flat polymer film or a simplified pore model, we concur with Safinia and 

coworkers in that flat surfaces are not ideal for modeling and predicting the wettability of more 

complex 3D structures.
46

 Indeed, results on flat films cannot and should not be directly 

extrapolated to describe the wettability of 3D materials, especially when differences in surface 

roughness and porosity are considered. Furthermore, authors should provide a clear rationale for 

utilizing polymer film analogs for wettability measurements and avoid drawing unsupported 

conclusions related to 3D polymer substrates. If both flat and 3D substrates are used, we 

recommend that wettability, architectural and compositional information be presented for all 

substrates. 

An additional area of concern with respect to how wettability measurements on plasma 

modified 3D materials are reported arises from terminology. Because of the lack of uniformity in 

methodology (Section 3.3.2), as well as the challenges associated with wettability measurements, 

data on plasma-treated porous 3D materials are often discussed in vague terms that do not allow 

for even semi-quantitative comparison. For example, in the nanofiber literature, the following 



 72 

phrases were used to describe air plasma-treated PCL nanofiber scaffolds: “…absorb water 

immediately”;
47

 “…showed rapid penetration of water drops into the scaffolds”;
48

 and “…water 

drop was suddenly sucked into the nanofiber mat, giving a contact angle of 0º” 
44

 [italics added 

for emphasis]. In other studies, water drops on Ar plasma treated PCL nanofibers “…absorbed 

suddenly and thoroughly when they contacted with the fibers” 
49

 or “…sunk into the material”
27

 

[italics added for emphasis]. These phrases may be descriptive, but they are highly subjective 

and simply do not provide a rational platform for comparison between treatments. Even when 

authors do attempt to report numerical values associated with WCA measurements on absorbing 

materials, the results are equally unsatisfactory. For example, the WCA was reported to be “0 ± 

0º” on air plasma treated PLA/PCL nanofibrous meshes, 
50

 or simply reported as 0º with no 

further explanation for oxygen plasma treated PES nanofiber membranes.
51

 Reporting a static 

WCA of 0º is misleading as it represents a perfectly wetting, ideal surface, and does not 

accurately convey the absorption that is undoubtedly occurring in each of these cases. Clearly, 

these data indicate that plasma treatment resulted in a more hydrophilic material from a 

qualitative perspective. This approach becomes unsatisfactory, however, when the goal is to 

compare how different plasma treatment conditions influence wettability and how surface 

wettability is affected by changes in surface roughness and chemical composition.  

Some researchers have attempted to more specifically evaluate changes in wettability 

after plasma treatment by providing some semi-quantitative measure of the absorption behavior 

of plasma-treated 3D constructs. For example, in 2001 Steen et al., categorized PSF membranes 

treated under different water plasma conditions as either “wettable” or as wettable in under a 

specified time (such as 60 s or 90 s). 
52

 Likewise, Dolci et al. described the spreading of a water 

drop on an oxygen plasma treated PLA nanofiber by reporting that the WCA went from 120º to 



 73 

20º within 60 s.
29

 In another study, despite using a high speed camera (running at 25 frames/s), 

Baker and coworkers were unable to measure a reliable WCA value for Ar plasma-treated 

electrospun PS fibers. They did note, however, that the water absorption rate “significantly 

increased” for plasma-treated materials.
53

 In some of these studies, instrument capabilities were 

not sufficient to provide useful wettability data. Fortunately, these have improved significantly in 

the past decade such that exploring water (or alternative probe liquid) absorption phenomena of 

porous materials through dynamic data collection is a more widely available technology. 

Nevertheless, these examples highlight the extreme ambiguity associated with the terminology 

used to describe dynamic WCA results on 3D materials. 

We argue that evaluating the wettability of plasma modified 3D materials via dynamic 

techniques (e.g., measuring WCA as a function of time along with absorption rate analyses) has 

multiple advantages. This approach can offer comparative metrics (e.g., time for drop to 

completely absorb, initial water absorption rate) by which to assess the wettability of different 

materials. It can also specifically capture the overall absorption behavior and function as a 

benchmark to assess changes in relative wettability. Here, we do not distinguish between 

different wetting phenomena, including 1) wetting attributed to the modified material itself 

disregarding contributions of porous structure, 2) wetting attributed to the 3D material explicitly 

accounting for the porous structure, and 3) the water uptake by the interior of the 3D material 

absorbing water (i.e., polymer swelling). Although the overall observed wetting phenomenon 

likely encompasses some combination of these three mechanisms, polymer swelling is likely a 

minor contributing factor as the swelling kinetics of 3D polymeric materials is on the order of 

months, and CA experiments take place on the order of seconds.
54
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Figure 3.6 shows WCA data for 3D materials treated with plasmas designed to create 

hydrophilic surfaces.
40, 55-56

 Figure 3.6a includes dynamic WCA data for untreated and H2O 

plasma-treated PE membranes. In these studies, the membranes are placed in a holder 

perpendicular to gas flow. As one measure of treatment efficacy, the WCAs of both the upstream 

(side 1) and downstream (side 2) sides of the membrane are evaluated to determine the 

completeness and uniformity of the treatment. These data clearly show that the treated membrane 

is “wettable” (drop absorbs in < 30 s) and that both sides have nearly equal wetting behavior. 

These measurements can also be used to evaluate the effects of sample aging, as illustrated in 

Figure 3.6b. Here, NH3/O2 plasma-treated PSF membranes were allowed to age for 12 months; 

prior to treatment, these materials exhibited a WCA of ~96º, whereas treated membranes 

absorbed a water drop in < 1 s. Dynamic WCA data taken at the end of this aging period clearly 

show the membranes are still extremely wettable (drop absorbs in < 1.5 s), but also reveal 

differences in the upstream and downstream sides of the membrane not discernable via other 

characterization methods. Similarly, such techniques can be used for comparison between 

different sets of treatment conditions.
41, 52, 55-56

 This allows for rapid optimization across a plasma 

system parameter space, especially when a fabricating materials with a certain wetting behavior 

is desired for a specific application.  

Additionally, analyzing this type of dynamic CA data allows for comparison of both 

WCA and absorption behavior including water absorption rate, which can also be collected as a 

function of aging time in systems where understanding changes in wetting is critical for 

applications requiring long-term shelf-stability. For example, dynamic WCA data captured over 

a mere 180 ms in Figure 3.6c (materials treated with H2O/N2 plasmas) demonstrate that both 

freshly treated PCL scaffolds and those aged for 1 week are hydrophilic, absorbing materials, 



 75 

 

Figure 3.6. WCA as a function of drop age on (a) untreated and 2 min H2O plasma treated PE 

membranes on both the side of the membrane directly contacting the plasma 

(upstream, side 1) and the downstream side (side 2);
55

 (b) the upstream and 

downstream sides of a 5:3 O2/NH3 PES membrane aged for 12 months;
56

 (c, left) a 

1:1 H2O/N2 plasma treated PCL scaffold freshly treated and aged for 1 month.
40

 Panel 

(c) also depicts drop volume as a function of drop time for a 1:1 H2O/N2 plasma 

treated PCL scaffold, both freshly treated and aged for 1 week (right). 

(a) Reproduced with permission.
55

 2002, Elsevier. 

(b) Reproduced with permission.
56

 2005, Elsevier. 

(c) Reproduced with permission.
40

 2013, American Chemical Society. 
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with initial WCAs of ~100º. The freshly treated material, however, shows a more rapid decrease 

in WCA, with the water drop fully absorbing in < 30 ms. After 1 week, the water drop takes 

~200 ms to fully absorb. Along with WCA data, drop volume is shown as a function of drop age 

on the surface. Here, fitting of the data yields initial water absorption rates, providing a more 

quantitative comparison of the two materials (fresh and aged).  

Other examples of dynamic CA measurements illustrating the value of this technique 

include studies of NH3-based plasma treatment of PES membranes,
56

 O2/acrylic acid plasma 

treated PLGA fibers,
30

 and O2 plasma-treated PLA fibers.
29

 In the case of O2 plasma treated PLA 

fibers, Dolci et al. reported WCA as a function of time on both treated and untreated PLA fibers, 

but did not use these data as a means of quantitative assessment. Similarly, Park et al. did not 

analyze dynamic CA data for plasma-treated PLGA fibers, despite there being a very clear time 

dependence to the measurements. Clearly, current instrumentation allows researchers to collect 

valuable dynamic wettability data for porous materials; the next step must be to appropriately 

analyze these data. By doing so, we can start to establish rules and best practices for applying 

techniques utilized in 2D material wettability analysis to 3D porous substrates. This will allow us 

to exploit these best practices to enhance our understanding of the wetting characteristics of 

porous plasma treated materials. 

3.3.3 Adapting alternate CA techniques to 3D substrates. Techniques that use probe 

liquids other than water are commonly utilized on 2D substrates,
57-59

 and can provide a wealth of 

additional information than what can be gleaned from WCA measurements alone. Simply 

changing out the probe liquid for any CA measurement allows exploration of effects such as 

oleophobicity (e.g., exchanging water with a nonpolar probe liquid).
60-62

 Another technique 

entails CA titrations, whereby static CAs are determined using several aqueous-based probe 
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liquids that exhibit a wide range of pH values. The dependence of static CA on pH is fit most 

commonly to a 2
nd

-order polynomial, which allows for determination of the surface isoelectric 

point (IEP). The IEP, a measure of surface charge, is a critical property of plasma treated 

materials as it can dictate the pH-dependent interfacial interactions that control material 

degradation, corrosion, adhesion, and catalysis.
63-64

 As with other methods that utilize CA 

measurements, adapting CA titrations to 3D materials may prove problematic. 

CA titrations have been successfully utilized to explore IEP values for 2D metal oxide 

substrates,
65

 including evaluating effects of plasma surface modification.
66-67

 For example, a CA 

titration curve of H2O plasma treated silicon oxynitride (SiOxNy) is shown in Figure 3.7a,
66

 with 

CA values ranging from ~8 to 35° over the reported pH range. A 2
nd

 order polynomial fit to the 

data yielded an IEP value of 6.0 ± 0.1, suggesting a surface with a slightly acidic nature. For 

comparison, the untreated SiOxNy substrate was amphoteric, with no dependence on pH, 

indicating an uncharged surface. Similarly, Sardella et al. used CA titrations to measure IEPs for 

plasma treated 2D polymer substrates.
39

 Figure 3.7b illustrates that untreated polymer substrates 

(flat PCL films) can also display amphoteric behavior, with an average CA of ~60°.
39

 Upon N2 

plasma treatment, however, the CA values ranged from 35-70º, suggesting the substrate is no 

longer amphoteric, and the surface IEP = 9, Figure 3.7c. This indicates a basic surface is created 

via plasma modification, which is somewhat expected, given the accompanying compositional 

data which revealed implantation of nitrogen functionality.
39

 Clearly, the obvious differences in 

pH dependence and therefore IEPs of different plasma-treated 2D materials helps elucidate 

potential acid/base character of these surfaces, vital information for a range of applications that 

utilize plasma treated materials.  
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Figure 3.7. WCA as a function of pH on (a) a H2O plasma treated SiOxNy;
66

 (b) an untreated 

PCL film;
39

 and (c) a N2 plasma treated PCL film.
39

 A 2
nd

-order polynomial was used 

to fit data in (a), a linear fit was used to fit data in (b), and a 3
rd

-order polynomial was 

used to fit data in (c).  

(a) Reproduced with permission.
66

 2010, Wiley.  

(b, c) Reproduced with permission.
39

 2015, Wiley. 
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The ability to utilize CA titrations with 3D porous materials could be even more 

important for these complex substrates, especially in biological applications as biomolecules are 

often charged, and these charges are highly pH-dependent. Thus, the ability to tailor a 3D 

substrate to obtain a specific IEP could revolutionize biomolecule-surface interactions in 

applications such as tissue engineering or biofouling. Although the literature is extremely sparse 

in this area, examples of CA titrations on 3D porous materials, including work by Hurwitz et al. 

(polyamide reverse osmosis membranes),
68

 Molina et al. (human hair),
69

 and Wagner et al. (in 

vitro and in vivo and stratum corneum substrates)
70

 have been reported. Although none of these 

reports are on plasma-modified materials, they provide us with insight regarding the interaction 

between 3D substrates and solutions with different pH values. For example, Molina et al.,
69

 

showed that various solution-based surface modifications changed the CA of the surface of hair, 

but overall the surface remained amphoteric. CA titration data of Wagner et al.,
70

 showed a 

bimodal function with respect to pH, indicative of a polyprotic surface. Interestingly, the values 

(nominally pKa values) derived from these data align with expected pH values for fatty acid 

functional groups present on their surfaces. Many of the challenges in applying CA titrations to 

porous materials, however, echo those noted with static WCA measurements (Section 3.2.2), as 

the titration technique relies on collecting static CA data as a function of pH (i.e., the probe 

liquid drop must stabilize on the material surface). This point is well illustrated by the work of 

Hurwitz et al.,
68

 who performed CA titrations on nanofiltration membranes and found that their 

probe liquids equilibrated on the surface over a relatively long period of time (30-120 s). As 

these materials are porous, undoubtedly some of the probe liquid was absorbed by the 

membrane, and the absorption is likely pH dependent. 
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To further explore changes in wettability as a function of pH for 3D constructs, we 

performed proof-of-concept CA titration experiments on allylamine plasma-treated substrates 

using three different probe liquids (pH ~1, 7, and 13). Allylamine was chosen as a precursor 

because 2D films deposited on glass substrates showed pH-dependent wetting behavior (CAs 

ranged from 12–40º). Likewise, differences in wetting behavior were also observed for 

allylamine plasma treated 3D PCL scaffolds. Specifically, scaffolds absorbed the pH~1 and 

pH~7 probe liquids where absorption rates = 56.6 ± 15.7 µL/s and 0.92 ± 0.33 µL/s, respectively. 

Conversely, the pH~13 probe liquid was not fully absorbed by the treated scaffold, exhibiting 

static CA values of 53.2 ± 4.0º. Given that two of the probe liquids were fully absorbed by the 

porous substrate, it becomes impossible to create a “titration curve” similar to those shown in 

Figure 3.7. Thus the challenge comes in the interpretation of these data to provide a meaningful 

measure of surface charge for these constructs. This example nicely illustrates the difficulty in 

applying alternate CA measurement techniques to 3D substrates, especially when complicated by 

absorption behavior. 

3.4 Recommendations for Best Practices and Future Vision 

This chapter presents challenges and opportunities associated with evaluating the wetting 

capabilities of plasma-modified, 3D porous polymeric materials, including limitations associated 

with data analysis and interpretation. In Section 3.3.1, we presented a variety of wettability 

measurements on different architectures and demonstrated the importance of combining surface 

chemistry and morphological characterization with wettability assessments to fully understand 

the effects of plasma modification on a given 3D substrate. In addition, we described the detailed 

methodology followed in our experiments in Chapter 2, aiming to provide a baseline to design 

future wettability studies within the plasma community.  
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Here, we present a list of five recommendations for best practices in the assessment of 

surface wettability of unmodified and plasma-modified 3D porous constructs. (1) Our first 

recommendation aligns with the endorsements presented in the PPP debate: to ensure that CA 

results on plasma-treated 3D materials are both reproducible and meaningful, researchers must 

utilize identical experimental and data analysis conditions, including consistently placing the 

baseline directly above the point of the highest macroscale roughness feature(s). Along with this 

we recommend that emphasis be placed on comparative data (e.g., with static WCAs) rather than 

absolute measurements, especially when evaluating the efficacy of different plasma treatments. 

(2) Evaluating changes in surface chemistry and architecture in parallel with wettability analyses 

is critical to better comprehend any reported changes in material wetting behavior. (3) 

Performing replicate measurements on independent samples and including experimental error 

when reporting CA data (whether static or dynamic) ensures values can be evaluated by the 

community on the basis of statistical representation of experimental variability. This is critical 

for quantitative comparison between measurements and is a clear necessity when working with 

morphologically diverse substrates. (4) For plasma-treated 3D materials that do not exhibit 

absorption behavior, experimental details should be reported, including the time period used for 

the stabilization of the probe liquid drop, drop volume, and fitting parameters. This 

recommendation applies to both static and dynamic CA measurements. (5) For plasma-treated 

3D materials that exhibit absorption behavior, the evaluation of dynamic data, including 

absorption rate and potential hydrophobic recovery, is vital to provide a semi-quantitative 

overview of the material wetting behavior. This must be accompanied by precise definitions of 

terminology that would mitigate the use of highly ambiguous, qualitative descriptions of 

wettability data. Overall, we believe there is much promise for the future development of robust 
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CA measurement techniques that can be easily applied to 3D porous polymer substrates. 

Furthermore, we welcome the opportunity for further discussion of establishing a well-defined 

approach across the community to evaluating CA measurements for these complex materials.  
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CHAPTER 4 

CHARACTERIZATION OF H2O PLASMA-MODIFIED NITRIC OXIDE-RELEASING 

 

 POLYMERIC MATERIALS  

 

 

 

This chapter describes results from H2O plasma modification of two unique polymeric 

materials: a nitrosated poly(lactic-co-glycolic acid)-based hydrophobic polymer (herein referred 

to as PLGH-cysteine) and a poly(vinyl chloride) (PVC)-based polymer blended with a nitric 

oxide (NO) donor. These two systems were selected for their capabilities of releasing the 

therapeutic agent NO. Although much effort has gone into a comprehensive characterization of 

these systems in terms of surface analysis, NO release, and biological compatibility,
1-3

 this 

chapter focuses on a subsection of these analyses, including changes in material properties of 

each polymer system upon plasma modification. The ability to tune NO-releasing polymer film 

surface properties is demonstrated in each system, echoing work presented on plasma-modified 

polymeric scaffolds in Chapters 3 and 5–8. Additionally, outcomes of H2O plasma treatment of 

the two different systems under identical conditions will be compared. Collectively, this body of 

work establishes our ability to customize surface properties of two unique NO-releasing 

polymeric constructs using a non-depositing plasma system. 

This chapter is reproduced in part with permission from two articles: (1) published in 

ACS Applied Materials & Interfaces by Adoracion Pegalajar-Jurado, Jessica M. Joslin, 

Morgan J. Hawker, Melissa M. Reynolds, and Ellen R. Fisher [6 (15), pp 12307–12320, 

Copyright 2014 American Chemical Society],
3
 and (2) published Biointerphases by Michelle N. 

Mann, Bella H. Neufeld, Morgan J. Hawker, Adoracion Pegalajar-Jurado, Melissa M. Reynolds, 

and Ellen R. Fisher [11, pp 031005, Copyright American Vacuum Society, 2016].
2
 Note that the  

entirety of the study on PLGH materials (i.e., NO release data and all other aspects of the work) 
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was previously presented in Dr. Jessica Joslin’s dissertation; the surface analysis and its 

interpretation have been excerpted and adapted for this dissertation as these components 

collectively represent my direct contribution to this work. The entirety of the study on Tygon® 

materials (Section 4.3), including evaluating film antibacterial activity, will be included in 

Michelle Mann’s dissertation. Collectively, work included in this chapter was supported by the 

National Science Foundation (CHE-1152963 and DMR-0847641), the Camille and Henry 

Dreyfus Foundation Postdoctoral Program in Environmental Chemistry, Department of Defense 

Congressionally Directed Medical Research Program (DOD-CDMRP), the Vice President for 

Research at Colorado State University (Catalyst for Innovative Partnerships), the state of 

Colorado Bioscience Discovery Evaluation Grant Program, and the Boettcher Foundation’s 

Webb-Waring Biomedical Research Program. 

I want to thank Jess Joslin and Dori Pegalajar for establishing the collaboration that led to 

work presented in this chapter, as well as Michelle Mann and Bella Neufeld for sustaining the 

collaboration through experiments with Tygon® films. I performed the surface analysis and 

interpretation presented in this chapter, with the exception of surface roughness measurements 

(Jess Joslin and Bella Neufeld). Dori Pegalajar assisted with water spreading analysis on PLGH 

films.  

4.1 Introduction 

As discussed in Chapter 1, one route to advanced biomedical material development is the 

modification of constructs with desirable bulk properties to enhance surface properties, thus 

customizing interactions at the material/biological species interface. This type of modification 

represents a passive approach to control such interactions, whereas therapeutic release 

approaches aim to actively eradicate bacteria and enhance cellular proliferation.
4-6

 Thus, a 
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material that combines these tactics would represent a functional material that targets different 

biological species, thereby offering precise control over physiological responses at the 

biomaterial surface. Notably, such ability to control multiple facets of biocompatibility is key for 

developing advanced multifunctional materials for applications such as tissue engineering, 

wound dressing fabrication and antimicrobial materials development.  

We utilized this dual approach by selecting model polymeric materials that are well-

established as polymeric biomaterials [poly(lactic-co-glycolic acid)
7-9

 and PVC
10-12

] and 

integrating NO into each polymer (see Section 2.2.4 for fabrication methodology). NO, a 

therapeutic agent produced by endothelial cells that line blood vessels to control coagulation and 

platelet adhesion, plays an important role in the immune response to inflammation.
13

 The use of 

NO as the agent of choice for drug-eluting polymer systems is distinctive because NO can target 

multiple physiological actions, compared to agents that target only a single function (e.g., 

heparin or antibiotics). An inherent challenge associated with NO integration, however, is that 

the molecule cannot be retained in polymers because it is highly reactive and short-lived.
14

 Thus, 

to integrate NO into polymer materials, a variety of NO donors [molecules that release NO upon 

stimulation (e.g., by light, heat, Cu
2+

)], such as metal nitrosyls, N-diazeniumdiolates, and S-

nitrosothiols, can be employed.
15

  

An ideal NO-releasing material would exhibit (a) bulk mechanical and chemical 

properties that ensure stability over the device lifetime (from hours to years, depending on the 

device) when exposed to biological systems; (b) controllable NO release directed at the 

microorganism-material interface; and (c) tunable surface properties to control interactions with 

targeted biological species. Although plasma treatments have been used to modify the surface 

properties of drug-releasing polymers,
16-18

 to date, no attempts to modify the surface properties 
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of an NO releasing polymer while maintaining the material’s bulk properties have been reported. 

Therefore, the combined ability to tune the NO delivery and surface properties represents a 

unique approach to potentially creating NO releasing biopolymers that can modulate biological 

interactions while controllably releasing a therapeutic agent. 

Although some NO-releasing materials such as hydrogels are hydrophilic,
19

 

unfortunately, many that have high antimicrobial activity are also hydrophobic,
20-24

 thereby 

limiting the number of applications in which these materials would be useful.
25

 Thus, H2O 

plasma systems were selected for modification because of their well-established ability to 

increase surface wettability of different materials by incorporation of alcohol functionality.
26-29

 

For example, we previously demonstrated the H2O plasma modification of hydrophobic 

polysulfone membranes resulted in a permanent improvement in wettability throughout the 

membrane cross-section, lasting for >2 years.
27

 Moreover, Lee et. al. highlighted an increase in 

cell adhesion, spreading, and growth for H2O plasma treated polymers.
26

 Thus, H2O plasma 

treatment is a highly suitable methodology for tuning wettability toward enhancing cell-surface 

compatibility. Unfavorable effects can be promoted by improved wettability, however, including 

biofilm formation and thrombosis. Thus, we have adopted the dual approach of incorporation of 

a therapeutic agent and surface property enhancement via plasma modification to develop a 

targeted biocompatible material.  

This work explores the use of well-established H2O plasma treatments to increase the 

hydrophilicity of two different NO-releasing polymer systems, with the overarching goal of 

tuning surface properties without measurable morphological damage, while maintaining the bulk 

properties (e.g., NO-release capabilities) and ultimately creating materials with enhanced 

biological performance. The following sections detail material analysis results related to each 
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polymer system, as well as a comparison of plasma modification outcomes between the two 

materials.  

4.2 Results and Discussion: NO-releasing PLGH 

Because the PLGH system represents the first H2O plasma modification of an NO-

releasing polymer material, it was of interest to evaluate changes in bulk composition, surface 

composition, surface wettability, and morphology (for both untreated and plasma-modified 

samples). The following sections include results from this comprehensive materials 

characterization. For reference throughout, the chemical structure of the starting material 

(nitrosated PLGH) is depicted in Figure 4.1. 

4.2.1 Effect of plasma treatment on composition of S-nitrosated PLGH-cysteine films. To 

determine the effects of plasma treatments on polymer composition, X-ray photoelectron 

spectroscopy (XPS) analyses were performed, providing information about the surface chemical 

composition as XPS sampling depth is only 5-10 nm.
30

 XPS atomic composition ratios derived 

from C1s, O1s, and N1s high resolution spectra of treated and untreated S-nitrosated PLGH-

cysteine films are summarized in Table 4.1. High-resolution S2p spectra were also collected, 

although no appreciable change in S content was observed. Figure 4.2a highlights that the C/N 

ratio decreases with increasing treatment time at P = 20 W, indicating an increase in the surface 

nitrogen. No leaks were detected in the plasma system during treatment; thus, it is unlikely that 

the additional nitrogen was present during the plasma treatment. There are, however, two other 

possible sources of this surface nitrogen: (1) plasma treatment can create long-lived reactive 

radical sites at the surface of the polymer, which then react with atmospheric nitrogen upon 

exposure to air, or (2) the polymer can reorganize as a result of plasma treatment. Although the 

former has been observed previously,
31-33

 the small changes observed in surface composition  
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Figure 4.1. The structure of S-nitrosated poly(lactic-co-glycolic acid)-cysteine (PLGH-cysteine). 
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Table 4.1. XPS atomic composition ratios of untreated and plasma treated S-nitrosated PLGH-

cysteine films.
a
  

Plasma treatment
 

C/O 

 

 

O/N 

 

C/N 

P (W)
 Treatment 

Time (min)
 

  

Untreated --- 1.67 ± 0.08 18.4 ± 2.5 30.6 ± 3.8 

20 1 1.60 ± 0.05 16.4 ± 1.8 26.3 ± 2.7 

20 3 1.48 ± 0.05 14.7 ± 1.5 21.7 ± 2.0 

20 5 1.43 ± 0.05 12.0 ± 1.1 17.1 ± 2.0 

30 5 1.51 ± 0.03 11.6 ± 1.3 17.6 ± 1.8 

50 5 1.58 ± 0.03 13.6 ± 1.1 21.5 ± 1.5 

20 5 (10 days aged) 1.54 ± 0.02 17.8 ± 1.4 27.5 ± 2.3 
a
All analyses were performed for an n = 6; the mean ± standard deviation are reported. 
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Figure 4.2. (a) O/N, C/N, and (b) C/O as a function of plasma treatment time (P = 20 W) on 

S-nitrosated PLGH-cysteine substrates. Values are calculated from XPS elemental 

composition data (error bars represent ± 1 standard deviation, n = 6). Additionally, 

linear regression fits with corresponding equations are shown for O/N and C/N in (a).  
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ratios upon sample aging (see Section 4.2.5) suggests the latter explanation may be contributing 

to the observed nitrogen incorporation, as discussed below. The shallow reorganization of 

polymer chains when exposed to H2O plasma treatments has been previously reported in the 

literature.
34

 Here, the S-nitrosated PLGH-cysteine comprises a large hydrophobic backbone with 

hydrophilic pendant groups of the cysteine residue (Figure 4.1). Consequently, we hypothesize 

that in the H2O plasma environment, the S-nitrosocysteine pendant groups on the polymer 

reorient toward the plasma, thereby exposing more of these hydrophilic microdomains at the 

surface. 

For a fixed 5 min treatment time, an increase from P = 20 W to P = 30 W does not result 

in a statistically significant difference in the C/N ratio, whereas an additional increase in P to 

50 W results in a small increase over the lower power treatments, Table 4.1. Compared to the 

untreated films (C/N = 30.6 ± 3.8), however, the C/N ratio for the 50 W treatment (21.5 ± 1.5) is 

not as low as those measured for the 20 W (17.1 ± 2.0) and 30 W (17.6 ± 1.8) treatments, which 

could indicate film etching is occurring in the higher P plasma.
35

 

Although our XPS data support the possibility that reorientation of hydrophilic 

microdomains to the film surface may be occurring, implantation of hydrophilic functional 

groups that would improve the surface wettability is also an important surface modification to 

consider. Several reports demonstrate the use of H2O plasma treatments to implant moieties with 

a variety of chemical environments (i.e., C=O, C-O, O-C=O) into polymer surfaces.
27, 29, 35

 In 

this work, implantation of O-containing functional groups into the S-nitrosated PLGH-cysteine 

film surface via plasma modification was monitored via XPS C/O ratio as a function of plasma 

treatment conditions, Figure 4.2b. These data show a general trend of decreasing C/O with 

increasing treatment time for P = 20 W, suggesting a relative increase in surface oxygen species 
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with increasing plasma exposure. Although the C/O ratio declines slightly from untreated 

materials to films treated in P = 30 and 50 W systems, Table 4.1, this decrease is not very 

pronounced, possibly as a result of competitive etching under relatively harsher plasma 

conditions.  

To further consider O-containing functional group implantation, the O/N and C/N ratios 

can be compared as a function of treatment time. In Figure 4.2a, the slope of the regression line 

for C/N is steeper than that for O/N. This further suggests O-containing functional group 

incorporation is occurring, along with polymer rearrangement, to enhance the N signal at the 

surface of the films. Despite the elemental ratios suggesting oxygen incorporation, these data do 

not provide information regarding changes in the oxygen binding environments after plasma 

treatment. To understand changes in surface chemical functionality as a function of plasma 

treatment time, high-resolution C1s XPS spectra were deconstructed for untreated and plasma 

treated samples (1 and 5 min treatment times, P = 20 W). This process involved fitting each C1s 

spectrum with four unique binding environments, Figure 4.3a-c, corresponding to C-C/C-H 

(285.0 eV), O-C-C=O (~287 eV), and C=O (~289 eV) of the polymer backbone, and HN-C=O 

(~288 eV) corresponding to the amide linkage of the S-nitrosocysteine residue. For the untreated 

polymer sample, the C=O binding environment comprises multiple functionalities, namely the 

carboxylic acid moiety on the cysteine residues, as well as the multiple ester linkages in the 

lactic acid and glycolic acid portions of the polymer backbone, which results in a broadened peak 

relative to all other binding environments. The C1s binding environments corresponding to the 

polymer backbone exhibit comparable intensities relative to each other, whereas the HN-C=O of 

the cysteine residue yields a smaller intensity. These proportions are consistent with the polymer 

structure (Figure 4.1). 
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The ratios between the C-C/C-H binding environment and the other C1s binding 

environments were calculated, revealing a significant decrease in the C-C/C-H to HN-C=O ratio 

with increasing treatment time (Table 4.2). More specifically, the C-C/C-H to HN-C=O ratio is 

10.12 ± 2.03 for the untreated sample, which decreases to 7.10 ± 0.71 for a 1 min treatment, and 

4.55 ± 0.83 for a 5 min treatment. The increase in the relative intensity of the HN-C=O binding 

environment further supports the hypothesis that some rearrangement of the hydrophilic cysteine 

residues is occurring during plasma treatment. The other significant change in binding 

environments as a function of treatment time is the ratio of the sum of C=O-containing binding 

environments (C=O + HN-C=O) relative to the C-C/C-H binding environment (Figure 4.3d). 

Although these ratios are within experimental error for the untreated and 1 min plasma treated 

PLGH-cysteine films, that for the 5 min treated film is significantly lower. This implies 

contributions from C=O environments increase with treatment time, suggesting extended plasma 

treatment promotes incorporation of carbonyl-containing functionalities such as aldehyde, 

ketone, and/or carboxylic acid groups.  

Previous studies of H2O plasma treatment of polysulfone and polyetherimide membranes 

demonstrated implantation of O-containing groups at high P (20-200 W) arises from increased 

concentrations of OH and H radicals in the plasma.
35

 Using optical emission spectroscopy 

(OES), a direct correlation was established between the intensity of emission lines attributable to 

OH• and the concentration of oxygen in the material surface, as measured by XPS. This 

relationship further translated to improved wettability for the samples with increased surface 

oxygen. Notably, the deconstructed C1s XPS spectrum for the untreated sample indicated two 

binding environments corresponding to C-C/C-H and C-O. After H2O plasma treatment, the C-O 

contribution increased and C=O and O-C=O binding environments appeared.
35

 These data  
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Figure 4.3. High-resolution C1s XPS spectra and fits for (a) untreated, (b) 20 W 1 min treated, 

and (c) 20 W 5 min treated S-nitrosated PLGH-cysteine films. (d) C-C/C-H to 

(C=O + HN-C=O) binding environment ratios as a function of treatment time 

(P = 20 W). Error bars represent ± 1 standard deviation (n = 6). 
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Table 4.2. Binding environment ratios for untreated films and films treated for different 

times (P = 20 W) as determined from deconstructed C1s XPS spectra.
a 

Treatment 

Time (min) 
C-C/C-H to C=O C-C/C-H to O-C-C=O C-C/C-H to HN-C=O 

0 1.13 ± 0.08 1.14 ± 0.06 10.12 ± 2.03 

1 1.06 ± 0.12 1.12 ± 0.12 7.10 ± 0.71 

5 0.90 ± 0.06 1.15 ± 0.08 4.55 ± 0.83 
a 
All analyses were performed for an n = 6; the mean ± standard deviation are reported. 
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suggested that polymer treatment via H2O plasma treatments resulted in the formation of alcohol,  

aldehyde/ketone and carboxylic acid/ester functionalities at the material surface, which increased 

the surface wettability of the samples. Translating these findings to our S-nitrosated 

PLGH-cysteine system, we can infer a direct correlation likely exists between the increase in the 

surface oxygen content and surface wettability. This is discussed further in Section 4.2.3. 

Notably, XPS data cannot be used to distinguish between alcohol and other C-O binding 

environments, as hydrogen cannot be detected using XPS because of its low ionization cross-

section. Here, as with work presented in Chapter 6, Fourier transform infrared spectroscopy 

(FTIR) spectra were collected, demonstrating increased alcohol functionality in H2O plasma 

treated films when compared to untreated films (data and associated discussion can be found in 

the full article this chapter is based on).
3
 

The notable increase in the C=O environment relative to the C-C/C-H binding 

environment after a 20 W, 5 min plasma treatment observed here can be understood by 

considering possible oxidation sites on the polymer. Previous work in the Fisher group 

demonstrated smaller changes in the C-O binding environment for H2O plasma treated 

polysulfone materials, with a more significant impact on the C=O/O-C=O groups, such as the 

aldehyde/ketone and carboxylic acid/ester functional groups.
27

 These data suggested the possible 

oxidation of alcohol groups formed during the treatment, or the oxidation of other sites within 

the polymer backbone, such as methyl groups and quaternary carbon sites, to yield aldehydes and 

ketones, respectively. Further oxidation of aldehydes could result in carboxylic acid groups. 

Other studies demonstrated surface functionalization using H2O plasma treatments for polymers 

with rigid, aromatic backbones versus linear, hydrocarbon backbones.
28

 In all cases, binding 

environments and relative elemental compositions obtained were similar to those measured in 
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this work. Formation of highly oxidized species is supported by the data presented here, where 

we saw a notable decrease in the C-C/C-H to C=O ratio, with no distinguishable difference in the 

C-C/C-H to O-C-C=O ratio when comparing an untreated and 20 W, 5 min treated sample. This 

suggests the oxidation sites associated with the S-nitrosated PLGH-cysteine are likely the methyl 

groups of the lactic acid portion, the secondary carbon sites of the glycolic acid and HMPA 

portions, and the quaternary carbon site in the HMPA portion to form ketone and aldehyde 

functional groups (Figure 4.1). 

Another study demonstrated that, at lower P (e.g., 25 W), the OES spectrum as a function 

of plasma treatment time showed the O• signal dropped by ~80% when the sample was 

introduced, which is more significant than the drop in OH•, indicating that the key player at 

lower applied powers is O•.
28

 Additionally, there were notable differences in the resulting 

functionalities after plasma treatment depending on the specific material being treated. 

Differences in the % O incorporated and the corresponding extent of oxidation were attributed to 

the initial polymer structure and the number of oxidizable sites, in addition to the ability of 

certain polymers to undergo hydrolysis in aqueous environments. The possibility of polymer 

chain scission at ester sites was also acknowledged. As S-nitrosated PLGH-cysteine is composed 

of several ester linkages, it could easily undergo acid or base catalyzed hydrolysis to form 

carboxylic acid groups (Figure 4.4) and ultimately result in chain scission.
36

  

Overall, the XPS data suggest combined pathways that could lead to increased 

hydrophilicity and thereby greater cell affinity for the S-nitrosated PLGH-cysteine films surfaces 

after plasma treatment. An increase in N content relative to both O and C content, combined with 

a decrease in the ratio of C-C/C-H to HN-C=O with increasing treatment time, suggests polymer 

rearrangement to reorient the amide linked, hydrophilic S-nitrosocysteine pendant groups to the 
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surface. Additionally, an increase in the surface O, specifically the ratio of C-C/C-H to C=O, 

suggests implantation of OH groups at the alkyl sites along the polymer backbone, which 

subsequently oxidize to carbonyl sites, including ketone/aldehyde and carboxylic groups. 

Additionally, chain scission via ester hydrolysis is a possibility due to the large number of ester 

sites on the backbone. 

4.2.2 Effect of prolonged treatment time on surface composition. As we found greater 

changes occurred in film chemistry with prolonged plasma exposure, we increased treatment 

time to 60 min to explore parameter extremes. PLGH-cysteine films were prepared and treated 

for 5 or 60 min at 20 W. Because the NO donating moiety (S-nitrosothiol, RSNO) does not 

contribute significantly to any of the binding environments under analysis, the thiol does not 

need to be nitrosated to probe functionality differences before and after treatment. Thus, non-

nitrosated PLGH-cysteine films were prepared to simplify these experiments.  

A representative high resolution C1s spectrum for a PLGH-cysteine film treated at 

P = 20 W for 60 min along with the C/O ratios for both the S-nitrosated and non-nitrosated 

PLGH-cysteine films as a function of treatment time are shown in Figure 4.5, which clearly 

indicate that the C/O ratio decreases with increasing treatment time out to 60 min for non-

nitrosated PLGH-cysteine films.  

There is, however, no statistical change in the C-C/C-H to HN-C=O ratio for the 5 and 60 

min treated samples. This suggests no further rearrangement or functionalization occurs at 

prolonged treatment times, but that surface etching may be occurring. Additionally, we collected 

IR data on 60 min treated films (not shown). These data suggest that H2O plasma treatment 

results in the incorporation of OH into the PLGH polymer structure, likely because of the  

  



 
 104 

(a) 

 

 

(b) 

 

Figure 4.4. (a) Acid catalyzed ester hydrolysis occurs due to reaction with H
+
 and H2O species 

and yields carboxylic acid and alcohol products. (b) Base catalyzed ester hydrolysis 

occurs due to reaction with OH
-
 and yields carboxylic acid and alkoxide products.  
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formation of carboxylic acid groups, similar to what has been observed previously with other 

polymers.
28

  

4.2.3 Effect of plasma treatment on surface wettability. To assess the effect of H2O 

plasma treatments on the surface wettability of the S-nitrosated polymer films, static WCA 

measurements were performed. Untreated samples exhibited a relatively high WCA of 

116.6 ± 3.4°, indicating the hydrophobicity of these polymers. After plasma treatment, the 

surfaces became hydrophilic, with the water droplet spreading completely in <100 ms (i.e., 

equilibrium contact angle = 0º). To distinguish between different treatments in a semi- 

quantitative manner, we report water droplet spreading times for plasma treated surfaces in 

Table 4.3 and in Figure 4.6a. Figure 4.6a highlights that increasing the treatment time from 1 to 5 

min resulted in faster water spreading, as indicated by a lower spreading time (all with 

P = 20 W). Water droplet spreading time for the 5 min treatment was just 43 ± 7 ms, compared 

to 87 ± 16 ms for the 1 min treatment. Although we consider both of these surfaces to be 

hydrophilic, the spreading time values do suggest longer treatment time results in a more 

hydrophilic surface. 

The increase in hydrophilicity upon plasma treatment can be attributed to multiple 

factors. Namely, H2O plasma treatment implants hydroxyl and carbonyl groups which can serve 

to increase surface hydrophilicity.
26

 Additionally, plasma treatments can initiate shallow 

reorientation of polymer microdomains,
34

 wherein the more hydrophilic regions are brought to 

the surface of the film. For a fixed treatment time of 5 min, changing P (20, 30 or 50 W) reveals 

a slight increase in water spreading time with increasing power (Figure 4.6b), although there is 

no significant change in water spreading time between the 20 W and 30 W treatments. When P is 

increased to 50 W, however, the water spreading time increases significantly. This effect at the 
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highest P could result from a competition between implantation of OH functional groups and 

some etching of the polymer surface, which has been previously demonstrated.
28

  

4.2.4 Effect of plasma treatment on surface morphology. Often, plasma treatment of 

polymers can result in extensive changes to surface morphology, including increased surface 

roughness, pitting, and formation of protrusions.
28

 These changes can affect both surface 

wettability and interactions of biological components with a material surface.
37-40

 Thus, 

evaluating surface morphology and topography is critical not only from the viewpoint of 

biological applications, but also to ensure that observed changes in surface properties are not 

solely attributable to changes in surface morphology as a result of plasma treatment. Surface 

roughness exists perpendicular to the surface (described as height deviation), and in the plane of 

the surface (described by spatial parameters and identified as texture).
41

 Amplitude parameters 

are critical to characterize surface topography for biological application, and they include the 

arithmetic average roughness (Ra) and root mean square roughness (Rq).
42-43

 Table 4.4 

summarizes the roughness parameters (Ra and Rq) of the S-nitrosated PLGH-cysteine films prior 

to and after treatment. No significant changes in the roughness were measured, regardless of 

plasma parameters used to treat the polymers. Likewise, there are no discernable differences 

(e.g., pitting) in the SEM images of the film surfaces, Figure 4.7. These observations and the 

insignificant changes in roughness parameters (Ra and Rq) after plasma treatment demonstrate 

that the observed changes in surface wettability cannot be attributed to morphological changes. 

This also illustrates that any etching of the surface that occurs during the 50 W treatment does 

not significantly alter the overall topography of the films. It is, however, well-established that 

surface microtopography can either promote or inhibit cell/surface interactions, depending on the  
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Figure 4.5. (a) A representative high-resolution C1s XPS spectrum with deconstructed fits for a 

PLGH-cysteine film (60 min treatment time, P = 20 W). (b) C/O ratios as a function 

of treatment time (P = 20 W) for films of S-nitrosated and non-nitrosated PLGH-

cysteine films (error bars represent ± 1 standard deviation, n = 6).  
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Table 4.3. Water droplet spreading times associated with plasma treated samples.
a 

Plasma treatment
 

Spreading 

Time (ms) P (W)
 Treatment 

Time (min)
 

20 1 87 ± 16 

20 3 65 ± 13 

20 5 43 ± 7 

30 5 49 ± 13 

50 5 70 ± 8 
a
 All analyses were performed for an n = 3, where the mean ± standard deviation are reported. 
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Figure 4.6. (a) Treatment time (P = 20 W) vs. water droplet spreading time, and (b) applied 

power (treatment time = 5 min) vs. water droplet spreading time for S-nitrosated 

PLGH-cysteine films. Additionally, representative images of water droplets on (c) 

untreated and (d) plasma treated S-nitrosated PLGH-cysteine films 0 and 49 ms after 

a 6 µL drop has been placed on the surface. Error bars in (a) and (b) represent ± 1 

standard deviation (n = 3).  
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Table 4.4. Surface roughness of untreated and plasma treated S-nitrosated PLGH-cysteine films.
a
 

Plasma treatment
 

Rq (µm) Ra (µm) 
P (W)

 Treatment 

Time (min)
 

- - 18.02 ± 6.92 14.26 ± 6.76 

20 1 17.89 ± 4.56 13.73 ± 3.68 

20 3 20.45 ± 3.49 16.45 ± 3.08 

20 5 15.01 ± 4.84 10.96 ± 3.51 

30 5 17.85 ± 3.91 13.63 ± 3.49 

50 5 18.57 ± 6.12 13.82 ± 4.48 
a 
All analyses were performed for an n = 3, where the mean ± standard deviation are reported 
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Figure 4.7. Representative SEM images of (a) untreated and (b) 20 W, 5 min treated S-nitrosated 

PLGH-cysteine films (both at 250× magnification). 

  

a b 
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specific material (i.e., surface chemistry) and the cell type.
44-46

 Thus, surface roughness of these 

films is a parameter that must be considered and tuned to each intended application. 

4.2.5 Stability of the plasma treatment. Plasma-modified surfaces can undergo what is 

generally referred to as hydrophobic recovery, wherein surfaces that are rendered hydrophilic 

ultimately revert to their original hydrophobic nature shortly after the treatment.
32-34

 This aging 

effect is generally thought to occur via polymer rearrangement, chain migration or diffusion, or 

burial of hydrophilic groups (e.g., O and N-containing) within the bulk of the polymer. To 

examine aging effects with our materials, S-nitrosated PLGH-cysteine films were plasma treated 

(P = 20 W, 5 min) and then placed into a freezer at −18 °C under ambient conditions for a 10 day 

aging period. These conditions were chosen to minimize the decomposition of the RSNO during 

storage, while still effectively assessing the treatment stability. Hydrophobic recovery of stored 

samples was evaluated by WCA and XPS measurements, and results were compared to untreated 

and freshly treated samples. Water spreading time on the plasma treated material after the 10 day 

storage period was 249 ± 33 ms, significantly longer than that on freshly treated films (43 ± 7 

ms). Despite this increase in the water spreading time, these surfaces are considered very 

hydrophilic as the water droplet still spreads extremely rapidly on the surface.  

XPS analysis reveals the 10 day storage resulted in a significant increase in the O/N 

(17.8 ± 1.4), C/N (27.5 ± 2.3), and C/O (1.54 ± 0.02) ratios compared with those of freshly 

treated samples, Table 4.1. These differences in the elemental ratios between freshly treated and 

aged samples were normalized by the elemental ratio for the untreated samples to yield 32, 34 

and 7% changes for the O/N, C/N and C/O ratios, respectively. This suggests slight hydrophobic 

recovery may be the result of burial of the N-containing hydrophilic cysteine microdomains, 

accompanied by some burial of surface O-containing moieties. Furthermore, the C/O ratio is 
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larger for the untreated sample than the 10 day aged sample, which suggests that oxygen-

containing functional groups implanted via plasma treatment are maintained even after the 10 

day storage period. 

We have previously demonstrated that H2O plasma treated polymeric materials can 

exhibit either minor changes in hydrophilicity over extended periods of time or complete 

hydrophobic recovery over time as a result of polymer rearrangement, depending on the material. 

For example, H2O plasma treatments have resulted in permanent hydrophilic modifications 

(lasting months to years) for polymers with more rigid, aromatic backbones, such as polysulfone, 

polycarbonate, and polyethylene terephthalate.
27-29

 The less rigid polyethylene materials, 

however, experienced significant hydrophobic recovery after only 48 h to 1 week as the 

migration of polymer chains effectively buried the polar surface groups incorporated during H2O 

plasma treatment. Comparatively, although plasma treated S-nitrosated polymer films exhibit a 

small amount of hydrophobic recovery, they still maintain their overall hydrophilic nature. These 

aging studies clearly indicate that our materials are relatively stable in terms of wettability and 

surface functionality. This result is significant in that other non-aromatic backbone polymers 

exposed to H2O plasma treatment exhibited nearly complete immediate hydrophobic recovery in 

terms of the WCA.
28

  

Overall, we report the ability to tailor the surface properties of a model NO-releasing 

polymer. H2O plasma treatments effectively modified the surface wettability of S-nitrosated 

PLGH-cysteine films, creating much more hydrophilic surfaces. XPS analysis revealed an 

increase in N signal relative to O and C, which indicates the rearrangement of the polymer 

exposing hydrophilic cysteine residues on the film surface. The observed decreasing trend in the 

C/O ratio as a plasma treatment time increases likely results from conversion of pre-existing 
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carbonyl groups to hydroxyl groups. Surface roughness analysis indicated no significant changes 

in the surface morphology after plasma treatment, supporting that the changes in surface 

wettability primarily result from changes in chemical functionality. Notably, plasma treated 

surfaces remain hydrophilic after a 10 day storage period in the freezer (−18 °C), which suggests 

that the films do not experience short-term hydrophobic recovery. The ability to tune the surface 

wettability of a polymer film while maintaining the bulk properties, as well as the stability of the 

treatment over time, is critical towards creating multi-functional biomaterial systems.  

4.3 Results and Discussion: NO-releasing Tygon® 

After proof-of-concept experiments with PLGH films demonstrated our ability to modify 

NO releasing polymers via plasma processing (Section 4.2), we expanded this modification to a 

more mechanically robust polymer system with the goal of designing even more stable materials 

for biological applications. Here, we chose to utilize Tygon® as the base polymer, and an NO 

donor (S-nitrosoglutathione, GSNO) was manually blended into Tygon® solutions for film 

fabrication (Section 2.2.4). Two different concentrations of donor were incorporated into 

Tygon® films (5 and 20%), referred to as GSNO5 and GSNO20, respectively. For reference 

throughout, the chemical structure of GSNO and photographs of fabricated films are depicted in 

Figure 4.8. Notably, an extensive assessment of Tygon® film antibacterial efficacy against 

Escherichia coli and Staphyloccocus aureus was performed (demonstrating water plasma 

treatment resulted in a delay in antibacterial activity) is reported elsewhere.
2
 Work presented in 

the following sections highlights our ability to translate water plasma modification to an 

additional NO-releasing polymer system. 

4.3.1 Effect of plasma treatment on composition of Tygon® and NO-releasing films. The 

chemical composition of the topmost surface (5-10 nm) of each film was quantified using XPS.
30
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Atomic compositions and C/O ratios obtained from high-resolution XPS spectra of Tygon® as 

well as untreated and treated GSNO20 and GSNO5 films are presented in Table 4.5. In addition 

to the reported elements, we observed the presence of small amounts of Si on all samples (<4%), 

likely arising from polydimethylsiloxane contamination from the polymeric film production and 

molding processes.
47-48

  

The C/O ratios for untreated GSNO5 and GSNO20 fall within the range of that for 

Tygon® without donor, 3.32 ± 0.17 (Table 4.5). Experimental error associated with the 

elemental composition (e.g., %C, %O) for GSNO5 and GSNO20 films is greater than that of the 

Tygon® by an order of magnitude, illustrating the heterogeneity of these materials on the scale 

of the XPS spot size (~1 mm). This is unsurprising given the fabrication process of these films 

(described in Section 2.2.4). Interestingly, no nitrogen is detected on Tygon®, GSNO5, or 

GSNO20 films, suggesting the donor is not present on the outermost surface of NO-releasing 

films. 

Deconstructed fits of the C1s spectra revealing functionalities present at the film surface 

are presented in Figure 4.9. Tygon® films (Fig. 4.9a) have three C1s binding environments: (1) a 

peak at 285.0 eV representing aliphatic carbon (C-C/C-H); (2) a peak at ~286.4 eV representing 

C-O/C-Cl functionality; and (3) a peak at ~289.2 eV indicative of carboxylic acid groups 

(O-C=O).
49

 A slight increase in the area of the C-O/C-Cl peak at ~286.4 eV is the only apparent 

change in the C1s spectrum upon GSNO incorporation (Fig. 4.9b). Plasma treatment decreases 

the C/O ratios for both GSNO5 and GSNO20 films. For GSNO20, the C/O ratio is 1.05 ± 0.04, 

less than one third of that of Tygon® only films (Table 4.5). Furthermore, a significant change 

occurs in the C1s envelope caused by the appearance of peak (4) at ~287.6 eV, suggestive of 
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carbonyl groups as well as an increase in the relative contributions from the carboxylic acid 

binding environment (Fig. 4.9d).
49

  

Upon plasma treatment, ~1% nitrogen is detected on the surface of the films, likely 

attributable to amine and amide functionalities (as predicted from the GSNO structure, Fig. 

4.8a), which ultimately contribute to C1s binding environments 2 and 3. The presence of nitrogen 

on plasma-treated film surfaces likely results from rearrangement of the polymer during plasma 

treatment (exposing amide and amine functionalities in the donor molecule). Polymer 

rearrangement during H2O plasma treatment is thought to occur in other materials, including our 

plasma treated PLGH films (Section 4.2).
3, 34

 Effectively, polymer chains reorganize such that 

hydrophilic domains are preferentially oriented towards the H2O plasma (i.e., hydrophilic 

domains are present at the plasma-polymer interface). Collectively, this work demonstrates we 

can effectively modify surface properties of NO-releasing Tygon® films via plasma processing. 

Another observation from XPS data of treated GSNO20 films is the dramatic decrease in 

chlorine content. Tygon® films have ~19% Cl, and upon incorporation of 20% GSNO, this 

increases to ~22% Cl (note that these compositions are within experimental error). After plasma 

treatment, however, chlorine content declines considerably to 3.5 ± 1.2%, indicating that the 

GSNO20 surface is almost entirely dechlorinated after the 5 min treatment time. A similar 

decrease in chlorine content is observed with plasma treatment of GSNO5, suggesting the 

amount of NO donor incorporated does not alter the plasma interaction with the material surface. 

Plasma dechlorination of polymers has been previously reported,
50-53

 and likely arises from the 

relatively weak C-Cl bonds (bond energy ~81 kcal mol
-1

) in the polymer backbone. When 

compared to C-C and C-H bonds (~83 and 99 kcal mol
-1

, respectively),
54

 the C-Cl bond is more  
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Figure 4.8. (a) S-nitrosoglutathione (GSNO) structure; (b) Tygon® and (c) GSNO20 films 

immediately after fabrication. 
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Table 4.5. Elemental Composition and WCA Values for Tygon® Films 
a 

Film %C %O %Cl %N C/O WCA (º) 

Tygon ® 61.9 ± 0.6 18.7 ± 0.8 19.4 ± 0.2 --- 3.32 ± 0.17 87.1 ± 6.8 

Untreated GSNO20 54.1 ± 1.0 21.0 ± 6.0 21.9 ± 6.9 --- 2.70 ± 0.47 87.7 ± 3.7 

Treated GSNO20 47.5 ± 1.1 45.0 ± 0.7 3.5 ± 1.2 1.2 ± 0.3 1.05 ± 0.04 49.8 ± 3.5 

Untreated GSNO5 59.9 ± 7.3 21.3 ± 7.6 19.7 ± 2.4 --- 2.93 ± 0.52 88.9 ± 4.6 

Treated GSNO5 55.2 ± 2.5 41.2 ± 2.5 1.0 ± 0.2 1.0 ± 0.4 1.35 ± 0.14 52.1 ± 5.2 
a 
Elemental composition data from high resolution XPS spectra. All values reported as the mean ± one 

standard deviation (n = 3 for Tygon® only, n = 9 for all other films). Trace amounts (<4%) of Si were 

detected on all samples (see text for discussion). 
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Figure 4.9. Representative high-resolution C1s XPS spectra with accompanying images from 

WCA analysis, and WCA values (n = 9), inset. Films included are (a) untreated 

Tygon®, (b) untreated GSNO20, (c) treated GSNO5 and (d) treated GSNO20. C1s 

binding environments include 1) C-C/C-H [285.0 eV], 2) C-O/C-Cl/C-N [~286.4 eV], 

3) O-C=O/N-C=O [~289.2 eV], and 4) C=O [~287.6 eV]. 
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likely to be cleaved during plasma treatment, leading to elimination of Cl from the material and 

simultaneously creating implantation sites ripe for incorporation of oxygen functionalities. 

4.3.2 Effect of plasma treatment on NO-releasing Tygon® film wettability and roughness. 

WCA values and accompanying images are presented in Table 4.5 and Figure 4.9. Tygon® films 

without NO donor have static WCA values of 87.1 ± 6.8°, and incorporation of the NO donor 

does not significantly change the contact angle of films, with GSNO5 and GSNO20 displaying 

WCAs of 88.9 ± 4.6° and 87.7 ± 3.7°, respectively. WCA values for treated GSNO-incorporated 

films are significantly lower: GSNO5 films reach a static WCA of 52.1 ± 5.2°, and GSNO20 

films have a similar value of 49.8 ± 3.5° after plasma treatment, again indicating the level of NO 

donor incorporation does not impact the plasma-surface interactions. Prior work demonstrated 

that H2O plasma treatment of polymer surfaces results in increased alcohol functionality. The 

increase in functional groups capable of hydrogen bonding after plasma modification explains 

differences in wettability of untreated versus plasma treated films. 

To investigate the effect of plasma treatment on both Tygon® and GSNO20 films, 

surface roughness (Ra and Rq) was measured by optical profilometry. Tygon® films without NO 

donor have Ra and Rq < 0.1 µm, and roughness parameter values are unchanged after treatment. 

Roughness of GSNO5 changes only slightly, resulting in Ra = 0.1 ± 0.1 µm and 

Rq = 0.4 ± 0.2 µm. After incorporation of 20% GSNO, surface roughness is increased to 

Ra = 0.6 ± 0.2 µm and Rq = 1.2 ± 0.4 µm. No significant change in roughness is observed for 

treated GSNO5 films with Ra = 0.1 ± 0.1 µm and Rq = 0.5 ± 0.3 µm. Likewise, treated GSNO20 

films have Ra = 0.7 ± 0.2 µm and Rq = 1.5 ± 0.4 µm, comparable to the untreated materials, 

indicating extent of GSNO loading does not impact roughness imparted during plasma treatment. 
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GSNO5 and GSNO20 films as fabricated are nominally hydrophobic by conventional 

definitions, and become hydrophilic after plasma treatment. Roughness is minimally affected by 

plasma modification; therefore, the increased wettability can be primarily attributed to the 

change in surface oxygen content and functionality. The more wettable surface of plasma treated 

films renders them more suitable for interfacing with aqueous environments (e.g., in biological 

applications) than unmodified films.
55

 

4.4 Summary: Comparison of Plasma-modified NO-releasing PLGH and Tygon® Films 

Collectively, this body of work demonstrates that plasma treatment is a facile technique 

to significantly increase the oxygen content and wettability of NO-releasing polymer films while 

maintaining material topography. Although identical plasma parameters were employed for both 

polymer film modifications (20 W, 5 min), substantial differences in surface properties between 

the two types of polymer films were observed. This section includes a brief discussion 

highlighting notable differences, namely comparing all films treated with 20 W H2O plasmas for 

5 min. 

The Tygon® films here experience a more substantial compositional change (e.g., change 

in C/O ratio) than PLGH films under identical plasma modification conditions. Specifically, the 

C/O ratio values of plasma treated Tygon® films are less than half that of unmodified films, 

whereas plasma treated PLGH film C/O is ~0.8 that of unmodified films. This dissimilar 

behavior likely arises from differences in polymer composition, namely the presence of C-Cl 

bonds in Tygon®. Another notable compositional difference between the two polymers is the 

detection of nitrogen via XPS in unmodified PLGH films, whereas nitrogen was not observed on 

the surface of unmodified Tygon® films. This is somewhat surprising as there was a higher 

theoretical amount of donor incorporated in the Tygon® system (0.496 mmol/g for GSNO20 



 
 122 

films) than in the PLGH system (0.155 mmol/g). The disparity in nitrogen content likely arises 

from differences in NO donor incorporation methodology between the polymers: PLGH films 

were fabricated by dissolving a nitrosated polymer powder, whereas Tygon® films were 

fabricated by manually blending the NO donor (GSNO) into dissolved Tygon®. Thus, it is likely 

that the NO donor is encased in the Tygon® matrix and is therefore not detectable on the 

outermost film surface via XPS. Moreover, the surface roughness, and thus the surface area, is 

significantly greater for PLGH films. This finding suggests that more NO donor may be exposed 

at the surface of PLGH films, providing a possible explanation for differences in nitrogen 

content between the two polymer systems. 

Although plasma modification enhances the wettability of both polymer films, the 

stability of water drops dictated the adoption of different methodologies for characterizing 

wetting behavior. Water drops spread on plasma-modified PLGH films in <50 ms (equilibrium 

WCA = 0º), whereas drops completely stabilized on Tygon® films. This difference likely arises 

from the robustness of fabricated films, specifically PLGH films comprised a powder on an 

underlying support (glass coverslip), whereas Tygon® films were mechanically stable (no 

support required). With this in mind, water drops interacting with PLGH films likely also interact 

with the underlying glass (a well-known hydrophilic surface). 

Overall, the work presented in this chapter demonstrates our ability to utilize plasma 

processing to enhance the surface properties, including functionality and wettability, of two 

unique NO-releasing polymer film systems. These plasma-modified drug-releasing constructs 

represent a promising pathway for advanced biomaterial development using both passive and 

active polymer modification techniques. Furthermore, NO-releasing biomaterials have immense 

potential for targeted therapeutic delivery in biological systems. Collectively, this work holds 
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promise as a generalizable method for modifying drug-releasing polymer devices that could be 

extended to a multitude of additional drug delivery systems. 
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CHAPTER 5 

CONFORMAL ENCAPSULATION OF THREE-DIMENSIONAL, BIORESORBABLE 

POLYMERIC SCAFFOLDS USING PLASMA-ENHANCED CHEMICAL VAPOR 

DEPOSITION
 

 

 

 

This chapter reports the modification of PCL scaffolds via PECVD of two different 

fluorocarbon (FC) precursors: octofluoropropane (C3F8) and hexafluoropropylene oxide (HFPO). 

These plasma modification systems were chosen with the intent of modifying the scaffold 

surfaces to be non-bioreactive by the deposition of FC films while maintaining desirable bulk 

properties of the scaffold. X-ray photoelectron spectroscopy showed high-CF2 content films were 

deposited on both the exterior and interior of PCL scaffolds, and that deposition behavior is 

PECVD system-specific. Scanning electron microscopy data confirmed that FC film deposition 

yielded conformal rather than blanket coatings as the porous scaffold structure was maintained 

after plasma treatment. Treated scaffolds seeded with human dermal fibroblasts (HDF) 

demonstrate that mammalian cells do not attach after 72 h, and that the scaffolds are non-

cytotoxic to HDF. This work demonstrates conformal FC coatings can be deposited on 3D 

polymeric scaffolds using PECVD to fabricate 3D non-bioreactive materials. 

This chapter is reproduced with permission from an article published in Langmuir by 

Morgan J. Hawker, Adoracion Pegalajar-Jurado, and Ellen R. Fisher [30 (41), pp 12328–12336, 

Copyright 2014 American Chemical Society].
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5.1 Introduction 

The development of low-fouling biopolymer constructs with complex geometries is 

critical for applications requiring materials that bacterial or mammalian cell attachment (e.g., 

wound dressings). FC plasma modification is one particularly advantageous route toward 

development both because of the precedence of using such systems to tune stent and wire 

interactions in biological systems,
2-3

 as well as the potential for translation to a wide range of 

additional construct geometries. As discussed in Section 1.3, there are a few reports of FC 

plasma modification of 3D polymeric constructs as a means of tuning performance in biological 

systems. For example, low-fouling, non-bioreactive coatings have been deposited on the exterior 

of 3D polymer constructs using PECVD.
4-5

 Deposition of such a film throughout the entire cross 

section of a 3D biopolymeric scaffold, however, has yet to be reported.  

Here, we utilized PECVD with two different FC precursors, octafluoropropane (C3F8) 

and HFPO, to deposit FC films on 3D PCL scaffolds. These precursors were chosen as model 

PECVD systems that provide hydrophobic, low-fouling surfaces as robust coatings that have 

been well characterized on two- dimensional substrates.
6-8

 Thus, coatings obtained on 3D 

scaffolds could easily be compared to previous results. Scanning electron microscopy (SEM), X-

ray photoelectron spectroscopy (XPS), water contact angle (WCA), and variable angle 

spectroscopic ellipsometry (VASE) were used to confirm the success of plasma treatment 

throughout the 3D structure of the scaffolds. The stability of the coatings in biologically-relevant 

solvents (e.g., cell media and phosphate buffered saline), the presence of leachables at cytotoxic 

concentrations, and the degree of cell adhesion were evaluated by seeding human dermal 
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fibroblasts (HDF) on both untreated and plasma treated scaffolds. Herein, we present an efficient 

methodology for tailoring the surface properties of 3D architectures for specific non-bioreactive 

biological applications. 

5.2 Results 

5.2.1 Surface analysis. The initial aim of this study was to examine the behavior of FC 

plasma deposition systems with PCL scaffolds as substrates. Based on previous studies utilizing 

2D substrates,
6-8

 we would expect the C3F8 and HFPO PECVD systems to deposit conformal, 

CF2-rich FC films that completely encapsulate the underlying substrate. Ideally, FC films would 

be deposited throughout the 3D scaffold network, not just on the exterior of the scaffold.  

Resultant films on scaffolds were characterized by a variety of surface analysis 

techniques, including XPS, SEM, and WCA. WCA measurements were made immediately 

(<10 min) following plasma treatment to examine any change in the outermost scaffold surface 

as a result of the treatment. Untreated scaffolds had a WCA of 120º, whereas FC-treated 

scaffolds had WCA values of approximately 135º regardless of treatment time or precursor (for a 

more detailed discussion of WCA analyses on substrates with complex architectures, see Chapter 

3). This indicates all of the plasma treatments modified the chemical functionality and/or surface 

topography of the scaffolds.  

To explore changes in surface functionality, XPS analysis was performed. Representative 

XPS survey spectra on scaffold tops are shown in Figure 5.1. Figure 5.2 shows high-resolution 

C1s XPS spectra and deconstructed fits of C3F8
 
plasma treated scaffold tops and cross-sections. 

Spectra for films deposited during 5, 20, and 90 min treatment times are shown, which can be 

compared to the high-resolution C1s spectrum for an untreated PCL scaffold in Figure 2.3. 

Spectra for C3F8 plasma treated scaffolds contain more C1s binding environments than those  
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Figure 5.1. Representative XPS survey spectra for a) an untreated scaffold, b) 20 min C3F8 

treated, and c) 60 min HFPO treated scaffold tops. 
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Figure 5.2. High-resolution XPS C1s spectra of C3F8 films deposited on PCL scaffolds. Spectra 

(a), (b), and (c) correspond to scaffold tops treated for 5, 20, and 90 min, respectively; 

spectra (d), (e), and (f) correspond to scaffold cross-sections treated for 5, 20, and 90 

min, respectively. Deconstructed fits are included to show the relative contribution of 

the various C1s binding environments. Peaks designated with *, **, and *** 

correspond to underlying PCL material. 
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found in the spectra of untreated scaffolds, indicative of an array of FC binding environments. 

Based on previous C3F8
 
PECVD studies, the CF2 contribution (292.0 eV) should dominate over 

other FC binding environments,
7-8

 which is indeed seen in spectra of the scaffold tops, regardless 

of treatment time, and on scaffold cross-sections for all but the 5 min C3F8 treatment. 

In all spectra, additional peaks can be attributed to CFx moieties such as –CF, -CF3, and –C-CFx. 

Moreover, binding environments corresponding to the underlying PCL substrate are also seen in 

all spectra. Spectra of scaffold tops contain similar contributions from the underlying substrate 

regardless of treatment time. Cross-sectional spectra show both a decrease in contributions from 

the underlying material and an increase in the contributions of CFx groups with increasing 

treatment time. The presence of peaks arising from the underlying material in the cross-sectional 

spectra is not surprising because the fracturing process inherently exposes untreated material. 

The contribution from the underlying material on the scaffold tops, however, is not necessarily 

predicted and is further addressed below.  

High-resolution C1s XPS spectra and deconstructed fits of HFPO
 
treated scaffold tops and 

cross-sections are shown in Figure 5.3. These spectra were fit in the same manner as those for 

C3F8 treated scaffolds. CF2 functionality is dominant in spectra corresponding to scaffold tops 

regardless of treatment time, similar to the spectra for C3F8 plasma treated scaffolds (Figure 5.2). 

The cross-sectional spectra in Figure 5.3d-f, have a lower relative intensity of FC binding 

environments compared to the C3F8 cross-sectional spectra (Figure 5.2d-f). Notably, the intensity 

of the FC binding environments for the HFPO plasma-treated scaffolds (relative to those 

attributable to the PCL) increases with increasing treatment time, suggesting that longer 

treatment times result in thicker FC coatings. Binding environments corresponding to the 

underlying PCL are, however, present in all spectra, regardless of treatment time.  
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Figure 5.4 plots F/C ratios as a function of treatment time for both C3F8 and HFPO 

treatments on both scaffold tops and scaffold cross-sections. The F/C ratio, calculated from 

elemental compositions obtained from high-resolution C1s XPS data, provides a useful metric by 

which to compare FC films, independent of precursor. For comparison, the F/C ratio for flat C3F8 

films (deposited on Si wafers under identical conditions used for plasma treated scaffolds) is 

1.61 ± 0.06 and that for a flat HFPO film is very similar at 1.54 ± 0.04. Focusing on C3F8 plasma 

treated scaffolds, the F/C ratios for scaffold tops are within experimental error regardless of 

treatment time. Furthermore, the cross-sectional F/C ratio is significantly lower than the F/C 

ratio for 5 min C3F8 treated scaffold tops, whereas the F/C ratios for scaffold tops and cross-

sections are within experimental error of each other for 20, 60, and 90 min treatments. Similar to 

the C3F8 deposition system, F/C ratios are within experimental error for HFPO plasma treated 

scaffold tops for all treatment times. Although the HFPO cross sectional F/C ratios increased 

with increasing treatment time, these values were consistently lower than the F/C ratios for 

scaffold tops regardless of treatment time.  

Comparing SEM images of untreated scaffolds with representative FC plasma treated 

scaffolds permits examination of changes to the overall architecture of the porous network 

resulting from plasma treatment. Figure 5.5 displays representative SEM images of an untreated 

scaffold top and cross-section, as well as a 90 min C3F8 plasma treated scaffold top and cross-

section. Both images of an untreated scaffold show a random porous network throughout the 

exterior and interior of the scaffold. SEM images in Figure 5.5c, d clearly demonstrate that the 

porous structure is maintained, even after 90 min in a 50 W C3F8 plasma. Note that SEM images 

of all other C3F8 and HFPO plasma treatments reveal a similar pore structure was conserved, 

regardless of treatment time and precursor. 
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Figure 5.3. High-resolution XPS C1s spectra of HFPO films deposited on PCL scaffolds. Spectra 

(a), (b), and (c) correspond to scaffold tops treated for 5, 20, and 90 min, respectively; 

spectra (d), (e), and (f) correspond to scaffold cross-sections treated for 5, 20, and 90 

min, respectively. Deconstructed fits are included to show the relative contribution of 

the various C1s binding environments. Peaks designated with *, **, and *** 

correspond to underlying PCL material. 
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Figure 5.4. F/C ratios (calculated from XPS data) for C3F8 and HFPO treated PCL scaffold tops 

and cross sections for 5, 20, 60, and 90 min treatments.  
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Film thickness analyses were conducted on flat substrates to further characterize the C3F8 

and HFPO deposition systems over the treatment time range used here (5-90 min), especially 

because XPS analyses (Figures 5.2 and 5.3) contained contributions from the underlying PCL 

material even after a 90 min treatment for both precursors. Flat substrates were used for these 

measurements as it becomes increasingly difficult to accurately measure film thickness on a 3D 

substrate such as a PCL scaffold. Figure 5.6 shows plots of film thickness as a function of 

deposition time for C3F8 and HFPO PECVD systems, where film thicknesses were measured 

using VASE. These data indicate all films deposited from the FC precursors were thicker than 10 

nm (the sampling depth of the XPS), except for the 5 min HFPO deposited film. Film thickness 

measured for the C3F8 deposition system increased linearly with increasing treatment time 

(R
2
 = 0.975) over the range of treatment times (5–90 min). Film deposition behavior differs for 

the HFPO deposition system, as film thickness shows an exponential rise to a maximum 

(R
2
 = 0.999), ultimately reaching a plateau at the 60 min treatment time. These data suggest that 

the HFPO deposition system is self-limiting, whereas the C3F8 deposition is not. 

5.2.2 Cell attachment and growth. Although the primary goal of this work is to 

demonstrate the ability to conformally encapsulate 3D bioresorbable scaffolds with a non-

bioreactive coating using PECVD, the intended application of these materials must also be 

considered when assessing the overall properties of the resulting scaffolds. For several 

biomedical applications, a challenging factor is that many biomaterials can simultaneously 

inhibit bacterial attachment and be cytotoxic for mammalian cells. The former is desirable 

because it mitigates the risk of bacterial infections, whereas the latter could eliminate a material 

for consideration depending on the application. Therefore, an initial assessment of the  
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Figure 5.5. Representative SEM images (a) and (b) correspond to untreated PCL scaffolds; (c) 

and (d) correspond to 90 min C3F8 treated scaffolds. Images (a) and (c) are of scaffold 

tops; images (b) and (d) are of scaffold cross-sections.  
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Figure 5.6. Film thicknesses for (a) C3F8 and (b) HFPO depositions on Si wafers, measured 

using VASE. Corresponding fits and equations are shown for each deposition system, 

where (a) shows a linear fit (constrained by y0 = 0) (a) and (b) shows a two-parameter 

exponential rise to a maximum fit (b). Error bars representative of standard deviation 

are ≤ ±2.3 nm. 
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interaction of FC coated 3D scaffolds with mammalian cells is required to gain a more 

comprehensive understanding of these 3D materials as functional biomaterials. 

Untreated and FC coated 3D scaffolds were seeded with HDF and incubated for 72 h. 

Figure 5.7 contains a series of overlaid fluorescence microscopy images of HDF seeded on 

different substrates where the cell actin cytoskeleton is highlighted in red and the nucleus in blue. 

As a positive control, we seeded a TC plate where the cells attached, spread and proliferated 

across the entire surface as expected (Figure 5.7a). TC wells with double-sided carbon tape were 

also used as a control to confirm there was no effect of the double-sided carbon tape on the cells 

viability (images not shown). Additionally, cell attachment and morphology on the wells that 

contained untreated and FC plasma treated scaffolds were evaluated to examine the presence of 

leachable substances at a cytotoxic concentration. This experiment aimed to determine if the 

cells were viable after 72 h, even if they did not attach and spread on the scaffolds themselves. 

Figures 5.7b–d show images from three wells that contained an untreated scaffold, a C3F8 treated 

scaffold and an HFPO treated scaffold, respectively. Similar areas covered by HDF were 

observed in all the wells and cells showed an expected morphology in comparison to TC control 

samples.  

 In addition, we imaged tops, Figure 5.7e–g, and interiors (cross sections), Figure 5.7h–i, 

for untreated, C3F8 treated, and HFPO treated scaffolds. Viable HDF were found on the top and 

interior of untreated scaffolds indicating that after 72 h the cells adhered to the material and 

migrated to the interior of the 3D architecture. For both types of FC plasma treated scaffolds, we 

did not find a significant number of cells attached on the top or interior, regardless of treatment 

type. The faint coloring along the edges of some of the images (e.g., Figure 5.7f) is simply  
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Figure 5.7. Overlaid fluorescence microscope images of human dermal fibroblasts cultured for 

72 h on (a) a TC plate; (b)-(d) TC plate wells that contained untreated, C3F8 and 

HFPO treated scaffolds, respectively; (e)-(g) scaffold tops; and (h)-(j) scaffold cross 

sections. Images (b, e, h) correspond to untreated scaffolds; (c, f, i) correspond to 

C3F8 treated scaffolds; and (d, g, j) correspond to HFPO-treated scaffolds. The cell 

actin cytoskeleton is shown in red and the blue areas are cell nuclei.!
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retained stain and is not indicative of adhered HDF. Overall, these images clearly indicate that 

the FC plasma-modified scaffolds are non-bioreactive toward HDF as they resist cell attachment 

relative to untreated scaffolds.  

5.3 Discussion 

As noted Chapter 1 and Section 5.1, non-bioreactive surface modification of polymeric 

materials is an important aspect of biomaterials research, specifically pertaining to the 

development and fabrication of low-fouling materials. The overarching goal with the research 

presented in this chapter was to fabricate 3D polymeric scaffolds with desirable bulk properties, 

and modify the scaffold surface throughout the 3D structure via PECVD without affecting bulk 

properties. The data presented here demonstrate the two FC PECVD systems studied act 

similarly on the 3D substrates, insofar as they deposit conformal, hydrophobic films desirable for 

low-fouling materials while maintaining the scaffolds’ bulk properties. These systems have 

inherently different deposition behaviors, however, and these differences influence the resultant 

properties of the FC encapsulated scaffolds. 

The deposition behavior of each PECVD system was examined via VASE film thickness 

data collected on plasma treated Si wafers (Figure 5.6). PCL scaffolds were not used for this 

analysis because their architecture would further complicate film thickness determination. 

Although VASE data collected on Si wafers do not allow for direct comparison with the same 

deposition systems on 3D polymeric materials, we can use these findings as a guide to 

interpreting deposition behavior on scaffolds. VASE film thickness data demonstrate that 

deposition behavior is PECVD system dependent. FC film thickness for C3F8 plasma deposited 

films increases linearly with time (Figure 5.6a), suggesting that adsorbing plasma species 

involved in FC film deposition have a strong affinity toward Si wafers as well as the 
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subsequently deposited FC film. Alternatively, the HFPO PECVD system could be considered as 

“self-limiting” (Figure 5.6b) because film thickness does not monotonically increase with 

increasing treatment time. This observation suggests a strong interaction between plasma species 

involved in FC film deposition and the Si wafer. The sticking probability of these species to the 

building HFPO film, however, appears to decrease as the film increases in thickness.
9
 Results for 

the C3F8 films are not unexpected, as C3F8 plasma systems are ubiquitously fast depositing 

(deposition rates range from 1-10 nm/min, depending on applied rf power) and previous studies 

have demonstrated similarly constant deposition rates for C3F8 and other CxFy species as a 

function of treatment time.
8, 10

  

Although our data support the previous observation that HFPO PECVD systems deposit 

much more slowly than C3F8,
6
 the overall behavior we observe here somewhat contradicts 

previously reported film thickness results for both HFPO and other FC systems. In one report on 

pulsed HFPO film deposition, Sumitsawan et al. claim that HFPO film thickness varied linearly 

over treatment times ranging from 5–60 min.
11

 Our group has previously reported constant 

deposition rates for HFPO depositions for treatment times up to 2 h, but most of these 

depositions were performed much further downstream from the plasma glow than in the present 

study.
6
 The only report of a similar, self-limiting FC PECVD system, to our knowledge, is that of 

a C2F6/CF4 system, where deposition rate decreased as a function of treatment time.
12

 Thus, this 

is the first report of a self-limiting HFPO PECVD system. 

 To further explore differences in the deposition behavior of C3F8 and HFPO on PCL 

scaffolds, we turn to F/C ratios. In these experiments, the F/C ratios can represent the extent of 

film deposition, as it contains contributions from both the deposited FC film and the underlying 

substrate, as evidenced by the high-resolution XPS data which clearly display PCL binding 
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environments. On scaffold tops, the maximum F/C ratio is ~1.5 for both FC precursors (Figure 

5.4), and accompanying C1s spectra show similar relative FC binding environments (Figures 

5.2a–c and 5.3a–c). These data suggest the two deposition systems act similarly on PCL scaffold 

exteriors as they do on two-dimensional materials. Note that although the rough surface features 

in these porous materials make XPS interpretation difficult,
13

 our data demonstrate that fluorine 

content increases with increasing treatment time regardless of precursor. Furthermore, these data 

show a uniform modification in terms of exterior scaffold properties regardless of FC precursor 

and treatment time. Interestingly, F/C ratios for scaffold cross sections increase with increasing 

treatment time for both systems (Figure 5.4). As diffusion of reactive deposition precursors (e.g., 

CFx radicals in FC plasmas
14

) into porous materials is thought to control film deposition in 

PECVD systems,
15-16

 our finding that film deposition within the interior of the scaffold rises with 

increasing treatment time can be explained by considering the longer times extend deposition 

precursor diffusion into the scaffold interior. The extent of cross-sectional deposition was, 

however, plasma precursor specific. After scaffolds were treated for 90 min in the C3F8 PECVD 

system, the cross-sectional C1s spectrum (Figure 5.2f) shows the same relative contribution of FC 

binding environments as the scaffold top (Figure 5.2a). Furthermore, F/C ratios for 90 min C3F8 

treated scaffold tops and cross-sections are the same within error (Figure 5.4). These data suggest 

the C3F8
 
PECVD system effectively deposited a FC film on both the scaffold interior and exterior 

at the longest treatment time.  

In contrast, the HFPO PECVD system does not display the same cross-sectional 

deposition properties. Cross-sectional C1s XPS spectra taken on HFPO scaffolds show that the 

relative FC binding environment contribution increases with increasing treatment time 

(Figure 5.3d–f), but the FC binding environment contributions are significantly lower for the 
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scaffold cross sections than scaffold tops (Figure 5.3a–c) regardless of treatment time. 

Additionally, F/C ratios for HFPO treated scaffolds increase with longer treatment times, 

Figure 4. These results suggest the HFPO PECVD system is less effective at depositing a FC 

film throughout the scaffold’s 3D structure when compared with the C3F8 system. One 

explanation as to why the HFPO deposition system is significantly slower to deposit in the 

interior of the scaffold than the C3F8 system (based on data presented in Figure 5.6), is that the 

HFPO plasma system contains only a single predominant deposition precursor (i.e., CF2) 

whereas the C3F8
 
plasma contains a multitude of deposition precursors.

14
 As indicated above, FC 

film deposition is likely diffusion-controlled within the scaffold interior. Thus, the various 

deposition precursors in the C3F8 plasma may diffuse more readily into the scaffold interior than 

the single, predominant deposition precursor in the HFPO plasma. It is, however, possible that if 

the scaffold treatment time were to be extended to much greater than 90 min, the HFPO 

scaffolds’ interior compositions (i.e., F/C ratio) may eventually match that of the top because 

sufficient CF2 radicals could eventually diffuse into the scaffold interior to create a film similar 

to that on deposited on the exterior surfaces.  

Based on the C1s XPS spectra in Figures 5.2 and 5.3, all plasma treated scaffold tops and 

cross-sections contain contributions from the underlying PCL scaffold regardless of precursor. 

Thus, this would seem to indicate that FC films on scaffolds for all deposition systems and 

treatment times are thinner than 10 nm (i.e., the sampling depth of the XPS). Film thickness data 

(Figure 5.6) do not, however, agree with this prediction, as all FC films deposited on flat 

substrates are thicker than 10 nm, regardless of treatment conditions (with the exception of the 5 

min HFPO treatment). Thus, our results from the encapsulated scaffolds can be partially 

attributed to substrate differences; the interactions between the plasma and PCL scaffolds likely 
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lead to a rearrangement or chain scission within the PCL during plasma treatment, which could 

affect the efficacy of the deposition process, leading to thinner films.  

 In addition to surface characterization of FC films, we explored interactions between FC 

treated scaffolds and HDF with the goal of evaluating the capabilities of these scaffolds as non-

bioreactive materials. Our aim was to develop a low-fouling, non-reactive material that was not 

cytotoxic to surrounding cells. To this extent, our experiments demonstrated that cells attached to 

the TC plate and proliferated in wells where untreated and treated scaffolds were seeded. This 

observation suggests there were no significant leachables from the encapsulated scaffolds at a 

cytotoxic concentration, regardless of plasma treatment. In all samples, HDF cell membrane 

integrity was maintained and cells attached and spread in a similar fashion as seen for TC 

controls. These results provide further evidence to support that there were no leachables at a 

cytotoxic concentration (Figure 5.7 a, b, e, h). Note that these results suggest FC films deposited 

on 3D scaffolds were stable under in vitro conditions and did not degrade or delaminate 

significantly over 72 h. The lack of cell attachment to FC treated scaffolds (Figure 5.7f, i, g, j) is 

not surprising as a significant reduction or absence of cell adhesion to hydrophobic surfaces is 

likely to be accentuated with increasing hydrophobicity. It is well established that ECM proteins 

required for cell attachment and proliferation adsorb in significantly lower quantities on 

hydrophobic materials, limiting or inhibiting cell adhesion and proliferation,
17-18

 although 

exceptions do exist.
19

 Altogether, results from this study demonstrate that FC treated scaffolds 

are excellent candidates for 3D low-fouling, non-bioreactive materials that are non-cytotoxic.  

5.4 Summary 

Overall, the data presented demonstrate that FC plasma treatment on PCL scaffolds 

results in conformal films deposited throughout the 3D structure, regardless of precursor, and 
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PECVD does not change the interior and exterior porous structure of the scaffolds as observed 

via SEM analysis. Elemental ratio data from XPS demonstrate that scaffold surface properties 

can be customized depending on precursor and plasma treatment conditions, in that plasma 

parameters can be tuned depending on whether an application requires a uniform coating 

throughout a 3D material, or whether it is more advantageous for the material’s exterior to have 

different properties than its interior. These results confirm PECVD is a viable process for 

conformally coating 3D substrates in that bulk properties are maintained while surface properties 

are modified. Cell attachment studies on FC plasma treated scaffolds demonstrate that HDF did 

not adhere to scaffolds regardless of precursor, and that FC coatings were both non-cytotoxic and 

stable under in vitro conditions, making these excellent candidates for non-bioreactive 

applications. For surface modification of 3D biopolymeric materials, PECVD is an ideal tool for 

low-temperature, solvent free, sterile surface modification of biopolymeric materials. The large 

parameter space (precursor, pressure, and power) afforded by PECVD allows production of 

customizable, application-specific biomaterials as demonstrated with two different FC 

precursors.
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CHAPTER 6 

ALLYLAMINE AND ALLYL ALCOHOL PLASMA COPOLYMERIZATION:  

FABRICATION OF CUSTOMIZABLE BIOLOGICALLY-REACTIVE 3D SCAFFOLDS 

 

 

 

This chapter presents a detailed account of utilizing plasma copolymerization, a powerful 

PECVD-based technique, to modify the surface of polymer scaffolds. As such, this chapter is an 

expansion on research presented in Chapter 5 where a single PECVD precursor was used for 

treating porous scaffolds. Copolymerization offers the distinct advantage over single-precursor 

PECVD of depositing films with tunable functionality by adjusting the plasma precursor ratio. 

Here, an allylamine/allyl alcohol plasma copolymerization system was used to modify two- and 

three-dimensional substrates. Specifically, films with customizable and predictable surface 

properties (nitrogen/oxygen content and wettability) were deposited on substrates of varying 

geometries across a range of copolymerization feed gas conditions. Bioreactivity of plasma-

modified materials was evaluated using both human dermal fibroblast and E coli attachment 

studies, and bioreactivity results are discussed the context of plasma-modified construct 

properties. 

This chapter is based on work published in Plasma Processes and Polymers by Morgan J. 

Hawker, Adoracion Pegalajar-Jurado, Kiah I. Hicks, Jeffrey C. Shearer, and Ellen R. Fisher, and 

is reproduced in part with permission from Wiley 2015.
1
 Additionally, a fundamental surface 

analysis relevant to work presented in this chapter is discussed in a previous Fisher Group 

dissertation (Dr. Jeffrey C. Shearer) and will be included in brief where relevant.
2
 This work is 

supported by the National Science Foundation (CHE-1152963) and the Colorado Office of 

Economic Development via the Biosciences Discovery Evaluation Grant Program. I would like 
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with E. coli experiments, John Wydallis for assistance with optical profilometry, and Jeff Shearer 

for laying the groundwork for this project.  

6.1 Introduction 

As discussed extensively in previous chapters, tailoring surface properties is a critical 

component of fabrication of materials for biomedical applications because of the interplay 

between material surfaces and biomolecules. Generally, oxygen and nitrogen containing 

functional groups are commonly sought as they are perceived as imparting improved 

biocompatibility. Although numerous PECVD studies utilizing a single nitrogen-containing
3-5

 or 

oxygen-containing
6-8

 precursor have been performed, plasma copolymerization has been used 

sparingly to deposit films containing relevant functional groups (e.g., carbon, oxygen and 

nitrogen-containing functionalities) simultaneously. 

Several proof-of-concept studies demonstrated the ability to fabricate and characterize 

plasma copolymerized films. For example, allylamine (allylNH) has been copolymerized with 

acrylic acid,
9
 ethylene glycol,

10
 and octadiene

11-13
 to deposit hydrocarbon films with carboxylic 

acid, alcohol, and amine functionality, respectively. The deposition of films with tunable amine 

functionality has also been achieved using allylamine and hexane copolymerization precursors.
14

 

Additionally, Fahmy et al. demonstrated tunability of the carboxylic acid content of plasma 

copolymerized films by varying concentrations of acrylic acid and styrene precursors in the gas 

feed.
15

 Styrene has also been copolymerized with hydroxyethyl methacrylate, 

methylmethacrylate, and tetraglyme to fabricate films with variable amounts of unsaturation, 

aromaticity, and crosslinking.
16

 Acrylic acid and hexamethyldisilazane (HMDS) have been 
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plasma copolymerized to implant carboxylic acid functionality into the Si-C/Si-N network 

deposited by the HMDS precursor.
17

 A few studies have utilized copolymerization to control the 

material interactions with biological species. For example, Bullett and coworkers demonstrate 

copolymerization of acrylic acid and 1,7-octadiene to control protein binding,
18

 and France and 

Short used an allyl alcohol (allylOH) and 1,7-octadiene copolymerization process to add alcohol 

functionality to surfaces to promote human keratinocyte attachment.
19

 As all of these studies 

suggest (and in some cases, demonstrate), producing surfaces with a variety of functional groups 

is a critical component to further development of many advanced biomedical applications. It is 

important to note here that all plasma copolymerized films discussed above were deposited on 

two-dimensional (2D) substrates (i.e., metal foils, glass coverslips, or Si wafers). Substrate 

geometry is an important factor in many applications, and this is elaborated on below in terms of 

expanding copolymerization to three-dimensional (3D) substrates. 

We can consider a potential application of plasma copolymerization in the context of 

modifying the surface properties of a particular class of materials, namely polymeric 

biomaterials. To this extent, there are numerous reports of utilizing plasmas to modify 

biopolymeric substrates using a single plasma precursor (e.g., non-copolymerization conditions, 

including those discussed in Chapters 3–5). Additionally, there have been select reports of using 

plasma copolymerization specifically to control surface functionality of films deposited on 

polymeric materials, where different plasma precursors (i.e., monomers) have been chosen to 

impart specific functional groups.
20-21

 

In general (and for more specific types of materials including polymers), plasma 

copolymerization can be used to systematically control surface properties of 2D materials, and 

thus, to assist in addressing current debates pertaining to controlling biomolecule-surface 
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interactions. One such ongoing debate centers on which surface properties (i.e., chemistries and 

wetting behaviors) best promote mammalian cell attachment and growth,
22-27

 specifically 

whether N-content or wettability is the more dominate factor in controlling cell proliferation on a 

particular surface. Focusing on nitrogen content, a review of modifying polymer surfaces using 

nitrogen-containing plasmas (e.g., N2, NH3) suggested that materials with N/C ratios across a 

wide range of 0.03–0.39 could facilitate cell attachment.
28

 This is confounded, however, by the 

observation that some of these polymer systems also contain oxygen functionality in some form, 

which can also affect surface wettability. Indeed, the oxygen content (represented by the XPS 

O/C ratio) on surfaces considered to be bioreactive surfaces is even more variable, ranging from 

0.11-0.80.
18, 20, 29-35

 Notably, comparisons between materials, their functional group chemistry, 

and bioreactivity is challenging because different biomolecules have been targeted in different 

studies. 

Several reports have utilized plasma modification to tune nitrogen and/or oxygen 

functionality, thereby modifying material wettability and interactions with biological species. 

Khorasani and coworkers plasma-modified PLA surfaces using CO2 rf systems, increasing the 

wettability as well as incorporating a variety of oxygen-containing functional groups into the 

polymer surface.
22

 They showed that these newly functionalized surfaces enhanced the growth 

and attachment of B65 cells over that on untreated PLA. These enhancements were attributed 

both to interactions between the cells and implanted O-containing functional groups, as well as 

to the increased wettability accompanying their implantation. Similarly, Garrido et al. plasma 

treated 3-hydroxybutyrate-3-hydroxyvalerate (PHBV) with oxygen and nitrogen plasmas and 

found the hydrophilicity of the surfaces increased after treatment, likely as a result of 

incorporated C-O and C-N functionality.
27

 Although all plasma treated surfaces showed 
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enhanced cell growth over untreated PHBV, human keratinocytes grew more actively on oxygen 

plasma-treated PHBV surfaces than on nitrogen plasma-treated surfaces. Similarly, Ion et al. 

demonstrated enhanced macrophage cytokine secretion for oxygen plasma-modified carbon 

nanowalls over untreated and nitrogen plasma-modified substrates.
36

 In contrast to these reports, 

Pompe et al. demonstrated that endothelial cells showed enhanced growth on nitrogen-containing 

surfaces produced by NH3 plasma treatments relative to that on H2O plasma treated surfaces.
37

 

Recently, Jacobs et al. published a comprehensive review listing over 60 methods of enhancing 

cell growth by imparting oxygen and nitrogen functionality to control wettability and chemical 

functionality on surfaces.
23

 This review noted that the vast array of parameters that exist in cell-

surface interaction studies make it difficult to gain a detailed understanding of the specific 

processes that influence cell growth. It is, however, generally accepted that hydrophilic surfaces 

containing oxygen and nitrogen functionalities are key to promoting cell attachment and growth 

mechanisms. In some cases, this hypothesis is further differentiated into the relative merits of 

specific forms of nitrogen (e.g., primary vs. secondary amines vs. amides) and oxygen (e.g., 

ether vs. alcohol) functional groups for creating bioactive surfaces. Because it can be difficult to 

find one material that meets all the requirements for a specific application, the simultaneous 

implantation of two or more of these functionalities in a single process could efficiently facilitate 

creation of tailored surfaces for biomedical applications. 

The present work focuses on efforts to controllably produce both 2D and 3D materials 

containing a range of functional groups using plasma copolymerization of allylNH and allylOH 

(referred to here as the allylNH/OH copolymerization system). Precursor selection was 

predicated on previous results that indicated a variety of functional groups could be incorporated 

into deposited films and film functionality could be controlled by deliberately choosing specific 
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reaction conditions. Specifically, pulsed allylOH plasmas deposit films containing ester and 

alcohol functional groups, as detailed throughout the literature.
6, 38-40

 Likewise, allylNH plasmas 

can deposit films rich in amine functionality.
41-42

 Our group is the first to utilize plasma 

copolymerization of these two monomers (allylOH and allylNH). Moreover, to our knowledge, 

this is the first report wherein a plasma copolymerization system is applied to a 3D biopolymeric 

material for the purpose of tuning chemical functionality and wettability, critical properties that 

control bioreactivity. 

6.2 Results 

As noted in Section 6.1, both N and O-containing functional groups are thought to play 

important roles in interactions between substrates and biological species. Thus, the ability to tune 

both N and O content and functionality could be key factors for applications where control of the 

cell/bacteria-surface interactions will determine the ultimate success or failure of a biomedical 

device. Notably, a comprehensive characterization of polymeric thin films on 2D surfaces (i.e., 

Si wafers) as well as 3D materials allows a full evaluation of this system for creating a range of 

biomedically-relevant materials, and has been reported in previous publications upon which this 

chapter is based.
1-2

 As such, characterization results will be summarized to contextualize 

interactions of materials with biological species (Sections 6.2.3 and 6.3.2). 

6.2.1 Plasma copolymerization on Si wafers: surface characterization. Si wafers were 

plasma-modified using feed gas compositions of 100% allylNH, 100% allylOH, and intermediate 

compositions (i.e., plasma copolymerization conditions) to explore differences in the retention of 

precursor functionality in the resultant films. Film chemical composition was analyzed using 

XPS and wettability was analyzed using contact angle goniometry (Chapter 2). WCA values on 

films deposited using pulsed conditions increased as a function of allylNH in the gas feed, where 
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values ranged from ~8–35º. It is important to note that Rq values for plasma-treated substrates 

were all 2.8 ± 0.6 nm as measured by optical profilometry;
2
 thus, differences in WCA values can 

be attributed primarily to changes in film surface chemistry as feed gas composition varies. By 

deconstructing high-resolution C1s XPS spectra, we observed that the functionality of films 

deposited using 100% allyl alcohol includes C-C/C-H, C-OH/C-OR, and C=O/O-C-O, where all 

of all these binding environments have been previously observed in plasma polymerized allylOH 

films in different systems.
6, 38-39

 Deconstructing spectra of plasma polymerized films from 100% 

allylNH was less straightforward because of the many oxygen and nitrogen binding 

environments that can form in the film as well as the overlap in binding energies between these 

moieties. Thus, several binding environments were grouped together to streamline data analysis, 

including C-C/C-H, C-N, C-OH/C-OR, and C=O/O-C-O. Although the C=O/O-C-O 

environment would be indistinguishable from amide binding environments (N-C=O), Massey et 

al. demonstrated via ToF-SIMS analysis that the presence of amides is negligible in plasma-

deposited allylNH films.
43

 We can thus ascribe the C=O/O-C-O environment to uptake of 

oxygen during atmospheric exposure following plasma treatment. Notably, plasma 

copolymerized films contain all binding environments observed in spectra of films deposited 

using single-gas systems. We quantitatively assessed changes in functionality using XPS data by 

calculating O/C and N/C ratios as a function of feedgas composition, where O/C values decrease 

linearly and N/C ratios increase linearly as a function of allylNH in the gas feed (Figure 6.1a). 

Because XPS cannot distinguish between ether and alcohol functional groups, FTIR was 

employed to confirm the presence of alcohol functional groups in films deposited using 100% 

allyl alcohol and copolymerization conditions. Collectively, these data demonstrate our ability to 
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Figure 6.1. O/C ratios (triangle symbols) and N/C ratios (circle symbols) for films deposited in 

allylOH/allylNH plasmas on (a) Si substrates (b) PCL scaffold tops as a function of 

feed gas composition. Arrows on each plot indicate which data set corresponds to 

which y-axis. All data sets were fit with a linear least squares analysis; R
2
 values ≥ 

0.94. 
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utilize the allylNH/OH plasma copolymerization system to deposit films with tunable nitrogen 

content and wettability on 2D substrates. 

6.2.2 Film deposition on 3D scaffolds. After characterizing films deposited on Si wafers 

in terms of composition and wettability, we expanded to plasma treating 3D scaffold substrates 

to address the possibility of tuning surface properties, and thereby tailoring biological response, 

of biomedical device-relevant constructs. SEM evaluation of the porous structure of 3D PCL 

scaffolds prior to and after plasma treatment (Figure 6.2) confirms that scaffold morphology was 

maintained after plasma treatment, as no significant changes to morphology were observed when 

compared to untreated scaffolds (comparable to results presented in Chapter 5). Similar surface 

analyses were performed on scaffolds as on 2D substrates. O/C ratios of the deposited films 

decrease linearly as a function of feed gas composition for films deposited between 0 and 75% 

allylNH in the gas feed. Above 75% allylNH, the O/C ratio remains approximately the same at 

~0.13. In contrast, the N/C ratios of those same films increase linearly as a function of allylNH in 

the gas feed for ≤ 75% allylNH plasmas, and again stabilizes for films deposited in 100% 

allylNH systems (Figure 6.1b). Based on these data, a maximum N/C ratio of ~0.25 is achieved 

on the top of the scaffolds using gas feed compositions of ≥75% allylNH. These data generally 

confirm that films deposited on the scaffold exterior are similar to those deposited on Si wafers. 

Important differences, however, exist between the 2D and 3D substrates treated under identical 

deposition conditions; this is further elaborated in Section 6.3. Plasma-modified scaffolds were 

further analyzed via high-resolution XPS to explore differences in surface functionality, and 

identical binding environments were observed on scaffold tops as for plasma-modified Si wafers. 

Notable differences between spectra on pulsed plasma treated Si wafers and scaffold tops include 

the addition of environments corresponding to O-C=O and -C-COO, which are attributed to  
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Figure 6.2. Representative SEM images of PCL scaffold tops (100X): a) untreated, and those 

treated with b) 100% allylNH, c) 50% allylNH, and d) 100% allylOH pulsed plasmas. 

The inset in (a) is a photograph of an untreated PCL scaffold. 
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contributions from the underlying PCL substrate. Wettability analysis demonstrates that 

untreated PCL scaffolds are hydrophobic, with a static WCA of 116 ± 2º (Figure 6.3a). In 

contrast, the wettability of plasma-modified scaffolds could not be measured using static WCA 

as the hydrophilic films combined with porous scaffold morphology resulted in sorption of the 

water drops. Figure 6.3a contains representative frames extracted from dynamic contact angle 

video data for t = 10 ms (the time that the drop fully separated from the needle) and t = 1 s. 

 Water sorption behavior was captured from the video by measuring WCA values from 

each frame and plotting as a function of time (Figure 6.3b; experimental methodology further 

discussed in Chapter 3). The initial WCA increased as a function of allylNH in the gas feed 

showing a similar trend to results observed for pulsed plasma-treated Si wafers. Examining the 

WCA values as a function of time (Figure 6.3b), it is clear that scaffolds treated in 100% allylOH 

plasmas sorb the water drop the fastest (drop was fully sorbed in ~ 0.5 s). Wettability data 

collected for a scaffold treated in a 50% allylNH plasma (Figure 6.3b) are representative of 

scaffolds treated in all copolymerization systems, with a longer water drop absorption time than 

the 100% allylOH treated scaffold, but still under ~2 s. Scaffolds treated in 100% allylNH 

plasmas displayed the slowest water absorption behavior, taking longer than 2 s to fully adsorb. 

Nevertheless, all plasma treated samples are considered to be hydrophilic as the water drops 

completely absorb.  

Surface analysis results summarized in Sections 6.2.1 and 6.2.2 demonstrate our ability to 

use allylNH/OH plasma copolymerization conditions to deposit films with tunable and 

predictable surface chemistry and wettability on substrates with varying geometry. We believe 

this suite of tunable constructs, both in terms of surface and bulk properties, provide us with a 

platform by which to evaluate how these factors control material cell-surface interactions.  
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Figure 6.3. Wettability data on plasma-modified scaffolds. (a) Still images extracted from water 

sorption data plotted in (b) compared to an untreated scaffold, and (b) WCA as a 

function of drop age for scaffolds treated with 100% allylNH (▲), 50% allylNH (●), 

and 100% allylOH (▼) plasmas.  
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Developing such an understanding can contribute more information to the debate presented in 

Section 6.1. That is, does nitrogen content or wettability play a more important role in regulating 

substrate bioreactivity?  

6.2.3 Cell attachment, growth, and viability. We assessed the biological performance of 

plasma copolymerized films deposited onto 2D substrates prior to considering interactions of 

biological species with more complex, 3D materials. To investigate HDF attachment behavior on 

2D materials, TC wells (positive control), C3F8 plasma treated NTC disks (non-bioreactive, 

negative control, using treatment conditions reported in Chapter 5),
44

 and 100% allylNH, 40% 

allylNH, and 100% allylOH pulsed plasma treated NTC disks were seeded with HDF. Overlaid 

fluorescence microscopy images of HDF attachment on the different substrates are displayed in 

Figure 6.4, where cell actin cytoskeletons are shown in red and cell nuclei are shown in blue. A 

representative image of HDF attachment and growth on a TC well (Figure 6.4a) illustrates cell 

proliferation over the entire surface, and the opposite behavior (i.e., lack of HDF attachment) is 

observed for the FC treated material (Figure 6.4b). The faint red and blue areas in the image in 

Figure 6.4b are indicative of retained stain on the FC plasma treated substrate. Figure 6.4c, d, 

and e are representative images of HDF cells attached to 100% allylOH, 40% allylNH, and 100% 

allylNH pulsed plasma treated NTC disks, respectively. Notably, cell attachment on these plasma 

treated substrates appears to be less than that observed on the positive control (Fig. 6.4a) but 

greater than that observed on the negative control (Fig. 6.4b). 

Identical cell growth conditions were used to seed scaffolds with HDF, and representative 

overlaid fluorescence microscopy images are presented in Figure 6.5 for an untreated scaffold 

(Figure 6.5a), and scaffolds treated with 100% allylOH (Figure 6.5b), 50% allylNH (Figure 6.4c) 

and 100% allylNH (Figure 6.5d) plasmas. Notably, the cell nuclei (stained blue) are in the same 
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Figure 6.4. Overlaid fluorescence microscopy images of HDF attached to (a) a TC plate, and 

NTC disks treated with (b) FC (c) 100% allylOH, (d) 40% allylNH and (e) 100% 

allylNH plasmas. The duration of cell attachment and growth experiments was 48 h 

for all substrates (n = 9). Red areas indicate cell actin cytoskeletons and blue areas 

indicate cell nuclei.  
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Figure 6.5. Overlaid fluorescence microscopy images of HDF attached to (a) an untreated 

scaffold, and scaffolds treated with (b) 100% allylOH, (c) 50% allylNH, and (d) 

100% allylNH plasmas. The duration of cell attachment and growth experiments was 

48 h for all substrates (n = 9). Red areas indicate cell actin cytoskeletons and blue 

areas indicate cell nuclei. 
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plane of focus on the untreated scaffold, indicating that cell attachment occurs mainly on the 

scaffold exterior. Cell nuclei on plasma-treated scaffolds, however, appear to be in different 

planes of focus, suggesting that HDF penetrate into the 3D scaffold structure such that cell 

attachment occurs through the porous network. 

Although fluorescence microscopy images allow for a qualitative comparison of cell 

attachment on different 2D and 3D substrates, they do not allow for a quantitative assessment of 

cell viability on these materials. Therefore, viability assays (CellTiter-Blue®) were performed on 

HDF attached to plasma treated 2D substrates (Figure 6.6a) and scaffolds (Figure 6.6b), each 

with corresponding controls. To explore differences in cell viability on flat substrates, NTC disks 

were used as control substrates as they exhibit a low degree of HDF attachment. NTC disks were 

plasma treated (with pulsed allylNH/OH as well as FC plasmas) and HDF viability on plasma-

treated substrates was normalized to that of untreated NTC disks (Figure 6.6a). These data 

demonstrate that FC plasma treated substrates (negative controls) have a significantly lower 

viable HDF content relative to NTC disks, as expected because of the non-bioreactive nature of 

FC coatings (see Chapter 5).
44

 Viable HDF content generally increases for allylNH/OH plasma 

treated materials relative to the FC coated substrates. These improvements are, however, 

insignificant compared to the NTC disks. Additionally, the variability associated with these 

measurements (represented by the standard deviation-based error bars shown in Figure 6.6a) is 

relatively large, which makes it difficult to elucidate trends in viability assay data on these 2D 

substrates. Differentiating between the amount of viable HDF attached to untreated and plasma-

modified scaffolds is, however, more clear-cut (Figure 6.6b). 100% allylOH and 100% allylNH 

plasma-treated scaffolds displayed an ~20% improvement in viable cell attachment relative to 

untreated scaffolds, and scaffolds treated under copolymerization conditions (50% allylNH)  
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Figure 6.6. CellTiter-Blue® cell viability assay results for HDF attached to untreated and 

allylNH/OH plasma-treated (a) NTC disks and (b) PCL scaffolds. Results from 

viability studies on FC plasma treated substrates are included in (a) as a negative 

control. All plasma treatments occurred using pulsed conditions. For all experiments, 

n = 9. 
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showed an even greater enhancement (~30%) in viable HDF content relative to untreated 

scaffolds. 

The bioreactivity of the allylNH/OH pulsed plasma treated materials was further explored 

by seeding these materials with E. coli. It is important to note that imaging challenges prohibited 

performing bacterial attachment experiments with 3D constructs, but untreated and plasma-

modified NTC disks were used as proof-of-concept experiments (and to compare with HDF 

experiments on 2D substrates). Figure 6.7a illustrates E. coli attachment and growth behavior on 

an untreated glass slide (hydrophilic control) after 20 h, where live/dead staining revealed that a 

similar number of viable (green) and non-viable (red) bacteria cells were found on the surface. 

Additionally, there are areas on the hydrophilic control where isolated bacteria cells are not 

observed, indicative of biofilm formation. Conversely, the majority of the cells attached to FC 

plasma-treated substrates (hydrophobic controls) were both isolated and non-viable (Figure 

6.7b). Similar to the hydrophilic control, E. coli attachment and growth on 100% allylOH (Figure 

6.7c), 40% allylNH (Figure 6.7d), and 100% allylNH (Figure 6.7e) plasma treated materials 

reveals biofilm formation. Thus, it is difficult to isolate the number of viable and non-viable 

bacteria cells. Notably, data on allylNH/OH plasma-treated materials suggest there is a greater 

amount of viable bacterial cells attached to 100% allylNH substrate than the other two 

compositions (Figure 6.7e). However, similar overall surface coverage to the hydrophilic control 

(glass slide) can be estimated for all allylNH/OH plasma-modified materials. Altogether, 

biological experiments demonstrate that allylNH/OH plasma treatment renders materials 

bioreactive. 
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Figure 6.7.!Representative overlaid fluorescence microscopy images of live/dead stained E. coli 

after attachment and growth for 20 h on (a) an untreated glass slide (hydrophilic 

control), and on glass slides modified with b) FC plasmas (hydrophobic control), c) 

100% allylOH plasmas, d) 40% allylNH plasmas, and e) 100% allylNH plasmas. For 

all experiments, n = 9.  
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6.3 Discussion 

From the perspective of both surface modification and biological relevance, the 

allylNH/allylOH plasma copolymerization system investigated here provides a unique route for 

tailoring the surface properties of 2D and 3D materials. This copolymerization system allows the 

customization of chemical composition, functionality, and wettability, thereby facilitating control 

of the bioreactivity of 2D and 3D constructs. Furthermore, the system is fundamentally 

interesting both as a general surface modification tool and for biological applications as it 

provides a specific route to plasma modify both 2D and 3D substrates, resulting in materials with 

customizable chemical composition, functionality, wettability, and bioreactivity.  

6.3.1 Characterization of plasma copolymerized allylNH/OH films: 2D and 3D 

substrates. The results presented in publications work in this chapter is based on (summarized in 

Sections 6.2.1 and 6.2.2) demonstrate we can tune material surface properties in a predictable 

manner by changing the gas feed composition using plasma deposition.
1-2

 Previous work on 

allylNH plasma deposition systems demonstrated the formation of oligomeric allylNH species in 

the gas phase,
42, 45-46

 which can result in the deposition of films with a high concentration of 

primary amines, as supported by derivatization studies.
41, 45

 Our XPS and FTIR spectra of films 

deposited in allylNH-containing plasmas support these findings and demonstrate that nitrogen in 

these films primarily resides in the form of amine groups. One additional observation is that in 

the allylNH/OH copolymerization system, the N content in the resulting films on 2D substrates 

exhibits a linear response to the feed gas content (Figure 6.1). For 3D substrates, this linearity 

only exists for plasmas with ≤ 75% allylNH. Nevertheless, to our knowledge, this is the first 

nitrogen-containing plasma copolymerization system that exhibits a linear response in the N 

content of plasma-deposited films. Moreover, the predictable nature of the relationship between 
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feed gas composition and film N content suggests the allylNH/OH copolymerization system is 

ideal for producing customizable biomaterials.  

In addition to characterizing the nitrogen content of deposited films, our surface analysis 

results provide insight regarding oxygen content and functionality as well. Although 

high-resolution XPS spectra of films deposited using allylOH-containing plasmas show the 

presence of C-OH/C-OR functionality, we cannot distinguish between these groups using XPS 

alone. Pulsed plasma conditions, such as those used in this work, have been previously 

demonstrated as one route to maintain plasma precursor functionality in deposited films.
47-48

 

Based on this precedent, we would expect that the alcohol functionality would be maintained in 

the case of allylOH-containing plasma deposited films. This hypothesis is supported by FTIR 

data, which indicate films deposited using allylOH-containing plasmas retain alcohol 

functionality. These findings are further supported by the work of Short and coworkers, who 

used gas-phase diagnostics of low power allylOH plasmas (P = 1 W) to provide evidence that 

electron impact in the plasma forms cationic dimer and trimer species and results in the retention 

of monomer functionality in deposited films.
38-39

  

After characterizing the functionality and chemical composition of films deposited with 

the allylNH/OH copolymerization system on 2D substrates, we expanded pulsed plasma 

treatments to 3D PCL scaffolds. Based on previous studies of plasma treatment of similar 

scaffold materials (including those discussed in Chapter 5),
44, 49-50

 we anticipated films deposited 

on the scaffold exterior to be compositionally similar to those deposited on 2D substrates under 

the same treatment conditions. Our results generally support this hypothesis, specifically with 

respect to nitrogen and oxygen content on scaffold exterior. Notably, we observe O/C and N/C 

ratios on the tops of scaffolds treated with 75 and 100% allylNH pulsed plasmas are the same 
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within experimental error, whereas linear trends across all gas compositions are observed for 

plasma deposited films on Si wafers (Figure 6.1). Additional differences in O/C and N/C ratios 

on 2D and 3D substrates treated under identical pulsed plasma conditions can be found when 

comparing materials treated in 0% allylNH (i.e., 100% allylOH) and 100% allylNH plasmas 

Specifically, for 0% allylNH plasma treated materials, the O/C ratio on the scaffold exterior is 

~10% lower than on the corresponding 2D substrate. For 100% allylNH plasma treated 

materials, the O/C and N/C ratios of the scaffold exterior are ~100% greater and ~25% lower 

than those of the corresponding 2D substrate, respectively. The origin of these differences likely 

lies with the identity of the underlying substrate (i.e., a wafer vs. a porous polymeric material). 

Indeed, high-resolution spectra on scaffold tops contain contributions from the underlying PCL 

for all plasma treatments. Although the presence of underlying material functionality could 

suggest a reorganization of the PCL scaffold upon plasma treatment,
44

 it may also simply reflect 

that film thickness is less than the sampling depth of the XPS. It is difficult, however, to 

distinguish the underlying scaffold from films deposited from allylOH-containing plasmas as 

both materials contain similar functionality (i.e., hydrocarbon, ester, and ether functional 

groups). Underlying substrate contributions are more obvious for films deposited using higher 

allylNH concentrations, as these films are nitrogen-rich relative to the underlying PCL. Notably, 

the maximum N/C ratio achieved in these systems on the scaffold exterior (~25%) is well within 

the reported range of polymeric materials treated with nitrogen-containing plasmas,
28

 validating 

their potential as biomedical materials. Collectively, these findings demonstrate that although 

differences in elemental composition exist, similar functional groups are present in films 

deposited on both Si wafers and the exterior of the 3D scaffolds. 
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We can use surface chemistry data from plasma-copolymerized materials as grounds to 

explain observed wetting behavior. Materials deposited with higher concentrations of allylOH in 

the gas feed are less hydrophilic than those deposited in plasmas with lower concentrations of 

allylNH (Figure 6.3), which can be rationalized by differences in hydrogen bonding capabilities 

of functional groups present in plasma copolymerized films. All films deposited using allylNH-

containing plasmas contain NHx functional groups. Therefore, the interplay between these NHx 

groups with the alcohol functionality of films deposited using allylOH-containing plasmas 

control wettability of plasma copolymerized films. As anticipated, initial WCA values are higher 

for scaffolds than for Si wafers treated under the same plasma conditions. These differences are 

attributable to the higher surface roughness inherent to the porous scaffold architecture. The time 

it takes for the water drop to absorb into the scaffold decreases with concentration of allylOH in 

the feed gas, such that scaffolds treated with plasmas containing more allylOH are more 

hydrophilic (i.e., these materials have faster water absorption rates) than those with higher 

allylNH concentrations in the gas feed (Figure 6.3). This echoes the trend observed on plasma 

deposited films on Si wafers, providing support that films deposited on PCL scaffolds are 

compositionally similar to those deposited on Si wafers and therefore have similar wetting 

properties. Thus, adjusting the relative amounts of the precursor gas can help regulate the wetting 

properties of plasma deposited allylNH/OH films. Overall, these studies demonstrate the 

effectiveness of plasma copolymerization as a versatile surface modification tool for both 2D and 

3D substrates. 

6.3.2 Bioreactivity assessment of plasma-modified materials using E. coli and HDF. 

After the comprehensive assessment of both wettability and surface composition on these 

plasma-modified materials, we explored how these properties control or relate to substrate 
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bioreactivity. Importantly, directly comparing HDF viability on allylNH/OH plasma-modified 

2D materials (Figure 6.6a) to that on 3D scaffolds (Figure 6.6b) is challenging because of the 

fundamental differences in surface composition and material architecture. As noted above, the 

O/C and N/C ratios achieved on 2D materials are, in the case of certain gas feed compositions, 

significantly different than those attained on 3D materials using identical plasma treatments. 

Differences in surface chemistry may help to elucidate disparities in the cell attachment behavior 

observed within these systems. Additionally, deposition precursors within allylNH/OH plasmas 

(i.e., cationic oligomers) may interact differently with NTC disks (i.e., polystyrene) than PCL 

scaffolds. For example, the behavior of plasma-deposited films on NTC disks may differ from 

those on PCL scaffolds in aqueous environments because of differences in the underlying 

polymer chemistry and architecture. Such a detailed exploration of these potential differences is, 

however, beyond the scope of this study. 

Focusing on the bioreactivity of allylNH/OH plasma-modified 2D substrates, 

morphological studies demonstrate intermediate HDF attachment compared to positive and 

negative controls. This can be attributed to differences in substrate chemistry and wettability 

(Figures 6.1 and 6.3, respectively). Despite the presence of HDF cells on allylNH/OH modified 

2D materials, viability data demonstrate differences in cell attachment behavior on allylNH/OH 

plasma polymerized films. Specifically, our findings demonstrate that 2D substrates treated using 

copolymerization conditions promote cell attachment and growth to a greater extent than the 

individual precursors, suggesting a synergy between the O and N-containing functional groups 

and HDF. It is important to note, however, the large experimental error associated with these 

viability data on 2D substrates, possibly suggesting an instability of plasma polymerized films on 

NTC disks. One hypothesis is that these films may be swelling, as this behavior has been 
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previously observed for similar plasma polymerized films.
51-52

 Thus, film stability in aqueous 

environments is an additional consideration that should be accounted for before deploying these 

plasma-modified materials as biomedical devices.  

The main focus of bioreactivity assessments in this work was plasma-modified 3D 

scaffolds. Our hypothesis was that combining allylNH/OH plasma treatments with scaffolds 

would enhance cell attachment behavior via customizing scaffold surface chemistry. 

Specifically, we focused on tuning N and O content and functionality by changing allylNH/OH 

plasma precursor composition in the gas feed. Viability data presented in Figure 6.6b support this 

hypothesis, as all plasma treated scaffolds show >20% improvements HDF viability compared to 

untreated materials. Although changes in wettability and surface chemistry are not mutually 

exclusive within the allylNH/OH plasma copolymerization system studied here, cell viability 

data suggest that both properties work in synergy to promote HDF attachment and growth on 

these scaffold materials. This result clearly suggests additional exploration of plasma 

copolymerization systems to fabricate biologically-relevant materials holds promise. 

6.4 Summary  

This chapter details the plasma deposition of functionalized films copolymerized from 

allylNH and allylOH on 2D and 3D substrates. With this system, the surface properties of the 

resulting films (i.e., chemical composition and wettability) were customizable by tuning the feed 

gas composition. Notably, the relatively delicate architecture of the 3D scaffolds was preserved 

and plasma treatment affected both the interior and exterior of the constructs, highlighting the 

versatility of this approach. As many of the intended end applications for the 3D scaffolds rely 

on effective interfaces with biological moieties, we note that our copolymerization process 

results in enhanced bioreactivity with respect to HDF cell viability. This suggests these materials 
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could be utilized in a range of biomedical devices. Moreover, the results from this research 

indicate further exploration of plasma copolymerization systems for the purpose of created 

tunable biomedical device surfaces could be warranted. In particular, careful selection of 

alternate precursor pairs could provide different functionality than the nitrogen and oxygen 

environments created here. Additionally, utilizing substrates formed from different polymers 

and/or with different architectures would provide further insight into mechanisms for plasma 

modification of 3D materials to produce biologically relevant constructs.   
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CHAPTER 7 

MODIFCATION OF A COMMERCIAL THROMBOELASTOGRAPHY INSTRUMENT TO 

MEASURE COAGULATION DYNAMICS WITH THREE-DIMENSIONAL  

BIOMATERIALS 

 

 

 

This chapter expands on research presented in Chapters 3, 5, and 6, specifically regarding 

response of plasma-modified 3D porous scaffolds in biological systems. In these chapters, 

scaffolds have been interfaced with simplistic biological systems limited to mammalian cells 

(human dermal fibroblasts) and gram-negative bacteria cells (E. Coli). Although such an 

exploration has yielded valuable insight regarding cell-surface interactions of plasma-modified 

3D polymers, interfacing with more complex biological systems (e.g., blood) is, however, more 

realistic for construct deployment in biomedical devices. Understanding coagulation phenomena 

is arguably the most critical aspect for applications involving synthetic biomaterial devices, 

however, real-time evaluation of the clot formation while interfacing with these materials is 

difficult to achieve in a reproducible and robust manner. Here, we present work representing first 

steps toward addressing this deficit, wherein we have fabricated modified consumables for a 

clinical thromboelastography (TEG) instrument. TEG measures viscoelastic properties 

throughout clot formation and therefore provides clinically-relevant coagulation measurements 

in real time (i.e., kinetics and strength of clot formation). Through our modification, TEG 

consumables can readily accommodate three-dimensional materials (e.g., those for regenerative 

tissue applications). We performed proof-of-concept experiments using polymer scaffolds with a 

range of surface properties, and demonstrated that variations in surface properties resulted in 

differences in blood plasma coagulation dynamics. For example, maximum rate of thrombus 
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generation ranged from 22.2 ± 2.2 (dyne/cm2)/s for fluorocarbon coated scaffolds to 

8.7 ± 1.0 (dyne/cm2)/s for nitrogen-containing scaffolds. Through this work, we demonstrate the 

ability to make real-time coagulation activity measurements during constant coagulation factor 

interface with biomedically-relevant materials.  

This chapter is based on work published in Biointerphases by Morgan J. Hawker, 

Christine S. Olver, and Ellen R. Fisher, and is reproduced with permission, American Vacuum 

Society, 2016.1 This work is supported by the National Science Foundation (CHE-1152963), the 

Colorado Office of Economic Development via the Biosciences Discovery Evaluation Grant 

(BDEG) Program, and the Vice President for Research at Colorado State University (Compatible 

Polymer Network Catalyst for Innovative Partnerships funding, CPN CIP). I would like to thank 

members of the CPN CIP team at Colorado State University for inspiring this project, especially 

Dr. Matthew J. Kipper. I would also like to thank Christine Olver for her mentorship and insight 

throughout working on the TEG projects that became this chapter, as well as John Wydallis and 

Rachel Feeny for assistance with 3D printing and helpful discussions related to consumable 

design. 

7.1 Introduction 

 

 Millions of blood-contacting devices (e.g., vascular grafts, stents) are deployed in 

medical settings annually2 and a recent review claims the global biomaterials market will grow 

by 15% per annum, reaching a value of ~$84 billion by 2017.3 As thrombosis is a primary cause 

of device failure for such synthetic materials implanted in the body, evaluating coagulation 

behavior of blood-interfacing materials is critical.4-6 Although the phrase “blood-interfacing 

materials” includes many different forms (i.e., suspensions, powders, thin films, hydrogels), 

delivering a range of functions in blood-contacting applications, we focus here on solid, three-
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dimensional, porous constructs designed for wound healing and tissue engineering applications. 

Despite the importance of assessing coagulation at synthetic biomaterial interfaces, substantial 

debate revolves around the suitability of existing in vitro hemocompatibility tests for such 

assessment.
7
 Thus, creating methodologies that allow translation from the fundamental 

biomaterials laboratory to clinical setting is imperative. Therefore, developing techniques to 

provide a more clinically-relevant analysis of coagulation activity at the blood/synthetic 

biomaterial interface is a critical component of this translational activity. 

 Thromboelastography (TEG) is a rheometry-based clinical tool used to assess 

coagulation dynamics of whole blood and blood plasma. A detailed description of standard TEG 

instrumental operation procedures, as well as the theory and principles governing the TEG 

technique, can be found elsewhere.
8-12

 Briefly, clinical TEG use includes loading a plastic 

(Cyrolite®) cup into a holder on a stage that slowly rotates (4º45’ over 10 s) about a stationary 

pin attached to a torsion wire. A small volume of whole blood or blood plasma is then added to 

the cup (typically 330-360 µL), often along with activators (i.e., tissue factor, celite, calcium if 

blood is citrated), and viscoelasticity measurements of the developing clot are collected in real 

time. Rapid, point of care measurements of time to clot, clot strength, and rate of clot formation
8
 

are each used in the clinical setting to guide specific blood component therapy in patients 

severely at risk for bleeding (e.g., cardiac surgery, acute traumatic coagulopathy, obstetrics), thus 

reducing total transfusion requirements.
13

 

 Few studies have reported using TEG instrumentation for the analysis of synthetic 

blood-interfacing materials. A complete description of TEG analysis of materials can be found 

elsewhere;
14-15

 here we include a (non-exhaustive) summary. Several studies focused on coating 

the interior of the TEG cup with a thin layer of a blood-insoluble polymer either via dropcasting 
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techniques
16-18

 or using low-temperature plasma polymerization (such as those described in 

Chapters 3–6 of this dissertation).
19-20

 Herein, we will refer to low-temperature plasmas as LTPs 

to avoid confusion with blood plasma. Whole blood or blood plasma was then added to the 

modified consumables and coagulation dynamics were measured using TEG. Several alternative 

approaches to modifying standard TEG consumables have been explored. One alternative 

involves injecting a small volume of a polymer suspension or slurry into either whole blood or 

blood plasma in the TEG cup,
21-23

 and another includes incubating solid constructs in blood, 

removing the blood, and pipetting it into the standard TEG consumables for analysis.
14, 24

 An 

additional alternative involves a perfusion-based method where blood is flowed through a 

material and then used for subsequent TEG analysis.
25-26

 To our knowledge, only one study has 

performed a real-time evaluation of blood interfacing with a solid material within the TEG cup, 

albeit this study evaluated relatively thin films (area ~0.25 cm
2
) with relatively small features 

(<100 nm).
27

 

 Although real-time quantitative analysis of coagulation while blood is simultaneously 

interfacing with a solid construct is perhaps most realistic in terms of the ultimate in vivo 

application of solid implant materials, only one of the studies described above does so. Existing 

TEG consumables have, however, only <50 µL of accessible volume after the addition of blood, 

and thus, do not allow for the placement of three-dimensional solid constructs within the TEG 

cup (at least not those on a scale relevant to tissue engineering or wound healing constructs). 

Therefore, additional instrumental modification is necessary to realize the enormous potential of 

TEG for the analysis of the global effects of solid materials on coagulation. This modification 

includes creating new consumables designed to accommodate the solid construct of interest. 

Although many next-generation constructs for blood-contacting applications have three-
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dimensional architectures,
28-31

 the capability to evaluate coagulation behavior of blood 

interfacing with 3D constructs is an important step in optimizing performance testing. If 

successful, a clinically-relevant coagulation analysis using TEG would be invaluable for blood-

interfacing material screening and eventually in patient-specific, point-of-care applications for 

personalizing (or, “individual-optimized”) blood-interfacing materials. In this work, we report 

the modification of clinical TEG instrumentation through designing new TEG consumables that 

can accommodate solid constructs with complex geometries. Through this modification, we 

demonstrate the ability to evaluate coagulation dynamics while blood plasma is interfacing with 

model materials having a range of surface properties (LTP-modified three-dimensional polymer 

scaffolds).  

We selected three LTP-modified scaffolds based on previous assessments of construct 

interactions with biological systems [mammalian cells (human dermal fibroblasts, HDF, and 

human Saos-2 osteoblasts) and gram-negative bacteria (E. coli)]. These constructs included 

fluorocarbon (FC), allylamine (allylNH) and water vapor LTP-modified scaffolds. As discussed 

in Chapter 5, the FC surface is low-fouling toward both HDF and E. coli, and could be applicable 

when mitigating attachment of these biological species is of interest.
32

 As discussed in Chapter 6, 

allylNH LTP treated scaffolds show enhanced HDF viability relative to untreated materials and 

thus have potential in wound healing or other tissue engineering applications.
33

 Scaffolds treated 

with H2O LTPs had enhanced Saos-2 osteoblast attachment and viability relative to untreated 

scaffolds, demonstrating their potential for use in bone regeneration.
34

 

 The present study establishes the ability to measure the effects of fabricated 

consumables on coagulation by detecting differences in several viscoelastic parameters when 
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clotting plasma is exposed to a variety of solid constructs. This research thus aids in bridging the 

gap between fundamental biomaterials and clinical laboratories. 

7.2 Results 

 

 The overarching goal of this study was to modify a TEG instrument to accommodate 3D 

solid materials with significant volume such that blood coagulation dynamics in the presence of 

these materials could be measured. To evaluate the efficacy of our instrumental modification, 3D 

porous PCL scaffolds were selected as model materials both because of their potential utility in 

biomedical device applications, and because of previous success in LTP processing these 

constructs.
32-38

 Here, we have chosen to evaluate plasmatic coagulation dynamics of four 

different constructs: unmodified, C3F8, allylNH, and H2O LTP-modified PCL scaffolds.  

7.2.1 PCL scaffold characterization. Surface and bulk properties of scaffolds included in 

TEG experiments were identical to those reported elsewhere in this dissertation. Nonetheless, 

data pertaining to scaffold surface chemistry and wettability data are summarized in Table 7.1, 

demonstrating that comparatively, materials utilized in this study have vastly different surface 

properties with respect to chemical composition and to wettability. The native scaffold surface 

contains carbon and oxygen (O/C = 0.34 ± 0.01) in hydrocarbon and ester functionality.
32

 

Furthermore, these materials are hydrophobic, with a static WCA of 119.5 ± 1.6º. C3F8 LTP 

modification results in conformal fluorocarbon film deposition on the exterior of the scaffold 

(F/C = 1.50 ± 0.04) with CF, CF2, and CF3 functionality - an even more hydrophobic surface 

(WCA = 134.6 ± 2.2º) than unmodified PCL. AllylNH LTP treated scaffolds have surface 

nitrogen-containing functionality (N/C = 0.34 ± 0.02), primarily in the form of amine groups. 

H2O LTP-modified scaffolds have a similar elemental composition to untreated scaffolds 

(O/C = 0.45 ± 0.04), but contain alcohol functionality.
34, 38

 Both allylNH and H2O LTP treated  
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Table 7.1. Elemental composition and wettability of 3D polymeric materials evaluated with 

TEG.
a
 Measurements represent the mean ± standard deviation for n ≥ 9. 

Material O/C F/C N/C Static WCA (º) 

Native PCL scaffold 0.34 ± 0.01 -- -- 119.5 ± 1.6 

C3F8 treated PCL scaffold 0.02 ± 0.01 1.50 ± 0.04 -- 134.6 ± 2.2 

AllylNH treated PCL scaffold 0.05 ± 0.01 -- 0.34 ± 0.02 hydrophilic 
c 

H2O treated PCL scaffold 0.45 ± 0.04 
b 

-- -- hydrophilic 
c
 

a
 Composition data from high-resolution X-ray photoelectron spectroscopy analysis and wettability from water 

contact angle goniometry. 
b
 Data from references 37 and 38. 

c
 Because water and allylNH LTP-modified PCL scaffolds absorbed water drops upon WCA measurements, it was 

not possible to measure a static WCA value.  
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scaffolds are nominally hydrophilic and fully absorbed water drops used for CA experiments 

(either 5 or 6 µL) in <10 s. Representative SEM images of untreated and allylNH LTP treated 

scaffolds (Figure 6.2b) demonstrate the interconnected porous PCL scaffold network is 

maintained upon LTP treatment, which we have also observed in other LTP modification 

systems.
32, 36-37

 Altogether, the three types of LTP-modified scaffolds presented in this work, 

C3F8, allylNH, and H2O LTP treated, showcase extremes on both the surface properties and  

biological interactions spectra (as discussed in Section 7.1): a hydrophobic FC surface (low-

fouling) and hydrophilic N- and O- containing surfaces (mammalian cell attachment and 

enhanced cell viability). With differences in surface characteristics and biological responsiveness 

in mind, one would expect the LTP-treated materials to have disparate effects on blood 

coagulation activity. 

7.2.2 Design optimization for TEG analysis of solid materials. Initial experiments 

demonstrated that ABS cups caused blood plasma to be hypercoagulable in comparison to 

commercial Cyrolite® cups (Figure 7.1). It is important to note that the focus of this study is to 

systematically compare blood plasma coagulation activity upon interfacing plasma with solid 

constructs. Thus, all TEG data presented here were collected using our 3D printed ABS cups and 

Cyrolite® cups were not utilized. CAD models of the experimental set-up used in these TEG 

experiments can be found in Chapter 2 (Figure 2.4). 

Upon first interfacing 3D printed cups with the TEG instrument, the instrument reported 

an error that consumables were improperly loaded. We eliminated the possibility that the error 

was arising from friction between the pin and the inside of the 3D printed cup by determining 

that the interior cup dimensions were identical to the commercial consumables. Rather, we found 

that the consumable loading error occurred because of instability between the load cell and the  
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Figure 7.1. Representative TEG tracings for blood plasma in commercially-available Cyrolite® 

cups (green circles) and 3D printed ABS cups with identical dimensions (blue 

triangles). Both tracings were collected for blank cups (i.e., without materials loaded) 

using calf plasma.  
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stage. To establish this as the cause of error, and to rectify the problem, we added a machined 

PTFE spacer as part of our modification, effectively mimicking the stage material, which is 

similar to PTFE. Multiple spacers were fabricated such that two runs could be performed 

simultaneously as the instrument is equipped with two sample holders, Figure 2.4a. Preliminary 

experiments showed differences in the signals between the two channels using otherwise 

identical experimental conditions. In particular, one channel would consistently show an elevated 

baseline during a set of TEG runs (Figure 7.2). Ultimately, we found that the roughness of the 

PTFE spacer affected the signal, where rougher surfaces resulted in elevated baselines. With the 

additional modification of using smoother PTFE spacers, repeatable TEG data could be 

collected. 

7.2.3 TEG analysis of polymer scaffolds with different surface properties. The ability to 

modify a TEG instrument to accommodate solid constructs was evaluated using untreated and 

LTP-modified PCL scaffolds as model materials. Figure 7.3 shows representative standard 

thromboelastograph tracings and corresponding velocity curves. Data obtained from 

thromboelastographs are listed in Table 7.2, including R, MA, and TMA. Data from the velocity 

curves are also included in Table 7.2 (MRTG, TTG, and TMRTG. Additionally, the MRTG and 

TTG are displayed graphically in Figure 7.4. 

7.3 Discussion 

This study represents one of very few translations between the fundamental biomaterials 

and clinical settings of TEG, and to our knowledge, the only TEG evaluation of (relatively large) 

3D porous constructs. Overall, data presented here provide strong evidence for this proof-of-

concept evaluation because they demonstrate the capability to measure clear differences in blood 

coagulation behavior between the three-dimensional constructs analyzed. It is, however,  
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Figure 7.2. Representative TEG tracings with an elevated baseline (black circles) and a non-

elevated baseline (orange triangles). Both tracings were collected for cups loaded 

with untreated PCL scaffolds. 
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Figure 7.3. Representative examples of (a) the TEG tracings and (b) the velocity curves [the first 

derivatives of the data in (a)] for a blank cups (no added 3D material) and untreated 

and plasma treated 3D PCL scaffolds. 
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Table 7.2. Summary of quantitative clot kinetic measurements upon interfacing each material with human blood plasma 

Measurements represent the mean ± standard deviation for n = 3. 

Scaffold 

Reaction 

time 

(min) 

Maximum 

amplitude 

(mm) 

Time to 

maximum 

amplitude 

(min) 

Maximum 

rate of 

thrombus 

generation 

((dyn/cm
2
)/s) 

Time to 

maximum rate 

of thrombus 

generation 

(min) 

Total 

thrombus 

generation 

(dyn/cm
2
) 

 R MA TMA MRTG TMRTG TTG 

None (blank cup) 1.5 ± 1.1 27.0 ± 2.5 8.9 ± 3.1 7.5 ± 1.3 2.9 ± 0.3 185.5 ± 22.4 

Untreated 1.3 ± 0.9 40.3 ± 3.5 9.0 ± 3.1 12.0 ± 1.3 2.7 ± 0.3 337.7 ± 40.3 

C3F8 LTP treated 1.3 ± 0.3 54.1 ± 4.9 8.2 ± 1.0 22.2 ± 2.2
 

2.6 ± 0.1 549.5 ± 69.2 

AllylNH LTP treated 1.9 ± <0.1 
 

32.3 ± 4.6 8.1 ± 2.2 8.7 ± 1.0 3.1 ± 0.4 237.4 ± 46.3 
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Figure 7.4. Figures of merit from TEG velocity curve data for blank cups with no material 

(green), cups loaded with untreated (orange), C3F8 (red), allylNH (blue), and H2O 

plasma-treated (pink) scaffolds. Significant differences (p < 0.05) as determined from 

one-way ANOVA with post-hoc Tukey HSD tests are denoted by asterisks. For each 

type of sample, n = 3. 
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important to note that the interpretation of TEG data is challenging in light of complexities 

present in both the material and the blood plasma matrices, as well as in the coagulation 

pathways that become activated upon interaction with foreign material. The list of variables that 

influence coagulation is lengthy (including, but not limited to, substrate geometry, surface 

roughness, surface area, composition, functionality, charge, wettability, and mechanical 

properties) and it is often difficult to isolate a single variable. Although the primary goal of this 

work was to validate the efficacy of our instrumental modification, we would like to devote some 

discussion of our TEG data qualified by the abovementioned challenge. 

One factor that likely influences the coagulation results in this study is the material 

surface roughness. The impact of roughness on thrombosis has been well established previously 

(albeit for different material systems than those presented here), and it is typically accepted that 

roughness is directly correlated with coagulation activation.
39-40

 As demonstrated by SEM 

images of porogen-leached scaffolds (e.g., Fig. 6.2b), scaffold features are on the order of 

~100 µm (much greater than the inner surface of the TEG consumables). Thus, an increase in 

rate of clot formation and clot strength upon the introduction of the untreated scaffold (compared 

to the blank trials) is rational. If roughness were the dominating factor controlling coagulation, 

we would expect to see similar responses for all scaffold constructs examined. As this is not the 

case, it is likely that additional material properties such as surface chemistry (i.e., surface 

functional groups), wettability, and surface charge are influencing coagulation dynamics. 

Although the interrelation of these properties makes it challenging to discern the effect of one 

versus the other on coagulation, the set of materials presented allows for several parallel 

comparisons. 
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Two materials with similar elemental composition (e.g., O/C ratios, Table 7.1) are 

untreated and H2O LTP treated scaffolds. These materials show nearly identical TEG responses, 

indicating that the overall elemental composition, rather than specific type of oxygen 

functionality, may be more predictive of coagulation activity. Additionally, this finding suggests 

that surface wettability alone may not play a primary role in independently determining 

TEG/coagulation response. Although there has been substantial discussion in the literature 

related to influence of wetting behavior on coagulation, a clear correlation between wettability 

and coagulation does not exist. For example, Hong et al. demonstrated that hydrophilic surface-

modified titanium constructs (i.e., completely wetting, WCA = 0º) show increased 

thrombogenesis over relatively hydrophobic controls (WCA >90º).
41

 Others have demonstrated 

that more hydrophobic constructs (WCAs >100º) show increased platelet adhesion relative to 

those with WCAs <80º); however, differences in wettability in this study were strongly 

influenced by differences in roughness.
42

 Although we did not measure platelet adhesion in the 

present study, it is one of many factors that influences coagulation. Another study by 

Senthilkumar et al. demonstrated that only minor differences in surface wettability (WCA ~50º 

vs. 60º) showed substantial changes in blood coagulation behavior, with the more hydrophobic 

surface exhibiting an increase in coagulation (determined by shorter activated partial 

thromboplastin time and shorter prothrombin time).
43

 Again, variations in wetting properties 

were confounded by differences in material morphology and roughness, making it challenging to 

establish a direct relationship between wettability and coagulation. Moreover, activated partial 

thromboplastin time and prothrombin time measurements only represent a small portion of 

coagulation, whereas TEG measurements capture the entire coagulation cascade. Studies wherein 

coatings were deposited on the inside of TEG cups reported that minor (<30º)
16, 18

 or no
17
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differences in wettability between unmodified and modified materials lead to substantial 

differences in TEG response, although these studies incorporated either silver nanoparticles,
16

 

antibodies,
18

 or heparin
17

 into the polymer coatings. These species may have a more profound 

influence on coagulation than wettability alone.  

 Additional evidence that wettability does not primarily control coagulation in the context 

of materials evaluated here comes when comparing the TEG response of materials with similar 

wetting behavior, such as untreated and C3F8 LTP-modified constructs. These materials are 

similarly hydrophobic, but have disparate surface chemistries (i.e., elemental composition and 

functionality). Because they are traditionally considered to be low-fouling, it may seem 

counterintuitive that FC-coated surfaces promote coagulation when compared with untreated 

scaffolds.
44

 Previous work with microporous PTFE materials, however, demonstrated that 

unmodified (FC-like) constructs showed enhanced TEG response (i.e., they had lower MA 

values) when compared with modified (hydrophilic) constructs.
24

 This is perhaps a more rational 

comparison to materials in the present study relative to explorations of coagulation upon 

interfacing non-porous FC films (e.g., work by Wang et al.),
44

 although it is important to note 

that microporous PTFE constructs were incubated in blood that was used for subsequent TEG 

analysis. This differs from the present work where TEG was performed with the blood plasma 

interfacing with solid constructs throughout data collection.  

A similar comparison to the untreated/C3F8 LTP treated materials can be made when 

comparing H2O LTP-modified and allylNH LTP-modified scaffolds. These two materials also 

have comparable wettability (both are water sorbing and nominally hydrophilic) despite 

differences in surface chemistry. Although differences in each of the TEG statistics presented 

here are not statistically significant, we observe an overall reduction in coagulation behavior for 
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the allylNH LTP treated constructs. Moreover, differences in TEG response are statistically 

significant when comparing untreated with allylNH LTP treated materials. Previous evidence 

that nitrogen inclusion reduces coagulation response exists, though many studies assessing 

nitrogen incorporation utilize nickel-free nitrogen containing stainless steel materials for surgical 

applications rather than porous polymeric constructs.
45-46

 

 It is likely that additional material properties are playing a major role in differences in 

coagulation dynamics observed, especially surface charge. Although a systematic study of the 

effect of surface charge on coagulation has not been performed to our knowledge, surface charge 

is known to have an impact on hemostasis as assessed using TEG.
19

 We have not, however, 

performed any direct surface charge measurements (e.g., zeta potential) on the current set of 

materials. This type of analysis could provide an additional detail influencing mechanisms at 

play when different scaffold constructs are interfaced with blood plasma. As a final note, we 

acknowledge that blood interfacing with synthetic biomaterials is an incredibly complicated 

system. Ideally, we would be able to separate specific contributions of each material property as 

well as each element in the coagulation cascade process. Thus, the work presented here offers 

valuable insight and hope for unraveling the details in this complex milieu. 

7.4 Summary 

 

Here, we demonstrated the ability to effectively modify TEG consumables to 

accommodate relatively large 3D constructs. In doing so, we were able to measure dynamic 

blood coagulation behavior while blood plasma was in contact with polymer scaffolds having 

significantly different surface properties. This work represents one of the few examples of an 

explicit attempt to bridge the gap between fundamental biomaterials studies and clinical 

evaluation of blood coagulation dynamics, critical for rapid advancement of new materials into 
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clinical settings. The results here clearly reveal coagulation behavior is dependent on surface 

properties. Nevertheless, the intertwined relationship between factors such as surface wettability 

and chemical composition make it difficult to deconstruct the impact of any individual material 

property on coagulation dynamics. Clearly, this represents an opportunity for further exploration. 
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CHAPTER 8 

BUILDING A LIBRARY OF POLYMER CONSTRUCTS FOR EVALUATION AS 

 SYNTHETIC BIOMATERIALS 

!

!

!

8.1 Introduction  

The majority of work in this dissertation focuses on porogen-leached scaffolds as model 

3D polymeric biomaterial constructs. Although these efforts help develop fundamental 

knowledge in the field of surface modification of complex polymer materials, it is advantageous 

to evaluate the translation of plasma processing to different polymer morphologies because one 

class of morphologies may be more appropriate for a given application than another. For 

example, electrospun fiber meshes could be ideal wound dressing materials because of their 

porosity whereas a polymer film might be a less appropriate construct because it does not contain 

an interconnected network to promote air/fluid exchange with the surrounding environment. As 

another example, a porogen-leached scaffold could be more advantageous for deployment as a 

tissue engineering construct because it more closely resembles the extracellular matrix geometry 

of a biological tissue than a construct with a more ordered porous network. Additionally, 

electrospun fiber meshes offer more precise control of mechanical and structural properties than 

porogen-leached scaffolds. Thus, fiber mats have the potential to mimic certain types of 

extracellular matrices more closely than porogen-leached scaffolds. As with previous chapters, 

the studies reported herein are motivated by the necessity to improve knowledge of fundamental 

interactions between biological species and synthetic biomaterial devices. Biological 

environments and biomedical devices are inherently complex systems. Thus, the route to develop 

an understanding of device performance must consider the multitude of variables that control 



! 204 

interfacial interactions. By creating a library of polymeric materials with systematically varied 

surface and bulk properties, we can disentangle the role that each of these properties plays in 

controlling biological species/biomedical material interactions.  

The conceptual framework presented in Figure 8.1, including a library comprised of 

materials that vary in terms of the base polymer, construct morphology, and surface properties, 

illustrates this approach. Each of the outermost circles in Figure 8.1 serve as representative 

examples that are explored in this chapter, but could easily be expanded to include any number 

of polymers, morphologies, and properties of interest. Here, we have focused initial efforts 

toward spin-coated polymer films and electrospun fibers, in addition to the porogen-leached 

scaffolds described in Chapters 3 and 5-7. Polymer films can serve as analogs for more complex 

3D constructs by providing a platform for de-coupling surface chemistry/wettability and 

architecture, as well as the relative contributions these properties have in controlling interactions 

with biological species. The electrospun fiber focus is inspired not only by the growing number 

of recent literature efforts that focus on interactions between biological species and surface-

modified fiber mats,
1-4

 but also by the accessibility of a broader range of possible end 

applications than those provided using only porogen-leached scaffolds. 

8.2 Plasma Modification of Electrospun Fibers: Expanding on Work with PCL 

Our initial foray into fabrication and plasma modification of electrospun fiber mats is 

presented in Chapter 3. This investigation included OD and fluorocarbon plasma modification of 

PCL electrospun fibers and subsequent WCA evaluation of these constructs. Here, we expand 

upon this work by 1) utilizing a different plasma precursor (allylOH), in addition to OD and 2) 

fabricating fibers out of a different polymer mixture (PCL/PLA). (Motivation for expanding to 

PCL/PLA mixtures is further discussed in Section 8.4.) Representative SEM images of 
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Figure 8.1. Conceptual framework for the systematic variation of polymer construct surface and 

bulk properties, including the polymer, surface properties, and morphology. 
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unmodified and plasma-modified PCL fibers (Figure 8.2a-c) demonstrate no appreciable fiber 

damage upon plasma modification (e.g., when compared to Figure 3.4c), as was also observed 

with PCL scaffolds in work presented in previous chapters. 

Although electrospinning fibers using PCL was relatively straightforward (i.e., required 

little optimization), translating this technique to different polyester mixtures was a more 

substantial undertaking. Initial attempts to fabricate fiber mats using PCL/PLA mixtures resulted 

in the deposition of electrosprayed polymer on to the target where fibers either did not form at all 

or those that formed were non-uniform. The PLA that was initially used had a much lower 

average molecular weight (Mn) than that of the PCL (average Mn, PLA = 10,000 g/mol, average 

Mn, PCL = 80,000 g/mol), and was a mixture of D and L isomers. After additional literature 

consultation, a different PLA formulation was purchased. The average Mn for this formulation 

was reported to be 140,000 g/mol and contained 98% L-lactide units.
5
 Additional optimization 

was performed with PCL/PLA mixtures made using this PLA formulation, ultimately resulting in 

fibers pictured in Figure 8.2d. Notably, the PCL/PLA fiber size and morphology is comparable 

to that of PCL-only fibers (for a quantitative analysis route, see Section 8.3). Additionally, 

PCL/PLA fiber morphology remains unaltered after modification for both OD and allylOH 

plasma treatment (Figure 8.2e, f). Altogether, these data support the development of a polymer 

construct library, both in terms of bulk properties (polymer composition and morphologies) and 

surface properties (plasma modifications). 

8.3 DiameterJ as a Fiber Analysis Tool 

In expanding electrospun fiber fabrication strategies to include different polymers and 

modifications, we wanted to quantitatively assess fiber mat morphology through fiber diameter, 

porosity, and pore size measurements. Such an evaluation could capture differences in fiber 
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Figure 8.2. Representative SEM images of electrospun fiber meshes fabricated using PCL only 

(a-c) and PCL:PLA (d–e), all 1000× magnification. Untreated (a, d), OD plasma-

treated (b, e), and allylOH plasma-treated (c, f) fiber mats are included. 
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uniformity (e.g., polydispersity) for different polymer formulations or modifications, and could 

thus be used to quantify the extent of fiber damage upon modification. For this assessment, we 

used an ImageJ plugin that was recently developed for quantitative fiber analysis entitled 

DiameterJ. DiameterJ has been validated for fiber image analysis/measurement and is thoroughly 

reviewed elsewhere.
6-7

 Here, we discuss challenges faced when using DiameterJ and present 

proof-of-concept DiameterJ data to demonstrate its potential for quantitative analysis of plasma-

modified fibers. 

8.3.1 Image processing procedure. The first step in performing DiameterJ analysis is 

converting an SEM image to an 8-bit greyscale image. A representative converted image of OD 

plasma-modified PCL fibers at 5500× magnification is shown in Figure 8.3a. DiameterJ then 

segments the 8-bit greyscale images into a black and white image, where white areas represent 

fibers and black areas represent pores (i.e., the absence of fibers). ImageJ produces 16 potential 

segmentations from the 8-bit greyscale image and the user must manually select the most 

accurate segmentation. Although this process is somewhat subjective, it is typically possible to 

eliminate the majority of segmentations after a careful analysis of each one next to the original 

SEM image. This is because many segmentation algorithms result in a misidentification of fibers 

as pores (and vice versa), and thus, produce segmentations with artificially large white or black 

areas (more information on the segmentation algorithms can be found both in the literature
6
 and 

on the ImageJ webpage
7
). It is also possible to upload an image that is segmented using other 

means if none of the 16 algorithm options produce reasonable segmentations. The best 

segmentation produced for OD plasma-treated PCL fibers (Figure 8.3b), shows a reasonable 

reproduction of the corresponding 8-bit greyscale image, especially when considering the  
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Figure 8.3. DiameterJ analysis of OD plasma treated PCL fibers (5500× magnification). (a) 8-bit 

greyscale image, (b) segmented black and white image, (c) histogram of fiber radii 

determined from segmented image (average fiber radius = 0.3 ± 0.1 µm). 
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foreground of the image. Quantitative data are produced based on the segmentation, where the 

fibers (white portions of the segmentation) are measured at every pixel along the fiber axis. Data 

output includes mean fiber radius (as well as the median, mode, and standard deviation of fiber 

radius), mean pore area (as well as the minimum, maximum, and standard deviation of pore 

area), percent porosity, and fiber intersection density. An additional output item is a histogram of 

fiber radii, which is also based on the segmentation (Figure 8.3c). Details on the multiple steps 

bridging segmentation and quantitative metric output are described elsewhere.
6-7

  

8.3.2 Troubleshooting and future work. Our initial work with DiameterJ suggested that 

images collected at higher magnifications and with higher contrast produced more reliable image 

segmentations. It is important to note that most SEM images of electrospun fibers were collected 

to assess overall fiber morphology (not intended for DiameterJ analysis) and were thus captured 

at relatively low magnifications (≤3500×). The example data set provided here is based on an 

SEM image collected at 5500×, and images collected at even higher magnifications would likely 

produce better segmentations and thus, more reliable quantitative results. Furthermore, fiber mats 

were sufficiently thick as to be peeled from the foil support (>20 µm), which, although beneficial 

for plasma modification and potential deployment in biomedical settings, may be a disadvantage 

for DiameterJ analysis. Specifically, the fiber mat thickness is orders of magnitude larger than 

the thickness of individual polymer fibers, such that SEM images capture fibers in multiple 

planes of focus and thus, varying levels of brightness (Figure 8.3). Because DiameterJ 

segmentation algorithms are impacted by the contrast of as-collected SEM images, images of 

thick mats (i.e., those with significant “backgrounds”), produce less reliable segmentations and 

therefore, less reliable quantitative metrics.  
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Future work with DiameterJ should utilize fiber mats produced using identical parameters 

(e.g., applied voltage, collector distance, and flow rate) employed to produce thicker mats, but 

spun for a significantly shorter time. This would result in a thin mat that may not be as easily 

removed from the foil backing without damage, but would contain fibers that are otherwise 

indistinguishable from those found in thicker mats. Fibers could be imaged directly on the foil 

backing to mitigate the background issue described above. Overall, this methodology would 

produce more reliable segmentations and a more realistic assessment of fiber size. Notably, this 

approach would dictate that fibers be plasma-modified on a foil backing rather than the typical 

modification strategy reported in this dissertation (where the fiber mat is peeled off of the foil 

backing, cut, and placed on a glass slide). The introduction of a conductive support into the 

plasma reactor raises an additional set of challenges that should be addressed if this line of 

inquiry is pursued in the future. 

8.4 Plasma-modified PCL/PLA Construct Surface Properties 

An initial step in developing a library of polymeric constructs includes the fabrication of 

materials from the same base polymer mixture but with different morphologies using 

methodologies outlined in Figure 2.2. The constructs of interest for the present work include 

spin-coated polymer films, porogen-leached scaffolds, and electrospun fiber mats. Here, we have 

expanded upon previously utilized materials through the introduction of films, scaffolds, and 

fibers using a 1:1 PCL:PLA mixture. This mixture was chosen to evaluate the translation of 

porogen leaching and electrospinning methodologies to polymer systems other than the PCL 

used for previous work in this dissertation (Chapters 3, 5-7), as well as a starting place for 

creating constructs of varied morphology (Figure 8.1). Additionally, the blended PCL/PLA 

system provides another layer of customizability regarding material mechanical properties, 
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crystallinity, and bioresorption/degradation. Although these properties are not explicitly 

evaluated in the present work, such an exploration represents a valuable direction for future 

research (especially directed toward systematic variations in composition using the two 

polyesters). As discussed in Chapter 9, controlling material bulk properties represents a pathway 

to fabricating constructs that mimic specific extracellular matrices (e.g., those present in bone vs. 

soft tissues). 

Representative SEM images demonstrate successful fabrication of this collection of 

constructs (Figure 8.4), and reveal important differences between them. For example, it is clear 

that films are effectively non-porous when compared to the 3D constructs (Rq < 8 µm for all 

films included in this study, as measured via optical profilometry). Another observation is that 

both of the 3D porous networks (scaffolds and fibers) are random and interconnected, but the 

network natures differ. Connections between the electrospun fibers (Figure 8.4b) create convex 

pore walls whereas the porogen-leached scaffold structure (Figure 8.4c) consists of concave pore 

walls. Additionally, the effective pore size of electrospun fiber mats is much smaller than those 

in porogen-leached scaffolds. These structural differences may result in distinct biological 

species attachment and growth behavior and are thus an important consideration for polymer 

material deployment in biological systems. Wettability of unmodified PCL/PLA constructs was 

evaluated using contact angle goniometry, specifically by measuring static water contact angles 

(WCA, Table 8.1). These constructs are all nominally hydrophobic (WCAs < 80º), and although 

all materials are fabricated from the same base polymer blend (1:1 PCL:PLA), the WCA of 

polymer films is ~40º lower than that measured on 3D constructs. Differences in wettability are 

attributed to the introduction of a more complex morphology (related to surface roughness and 

inhomogeneity), as discussed in detail throughout Chapter 3.
8-10
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Figure 8.4. Representative SEM images of constructs fabricated using PCL:PLA, including (a) 

spin-coated film (30× magnification), (b) electrospun fiber mesh (1000× 

magnification, the same image is included as Figure 8.2d), and (c) porogen-leached 

scaffold (100× magnification). 
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Table 8.1. Wettability data, including static WCA values and average water absorption rates, for 

plasma-modified PCL:PLA constructs. Data are presented as the mean ± standard deviation 

(n ≥ 3).  

Plasma 

Modification 

PCL:PLA 

Construct 
WCA (º) 

Average Water 

Absorption Rate 

(µL/s) 

Unmodified 

Film 81.0 ± 6.0 -- 

Fiber 131.0 ± 3.4 -- 

Scaffold 123.3 ± 8.1 -- 

OD 

Film 96.4 ± 1.3 -- 

Fiber 127.2 ± 4.9 -- 

Scaffold 130.3 ± 3.4 -- 

allylOH 

Film <10 -- 

Fiber -- 3.0 ± 1.9 

Scaffold -- 6.6 ± 2.3 
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PCL/PLA constructs were then plasma treated as a means of modifying construct surface 

properties while maintaining bulk architecture (Figure 8.1). Here, two different plasma 

modification precursors were selected: OD and allyl alcohol (allylOH). OD was selected as a  

hydrophobic film PECVD system, providing a non-fluorinated alternative to the hydrophobic 

fluorocarbon PECVD systems described in Chapter 5 and building off of work presented in 

Chapter 3 (OD plasma-modified PCL scaffolds and fibers). AllylOH was chosen to expand on 

work presented in Chapter 6, which focused on plasma modification of PCL porogen-leached 

scaffolds. Furthermore, we predicted that films deposited using these precursors would have 

different surface properties, which provided a rational basis for initial development of a small 

biomaterial construct library. The allylOH and OD plasma parameters used for PCL/PLA 

construct modification were chosen for direct comparison to previous work with PCL constructs 

(Chapters 3 and 6). Notably, this work represents the first use of the OD precursor in our 

laboratories outside of the proof-of-concept depositions reported in Chapter 3 (Table 3.1). As 

such, a relatively extensive parameter space exploration using the OD precursor was performed 

and is discussed in Section 8.5. 

The WCAs of OD plasma modified PCL/PLA constructs (Table 8.1) are similar to 

unmodified materials with the exception of the polymer films, which show a ~15º increase in 

WCA after plasma modification. AllylOH plasma-modified constructs display the opposite 

wetting behavior, where all constructs become nominally hydrophilic after plasma treatment. 

Specifically, the WCA of allylOH plasma-modified polymer films is <10º, exhibiting over a 70º 

decrease when compared with unmodified films. AllylOH plasma treatment of 3D constructs 

renders these materials hydrophilic and sorbing (i.e., equilibrium WCA = 0º), as observed for 

PLA scaffolds treated under identical conditions. Average water absorption rates calculated from 
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dynamic wettability data (Table 8.1) demonstrate that plasma-modified scaffolds absorb water at 

approximately double the rate of plasma-modified fibers. Notably, the large experimental error 

(>30%) associated with water absorption rate data and the multiple variables influencing 

dynamic goniometry measurements both here and with allylNH/allylOH plasma treated PCL 

scaffolds (Chapter 6) makes it challenging to elucidate absolute claims. These data, however, 

allow for a relative comparison between different substrates and/or plasma modification 

conditions. The water absorption rate of PCL scaffolds treated with identical allylOH plasmas as 

those utilized here was 6.4 ± 3.8 µL/s (Chapter 6), which was similar to those observed for 

PCL/PLA scaffolds (6.6 ± 2.3 µL/s). These data suggest that the allylOH plasma is conformally 

modifying polymer scaffolds in a uniform manner (i.e., regardless of the native polymer surface 

composition). Another finding from these wettability data is the difference in wetting behavior 

between plasma-modified scaffold and fibers. One likely explanation is that relative construct 

feature size controls water sorption. Specifically, the smaller effective “pore size” present in the 

fiber mat creates a network that may be less permeable to water than that of the scaffolds. An 

alternative hypothesis is that although the constructs were modified using identical plasma 

conditions, the modification may not have affected the polymer constructs identically. For 

example, films deposited on polymer scaffolds versus fibers may differ with regards to 

conformality (i.e., surface coverage) or uniformity (i.e., regions with different degrees of cross-

linking).  

To evaluate differences in surface chemistry between unmodified and plasma-treated 

constructs in terms of both elemental composition and functionality, high-resolution XPS data 

were collected (Table 8.2, Figure 8.5). The O/C ratio is used as a comparative metric for changes 

in chemical composition, both between different plasma treatments and different morphologies, 
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Table 8.2. Surface chemical composition of unmodified and plasma modified PCL:PLA materials from high-resolution XPS data. 

Binding environment percentages were determined from fitting high-resolution C1s XPS spectra. Data are presented as the 

mean ± standard deviation (n ≥ 3). 

 

Plasma 

Modification 

PCL:PLA 

Construct 
O/C %C-C/C-H %C-OH/C-OR 

a

 %C=O %O-CH
2 

b

 

Unmodified 

Film 0.40 ± 0.01 53.0 ± 1.9 16.9 ± 3.5 18.9 ± 4.0 8.7 ± 5.4 

Fiber 0.40 ± 0.01 57.6 ± 3.7 20.5 ± 1.7 17.7 ± 1.5 3.6 ± 0.5 

Scaffold 0.47 ± 0.03 40.4 ± 5.5 31.3 ± 2.9 24.6 ± 5.8 3.7 ± 3.5 

OD 

Film 0.05 ± 0.02 90.3 ± 4.9 7.0 ± 4.1 2.7 ± 0.8 -- 

Fiber 0.10 ± <0.01 88.1 ± 2.6 6.9 ± 2.2 5.1 ± 0.5 -- 

Scaffold 0.04 ± <0.01 97.4 ± 0.6 1.4 ± 0.7 1.2 ± 0.2 -- 

allylOH 

Film 0.33 ± <0.01 66.5 ± 3.1 28.0 ± 2.5 5.5 ± 0.6 -- 

Fiber 0.34 ± 0.01 66.4 ± 6.6 26.7 ± 6.8 6.9 ± 0.3 -- 

Scaffold 0.35 ± 0.01 68.2 ± 3.8 28.6 ± 4.7 3.1 ± 2.9 -- 
a
 For unmodified constructs, this environment includes the alpha carbon to the carbonyl 

b
 This environment refers to the alpha carbon to the ester functionality present in PCL, and was excluded to 

streamline plasma-treated construct analysis (as described for the XPS data analysis of fluorocarbon-modified 

materials in Chapter 5). 
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Figure 8.5. Representative high-resolution C1s XPS spectra of PCL:PLA scaffolds (a–c) and 

fibers (d–f). Untreated (a, d), OD plasma-modified (b, e), and allylOH plasma-

modified (c, f) are included. Each spectrum is deconstructed into 3 environments: C-

C/C-H (red), C-OH/C-OR (blue) and C=O (green). Unmodified materials include an 

additional environment (grey) representing the alpha carbon to the ester in the PCL 

structure (see footnote in Table 8.2). 
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as the only elements detected on the surface of all constructs were carbon and oxygen. Notably, 

unmodified PCL/PLA films and fibers have identical O/C ratios within experimental error, 

which is rational based on polymer composition. The O/C ratio of the unmodified PCL/PLA 

scaffold is slightly greater (0.47 ± 0.3) than that of films and fibers (0.40 ± 0.01). Within 

experimental error, however, the unmodified constructs are similar with respect to overall 

composition. OD plasma treatment results in surfaces with significantly lower O/C ratios than 

unmodified materials, regardless of morphology. Here, films and scaffolds have similar O/C 

ratios (i.e., within experimental error), suggesting comparable surface modification with identical 

plasma treatment conditions. The O/C ratio of fibers treated with OD, however, is double that of 

the other OD plasma modified constructs. Although all three constructs were treated using 

identical OD plasmas, these data suggest that the composition of the plasma-treated fiber surface 

differs from that of plasma-treated films and scaffolds. AllylOH plasma-modified surfaces have 

the same O/C ratio within experimental error regardless of construct morphology (~0.34), which 

is slightly lower than that of unmodified constructs. 

Representative high-resolution C1s spectra (Figure 8.5) and corresponding quantitative 

binding environment data (Table 8.2) reveal a more detailed picture of unmodified and plasma-

treated construct surface chemistry. OD plasma modification results in a drastic increase in 

contributions from the hydrocarbon binding environment regardless of construct morphology. 

Constructs treated with allylOH plasma contain greater relative contributions of the alcohol/ether 

binding environment than untreated materials. When comparing spectra collected on plasma-

modified scaffolds (Figure 8.5b, c) with those collected on plasma-modified fibers (Figure 

8.5e, f), clear differences exist regarding contributions from oxygen-containing binding 

environments (ether, alcohol, and carbonyl). Specifically, more oxygen-containing functionality 
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is present on fiber surfaces compared to scaffolds modified under identical conditions. This is 

true of both the OD and allylOH plasma systems. This observation is supported by binding 

environments in Table 8.2, especially with respect to contributions from the carbonyl 

environment of the fibers compared with the other two morphologies. Additionally, comparing 

binding environment contributions between unmodified constructs reveals more oxygen-

containing functionality on scaffold surfaces than on films or fibers. This result supports the 

difference in O/C ratios discussed above, which may arise from different fabrication processes 

(porogen leaching vs. electrospinning/spin coating). Specifically, the fabrication process may 

affect the degree of mixing between the polymer components (PCL and PLA), which could alter 

the uniformity of the surface (i.e., more PCL-rich areas and more PLA-rich areas). Furthermore, 

non-uniformity may not be accurately captured in the small sample size used for preliminary data 

collection, as suggested by the larger experimental error accompanying the scaffold O/C ratio 

measurements (when compared to untreated films and fibers). Films and fibers may be more 

uniform as their fabrication processes require less viscous polymer solutions, thus resulting in 

easier manual blending then in the case of porogen leaching. This finding warrants further data 

collection on a larger sample size, and may also require modifications to the porogen leaching 

fabrication process. 

Altogether, characterization of PCL/PLA constructs represents progress toward 

developing a library of polymeric biomaterials with systematically varied surface and bulk 

properties. Broadly, this set of materials comprises three unique morphologies (films, fibers, and 

scaffolds) and three unique sets of surface properties arising from composition/wettability (e.g., 

those with oxygen functionality/hydrophobic, carbon functionality/hydrophobic, and oxygen 

functionality/hydrophilic). Functionality differences on the surface of constructs modified with 
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identical plasma treatment conditions, however, requires further exploration, which may include 

tuning plasma parameters to achieve surfaces with identical functionality. 

8.5 1,7-octadiene PECVD System: Parameter Space Exploration 

As mentioned in Section 8.2, the proof-of-concept experiments using OD plasmas 

reported in Chapter 3 were the first use of this plasma precursor in our laboratories. As such, it 

was of interest to evaluate film properties as a function of plasma parameters, including P, 

location in reactor, and treatment time. For this fundamental evaluation, we opted to use glass 

slides for WCA analysis and Si wafers for FTIR, VASE, and optical profilometry analyses. Data 

on the plasma modification of these 2D substrates provide a simplified platform for materials 

characterization. Furthermore, information gained about how OD plasmas interact with this set 

of substrates can be applied to OD plasma modification of more complex constructs in the future. 

Based on previous literature and the limited amount of prior OD plasma modification 

performed in our laboratories, we expected OD PECVD systems to deposit hydrophobic 

hydrocarbon films.
11-12

 As unmodified glass is hydrophilic (WCA ~ 20º), it was selected as a 

substrate for WCA analysis because the deposition of a conformal hydrophobic film on glass 

would be relatively straightforward to detect via an increase in WCA. WCA values of OD 

plasma-modified glass are presented in Table 8.3 as a function of P (4, 25, 50 W), placement in 

reactor (in coil, 10 cm downstream, 19 cm downstream), and treatment time (1, 5, and 10 min). 

These parameters were selected both from the OD plasma treatment conditions we had 

previously employed for polymeric construct plasma modification (4 W, in coil, 5 min) and the 

literature.
1, 11

 From data in Table 8.3, it is evident that the majority of OD plasma treatment 

conditions result in hydrophobic surfaces with WCAs >95º (and as large as ~110º). This is true 

of all substrates treated with 25 and 50 W OD plasmas, regardless of treatment time and position  
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Table 8.3. WCA data collected on glass slides treated with OD plasmas as a function of applied 

power (4, 25, 50 W), position in reactor (in coil, 10 cm downstream, and 19 cm downstream), 

and treatment time (1, 5, 10 min). Additional treatment times (8 and 20 min) are included for 

select treatment conditions (4 W in coil and 25 W 19 cm downstream) to allow direct 

comparison to profilometry data (Figure 8.6b). 

  

P (W) and position in reactor 
Treatment time 

(min) 
WCA (º) 

4 W in coil 

1 62.1 ± 4.3 

5 91.2 ± 1.3 

8 92.8 ± 2.2 

10 99.4 ± 1.8 

20 100.4 ± 3.7 

4 W 10 cm 

1 80.8 ± 1.6 

5 95.2 ± 2.2 

10 104.0 ± 5.1 

4 W 19 cm 

1 10.9 ± 2.6 

5 22.9 ± 6.9 

10 27.4 ± 2.8 

25 W in coil 

1 98.3 ± 0.5 

5 100.5 ± 0.1 

10 101.1 ± 0.9 

25 W 10 cm 

1 97.2 ± 0.1 

5 98.3 ± 1.0 

10 98.7 ± 0.4 

25 W 19 cm 

1 80.5 ± 0.9 

5 109.8 ± 1.4 

8 92.8 ± 2.2 

10 109.5 ± 3.4 

20 100.4 ± 3.7 

50 W in coil 

1 97.8 ± 0.6 

5 101.4 ± 0.2 

10 99.3 ± 1.0 

50 W 10 cm 

1 95.8 ± 0.6 

5 100.6 ± 0.2 

10 97.9 ± 0.6 

50 W 19 cm 

1 96.3 ± 1.0 

5 97.9 ± 0.4 

10 95.7 ± 0.5 
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in reactor, with the exception of substrates placed 19 cm downstream treated with a 25 W plasma 

for 1 min (WCA = 80.5 ± 0.9º). Regardless of substrate position, the WCA values of substrates 

treated with 25 and 50 W OD plasmas are significantly greater than that of unmodified glass, 

suggesting film deposition occurs throughout the reactor. More variability in WCA is observed 

for substrates treated with lower P OD plasmas (4 W). Within the 4 W data set, WCA values 

typically increase with treatment time and decrease with position in reactor. WCAs are lowest 

for 4 W plasmas on substrates placed 19 cm downstream, where the lowest measured WCA 

value is 10.9 ± 2.6º (treatment time = 1 min). Indeed, all WCA values for 4 W plasmas on 

substrates placed 19 cm downstream are equal to or less than that of unmodified glass, 

suggesting either a lack of film deposition and/or non-conformal film deposition. Low P 

treatment of substrates placed in the coil or closer to the coil (10 cm), however, results in more 

hydrophobic surfaces. These data suggest these are more conformal films than those deposited 

on substrates placed downstream, but with the same applied power. Maximum WCA values are 

~10º greater than those reported in what is, to our knowledge, the only published comprehensive 

OD PECVD parameter space evaluation (by Akhavan and coworkers).
11

 This discrepancy may 

be attributed to differences in drop shape fitting parameters (see Section 2.3.1) as Akhavan et al. 

did not report specific fitting method(s) used.
11

 An alternative explanation is that hydrocarbon 

films deposited in the present study had different surface properties (surface roughness, 

functionality, and/or conformality) than those evaluated by Akhavan et al. Notably, it is 

challenging to directly compare results between these studies because the plasma parameter 

space explored by Akhavan et al. was somewhat different than the space presented here. 

Specifically, Akhavan and coworkers use a ratio of applied power/precursor flow rate to classify 

plasma treatment conditions, where their power/flow rate ratios range from 0.024-1.35 kJ/cm
3
. In 
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the present study, power/flow rate ratios cover a much wider range (0.68-8.58 kJ/cm
3
), where 

flow rate is held constant but applied power is varied. 

To qualitatively and quantitatively evaluate hydrocarbon film thickness, we elected to 

utilize two techniques: FTIR and VASE (Figure 8.6). A subset of plasma treatment conditions 

was selected from the parameter space explored for WCA analysis with the intention of choosing 

conditions that resulted in differing WCA values. FTIR data (Figure 8.6a, right) demonstrate that 

the intensity of the signal associated with C-H stretching (3050-2800 cm
-1

) generally increases 

with P and treatment time. As FTIR is a bulk technique, this increase in C-H stretch intensity is 

thus a qualitative measure of functionality present in the entire plasma-modified substrate. As no 

signal is observed in the 3050–2800 cm
-1

 region for unmodified substrates, it can be deduced that 

signal increase is attributed to depositing progressively thicker films on the substrate surface. 

These data support WCA results in that treatments that yield hydrophobic surfaces display a 

prominent FTIR signal for the C-H stretching band, and the intensity of this signal typically 

increases with increasing WCA. The exception to this observation is for substrates treated in the 

coil at 4 W, where WCA is ~50º greater than those treated 19 cm downstream at 4 W. This is not 

evident, however, in the FTIR data (3050–2800 cm
-1

 region) where the signals are virtually 

indistinguishable from one another. Again, this result can be rationalized by the bulk nature of 

this technique. 

To obtain a quantitative evaluation of film thickness as a function of plasma parameters, 

VASE was utilized in a similar manner to that used for fluorocarbon films in Chapter 5. VASE 

analysis (Figure 8.6b) demonstrates that film thickness increases linearly with treatment time for 

substrates treated with 4 W plasmas in the coil region, as well as for those treated with 25 W 

plasmas 19 cm downstream. Notably, films deposited on substrates placed 19 cm downstream  



! 225 

 
 

Figure 8.6. A summary of the OD plasma parameter space exploration including (a) FTIR 

analysis with an expanded region detailing the CH stretch (right), and (b) film 

thickness as a function of plasma treatment time for three OD plasma treatments 

conditions as determined using VASE (except for 25 W 19 cm 20 min, which were 

evaluated using optical profilometry). Linear regression results (constrained by 

y0 = 0) are included in panel b. 
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and treated for 20 min with a 25 W OD plasma were so thick that the wafer surface was no 

longer reflective, and thus, could not be measured using ellipsometry. Thus, optical profilometry 

was employed to measure film thickness for this sample. Collectively, these data demonstrate the 

relationship between deposition rate and substrate placement. Essentially no films were 

deposited on substrates placed 19 cm downstream treated with 4 W OD plasmas, regardless of 

treatment time, whereas the deposition rate of the same 4 W plasma in the coil region is 

4.4 nm/min. Moreover, these data show that deposition rate increases substantially with power: 

the deposition rate of a 4 W plasma 19 cm downstream is ~0 nm/min, whereas that of a 25 W 

plasma at the same position in the reactor is ~43.8 nm/min. Akhavan et al. observed that film 

thickness increased linearly as a function of treatment time (over a 20 s-60 min range), which 

was also seen in the present study in cases where film deposition occurred. The authors, 

however, reported deposition rates that were <4 nm/min (lower than those reported here), 

although it is important to re-emphasize that direct comparisons between the studies should be 

made with caution because of differences in parameter space.
11

 Surprisingly, Akhavan and 

coworkers found that deposition rate increased with applied power/flow rate ratio to a point, and 

then decreased as the power/flow rate ratio exceeded 0.75 kJ/cm
3
.
11

 This trend is not observed in 

the present study, but too much emphasis should not be placed on this observation as the 

deposition rate was evaluated for a much smaller set of plasma conditions.  

In addition to information gleaned from VASE related to OD film growth behavior, a 

more detailed analysis of OD film growth and properties (including surface roughness) was 

obtained using optical profilometry. Here, conditions chosen for VASE analysis that resulted in 

film deposition (4 W in coil and 25 W downstream) were selected for comparison to other 

surface analysis results. The first complete set of profilometry data collected on OD plasma  
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Figure 8.7. Representative optical profilometry heat maps detailing the evolution of OD film 

growth for 4 W in coil (a-c) and 25 W 19 cm (d-f) conditions. Data of wafers treated 

for 8, 10, and 20 min are included for each condition. All maps were collected with 

20x magnification with the exception of panel f, which was collected using 100x 

magnification. 
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Table 8.4. RMS roughness (Rq) values for select OD treatment conditions as a function of 

treatment time, measured on Si wafers using optical profilometry. Data represent the mean and 

standard deviation for n = 3. 

 

  

P (W) and position 

in reactor 

Treatment 

time (min) 
R
q
 (nm) 

b 

4 W in coil 

1 2.0 ± <0.1 

5 2.0 ± <0.1 

8 6.5 ± 3.8 

10 10.3 ± 10.9 

20 5.0 ± 4.7 

25 W 19 cm 

1 3.0 ± <0.1 

5 9.7 ± 3.8 

8 14.3 ± 10.6 

10 56.3 ± 39.1 

20

a

 140.3 ± 64.8 
a
 All data were collected at 20x magnification with the 

exception of that of the 25 W 19 cm 20 min sample (collected 

100x magnification). 
b
 Ra values were similar to Rq values 
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treated wafers (e.g., one wafer treated under each set of conditions) is summarized in Figure 8.7 

and Table 8.4. Notably, films for all samples shown in Figure 8.7 are <30 nm (as measured using 

VASE, Figure 8.6b). Therefore, observed topography is on the exterior of each wafer and may 

not be indicative of the “bulk” film structure. Heat map data in Figure 8.7 show that wafers 

treated using 4 W plasmas look topographically similar, where portions of each surface appear to 

have both relatively smooth areas along with patches of roughness (Figure 8.7a-c). Upon further 

inspection, we observed that these rough areas comprised crater-like features (µm-scale 

diameter), and each feature had a lip that was taller than the surrounding film. The lip formed a 

convex pore-like structure in the center of each feature (~100 nm in depth). Similar features were 

observed for wafers treated with 25 W plasmas for 8 and 20 min, although they were larger 

(~10 µm in diameter) and covered the surface more uniformly (i.e., not isolated in patches as for 

wafers treated with 4 W plasmas). Another feature of note for the substrate treated 19 cm 

downstream using a 25 W plasma for 10 min was the appearance of crosshatches over the entire 

surface, which was not observed for other treatment conditions. The wafer treated for 20 min, 19 

cm downstream using 25 W OD plasmas had a maze-like topography comprising loosely 

interdigitated features (Figure 8.7f). Although OD film morphology varies over this parameter 

space, samples, generally speaking, do not display drastically different wetting behaviors (Table 

8.3). One explanation for this finding is that OD film features (and corresponding surface 

roughness values) are not large and/or uniform enough so as to dramatically alter the interaction 

of water drops with the surface. As with PCL/PLA constructs discussed in Section 8.4, however, 

a larger sample size is likely required to more accurately capture the extent of surface 

inhomogeneity and its impact on wettability. 
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These data suggest film growth may be occurring through the formation of these crater-

like features. One explanation for feature formation is that interactions between deposition 

precursors (proposed to be oligomeric ions
11

 and excited-state precursor molecules
13

) are more 

energetically favorable than those between the deposition precursor and underlying film. 

Furthermore, feature size appears to be dependent on applied power, suggesting energies of 

deposition precursors may facilitate feature formation. For wafers treated with longer treatment 

times and higher applied power, the crater-like features appear to merge together to create the 

topography shown in Figure 8.7f. All samples evaluated in the present work differ in topography 

from those observed by Akhavan and coworkers, who observed (using atomic force microscopy) 

a patch-like structure of plasma-deposited OD films.
11

 Notably, the authors analyzed a much 

smaller film area (4 µm
2
) than that analyzed here (1×10

5
 µm

2
). Thus, Akhavan et al. may not 

have accurately captured the larger scale features present in plasma-deposited OD films. 

Alternatively, films deposited using the treatment conditions and/or reactor setup employed by 

Akhavan and coworkers may yield smoother and more uniform films than those fabricated in the 

present work. 

Heat map data are supported by RMS roughness (Rq) values (Table 8.4), demonstrating 

data that wafers treated using 4 W plasmas for shorter times (<8 min), as well as the wafer 

treated using a 25 W plasma for 1 min, had similar Rq values when compared to unmodified Si 

wafers (Table 8.4). All Rq values for wafers treated with 4 W OD plasmas in the coil are <10 nm 

regardless of treatment time. This is also the case for wafers treated with 25 W plasmas 19 cm 

downstream for 1 and 5 min. Longer treatment times, however, typically resulted in rougher and 

less homogenous films (as demonstrated by larger experimental error values in Table 8.4). 
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Initial profilometry results prompted preparation of replicate OD plasma-modified 

substrates to gauge deposition reproducibility. Replicate samples prepared using 4 W OD 

plasmas, as well as those prepared using 25 W OD plasmas for short treatment times (<10 min) 

were similar to data shown in Figure 8.7 and Table 8.4. Films deposited using 25 W plasmas for 

longer treatment times, however, had substantially different morphologies and Rq values than 

those in Figure 8.7e and f. Specifically, film morphology resembled that presented in Figure 8.7d 

with correspondingly lower Rq values (<10 nm). One reason for morphological inconsistences in 

preparing replicate samples under high power/long treatment time conditions may be differences 

in plasma coupling between depositions. Notably, OD plasmas are relatively dim, even at the 

highest power utilized in this study (25 W). Thus, it is challenging to both identify and remediate 

coupling issues in OD systems. Another reason may be differences in environmental factors 

(e.g., humidity) between depositions. For example, previous work in the Fisher group with 

carbon nitride PECVD systems resulted in deposition of films with similar morphologies to that 

in Figure 8.7f.
14

 In those systems, the resulting morphology was attributable to 

humidity/moisture effects. A more detailed evaluation of the reason behind inconsistencies in 

film deposition using 25 W plasmas, however, remains an area for future investigation. 

Altogether, the OD parameter space evaluation demonstrates our ability to control the 

properties of deposited films (e.g., thickness, wettability, and roughness) by varying applied 

power, position in reactor, and treatment time. Substrates treated further downstream at lower 

powers are more hydrophilic, suggesting the absence of a hydrocarbon film. Indeed, this is 

confirmed with VASE data, and likely results from deposition species generated in the coil 

region not reaching the substrate before recombining, decaying to the ground state, or by other 

plasma processes. When applied power is increased, however, substrates placed downstream of 
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the coil are more hydrophobic. This is likely because the amount of deposition species increases, 

as well as their energies, which may result in the formation of metastable deposition species with 

longer lifetimes than those generated at lower applied powers. Thus, film deposition occurs 

downstream of the coil. The plasma parameter space study presented here enhances our 

knowledge of the OD precursor, and this knowledge can aid in building a library of biomedical 

polymeric constructs. 

8.6 Summary 

In this chapter, initial efforts toward building a library of polymeric biomaterials were 

presented. Work presented included exploration of fabrication and characterization of PCL/PLA 

polymer films, electrospun fibers, and scaffolds, including an analysis of their surface properties 

and morphology. Additionally, a valuable tool that could provide a quantitative analysis route for 

plasma-modified fiber mats was discussed. This tool would allow for a direct comparison of 

fibers modified using different plasma precursors and with different treatment conditions, and 

could thus be used in a wide range of future work with plasma-treated electrospun fibers. 

Furthermore, one of the plasma precursors systems utilized for polymer construct modification 

(OD) was evaluated under different deposition conditions. The OD parameter space evaluation 

revealed that film deposition is controlled by power and position relative to the coil region, and 

furthermore, that film thickness varies linearly as a function of treatment time. Moving forward, 

this knowledge of these plasma systems, their interactions with polymer constructs, and methods 

of construct analysis will promote a more holistic understanding of how polymer materials 

interact with complex biological systems. 
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CHAPTER 9 

 

RESEARCH SUMMARY AND FUTURE DIRECTIONS 

 

 

 

Part I of this dissertation concludes with a summary of major aspects and themes of the 

research presented in Chapters 3-8, as well as a presentation of outlooks and implications for 

future lines of inquiry. The broader impacts of this body of work are discussed in the context of 

the biomedical device field. 

9.1 Research Summary 

9.1.1 Emergent themes. Broadly speaking, research in this dissertation is connected by 

three central themes. First, the application of novel plasma modification strategies for polymeric 

biomaterials, which encompasses PECVD (both single-precursor and plasma copolymerization) 

and functional group implantation strategies. For example, we demonstrated the ability to 

customize surface properties of two different NO-releasing polymer films via water plasma 

treatment, enhancing the surface wettability through implanting alcohol functionality (Chapter 

4). The second theme establishes the need for comprehensive analysis strategies, including 

materials characterization and performance evaluation. This theme is explored in Chapter 3, 

which provides a review of wetting behavior assessment strategies for complex materials as well 

as in materials characterization strategies developed and utilized throughout Chapters 4-8. The 

third theme connects the first two by emphasizing the importance of the interplay between 

synthetic biomaterial properties and construct interactions in biological systems. For example, 

Chapters 5 and 6 report our ability to create non-bioreactive and bioreactive three-dimensional 

polymeric scaffolds, respectively, by tuning surface properties using plasma modification. 

Chapter 8 builds on this work, describing initial steps in the development of a library with 



! 235 

systematically varied surface/bulk properties with the ultimate intention of evaluating the 

bioreactivity of this collection of constructs in multiple biological environments (described in 

more detail in Section 9.2.1). This theme is also prevalent throughout Chapter 7, where TEG 

evaluation of 3D scaffolds with disparate surface properties demonstrates significant differences 

in coagulation behavior. Although the third emergent theme represents a variation on the 

property/function relationship that runs throughout the discipline of materials science, the 

research in this dissertation provides a unique approach, targeting fundamental surface 

property/biological response questions. The broader impact of this approach is further described 

in Section 9.1.2. 

9.1.2 Broader impact and outlook. Research presented in this dissertation includes 

several original scientific contributions to the plasma modification of biomaterials field. One 

such contributions includes the utilization of PECVD to conformally modify porous polymeric 

constructs, effectively establishing strategies for translating PECVD from 2D construct 

architectures to those having more complex geometries. This work includes careful selection of 

plasma precursors to impart specific functionality (e.g., fluorocarbon, nitrogen-containing, 

oxygen-containing). Notably, such an approach provides numerous opportunities to design 

synthetic biomaterials with a collection of properties to elicit a particular biological response 

and, thus, target a specific application. Of equal importance to selecting and/or modifying 

characterization methodologies for 3D porous materials is developing fabrication and plasma 

modification strategies such constructs. Both pieces are required to obtain a comprehensive 

understanding of how materials are being modified, as well as their performance as biomedical 

devices. In this dissertation research, such efforts included translating both traditional surface 

characterization and biological assessment techniques to materials with complex geometries. The 
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research approach of evaluating polymer construct surface properties, bulk properties, and their 

relationships with biological response has improved our fundamental understanding of plasma 

processing of polymer constructs for biomedical applications. Collectively, this dissertation 

research provides a platform for creating tailored polymeric devices through systematically 

controlling device bulk and surface properties. Taken to the ideal, one could envision this work 

extending to the creation and deployment of customized, patient-specific synthetic biomaterial 

devices. More globally, a comprehensive understanding of device performance in biological 

settings presents numerous opportunities for application to numerous personalized point-of-care 

diagnostic strategies. 

9.2 Future Directions 

Research summarized in Section 9.1 represents foundational work that includes key steps 

for building a fundamental understanding of fabrication, plasma modification, and 

characterization of polymer constructs for biomedical device applications. This work establishes 

a platform for future lines of inquiry, both in terms of immediate next steps and long-term goals. 

This section includes a discussion of each classification of future work, differentiated by four 

categories: biological testing, plasma modification strategies, fabrication methods, and 

characterization technique development. 

9.2.1 Evaluation of construct library in complex biological systems. Initial proof-of-

concept biological experiments presented in this dissertation (e.g., with human dermal 

fibroblasts, E. coli, and blood plasma) are important for establishing methods for interfacing 3D 

polymer constructs with biological environments. Integrating materials in biomedical devices, 

however, requires a more sophisticated evaluation in more complex biological environments. To 

this extent, the groundwork established in this dissertation provides natural extensions for 
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exploring interactions between 3D porous polymer materials and a wide range of biological 

species. For example, the TEG technique presented in Chapter 7 offers the opportunity to 

facilitate investigating coagulation response with whole blood in addition to blood plasma. This 

exploration more closely mimics the biological environment of a blood-contacting device, and 

thus provides a more realistic performance assessment for this class of materials. Furthermore, 

TEG analysis is applicable for evaluating coagulation response of the biomaterials library 

developed throughout this dissertation, including plasma-modified polymer films and 

electrospun fiber mats. Such an assessment would provide a direct comparison of coagulation 

response between surface modifications as well as other construct geometries. Long-term goals 

in this area should focus on inoculating polymer constructs with different types of mammalian 

cells (e.g., epithelial, osteoblastic) and bacterial strains (e.g., Staphylococcus aureus, 

Pseudomonas aeruginosa). In this area, the biological species (or multiple biological species) 

would be selected based on a targeted application and 3D polymer matrix properties. For 

example, tissue engineering for bone regeneration would require a relatively stiff polymer matrix 

seeded with osteoblast cells, whereas a wound dressing to prevent a hospital acquired infection 

requires a flexible polymer matrix that is resistant to multiple bacterial strains. More specific 

aspects of materials fabrication related to these examples are further discussed in Section 9.2.3. 

9.2.2 Expanding plasma modification strategies. Research in this dissertation has 

employed six plasma precursors (two of which were used as monomers for plasma 

copolymerization). A large portion of the parameter space remains unexplored despite utilizing 

multiple processing parameters across this collection of six precursors. For example, knowledge 

gained from the plasma copolymerization work (Chapter 6) and octadiene parameter space 

exploration (Chapter 8) aids in establishing additional routes to plasma copolymerization using 
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octadiene as a monomer. Previous studies utilized octadiene as a plasma copolymerization 

precursor, most commonly with allylamine
1-5

 or acrylic acid.
5-11

 Although some of these studies 

used plasma copolymerization strategies to customize interactions with biological species,
3, 10-11

 

they also focused on fabricating thin films on 2D substrates and subsequent evaluation in 

biological environments. Thus, potential exists to utilize our current understanding of OD-

containing plasma copolymerization systems to modify three-dimensional polymer networks, 

effectively customizing chemical functionality and wettability. 

An additional line of inquiry with regard to plasma modification strategies includes 

creating layered (i.e., composite) materials by depositing films with distinct properties to tune 

biological response. For example, depositing a thin film on the surface of a polymer construct 

using acrylic acid PECVD could produce a water soluble film with alcohol functionality. After 

acrylic acid treatment, the polymer construct could be plasma-modified using allyl alcohol, 

depositing a water-insoluble film with alcohol functionality. Alternating plasma treatments with 

the two precursors provides a platform for controlling release of a pharmaceutical or antibacterial 

agent, providing a more active strategy to control biological response. Furthermore, such 

research builds upon previous work in the group with gradient films created using PECVD with 

hydrocarbon and fluorocarbon functionality.
12

 

9.2.3 Developing additional fabrication methods for three-dimensional porous polymer 

materials. Because of their desirable bulk properties (i.e., bioresorbability, mimicking 

extracellular matrices), model polyester constructs, including scaffolds and electrospun fibers 

fabricated using PCL and/or PLA have been the primary substrates of choice for this work. 

Although these model materials provide a useful foundation for establishing plasma modification 

and characterization strategies for porous polymer constructs, several avenues exist to expand the 
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collection of constructs presented in Chapters 3-8. One natural progression includes extending 

initial work with 50/50 PCL/PLA mixtures (Chapter 8) through fabricating constructs with 

varying polymer composition. One motivation for fabricating constructs with different polymer 

compositions was to lay groundwork to create different synthetic extracellular matrix mimics. 

This concept is especially relevant from an application perspective as extracellular matrices can 

vary widely with respect to mechanical properties depending on the type of tissue (e.g., brain vs. 

bone).
13-16

 In the case of different PCL/PLA copolymers, constructs would vary in terms of 

crystallinity, and thus mechanical properties (e.g., strength, plasticity, Young’s modulus) and 

degradation rate. Although mimicking a specific class of extracellular matrices was not a primary 

focus of this dissertation research, this is a fruitful area of work that could be more deeply 

explored in the future. 

Additional routes to control construct bulk properties could expand on fabrication 

methods presented in this dissertation to create different polymer network geometries. For 

example, future work could build on the porogen leaching method by utilizing different porogen 

sizes and adjusting the polymer:porogen ratio. This approach could yield a series of scaffolds 

with systematically varied porosity and thus, systematically varied mechanical properties. Along 

these lines, different network geometries could be fabricated using experimental techniques other 

than those presented in this dissertation. For example, more ordered construct networks could be 

created using direct and soft template methods,
17-18

 as well as numerous additive design 

strategies. One particularly promising route includes interfacing 3D printing technology with 

polyesters, which could offer precise control over construct geometry. Although challenges exist 

for establishing methods for 3D printing polyesters (e.g., polymer curability), some initial proof-

of-concept studies demonstrate promise in this area.
19-22
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9.2.4 Developing additional characterization methods for three-dimensional porous 

polymer materials. In addition to pursing a broader range of 3D construct fabrication routes, a 

deep understanding of the interplay between material properties and biological environment will 

require developing and improving characterization strategies. One such strategy is time-of-flight 

secondary ion mass spectrometry (ToF-SIMS) depth profiling, which would provide 

complementary surface chemical functionality data to the XPS methods developed for work 

presented in this dissertation. These data would provide a detailed picture of functionality 

throughout a plasma-modified 3D network without disrupting the polymer network (i.e., freeze 

fracturing), which offers a distinct advantage over cross-sectional XPS data collection. A newly 

established collaboration with Dr. Lara Gamble and Dr. Dan Graham at University of 

Washington has yielded preliminary ToF-SIMS data on the exterior surface of unmodified and 

C3F8 plasma-treated PCL scaffolds. Figure 9.1 shows a summary of principal component 

analysis of positive ion ToF-SIMS data collected on scaffold tops, demonstrating that 

unmodified scaffolds have positive scores, while C3F8 plasma-treated scaffolds have negative 

scores (Figure 9.1a). These scores correspond to positive and negative loadings, respectively 

(Figure 9.1b), demonstrating that loading differences are attributed to presence of fluorinated 

peaks on the surface of C3F8 plasma-treated scaffolds. ToF-SIMS images overlaying the 

C6H11O2
+
 and CF2

+
 signals (Figure 9.2) provide further support for this finding as the CF2

+
 signal 

(associated with the fluorocarbon coating) is only observed on C3F8 plasma-treated scaffolds. 

Altogether, these preliminary data demonstrate that ToF-SIMS is a powerful technique for 

providing spatially-resolved surface chemical information on plasma-modified 3D materials. 

Data collection pertaining to the sputter rate of PCL and fluorocarbon films is currently 
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underway, which we hope to expand to depth profiling experiments on 3D constructs in the near 

future. 

Fabricating materials with systematically varied bulk properties (such as those discussed 

in Section 9.2.3) will require a more rigorous porous network characterization than those utilized 

in this dissertation (SEM and ImageJ). Such characterization will allow for a quantitative 

comparison of construct geometries, and could include porosimetry or Brunauer-Emmett-Teller 

analysis. Additionally, mechanical properties testing could be performed using any number of 

commercially available materials testing systems to establish construct response under tension 

and/or compression. Notably, employing these methods would likely involve non-trivial 

optimization in terms of interfacing the technique with a 3D polymeric network. Another line of 

inquiry connected with PCL/PLA construct data presented in Chapter 8, as well as future 

directions outlined in Section 9.2.3, includes evaluating construct degradation behavior in 

biological media.  

Future directions for collaborations with Dr. Melissa Reynolds’ group (adding to work 

presented in Chapter 4) could include coupling plasma diagnostic strategies with plasma 

modification of nitric oxide-releasing polymers. The Fisher group has a long-standing expertise 

using optical emission spectroscopy (OES) to identify excited-state plasma species, as well as 

measure rotational and vibrational temperatures of said species. Specifically, we have used OES 

to identify excited-state nitric oxide (NO) in plasmas formed from water vapor-containing 

plasmas.
23

 Combining this knowledge with our newly-established time-resolved OES capabilities 

could provide an in situ measurement of NO release from the surface of NO-containing polymer 

films during water vapor plasma modification. Additional extensions of the NO releasing 

polymer film projects include incorporating NO releasing polymers into 3D constructs and  
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Figure 9.1. Results from principal component analysis of ToF-SIMS positive ion data collected 

on unmodified (n = 3), 5 min C3F8 plasma-treated (n = 3) and 20 min C3F8 plasma-

treated (n = 3) PCL scaffold tops. (a) principal component scores for each spot 

analyzed, and (b) corresponding principal component loadings. 
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Figure 9.2. Representative overlays of the C6H11O2
+
 (green) and CF2

+
 (red) signals measured via 

ToF-SIMS on (a) unmodified (b) 5 min C3F8 plasma treated and (c) 20 min C3F8 

plasma treated PCL scaffold tops. 

  

a b c 
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incorporating additional drugs into polymer networks. The latter will require utilizing and/or 

developing methodologies to measure temporal drug release for drugs other than NO – an aspect 

that has yet to be explored in this dissertation research. 

Collectively, research presented in Part I of this dissertation built a fundamental 

understanding of how polymer biomaterial properties affect the interplay between materials and 

biological environments. A comprehensive experimental approach was utilized, including 

fabrication, plasma modification, materials characterization, and performance evaluation with 

biological species. This approach resulted in the fabrication of constructs with customizable 

properties and therefore, tunable biological response. Immense potential exists to expand and 

apply these strategies to next-generation biomaterial construct development. !  
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CHAPTER 1 

 

INTRODUCTION OF CHEMISTRY EDUCATION FOCUSED RESEARCH 

 

 

 

“Ignorance more frequently begets confidence than does knowledge” 

— Charles Darwin (The Descent of Man, 1871) 

 

 

This chapter presents an exploration of the importance of judgment accuracy to chemistry 

student learning framed through the lens of metacognitive skillfulness. Definitions of 

metacognition and its constituents are included, as well as previous work on evaluating 

metacognitive monitoring in classroom contexts. 

1.1 Motivation: Metacognitive Skillfulness and Judgment Accuracy 

Improving students’ awareness of their own learning is an important area of research 

within the education community because of its necessity in the development of students as 

independent learners. Central to students’ awareness of their learning is the concept of 

metacognition, or, thinking about one’s own thinking.
1
 Metacognitive skills are recognized for 

their important role in learning.
2,
 
3
 For example, in one study, metacognitive skillfulness 

accounted for approximately 40% of the variance in learning outcomes.
4
 In a meta-analysis 

focused on factors that influence student achievement, metacognitive strategies comprise one of 

the most influential elements (effect size = 0.69).
5
 Thus, to improve student learning in a specific 

content area such as chemistry, it is critical to understand students’ metacognitive skillfulness in 

the content area and how instructional methods in the content area can improve students’ 

metacognitive skillfulness. 

There are two components of metacognition: knowledge of cognition and regulation of 

cognition.
1, 3, 6-8

 Knowledge of cognition is defined as a collection of declarative, procedural, and 
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conditional knowledge.
9
 Regulation of cognition is defined as adjustments that learners make to 

control learning, including planning, monitoring, and evaluating strategies. Metacognitive 

monitoring is the focus of this dissertation work because of its crucial role in student learning, 

where monitoring includes assessing one’s current knowledge, understanding, and abilities, the 

task at hand, and task difficulty.
2, 10

 Regulation of cognition activities are sometimes referred to 

as metacognitive skills,
11

 although there is some discrepancy in the literature related to the 

“metacognitive skills” terminology. Namely, whether it is most appropriate to refer to these as 

“skills” or “strategies”. Veenman proposed that metacognitive strategies are those that are 

consciously executed by the learner, whereas metacognitive skills may be partially automated.
11

 

Following this distinction, research presented in Chapter 2 of this dissertation focuses more on 

metacognitive skills, whereas that presented in Chapter 3 focuses more on metacognitive 

strategies (specifically via metacognitive strategy training). 

1.2 Metrics for Evaluating Metacognitive Monitoring 

Metacognitive monitoring processes cannot be directly assessed because they occur 

internally; thus, indirect evaluations must be utilized. The most commonly reported measures of 

monitoring relate to an individual’s judgments, including indirect (confidence-based) and direct 

(prediction of numerical/percentile score) judgments. Judgments could be based on either 

individual item (local) or overall (global) performance on a given task,
12

 and quantitatively 

assessed in terms of accuracy, bias, scatter, and discrimination.
13-19

 

The accuracy of performance judgments is referred to as calibration, defined as the 

degree to which an individual’s judgment of task performance corresponds to actual performance 

of that task.
20-21

 Here, judgments could consist of pre- and/or post-dictions, where a postdiction 

is a judgment made after completing a task. Although calibration accuracy likely comprises 
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numerous cognitive and metacognitive processes, a central component includes metacognitive 

monitoring processes because the individual making the judgment must assess what s/he knows 

about a specific skill and judge knowledge of that skill against one or more criteria.
21

 Generally 

speaking, people’s abilities to pre- or postdict their performance on a task (i.e., their pre- or 

postdiction calibration) is found to be poor.
22

 It is important to note, however, that pre- and 

postdiction accuracy is related to task difficulty.
22

 

1.3 Overview of Research  

Work presented in Chapter 2 focuses on postdiction calibration accuracy of general 

chemistry students’ exam performance postdictions. Studies that employ pre- or postdictions of 

absolute exam performance have been performed in undergraduate educational 

psychology,
8, 15, 18, 23

!education,
13

 cognitive psychology,
16

 developmental psychology,
24

 

introductory physics
25

 and organic chemistry courses;
26

 high-school biology
27, 28

 and psychology 

classrooms;
29

 and upper-elementary classrooms.
30

 Many studies conclude that many students are 

well-calibrated when it comes to making postdictive judgments of exam performance.
8, 18, 27-28

 A 

notable exception is the study carried out in organic chemistry, in which the majority of students 

overestimated their exam performance.
26

 Studies that explored relationships between 

performance and calibration found that higher-performing students were better calibrated on 

exam postdictions than lower-performing students.
8, 13, 18, 23

!Also relevant to the present research 

were studies that included analyses to determine changes in students’ calibration accuracy over 

time. Here, findings indicate that students became more accurate in some cases where there was 

an explicit intervention designed to improve students’ metacognitive monitoring throughout the 

course.
13, 15-16, 18, 23
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Work presented in Chapter 3 is inspired by general chemistry exam score postdiction 

findings (Chapter 2), and includes the experimental design of a protocol for a series of general 

chemistry metacognitive strategy training workshops. The intervention design includes the 

comparison of exam score postdiction data with data from an instrument entitled the 

Metacognitive Assessment Inventory (MAI), which is used to measure metacognitive 

skillfulness. The MAI, first developed by Schraw and Dennison,
6
 is a validated questionnaire 

instrument that has been used in a variety of education contexts.
31-32

 The MAI includes 52 items 

intended to measure adults’ metacognitive awareness, where items are grouped into two 

categories influenced by proposed components of metacognition discussed in Section 1.1: 

knowledge of cognition (sub-processes: declarative, procedural, and conditional knowledge) and 

regulation of cognition. Sub-processes included in regulation include information management 

and debugging strategies in addition to the three components presented above (planning, 

monitoring, and evaluation), which resulted from factor analysis involved in the instrument 

development.
6
 The total MAI score, as well as individual scores on questions pertaining to 

knowledge of cognition (17 questions) and regulation of cognition (35 questions) are typically 

reported. Notably, the MAI is not exempt from concerns associated with any self-report 

instrument.
33

 This instrument, however, provides a measure of pre/post-intervention 

metacognitive awareness that is easily adaptable for a relatively large population of students. In 

the original development report of the MAI, Schraw and Dennison explored the convergent 

validity of the instrument against pre-test monitoring (i.e., students’ self-reports of monitoring 

abilities), test performance, and the ability to accurately monitor test performance (i.e., 

individual item confidence judgments). These findings demonstrated significant relationships 

between knowledge of cognition MAI score/test performance, pre-test monitoring/total MAI 



! 252 

score, and pre-test monitoring/test performance. Research in Chapter 3 expands upon Schraw 

and Dennison’s findings by exploring the relationship between MAI score and global monitoring 

accuracy (as measured by postdictions). 

Altogether, the chemistry education research presented in the next two chapters provides 

insight regarding student learning in chemistry courses through explorations of calibration 

phenomena in exam score contexts. Calibration accuracy serves as the basis for the design of a 

metacognitive strategy training intervention, which generates an even deeper knowledge base 

regarding general chemistry students’ metacognitive monitoring. This research represents one of 

the few explorations of metacognitive monitoring in undergraduate general chemistry courses, 

and thus, provides an increased understanding of the connections between student judgment 

accuracy and performance. This research thereby contributes to the growing number of 

educational studies exploring metacognition in science education classrooms, which can be used 

to make more informed pedagogical decisions that target metacognitive skillfulness. 
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CHAPTER 2 

INVESTIGATING GENERAL CHEMISTRY STUDENTS’ METACOGNITIVE 

MONITORING OF THEIR EXAM PERFORMANCE BY MEASURING POSTDICTION 

ACCURACIES OVER TIME 
 

 

 

 

This chapter focuses on examining general chemistry students’ metacognitive monitoring, 

one aspect of metacognition that plays a key role in learning, in the context of exam score 

judgments. As discussed in Chapter 1, an aspect of metacognitive monitoring can be measured 

by comparing a student's prediction or postdiction of performance (a judgment made before or 

after completing the relevant task) with the student's actual performance. In this study, we 

investigated students’ postdiction accuracies for a series of exams within a two-semester general 

chemistry course. The research questions addressed include: 1) How accurate are general 

chemistry students at postdicting their exam scores? Are there gender differences in postdiction 

accuracy?, 2) How do general chemistry students’ postdiction accuracies relate to their exam 

performance?, and 3) How do general chemistry students’ postdiction accuracies and 

metacognitive monitoring of their exam performance change over time?  

This chapter, and corresponding supplementary tables in Appendix I, is reproduced with 

permission from an article published in Journal of Chemical Education by Morgan J. Hawker, 

Lisa Dysleski, and Dawn Rickey [93 (5), pp 832-840 Copyright 2016 American Chemical 

Society].
1
 This work was supported by the National Science Foundation (award number 

0942448). I want to acknowledge and thank the general chemistry students and instructors who 

participated in the study, as well as Ellen Fisher, Matthew Rhodes, Melonie Teichert and 

anonymous reviewers for insightful comments on drafts of the manuscript. 
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2.1 Introduction 

As discussed in Chapter 1, evaluating metacognitive monitoring is critical to developing 

a more detailed understanding of student learning in STEM courses (and more specifically, in 

chemistry courses). Here, we focus on students’ metacognitive monitoring in a general chemistry 

course. In the context of general chemistry courses, monitoring research has primarily focused 

on students’ abilities to judge their performance on problems outside of exam situations. For 

example, in two studies, investigators asked students to report their confidence in their abilities 

to solve particular chemistry problems, but the students did not actually work the problems 

presented to them.
2, 3

 Another study examined the relationship between students’ confidence 

judgments regarding individual stoichiometry questions and their performance on these 

questions.
4
 In one study that did investigate students’ judgments of performance on general 

chemistry exams, students were asked to judge how they performed on exams relative to the 

average student in the class (without any knowledge of the class average or other students’ exam 

scores).
5
 Such relative judgments are fundamentally different tasks compared with the absolute 

judgments of individual performance examined here. 

In this study, we examine general chemistry students’ abilities to monitor their 

examination performance. We investigate students’ judgments of their own performance on 

exams within a two-semester general chemistry course. Our research questions are: 1) How 

accurate are general chemistry students at postdicting their exam scores? Are there gender 

differences in postdiction accuracy?, 2) How do general chemistry students’ postdiction 

accuracies relate to their exam performance?, and 3) How do general chemistry students’ 

postdiction accuracies and metacognitive monitoring of their exam performance change over 

time? 
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One relationship of interest for work presented in this chapter was that between gender 

and postdiction accuracy. Previous work has explored differences in male and female postdiction 

accuracies on informal knowledge tests. In particular, Beyer
6
 and Beyer & Bowden

7
 found that, 

although there were no significant differences between male and female undergraduate students 

in postdiction accuracy on “neutral” tasks (e.g., tests of common knowledge) or “feminine-

gender-typed” tasks (e.g., trivia from movies and TV shows with primarily female audiences), 

females significantly underestimated their performance and exhibited poorer calibration relative 

to males on “masculine-gender-typed” tasks (e.g., football, basketball, and baseball trivia). In 

studies that asked undergraduate students to rate their performance relative to that of other 

students, Kruger and Dunning did not find any gender differences in postdiction accuracy on 

tests of humor, logical reasoning, or English grammar.
8
 Finally, Beyer explored gender 

differences in accuracy of students’ exam postdictions in the context of cognitive psychology, 

social psychology, and computer science courses.
9
 In this study, gender differences were only 

observed for postdictions in the social psychology course. Results from these prior studies 

prompted us to explore connections between gender and postdiction accuracy in a general 

chemistry course setting. 

2.2 Methods 

We collected data from students enrolled in a two-semester general chemistry sequence 

(General Chemistry I and General Chemistry II) for science and engineering majors at a large, 

public university. Although each course included multiple sections and instructors (Table 2.1), 

common exams were administered to all students. The instructors for the spring General 

Chemistry II course were a subset of the instructors for the fall General Chemistry I course. For 

each semester-long course, five multiple-choice exams were administered at three-week intervals, 
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Table 2.1. Summary of course characteristics 

Semester Sections Instructors Students Enrolled
a 

Students in Study 

Fall 5 4 1075 925 

Spring 3 2 696 491 

a 
Total enrollment at the end of each course 
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including one comprehensive final exam. The first four exams were not comprehensive. Example 

exam questions are shown in Figure 2.1. Students in both fall and spring semesters had the 

option to use their final exam percentage as a replacement for one previous exam percentage in 

the calculation of their final course grade. 

All exams included the postdiction question, What percentage score do you expect to 

earn on this exam? A) 100%–90%, B) 89%–80%, C) 79%–70%, D) 69%–60%, E) < 60%.” This 

question appeared as the last or second-to-last question on each exam,
1
 such that each student 

was asked to make a judgment of his or her own score on the exam immediately after taking the 

exam. We collected students’ answers to all exam questions via optical mark recognition (i.e., 

Scantron®) forms. Each student who answered a postdiction question received credit amounting 

to 1–2% of the total points for the exam regardless of whether or not his or her postdiction was 

accurate. No interventions intended to improve students’ metacognitive monitoring of exam 

performance were implemented in these courses. Students who were missing a postdiction 

response or exam score for any exam were excluded from the study, resulting in the final cohorts 

indicated in Table 2.1. In addition, we performed separate analyses for the students who took 

both the General Chemistry I course in the fall and the General Chemistry II course the following 

spring (Fall & Spring, N=343), and those who took the General Chemistry II course in the spring, 

but not the General Chemistry I course in the fall (Spring Only, N=148). The Spring Only 

students took the General Chemistry I course in a different semester or at a different institution, 

or were exempt from the first-semester course because they had Advanced Placement credit or 

tested out of the course. To conduct the calibration analyses, we coded each student’s actual 

exam scores and exam postdictions using the categories that were available as answer choices to 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1
 On the fall final exam, the last question was: “What letter grade do you expect to earn in [this course]?” 

 A) A+, A or A–  B) B+, B or B– C) C+ or C  D) D  E) F 
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Figure 2.1. Sample questions from first- and second-semester general chemistry exams. 

First Semester 

D and E are elements whose identities are unknown. Given 

that a neutral atom of D has a larger atomic radius than a 

neutral atom of E, and that the relationships between D and E 

are consistent with the periodic trends discussed in class, 

which must be true? 

 

a. Element D is closer to the bottom of the periodic table than 

element E. 

b. An atom of D has more electrons than an atom of E. 

c. Element E has a higher first ionization energy than 

element D. 

d. The most stable ion formed from D has a larger atomic 

radius than the most stable ion formed from E. 

e. Both B and D must be true. 

 

 

Second Semester 

Substance A (grey) decomposes into two other substances, B 

(black) and C (white) according to a zero-order reaction. The 

molecular scenes below show a portion of the reaction mixture 

at two times. What is the average rate of disappearance of A 

during the interval 1 – 2 minutes? 

A →  B + C 

 
0 minutes 1 minute 

(a) 2 min
–1

 (b) 4 min
–1

 (c) 8 min
–1

 (d) 0.25 min
–1

 (e) 12 min
–1 
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the postdiction questions. We converted each exam score category and corresponding postdiction 

to a numerical value on a 4-point scale as follows: 100%–90% = 4, 89%–80% = 3, 79%–70% = 

2, 69%–60% = 1, < 60% = 0. Finally, we determined the postdiction calibration for each student 

on each exam by calculating the difference between his or her postdiction category and his or her 

exam score category (equation 2.1). 

postdiction calibration!= postdiction category – exam score category              (2.1) 

A student with positive postdiction calibration postdicted that his or her exam score would be 

higher than it actually was (overpostdicted), whereas a student with negative postdiction 

calibration postdicted that his or her exam score would be lower than it actually was 

(underpostdicted). A student with postdiction calibration of zero accurately postdicted the score 

category into which his or her actual exam score would fall (perfectly calibrated). We used the 

absolute value of the postdiction calibration (|calibration|) for each student to determine the 

average magnitudes of calibration for groups of students. To characterize students' postdiction 

accuracies in the context of our research questions, we employed the complementary measures of 

|calibration| and the percentage of students who were perfectly calibrated (% accurate). 

To examine relationships between calibration and exam performance, we also established 

two performance groups of students. One group of consistently “high-performing students", or 

those who earned exam scores greater than ½ standard deviation above the exam mean on every 

exam, and one group of consistently “low-performing students," or those who earned exam 

scores lower than ½ standard deviation below the exam mean on every exam. These performance 

groups did not encompass all students in the course, as many students did not consistently score 

within a single performance group for all exams in a given course. 
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For both the fall and spring semesters, we calculated descriptive statistics for student 

exam scores, postdictions, calibration, and the percentage of accurate postdictions for the student 

groups of interest. We used independent samples t-tests to test for significant differences in exam 

score means of different student groups, except for a case in which the homogeneity of variance 

assumption was violated for which we used nonparametric Mann-Whitney U tests (two-tailed). 

Additionally, we performed Mann-Whitney U tests to compare the |calibration| and exam score 

category distributions for different groups. We determined the appropriate effect sizes, with 

Cohen’s d effect sizes corresponding to t-tests and r effect sizes corresponding to Mann-Whitney 

U and Wilcoxon signed rank tests. r effect sizes were calculated according to equation 2.2, where  

x is the Mann-Whitney U or Wilcoxon signed rank test Z-score and N is the sample size.
10-11

  

! =
!

!
         (2.2) 

Effect sizes of 0.1, 0.3, and 0.5 are considered to be small, medium, large, respectively.
12

 

In addition, we utilized Fisher’s exact to test for the significance of differences in % accurate 

postdictions.
13

 We applied the Bonferroni adjustment to correct for multiple comparisons in each 

semester, resulting an α level of 0.01.
14

 We performed all statistical analyses using SPSS version 

20.0 software (SPSS Inc., Chicago, IL). 

2.3 Results and Discussion 

2.3.1 Postdiction accuracy. Figures 2.2 and 2.3 present bubble plots of postdiction 

category versus exam score category for each exam in fall and spring, respectively. The size of 

each bubble corresponds to the number of students who fell into a specific combination of exam 

score category and postdiction category. Bubbles that fall on the dashed diagonal lines in the 

plots represent students who were perfectly calibrated. In each case, a minority of students fall 

along the line of perfect calibration, with the percentage of students accurately postdicting their 



! 263 

exam score category ranging from 9.1% to 31.4% (also see Table 2.2). Figure 2.2A shows that 

for Fall Exam 1, only 9.1% of students were perfectly calibrated, whereas the vast majority of 

students (89.3%) overpostdicted. In fact, more students made overpostdictions than under- or 

accurate postdictions for all exams analyzed. 

The mean absolute calibration (|calibration|) for each exam (Table 2.2) indicates how 

close students’ postdictions were to their actual performance categories on average. Throughout 

the two-semester general chemistry course, the accuracy of students’ postdictions was low, 

averaging one to two exam score categories away from their actual performance. (Changes in 

postdiction accuracy over time are disscussed in Section 2.3.3.) We also note that for the 

comprehensive final exams for both semesters, larger percentages of students overpostdicted, 

and mean |calibration| was less accurate than in all other cases except for Fall Exam 1. In 

addition to the more comprehensive nature of the final exams (which increased the difficulty), 

student postdictions may have been more optimistic than usual because many students hoped to 

obtain a higher score on their final exam to replace a previous low exam score. Finally, as 

discussed in more detail later, the lower the exam mean, the less accurate students’ mean 

|calibration| tended to be. We also compared % accurate postdictions and mean |calibration| for 

male and female students on each exam. Although female students had consistently higher rates 

of % accurate postdictions compared with male students, none of the differences are statistically 

significant (Appendix I, Table AI.1).  

With respect to mean |calibration|, female students were significantly more accurate on 

average than male students for three of the five fall-semester exams (exam 2, exam 4, and the 

final exam), with small effect sizes of about 0.1, whereas in the spring semester there were no 

significant differences in mean |calibration| between male and female students (Appendix I, 
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Figure 2.2. Bubble plots of student exam postdiction score category versus exam score category 

for each exam in the fall semester (N=925). Bubble size is proportional to the number 

of students with a given exam score category and postdiction. In each case, the 

dashed diagonal line indicates perfect calibration. Overall percentages of 

overpostdicting, underpostdicting, and perfectly accurate students are included on the 

right side of each panel. The percentages of perfectly calibrated students in each exam 

score category are included at the top of the corresponding columns (italicized). 

 

         

          

 

870845754

54410096136

42248153

4628

24

0

1

2

3

4

5

6

0 1 2 3 4 5 6

P
o
st

d
ic

ti
o
n

 c
a
te

g
o
r
y

Exam score category

Fall Exam 1

Mean exam score: 64.29

90–100%

80–89%

70–79%

< 60 %

60–69%

1.6% under

89.3% over

D

C

B

F

A

9.1%

accurate
90-100%

80-89%

70-79%

< 60 %

60-69%

1.1%             2.9%             10.5%           37.3%        61.5%

A)

70-79% 80-89%60-69%< 60% 90-100%

1037253130

1365848458

12466132143

3102963

1313

0

1

2

3

4

5

6

0 1 2 3 4 5 6

P
o

st
d

ic
ti

o
n

 c
a

te
g

o
ry

Exam score category

Fall Exam 2

Mean exam score: 65.82
B)

D

C

B

F

A

5.9% under

74.3% over

19.8%

accurate

90-100%

80-89%

70-79%

< 60 %

60-69%

4.2%            10.4%             35.5%           50.4%          41.7%

70-79% 80-89%60-69%< 60% 90-100%

356436136

30103872919

12801036661

21292546

3121728

0

1

2

3

4

5

6

0 1 2 3 4 5 6

P
o

st
d

ic
ti

o
n

 c
a

te
g

o
ry

Exam score category

Fall Exam 3

Mean exam score: 73.37

D

C

B

F

A

C)

22.0% under

57.0% over

21.0%

accurate

90-100%

80-89%

70-79%

< 60 %

60-69%

17.5%           16.7%            38.6%          38.0%           45.5%

70-79% 80-89%60-69%< 60% 90-100%

2027332741

1042656248

1156496150

41220105

21368

0

1

2

3

4

5

6

0 1 2 3 4 5 6

P
o

st
d

ic
ti

o
n

 c
a

te
g

o
ry

Exam score category

Fall Exam 4

Mean exam score: 61.49

C

B

F

6.2 % under

70.7% over

23.1%

accurate

D)

90-100%

80-89%

70-79%

< 60 %

60-69%

16.5%           9.2%             36.4%             47.7%          64.5%

70-79% 80-89%60-69%< 60% 90-100%

1016222845

429596759

94097195

11023134

2372

0

1

2

3

4

5

6

0 1 2 3 4 5 6

P
o

st
d

ic
ti

o
n

 c
a

te
g

o
ry

Exam score category

Fall Final Exam

Mean exam score: 57.06
E)

D

C

B

F

A

3.1% under

78.1% over

18.8%

accurate
90-100%

80-89%

70-79%

< 60 %

60-69%

14.3%           10.6%            30.1%           52.7%           71.4%

70-79% 80-89%60-69%< 60% 90-100%



! 265 

 

Figure 2.3. Bubble plots of student exam postdiction category versus exam score category for 

each exam in the spring semester (N=491). Bubble size is proportional to the number 

of students with a given exam score category and postdiction. In each case, the 

dashed diagonal line indicates perfect calibration. Overall percentages of 

overpostdicting, underpostdicting, and perfectly accurate students are included on the 

right side of each panel. The percentages of perfectly calibrated students in each exam 

score category are included at the top of the corresponding columns (italicized). 
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Table 2.2. Performance and calibration statistics for Fall and Spring semesters  

Exam 
Mean exam 

score %,
a 
M  

Mean score 

category
a 

 

Mean postdiction 

category
a 

 

Mean 

|calibration|
a
 

% accurate 

postdictions 

Fall (N = 925)     

Exam 1 64.29 (15.25)  1.12 (1.12) 2.95 (0.87) 1.86 (1.03) 9.1 

Exam 2 65.82 (13.86) 1.23 (1.13) 2.47 (0.94) 1.37 (1.01) 19.8 

Exam 3 73.37 (13.70) 1.95 (1.22) 2.36 (1.10) 0.96 (0.84) 21.0 

Exam 4 61.49 (15.54) 1.04 (1.15) 2.23 (1.16) 1.34 (1.05) 23.1 

Final 57.06 (15.86) 0.76 (1.00) 2.15 (1.12) 1.45 (1.05) 18.8 

Spring (N = 491)     

Exam 1 62.16 (13.82) 1.01 (1.14) 2.23 (1.04) 1.40 (1.04) 22.0 

Exam 2 67.11 (15.88) 1.51 (1.25) 2.24 (1.10) 1.08 (0.94) 29.5 

Exam 3 63.92 (15.45) 1.25 (1.22) 2.10 (1.13) 1.12 (0.99) 29.9 

Exam 4 68.63 (12.26) 1.54 (1.10) 2.12 (1.14) 1.01 (0.89) 31.4 

Final 60.15 (15.59) 0.92 (1.08) 2.24 (1.01) 1.43 (1.03) 16.1 
a
 Values for one standard deviation are included in parentheses. 
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Table AI.1). There were no significant performance differences between males and females for 

any of the exams across the two-semester general chemistry sequence (Appendix I, Table AI.2). 

These findings regarding general chemistry students' postdiction accuracy are consistent 

with the results of the previously-mentioned exam calibration study conducted in organic 

chemistry courses, where about 60% of students overestimated their exam scores.
15

 The exam 

calibration accuracy results from the studies in chemistry courses differ substantially from results 

of exam calibration studies conducted in undergraduate psychology courses,
16-20

 in which 

students were generally found to be well-calibrated. Likely explanations include differences in 

the nature of the exams, the courses, and the student populations.
21

 Differences in the nature of 

tasks are known to influence judgment accuracy
21, 22

 and thus, it is likely that the differences 

between chemistry and psychology courses and exams influences students’ abilities to make 

accurate exam postdictions. For example, questions on the general chemistry exams often 

required multi-step problem solving that was quantitative in nature. This differs from example 

exam questions reported for the psychology course calibration studies, which consisted of 

questions that required recall and application of declarative knowledge.
18,

 
20

 In addition, some of 

the student populations studied in the psychology courses were upper-level educational 

psychology students,
18, 20

 and the psychology courses in two studies emphasized the importance 

of making accurate judgments and how those judgments relate to metacognition throughout the 

courses.
18,

 
23

 

2.3.2 Relationships between student exam postdiction accuracy and performance. In 

Figures 2.2 and 2.3, the percentages of perfectly calibrated students in each exam score category 

are included at the top of the corresponding columns. We observe that larger percentages of 

higher performing students tended to be perfectly accurate in their postdictions compared with 
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lower performing students for every exam across the two semesters. To further explore the 

relationships between postdiction accuracy and exam performance, we compared the exam 

scores of students who were relatively well calibrated (calibration = 0, ±1) with those who were 

not well calibrated (calibration = ±2, ±3, ±4) (Table 2.3). (Appendix I, Table AI.3 shows the 

sample sizes for each group of students.) Mann Whitney U tests indicate that the exam score 

distributions in the two groups are statistically different for every exam, with medium-to-large 

effect sizes for most exams (Table 2.3),
12

 providing further evidence that students who were 

better calibrated tended to earn higher exam scores than those who were less accurately 

calibrated. In addition, we compared the distributions of |calibrations| of the consistently high-

performing and low-performing student groups for each exam (Appendix I, Tables AI.4 and 

AI.5). The distributions differ significantly, with high performers achieving lower mean 

|calibration| than low performers for all exams, with medium-to-large effect sizes for most exams 

(Appendix I, Table AI.4). In the fall semester, the average mean |calibration| across all exams 

was 0.68 for high performers and 1.62 for low performers; in the spring semester, it was 0.65 for 

high performers and 1.45 for low performers (Appendix I, Table AI.4).  

These findings regarding postidiction accuracy and performance are consistent with 

previous exam calibration studies
18, 20, 23-24

 and models of metacognition, which predict that 

students who are more proficient at monitoring their understanding while studying would make 

more accurate judgments regarding what they should focus on to enhance their understanding 

(exercising better metacognitive control), potentially leading to better exam performance. Being 

better prepared for exams would also allow students to judge their exam performance more 

accurately. 
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2.3.3 Changes in postdiction accuracy and metacognitive monitoring over time. We also 

explored changes in students’ exam postdiction accuracies and whether or not students' 

metacognitive monitoring changed over time. Previous studies have examined changes in 

postdiction accuracy across one-semester education and psychology courses.
17-19, 23-24

 Hacker et. 

al. compared the R
2
 values for the best fit regression lines for actual score versus postdicted 

score data for each exam, and asserted that an increase in R
2
 values over time indicated improved 

postdiction accuracy over time.
5
 However, we concur with the critique by Nietfeld et. al. that 

“…accounting for increasing amounts of variance does not necessarily mean that the relationship 

is in the expected direction” (p. 23).
20

 Thus, it is unclear that the results of the Hacker et. al. 

study regarding changes in postdiction accuracy over time are valid. Other studies compared 

students' mean |calibration| for exams or quizzes over time for one-semester psychology courses 

to examine changes in postdiction accuracy.
17, 19, 23-24

 For our study, in examining trends in mean 

|calibration| over time (Table 2.2), we observed that when exam means increase, mean 

|calibration| improves (values decrease). Since a large proportion of students overpostdicted on 

each exam, higher exam means may be associated with more accurate postdictions regardless of 

whether or not students are more accurately monitoring their performance. While Nietfeld et. al 

noted similar changes in postdiction accuracy with changing exam difficulty, the range of exam 

means (76-81%) was narrower compared with our study (57-73%), and they did not adjust for 

changes in exam means over time.
20

 

Specifically focusing on the pairs of exams for which mean |calibration| improved from 

one exam to the next (Table 2.2), we developed a method to determine whether or not it was 

likely that students' improvements in mean |calibration| were because of increases in exam means. 

In Table 2.4, we compare each exam with the one immediately following it. For each exam pair,
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Table 2.3. Exam scores of students who were well calibrated and those who were not.  

Exam 

Mean exam score
 a 

U statistic 
b 

Effect size (r) 
c
  

Well-calibrated students 

(calibration = 0, ±1) 

Not well-calibrated students 

(calibration = ±2, ±3, ±4) 

  

Fall (N= 925)   

Exam 1 75.26 (12.89) 57.76 (12.58) 30226 0.59 

Exam 2 71.51 (12.77) 57.51 (10.88) 39075 0.53 

Exam 3 75.58 (12.74) 65.93 (12.23) 67522 0.30 

Exam 4 65.31 (16.56) 55.70 (11.72) 64515 0.32 

Final 60.49 (17.78) 52.91 (11.95) 76490 0.24 

Spring (N= 491)     

Exam 1 67.07 (14.29) 56.32 (10.61) 17758 0.41 

Exam 2 70.57 (15.29) 58.63 (14.03) 15620 0.36 

Exam 3 67.20 (15.40) 56.54 (12.86) 13526 0.35 

Exam 4 70.59 (11.56) 62.97 (12.51) 14372 0.26 

Final 64.41 (16.78) 55.24 (12.08) 15208 0.27 
 a
 Values for one standard deviation are included in parentheses. 

b
 Mann-Whitney U tests 

compare exam scores; population information can be found in Appendix I, Table AI.3. 
c
 p-values <0.0001. 
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we calculated the effect sizes (r, see equation 2.2) for the change in |calibration| (r|calibration|) and 

the change in exam score category (rexam). For the cases in which students’ mean |calibration| 

improved from one exam to the next, we calculated the ratio r|calibration|/rexam. If the magnitude of 

the effect size of students’ decrease in |calibration| is larger than the magnitude of the effect size 

of the increase in mean exam score category, then the ratio r|calibration|/rexam would be greater than 1, 

indicating that the improvement in students’ calibration accuracy may not be fully explained by a 

higher exam mean. 

As seen in Table 2.4, the only pair of consecutive exams for which students’ mean 

|calibration| improves and r|calibration|/rexam is greater than 1 is for Fall Exams 1 and 2, with 

r|calibration|/rexam = 3.41. This suggests that students may have improved their metacognitive 

monitoring of their exam performance on Fall Exam 2 relative to Exam 1. For the other three 

pairs of exams for which students’ mean |calibration| improved over time, the r|calibration|/rexam 

ratios are less than 1, indicating that the effect sizes for the change in mean exam score 

categories increased to a greater extent than the corresponding effect sizes of the change in mean 

|calibration|. This suggests that students’ metacognitive monitoring of their performance may not 

have improved across those exams.  

For the four other pairs of exams, exam means decreased from one exam to the next and 

students’ mean calibration accuracy decreased, but with a smaller effect size than the mean exam 

score category decrease in each case. Thus, the only time for which this analysis indicates that 

students’ metacognitive monitoring of their exam performance may have improved is for Fall 

Exam 2 relative to Exam 1. Of course, Fall Exam 1 is unique in that it is the first exam of the 

general chemistry course, and also the first college-level chemistry exam for many of the 

students. Therefore, Exam 1 provided students with a new, particularly relevant experience to 
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consider in their future judgments of their general chemistry exam performance. In addition, 

students’ mean |calibration| on Exam 1 of 1.86 (an average of almost two exam score categories 

away from their actual exam score categories) was especially poor. Therefore, students may have 

adjusted their postdictions between Fall Exams 1 and 2 more than between any other pair of 

exams in part due to the experience of being miscalibrated by such a large margin for their Exam 

1 performance. Previous studies in the psychology laboratory indicate that relevant experience 

alters the factors people use to make judgments of difficulty.
25,

 
26

 

If it was the case in the fall that students' postdiction accuracy improved in part because 

experience with the first general chemistry exam informed their future judgments of exam 

performance, then we would expect to see a similar pattern in the spring for the students who did 

not take the corresponding first-semester general chemistry course at the same institution in the 

fall (Spring Only, N=148) to a greater extent than for the students who had the experience of the 

preceding fall course (Fall & Spring, N=343). Spring Only students took a first-semester general 

chemistry course at another institution, took the course in a different semester, or tested out of 

the course, and therefore, while these students had taken general chemistry exams before, most 

had no previous experience with the spring instructors’ course and assessment styles or with 

making exam postdictions. As expected, Spring Only students’ mean |calibration| improved from 

Spring Exam 1 to Spring Exam 2 with r|calibration|/rexam = 1.16, while r|calibration|/rexam = 0.69 for the 

students who had completed the fall course (Appendix I, Tables AI.7– AI.10). The Spring Only 

students’ improvement in postdiction accuracy that may be attributed to enhanced metacognitive 

monitoring is also smaller than that described earlier for all students in the fall cohort 

(r|calibration|/rexam = 3.41) for which many students were new to college-level chemistry. 



! 273 

Table 2.4. Effect sizes (r) for comparisons between 

exam score category (rexam) and |calibration| values 

(r|calibration|) for students in Fall and Spring courses. 

 Exam pair rexam r|calibration| r|calibration|/rexam
 

Fall (N=925) 

Exam 1/Exam 2 0.11 0.38 3.41 

Exam 2/Exam 3 0.53 0.34 0.64 

Exam 3/Exam 4 0.72 0.32 — 
a
 

Exam 4/Final 0.36 0.11 — 
a
 

Spring (N=491) 

Exam 1/Exam 2 0.35 0.27 0.78 

Exam 2/Exam 3 0.25 0.04 — 
a
 

Exam 3/Exam 4 0.33 0.10 0.31 

Exam 4/Final 0.57 0.34 — 
a
 

a
 Only calculated for pairs of exams where mean 

|calibration| improved. 
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We also conducted these analyses for high- and low-performing student groups 

(Appendix I, Table AI.6) and students who took both semesters of general chemistry 

consecutively (Appendix I, Table AI.10). In terms of changes in postdiction accuracy and 

metacognitive monitoring over time, the patterns observed for these subgroups are similar to that 

of the larger groups. Results indicate that both high- and low-performing students improved in 

postdiction accuracy and monitoring of their exam performance for Fall Exam 2 relative to Exam 

1. 

Unlike mean |calibration|, which consistently varied inversely with exam mean, the 

percentage of students who were perfectly calibrated increased across each semester’s exams 

until the final exam (Table 2.2). The only statistically-significant pairwise increases in % 

accurate students from one exam to the next (Fisher’s exact p < 0.01) were from the first exam to 

the second exam in each semester. Adjusting for changes in exam difficulty over time, our 

findings are generally consistent with previous work indicating that – without an intervention 

intended to improve student monitoring – students' calibration accuracy did not change much 

across multiple exams.
17-19, 23-24

 However, it appears that the students in our study, including both 

high and low performers, may have improved in metacognitive monitoring of their performance 

on Exam 2 relative to Exam 1 in general chemistry courses that were new to them. 

2.4 Limitations 

A limitation of this study was that student postdictions were collected using optical mark 

recognition (i.e., Scantron®) forms with only five possible answer choices rather than an open-

ended format. This method was chosen to facilitate data collection from larger numbers of 

students than have been included in previous postdiction calibration studies (more than 1000 

students compared with less than 100 students in previous studies), but it also reduced the 
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sensitivity for detecting differences in students' postdictions as well as the precision of the 

calibration results relative to an open-ended postdiction format. In addition, the postdiction 

categories we chose were not equal in range. In particular, the < 60% postdiction answer choice 

spanned a 60-point range whereas the additional four categories spanned only 10-point ranges. 

Given that the exam means ranged from 57–73%, it may have been preferable to select 

consistently wider ranges for the postdiction answer choices (e.g., a 20-point range for each). Of 

course, this would have also had the effect of making it easier for higher-performing students to 

be better calibrated. Even though our selection of postdiction answer choices in this study 

theoretically made it easier for lower-performing students to be better calibrated, results 

illustrated that they were nevertheless significantly less accurate than higher-performing students. 

Finally, to the extent that postdictions are random guesses not informed by other information, 

people who perform closer to the middle of a performance scale have a better chance of more 

accurate |calibration| than those who perform closer to the extremes of the scale. 

2.5 Conclusions and Implications 

In this study, we explored aspects of first- and second-semester general chemistry 

students’ metacognitive monitoring of their exam performance by measuring their postdiction 

accuracies over time. In addition, we determined how postdiction accuracy relates to exam 

performance. First, we found that a large proportion of students in both semesters of general 

chemistry were miscalibrated in that they consistently overpostdicted their exam scores. 

Considering exams 2-4, during which students' postdiction accuracies were the most accurate 

and most stable, the average mean |calibrations| were 1.2 in the fall and 1.1 in the spring, which 

indicates an average miscalibration of more than one exam score category. The extent to which 

students were miscalibrated is particularly striking because, unlike predictions of performance 
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made without knowledge of the test questions, students made their postdictions immediately 

after completing each exam while the exam was still in their possession. Our results differ from 

previous findings in the context of psychology course exam postdiction accuracies, where 

students were typically found to be well calibrated, but are consistent with a study carried out in 

organic chemistry courses.
15

 We attribute this to course and exam characteristics that are more 

similar for general and organic chemistry, but differ substantially between general chemistry and 

psychology courses. Second, we found that general chemistry students who earned higher exam 

scores also tended to be more accurately calibrated, which is consistent with the findings from 

previous studies in other courses as well as models of metacognition.
18, 20, 23-24

 Finally, although 

we observed improvements in students' postdiction accuracy between some pairs of exams, in all 

cases the improvements in calibration were seen for cases where the exam mean also increased. 

Thus, we realized that this could be due to students' tendency to overpostdict as opposed to 

improvements in their metacognitive monitoring of their exam performance. We developed a 

method to determine whether or not improvements in mean |calibration| from one exam to the 

next were likely due to improvements in students' metacognitive monitoring. Results indicated 

that, although students who were new to a general chemistry course appeared to improve in their 

metacognitive monitoring on the second course exam compared with the first, monitoring did not 

significantly improve after that initial adjustment. Thus, our results are generally consistent with 

postdiction studies in other domains in which monitoring did not change much without a specific 

intervention targeted at improving students' monitoring of their exam performance.
17-19, 23-24

 

Notably, Bol et al. employed an intervention in which students practiced making pre- and 

postdictions on quizzes and no significant differences were observed in calibration accuracy on 

the final exam between intervention and control groups.
24

 Interventions that have led to 
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improvements in monitoring exam performance have included offering extra credit for more 

accurate judgments,
17

 and having students complete self-reflection questionnaires that included 

topics such as how well concepts were grasped, identifying strengths/weaknesses, and 

confidence ratings regarding ability to answer content questions.
27

  

Overall, our results show that general chemistry students’ perceptions of their own 

performance do not typically match their actual performance, especially for lower-performing 

students, and that in the absence of any intervention to improve monitoring, student monitoring 

of exam performance does not improve much across a year-long general chemistry course. Given 

the importance of metacognitive monitoring for student learning of chemistry, these findings 

suggest that further research and development of interventions to improve the metacognitive 

monitoring of introductory chemistry students is warranted. Increasing chemistry instructors' 

awareness of both the importance of metacognitive monitoring and the possibility that their 

students are miscalibrated may encourage them to test their students' calibration accuracy, and 

design and implement interventions intended to improve student monitoring. Another direction 

for future research in this area is the exploration of the strategies and reasoning chemistry 

students use in making judgments of their performance. 
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CHAPTER 3 

DESIGN OF METACOGNTIVE-BASED EXAM AND STUDY PREPARATION 

WORKSHOPS TO PROMOTE GENERAL CHEMISTRY STUDENT METACOGNITIVE  

AWARENESS 

 

 

 

This chapter details the design of a series of workshop interventions inspired by the 

findings presented in Chapter 2, namely that general chemistry students’ metacognitive 

monitoring on exams is largely inaccurate. Broadly, we hoped to glean a more complete 

understanding of the relationships between general chemistry student participation in 

metacognition-based exam preparation workshops and students’ metacognitive monitoring and 

awareness. The research design described in this chapter involves two groups of general 

chemistry students. One group participated in exam preparation workshops (metacognition-

based) and another group participated in traditional test-taking strategy workshops (non-

metacognition-based). Several pre- and post-workshop metrics were planned to explore 

relationships between student workshop participation and student outcomes related to 

metacognition.  

Section 3.1 includes an introduction regarding the importance of metacognitive skill 

development and a brief review of previously-reported interventions that target such 

development. Section 3.2 provides an overview of the intervention design. Section 3.3 discusses 

the pilot study that was conducted with students in the Fall 2014 semester. Although the pilot 

study did not include a large enough sample size to yield meaningful quantitative and qualitative 

comparisons as was intended in the original design, it provided several useful considerations for 

future studies (Section 3.4).  
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Information presented in this chapter is based on a protocol prepared by Morgan Hawker, 

Lisa Dysleski, and Dawn Rickey submitted to the Institutional Review Board (IRB) at Colorado 

State University entitled General Chemistry Students’ Metacognitive Awareness: Before and 

After Metacognition-based Exam and Study Preparation Workshops. This IRB protocol was 

approved on September 16
th

, 2014 and renewed on October 22
nd

, 2015.  

3.1 Introduction 

Preparing for examinations is a critical component of student learning. Students’ ability 

to actively participate in the process of preparing for and taking exams is critical for success in 

academic settings. Through this process, students have opportunities to make decisions to guide 

their learning in a specific content area. As can be deduced from postdiction data presented in 

Chapter 2, many students are underprepared for the examination process.  This includes both 

preparing for, taking, and reflecting on the exam. One way that may help students become better 

prepared for exams is by applying metacognitive skills, including planning and evaluating 

(discussed in Chapter 1).
1-3

 A different method that may help to increase students’ preparedness 

utilizes more traditional multiple-choice test-taking strategy instruction. The work presented here 

centers on comparing a metacognitive-focused exam preparation intervention with a test-taking 

strategies intervention for undergraduate learners, implemented within the general chemistry 

student population at Colorado State University. This population comprises mainly first-semester 

freshmen who typically view general chemistry as a rigorous course. Providing scaffolds for 

exam preparation and test taking may improve student learning outcomes for students who may 

otherwise have underdeveloped skills relative to the examination process at the undergraduate 

level. The study was designed to evaluate possible relationships between aspects of students’ 

metacognitive awareness and learning outcomes in the context of preparing for and taking 
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general chemistry exams. I am not aware of similar studies (e.g., that involving metacognitive 

and test-taking strategy training workshops) performed in an undergraduate general chemistry 

setting. Thus, this study is expected to enrich our understanding of student metacognitive skill 

development and test-taking strategies as they relate to general chemistry exam preparation. 

Metacognitive skill development, an important component of the present study, is 

discussed in more detail in Chapter 1 (Part II of this dissertation). Briefly, metacognitive 

monitoring is a central metacognitive skill that involves assessing one’s current knowledge and 

understanding.
1
 One way to measure monitoring ability is to evaluate the accuracy of 

postdictions of performance (Chapter 2). Student learning outcomes (e.g., exam scores) are 

correlated with exam score postdictions, and related to metacognitive monitoring.
4-6

 Therefore, 

metacognitive monitoring of tasks is related to task performance (e.g., monitoring during exam 

studying is related to performance on exams). Arguably, it is important to provide undergraduate 

instruction in the form of metacognitive training within the scientific field.
7
 There is some 

evidence that presenting metacognitive training, in the form of study skills, is more beneficial in 

the context of course content rather than as a stand-alone course.
8
 Thus, teaching students to 

apply study skills using their general chemistry course content may improve student learning 

outcomes both within that course and more broadly. Past studies in the context of metacognitive 

skill development, often referred to as strategy training, include an undergraduate mathematics 

classroom
9
 and upper elementary classrooms.

10-11
 In each of these course settings, students who 

received strategy training in monitoring demonstrated improved performance over a control 

group(s). Only one of these studies, however, demonstrated a relationship between strategy 

training and monitoring accuracy, where the task evaluated was mathematical probability 

question sets.
9
 An additional metacognitive strategy training study that took place as a stand-
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alone course in reading comprehension (e.g., outside of a formal undergraduate course setting) 

demonstrated a significant improvement between the intervention group’s pre- and post- reading 

comprehension performance, as well as for their general metacognitive awareness.
12

 Strategy 

training methods implemented these studies included presenting self-questioning strategies, 

modeling those strategies through think-aloud protocols and practicing strategies in small groups. 

Because of the demonstrated effect of such methods in non-chemistry course domains, a 

combination of these approaches were integrated into the intervention described in this chapter. 

Self-questioning strategies included in this work were influenced by the cyclic plan/model/reflect 

framework, originally proposed by Bandura
13

 and summarized later by Tanner,
14

 as it was 

directly translatable to chemistry course activities proposed in the intervention. 

Although sample questions have been proposed for use in strategy training with the aim 

of promoting student metacognitive monitoring in science courses,
14

 to my knowledge, a 

monitoring intervention based in an undergraduate science classroom setting has yet to be 

performed. Amzil discussed the lack of such strategy training/monitoring interventions at the 

undergraduate level in general, especially those taking place over a “short” (< 1 semester) time 

span.
12

 The exam preparation strategies intervention discussed here was intended to address this 

gap in the literature. 

Regarding the test-taking strategy training intervention, there have been limited reports of 

multiple-choice test-taking strategy training at the undergraduate level. The few studies on this 

topic confirm, however, that test-taking strategy instruction is effective in raising students’ 

scores on multiple-choice exams.
15-18

 Notably, these reports have only focused on multiple 

choice exam strategy training within undergraduate education course settings. Exploring the 

generalizability of multiple choice exam strategy training in an undergraduate chemistry setting 
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will provide new insight regarding the translation of this strategy training methodology to other 

testing modes, as well as to other disciplines, and therefore address this gap in the literature. 

3.2 Intervention Design and Implementation 

This work is classified as early-stage/exploratory research, and involves a between-

subjects control study design.
19

 As such, the purposes of this study included examination of 

associations between learning outcomes (e.g., exam scores/course grades) and “malleable factors” 

(e.g., metacognitive monitoring, metacognitive awareness), as well as “opportunities for new 

interventions or strategies and challenges to their adoption, with the goal of informing policy, 

practice, and future design or development” as stated in the Common Guidelines for Education 

Research and Development developed by the Institute of Education Sciences and the National 

Science Foundation.
19

 Here, it is important to re-emphasize that the remainder of Section 3.2 is 

adapted from the original IRB protocol. Appendix II contains corresponding supplemental 

information for Section 3.2, and is referred to where relevant. Notably, this protocol was 

designed in the context of the General Chemistry I (CHEM 111) course at Colorado State 

University but could be generalized to additional chemistry courses at CSU or other universities 

in the future. 

3.2.1 Overview of the proposed study design. The timeline outlining the four main 

components of this study is depicted in the Gantt chart in Figure 3.1. All students answered 

questions from the Metacognitive Awareness Inventory (MAI, see Chapter 1) and made exam 

postdictions on each of 5 exams. The pre- and post- MAI were administered as a Likert scale 

survey via the course management website (Appendix II). The survey was opened for one week 

during each of the two administered time periods such that all students enrolled in CHEM 111 

could participate, and all students who completed the MAI received a small amount of CHEM 
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111 course credit (<1% of the final course grade). Students had alternative means to earn this 

course credit if they chose not to complete the MAI. 

The workshop components of this study included two groups of volunteers: the test-

taking strategies group (non-metacognition focused) and the exam preparation strategies group 

(metacognition-focused). Each of these workshops comprised three one-hour sessions, and 

participants were assigned to groups controlling for exam 1 score (i.e., ranking by their exam 1 

score and then assigning groups ensuring that the exam 1 performance distribution is as even as 

possible between the two groups). 

The first two one-hour sessions consisted of an activity involving a set of eight relevant 

general chemistry multiple-choice content questions (exam-like questions, see Appendix II). The 

test-taking strategies group and exam preparation group were, however, given different tasks 

with respect to these content question sets. The final one-hour session focused on skill 

generalizability, either focused on metacognitive skills or test-taking strategies, depending on the 

workshop group. An overview of the specific workshop activities students participated in is 

outlined in Figure 3.2, and more detail is provided in Sections 3.2.2 and 3.2.3. 

At the beginning of session #1 and the end of session #3, students in both groups 

participated in a clicker question activity, in which they answered these questions: 

1) Did you have a study plan for Exam 1/3? (yes/no) 

2) Were you able to carry out your study plan for Exam 1/3? (yes/no/I didn’t have one) 

3) Do you intend to change your study plan for Exam 2/4? (yes/no) 

 

Students also performed a short writing task pertaining to the following questions: 

1) What was your study plan for Exam 1/3? 

2) What made your study plan successful or unsuccessful? 

3) How will you change your study plan for Exam 2/4?  

These clicker questions and writing prompts served as a pre/post assessment, in addition to the  
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Figure 3.1. Gantt chart representing the planned workshop timeline during the fall semester. 

 

  

Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

CHEM 111 Fall Semester 

Multiple choice exams 

Exam score postdictions 

Metacognitive Awareness Inventory (MAI) 

Exam strategy training workshops 
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MAI and exam score postdictions, providing additional comparisons between the test-taking 

strategies group and the exam preparation group. 

3.2.2 Test-taking strategies group (“traditional”) activities. Each of the first two sessions 

began with students answering the first four multiple-choice questions in groups, followed by 

reviewing the questions in such a way that focused on test-taking strategies (discussed below 

with examples in Appendix II). This process was then repeated with the remaining four questions, 

where each eight-question set was written to promote similar strategies. 

Session # 1: Focused on reading the question completely (e.g., questions phrased as 

“which is true” versus “which is false”) and eliminating unreasonable answer choices based on 

the problem context. These questions were based on Exam 2 material, including, electron 

configurations, quantum numbers, and naming compounds. Students were encouraged to study in 

a spaced manner for Exam 2. 

Session #2: Focused on distractor answer awareness via common misconceptions/errors. 

These questions were based on Exam 3 material, including, mole calculations, periodic trends, 

Lewis structures/hybridization, and VSEPR. At the end of session #2, students received a 

template of the test-taking strategies covered in sessions #1 and #2 and categorize questions 

under specific strategies that they came across during one study session for Exam 3 (Appendix 

II). 

Session #3: The review in session #3 focused on generalizability of test-taking strategies 

to other courses/exam formats to mirror the exam preparation strategies group reflection 

component in session #3. This included comparing and contrasting multiple-choice to different 

exam formats (true/false and essay/short answer) by group brainstorming.  
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Figure 3.2. Outline of workshop activities for test taking (“traditional”) and exam preparation 

(“metacognitive”) strategy groups [MC: multiple choice]. 
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3.2.3 Exam preparation strategies group (“metacognitive”) activities. Session #1: After 

the initial clicker question/writing activity outlined above, the workshop leader facilitated a 

student discussion that centers on student ideas about the importance of paying attention to one’s 

study habits, and potential benefits of doing such. The discussion involved discussing planning, 

monitoring, and reflecting in both educational and non-educational contexts (i.e., the 

plan/model/reflect cycle).
13-14

 Self-questioning was modeled for students during this introductory 

activity via a think-aloud, with the purpose of motivating students to use this strategy when 

preparing for academic tasks. Before students were presented with the same eight-question set as 

the test-taking strategies group, they were informed that they needed to prepare to study for a 

“quiz” with CHEM 111 exam-like questions. In groups of three, students brainstormed questions 

that they could ask themselves, both when planning for such a task (planning) and when working 

on the task (monitoring), and then each group presented a question from each category to the 

whole class. Students then considered the eight-question set and actively monitor their thinking 

processes via a think-aloud in groups. Group members alternated between “thinking through” the 

question set one question at a time. This activity intended to scaffold self-questioning behavior 

(i.e., participate in a think-aloud where one verbalizes thoughts that come to mind while 

participating in a particular task). To conclude session #1, students responded to the following 

prompt in writing: 

• Will you change your study plan when studying for Exam 2? If yes, how and why will 

you change it? If no, why not?  

 

Students received a template that contained a few planning, monitoring, and reflection questions 

(see Appendix II). They filled out this questionnaire during one study session for Exam 2 and 

brought the filled out questionnaire with them to discuss in session #2. 
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Session #2: Students began session #2 by independently reflecting on their previously 

developed study plans, as well as on Exam 2 as a whole. They were presented with reflection 

prompts (Appendix II), discussed their reflections in small groups, and were prompted to note 

any similarities and differences between their planned and actual study sessions. The small 

groups then shared responses with the larger group. This tiered activity intended to highlight 

similarities between student study plans, specifically common successes and necessary 

improvements. After this reflection activity, students worked individually to modify their study 

plan. They then received the same set of eight content questions as the test-taking strategies 

group, again to ensure that the test-taking strategies group did not have an unfair advantage with 

exposure to practice material. Students were encouraged to use this question set as a practice test 

for Exam 3, although no direct follow-up occurred with students regarding what they have done 

with these questions. 

Session #3: The planned activities for session #3 were as follows: 1) a similar reflection 

activity as session #2, whereby students reflected on what worked/did not work in terms of using 

their study plan to prepare for Exam 3, as well as reflected on Exam 3 itself; 2) A group 

discussion regarding the generalizability of the plan/monitor/reflect cycle for other activities that 

they came across before or may come across in the future. This discussion would center on the 

questions of whether the students found this approach helpful, why it was/was not helpful, and 

what could make it more helpful in terms of maximizing their study habits and learning 

outcomes. Notably, and as discussed in more detail in section 3.3, the third workshop was not 

implemented because of the lack of student participants. 



! 291 

3.2.4 Student exam data and postdiction data collection. The last question of each CHEM 

111 multiple-choice exam (i.e., the “postdiction question”) was identical to that presented in 

Chapter 2:  

What percentage score do you expect to earn on this exam? 

   A) 100%–90% 

B) 89%–80% 

C) 79%–70% 

D) 69%–60% 

E) < 60% 

 

Student answers to the postdiction question were compared to their exam score for each 

individual exam to determine students’ calibration for each exam. Postdiction responses and 

exam scores were retrieved via instructors’ electronic gradebooks, and precautions to protect 

students’ identities were taken (see Section 3.2.6). 

3.2.5 Student recruitment plan. Undergraduate general chemistry students are an ideal 

population for the proposed study because the majority of these students are first-semester 

freshman. Incoming freshman may not have developed metacognitive skills to the extent 

necessary for excelling in undergraduate courses, and this intervention may jumpstart this skill 

development. Based on the ~1100 students taking CHEM 111 in Fall 2014, we recruited a 

sample of approximately 80 students total (40 to participate in the test-taking strategies group 

and 40 students to participate in the exam preparation strategies workshops). This sample size 

was calculated via an estimation of the Mann-Whitney test statistic (U), which is non-parametric 

(i.e., assumes a non-normal ordinal data distribution). At sample sizes greater than 20, U 

conforms to a normal distribution such that a z statistic can be calculated. In this instance, a 

sample size of 80 assumes an effect size (Cohen’s d) of 0.6, a power level of 0.8, and a p-value 

of 0.05. Self-selection effects were present, but this group of students can be considered an “ideal 

population”. Therefore, this work can be considered efficacy research.
19
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Initial recruitment occurred by a researcher visiting the CHEM 111 courses (General 

Chemistry 1 courses at Colorado State University) during the lecture immediately following 

Exam 1, during which an announcement was made regarding the volunteer opportunity 

(Appendix II). All students enrolled in CHEM 111 received a follow-up email after the 3
rd

 week 

of the Fall 2014 semester (Appendix II). Volunteers were included in this study if they were 

enrolled in CHEM 111 in Fall 2014 and were available to meet during all advertised meeting 

times, as specified in the recruitment email. Students who are not available to meet during all 

advertised meeting times were excluded from the study. Total approximate time commitment for 

all participants was 3.5 hours, including 3 one-hour workshops and time to complete one activity 

during a study session outside of the workshops.  

The original design indicated that student data would only be analyzed for those who 

attended all assigned sessions, completed the pre- and post- MAI, and completed all exams, 

including postdiction questions. Data analysis for postdiction data was similar to that presented 

in Chapter 2. Pre-post MAI data for the two different workshop groups (i.e., test-taking strategies 

vs. exam preparation strategies) were analyzed by calculating so-called gain scores (i.e., where 

gain is defined as the post score minus the pre score) and groups were using an independent 

samples t-test (with the Mann-Whitney U test as a non-parametric option). Notably, there is an 

extensive body of literature devoted to comparing the gain scores method with the analysis of 

covariance (ANCOVA) method, where there is substantial debate on which method is more 

appropriate for pre-post data analysis (a few representative examples are included as references 

here).
20-24

 Notably, these methods test different hypotheses and, thus, have somewhat different 

focuses. Gain scores focus on the change between the pre- and post-test, but may be challenging 

to interpret if pre-test differences exist between groups. ANCOVA focuses on post-test 
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differences rather than changes between pre- and post-test. Gain scores were used to analyze 

pilot data because it was of interest to evaluate changes between the pre- and post-test MAI 

results. 

3.2.6 Procedures to maintain confidentiality. Volunteer privacy was protected by keeping 

volunteer emails on an account that is accessible only to the researchers. For electronic data, 

student names were removed for analyses, and data were grouped by students’ eIDs for analyses. 

For paper data, student names were removed and replaced with codes. Code keys were kept 

electronically (i.e., separated from the paper data). Paper consent forms were given to students at 

the start of the first workshop meeting, and consent forms as well as written data from students 

(i.e., filled out study plans, test-taking strategy forms) were collected at the end of the second 

intervention session. Only researchers from our group had access to this office, the computers in 

it (and data stored on them), as well as to the cabinets (including filing cabinets). 

3.3 Pilot Study Summary 

A pilot study following the protocol described above was conducted in the Fall 2014 

semester in all sections of CHEM 111. Initially, 84 volunteers were recruited such that 42 were 

assigned to each workshop group. This sample size was very close to our original request in the 

protocol (n = 80). Participant population in each workshop (Table 3.1), however, demonstrated 

substantial attrition as the semester progressed, making it challenging to draw conclusions from 

the limited amount of student data collected. Attrition may have occurred because of the 

volunteer nature of the study, which is further discussed in Section 3.4. 

Although data analysis from the pilot study is not the focus of this chapter, sample 

qualitative and quantitative data are included for the purpose of providing insight into how 

students interacted with workshop materials. Figure 3.3 includes student responses to the writing 
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Table 3.1. Volunteer attendance throughout the intervention pilot study in Fall 2014. 

Group 
Initial 

recruitment 
Session #1 Session #2 Session #3 

Test-taking strategies 42 25 7 2 

Metacognition strategies 42 18 6 0 
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activity that took place in the first workshop. Student 1 participated in the test-taking strategies 

workshop, and Student 2 participated in the exam preparation strategies workshop. These 

responses were chosen to exemplify ways that students interpreted the reflection questions that 

were posed to them and are not intended to be representative. Responses demonstrate that these 

two students were able to reflect on their study plan for Exam 1 and were able to articulate how 

they plan to modify their study plans for Exam 2 with the given prompt. Both students list 

specific strategies that they employed when studying for Exam 1 and that they had planned when 

studying for Exam 2. In addition to these qualitative data, quantitative pre- and post-MAI data 

(Table 3.2) were tabulated for student participants in each workshop series, as well as for CHEM 

111 students who did not participate in any workshops. Comparing the difference between 

average pre- and post-workshop MAI scores provides a quantitative gain score metric referred to 

as “delta” in Table 3.2 [included for the overall MAI score as well as the knowledge of cognition 

(KC) and regulation of cognition (RC) sub-scores]. Positive delta values indicate an increase in 

score between the two instances in which the MAI was administered (Figure 3.1), whereas 

negative values indicate a decrease in score. Differences between pre and post MAI scores were 

not statistically significant for any group. This may be because of the small sample size and 

corresponding low statistical power, or because the interventions did not influence metacognitive 

awareness. Table 3.2 shows a non-statistically significant improvement in MAI score for the 

exam preparation strategies group (delta = 5.0), with concomitant non-statistically significant 

increases in both the KC and RC sub-scores (delta = 6.0 and 6.7, respectively). A negative delta 

value is observed for test-taking strategies group MAI score (delta = −1.8), as well as for the RC 

sub-score (delta = −1.6). Altogether, findings from MAI data presented here are preliminary and 

warrant further data collection for a larger sample size in future iterations of this study.  
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Figure 3.3. Sample student responses from the writing activity administered during workshop #1. 

  

Student 1 (Exam 1 score: 37%, Exam 2 score: 57%) 

1) What was your study plan for Exam 1? 

“I made sure to review the past exam example, I went through the handouts that 

were given at recitation, I completed all of the ALEKS topics and understood 

them.” 

2) What made your study plan successful or unsuccessful? 

“I believe that because a lot of the problems that I was studying were all worded in 

a particular way that I understood and when they were different on the exam it was 

like I didn’t know how to even start more than half of the questions” 

3) Will you change your study plan when studying for Exam 2? If yes, how and why will 

you change it? If no, why not? 

“I do need to change the fact that I do not look at the problems in different ways. 

That was my biggest downfall. I also need to reread questions and make sure that I 

am answering what the question is asking. I also need to eliminate the distractor 

questions first. This will definitely help.” 

 

Student 2 (Exam 1 score: 43%, Exam 2 score: 67%) 

1) What was your study plan for Exam 1? 

“I made flash cards for the material we needed to memorize. I also planned to go 

over the book work and review the objectives in ALEKS. I also took the exam 

from last year that was posted online and went over those answers. I also went to 

all of the study sessions.” 

2) What made your study plan successful or unsuccessful? 

“My study plan was unsuccessful because I did not leave myself enough time to do 

all of the things I planned. I starting studying the weekend before the exam which 

only gave me about 4 days to do it as well as study for two other exams I had that 

week. My flashcards however were successful in helping me to memorize the 

material we were supposed to memorize. Everything else though was done too 

quickly for me to actually learn the material.” 

3) Will you change your study plan when studying for Exam 2? If yes, how and why will 

you change it? If no, why not? 

“Yes I will actually go over book problems and write questions about problems I 

am unsure of and ask the professor during office hours. I will also start studying 

now rather than saving everything until the end. I will do flashcards for vocab. I 

will also go to the study sessions again.” 

!
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Table 3.2. Pre- and post- measures from the MAI for students who did not participate in the 

workshop, those in the test-taking strategies group, and those in the exam preparation 

strategies group. 

Group 
Mean MAI score 

(SD)
 a 

Mean KC score 

(SD) 
b 

Mean RC score 

(SD) 
c 

No intervention (n=358) 

Pre-Exam 1 194.0 (20.5) 61.2 (7.0) 124.8 (14.2) 

Post-Exam 4 191.9 (21.0) 65.2 (7.9) 126.7 (15.0) 

delta –2.1 4.0 1.9 

Test-taking strategies (n=8) 

Pre-Exam 1 189.1 (21.8) 58.0 (8.2) 123.5 (13.7) 

Post-Exam 4 187.3 (27.0) 65.4 (11.1) 121.9 (16.8) 

delta –1.8 7.4 –1.6 

Exam preparation strategies (n=7) 

Pre-Exam 1 197.6 (35.7) 62.1 (8.5) 127.7 (25.2) 

Post-Exam 4 202.6 (28.9) 68.1 (9.1) 134.4 (20.6) 

delta 5.0 6.0 6.7 
a 
Total MAI score (maximum = 260) 

b
 Knowledge of cognition score (maximum = 85) 

c
 Regulation of cognition score (maximum = 175)
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Anecdotally, several students in both workshop groups spoke with me (as the facilitator) 

at the end of the first workshop and expressed that participating was informative and the 

workshop provided tools they felt were useful. Thus, it is possible that participants felt that they 

received enough information after the first workshop such that they did not feel compelled to 

attend future sessions, although there was no formal survey following the intervention. 

3.4 Reflections and Alterations for Future Studies 

Designing this intervention provided valuable insight regarding performing education 

research in an undergraduate course context. Working with such a large course (over 1000 

students enrolled) meant access to a large population, but also required navigating logistics with 

multiple instructors within course schedule confines. Altogether, the design process was a 

productive experience, and the CHEM 111 student participants were positive and receptive to 

learning about their own learning. 

A critical feature in the next iteration of this study is the inclusion of student-led focus 

groups to identify metacognitive skills and strategies used by general chemistry students during 

the exam preparation process. This may be more of a case-study based approach in comparison 

with the pilot study. Focus groups could include semi-structured interviews with think-aloud 

prompts, followed by qualitative coding of student responses. This knowledge could be used as a 

basis for designing the next iteration of intervention workshops, and would ideally make sessions 

more targeted and relatable for workshop participants (i.e., include skills that successful general 

chemistry students have employed in the past).  

 In future studies, it will also be important to incentivize participation to ensure student 

retention. This will likely introduce a new set of challenges and require more resources (e.g., 

workshop facilitators, coordination with course instructors for the integration of incentives 
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and/or the workshops themselves into the course structure). Furthermore, high-achieving 

students may already successfully utilize metacognitive skills in general chemistry and may not 

see the need for workshop participation. Thus, designing a different supplemental course activity 

by which these students could receive an equal incentive would be necessary. These challenges 

would need to be addressed before deploying the next iteration of workshops. Furthermore, 

follow-up surveys to collect student perspectives would be useful to integrate into further studies. 

Such surveys could be used as design tools to maximize workshop session utility to general 

chemistry students. Altogether, these alterations could provide an expanded understanding of 

preliminary data collected in the pilot study, further contributing to our knowledge of student 

metacognition in general chemistry settings.  
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Table AI.1. Calibration statistics, Mann-Whitney U test results, and postdiction accuracy for male and female 

students from the Fall and Spring semesters.  

Exam Mean |calibration| 
a
 

U statistic (comparing 

|calibration|) 

 

Effect size 

(r)
 

% accurate 

postdictions 

Fisher’s Exact 

p value 

Fall Male (N = 483) Female (N = 442)   Male Female  

Exam 1 1.95 (1.02) 1.77 (1.04) 97300 0.08 6.6 11.8 0.335 

Exam 2 1.48 (1.02) 1.25 (0.98) 93535 
 b 

0.11  16.4 23.5 0.216 

Exam 3 1.03 (0.91) 0.89 (0.76) 99696 0.06 029.6 32.4 0.878 

Exam 4 1.46 (1.09) 1.20 (1.00) 92284 
 b 

0.12  20.5 26.0 0.409 

Final 1.59 (1.08) 1.31 (1.00) 91483 
 b 

0.13  15.3 22.6 0.207 

Spring Male (N = 207) Female (N = 284)     

Exam 1 1.35 (1.03) 1.45 (1.05) 27822 0.05 15.9 16.9 1.000 

Exam 2 1.19 (0.93) 1.00 (0.93) 25791 0.11 23.7 33.8 0.161 

Exam 3 1.16 (0.96) 1.00 (1.02) 27739 0.05 27.5 31.7 0.540 

Exam 4 1.02 (0.84) 0.99 (0.93) 28098 0.04 29.5 34.9 0.546 

Final 1.40 (1.04) 1.45 (1.03) 28416 0.03 16.9 15.5 1.000 
 a
 Values for one standard deviation are included in parentheses. 

 b
 Significant at the α = 0.01 level. 
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Table AI.2. Exam performance data for male and female students from the Fall and Spring semesters. 

Exam Mean exam score
a
 

Independent 

samples t statistic 

 

Independent samples 

t-test p-value  
Effect size (d) 

Fall Male (N = 483) Female (N = 442)    

Exam 1 64.56 (15.12) 63.28 (15.63) + 0.995 0.320 + 0.08 

Exam 2 65.31 (13.60) 65.82 (14.37) – 0.982 0.326 – 0.04 

Exam 3 72.35 (13.69) 73.72 (13.88) – 1.906 0.057 – 0.10 

Exam 4 61.16 (15.34) 60.98 (15.78) – 0.351 0.725 + 0.01 

Final 56.43 (15.60) 57.12 (16.00) – 1.116 0.265 – 0.01 

Spring Male (N = 207) Female (N = 284)    

Exam 1 63.07 (14.21) 61.51 (13.51) + 1.236 0.217 + 0.01 

Exam 2 67.60 (16.10) 66.76 (15.73) + 0.576 0.565 + 0.05 

Exam 3 64.13 (15.86) 63.77 (15.18) + 0.257 0.797 + 0.02 

Exam 4 67.93 (13.05) 69.15 (11.64) – 1.085 0.278 – 0.10 

Final 59.54 (16.34) 60.59 (15.03) – 0.736 0.462 – 0.07 
a
 Values for one standard deviation are included in parentheses. 
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Table AI.3.  Sample sizes for students who were well calibrated and 

those who were not.
 a
  

Exam 
Well-calibrated students 

(calibration = 0, ±1)
 

Not well-calibrated students 

(calibration = 0, ±2, ±3)
 

Fall 
  Exam 1 345 580 

  Exam 2 549 376 

  Exam 3 713 212 

  Exam 4 557 368 

  Final 506 419 

Spring  

  Exam 1 267 224 

  Exam 2 349 142 

  Exam 3 340 151 

  Exam 4 365 126 

  Final 295 196 
a
 Populations correspond to results presented in Table 3. 
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Table A1.4. Performance and calibration statistics for the high-performing and low-performing groups for the Fall and 

Spring semesters. 

Exam 
Mean exam 

score % 
a
 M 

Mean exam score 

category
 a
 

Mean postdiction 

category
 a
 

Mean 

|calibration|
a 

% accurate 

postdictions 

Fall   

Exam 1, mean = 64.29
b
      

High-performing (N=88) 85.43 (5.45) 2.90 (0.61) 3.63 (0.69) 0.82 (0.58) 27.2 

Low-performing (N=107) 44.23 (9.53) 0.00 (0.00) 2.22 (0.76) 2.22 (0.76)  0.4 

Exam 2, mean = 65.82
b
    

High-performing (N=88) 85.21 (6.03) 2.98 (0.62) 3.17 (0.76) 0.56 (0.54) 46.5 

Low-performing (N=107) 47.00 (9.85) 0.06 (0.23) 1.90 (0.87) 1.84 (0.89)  6.5 

Exam 3, mean = 73.37
b
    

High-performing (N=88) 89.73 (4.33) 3.53 (0.50) 3.32 (0.70) 0.58 (0.56) 45.5 

Low-performing (N=107) 53.52 (10.89) 0.35 (0.48) 1.53 (1.18) 1.36 (0.98) 18.7 

Exam 4, mean = 61.49
b
    

High-performing (N=88) 83.97 (7.59) 2.95 (0.77) 3.22 (0.81) 0.69 (0.67) 42.0 

Low-performing (N=107) 40.75 (8.64) 0.00 (0.00) 1.32 (1.12) 1.32 (1.12) 23.4 

Final, mean = 57.06
b
    

High-performing (N=88) 80.84 (7.32) 2.58 (0.83) 3.19 (0.72) 0.75 (0.79) 43.1 

Low-performing (N=107) 37.77 (6.98) 0.00 (0.00) 1.36 (1.14) 1.36 (1.14) 23.4 

Spring   

Exam 1, mean = 62.16
b
      

High-performing (N=41) 83.31 (7.78) 2.85 (0.76) 3.07 (0.87) 0.80 (0.71) 36.6 

Low-performing (N=49) 45.25 (7.83) 0.00 (0.00) 1.63 (0.99) 1.63 (0.99) 14.3 

Exam 2, mean = 67.11
b
      

High-performing (N=41) 87.58 (6.52) 3.24 (0.66) 3.12 (0.90) 0.66 (0.79) 48.7 

Low-performing (N=49) 44.94 (9.79) 0.06 (0.24) 1.14 (1.06) 1.39 (1.02) 20.4 

Exam 3, mean = 63.92
b
      

High-performing (N=41) 85.08 (6.76) 2.98 (0.65) 3.10 (0.89) 0.56 (0.67) 53.6 

Low-performing (N=49) 42.92 (9.79) 0.00 (0.00) 1.22 (0.92) 1.22 (0.92) 24.5 
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Exam 4, mean = 68.63
b
      

High-performing (N=41) 84.89 (6.15) 2.93 (0.69) 3.02 (0.82) 0.59 (0.67) 53.6 

Low-performing (N=49) 51.99 (7.01) 0.08 (0.28) 1.27 (0.95) 1.22 (0.96) 24.5 

Final, mean = 60.15
b
      

High-performing (N=41) 84.81 (8.08) 2.95 (0.84) 3.12 (0.78) 0.66 (0.69) 46.3 

Low-performing (N=49) 40.17 (8.40) 0.00 (0.00) 1.78 (0.94) 1.78 (0.94) 0.0 

a
 Values for one standard deviation are included in parentheses. 

 b
 Exam mean for the entire population. 
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Table AI.5. Mann-Whitney U test results comparing exam scores and |calibration| of high and 

low performing students. 

 Exam 
U statistic (comparing 

exam score) 
a
 

Effect size (r) 
U statistic (comparing 

|calibration|) 
Effect size (r) 

a
  

Fall    

Exam 1 0 0.86 804 0.75 

Exam 2 0 0.86 1144 0.68 

Exam 3 0 0.86 2551 0.42 

Exam 4 0 0.86 3202 0.29 

Final 0 0.86 3235 0.28 

Spring  

Exam 1 0 0.86 526 0.43 

Exam 2 0 0.86 570 0.39 

Exam 3 0 0.86 781 0.39 

Exam 4 0 0.86 616 0.35 

Final 0 0.86 358 0.59 
 a
 p-values ≤0.0001. 
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! !Table AI.6. Effect sizes (r) for comparisons between exam score category (rexam score 

category) and |calibration| values (r|calibration|) for high and low performing students  

 Exam pair rexam score category r|calibration| 
r|calibration|/rexam 

score category
 

Fall: High performers (N=88) 

Exam 1/Exam 2 0.03 0.31 10.83 

Exam 2/Exam 3 0.54 0.03 — 
a
 

Exam 3/Exam 4 0.62 0.14 — 
a
 

Exam 4/Final 0.34 0.05 — 
a
 

Fall: Low performers (N=107)    

Exam 1/Exam 2 0.23 0.34 1.48 

Exam 2/Exam 3 0.43 0.43 0.99 

Exam 3/Exam 4 0.75 0.01 0.02 

Exam 4/Final 0.31 0.02 — 
a
 

Spring: High performers (N=41) 

Exam 1/Exam 2 0.44 0.14 0.32 

Exam 2/Exam 3 0.29 0.11 0.37 

Exam 3/Exam 4 0.01 0.06 — 
a
 

Exam 4/Final 0.04 0.09 — 
a
 

Spring: Low performers (N=49)    

Exam 1/Exam 2 0.01 0.29 — 
a
 

Exam 2/Exam 3 0.17 0.13 0.78 

Exam 3/Exam 4 0.57 0.04 — 
a
 

Exam 4/Final 0.78 0.48 — 
a
 

a
 Only calculated for pairs of exams where mean |calibration| improved. 
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Table AI.7. Performance and calibration statistics for students who took the Spring course only (n=148). 

  Exam 

Mean exam score %
a 

M  

Mean exam score 

category
a
 

Mean postdiction 

category
a
 

Mean 

|calibration|
a 

% accurate 

postdictions 

Exam 1 59.66 (14.01) 0.85 (1.10) 2.24 (1.03) 1.45 (0.98) 19.6 

Exam 2 63.26 (15.41) 1.20 (1.18) 2.13 (1.13) 0.93 (1.20) 29.1 

Exam 3 59.61 (15.10) 0.92 (1.14) 1.91 (1.18) 1.10 (0.98) 30.4 

Exam 4 65.08 (12.79) 1.26 (1.09) 1.97 (1.12) 1.04 (0.90) 31.1 

Final 55.57 (14.67) 0.65 (0.86) 2.12 (1.05) 1.51 (0.98) 10.8 
a
 Values for one standard deviation are included in parentheses.   
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Table AI.8. Effect sizes (r) for comparisons between exam score category 

(rexam score category) and |calibration| values (r|calibration|) for students who took the 

Spring course only (n=148). 

      Exam pair rexam score category r|calibration| r|calibration|/ rexam score cateogry
 

Exam 1/Exam 2 0.24 0.27 1.16 

Exam 2/Exam 3 0.27 0.02 0.07 

Exam 3/Exam 4 0.37 0.05 0.13 

Exam 4/Final 0.60 0.37 — 
a
 

a
 Only calculated for pairs of exams where mean |calibration| improved. 
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Table AI.9. Performance and calibration statistics for students who took both Fall and Spring 

courses. 

  Exam 

Mean exam 

score % 
a 
M 

 

 

Mean exam score 

category
a
 

Mean postdiction 

category
a
 

Mean 

|calibration|
a 

% Accurate 

Postdictions 

Fall (N=343)  

Exam 1 69.87 (13.34) 1.51 (1.11) 3.15 (0.76) 1.67 (1.03) 11.9 

Exam 2 71.68 (11.95) 1.67 (1.12) 2.64 (0.86) 1.17 (0.94) 24.8 

Exam 3 78.95 (10.17) 2.44 (1.05) 2.59 (1.03) 0.84 (0.75) 34.7 

Exam 4 

 

snsnsnmm 

67.79 (13.50) 1.45 (1.19) 2.45 (1.04) 1.22 (0.93) 23.0 

Final 64.42 (13.93) 1.15 (1.10) 2.41 (0.96) 1.36 (0.97) 19.8 

Spring (N=343)  

Exam 1 63.24 (13.61) 1.38 (1.06) 2.23 (1.05) 1.38 (1.06) 23.0 

Exam 2 68.78 (15.80) 1.05 (0.90) 2.29 (1.09) 1.05 (0.90) 29.7 

Exam 3 65.77 (15.25) 0.84 (0.75) 2.19 (1.09) 0.84 (0.75) 34.7 

Exam 4 70.16 (11.71) 0.99 (0.89) 2.19 (1.15) 0.99 (0.89) 22.7 

Final 62.12 (15.58) 1.39 (1.05) 2.29 (0.98) 1.39 (1.05) 19.8 
a
 Values for one standard deviation are included in parentheses. 
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Table AI.10. Effect sizes (r) for comparisons between exam score category (rexam score 

category) and |calibration| values (r|calibration|) for students who took both Fall and Spring 

courses. 

Exam pair rexam score category r|calibration| r|calibration|/ rexam score cateogry
 

Fall (N=343)   

Exam 1/Exam 2 0.15 0.40 2.70 

  Exam 2/Exam 3 0.58 0.27 0.47 

Exam 3/Exam 4 0.72 0.33 — 
a
 

Exam 4/Final 0.31 0.14 — 
a
 

Spring (N=343) 

Final (Fall)/ Exam 1 

(Spring) 
0.12 0.02 — 

a
 

Exam 1/Exam 2 0.39 0.27 0.69 

Exam 2/Exam 3 0.24 0.06 0.25 

  Exam 3/Exam 4 0.32 0.13 — 
a
 

Exam 4/Final 0.55 0.33 — 
a
 

a
 Only calculated for pairs of exams where mean |calibration| improved. 



 314 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX II: SUPPLEMENTAL MATERIAL CORRESPONDING TO  

PART I1, CHAPTER 3 
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Metacognitive Awareness Inventory (MAI) (reproduced from Schraw and Dennison, 1994) 
 
52 items on a 5-point likert scale (strongly agree ! strongly disagree). 260 points total 

35 Regulation of cognition (175 points possible) 

Regulation of cognition (RC): planning (P), information management strategies (IMS), monitoring (M), 

 debugging strategies (DS), and evaluation (E). 

17 Knowledge of cognition (85 points possible) 

Knowledge of cognition (KC): declarative knowledge (DK), procedural knowledge (PK), and conditional 

knowledge (CK).  

 

Question Strongly 

agree 

Agree Neural Disagree Strongly 

disagree 

1. I ask myself periodically if I am meeting my goals.      

2. I consider several alternatives to a problem before I answer.       

3. I try to use strategies that have worked in the past.       

4. I pace myself while learning in order to have enough time.       

5. I understand my intellectual strengths and weaknesses.       

6. I think about what I really need to learn before I begin a task.       

7. I know how well I did once I finish a test.       

8. I set specific goals before I begin a task.       

9. I slow down when I encounter important information.       

10. I know what kind of information is most important to learn.      

11. I ask myself if I have considered all options when solving a 

problem.  

     

12. I am good at organizing information.      

13. I consciously focus my attention on important information.      

14. I have a specific purpose for each strategy I use.       

15. I learn best when I know something about the topic.       

16. I know what the teacher expects me to learn.       

17. I am good at remembering information.      

18. I use different learning strategies depending on the situation.      

19. I ask myself if there was an easier way to do things after I finish 

a task.  

     

20. I have control over how well I learn.        

21. I periodically review to help me understand important 

relationships.  

     

22. I ask myself questions about the material before I begin.       

23. I think of several ways to solve a problem and choose the best 

one. 

     

24. I summarize what I’ve learned after I finish.        

25. I ask others for help when I don’t understand something.       

26. I can motivate myself to learn when I need to.       

27. I am aware of what strategies I use when I study.       

28. I find myself analyzing the usefulness of strategies while I 

study.  

     

29. I use my intellectual strengths to compensate for my 

weaknesses. 

     

30. I focus on the meaning and significance of new information.      

31. I create my own examples to make information more 

meaningful.   

     

32. I am a good judge of how well I understand something.       

33. I find myself using helpful learning strategies automatically.       

34. I find myself pausing regularly to check my comprehension.       

35. I know when each strategy I use will be most effective.       

36. I ask myself how well I accomplish my goals once I’m finished.       

37. I draw pictures or diagrams to help me understand while 

learning.  

     

38. I ask myself if I have considered all options after I solve a 

problem. 

     

39. I try to translate new information into my own words.        
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40. I change strategies when I fail to understand.       

41. I use the organizational structure of the text to help me learn.       

42. I read instructions carefully before I begin a task.       

43. I ask myself if what I’m reading is related to what I already 

know.  

     

44. I reevaluate my assumptions when I get confused.       

45. I organize my time to best accomplish my goals.       

46. I learn more when I am interested in the topic.       

47. I try to break studying down into smaller steps.       

48. I focus on overall meaning rather than specifics.       

49. I ask myself questions about how well I am doing while I am 

learning something new.  

     

50. I ask myself if I learned as much as I could have once I finish a 

task.  

     

51. I stop and go back over new information that is not clear.      

52. I stop and reread when I get confused.      

 
1. I ask myself periodically if I am meeting my goals. (M) RC 

2. I consider several alternatives to a problem before I answer. (M) RC 

3. I try to use strategies that have worked in the past. (PK) KC 

4. I pace myself while learning in order to have enough time. (P) RC 

5. I understand my intellectual strengths and weaknesses. (DK) KC 

6. I think about what I really need to learn before I begin a task. (P) RC 

7. I know how well I did once I finish a test. (E) RC 

8. I set specific goals before I begin a task. (P) RC 

9. I slow down when I encounter important information. (IMS) RC 

10. I know what kind of information is most important to learn. (DK) KC 

11. I ask myself if I have considered all options when solving a problem. (M) RC 

12. I am good at organizing information. (DK) KC 

13. I consciously focus my attention on important information. (IMS) RC 

14. I have a specific purpose for each strategy I use. (PK) KC 

15. I learn best when I know something about the topic. (CK) KC 

16. I know what the teacher expects me to learn. (DK) KC 

17. I am good at remembering information. (DK) KC 

18. I use different learning strategies depending on the situation. (CK) KC 

19. I ask myself if there was an easier way to do things after I finish a task. (E) RC 

20. I have control over how well I learn. (DK) KC 

21. I periodically review to help me understand important relationships. (M) RC 

22. I ask myself questions about the material before I begin. (P) RC 

23. I think of several ways to solve a problem and choose the best one. (P) RC 

24. I summarize what I’ve learned after I finish. (E) RC 

25. I ask others for help when I don’t understand something. (DS) RC 

26. I can motivate myself to learn when I need to. (CK) KC 

27. I am aware of what strategies I use when I study. (PK) KC 

28. I find myself analyzing the usefulness of strategies while I study. (M) RC 

29. I use my intellectual strengths to compensate for my weaknesses. (CK) KC 

30. I focus on the meaning and significance of new information. (IMS) RC 

31. I create my own examples to make information more meaningful. (IMS) RC 

32. I am a good judge of how well I understand something. (DK) KC 

33. I find myself using helpful learning strategies automatically. (PK) KC 

34. I find myself pausing regularly to check my comprehension. (M) RC 

35. I know when each strategy I use will be most effective. (CK) KC 

36. I ask myself how well I accomplish my goals once I’m finished. (E) RC 

37. I draw pictures or diagrams to help me understand while learning. (IMS) RC 

38. I ask myself if I have considered all options after I solve a problem. (E) RC 

39. I try to translate new information into my own words. (IMS) RC 

40. I change strategies when I fail to understand. (DS) RC 

41. I use the organizational structure of the text to help me learn. (IMS) RC 

42. I read instructions carefully before I begin a task. (P) RC 

43. I ask myself if what I’m reading is related to what I already know. (IMS) RC 

44. I reevaluate my assumptions when I get confused. (DS) RC 
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45. I organize my time to best accomplish my goals. (P) RC 

46. I learn more when I am interested in the topic. (DK) KC 

47. I try to break studying down into smaller steps. (IMS) RC 

48. I focus on overall meaning rather than specifics. (IMS) RC 

49. I ask myself questions about how well I am doing while I am learning something new. (M) RC 

50. I ask myself if I learned as much as I could have once I finish a task. (E) RC 

51. I stop and go back over new information that is not clear. (DS) RC 

52. I stop and reread when I get confused. (DS) RC 
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Multiple Choice Question Sets 

 

Question set #1: Focus on distractor answer awareness (via common misconceptions/errors). 

These questions will be based on Exam 2 material, including electron configurations, quantum 

numbers, and naming compounds (assuming no change from Fall 2013 curriculum order). 

 

1. What is the electron configuration for Kr? 

A) 1s22s22p63s23p43d104s24p6 

B) 1s22s22p63s23p64s23d104p5 

C) 1s22s22p63s23p64s23d104p6 

D) 1s22s22p63s23p24s23d104p6 

E) none of the above 

 

2. A tunicate is a marine invertebrate with blood that contains the transition metal vanadium (V). 

Which best represents the electron configuration of vanadium? 

 

A)  

 

 

B)  

 

 

C)  

   

 

D)  

 

 

 

E)  

 

 

3. As orbitals are filled with electrons, which correctly lists the subshells in order of increasing 

energy? 

A) 1s < 2p < 2s 

B) 3s < 2p < 4s 

C) 4s < 4d < 4p 

D) 4d < 4p < 4s 

E) 4s < 3d < 4p 

 

4. How many unpaired electrons are in a ground-state carbon atom? 

A) 12 

B) 6 

C) 4 

D) 2 

E) none of the above 

4s 3d 

[Ne] 

4s 3d 

[Ne] 

4s 3d 

[Ne] 

4s 3d 

[Ar] 

4s 3d 

[Ar] 
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5. Which element has the electron configuration of 1s
1
2s

2
2p

6
3s

2
3p

5
 and what column of the 

periodic table contains elements with similar properties? 

A) O, halogens 

 B) Cl, halogens 

 C) F, halogens 

 D) O, noble gases 

 E) Cl, noble gases 

 

6. How many valence electrons must a phosphorous atom gain in order to have a full valence 

shell? 

 A) 0 

 B) 1 

 C) 2 

 D) 3 

 E) 5 

 

7. Each individual orbital in the "d" subshell can hold a maximum of ________ electrons. 

A) 2 

B) 5 

C) 6 

D) 10 

E) none of the above 

 

8. The size of an atom generally increases 

A) down a group and from right to left across a period. 

B) up a group and from left to right across a period. 

C) down a group and from left to right across a period. 

D) up a group and from right to left across a period. 

E) up a group and diagonally across the Periodic Table. 

 

Question set #2: Focus on reading the question completely (e.g., which is true versus which of 

the following is false) and eliminating unreasonable answer choices based on the problem 

context. These questions will be based on Exam 3 material, including mole calculations, periodic 

trends, Lewis structures/hybridization, and VSEPR (assuming no change from Fall 2013 

curriculum order). 

 

1. In comparing a balloon containing 25 grams of nitrogen to a balloon containing 25 grams of 

oxygen, which one of the statements is TRUE? 

 

A) Each balloon has an equal number of atoms. 

B) The oxygen balloon has more atoms. 

C) The nitrogen balloon has more atoms. 

D) This scenario cannot happen because gases have no mass. 

E) none of the above 
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2. How many N atoms are in 2.25 moles of nitrogen gas? 

 

A) 6.022 × 10
23

 

B) 9.03 × 10
23

 

C) 18.98 

D) 2.71 × 10
24

 

E) none of the above 

 

3. What is the electron geometry of a molecule with 3 electron groups around the central atom?!

A) linear 

B) trigonal planar 

C) tetrahedral 

D) trigonal pyramidal 

E) not enough information 

 

4. Atoms with small atomic radii tend to have ________ ionization energies, while atoms with 

large atomic radii tend to have ________ ionization energies. 

A) high, low 

B) low, high 

C) low, low 

D) high, high 

E) None of the above 

 

5. How many moles of Pt are in a 455 mg ring of pure platinum?  

 A) 2.33 mol 

 B) 2.33 × 10
3 
mol 

 C) 2.33 × 10
–3 

mol 

 D) 8.88 × 10
4 
mol 

 E) 88.8
  
mol 

 

6. How many moles of water are needed to react with 2.2 moles of Li2O? 

Given: Li2O + H2O → 2 LiOH 

A) 4.4 

B) 2.2 

C) 1.5 

D) 1.1 

E) 1.0 

 

7. As orbitals are filled with electrons, which incorrectly lists the subshells in order of increasing 

energy? 

A) 1s < 2s < 2p 

B) 2s < 2p < 3s 

C) 3s < 3p < 4s 

D) 3p < 3d < 4s 

E) 4p < 5s < 3d 
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8. The second ionization energy of sodium (Na) is much higher than the first ionization energy 

because: 

 A) The second electron is removed from an already-stable noble gas core 

 B) The second electron is a valence electron 

 E) Na
+
 has a larger radius than Na 

 D) The second ionization energy of Na not higher than the first ionization energy of Na. 

 E) None of the above 
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 322 

Reflection Activity: Test taking strategies  

!

Exam 1: Reflect 

 

1) What test taking strategies worked well for me that I should remember to use next time? 

 

2) What test taking strategies did not work so well for me that I should change for next time? 

 

3) Comment on your overall use of test taking strategies on Exam 1. Do you feel that these 

strategies help you on Exam 2? Why or why not? 

 

4) Will you change the way that you use test-taking strategies on Exam 2? If yes, how and why 

will you change? If no, why not?  

!

!

 

 

Writing Assignment: Workshop #1!

 

Directions: Respond to the following questions in as much detail as you can in the allotted time 

period. 

 

1) What was your study plan for Exam 1? 

2) What made your study plan successful or unsuccessful? 

3) Will you change your study plan when studying for Exam 2? If yes, how and why will you 

change it? If no, why not?  
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Study session template for test-taking strategies group  

 

CHEM 111 study session guide 

 
This guide is intended for your use when taking the posted practice exam for CHEM 111 Exam 

2, ideally carried out individually. Please provide detailed answers in complete sentences. You 

may write on the back or on an attached sheet of paper if you need more room.  

 

Please read all questions before you begin. 

 
Provide an example of 2 multiple-choice questions from the practice exam in which you 

eliminated “distractor” answers. Please copy the questions on to this sheet of paper. 

 

A) 

 

B) 

 

Copy 4 multiple-choice questions (different than the above two questions) from the practice 

exam on to this paper. Describe how you solved each question, detailing any strategies that you 

used in order to arrive at the final answer. 

A) Question 

 

How I solved this question 

 

B) Question 

 

How I solved this question 

 

C) Question 

 

How I solved this question 

 

D) Question 

 

How I solved this question 

 

 

!

!

!
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Study session template for exam preparation strategies group  

(Questions adapted from Tanner (2014)) 

 

CHEM 111 study session guide 

 

This guide is intended for your use during a single CHEM 111 Exam 2 study session of your 

choosing, ideally carried out individually. Please provide detailed answers in complete sentences. 

You may write on the back or on an attached sheet of paper if you need more room.  

 

Please read all questions before you begin. 

 

PLAN: Before you begin your study session, please answer these questions. 

 

1) What are my goals for this study session, and what are all the things I need to do to 

successfully them? 

 

2) Which aspects of the Exam 2 material should I spend more or less time on, based on my 

current understanding of what has been covered in lecture thus far? 

 

MONITOR: At some point during your study session, please answer these questions: 

 

3) What other resources could I be using to complete this task, and what action should I take to 

get them? 

 

4) What is most challenging for me about this study session? Most confusing? 

 

REFLECT: After your study session, please answer these questions: 

 

5) Which of my confusions have I clarified during this study session, and how was I able to get 

them clarified? 

 

6) Which confusions remain and how am I going to get them clarified? 

! !
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Research Flyer 

 

Are you struggling with CHEM 111 exams? 
 

Participate in a 3-session exam preparation workshop, designed 

specifically for CHEM 111 exams. 
 

 

Participants must be available between 

7:00 pm and 9:00 pm on ALL of the following dates: 
 

Wednesday, 9/24/14 Piñon Hall, 131 

Wednesday, 10/15/14 Piñon Hall, 131 

Wednesday, 11/05/14 Piñon Hall, 131 

 

 

You will be randomly assigned to either a 7:00 pm – 8:00 

pm or a 8:00 pm – 9:00 pm group. 
  

Total time commitment is 3 ½ hours and is open to all 

students enrolled in CHEM 111. Space is limited (first-

come, first-serve). 
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Recruitment E-mail 

 

Dear CHEM 111 student, 

 

I am writing to let you know about a series of exam preparation workshops for CHEM 111,  

available to all Fall 2014 CHEM 111 students. The main goal of these workshops is to help 

students to improve their exam preparation skills with regards to general chemistry exams. 

 

Workshops will run on Wednesday evenings between the hours of 7:00 and 9:00 pm on the 

following dates (you will be randomly assigned to either a 7:00 pm-8:00 pm group or an 8:00 

pm-9:00 pm group): 09/24/14, 10/15/14, and 11/05/14 in Piñon Hall, room 131. You will be 

expected to attend all three workshop dates. 

 

Wednesday  9/24/14 7:00–9:00 pm  Piñon 131 

Wednesday 10/15/14 7:00–9:00 pm  Piñon 131 

Wednesday 11/05/14 7:00–9:00 pm  Piñon 131 

 

Total volunteer time for participating in these workshops will be approximately 3 hours, plus an 

additional 30-minute activity, for a total of 3 ½ hours. 

 

If you wish to volunteer or have any questions that pertain to this opportunity, please respond to 

this e-mail, or send me an e-mail (Morgan.Hawker@colostate.edu) by Wednesday, September 

17
th

, 2014 at 11:59 pm. 

 

Space in the workshops will be limited, and volunteers will be chosen on a first-come, first-serve 

basis. 

 

Sincerely, 

Morgan Hawker 

Graduate Student 

CSU Chemistry Department 

!
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LIST OF ABBREVIATIONS 

 

 

 

PART I 

 

2D Two-dimensional 

3D Three-dimensional 

ABS Acrylonitrile butadiene styrene 

ACS American Chemical Society 

AFM Atomic force microscopy 

allylNH Allylamine 

allylOH Allyl alcohol 

ANOVA Analysis of variance 

C/N (or N/C) Carbon-to-nitrogen (or nitrogen-to-carbon) ratio 

C/O (or O/C) Carbon-to-oxygen (or oxygen-to-carbon) ratio 

C1s Carbon 1s (XPS spectrum) 

C2H4 Ethylene 

C3F8 Octofluoropropane 

CA Contact angle 

CAD Computer assisted drafting 

CHCl3 Chloroform 

CO2 Carbon dioxide 

CW Continuous wave 

d.c. Duty cycle 

DCM Dichloromethane 

E. coli Escherichia coli 

ECM Extracellular matrix 

EDS Energy dispersive x-ray spectroscopy 

F Flow rate 

F/C Fluorine-to-carbon ratio 

FC Fluorocarbon 

FTIR Fourier transform infrared spectroscopy 

FWHM Full width at half maximum 

GSNO S-nitrosoglutathione 

GSNO20 Tygon® film with 20% S-nitrosoglutathione incorporated (w/w) 

GSNO5 Tygon® film with 5% S-nitrosoglutathione incopororated (w/w) 

H2 Diatomic hydrogen 

H2O Water 

HDF Human dermal fibroblasts 

HFPO Hexafluoropropylene oxide 
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HMPA 2,2-bis(hydroxymethyl propionic acid) 

IEP Isoelectric point 

IRB Institutional Review Board 

LTP Low-temperature plasma 

MA Maximum amplitude (TEG) 

Mn Number average molecular weight 

MeOH Methanol 

MRTG Maximum rate of thrombus generation (TEG) 

N2 Diatomic nitrogen 

NaCl Sodium chloride 

NBM Nutrient broth media 

NH3 Ammonia 

NO Nitric oxide 

NTC Non-tissue culture (polystyrene) 

O/N Oxygen-to-nitrogen ratio 

O• Oxygen radical 

OD 1,7-octadiene 

OES Optical emission spectroscopy 

OH• Hydroxide radical 

P Applied plasma power 

p Pressure 

PBS Phosphate buffered saline 

PC Polycarbonate 

PCL Polycaprolactone 

PE Polyethylene 

PECVD Plasma-enhanced chemical vapor deposition 

PES Polyethersulfone 

PET Polyethylene terephthalate 

PGA Polyglycolic acid 

PI Propidum iodide 

PLA Polylactic acid 

PLGA Polylactic-co-glycolic acid 

PLGH 
Carboxyl-functionalized polymer prepared from L-lactide, glycolide and 

2,2-bis(hydroxymethyl propionic acid) 

PPP Plasma Processes and Polymers 

PSF Polysulfone 

PTFE Polytetrafluoroethylene 

PVC Polyvinyl chloride 

R Reaction time (TEG) 

Ra arithmetic average roughness 
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rf Radio frequency 

RMS Root mean squared 

Rq Root mean square roughness 

RSNO S-nitrosothiol 

SEM Scanning electron microscopy 

t Time (associated with dynamic contact angle measurements) 

TC Tissue culture (polystyrene) 

TEG Thromboelastography 

TMA Time to maximum amplitude (TEG) 

TMRTG Time to maximum rate of thrombus generation (TEG) 

ToF-SIMS Time-of-flight secondary ion mass spectrometry 

TTG Total thrombus generation (TEG) 

VASE Variable angle spectroscopic ellipsometry 

WCA Water contact angle 

XPS X-ray photoelectron spectroscopy 

θadvancing Advancing water contact angle 

θreceding Receding water contact angle 

θstatic Static water contact angle 

 

PART II 

 

ANCOVA Analysis of covariance 

CHEM 111 General chemistry 1 course at Colorado State University 

KC Knowledge of cognition 

M Mean exam score 

MAI Metacognitive Awareness Inventory 

r|calibration| Effect size of absolute calibration 

rexam Effect size of exam score 

RC Regulation of cognition 

STEM Science, technology, engineering, and mathematics 

VSEPR Valence-shell electron-pair repulsion 

  

 


