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ABSTRACT 

Microwave Sounding Unit (MSU) global brightness temperature fields are com­

pared with observed atmospheric general circulation features for the purpose of 

determining the extent to which MSU brightness temperature relates to observed 

atmospheric circulation. A six-week MSU data set covering 8 Jan 87 - 18 Feb 87 

is analyzed. Global and hemispheric projections of MSU Channel 2 (53.74 GHz), 

Channel 3 (54.96 GHz), and Channel 4 (57.95 GHz) brightness temperature fields 

are presented in two divisions; 8-31 Jan and 1- 18 Feb 87. Complementary data 

sets of temperature, zonal wind, geopotential height, and streamfunction are devel­

oped using model analyses from the European Centre for Medium Range Weather 

Forecasts (ECMWF) and the National Meteorological Center (NMC) for the pur­

pose of a comparative study. MSU thermal fields may be considered an estimate 

of atmospheric mean-layer temperature through levels determined by each chan­

nel's weighting function. Using thermal wind theory MSU meridional temperature 

gradients are shown related to zonal wind, geopotential height, and steamfunction 

fields. Results of pattern comparison and random numerical calculations show MSU 

thermal fields give a unique insight into atmospheric general circulations. The MSU 

observations are also shown to provide important information about the lower strato­

spheric thermal structure. Specifically, MSU Channels 3 and 4 detected a warming 

northward of 500 N between the 8-31 Jan and 1-18 Feb data sets. This warming 

was also detected in the ECMWF data sets and at higher levels in the NM C data. 

Applications of this research for the future may include weather and climate model 

initialization and verification. 
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1.1 BACKGROUND 

CHAPTER 1 

INTRODUCTION 

Microwave observations of the earth's emitted radiation are a valuable tool 

for studying various properties of the earth's surface and atmosphere on a 

global basis. Since the first microwave radiometer was flown aboard the 

planetary mission Mariner 2 in 1962, microwave instruments have evolved into 

a powerful technique for remote sensing of the earth's surface characteristics 

through imagers, and the atmosphere's thermal and moisture structure 

through sounders. An interesting history of microwave radiometry on 

spacecraft was prepared by Njoku, 1982. Passive microwave remote sensing 

offers distinct advantages over measurements taken in the visible and infrared 

wavelengths. The unique ability of microwave radiation to penetrate most 

clouds with little attenuation (with the exception of large cloud droplets and 

rain), makes microwave remote sensing a near weather-independent 

measurement technique. Microwave radiation provides the satellite based 

technique for remote sensing of atmospheric temperature in the presence of 

clouds. The Microwave Sounding Unit (MSU) was designed primarily as an 

atmospheric temperature sounder to provide soundings in the presence of 

clouds. For example, Kidder, 1979 used MSU data to measure upper 

tropospheric temperature anomalies to infer tropical cyclone surface pressure 

and winds. Lubich and Zehr, 1988 also used MSU brightness temperature 

1 



2 

data to study the vertical temperature structure of tropical storms in cloud 

cluster regions. Grody and Shen, 1982, studied Hurricane David (1979) using 

MSU brightness temperature measurements with the aim of distinguishing 

precipitating from non-preciptating areas. Grody, 1983 also used MSU data 

with the objective of distinguishing precipitating from non-preciptating regions 

by studying the thermal structure of convective storms over the central United 

States. The MSU was first flown aboard the polar-orbiting Tiros-N satellite 

launched in 1978, and since has flown on the NOAA A-G polar-orbiting series. 

Thus, the MSU data set currently provides an extensive record of radiometric 

data that may help to reveal the thermal structure of the atmosphere day or 

night on a global or regional basis, even in the presence of clouds. 

Microwave Sounding Unit observations measure the emission from 

different layers in the atmosphere, the altitude of which depends on frequency. 

These emissions are a result of line absorption and emission from molecular 

oxygen at four frequencies (channels) in the 5-mm wavelength region. 

Channel 1 (50.30 GHz) is highly transparent and largely measures the surface 

emission, Channel 2 (53.74 GHz) senses the lower troposphere, Channel 3 

(54.96 GHz) the upper troposphere, and Channel 4 (57.95) the lower 

stratosphere. The time invariant and near uniform mixing ratio of molecular 

oxygen through the troposphere (Liou, 1980) allows opportunity for 

estimations of atmospheric temperature profiles from the 50-60 GHz region, 

(Staelin, 1969). Thus the atmospheric temperature meaSurt3ments from the 

MSU provides a unique view of the broad thermal structure of the troposphere 

and lower stratosphere on a global scale. A knowledge of global atmospheric 

temperature fields from the MSU may also reveal many general circulation 

features in the atmosphere, and provide an analysis tool for current research 
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in global climate trend studies. In the future, the Advanced Microwave 

Sounding Unit (AMSU) will offer better vertical resolution (11 channels in the 

50 - 60 GHz oxygen band), however this instrument is not expected to fly until 

the mid 1990's (Murphy, 1987). Thus, for most of the next decade the MSU 

will provide a unique data set for studies of the global atmosphere. 

1.2 STATEMENT AND SCOPE OF PROBLEM 

Computer models which simulate the present state and future motion of the 

atmosphere and climate are continually being modified with theoritical and 

computer engineering advances. The numerical modeling of weather and 

climate is one of the fastest growing disciplines in the atmospheric sciences 

today. Even with the incorporation of the best available ph}'sics and 

mathematics, a model can only be sucessful in predicting the future by first 

sucessfully capturing the initial state of the atmosphere and by second having 

a high confidence data set for verification purposes. Microwave thermal data 

may perhaps contribute in part to both needs. It not only Offt3rS a source of 

initialization for climate models, but can also be of tremendous value for 

verification purposes. MSU data sets can provide a global data collection 

system for numerical weather prediction interests. Vast regions of the globe 

are covered by poor or non-existent data collection systems. Oceans cover 81 

percent of the southern hemisphere and 61 percent of the northern 

hemisphere (Sellers, 1965). Satellite remote sensing appears to be the 

solution to meteorological data col/ection problems both temporally and 

spatially, with microwaves providing the capability of an all-weather look into 

the atmosphere's thermal structure. 
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The principle quest of this study is to determine the extent to which MSU 

brightness temperature measurements relate to gross charElcteristics of 

atmospheric circulation. Surface emissivity is an important term in the 

microwave radiative transfer equation, we wish to determine what effect it has 

on MSU brightness temperature measurements from the various channels. 

Since MSU brightness temperature is essentially a vertically integrated or 

mean-layer temperature, to what extent does it relate to ECMWF observed 

zonal wind, geopotential, and streamfunction fields? Are lower stratospheric 

phenomenon detectable using MSU? Answers to these qu,estions may show 

whether MSU data has the ability to discern circulations characteristics in the 

earth's atmosphere and the capability to provide model initialization and 

verification information. 

1.3 RESEARCH OBJECTIVES AND STRUCTURE C:)F THIS THESIS 

The objectives of this study were three-fold: 

• First, to develop a method and produce global brightness temperature 

fields from MSU radiometric data available on magnetic tape. 8 Jan­

uary - 18 February 1987 was chosen as the test-case period due to 

the immediate availability of the MSU data set through the Cooperative 

Institute for Research in the Atmosphere (CIRA) at Colorado State 

University. Chapter 2 covers this objective in three parts. First, a 

discussion of microwave radiative transfer including the derivation of 

brightness temperature is presented. Second, the Microwave Sounding 

Unit is discussed; its satellite platform, instrument operation, along with 

the conversion procedure used to obtain a brightness temperature value 

from raw thermal data counts. Lastly, Chapter 2 includl~s the methods 
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developed to process MSU brightness temperature files into global fields 

and presents samples of MSU Channels 2, 3, and 4. Processing and 

displaying brightness temperature fields in this time-averaged global 

format is a relatively new approach to application of MSU data. 

• The second objective was to compile a complementary set of 

meteorological observations of the earth's atmosphere for a comparative 

study designed to identify if general circulation features such as 

tropospheric wind and thermal patterns were reflected in MSU thermal 

fields. Model analyses from the European Centre for Medium Range 

Weather Forecasts (ECMWF) provide an observational data set to 

compare with MSU brightness temperature fields. ECMWF global 

analyses from 1979-1987 are stored in numerical form on mass store at 

the National Center for Atmospheric Research (NCAR) in Boulder, CO., 

(Trenberth and Olson, 1988). Analysis data sets are available at 1000, 

850, 700, 500, 300, 200, and 100 mb levels. The ECMWF data sets are 

organized to run on the NCAR Community Climate Model (CCM) 

Processor, a software package designed at NCAR (Wolski, 1987), which 

performs user-specified functions, such as time-averaging. Processor 

results can be displayed in either numerical or graphical form. ECMWF 

analyses combined with the capabilities of the CCM Processor, allowed 

the opportunity to temporally and spatially match ECM'NF data with 

available MSU data sets for a comparative study. 

Chapter 3 discusses the development of ECMWF fil31ds of 

temperature, zonal wind, geopotential height and thickness, and 

streamfunction for the periods of 8-31 Jan and 1-18 Feb. ECMWF fields 
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provide a look at the climatology of the January and February months 

plus specific features that existed during 8 Jan -18 Feb 87, the time 

period coincident with the MSU data set. This study rE}presents a 

pioneering effort to process ECMWF data sets from the mass store at 

NCAR for an observational study with passive microwave remote 

sensing data. 

• The third objective was to determine the extent to which MSU brightness 

temperature fields relate to observed atmospheric circulations. This 

comparative study is presented as Chapter 4. The first comparison, 

Section 4.1, performed was between MSU brightness temperature fields 

for Channels 2, 3,and 4 and ECMWF temperature fields. MSU Channels 

2, 3, and 4 thermal patterns are shown best represented by ECMWF 

temperature fields at 500, 300, and 100 mb, respectively. A second 

comparison was made between MSU meridional temperature gradients 

and ECMWF zonal wind based on the thermal wind concept. MSU 

brightness temperature fields are assumed to be represl3ntative of 

mean-layer temperature of an atmospheric layer determined by the 

channel's weighting function. ECMWF zonal wind fields are shown to be 

proportional to MSU meridional temperature gradients as presented in 

Section 4.3 To further investigate this relationship MSU temperature 

anomaly fields were constructed in Section 4.4 in an effort to determine 

jet stream location using MSU brightness temperature fields. The jet 

stream is assumed to be located in the region where thl3 sign of the MSU 

temperature gradient reverses. ECMWF zonal wind data is presented as 



7 

a basis for evaluation for determining the MSU anomaly field's accuracy. 

Section 4.5 extends the thermal wind concept to a comparison between 

ECMWF geopotential thickness gradient and MSU briohtness temp­

erature gradient. Since both are related to mean-layer temperature 

pattern, correlation between fields should be evident. Likewise, the 

MSU thermal field itself should be representative of ECMWF geo­

potential thickness. MSU brightness temperature fields are also 

compared to ECMWF derived streamfunction fields in Section 4.6. 

Results of the comparisons in Chapter 4 show excellent correlations 

between MSU and atmospheric circulation properties, and demonstrate 

the potential of MSU thermal data for studying the global general 

circulation of the atmosphere. 

One unexpected finding during the analysis of the MSU data sets provided 

an interesting extra topic for investigation. Section 4.7 discusses a northern 

hemispheric warming observed above 500 latitude between the 8-31 Jan and 

1-18 Feb data sets. ECMWF data up to 100 mb and stratospheric NMC data 

are used to determine if a stratospheric warming may have occured during this 

period. Most of MSU Channel 4 and portions of Channel 3's weighting 

function are located in the lower stratosphere. 

This thesis concludes by summarzing the results of comparisons between 

MSU and ECMWF fields in Chapter 5. Recommendations are also presented 

for anyone conSidering further study of topics discussed in this thesis, or 

anyone working with the MSU data set in another application. 



Chapter 2 

MICROWAVE RADIATION AND THE MICROWAVE 

SOUNDING UNIT 

2.1 INTRODUCTION 

The application of radiometric information from the microwave region of 

tile electromagnetic spectrum to research studies in the atmospheric sciences 

has greatly increased in the last decade. The ability of microwaves to 

penetrate clouds provides atmospheric scientists with a unique look into the 

earth's atmospheric structure in and around cloud systems. The breadth of 

possible uses of microwave remote sensing information has recently 

becoming realized. The inclusion of the High Resolution Multifrequency 

Microwave Radiometer aboard NASA's future Earth Observing System for the 

1990's is evidence of this realization. Several of its suggested applications 

include measuring soil moisture content, snow depth, sea surface 

temperature, sea ice extent and age, sea surface wind speE!d, atmospheric 

water vapor and temperature profiles, and the detection of precipitating cloud 

systems. 

This chapter reviews some fundamentals of microwave radiative transfer 

and overviews the Microwave Sounding Unit (MSU), from which brightness 

temperature fields were obtained for this study. The concept of thermal 

radiation, a review of the radiative transfer equation applied in the microwave 
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region, and a discussion of the effects of the atmosphere and surface on 

radiative transfer are contained in Section 2.2. The Microwave Sounding Unit 

was carried aboard the TIROS-N/NOAA A-G satellite series beginning in 

1978. A brief review of this polar-orbiting satellite series is provided in Section 

2.3. In Section 2.4, the scan, antenna, and radiometer systems of the 

Microwave Sounding Unit are discussed along with a sumrnary of MSU 

radiometric data- calibration and conversion methods. The final section, 

Section 2.5, contains a collection of brightness temperature fields derived from 

the MSU data sets. It includes data preparation and mapping methods, and 

presents the resulting MSU temperature fields. 

2.2 MICROWAVE RADIATIVE TRANSFER 

The emission of electromagnetic radiation is the fundamental quantity 

measured by the Microwave Sounding Unit and is sensed in four spectral 

bands which coincide with an absorption band of molecular oxygen. 

2.2.1 Thermal Radiation 

Electromagnetic radiation is emitted by all substances with a finite 

absolute temperature. Molecules may absorb electromagnlstic radiation and 

transition to a higher energy level, or emit radiation and transition to a lower 

energy level. The absorption-emission properties of a mole'cule can be 

represented by a line spectrum showing the frequencies where absorption­

emission do and do not occur. In the microwave region (3-300 GHz), energy 

level changes tend to be small and associated with rotational changes (Goody 

and Walker, 1970). In the microwave region, thermal emission is the only 
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source of radiation and is dependent on the absolute temperature of the 

substance as determined by the Planck function. 

The relationship between absolute temperature and radiation emitted is 

g;iven by Planck's Law for a hypothetical blackbody (a body which fully 

absorbs and emits in all parts of the electromagnetic spectrum), the Planck 

function written in wavenumber form (Chandrasekhar, 1960) is 

B (T) = 2hv
3 

1 
v 2 hv 

C -
elCT- 1 

(2.1 ) 

where Bv is the spectral radiance at frequency v and absolute temperature T, 

k = 1.38 x 10-23 JOJ("1 Boltzmann's Constant 

c = 3.0 x 108 ms-1 the speed of light, and 

h = 6.63 x 10-34 Js-1 Planck's constant. 

In the microwave region of 3 - 300 GHz (1 GHz = 109 cycles/sec, and 

1i cm = 30 GHz) the Rayleigh-Jean's approximation, hv/kT« 1, can be 

applied to simplify Planck's Law. The resulting approximation is called the 

Hayleigh-Jean's law and is written as 

(2.2) 

Equation 2.2 shows the relationship of blackbody spectral radiance to 

absolute temperature T as a linear function in the microwave region 

(Rayleigh-Jean's law), as shown in Figure 2.1. Rayleigh-Jean's law is shown 

to be a good approximation of Planck's law in the microwave region (108 thru 

1012 Hz). 

The radiometric quantity most commonly used in the analysis of microwave 

remote sensing data, and in this study, is equivalent brightn,ess temperature. 
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MICROWAVE 
l- REGION --l 

/ 
~ 
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/ 

,. 
/ 

/ 

......... Rayl.iQh-JeanS Law 

PICI'Ck Law 

Figure 2.1: Comparison of Planck's law with Rayleigh-Jean's Law 
at T = 300 K (From Tsang et aI., 1985). 

According to Equation 2.2, equivalent brightness temperature is simply 

proportional to the intensity of radiation. Equation 2.3 shows this relation by 

Elxpressing the radiance Lv emitted by a blackbody as a function of its 

absolute temperature 

where T B is hereafter refered to as the brightness temperature, and is a 

function of frequency. 

2.2.2 The Radiative Transfer Equation 

(2.3) 

To better understand microwave remote sensing in the context of what the 

satellite instrumentation actually detects, a brief review of the solution of the 

radiative transfer equation in the microwave region is presented. Since only 

large cloud droplets and rain have attenuation cross-sections large enough to 
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attenuate electromagnetic radiation in the microwave region significantly, a 

non-scattering atmosphere can generally be assumed. The solution of the 

radiative transfer equation under this assumption and that of local 

thermodynamic equilibrium, can be written in the form (Liou, 1980): 

(2.4) 

where v denotes the frequency, lv(O) represents outgoing radiance at the top 

of the atmosphere, lv(ps) the radiance contribution from the surface, and 

T v(p,O) the transmittance from pressure level p to the top of the atmosphere. 

The radiance contribution from the surface results from two physical processes 

shown schematically in Figure 2.2, and mathmatically in Equation 2.5. 

Surface Surface 
Emissian Atmasphere Reflectian 

Figure 2.2: Contribution of radiance at the top of a clear atmosphere 
(From Liou, 1980). 
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(2.5) 

The first term on the right-hand side of Equation 2.5 represents the surface 

E!mission contribution, while the second term represents emission from the 

atmosphere which is reflected by the surface back to the atmosphere. By 

substituting Equation 2.5 into 2.4 the reflection component can be seperated 

from the contributions by atmospheric emission, resulting in three contributions 

trO upwelling radiance at the top of the atmosphere as defined in Equation 2.6. 

The surface emission term is a product of surface emissivity, Planck 

radiance (a function of surface temperature), and atmospheric transmittance 

through the total atmosphere. The surface reflection term is a product of the 

surface reflectance ratio and the vertically integrated weighting function 

multiplied by the atmospheric temperature profile. The third radiance 

contribution to brightness temperature measured at the top of the atmosphere 

is the atmospheric emission term, a function of the atmospheric temperature 

profile and atmospheric transmittance from pressure level p to the top of the 

atmosphere. This term is also vertically integrated to obtain a total atmospheric 

contribution. By substituting the Rayleigh-Jean's law into this radiative transfer 

€lquation the expression for equivalent brightness temperature can be written 

(Liou, 1980): 
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o aT ( 0) 
+ STep) va~' dP 

p 
• (2.6) 

This relationship shows the three contributions to equivalent brightness 

tl3mperature at the top of the atmosphere in mathematical form. Since 

Tv(ps'p) = T v(ps,O)!f v(p,O) Equation 2.6 can be rewritten as (Liou, 1980): 

(2.7) 

where the atmospheric source term is given by, 

(2.8) 

a.nd where, T v(ps) denotes transmission from the surface to the top of the 

a.tmosphere and T v(p) transmission from pressure p to the top of the 

a.tmosphere. The large variation of surface emissivity in the microwave region 

between dry and wet surfaces, vegated and non-vegetated surfaces has a 

significant effect on brightness temperature and should be considered in any 

diata analysis. 

2.2.3 Atmospheric and Surface Effects 

Atmospheric gases and surface characteristics both havE~ a significant 

effect on radiative transfer in the microwave region. Atmospheric gas molecules 
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undergo energy level transitions upon interaction with electromagnetic 

radiation in the microwave region and subsequently influence the atmospheric 

emissions. Varying surface characteristics such as topography and moisture 

content also effect surface emissivity values. 

Water vapor and molecular oxygen, as shown in Figure 2.3, are the two 

major atmospheric gases that affect transmission in the microwave region. The 

four channels of the Microwave Sounding Unit reside in that part of the 

spectrum that contains the 50 - 60 GHz (0.5 cm) oxygen absorption band. 

0.1.5 0.10 30 3 1 . .51 0 . .5 0.3 0.2 
lOO~rr--T---~----r----.----.----' 

y,.....;,-----:.-- w'.at .. V_ Absorption ..... 

0.12 

90 

~ 80 

t 70 
~ 

~ 60 

g SO 
": 
.~ ~ 

,.:: 30 

20 

10 

O~~~~~~~~-L~~~~~~~ 

1 20 ~ 60 80 100 120 I~ 160 180 200 220 2~ 260 280 300 

Fr_ency (GHz) 

Figure 2.3: Percent Transmission through the Earth's Atmosphere, 
along the vertical, under clear sky conditions (Ulaby, 1981) 

The absorption band of molecular oxygen near 60 GHz r,esults from a 

rotational transition caused by a change in the spin orientation of its electrons. 

Another absorption line for molecular oxygen is shown near 120 GHz, and 

water vapor absorption lines occur near 31 and 183 GHz. Other microwave 

rE!mote sensing instruments have taken advantage of these water vapor bands 
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and "windows". For example, Prabhakara, et. al. 1982 and 1 !~83, studied the 

remote sensing of precipitable water over the oceans, surface wind speed, sea 

surface temperature, and atmospheric liquid-water content using data from the 

Scanning Multichannel Microwave Radiometer (SMMR) flown on Nimbus-7. 

Surface emissivity in the microwave region typically range from near unity 

over dry land to .6 over wet soils to .4 over ocean surfaces (VVang and 

Schmugge, 1980; Schmugge, 1985). Snow and ice surfaces in regions of 

elevated terrain also act to lower emissivity and consequently effect 

mf3asurements from MSU Channel 2. Moisture content can act to lower soil 

emissivity values as low as .60, while the presence of ice or foam, or the 

de!gree of surface roughness alters ocean surface emissivity. Surface 

emissivity is contained in both the surface emission and surface reflection 

tel'ms of Equation 2.6. 

2.:2.4 The Microwave Sounding Unit Weighting Function 

The temperature weighting function defines the contribution of emission 

from different pressure levels to the observed brightness temperature. This 

weighting function can be expressed as 

(2.9) 

The weighting function term is included in both atmospheric t3mission terms, 

thf3 surface reflection and direct atmospheric emisson, of Equation 2.6. Figure 

2.4 shows the MSU weighting function for its four channels (50.30, 53.74,54.96, 

and 57.95 GHz). The dashed lines show the weighting functions at the MSU 

scan limit along a path inclined 570 from satellite nadir angle, peaking higher 

in the atmosphere due to the longer observing path length. Solid lines show 



17 

the weighting function overhead paths defined by a scan angle of 00 . The 

effect of angular scanning on the peak of the weighting function is given by 

(Grady, 1983), 1 

pes) = p(Oo) x (COSS)2 
(2.10) 

where P(Oo) is the pressure at which the weighting function peaks at nadir, and 

theta is the scan angle. Surface emissivity effects are also shown for the lower 

channels, varying from near 1.0 for dry land and 0.5 for ocean surfaces. 

20 

so 

- 70 ! 
• 
! 100 • • & 

aoo 

100 

700 

0.0 

- Nadir ('.0·) 

----- SCI" Lllllit ( .. 5 ••• ·) 

0.2 0.4 0.' 0.' 1.(1 

Talllp.r.,ura WaiO"I"O FUllcUot. 

Figure 2.4: MSU Weighting Function at nadir and scan limit positions 
(From Grady, 1983). 
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:2.3 MSU'S SATELLITE PLATFORM 

The Microwave Sounding Unit (MSU) was first flown aboard TIROS-N, 

launched on October 13, 1978. The TIROS-N spacecraft system with the 

IMSU attached is illustrated in Figure 2.5. Its communications and 

j,nstrumentation systems are labeled. Since 1978, the microwave sounding 

unit has flown on all the current'generation NOAA polar orbiting satellites 

(NOAA A/6 - G/10). The TIROS-N/NOAA A-G satellite series was designed 

and built by RCA Corporation, procured and operated by NOAA. MSU data 

used in this study was taken from NOAA-G/10. NOAA-G/10 was launched on 

September 17, 1986 and became operational November 17, 1986. 

ROCKET 
ENGINE 

ASSEMtlLY ••• 

TIROS-N Spacecraft 
ARRAY EOUIPIIINT 
DRIVE SUI'fIORT 

ELECT-.cs MOOULE 

5-8AND .--+--1 
'*"1 MICROWAVE STRATOSPHERIC 

ANTENNA SOUNDING SOUNDING UNIT 

UHFOATA 
COLLECTION 

SYSTEM ANTE ... A 

UNIT 

HlGH-IIE_UTIOM 
INFRARED 

RADIATION 
lDUNOER 

Figure 2.5: The TIROS-N Series Spacecraft (After Schwalb, 1978) 

This satellite series operates in a near-polar, sun-synchronous orbit. 

Figure 2.6 shows the ground track of TIROS-N series for 2.5 orbits on 

December 31, 1979 progressing east to west. The ground track does not 
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overlap on a daily basis to allow same daily time coverage of a region. 

However, it does cross similiar latitude lines at the same Local Solar Time 

(LST) allowing a diurnal division of data. NOAA G/10 crosses the equator at 

1 ~)30 LST at its ascending node(northbound Equator crossing) and 0730 LST 

at its decending node (southbound Equator crossing). 

The orbital period of TIROS-N/NOAA A-G satellites is approximately 102 

minutes, resulting in 14.1 orbits per day. Orbit altitude is 833 km (450 n. mi.). 

A sub-orbital track and path swath locator can be constructed for this satellite 

series using directions in the NOAA Polar Oribiter Users Guide, (Kidwell, 

1986). 
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i-98.978Z- 1010 a 96.7544-
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C-0 .J 

Figure 2.6: The Ground Track of a Sun-synchronous Satellite 

2.4 MSU INSTRUMENT DESCRIPTION AND OPERATION 

The Microwave Sounding Unit is a 4-channel Dicke radiometer making 

passive measurements in the 50 - 60 GHz oxygen band. The instrument was 
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Iouillt by the Jet Propulsion Laboratory (JPL) of the California Institute of 

Technology. and is an adaption of the Scanning Microwave Spectrometer 

which flew on Nimbus 6. The MSU is one of three instruments which makeup 

the TIROS Operational Vertical Sounder (TOVS) system. Its primary design 

purpose is to provide a means of temperature sounding in the presence of 

clouds. A photograph of the MSU is shown in Figure 2.7 and its system 

parameters are summarized in Table 2.1. 

Figure 2.7: The Microwave Sounding Unit (from Schwalb. 1978) 

2.4.1 The Antenna and Scan Systems 

The Microwave Sounding Unit has two scanning antenna systems. Each 

antenna system consists of two cross-track rotating reflectors which direct 



21 

TABLE 2.1 

Table 2.1 : Microwave Sounding Unit Instrument Parameters 

Parameter 

Instrument Type: 

Channel Frequencies: 

Channel 1 
Channel 2 
Channel 3 
Channel 4 

RF Bandwidth: 

Noise Equivalent ~T B: 

Angular Resolution: 

Ground Field of View: 

Scan Line: 

Cross-Track Scan Angle 
Cross-Track Distance 
Time Per Scan 
Number of steps 

Scan Step: 

Angle 
lime 

Gap Between Consecutive 
Passes at Equator: 

Calibration: 

Data Rate: 

Instrument Mass: 

Instrument Size: 

Average Power Consumption: 

Value 

Dicke Radiometer 

50.30 GHz 
53.74 GHz 
54.96 GHz 
57.05GHz 

220 MHz 

0.3 oK 

7.50 (3 dB) 

109.3 km at Nadir 

±47.3So 
±1015 km 
25.6 sec 
11 

9.470 

1.84 sec 

433km 

Hot reference body and space 
background each scan cycle 

320 bits s-1 

20.9 kg 

58.4 x 20.3 x 38.1 cm 

30W 
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incoming radiation into fixed corrugated horns. The antenna beamwidths are 

both 7.50 (half power point) from four-inch reflectors, resulting in a ground 

resolution at the subpoint of 109 km. The reflectors are rotated by highly 

accurate pulley drives through ten 9.450 steps resulting in 11 Earth views per 

scan line as shown in Figure 2.8. Figures 2.9 and 2.10 show two examples of 

the MSU scan pattern. The total scan line covers ±47.35° from nadir. Ground 

resolution varies from 109 km at subpoint to 323 km at the fringe field of views. 

Two additional steps provide calibration views of cold space and a blackbody 

attached to the instrument housing. A new scan line is started every 25.6 

seconds to allow synchronization with the other two TOVS instruments every 

five scan lines. 

SUBORBITAL TRACK 

.U?::!~--r-
_J--

'~'bo 
9.47· (360"'381 

HIRSI2 CALIBRATION PERIOD 

~~~---r--~---------
=l1F-=-- ------- - -------:7-~ES:7 

47.37" 

.. -- - 1173.6 km --

Figure 2.8: MSU Scan Line pattern (large oblate circles) projected on Earth, 
coverage pattern is shown in relation to the Hi~lh Resolution 
Infrared Radiation Sounder (HIRS/2) instrument (smaller circles). 
(Schwalb, 1978) 
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MSU 

Figure 2.9: Successive MSU Scan Lines. 

Figure 2.10: MSU Scan PatternTwo Consecutive Orbits. (Smith et. aI., 1979) 
shown along with HIRS scan pattern (small dots). 
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2.4.2 Radiometer System and Calibration 

The Microwave Sounding Unit contains an orthomode transducer, four Dicke 

superheterodyne receivers, a data programmer, and power supplies. 

Microwave radiation entering the feedhorn is seperated into vertical and 

horizontal polarization components. The four resulting beams travel via a 

waveguide to a Dicke switch which alternates between viewing radiation from 

the feedhorn and radiation from an internal ambient temperature reference 

load. This switching occurs at a rate of 1 kHz which modulates the incoming 

noise temperature. A two-point calibration is performed by viewing cold space 

and the reference body every scan line. The incoming signal is then mixed with 

radiation, of the same frequency, produced by a local oscillator to produce an 

intermediate-frequency (IF). The lower IF is amplified and detected by a 

superheterodyne receiver. After demodulation the signal is integrated and 

Qutputed to the data collection system. The output voltage of the receiver is 

proportional to the difference in brightness temperature between the scene and 

internal source. A schematic of this system is presented as Figure 2.11. The 

radiometer is sensitive to input originating from temperatures ranging from 0 to 

:3500 K. Output from the Microwave Sounding Unit is transmitted to Command 

and Data Acquisition stations in the TIROS information processor (TIP) format. 

Radiometric output data and telemetry are formatted into 16-bit words. One 

scan line of MSU data comprises 112 data words in the format shown in Table 

2.2. The Satellite Data Services Division of the National Climatic Data Center 

archives and offers MSU data on 6250 BPI tapes. Radiometric calibration of the 

MSU is accomplished by viewing the two calibration targets and determining 

the relationship between the output of the radiometer and the intensity 
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Figure 2.11: The MSU Radiometer Subsystem (Adapted from Njoku, 1982). 

()f the incident radiation. The temperature of the MSU's calibration targets are 

measured by two platinum resistance thermistors. The calibration algorithim 

with coefficients is published in NOAA Technical Memorandum NESS 107 -

l=lev. 1 (Planet, 1988). 

The relationship between input radiance and instrument output counts (0 -

'1024) is non-linear. A correction algorithm which allows the converting of raw 

data (in counts) to radiance in a linear fashion is applied to each channel. This 

is accomplished using calibration coefficients and normalization coefficients as 

detailed in the TOVS Level 1 b Data section of the NOAA Polar Orbiter Data 

User's Guide (Kidwell, 1986). Equation 2.11 shows the relationship between 
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count value and radiance 

E· =A 1 C· +A 0 I I, I I, 

where E = radiance value in mW/m2 x steradian x cm-1 

C = normalized count value 
A = calibration coefficients 

(2.11 ) 

(The first subscript represents the ith channel and the second denotes 
the order of the term). 

Converting radiance into an equivalent brightness temperature is a simple 

one-step process using the inverse of Planck's equation below, 

T(E) = ( c V3J 
In 1+_1_ 

E. 
I 

where Ei = radiance computed from equation 2.11 (mW/m2*ster*cm-1) 

T B(Ei) = Brightness temperature as a function of Ej (oK) 

v = central wave number of the MSU channel filters: 

MSU Channel 1 v = 1.6779 cm-1 

MSU Channel 2 v = 1.7927 cm-1 

MSU Channel 3 v = 1.8334 cm-1 

MSU Channel 4 v = 1.9331 cm-1 

c1 = 1.1910659 x 10-5 mW/m2*ster*cm-4 

c2 = 1.438833 cm*°K. 

Note: The subscript i refers the the ith_ channel. 

(2.12) 

The Microwave Sounding Unit data used in this study was extracted from 

6250 bpi tapes. Thermal data counts, and calibration coefficients were stored 

in the TOVS data format shown in Table 2.2. These thermal counts were first 
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calibrated and converted to a radiance value, and then to equivalent 

brightness temperature using the method described above. Section 2.5 

discusses the techniques used to process MSU data from tape format to 

produce MSU brightness temperature fields. It also contains a collection of 

global and hemispheric MSU brightness temperature map projections. 

TABLE 2.2 

Table 2.2: MSU Scan Line Format on Data Tapes 
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2.5 MSU BRIGHTNESS TEMPERATURE FIELDS 

The Microwave Sounding Unit data used in this study was obtained by 

researchers at the Cooperative Institute for Research in the Atmosphere at 

Colorado State University from NOAA-NESDIS. The data set is stored in 

TOVS format on 6250 bpi magnetic tapes. It covers the time period from 

January 8, 1987 to February 18, 1987. This section explains the methods 

used to process MSU data from tape format to produce global and 

hemispheric projections of equivalent brightness temperature. Section 2.5.1 

discusses data preparation and the graphics routines used to map the MSU 

fields. Section 2.5.2 is a collection of global and hemispheric brightness 

temperature fields for 8 Jan - 18 Feb 87 divided into 8-31 January, and 1-18 

February time periods. 

2.5.1 Data Preparation 

Preparation of MSU data for mapping is accomplished in four steps. Step 

one involves reading off raw voltage data converting these voltages to 

brightness temperature. In step two, the brightness temperature data files are 

limb-corrected. The third step involves application of an aVl3raging scheme to 

produce a global 2.5-degree latitude/longitude gridded data set. The final step 

makes use of graphics routines developed by the Scientific Computing 

Division of the National Center for Atmospheric Research (NCAR). Subroutine 

CONRAN is used to contour the brightness temperature fields and the 

graphics utility EZMAP produces the mapped image (Clare et al., 1986). 

2.5.1.1 Data Extraction 

FORTRAN-77 program MSUTAPE (Appendix A) reads raw MSU data 

from the magnetic tapes and produces a formatted brightness temperature file. 
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MSUTAPE extracts MSU radiometric data, satellite telemetry, and calibration 

data stored in TOVS format (Table 2.2) from the data tapes. MSUTAPE then 

performs a calibration on each MSU channel and converts raw thermal count 

values to equivalent brightness temperature. This procedure is outlined in 

Section 2.4.2 and discussed in detail by Kidwell, 1986. Subroutines SCAN 

QUALITY and BADSCAN search for and delete scan lines containing data or 

transmission errors. Finally, MSUTAPE outputs a formatted brightness 

temperature file. Figure 2.12a is a sample of MSUTAPE's output. The first 

line, the file header, contains the satellite name (NOAA-10), the data set name 

(MSUX), along with file start and end times (ie. 8701080944 = Jan. 8 1987 at 

0944 GMT). Then each field-of-view (FOV) is represented by one row of infor­

mation in the data file. The column 1 contains the FOV number in each scan 

line and column 2 contains the scan line number. There are 11 FOV's per 

scan line as shown in Figure 2.8. Columns 3 and 4 show each FOV's latitude 

and longitude to the hundredth of a degree (northern and eastern 

hemispheres are positive). Columns 4,5,6, and 7 contain the brightness 

temperature, in degrees Kelvin, for MSU channels 1, 2, 3, and 4 for each 

FOV. MSUTAPE processes one data file at a time. A data file contains 

approximately 250 scan lines or 2750 FOVs, the entire 6-week data period (8 

Jan - 18 Feb 87) is contained in 577 files. 

2.5.1.2 Li mb Correction 

The geometry of the MSU scan system requires a correction of 

brightness temperature proportional to the FOV scan angle. As the MSU 

scans off-nadir through a longer atmospheric path length, each channels' 

weighting function peaks higher in the atmosphere as shown in Figure 2.4. 
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NOAA10 MSUX 8701080944 8701081136 
1 1 68.95 90.66 225.8 223.4 212.1 
2 1 71.30 95.23 224.2 225.4 210.8 
3 1 72.88 99.01 222.1 227.4 211.1 
4 1 74.08 102.42 223.5 228.5 210.8 
5 1 75.09 105.77 223.6 229.5 211.4 
6 1 75.98 109.29 225.0 230.0 211.2 
7 1 76.81 113.27 240.1 230.8 210.9 
8 1 77.63 118.11 238.3 230.3 210.0 
9 1 78.42 124.52 231.3 228.5 208.8 

10 1 79.17 133.84 226.7 226.0 207.6 
11 1 79.63 149.09 226.6 221.7 207.4 

1 2 69.73 86.95 225.6 223.1 210.3 

Figure 2.12a: MSUTAPE Output 

NOAA10 MSUX 8701080944 8701081136 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

1 

1 68.95 90.66 349.2 232.3 215.6 
1 71.30 95.23 359.9 230.7 213.5 
1 72.88 99.01 354.8 230.6 212.9 
1 74.08 102.42 349.4 230.4 211.7 
1 75.09 105.77 345.9 230.8 211.8 
1 75.98 109.29 345.1 231.0 211.4 
1 76.81 113.27 347.5 231.7 211.4 
1 77.63 118.11 352.2 232.0 211.1 
1 78.42 124.52 357.4 231.9 211.0 
1 79.17 133.84 362.5 232.0 211.1 
1 79.63 149.09 349.6 232.0 211.9 
2 69.73 86.95 349.6 232.4 214.5 

Figure 2.12b: MSULIMB Output 

ill LON 

7.5 -17.5 
7.5 -15.0 
7.5 -12.5 
7.5 -10.0 
7.5 -7.5 
7.5 -5.0 
7.5 -2.5 
7.5 0.0 
7.5 2.5 
7.5 5.0 
7.5 7.5 
7.5 10.0 

NUMOBS 

172. 
163. 
168. 
172. 
178. 
170. 
179. 
180. 
172. 
170 •. 
170. 
169. 

TIl 
258.1 
258.2 
258.3 
258.2 
258.4 
258.6 
258.7 
258.9 
259.1 
259.0 
259.2 
259.1 

Figure 2.12c: Averaging Output (MSUChannel 2) 

209.0 
206.2 
205.1 
204.9 
203.9 
204.0 
203.4 
203.4 
203.6 
205.2 
208.2 
206.5 

210.8 
207.4 
205.8 
205.2 
204.1 
204.1 
203.5 
203.6 
204.0 
205.6 
208.4 
208.3 
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This results in anomalously cold brightness temperatures for FOV's with large 

scan angles. In order to use brightness temperature measurements from all 

FOV's without the effects of a cold bias, temperatures are normalized to the 

value they would have if the satellite observed the FOV at nadir (scan angle 

0°). The Earth~located zenith angles for the 11 MSU scan positions are 

0°, ±10.70, ±21.6°, ±32.7°, ±44.2°, and ±56.6°. Smith et al., 1974 has 

developed a method of computing nadir brightness temperature using 

regression equations. This method is used by FORTRAN-77 program 

MSULIMB (Appendix 8) to limb~ correct the brightness temperature files 

produced by MSUTAPE. Figure 2.12b is a sample of MSULlM8's output, 

which corresponds to the MSUTAPE example in Figure 2.1 ~~b. The 

limb-corrected brightness temperatures from the scan fringes have increased, 

correcting the cold bias. MSU Channel 1 contains limb-correction temperature 

errors on the order of 120° K due to surface influences. No data from channel 

1 is used in this study. 

2.5.1.3 Data Averaging Scheme 

The MSU data set available for this study (January 8 - February 18 1987) 

is divided into 577 files of approximately 250 scan lines each. This amounts to 

over 1.5 million data points per channel over the six-week period. To simplify 

the mapping process a simple averaging scheme is used produce a global 

grid-formatted data set. Each brightness temperature data point location is 

rounded-off to the nearest 2.5 degree latitude/longitude intersection. The final 

grid point temperature value is obtained by averaging all data points that 

round-off to the same grid intersection. Figure 2.13 shows a schematic of this 

process. For example, all the data points that fall inside thE! 1.25° - 3.750 N. 
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Figure 2_ 13: Sample Averaging Scheme Grid Area and Point 

latitude and 1.250 - 3.750 E. longitude box are averaged and recorded as a 

single data point at 2.50 N. latitude and 2.50 E. longitude. This method re­

duces the global data set from 1.5 million to 10,439 data points per channel. 

No special weighting was used in the averaging process to account for vary­

ing distance from the 2.50 grid point. Figure 2.12c is a sample of the 2.50
-

grid data file resultant from the averaging process. These files are then used 

by NCAR graphics routines to produce global brightness temperature maps. 

2.5.1.4 Graphics Routines used to Produce MSU IFields 

The NCAR GKS-Compatible Graphics Package providEIS all the analysis 

and mapping routines used to produce the MSU fields presented in Section 

2.5.2 (Clare et al., 1986). This package is designed to conform to the inter-
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national Graphical Kernal System (GKS) standard adopted by the American 

National Standards Institute (ANSI). This allows computer code to be written in 

FORTRAN-77 and linked through GKS to produce an executable contouring 

and mapping program. The Scientific Computing Division at NCAR 

developed the contouring utility CONRAN and the earth mapping utility EZMAP, 

both used in this study to produce global brightness maps. CONRAN is also 

used to contour the MSU temperature anomaly fields presented in Section 

4.4.2 Program MSUMAP (Appendix C) was used to call the CONRAN and 

EZMAP utilities, and along with various graphics options to produce the global 

MSU brightness temperature fields shown in Section 2.5.2. The next section 

presents the MSUMAP graphics output, global and hemisph'9ric brightness 

temperature fields for MSU channels 2, 3, and 4. 

2.5.2 Collection of MSU Fields 

Microwave Sounding Unit Channel 2, 3, and 4 brightness temperature 

fields are shown in Figures 2.14 - 2.21 on the following seven pages. Figure 

2.14a is a cylindrical equidistant projection of MSU Channel 2's brightness 

temperature averaged over 8-31 Jan 87, Figure 2.14b is the same data set 

projected on a northern hemisphere polar stereographic projection. Figures 

2.15a and b display MSU Channel 2 brightness temperatum averaged over 

1-18 Feb 87. Figures 2.16 and 2.17 are arranged in the same sequence as 

2.14 and 2.15, but display MSU Channel 3 average brightnl3ss temperatures. 

Likewise, Figures 2.18 and 2.19 shows brightness temperature fields for MSU 

Channel 4. Figures 2.20 and 2.21 are southern hemisphere polar stereo­

graphic projection for 8-31 Jan 87 of Channels 2 and 4, respl3ctively. A 

detailed discussion of these fields is contained in Chapter 4 where they are 
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CONTOUR FROM :m.00 TO 261.00 CONTOUR INTBRVAL OF 2.0000 

Figure 2.14a: MSU Channel 2 Brightness Temperature (K) 
(8-31 Jan 87) 

CONTOUR PROM "'.110 'I'O:II2.ao CONTOUR IN'nIRVAL OF 2._ 

Figure 2.14b: MSU Channel 2 Brightness Temperature (K) 
Northern Hemisphere (8-31 Jan 87) 
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CONTOUR FROM 22<.00 TO 262.00 CONTOUR IN'l'BRV AL OF 2.0000 

Figure 2.15a: MSU Channel 2 Brightness Temperature (K) 
(1-18 Feb 87) 

Figure 2.15b: MSU Channel 2 Brightness Temperature (K) 
Northern Hemisphere (1-18 Feb 87) 
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CONTOUR PROM 211.00 TO 231.00 CONTOURlNTBRVALOP 1.0000 

Figure 2.16a: MSU Channel 3 Brightness Temperature (K) 
(8-31 Jan 87) 

CONTOUR PRDM 211.00 TO 228. CONTOUR IN'I'BRV AL OP 1_ 

Figure 2.16b: MSU Channel 3 Brightness Temperature (K) 
Northern Hemisphere (8-31 Jan 87) 
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CONTOUR PROM 216.00 TO 236.00 CONTOUR1NTBRVALOP 1.0000 

Figure 2.17a: MSU Channel 3 Brightness Temperature (K) 
(1-18 Feb 87) 

\ 
\. 

CONTOURPROW 21'.00 TO:IX.oo CONTOURIHTBRVALOP I.-

Figure 2.17b: MSU Channel 3 Brightness Temperature (K) 
Northern Hemisphere (1-18 Feb 87) 
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----

CONT01ffi FROM 198.00 TO 236.00 CONTOIffi INTBRV AL OF 2.0000 

Figure 2.18a: MSU Channel 4 Brightness Temperature (K) 
(8-31 Jan 87) 

CONTOURPROM 1".00 TO 221.01 CONTOURIN'I'BRVALOP 2.0000 

Figure 2.18b: MSU Channel 4 Brightness Temperature (K) 
Northern Hemisphere (8-31 Jan 87) 
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,-----,i----__ r-----,-__ ~J~-IN~~-,--~-~· 
221.4-~--.:::: 

CONTOURFROM 190.00 TO 236.00 CONTOURIN'l'BRVALOP 2.0000 

Figure 2.19a: MSU Channel 4 Brightness Temperature (K) 
(1-18 Feb 87) 

CONTOURPROM 1911.110 TO:I3II.IIO CONTOURIHTBRVALOP 2J1OOO 

Figure 2.19b: MSU Channel 4 Brightness Temperature (K) 
Northern Hemisphere (1-18 Feb 87) 
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Figure 2.20: MSU Channel 2 Brightness Temperature (K), SH, (8-31 Jan 87) 

U 

- m 

CONTOURPROU:lOG.. TO _.GO CONTOURIN'l'IlRVALOP ,_ 

Figure 2.21: MSU Channel 4 Brightness Temperature (K), SH, (8-31 Jan 87) 
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compared and contrasted with corresponding ECMWF analyses presented in 

Chapter 3. However, several interesting features require comment at this point. 

One noticable feature of interest appears in the Channel 2 brightness 

temperature field due to elevated terrain. Channel 2's weighting function peaks 

near 700 mb (10,000 ft.) with levels below also contributing to the brightness 

temperature value, as shown in Figure 2.4. Regions of extensive high 

elevation such as the Tibetan Plateau, central Greenland, and the Antartic Ice 

Cap (labelled A, B, and C respectively) protrude into the wei~~hting function of 

Channel 2. Therefore, since Channel 2 is detecting the surface in these areas 

they show up as cold anomalies, as shown in Figures 2.14a, 2.14b, and 2.20. 

The 2.S0 -grid resolution appears too small to detect the narrow Rocky Mountain 

range of North America, however there is a small trough observable in that 

region. Another interesting feature observable in Channel 2 fields is the 

contrast of northern and southern hemisphere thermal patterns. The near zonal 

pattern appearing over the ocean-covered southern hemisphere contrasts well 

with the trough/ridge pattern over the land-covered northern hemisphere. 

The weighting function for Channel 3 peaks near the 300 mb (30,000 ft.) 

level where horizontal temperature gradients are weaker. The MSU fields of 

Channel 3 are contoured every 10 K instead of every 20 K as was used for 

Channels 2 and 4. Figures 2.16 - 2.17 show a cold region centered over the 

Barents Sea in January migrating southeastward over the north-central Soviet 

Union during February. Along with this migration, the thermal gradient 

associated with the cold region is observed to weaken significantly during 

February. 

MSU Channel 4's weighting function peaks in the lower stratosphere near 

100 mb. The most distinguishing feature observed from the temperatures 
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obtained from this channel is the positive equator to pole temperature gradient. 

This is a result of the variation of the tropopause (level wher·e temperature 

begins to increase with height) with latitude. Figure 2.22 shows the tropopause 

(thick line) higher and colder over the equator than over the pole during 

January. Less dense equatorial air forces a higher troposphere at lower 

latitudes, thus MSU Channel 4 peaks in the cold troposphere over the 

equator and in the warmer stratosphere over the poles. 
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Figure 2.23: Average January Tropopause (Wallace and Hobbs, 1977) 
Solid - Isotherms, Dotted - zonal wind, Thick Solid - Tropopause 

Channel 4 also show a significant warming in February above 500 N latitude, 

most noticably in the Barents Sea region. 

These global MSU fields will be discussed in more detail in Chapter 4 as 

they are related to climatology and thermal wind theory. Further analysis of 

MSU brightness temperature data sets are presented in Section 4.4.1 in an 

attempt to locate jet stream core regions. 



CHAPTER 3 

ECMWF ANALYSIS FIELDS 

3.1 INTRODUCTION 

In order to evaluate the usefulness of the Microwave Sounding Unit fields 

described in the Chapter 2, a complementary data set was constructed to 

allow a comparative study. This was accomplished by producing global 

analyses of data from the European Centre for Medium Range Weather 

Forcasts (ECMWF) for the time periods corresponding to the MSU fields. 

ECMWF data is also used to present a brief global climatology for this time 

period, January and February. Trenberth and Olson, of the Climate and 

Global Dynamics Division at the National Center for Atmospheric Research 

(NCAR), have compiled ECMWF global analysis and circulation statistics onto 

mass storage tapes. The data set begins with January 19713 and currently 

extends through December 1987. Section 3.2 describes thE3 method used to 

produce global, zonal, and meridional fields of various meteorological 

parameters such as temperature, zonal wind, and geopotential height. In 

Section 3.3, ECMWF climatology is presented along with averaged data sets 

for time periods coinciding with the MSU fields (8-31 Jan and 1-18 Feb 87). 

Lastly, Section 3.4 summarizes the climatology and circulation features found 

in the fields shown in Section 3.3. 

3.2 DEVELOPMENT OF ECMWF FIELDS 

The ECMWF data archive used in this section to produce global analysis 

fields is described in detail in NCARITN-300+STR (Trenberth and Olson, 
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1988). The source of the ECMWF data set is the World Me1eorological 

Organization (WMO) Archive. Data is available on a 2.5 - degree global grid at 

seven pressure levels (1000, 850, 700, 500, 300, 200, and '100 mb), twice 

daily. This is the same horizontal grid-resolution used to produce the MSU 

fields in Chapter 2. Trenberth and Olson 1988, completed a comprehensive 

evaluation of ECMWF data sets, checking for internal and tHmporal 

consistency. All data sets containing errors were omitted from analysis. No 

errors were detected in the 8 Jan - 18 Feb 87 data set. ECMWF data sets are 

stored on history tapes (mass storage volumes). Each tape contains 15-days 

of record in 30 files, two data sets per day. The analysis of data on history 

tapes is performed by the NCAR Community Climate Model (CCM) processor, 

a post-processing software package developed by Wolski at NCAR. A tutorial 

supplement to the CCM Modular Processor Users' Guide (VVolski, 1987) was 

written by Dias of the Climate and Global Dynamics Division at NCAR (Dias, 

1987). 

Data on the history tapes is inputted to the CCM processor, manipulated, 

and outputted as metacode graphics in various user-specifiHd forms. A 

complete list of the processor's functional capabilites is contained in the 

tutorial. Several of the basic functions of the processor used in this chapter 

include time averaging, zonal averaging, meridional averagling, and merid­

ional cross-section ploting. Details of the access to the ECMWF data set and 

use of the CCM processor are provided in Appendix D. 

Figures 3.1 a-b are two examples of graphics output produced by the CCM 

processor operating on ECMWF data sets stored on the NCAR Mass Store 

tape system. Figure 3.1 a shows the time-averaged geopotontial height field at 

300 mb for 8 Jan 87 thru 31 Jan 87. The 48 ECMWF data sets covering 8-31 
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Figure 3.1: ECMWF Fields Produced Using The CCM Processor 
A) 300 MB Geopotential Height, 8-31 Jan Average 
B) Meridional Cross-Section of Zonal Wind at 165E, 8-31 Jan 87. 
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Jan were time-averaged to produce this field. The processor then contoured 

the 300 mb geopotential height field, at a 120 decameter interval, onto a 

equatorial cylindrical projection. Many of the comparisons discussed in 

Chapter 4 are presented on polar sterographic projections. Another example 

of CCM processor capabilities is shown in Figure 3.1 b. It shows the time­

averaged meridional cross-section of zonal wind (U) at 165() East longitude for 

the same time period in Figure 3.1 a. This is produced by first time-averaging 

the ECMWF data sets and then performing a zonal average, in this case the 

zonal average consisted of only one meridonal grid point at 165.90 East (the 

ECMWF grid does not exactly coincide with latitude/longitucle lines). The time­

averaged zonal wind is contoured at 5 ms-1 intervals. Tight geopotential 

packing over Japan (and regions east of the major northern hemispheric land 

masses), south of Australia, and west of South America are evident in Figure 

3.1 a. This is reflected in Figure 3.1 b as zonal wind maximums. 

The CCM processor can also manipulate ECMWF data sets to produce 

fields not specificly stored on history tapes. Figures 3.2a-b are two examples 

of user-specified derived fields that are used in Chapter 4 to compare with 

MSU fields; geopotential and streamfunction difference. These fields are 

produced by taking the difference between two previously time-averaged 

geopotential height or streamfunction fields. Figure 3.2a shows 850-500 mb 

geopotential thickness averaged over 8-31 Jan on a northern hemisphere 

polar stereographic projection. Several similar features are evident in Figure 

3.1 a, such as ridging over the North Atlantic and a trough of·f the east coast of 

Asia. Figure 3.2b shows 1000-300 mb streamfunction difference on a similar 

projection. Streamfunction difference fields are compared with MSU thermal 

fields in Chapter 4. 
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Figure 3.2: ECMWF Derived Fields Produced Using The CeM Processor 
A) 850-500 MB Geopotential Thickness, 8-31 Jan 
B) 1000-300 mb Streamfunction Difference, 8-10 Jan 
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The next section in this chapter presents ECMWF fields o'f temperature, 

geopotential height, and zonal wind as a climatological overview, and an 

overview of the time period coinciding with the MSU fields dEweloped in 

Chapter 2. 

3.3 COLLECTION OF ECMWF ANALYSIS FIELDS 

The fields presented in this section are arranged in two time-averaged 

formats. Figures 3.3 - 3.10 show ECMWF fields of temperature, geopotential 

height, and zonal wind averaged from 1979-1986 along with similar fields 

averaged over the specific time-periods corresponding to the MSU data set 

analyzed in Chapter 2. Each figure shows a January or February 79-86 

climatology field and a corresponding 8-31 Jan 87 or 1-18 Feb 87 time­

averaged field. Figure 3.3a shows the global 100 mb January temperature 

field averaged from 1979-1986 while Figure 3.3b shows the time-average for 

8-31 Jan 87. Figure 3.4a-b shows 100 mb temperature fields for February 

79-86 and 1-18 Feb 87. Figures 3.Sa-b and 3.6a-b show the 300 mb 

temperature fields in the same format and Figure 3.7a-b shows 700 mb January 

temperature fields. Figures 3.8a-b and 3.9a-b show January and February 

time-average 300 mb geopotential Ileight fields, and Figure 3.1 Oa-b shows 

January 300 mb time-averaged zonal wind fields. The next section contains a 

brief discussion of several climatology and general circulation features present 

in these ECMWF fields. A comparison between ECMWF fields and MSU fields 

is contained in Chapter 4. 

3.4 Discussion of ECMWF January and February Climatology 

January and February climatology derived from ECMWF data sets is 

shown in Figures 3.3 thru 3.10 for the purpose of presenting an overview of 
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circulation features during this time period. This climatology is also used as a 

reference to compare with 8-31 Jan 87, and 1-18 Feb 87 ECMWF analyses to 

detect any anomalies present during that period. 

The 100 mb temperature fields show several interestinn feaures. As 

expected the southern hemisphere thermal pattern is more zonal than the 

northern hemisphere as a result of larger ocean regions. Also expected at 100 

mb the temperature is observed to increase with latitude, a result of a the 

variation of tropopause with latitude. Near the equator the 100 mb level is in 

the cold upper- troposphere while near the poles the 100 mb level is in the 

warmer lower-stratosphere. In the northern hemisphere a 226 K maximum is 

observed over the North Pacific extending along the 600 N latitude belt with a 

relative minimum over the North Atlantic. Both January and February 

climatology show a 204 K minimum centered just north of Norway. The 8-31 

Jan 87 data set average shows a similar 100 mb temperature pattern with 

January climatology, a 203 K minimum centered over Norway and a 229 K 

maximum along 600 N. Temperatures are S-10 K higher over Canada and 

Alaska though. A much stronger anomaly is seen in the 1-18 Feb 87 data, the 

cold pool near the North Pole is 1S-20 K warmer than what both the February 

climatology and the 8-31 Jan data sets show. A 232 K maximum is shown 

along 11 DoW near the pole. The warming appears to be northward of SOoN, 

with no corresponding warming observed in the southern h(~misphere. 

Figures 3.Sa-b and 3.6a-b show the 300 mb temperature fields for Jan and 

Feb 87, respectively. Since the 300 mb level is in the troposphere at all 

latitudes, temperature is observed to decrease moving from equator to pole. 

The strongest baroclinicity, temperature gradients on a constant pressure 

surface, at 300 mb is associated with the intense jet located at about 3SoN as 
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also seen in Figure 3."' a. The 8-31 Jan temperature pattern is remarkably 

similar to January climatology, ridging is observed over the North Atlantic due 

to the warmer ocean temperatures compared to nearby land temperatures. 

The strongest meridional temperature gradients are associated with the jet 

stream just south of Korea. In addition to both these features, the 1-18 Feb 

300 mb ECMWF data shows a regional warming over northern Canada with 

respect to climatology. A 229 K maximum is shown over northern Canada in 

Figure 3.6b. February climatology shows a temperature of ;~15 K, and 1-31 

Jan shows a temperature of 220 K in this region. From these figures it is 

evident the warming observed at 100 mb is also observed to a smaller degree 

at 300 mb. 

Figures 3.7a-b show 700 mb temperature fields for January and 8-31 Jan. 

The effects of cold land surface are seen to influence 700 mb temperature in 

the winter northern hemisphere. Cold minimums are shown on both figures 

over Canada and Siberia with relative maximums over the warmer ocean 

regions, especially where the Gulf Stream crosses the North Atlantic. The cold 

core continentiallow temperatures over Siberia and N. Canada at 700 mb are 

shallow phenomen, as we expect, gradually being replaced aloft, as seen in 

Figure 3.4a and b, by comparatively warmer air. The 8-31 Jan data set shows 

three regions of relative minimums due to extensive elevat€!d terrain (where 

the surface is above 700 mb). These are seen over Greenland, the Tibetian 

Plateau, and Antartica. Comparing Figures 3.7a and b, 8-31 Jan 87 is shown 

to have a normal January 700 mb thermal pattern. 

January and February 300 mb geopotential height fielcls are shown in 

Figures 3.8a-b and 3.9a-b. Climatology shows a wave number 2 pattern in the 

northern hemisphere with troughs located off the east coast of North America 
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and Asia and ridges over the west coasts of North America and Europe. 

Regions of strongest meridional gradient and hence geostrophic wind are 

seen off the east coast of the US and over Japan. The 8-31 Jan and 1-18 Feb 

data sets appear to show a slightly tighter meridional gradiElnt than climatology 

in these regions. In the southern hemisphere a zonal pattern dominates 

similar to temperature. The largest geopotential anomaly in the 8-31 Jan 87 

field is the strength of the North Atlantic ridge. The 300 mb geopotential height 

in this region is 300-400 meters higher than January climatology. The 1-18 

Feb data sets show this ridge weakening, returning to its climatological value. 

The last ECMWF figures used in this study are of 300 mb zonal wind for 

January climatology and 8-31 Jan 87. As expected Figures 3.10a-b show 

zonal wind maximums to exist in regions of strong meridional temperature and 

geopotential height gradients. Climatology shows a 60 ms-1 maximum along 

300 N off the east coast of Asia and a 40 ms-1 maximum off the east coast of 

the US which are regions already noted for the packing of the temperature 

gradient. In the southern hemisphere the 30 -40 ms-1 zonal wind maximum 

lies in a zonal band along 450 S. Equatorial easterlies are observed near the 

equator. The 8-31 Jan data set shows all the major features of climatology. 

The jet off the east coast of the United States is slightly (7-8 ms-1) stronger 

than climatology and a small wind maximum is seen north o.f Iceland that does 

not appear on climatology. These small anomalies are associated with the 

geopotential ridge anomaly seen in Figure 3.8b. 

The ECMWF data set on mass store at NCAR combined with the capabilites 

of the CCM processor create a valuable and easy to access meteorological 

data system for researchers. Its capability to quickly create user-specified and 

derived fields make this system a valuable tool that can be applied to research 
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questions across the spectrum of the atmospheric sciences. Chapter 4 

presents a comparison between the MSU fields produced in Chapter 2 and 

various ECMWF fields created using the methods discussed in this chapter. 

Thermal wind concepts are used as the basis behind many of the 

comparisons. 



CHAPTER 4 

COMPARISON OF MSU FIELDS WITH OBSERVED CIRCULATIONS 

4.1 INTRODUCTION 

This chapter is devoted to the comparison of Microwave Sounding Unit 

(MSU) observations analyzed in Chapter 2 with European Centre for Medium 

Range Weather Forecasts (ECMWF) analyses products reviewed in Chapter 3. 

The overall goal of this comparative study is to explore various applications of 

MSU radiometric data from an observational viewpoint. Section 4.2 examines: 

the relationship between MSU brightness temperature field!~ and ECMWF 

temperature analyses corresponding to MSU Channel 2, 3, and 4 weighting 

functions. Section 4.3 discusses the relation between thermal wind and 

meridional temperature gradients with the goal of correlating zonal wind 

fields to MSU meridional brightness temperature gradients. A similar thermal 

wind relation is used in Section 4.4 to explore the relation between the MSU 

brightness temperature anomaly fields and the location of je!t stream cores as 

observed in ECMWF analyses. Section 4.5 takes the thermal wind concept 

another direction and compares mean-layer temperature as represented by 

MSU brightness temperature fields to ECMWF geopotential thickness fields. It 

also examines the relationship between MSU meridional brightness 

temperature gradients and ECMWF meridional geopotential thickness 

gradients. Section 4.6 links the thermal structure of the atmosphere as shown 

by the MSU to its dynamical nature through a comparison of MSU brightness 
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temperature and ECMWF stream function fields. The final sl3ction, Section 4.7, 

discusses the upper-level warming observed north of 500 N latitude by both 

the MSU and ECMWF data sets between Jan 87 and Feb 87. 

4.2 MSU BRIGHTNESS TEMPERATURE AND EClVIWF 
TEMPERATURE FIELDS 

This section compares MSU Channels 2, 3, and 4 brightness temperature 

fields to ECMWF temperature analyses fields. The best correlation between 

Channel 2 and ECM\VF temperature analyses was found to occur in com-

parison of the 500 mb fields. Figures 4.1 a and b show this thermal pattern 

comparison. Both show a wave number three pattern with absolute temp-

eratures ranging from 225 K to 265 K. Since MSU Channel 2's weighting 

function peaks at 700mb, one might first assume Figure 4.1 a (MSU Channel 2): 

would more closely correlate with the 700 mb ECMWF field. However, the 

700 mb ECMWF temperature field ranges from 240 K to 280 K, 15 degrees 

warmer than MSU Channel 2. This finding is most likely a result of Channel 2 

detecting the relatively cold surface as shown by its weighting function. This is 

clearly evident in regions of elevated terrain such as the Tibetian Plateau and 

Greenland, as seen in Figure 4.1 a. 

MSU Channel 3 brightness temperature best correlates (based on a visual 

comparison) with ECMWF 300 mb level temperatures, shown as Figures 4.2a 

and b. Both figures show a 'dipole' pattern cold region over Siberia and 

relative warm region west of Greenland. Absolute temperatures range from 

210 K to 240 K. MSU Channel 3 is colder than ECMWF 300 mb temperatures 

south of 300 N, whene it is detecting the higher cold tropical troposphere with 

the upper portions of its weighting function (Channel 3's weighting function 
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Figure 4.1: Comparison between MSU Channel 2 and ECMWF 500 mb. 
A) MSU Channel 2, 8-31 Jan 87, Contour Interval 2 K. 
8) ECMWF 500 mb Temperature Field, 8-31 Jan 87, 

Contour Interval SK. 
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Figure 4.2: Comparison between MSU Channel 3 and ECMWF 300 mb. 
A) MSU Channel 3, 1-18 Feb 87, Contour Interval 2 K. 
B) ECMWF 300 mb Temperature Field, 1-18 Feb 87, 

Contour Interval 5K. 
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Figure 4.3: Comparison between MSU Channel 4 and ECMWF 100 mb. 
A) MSU Channel 4, 8-31 Jan 87, Contour Interval 2 K. 
8) ECMWF 100 mb Temperature Field, 8-31 Jan 87, 

Contour Interval 5K. 



A) 

8) 

66 

Figure 4.4: Comparison between MSU Channel 4 and ECMWF 100 mb. 
A) MSU Channel 4, 1-18 Feb 87, Contour Interval 2 K. 
8) ECMWF 100 mb Temperature Field, 1-18 Feb 87, 

Contour Interval SK. 
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peaks near 300 mb). North of 4SoN the upper portions of Channel 3's 

weighting function is instead detecting the lower stratosphere. 

The closest temperature correlation occurs between Channel 4 and 

ECMWF 100 mb level temperatures. This is shown using the 8-31 Jan 87 data 

set in Figures 4.3a and b, and the 1-18 Feb 87 data set in Figures 4.4a and b. 

The similarity in thermal patterns is self-evident in both data sets. The cold 

region centered over Norway during 8-31 Jan is recorded as 200 K by Chan­

nel 4, and 203 K by ECMWF 100 mb level. The high over the Kamchatka 

Peninsula is recorded as 226 K by Channel 4, and 229 K by ECMWF 100 mb. 

The absolute temperature correlation between Figures 4.4a and b is just as 

impressive. Channel 4's weighting function peaks near 100 mb and appears 

to be an excellent indicator of 100 mb temperature. 

4.3 THERMAL WIND AND MERIDIONAL TEMPERAITURE 
GRADIENTS 

The geostrophic wind model in isobaric coordinates may be written in 

vectorial form as 

with its zonal component written as 

u =_10<1» 
9 f oy 

p 

(4.1 ) 

(4.2) 

Differentiating Equation 4.2 with respect to In p and applying the hydrostatic 

equation in the form 

(4.3) 
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yields Equation 4.4, a relationship between the rate of change of the zonal 

component of geostrophic wind with respect to In p and mean layer 

temperature 

Rd aT) 
f ay 

(4.4) 

Integrating Equation 4.4 from pressure level Po to pressure level P 1 (P 1 <Po) 

the x-component of the thermal wind may be expressed as the difference 

between zonal geostrophic wind components at P 1 and Po' and proportional 

to the meridional gradient of mean-layer temperature, see Equation 4.5. 

(4.5) -

If we assume pressure level Po to be the surface and Ug(Po) = 0, the 

geostrophic wind at P 1 can be related to meridional mean-layer temperature 

gradient in the following approximate manner 

(4.6) 

Since the MSU channels measure radiance emitted from well defined but 

deep layers of the atmosphere, their brightness temperatur,e fields may be 

considered a direct measure of mean-layer temperature. The MSU weighting 

function shown in Figure 2.4 indicates Channel 2's half-power points near 300 

mb and below the surface. Therefore, Channel 2's brightness temperature 

field may be thought of as surface to 300 mb weighted mean-layer 

temperature. With this assumption, it is expected from Equation 4.6 that 

MSU meridional brightness temperature gradients from Channel 2 should 

correlate to the observed zonal wind field at 300 mb. FigurE!S 4.5a and b show 
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the 300 mb ECMWF zonal wind analyses for 8-31 Jan and ·1-18 Feb 87. 

These fields are averaged over the same time period and thus correspond to 

the MSU Channel 2 brightness temperature fields shown in Figures 2.14a and 

2.15a. Neglecting the effects of elevated terrain on Channel 2, the strongest 

meridional temperature gradients occur southeast of Japan and off the east 

coast of the US during both months. Figures 4.5a and b both show jet stream 

maximums at these locations. In the Southern Hemisphere the 300 mb zonal 

wind maximum is centered along 450 S, which correlates to the the strongest 

meridional temperature gradients shown in Figures 2.14a and b in the 

Southern Hemisphere. 

Table 4.1 shows a comparison between computed zonal winds from MSU 

meridional temperature gradients and observed zonal winds from the 

corresponding ECMWF data sets at 15 random locations. MSU meridional 

temperature gradients, column 2, are computed from the Channel 2 

brightness temperature global data set used to produce Figure 2.14a. Column 

3, the 300 mb zonal wind was computed from the 8-31 Jan MSU data set 

using Equation 4.6 (Where Rd= 287 m2s-20K-1, and f=2Qsin0). For comparison, the 

time-averaged ECMWF zonal wind field for 8-31 Jan is shown in Figure 4.5a. 

However to obtain better accuracy for a comparison with thl3 calculated zonal 

wind, values in column 4 were instead taken from ECMWF meridional 

cross-section fields of zonal wind such as the one shown in Figure 3.1 b. 

Results show that zonal wind calculated from MSU Channel 2 meridional 

brightness temperature gradients is consistantly under-precliciting the 

magnitude of the zonal wind as shown in the ECMWF fields. This result is not 

too suprising conSidering Channel 2 is a convolution of the surface-to-300 mb 

mean-layer temperature and the weighting function. To be .a true measure the 
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Figure 4.5b: ECMWF 300 mb Zonal Wind Field (1-18 Feb 87) 
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TABLE 4.1 

MSU CALCULATED AND ECMWF OEOSTROPHIC WIND COMPARISON 

LATITUDE 2lmsu U9(300 mb) U9(300 mb) 
LONGITUDE ~y (OK m-1) calculated (ms-1 ) from E CMWF fields (ms-1) 

60N 160E 7.19x 10-7 -1.99 -5 

JON 160E -7.12>: 10-6 34.39 SO 

455 160E -3.78x 10-6 12.78 20 

87N 150W 1.80)( 10-6 -4.3 -7.5 

30N 150W -5.04)c 10-6 24.09 25 

"ISS 150W -3.60 xl 0-6 12.17 20 

SON 75W ·3.06x 10-6 8.48 13 

"ION 75W -7.74x 10-6 28.79 45 

"ISS 7SW -4.5 xl 0-6 15.21 33 

60N 30W -1.26x 10-6 3.49 5 

"ION 30W -2.33x 10-6 8.67 20 

"lOS 30W -4.86x 10-6 18.08 28 

70N 30E - 1.26 xl 0-6 3.2 5 

30N JOE -S.04x 10-6 24.09 31 

405 30E -5.58x 10·S 20.75 32 

e ·.······· .. ·1····.········ ........... ~....... :· .. ········1 ... y= 1.422x+ 1.2551 R-squared = .921 ·······1····· .. ····· i 1. ::::::~::::::::::: =~··i:···:::::::l::::::::::I:::=--:::I:::=-:::t=::I:::::::T::::::F::::=:1==::4:::::=: 
'= :::> 

a 10 16 ~o ~6 QO Q6 40 46 60 66 

Ug from tdSU (calculated) in mls 

Figure 4.6: Scattergram observations in Table 4.1. 
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weighting function would need to a vertical line, instead it sllows a varying 

contribution from different pressure levels to the brightness temperature. 

Another possible reason for this under-predicition lies in thE! assumptions 

made deriving Equation 4.6 where the geostrophic wind at the surface was 

neglected. If the surface winds were subtracted from the EGMWF 300 mb 

wind, the under-prediction with respect to the calculated would decrease. 

As expected though, the strength of the meridional temperature gradient 

corresponds to strength of the observed (ECMWF) zonal wind, and regions 

with positive equator to pole brightness temperature gradients show easterly 

300 mb flow. A scattergram of the 15 calculated and observed zonal winds in 

Table 4.1 is shown as Figure 4.6, along with a simple regression curve fit. 

4.4 TEMPERATURE ANOMALY AND JET STREAM LOCATION 

The Microwave Sounding Unit data sets used in ChaptE~r 2 to produce 

global brightness temperature fields may be analyzed in a way that provides 

some potential for locating the core of the jet stream. Section 4.4.1 discusses 

the methods used to produce MSU brightness temperature anomaly fields 

shown in this study. Section 4.4.2 contains a review of the thermal wind 

relation applied to temperature anomaly fields. It also contains a comparison 

of ECMWF meridional cross-sections of zonal wind with meridional cross­

sections of MSU brightness temperature anomaly fields. The goal here is to 

show a relation between baroclinicity as indicated by the temperature anomaly 

fields, and the location of the jet core as shown by the ECM'NF analyses. 

4.4.1 Constructing MSU Brightness Temperature Anomaly Fields 

The anomaly fields constructed are defined with respect to the merid­

ional average brightness temperature and derived in the following manner 
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r' =1" -T 
B ,MSU B ,MSU B ,MSU (4.7) 

where r' = BrightnessTemperature Anomaly (deviation from meridional 
B,MSU 

average) in oK, 

Ts,MSU = Brightness Temperature Value from MSU data set, 

1" B ,MSU = Meridional Average MSU Brightness Temperature at a 

selected longitude (over a specified latitude range). 

Figures 4.7a and b are examples of a brightness temperature anomaly 

fields produced from the 1-18 February 1987 MSU data set for the Northern 

and Southern Hemisphere. They show meridional cross-sections of 

brightness temperature anomaly along 1650 East longitude, contoured every 

10 K. The method used to produce these fields involves intE~rpolation of 

brightness temperature between MSU channel weighting function peaks. 

MSU Channels 2, 3, and 4 provide three temperature data points in the 

vertical, at 700, 300, and 100 mb, respectively (weighting function peaks). It 

was shown in Section 4.2 that MSU brightness temperature fields are good 

approximations of the thermal pattern at pressure levels where the weighting 

function peaks, with the exception of Channel 2. Brightness temperature 

values are taken from the grid-averaged MSU data set shown in Figure 2.12c. 

This provides three temperature data points in the vertical every 2.50 latitude 

along a meridion from 87.50 8 to 87.50 N , one for each MSU channel. The 

data set is then divided into Northern and Southern Hemisphere files. At this 

point the brightness temperature values are averaged from equator to pole for 
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LATITUDE (DEGREES NORTH) 

Figure 4.7a: Brightness Temperature Anomaly Field derived from MSU data 

for Northern Hemisphere along 16SoE longitude (contour interval = 10 K) 

LATITUDE (DEGREES SOUTH) 

Figure 4.7b: Brightness Temperature Anomaly Field derived from MSU data 

for Southern Hemisphere along 16SoE longitude (contour interval = 10 K) 
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each MSU channel seperately. The anomaly data set is them computed by 

taking the difference between the hemispheric average brightness temp­

erature and" each 2.50 latitude temperature value. Again this is computed for 

each MSU channel seperately, resulting in an anomaly data set for each 

channel. The final step before contouring the field is to interpolate brightness 

temperature anomaly values every 50 mb between 700 and 300 mb, and 

between 300 and 100 mb. A simple linear interpolation on a 1091 a scale was 

used to create a 13 vertical-level anomaly field (700 to 100 rnb, every 50 mb). 

The anomaly data set used to produce the fields shown in Figure 4.7a and 

Chapter 4 is therefore a 13 X 35 matrix (13 vertical levels a.nd 35 horizontal 

data points along the meridion from equator to po/e). The NCAR graphics 

utility CONRAN, used to contour the MSU brightness temperature fields, is 

then called to contour the matrix at 10K intervals. 

Thermal wind theory dictates the jet core be centered in the 'col' between 

the two warm and the two cold temperature anomaly regions (Riehl,1962), as 

discussed in Section 4.4.2. 

4.4.2 MSU Temperature Anomaly and ECMWF Jet Core Location 

Knowledge of the thermal structure of the atmosphere provides a method 

for locating jet stream cores (Riehl 1962). Temperature anomaly fields provide 

an analysis tool for locating jet core position by discerning tile thermal struc­

ture of the atmosphere. From thermal wind theory it may be shown that the jet 

stream core is situated at the altitude where the meridional temperature 

gradient reverses sign. Also, its north-south position can be! determined by 

evaluating temperature gradients along the north-south dire!ction. 
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The relation between the altitude of the jet stream core and the level of 

reversal of temperature gradient may be seen using the thermal wind relations 

shown in Equation 4.4 and 4.6. Equation 4.6 shows the relationship between 

the geostrophic wind at pressure level P 1 and mean-layer meridional temp­

erature gradient. A positive south-to-north (meridional) temperature gradient 

indicates negative or easterly zonal flow, and a negative ml3ridional temp­

erature gradient indicates westerly zonal flow. In the mid-latitude troposphere, 

zonal winds are predominately westerly (and increasing with height, see 

Equation 4.4) because of a negative equator-to-pole tempe·rature gradient. In 

the stratosphere, however, meridional temperature gradients are reversed and 

easterly zonal flow exists, also from Equation 4.4 we see that the positive 

meridional temperature gradient equates to a decrease in westerly zonal wind­

with height. The altitude of the jet stream core, the region of strongest westerly 

flow is therefore expected to occur at the altitude where the meridional temp­

erature gradient reverses. Some attempt to observe this gradient switch is 

provided using MSU temperature anomaly fields. Figure 4.7a shows negative 

meridional temperature anomaly gradient below about 350 mb and a positive 

gradient above this level. From the above argument, 350 mb may be 

considered an estimate of the jet stream core's altitude. 

The north-south pOSition of the jet stream core can be dBtermined using a 

similar thermal wind argument. The jet core is located where a reversal of the 

vertical temperature anomaly gradient occurs. From the equator poleward to 

the jet core temperature anomaly decreases with height resulting in increasing 

westerly zonal flow. The temperature anomaly from the jet Gore to the pole 

temperature anomaly reverses in sign and increases with height indicating 

decreasing westerly zonal flow. The region of strongest vertical anomaly 
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contour packing correlates to the region of strongest meridional temperature 

gradient. Equation 4.6 shows the magnitude of zonal wind proportional to the 

magnitude of meridional temperature gradient In Figure 4.7b, this occurs about 

470 S latitude. 

In summary, the MSU brightness temperature anomaly fields together with 

interpolation point to the location of temperature gradient reversals, and hence 

the jet core, as centered in the 'col' between the two warm (positive) and two 

cold(negative) temperature anomaly regions. 

ECMWF zonal wind meridional cross-section are used to examine the 

relation between MSU temperature anomaly fields and jet stream altitude and 

north-south location. Figures 4.8a-c shows time-averaged zonal wind (U) 

cross-sections for 8 Jan - 31 Jan at 16SoE, 11 OOW, and 7Si'JW longitude. 

Contours are every S ms-1 with eastery flow dashed and maximums and 

minimums labeled. From these figures jet stream core altitude (in mb) and 

north-south location (in degrees latitude) can be extracted for both hemis­

pheres. Figures 4.9a-f show averaged meridional MSU temperature anomaly 

cross-sections for the same time period at 16SoE, 11 OOW, and 7SoW 

longitude. Anomaly fields are shown for both the northern and southern 

hemispheres. In these figures Channel 2 was assumed the temperature at 

700 mb, Channel 3 the temperature at 300 mb, and ChannEll 4 the temp­

perature at 100 mb (weighting function peaks). Figures 4.1 Oa-f shows the 

same averaged MSU temperature anomaly cross-section except Channel 2 

was assumed the temperature at 500 mb (Section 4.2 showed Channel 2 to 

best represent the 500 mb temperature) and the anomaly fiHld was run from 

200 -70° instead of 0°-90°. The latter was done to eliminate polar and 

equatorial extremes along with Channel 2 cold bias over Gl'eenland and the 
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Figure 4.8: ECMVVF Zonal Wind Cross-Sections for 8-31 Jan 87 along 
A) 165 East longitude, 8) 110 West longitude, and C) 75 West longitude. 
All contour intervals are 5 m/s. 
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Antartica. Jet stream core altitude (in mb) and north-south location (in degrees 

latitude) can also be extracted from Figures 4.9 and 4.10 by locating the center 

of the col pOint. Figures 4.8-11 can be used to show the ability of MSU 

anomaly fields to locate jet stream cores. 

Table 4.2 shows a comparison of jet stream altitude between ECMWF and 

MSU fields for seven meridions in both hemispheres. Column 1 show the 

location of the comparison, column 2 shows jet altitude from ECMWF U fields 

similar to Figure 4.8, column 3 shows jet altitude from MSU temperature 

anomaly fields similar to Figure 4.9, and column 4 shows jet altitude from MSU 

temperature anomaly fields similiar to Figure 4.10. Figures 4.11 a-b are 

scattergrams of the observations in Table 4.2 for the Northern and Southern 

Hemispheres, respectively. In both hemispheres the MSU anomaly fields 

predict a jet core altitude lower than that shown in the ECM\VF fields. The 

difference is mostly a result of treating the MSU brightness 1emperature as a 

constant pressure-level temperature. As seen from its weighting function 

curve, MSU channels measure over a large vertical range. From Section 4.2 

it was shown that Channel 2 most closely resembled 500 mb temperature 

instead of the temperature at the level where its weighting function peaked. 

Figure 4.11 consistently shows a closer altitude comparison when Channel 2 

was taken as 500 mb temperature. 

Table 4.3 shows a comparison of jet stream north-south location between 

ECMWF and MSU fields using the same meridional locations, and Figure 4.12 

is a scattergram of the results. In both hemispheres the MSU anomaly fields 

show the jet location poleward of the ECMWF field's location. Changing 

Channel 2 to 500 mb and running the anomaly field from 200 -700 had little 

(only a slight poleward push) effect on north-south location of the jet. The 
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Figure 4.9: MSU Temperature Anomaly Fields for 8-31 Jan 87 along 

A) 1650 East (NH), B) 1650 East (SH), C) 1100 West (NH), D) 1100 

West (SH), E) 750 West (NH), F) 750 West (SH). Anomaly fields are 

determined using CH2=700 mb, CH3=300 mb, and CH4=1 OOmb and 

run from 2.5 - 87.50 latitude. 
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Figure 4.10: MSU Temperature Anomaly Fields for 8-31 Jan 87 along 

A) 1650 East (NH), 8) 1650 East (SH), C) 1100 West (NH), D) 1100 

West (SH), E) 750 West (NH), F) 750 West (SH). Anomaly fields are 

determined using CH2=500 mb, CH3=300 mb, and CH4=1 OOmb and 

run from 20 -700 latitude. 
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TABLE 4.2 

JET STREAM ALTITUDE USING ECMWF AND MSU DATA 

JET AL TITUD E JET AL TITUD E JET ALTITUDE 
LONGITUDE INMB INMB INMB 

(ECMWF) (MSU 700/300/100) (MSU 500/3001100) 

150W NH 200 380 330 
SH 250 380 350 

110W NH 200 280 2,40 
SH 250 390 3-40 

7SW NH 200 280 260 
SH 260 360 320 

30W NH 200 220 200 
SH 200 350 330 

30E NH 200 180 180 
SH 210 350 330 

100E NH 200 220 220 
SH 220 390 340 

165E NH 200 270 270 
SH 200 390 ~:50 
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Figure 4.11: Scattergram of Observations in Table 4.2 for (Jet Stream Core 
Altitude A) the Northern Hemisphere, and 8) the Southern Hemisphere. 
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TAmE 4.3 
JET STREAM LOCATION USING ECMWF AN MSU DATA 

JET LOCATION JET LOCATION JET LOCATION 
LONGITUDE DEG. LAT. DEG. LAT. DEG. LAT. 

(ECMWf) (MSU 70013001100) (MSU 50013001100) 

150W NH 33N 40N 40N 
SH 51 S 50 S 49 S 

110W NH 28N 40N 40N 
SH 46 S 48 S 48 S 

7SW NH 33N 39N 41N 
SH 49 S 48 S 48 S 

30W NH 3SN 39N 40N 
SH 38 S 43 S 44 S 

30E NH 28N 32N 35N 
SH 39 S 46 S 4'~ S 

100E NH 32N 35N 37 N 
SH 44S 49N 47S 

16SE NH 35N 38N 41N 
SH 39 S 44S 44S 

a • liB JET liCMWT 
w 1 Ii!:lliB JETM£!U 7}'J}] 
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I- a ................................................................................................................................................................................ . 
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Figure 4.12: Scattergram of Observations in Table 4.3, showing 
latitudinal position of jet stream core from ECMWF and MSU data. 
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disagreement between the MSU observations and ECMWF analyses of the 

latitudinal position of zonal wind maxima is perhaps surprising especially 

since this dIsagreement, for the cases examined, is largest in the Northern 

Hemisphere. Further, more quantitative analysis of this correlation is required 

to establish whether this disagreement is a perSistent one. 

There are many sources of error involved in using MSU brightness 

temperature anomaly fields to locate jet stream cores. The nature of the 

weighting function as previously described, using linear in1erpolation between 

pressure-levels, and poor vertical resolution itself (only 3 channels). Using a 

temperature retrieval technique would yield better results as would more 

channels in the vertical with sharper-peaked weighting fuctions. 

Another investigation of the anomaly fields to locate the jet core's 

latitudinal position could be undertaken by assigning N-S at the region of 

maximum meridional anomaly gradient. This would push the MSU predicted 

position equatorward, closer to the ECMWF position. 

Figures 4.13a-b shows temperature anomaly fields constructed using 

ECMWF temperature anomalies along 1650 E, and 11 OOW in the northern 

hemisphere. These figures were constructed using the sarne procedure as 

MSU temperature anomaly fields (700, 300, and 100 mb temperature anomaly 

values with linear interpolation every 50 mb inbetween). Jnt stream altitude 

and north-south location are both much closer to those shown in the corr­

esponding Figures 4.8a and b. This suggests that just applying a temperature 

retrieval scheme, obtaining 700, 300, and 100 mb temperatures from MSU 

data, may significantly improve the MSU anomaly field's ability to show jet 

stream core altitude and location. 
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Figure 4.13: ECMWF Temperature Anomaly Fields for 

A) 1650 East longitude (NH), and B) 1100 West longitude (NH). 
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4.5 THERMAL WIND AND GEOPOTENTIAL THICKNESS 
GRADIENT 

This section explores another method of using the thermal wind concept to 

compare MSU temperature fields with observed ECMWF analyses. Section 

4.5.1 examines the relation between MSU meridional brightness temperature 

gradients and ECMWF meridional geopotential thickness gradients. Section 

4.5.2 compares MSU 'mean-layer' temperature fields with ECMWF geo­

potential thickness. 

4.5.1 Temperature and Geopotential Thickness Gradients 

Using the x-component of the geostrophic wind model in isobaric 

coordinates in Equation 4.2, a mathematical relationship between meridional -

temperature gradients and geopotential thickness gradients may be derived. 

Differentiating Equation 4.2 with respect to P yields the following 

au 9 _ 1 a (a<I» 
ap --f ay ap 

By integrating Equation 4.7 from pressure level Po to pressure level P 1 

(P 1 <Po)' and assuming Ug(Po} = 0 we obtain 

(4.7) 

(4.8) 

This expression shows the relationship between the geostrophic wind at level 

P 1 and meridional geopotential thickness gradient between P 1 and Po· 

Substituting Equation 4.6 into 4.8 yields 
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-1 

aT msu = [R I n(~J~ ()( fleD) 
ay d P 1 'J ay (4.9) 

indicating that the meridional brightness temperature gradient is proportional 

to the meridional geopotential thickness gradient. 

An observational test of this relationship is presented by comparing MSU 

brightness temperature fields and ECMWF geopotential thickness fields. 

Channel 2, as shown by its weighting function, may be considered repre­

sentative of the 850 - 300 mb weighted mean-layer temperature. Therefore, 

Channel 2 meridional temperature gradients should correspond 

approximately to ECMWF 850 - 300 mb thickness gradients. In the same way, 

Channel 4 meridiona~ temperature gradients should correspond to ECMWF 

200 - 100 mb thickness gradients (100 mb is the highest level available for 

ECMWF analyses). 

Figures 4.14a and b provides a comparison of the MSU Channel 2 

brightness temperatures and the ECMWF 850-300 mb geopotential thickness 

gradients for 8-31 Jan 87. The MSU observed thermal pattl3rn and the 

ECMWF thickness pattern are remarkably similar except ov·er the previously 

highlighted regions of elevated terrain. Regions of strong thermal gradients 

correspond to regions of strong thickness gradients, such as south of Japan 

and over the US east coast. Likewise, regions of weak thermal gradients 

correspond to regions of weak thickness gradients, such as over the North 

Atlantic Ocean and off the US west coast. Table 4.4 presents the results of 

several random numerical calculations using the data sets used to produce 

Figures 4.14a and b. Column 1 shows the meridional region used to make the 

calculations, column 2 shows the MSU Channel 2 meridional temperature 
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A) 

B) 

Figure 4.14: Comparison between MSU Channel 2 and ECMWF Thickness. 
A) MSU Channel 2, 8-31 Jan 87, Contour Interval 2 K. 
B) ECMWF 850-300 Geopotential Thickness Field, 8-31 Jan 87, 



94 

C) 

D) 

Figure 4.14: Comparison between MSU Channel 2 and ECMWF Thickness. 
C} Same as Fig. 4.14a except SH. 
D) Same as Fig. 4.14b except NH. 
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TABLE 4.4 

MSU Channel 2 Meridional Temperature Gradient 
ys. 

850 - 300 ECMWF Geopotential Thickness Gradient 

LONGITUDE - oT msu - o~ from ECMW'F - 0 T ealeulattod 

LATITUDE oy (OK kni1) oy (ms-2ml km -1) 
o y from ECMW'F 

(OKkm-1) 

160E 20-S0N 5.13 xl 0-3 2.1S 7.23x 10-3 

lS0E 20-S0S 2.68 xl 0-3 1.28 4.29x 10-3 

150W 20-40N 4.32x 10-3 1.89 S.33x 10-3 

150W 40-S0S 3.S0 xl 0-3 1.S6 5.58 xl 0-3 

7SW 20-S0N 4.73x 10-3 2.00 S.71xl0-3 

30W 20-S0N 2.59x 10-3 1.0<1- 3.47x 10-3 

30W 40-S0S 3.02x 10-3 1.44 4.82xl0-3 

30E 20-60N 5.02xl0-3 1.87 S.2Sx 10-3 

130E 20-S0N S.22 xl 0-3 2.45 8.21Xl0-3 

Q~~~~--+-~~~--+-~~~--+-~---+---+-~~-+ 
~ 

I = -)( --I 
E 
.c 
:w: 

o 
.S 
G:' Ii ····· .. ·· .. i············ ..... ·t-···· .... +- y= 1.14 2x+ 1.176, R-squ81'ed = .922 + ...... · .. ·i .. · ...... · .. i .. · ........ 

i :.~ j~~f~~I~!~~~"!:.~l~I~~~~~;~Ii.~I~;~l~~ 
" Q.1ii a a.1ii 4 4.1ii Ii 1ii.1i G G.1ii '7 '7.1; Q 1iI.1ii Q 

Figure 4.15: Comparison between MSU and calculated Temperature 
Gradients, CH2 vs. 850-300 ECMWF Thickness. 
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gradient, column 3 shows the ECMWF meridional geopotential thickness 

gradient and column 4 shows a calculated meridional temperature gradient 

using column 3 and Equation 4.9. The MSU thermal gradient is consistantly 

lower than the calculated gradient but within several oK per 1000 km. Figure 

4.15 is a scattergram of the observation in Table 4.4. The black diamonds 

show the values of MSU meridional temperature gradient along the abscissa, 

and meridional temperature gradient calculated from 850-300 ECMWF 

geopotential thickness along the ordinate ( in oK per 1000 k.m). Figure 4.15 

also shows the resulting linear equation from a simple regmssion performed 

on the observations in Table 4.4. 

Figures 4.16a and b are the same as Figures 4.14a and b except they 

show the results of the 1-18 Feb data set. Again regions of strong/weak 

thermal gradient patterns correspond to regions of strong/weak thickness 

gradient patterns. 

Just as MSU Channel 2 corresponds to 850-300 mb thiGkness, MSU 

Channel 4 through its weighting function is representative of 200-100 mb 

thickness gradient. Figures 4.17a thru d allow a comparison between MSU 

Channel 4 thermal patterns and ECMWF geopotential thickness patterns for 

the 8-31 Jan data set. Again, the pattern similarity is remar~\able, with a 

crescent-shaped high over the North Pacific and Canada and a bulls-eye low 

over Norway. Figures 4.18a thru d show the same comparison using the 1-18 

Feb data set. 

A similar relation exists between mean-layer temperature and geopotential 

height. This relationship is shown by intergrating both sides of the hydrostatic 

equation, Equation 4.3, from Po to P l' yielding the following equation 
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A) 

8) 

Figure 4.16: Comparison between MSU Channel 2 and ECMWF Thickness. 
A) MSU Channel 2, 1-18 Feb 87, Contour Interval 2 K. 
8) ECMWF 850-300 Geopotential Thickness Field, 1-18 Feb 87, 
NH, Contour Interval60m. 
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C) 

D) 

Figure 4.16: Comparison between MSU Channel 2 and ECMWF Thickness. 
C) Same as Fig. 4.16a except SH. 
D) Same as Fig. 4.16b except NH. 
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A) 

8) 

Figure 4.17: Comparison between MSU Channel 4 and ECMWF Thickness. 
A) MSU Channel 4, 8-31 Jan 87, Contour Interval 2 K. 
8) ECMWF 200-100 Geopotential Thickness Field, 8-31 Jan 87, 
NH, Contour Interval 60m. 
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C) 

D) 

Figure 4.17: Comparison between MSU Channel 4 and ECMWF Thickness. 
C) Same as Fig. 4.17a except SH. 
D) Same as Fig. 4.17b except NH. 
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A) 

B) 

Figure 4.18: Comparison between MSU Channel 4 and ECMWF Thickness. 
A) MSU Channel 4, 1-18 Feb 87, Contour Interval 2 K. 
8) ECMWF 200-100 Geopotential Thickness Field, 1-18 Feb 87, 
NH, Contour Interval 60m. 
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C) 

D) 

Figure 4.18: Comparison between MSU Channel 4 and ECMWF Thickness. 
C) Same as Fig. 4.18a except SH. 
D) Same as Fig. 4.18b except NH. 
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(4.10) 

which shows isolines of thickness proportional to isotherms of mean-layer 

temperature. 

An observational comparison between mean-layer temperature and 

geopotential thickness can be made using the same figures as in the previous 

section. Again since MSU Channel 2 can be considered an estimate of 

850-300 mb mean-layer temperature, through Equation 4.10 it can be used to 

estimate the 850-300 mb geopotential thickness field. The calculated 

thickness field can then be compared with the ECMWF 850-300 mb 

geopotential thickness field. Table 4.5 presents 15 random calculations which 

compare observed MSU Channel 2 brightness temperature, Figure 4.14a, to . 

the temperature calculated from Equation 4.10 using 850-300 mb geopotential 

thickness values from Figure 4.14b. Column 1 shows the latitude/longitude 

that applies to the calculation, column 2 shows the observed MSU brightness 

temperature of that pOint, column 3 shows the observed ECMWF geopotential 

thickness and column 4 shows the calculated temperature using column 3 and 

Equation 4.10. From Table 4.5 it is evident that MSU Channel 2 temperature 

is consistantly lower than the temperature calculated from thermal wind theory, 

Equation 4.10 due to the shape of the weighting function of Channel 2. Figure 

4.19 shows a scattergram of the observations in Table 4.5. The black 

diamonds represent MSU Channel 2 temperature along the abscissa and 

temperature calculated from ECMWF 850-300 geopotential thickness along 

the ordinate (column 4). This comparison shows that MSU Channel 2 seems 

to be a good indication of 850-300 mb geopotential thickness using the simple 

regression equation displayed in Figure 4.19. From Equati()n 4.10, the 
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TABLE 4.5 
MSU Channel 2 Temperature and ECMWF 850-300 Geopotential Thickness 

LATITUDE 
TMSU,CH2 a+ from ECMWF TCaiCIJlated 

LONGITUDE (OK) (ms-1 m) from ECMWF (OK) 

SON 160E 23S'.S 72000 240.9 

40N lS0E 243.9 74900 250.6 

605 160E 247.9 75900 253.9 

60N 150W 242.7 74100 247.9 

40N 150W 247.2 76400 255.Ei 

SOS 150W 245.5 75S00 252.9 

SON 75W 237.1 72300 241.9 

40N 75W 24S.2 76200 254.9 

405 75W 254.0 79500 2S5.9 

SON 30W 243.9 75700 253.3 

40N 30W 249.8 78000 261.1l 

405 30W 252.2 78700 263.3 

60N 30E 234.7 72600 242.9 

40N 30E 244.8 7S300 255.3 

40530E 252.6 78900 264.0 

Tmsu .. CH2 in OK 

Figure 4.19: Comparison between MSU and calculated Temperature 
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TABLE 4.6 

MSU Channel 4 Temperature and ECMWF 200-100 Geopoterltial Thickness 

LATITUDE TMSU,CH4 at from ECMWF T calculated 
fre.mECMWF 

LONGITUDE (OK) (ms-1m) (OK) 

SON 1S0E 227.2' 45500 228.8 

40N 160E 217.9 45000 226.2 

40S 160E 215.3 43800 220.2 

60N 150W 224." 45700 229.3 

40N 150W 215.5 44400 223.2 

60S 150W 227.3 45900 230.8 

SON 75W 222.1 45600 229.3 

40N 75W 213.5 44400 223.2 

405 75W 212.9 43400 218.2 

SON SOW 207.0 43400 218.2 

40N 30W 208.4 43400 218.2 

40S 30W 215.5 43800 220.2 

60N 30E 200.2 42000 211.2 

iON lOE 208.6 42800 215.2 

40S 30E 215.5 43600 219.2 

C96+-____ ~--~~~ ____ ~-----+------~----~----~--~--+ 
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Figure 4.20: Comparison between MSU and calculatecl Temperature 



106 

850-300 geopotential thickness field can be predicted using MSU Channel 2 

and the regression equation. 

Table 4.6 presents a similar comparison calculation, instead MSU 

Channel 4 brightness temperature, Figure 4.17a, is compared to a calculated 

temperature using the 200-100 mb ECMWF geopotential thickness, Figure 

4.17b. Results show MSU Channel 4 temperature consistantly lower than the 

calculated temperature. This is expected since the upper half of Channel 4's 

weighting function exists above 100 mb. The corresponding scatlergram, 

Figure 4.20, shows MSU Channel 4 may be used to approximate the 200-100 

mb geopotential thickness field using the regression formula. 

4.6 MSU Thermal Fields and Streamfunction Fields 

The horizontal velocity field may be partitioned into nondivergent and 

irrotational components (Lorenz,1963). The nondivergent part of the two 

dimensional velocity field can be expressed using the streamfunction in the 

following manner (Holton, 1979) 

(4.11 ) 

where its zonal wind component is given as 

(4.12) 

Isolines of the streamfunction thus correspond to streamlines of the 

nondivergent velocity field and the meridional gradient of streamfunction is 

proportional to the magnitude of the nondivergent velocity. Therefore plotting 

lines of constant streamfunction on a map gives a spatial distribution of the 

nondivergent velocity field. A scale analysis of the vorticity equation indicates 
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that midlatitude synoptic scale motions are quasi-nondivergent, that is 

horizontal divergence must be small compared to the vorticity. Therefore, in 

the midlatitudes, the horizontal streamfunction field should be a good 

representation of the velocity field. 

Streamfunction may be related to MSU thermal fields through thermal wind 

theory. In Equation 4.6, it was shown that the magnitude o'f zonal geostrophic 

wind at a pressure level P 1 is proportional to the meridional gradient of 

mean-layer temperature. In a similar fashion, Equation 4.12 shows the 

magnitude of zonal nondivergent wind proportional to the meridional gradient 

of streamfunction values. Mean-layer brightness temperatures fields should 

therefore correspond to streamfunction fields. 

MSU Channel 2 may be considered representative of surface-to-300 mb 

mean-layer temperature, except in extensive regions of elevated terrain as 

previously discussed. The MSU Channel 2 brightness temperature field 

should correspond to the difference between streamfunction fields at 300 mb 

and the surface. Two assumptions should be kept in mind when evaluating 

this comparison. First, as is the case in Equation 4.6, Ug[PSfc1 is assumed 

zero, and second MSU Channel 2 is assumed a true measure of 300 mb -

surface mean-layer temperature. Figures 4.21 a-d show the comparison 

between MSU Channel 2 brightness temperature and 1000-300 mb 

streamfunction difference from the 8-31 Jan ECMWF data. Figures 4.22a-d 

show the same comparison using 1-18 Feb MSU and ECM'NF data sets. The 

pattern correlation for both data sets is again excellent. Figures 4.21 a-b show 

a wave number 3 pattern with troughs located over the nortlleast Canada, 

northwest Europe, and eastern Asia. Figures 4.22a-b show a transition to a 

wave number 2 pattern as the ridge in the North Atlantic weakens. Troughs 
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Figure 4.21: Comparison between MSU Channel 2 and ECMWF 
Streamfunction Thickness. 

A) MSU Channel 2, 8-31 Jan 87, Contour Interval 2 K. 
B) ECMWF 1000-300 Streamfunction Difference, 8-31 Jan 87, NH. 
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Figure 4.21: Comparison between MSU Channel 2 and ECMWF 
Streamfunction Thickness. 

C) Same as Figure 4.21 a except SH. 
D) Same as Figure 4.21 b except SH. 
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A) 

B) 



C) 

D) 
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Figure 4.22: Comparison between MSU Channel 2 and ECMWF 
Streamfunction Thickness. 

C) Same as Figure 4.22a except SH. 
D) Same as Figure 4.22b except SH. 
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are located over northeast Canada and eastern Asia. From these figures it is 

evident Channel 2's thermal pattern correlates well with 1000-300 mb 

streamfunction difference. 

4.7 UPPER-LEVEL WARMING OBSERVED BY MSU, ECMWF AND 
NMC DATA SETS 

One of the most interesting features to appear from analysis of the 

Microwave Sounding Unit data set used in this study was a regional 

upper-level warming between the 8-31 Jan and 1-18 Feb data sets. The 

warming is observed between SOoN latitude and the North Pole. Figures 

4.23a-c show average brightness temperature as a function of latitude for 

IV1SU Channels 2, 3, and 4, respectively. An average brightness temperature 

value for each channel was computed for every 100 latitude loelt using the 

January and then the February data set. Latitude belt 1 reprHsents the 

90-800 S latitude belt, belt 2 represents 80-700 S, and so on to belt 18 which 

g 
~ ::166 • .. •••••••• .. ·• ... !.: .............. ··I.······ .. · .... · ........................................................ · ........ ·· .. ·t.: .. ?···-~J~:;·~~~~!~~~i7 
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~ 
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~ 
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Figure 4.23a: 100 -Latitude Belt Average Brightness Tempe!ratures for MS..U. 
Channel 2: 53.74 GHz, for 8-31 Jan 87 (white diamonds), and 1-18 Feb 87 

(black diamonds). 



113 

represents 80-90oN. In Figure 4.23a, Channel 2 shows little average 

brightness temperature difference between the January and February data 

sets, only a slight warming over the North Pole(;;1-2oK) and slight cooling 

9 10 l~ 
90S 

10 DEGREE LATITUDE BELTS 

14 IS 19 
90N 

Figure 4.23b: 10o-Latitude Belt Average Brightness Temperatures for MS.U. 
Channel 3: 54.96 GHz, for 8-31 Jan 87 (white diamonds), and 1-18 Feb 87 

(black diamonds). 
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Figure 4.23c: 10o-Latitude Belt Average Brightness Temperatures for MS..U. 
Channel 4: 57.95 GHz, for 8-31 Jan 87 (white diamonds), and 1-18 Feb 87 

(black diamonds). 
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over the South Pole(",,1-20 K). Channels 3 and 4, Figures 4.23b and c, show 

similar patterns of small differences between the two data Sl:!tS from 900 S to 

500 N, however from 500 N north to the pole they both show a considerable 

warming occured. 

Average latitude belt brightness temperatures for Channel ~~ increased from 

2-70 K north of 500 N, while Channel 4's increased 2-120 K in this same region. 

Review of the MSU brightness temperature fields in Cha.pter 2 show this 

observed warming to be regional. Global and northern hemispheric pro­

jections of the 8-31 Jan and 1-18 Feb MSU Channel 3 and 4- data sets are 

shown in Figures 2.16 thru 2.19. Figure 2.16b shows a 214 K cold pool 

centered over the Barents Sea in the 8-31 Jan Channel 3 data set. Figure 

2.17b, the 1-18 Feb MSU Channel 3 temperature field, sholNs brightness 

temperatures between 219 K and 222K over that same region indicating in a 

5-80 K increase. Likewise, the Channel 4 projection for 8-3"1 Jan, Figure 

2.18b, shows a .200 K cold pool centered over Norway whilH the1-18 Feb 

projection, Figure 2.19b, shows brightness temperatures in this region 

between 212 K and 216 K, a 1 0-160 K warming. In other re!Jions north of 500 N 

no warming is observed. This is the case over Eastern Siboria and the North 

Pacific Ocean for Channels 3 and 4. Since portions of Channel 3's weighting 

function and most of Channel 4's exists in the lower stratosphere this warming 

phenomenon detected by the MSU may be the result of a sudden 

stratospheric warming (no such warming was evident from Channel 2). 

To determine if this upper-level warming was detected by a data set other 

than MSU we may use ECMWF analyses up to 100mb. ECMWF meridional 

cross-section of temperature are shown in Figures 4.24 for this purpose. The 

strongest warming observed poleward of 500 N by MSU Channel 4 was 
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A) 

CCJIfI"().R) FfD1 199.S TO 3f/l5. S BY 5. sas 

B) 

CXNI'tJ.R) FfD1 199. S TO 3f/l5." BY 5. sas 

Figure 4.24: ECMWF Temperature Cross-sections along A) 300 East for Jan 

8-31, B) 300 East for Feb 1-18, C) 750 West for Jan 8-31, and D) 750 West for 
Feb 1-18. 
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centered along 300 E longitude. Figures 4.24a-d show ECMWF temperature 

cross-sections along 300 E and 7SoW longitude for 8-31 Jan and 1-18 Feb. 

Comparing Figure 4.24a with b shows a warming of up to 1!5 K poleward of 

SOoN between 200 and 100 mb from the January and February data sets 

along 30°E. A slightly weaker warming is seen from comparing Figures 4.24c 

and d along 7SoW (up to 10K) north of SOoN. From these analyses it is 

evident that both the ECMWF and MSU data sets show indications of 

significant warming north of SOoN. A comparison of global ECMWF 100 mb 

temperature fields for 8-31 Jan 87 and 1-18 Feb 87, Figures 3.3b and 3.4b, 

also indicate warming patterns similar to those seen in the MSU data set. The 

January data set shows the 203 K cold region over Norway warming to near 

220 K in the February data set. The pattern similarity betwE~en MSU Channel 

4 for 8-31 Jan and 1-18 Feb (Figures 2.18a and 2.19a), and ECMWF 100 mb 

temperature fields for that same period (Figures 3.3b and 3.4b) are 

self-evident. 

To determine if this observed warming is actually the result of sudden 

stratospheric warming several of characteristics must be evaluated. First, the 

MSU and ECMWF brightness temperature fields show a wa.rming only in the 

Northern Hemisphere. This agrees with the sudden stratospheric warming 

hypothesis, since warmings of sufficient amplitude to reverse the zonal wind 

have not been obsented in the Southern Hemisphere (Levoy and Webster 

1976). Sudden stratospheric warmings are theorized to be a result of vertical 

energy propagation from planetary scale waves in the troposphere below 

(Holton, 1979). Large-amplitude planetary waves appear to pump heat 

northward from the tropical troposphere into the polar regions (Mahlman, 

1969). Vertical propagation can only occur, however, when zonal winds are 
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westerly and weaker than a critical value defined as the Rossby critical velocity. 

Sudden stratospheric warmings do not occur during summer when 

stratospheric· winds are easterly. Winter statospheric circulation over the north 

pole is dominated by a strong zonal polar vortex of westerly winds, driven by 

tile positive meridional temperature gradient. During a warming event the 

cold polar vortex is observed to break down (Schoeberl, 1978) allowing the 

critical velocity needed for vertical energy propagation to occur to be reached. 

A rapid warming may then occur over the polar region, at times even to the 

point of reversing the meridional temperature gradient and creating a 

circumpolar easterly current in stratosphere. 

Several time-series graphs of MSU brightness temperature are presented 

to narrow down when the warming occured. Figure 4.25 shows average MSU 

brightness temperature on a daily basis from 8 Jan thru 18 F13b. This figure 

shows the zonal average brightness temperature of 50 latitude belts center on 

BOoN and 500 N computed daily for Channels 3 and 4. The 1300 -500 brightness 

temperature difference is plotted as a line chart. This temperature difference 

criteria was chosen to allow a comparison with work done by Labitzke, 1977 in 

classifying a stratrospheric warming a major or minor warming. Figure 4.25 

nives a view of near-polar warming with mid-latitude contributions subtracted 

out. Two seperate periods of warming are evident from this time series, 21-25 

.Jan and 3-6 Feb. As expected Channel 3 doesn't show as s·trong a warming as 

Channel 4 since its weighting function is mainly in the troposphere. Labitzke 

considered a major warming event one where the 800 N-500 N temperature 

difference becomes positive and approaches +1 OOC. The 21-25 Jan warming 

meets this criteria, with the 3-6 Feb warming either a minor warming or an 

Gxtension of the initial warming. Fi~lure 4.26 shows the daily change in 
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E,00 N-500 N brightness temperature from the previous day on a line chart. For 

E!xample, on Jan 22 the BOo-500 brightness temperature was 7 K higher than 

(In 21 Jari~ Days of warming are above the zero line, days of cooling below. 

ECMWF data used in this study is only available up to the1 00 mb level. 

This limitation requires the upper-level warming observed by the MSU to be 

compared with another analysis data set above 100 mb. National 

Meteorological Center (NMC) daily analysis of temperature, and geopotential 

height at 50 mb is used in this research to study the observed warming higher 

i, the stratosphere. Like the ECMWF data, NMC data is available on mass 

~;tore files at NCAR. The northern hemispheric NMC anlaysis presented in this 

section were computed on the CRAY computers at NCAR. 

Daily northern hemisphere projection of NMC 50 mb temperature and 

~leopotnetial height were produced for the 8 Jan - 18 Feb 87 time period. 

Figure 4.26 is a time series of BOON - 500 N temperature difference constructed 

to compare with the MSU data in Figure 4.25. From previous discussion it was 

Hhown the strongest warming was centered along 300 East longitude. Figure 

4.27 was constructed by subtracting the temperature at 500 N from that at BOON 

along 300 E from the NMC maps. A comparison of Figures 4.25 (Channel 4) 

and 4.27 reveals that MSU Channel 4 and NMC 50 mb data have similar 

temperature difference trends throughout the period. Both show pronounced 

warmings between 21 - 25 Jan and 3 - 6 Feb B7. Figure 4.2B shows BOON -

~)OoN geopotential height difference along 300 East longitud3. This figure 

~)hows an average wind reversal (westerly to easterly) between BOON and 

~)OoN which appears to coincide with reversal of the meridional temperature 

uradient associated wiht the two warming events. 
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A) 

8) 

Figure 4.29: NMC 50 mb Temperature (K)Field for A) 12Z Jan 10 1987, and 
8)12Z Feb 10 1987 with regions colder than 204 K shaded and regions 
warmer than 224 K hatched; and NMC 50 mb Geopotential Height (GPM) 
Field for C) 12Z Jan 10 1987, and D) 12Z Feb 10 1987. 
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A) 

8) 

Figure 4.30: NMC 50 mb Temperature (K)Field for A) 12Z Jan 20 1987, and 
8)12Z Jan 25 1987 with regions colder than 204 K shadl3d and regions 
warmer than 220 K hatched; and NMC 50 mb Geopotential Height (GPM) 
Field for C) 12Z Jan 20 1987, and D) 12Z Jan 25 1987. 
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A) 

8) 

Figure 4.31: NMC 50 mb Temperature (K)Field for A) 12Z Feb 3 1987, and 
8)12Z Feb 5 1987 with regions colder than 204 K shaded and regions 
warmer than 220 K hatched; and NMC 50 mb Geopotential Height (GPM) 
Field for C) 122 Feb 31987, and D) 12Z Feb 51987. 
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Figures 2.29 - 2.31 are northern hemispheric projections of NMC 50 mb 

':emperature and geopotential height fields. These are presented to show a 

qualitative view of the statospheric warming and simulatneolls breakdown of 

':he zonal polar vortex. Figure 4.29 shows the temperature and geopotential 

height fields before both warming events (10 Jan 87) and onl3 month later, after 

:Joth (10 Feb 87). Figure 4.29a shows a cold pool centered over the Norwegian 

Sea with warmest regions along SOoN in the Eastern Hemisphere. The high­

lighted latitude circle shows SOoN latitude, hatched regions indicate temper­

ature greater than 220 K and shaded regions temperature less than 204 K. 

One month later, Figure 4.29b shows the warmest temperatures over the polar 

region, decreasing with decreasing latitude. The winter circumpolar westerly 

vortex is clearly evident in Figure 4.29c on Jan 10, but by Feb 10, Figure 4.29d :. 

shows it broken down into a zonal wave number 2 pattern along SOoN. 

The 21-25 Jan warming is shown in Figure 4.30 using 50 mb NMC data. 

The cold shaded region in figure 4.30a extends well north of the SOoN latitude 

line on Jan 20. Five days later, Figure 4.30b shows extensive warming north of 

600 N, the north pole has increased form 216 K to 232 K and the shaded region 

is almost completely south of 600 N. The geopotential height fields, Figures 

4.30c and d, show a zonal wave number 2 pattern move off the pole. The 

resulting weaker westerly winds, below the critical velocity, may have allowed 

energy from planetary waves to propagate vertically into the stratosphere 

resulting in the warming. 

The 3-6 Feb warming is shown in Figure 4.31. Similar to the previous 

warming Figures 4.31 a and b show the shaded cold region pushed south of 

SOoN with the hatched warm region covering almost the entire polar region. 

The north pole increased from 222 K to 238 K with a 241 K maximum just to the 
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south along· 900 E. The geopotential height fields, Figures 4.31 c and d continue 

to indicate weak westerly flow over the polar regions. 

In conclusion, the warming observed by the MSU brightnElss temperature 

data was observed by both ECMWF data and at higher levels by NMC data. 

The structure of the NMC temperature fields and geopotential height fields 

indicates this to be a major stratospheric warming event. 



CHAPTER 5 

SUMMARY, CONCLUSION, AND RECOMMENDATIONS 

5.1 REVIEW OF OBJECTIVES AND METHODOLOGY 

This research project was inspired by a desire to expand the application of 

passive microwave remote sensing information to broader research topics in 

the atmospheric sciences. The Microwave Sounding Unit has been collecting 

radiometric data on a global basis since 1978 and thus offers a tremendous 

source of information on the thermal structure of the atmosphere. Another ;: 

advantage of MSU data, and one not at be overlooked, is the fact that the data' 

now exists on a six year time series at NCAR ( which was not available at the 

time of this research). Microwave remote sensing instruments with better 

vertical and horizontal resolution, such as the Advanced Microwave Sounding 

Unit, may not provide data for research until the mid-1990s (Murphy, 1987), 

and it is highly desirable to evaluate the utility of the existing data. Two 

objectives of this research were to develop MSU global brightness 

temperature fields and ECMWF complementary fields for comparison. A 

major portion of time spent on this project was devoted to developing 

programming techniques designed to take MSU thermal data from storage 

files and create global graphics output. Several of the programs used are 

contained in appendices, including a section on programming methods used 

to produce the ECMWF field. These programs are now available to 

manipulate the larger body of available MSU data, and hopefully these 
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microwave data can be applied to research interests more readily. However, 

several details need to be considered by anyone desiring to work with MSU 

brightness temperature data sets. The enormous amount of data contained in 

MSU files requires large storage capabilities, not only storage for brightness 

temperature values (=5.5 million for a 6-week time period) but also storage for 

graphics metacode files. Tape reading and limb-correction can be CPU 

consuming (expensive) when working with a data set covering an extensive 

period of time. This being the case it is best to create limb-corrected files, store 

them on magnetic tape or internal storage devices and perform desired 

processing from the these files. 

The processing technique used in this research was sufficient for viewing 

the data on a global basis. Using 2.50 -grid averaging without any weighting 

factor resolved global circulation features, as shown throughout Chapter 4. 

Since brightness temperature values are specified to the hundreth of a degree 

latitude/longitde an averaging scheme can be developed to research 

phenomenon on almost any meteorological scale. The nature of MSU's 

polar-orbiter satellite platform should also be considered before approaching 

a research project. Satellite overlap and underlap near the poles and equator 

were not dealt with in this project, since it concentrated on a global scale 

analyses and involved time-averaging over a six-week time period. USing 

data from a polar-orbiter platform also requires an awareness of satellite time 

passes, especially in research of a smaller spatial or temporal nature. 

Proper attention should also be paid to limb-correction technique. The 

method used in this project was developed by Smith st. aI., 1974. 

Limb-corrected brightness temperature values from MSU Channel 1 (the 

surface channel ) contained errors that made it unusable. None of the 



134 

research in this study used information from this channel although it is desir­

able to incorporate this information to correct for the noted surface influences 

in Channel 2. Further study into this method is needed before proceeding on 

any project that requires limb-corrected brightness temperatures from Channel 

1. 

The second major objective of this project was to produce global fields of 

temperature, zonal wind, geopotential height, and streamfunction using the 

ECMWF data sets for the purpose of comparison with MSU fields. The CCM 

processor proved to be a system having a wide range of capabilities for 

manipulating ECMWF analysis data sets into user-specified fields. A user's 

guide and tutorial are available from the Climate and Global Dynamics 

Division at NCAR. The ability of the CCM processor to time-average 

user-specified days allowed producing ECMWF fields that time-corresponded 

to the MSU data set available for this study (8 Jan-18 Feb 87). The CCM 

processor capabilities combined with ten years of ECMWF analyses data 

provide unique system that can be applied to weather and climate research. 

The third objective of this study was to determine the extent to which MSU 

brightness temperature fields relate to observed atmospheriC circulations. 

This was accomplished through a series of global and hemispheric 

comparisons of MSU Channels 2, 3, and 4 brightness temperature fields with 

ECMWF temperature, zonal wind, geopotential height, and streamfunction 

fields for two time-periods (8-31 Jan and 1-18 Feb 87). The thermal wind 

concept is primarily used to relate MSU meridional temperature gradients to 

ECMWF observed zonal wind, and geopotential thickness fields. This 

comparison is possible since MSU brightness temperature fields may be 

considered mean-layer temperature fields. Jet stream core location is related 



135 

to a reversal of meridional temperature gradient which may also be estimated 

from the MSU brightness temperature anomaly fields. Thermal wind theory 

also predicts MSU brightness temperature fields to be equivalent to fields of 

streamfunction thickness. These relations were observed through visual 

pattern comparison and random numerical calculations in this study. ECMWF 

and NMC data were combined to provide a record of temperature and zonal 

wind in the lower stratosphere in an effort to determine if the warming shown 

by MSU Channels 3 and 4 could be the result of a sudden-stratospheric 

warming. 

5.2 SUMMARY elF RESULTS 

The objectives of developing MSU brightness temperature fields and 

producing complementary ECMWF data sets were met. NCAR graphics 

routines sucessfully produced global and hemispheric projections of MSU 

brightness temperature fields and the CCM processor allowed for the 

production of complementary fields from ECMWF data sets. Results of the 

comparative study are summarized below: 

• MSU Channel 2 brightness temperature most closely compared to the 500 

mb level temperatum field as shown by visual pattern comparison with 

ECMWF analyses. Likewise, Channels 3 and 4 most closely compared with 

the 300 and 100 mb ECMWF temperature fields. 

• MSU Channel 2 meridional temperature gradients are hi!~hly related to 

ECMWF 300 mb geostrophic zonal wind. Regions of strongest MSU 

meridional temperature gradients correspond to jet stream locations. The 
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coefficient of determination from a simple regression on 15 random numerical 

calculations (R2=.921) shows a highly linear relation. 

• Analysis of MSU brightness temperature anomaly fields for detecting 

temperature gradient reversals showed it to be be a poor predictor of jet core 

location as indicated by ECMWF zonal wind cross-sections. Jet core altitude 

results were slightly improved (30% closer in NH and 24% closer in SH cases) 

using Channel 2 as 500 mb temperature instead of 700 mb. The anomaly 

fields showed a striking difference between predicted NH and SH jet core 

altitude. ECMWF showed the jet core 27 mb higher on average in the SH, 

where the anomaly fields showed an average difference of 103 mb. 

The brightness temperature anomaly fields consistantly predicted th~ 

north-south position of the jet core poleward of the ECMWF location, in both 

hemisphere. ECMWF showed average jet core locations of 320 N and 430 S 

for the locations in Table 4.3, where the anomaly fields predicted 380 N and 

460S. The anomaly fields do not appear to a show better correlation over land 

than ocean. Further comparison of the MSU data and the ECMWF analysis is 

recommended to explore these differences in more detail. 

• MSU Channel 2 meridional temperature gradients highly relate to ECMWF 

850-300 mb geopotential thickness gradients. This is seen in both visual 

pattern comparison and random numerical calculations. MSU meridional 

temperatue gradients were compared to a 'calculated' meridional temperature 

from ECMWF geopotential thickness gradients using Equation 4.9. A simple 

regression performed on the scattergram of Table 4.4 shows the coefficient of 

determination equal to .922. 
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• Likewise, MSU Channel 2 brightness temperature is highly related to 

ECMWF 850-300 mb geopotential thickness. Results from both hemispheres 

show strong pattern correlation. MSU brightness temperatures were 

compared to a 'calcluated' temperature from ECMWF geopotential thickness 

using Equation 4.10. A regression of 15 random numerical calculations show 

a coefficient of determination equal to .952. In a similar manner, MSU 

Channel 4 brightness temperature relates to 200-100 mb ECMWF 

geopotential thickness. Calculations at the same locations show a coefficient 

of determination equal to .989. 

• MSU Channel 2 brightness temperature and brightness temperature 

gradient is related to ECMWF 1000-300 mb streamfunction difference and 

stramfunction thickness gradient. This is verified by the visual pattern 

comparison presented in Chapter 4 for both hemispheres and both time 

periods (8-31 Jan and 1-18 Feb). 

• MSU Channels 3 and 4 have the capability of detecting lower stratospheric 

phenomenon. The warming observed poleward of SOoN by MSU was 

detected in both ECMWF data and at higher levels by NMC data. The 

simultaneous breakdown of the zonal polar vortex with extensive stratospheric 

warming in the polar region, as seen in the NMC data, is strong indication that 

at a major sudden-stratospheric warming occured and was detected by the 

MSU. 

5.3 GENERAL CONCLUSIONS AND RECOMMENDATIONS 

The broad implications of this study reveal the potential a microwave 

sounding instrument has for observing the atmospheric general circulation. 
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Possible applications exist in both global weather and climate studies. Global 

temperature trends can be observed and studied over long or short-range time 

periods .. The MSU may provide an initialization or verification tool for weather 

and climate models in regions of sparse ground truth such as over oceans and 

in the southern hemisphere. To further study the relation between MSU 

brightness temperature and atmospheric general circulation, a numerical 

correlation method should be applied to better quantify the relations shown in 

this study by visual pattern comparisons. This is now possible since both the 

MSU and ECMWF data sets may be obtained in numerical form (ECMWF data 

is in packed format at NCAR). 

In the future, mid-1990s, the Advanced Microwave Sounding Unit (AMSU) 

is proposed to become operational. The advantage of this new instrument 

over the MSU will be greater vertical resolution, 12 frequencies in the oxygen 

band (50-60 GHz) to profile temperature (Murphy, 1987). Weighting function 

curves will have sharper peaks and narrower ranges. A greater number of 

channels will allow more comparisons from different atmospheric levels and 

better comparisons because of increased vertical resolution. For example the 

brightness temperature anomaly fields in this study were produced having 

only three measurements in the vertical (linearly interpolated on a log scale 

inbetween). Having 12 measurements in the vertical should certainly improve 

jet stream core location predictions. 

This study is a beginning effort to determine how MSU brightness 

temperature fields relate to atmospheric general circulation. Results show that 

further research is justified in an effort to better quantify these relations. 
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Appendix A 

FORTRAN - 77 PROGRAM MSUTAPE 

This program reads MSU radiometric data in the form of raw voltage counts 

and converts it to a brightness temperature value. The MSU data tapes used in 

this study were obtained from NOAA·NEDSIS with the MSU data previously 

seperated from other TOVS instrument's data. Data is stored in the TOVS 

format shown in Table 2.2. The calibration technique used in program 

MSUTAPE is discussed in Section 2.4.2. and Figure 2.13a shows a sample 

output brightness temperature file. This program was run on a VAX 750 

computer owned by the Atmospheric Science Department at Colorado State 

University. 

Ic 
~ C 
: C 
I 

PROGRAM MSUTAPE 

PROGRAM TO READ MSU DATA FROM TAPE 

REAL LAT(300,11),LON(300,11) ,CH(300,4,11) 
REAL*4 SCALE(4),COUNT,C1,C2,NORM(4,4),SAT_WAVEN(8,4),SLOPE(4), 

1 XINT(4),WAVEN(4) 
INTEGER*2 lCHAN,WORD 
INTEGER*4 ITEMP 
CHARACTER*20 COLFlL(300) 
CHARACTER CMON*2,ATYPE*4,BTlME*4,ETlME*4,FNAME*12, 

+ CY*2,CM*2,CD*2,ADATE*6,HEADER*80 
CHARACTER*6 SAT(8) 
BYTE lVAL(2),MBYTE,CHECK(4) 
LOGICAL REWINO,NSADJUST,EWAOJUST 

DATA SAT/'TIROS ','NOAA6 ',' ','NOAA7 ',' ','NOAA8 " 
+ 'NOAA9 ','NOAA10'/ 

DATA «SAT WAVEN(I,J),J=1,4),l=1,8) /1.6599,1.7734,1.6488,1.7385, 
1 1.6599,1.7734,1.6488,1.7385, 
1 0.,0.,0.,0., 
1 1.6779,1.7927,1.8337,1.9331, 
1 0.,0.,0.,0., 
1 1.6779,1.7927,1.8334,1.9331, 
1 1.6779,1.7927,1.8334,1.9331, 
1 1.6779,1.7927,1.8334,1.9331/ 

-



C 
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EQUIVALENCE (WORD, IVAL) 
COMMON IINBYTEI MBYTE(440) 

CALL TAPE_DRIVE (ICHAN) 

" NSADJUST = .FALSE. 
EWADJUST = . FALSE. 

C LOOP THROUGH MSUTAPE TO PROCESS CONSECUTIVE FILES 
C 

WRITE (6,*) 'ENTER NUMBER OF FILES TO PROCESS' 
READ (5,*) NFILE 

C COLLECT OUTPUT FILE NAMES IN FILE.COL 
OPEN (UNIT=ll,FILE='FILE.COL',STATUS='NEW') 

00 100 IFILE = 1,NFILE 

C READ TBM HEADER 
C 

CALL MTREAD (ICHAN,MBYTE,122,ISTAT,IACTLN) 
DECODE(60,1,MBYTE) ATYPE,IDATE,BTIME,ETIME 

1 FORMAT(34X,A4,5X,I5,2X,A4,2X,A4) 
CALL MDCON2 (IDATE,IY,IM, ID,CMON) 
CY = CHAR «IY/10)+48) II CHAR (MOD(IY,10)+48) 
CM = CHAR «IM/10)+48) II CHAR (MOD(IM,10)+48) 
CD = CHAR «ID/10)+48) II CHAR (MOD(ID,10)+48) 
ADATE = CY II CM II CD 
FNAME = 'M' II ADATE(2:6) II BTIME(1:2) II '.DAT' 
COLFIL(IFILE) = FNAME 
WRITE (11,2) COLFIL(IFILE) 

2 FORMAT (A) 
OPEN(UNIT=l,FILE=FNAME,STATUS-'NEW',FORM-'FORMATTED') 

C READ DATA SET HEADER 
C 

CALL MTREAD (ICHAN,MBYTE,440,ISTAT,IACTLN) 
ID = MBYTE(l) 
ENCODE(41,3,HEADER) SAT(IO),ATYPE,AOATE,BTIME,ADATE,ETIME 

3 FORMAT(A6,lX,A4,5X,A6,A4,5X,A6,A4) 

00 I = 1,4 
WAVEN(I) 3 SAT_WAVEN(IO,I) 

ENDDO 
ILINE = 0 
IZ - 0 
WRITE(1,4)HEADER 

4 FORMAT (ASO) 
WRITE(·,·) 
WRITE(·,5)HEADER(1:4l) 

5 FORMAT (lX, 'DATA SET FOR: ',A41) 
TYPE 6,SAT(ID) 

6 FORMAT(' USING CAL. COEF. FOR: ',A6) 
C1 a 1.1910659 * 10.**-5 
C2 a 1.438833 
SCALE (1) = 2 •• *22 
SCALE (2) = 2.**30 
SCALE(3) = 2.**44 
SCALE(4) = 2.**56 

10 CALL MTREAD (ICHAN,MBYTE,440,ISTAT,IACTLN) 
IF (ISTAT .EQ. '870'X) GOTO 99 
IERR = 0 
ILINE = ILINE+1 
N = 9 



c 
C 
C 
C 

c 

c 
c 
c 

C 
C 
C 

c 
C 
C 
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DO I = 1,4 
CHECK(I) = MBYTE(N) 
N = N+1 

ENDDO 
CALL SCAN_QUALITY (CHECK,ILINE,FNAME,IERR) 

EXTRACT CALIBRATION INFORMATION 

SLOPE AND INTERCEPT COEFICIENTS 
N = 17 
DO I = 1,4 

CALL BYTCON(N,ITEMP) 
SLOPE(I) = FLOAT (ITEMP)/SCALE(2) 
N = N+4 
CALL BYTCON(N,ITEMP) 
XINT(I) = FLOAT (ITEMP)/SCALE(l) 
N = N+4 

ENDDO 
NORMALIZATION COEFICIENTS 

N = 49 
DOK=1,4 

DO J = 1,4 
CALL BYTCON(N,ITEMP) 
NORM(K,J) = FLOAT(ITEMP)/SCALE(J) 
N = N+4 

ENDCO 
ENDCO 

EXTRACT LAT/LON PAIRS FOR SCAN 

N = 117 
DO I = 1,11 

IVAL(l) = MBYTE(N+1) 
IVAL(2) = MBYTE(N) 
LAT(ILINE,I) = FLOAT(WORD)/128. 
N ". N+2 
IVAL(l) ~ MBYTE(N+1) 
IVAL(2) ". MBYTE(N) 
LON (ILINE,I) == FLOAT(WORD)/128. 
N .. N+2 

ENDDO 

CHECK SCAN FOR ERROR FLAGS 

IF (IERR .NE. 0) THEN 
CALL BADSCAN (ILINE,CH) 
GOTO 10 

ENDIF 

N .. 167 
IREC ". 0 

EXTRACT DATA 

20 IREC". IREC+1 
CO I == 1,4 

IVAL(l) = MBYTE(N+1) 
IVAL(2) = MBYTE(N) 
COUNT'" FLOAT(WORD .AND. 4095) 
COUNT"" NORM(I,l) + (NORM(I,2)*COUNT) + (NORM(I,3)* 

+ (COUNT**2» + (NORM(I,4)*(COUNT**3» 
ENERGY". (SLOPE(I)*COUNT) + XINT(I) 
TERM1 = C2 * WAVEN(I) 

--
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IF (ENERGY .EQ. 0) THEN 
TERM2 O. 

ELSE 

145 

TERM2 = (Cl • (WAVEN(I)**3»/ENERGY 
ENDIF 

IF «1 + TERM2) .LE. 1.0) THEN 
TEMP 0.0 

ELSE 
TEMP = TERM1/ALOG(1 + TERM2) 

ENDIF 

CH (ILINE,I,IREC) = TEMP 
N = N+2 

END DO 
N = N+8 
IF (N .GT. 334) THEN 

GOTO 10 
ELSE 

GOTO 20 
ENDIF 

l WRITE DATA TO FILE (INVERT IF SATELLITE WAS ASCENDING) 
C 

99 CONTINUE 
TYPE 7,FNAME 

7 FORMAT(lX,'WRITING OUTPUT FILE TO: ',A12) 

IF (LAT(l,l) .LT. LAT(ILINE,l» N3ADJUST = .TRUE. 
IF (LON(l,l) .GT. LON(l,ll» EWADJUST = .TRUE. 
DO I = 1,ILINE 

N "" I 
IF (NSADJUST) N = (ILINE+l) - I 
DO J = 1,11 

M = J 
IF (EWAOJUST) M '" 12-J 
WRITE(l,8)J,I,LAT(N,M),LON(N,M),(CH(N,K,M),K=1,4) 

8 FORMAT(lX,I2,I4,F6.2,F7.2,6X,4F6.1) 
ENDDO 

ENDDO 
TYPE .,'NO. OF LINES EXTRACTED: ',ILINE 
CLOSE (UNIT=ol) 

100 CONTINUE 
CLOSE (UNIT=ll) 
END 

SUBROUTINE SCAN_QUALITY (CHECK,ILINE,FNAME,IERROR) 

CHARACTER*15 ERRORS(3,8) 
CHARACTER*12 FNAME,LOGFILE 
BYTE BYTE_VAL,MASK(8),CHECK(4),BIT 

DATA «ERRORS(I,J),J2 1,8),I2 1,3) /'FATAL FLAG', 'DATA GAP', 'DATA FILL', 
1 'DWELL','TIME ERROR','DACS','NO EARTH LOC','LOC DELTA', 
1 'CALIBRATION' , , , , , , , 'SCAN DISABLE', 
1 'SCAN SEQUENCE', 'MIRROR SEQUENCE',' ',' 
1 'BIT SYNC STATUS','SYNC ERROR', 'FRAME SYNC LOCK', 
1 'FLYWHEELING','BIT SLIPPAGE', 'TIP PARITY', 
1 'AUX. FRAME SYNC',' '/ 

DATA MASK /1,2,4,8,16,32,64,128/ 
IERROR '" 0 



IF (ILINE .EQ. 1) THEN 
LOGFILE = FNAME 
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IPTR = INDEX(LOGFlLE,'.') 
LOGFILE(IPTR+l:IPTR+3) = 'LOG' 
OPEN (UNIT=2,FILE=LOGFlLE,STATUS='NEW',FORM='FORMATTED') 
WRITE (2,1) FNAME 

1 FORMAT (A) 
ENDIF 

DO N =: 1,3 
BYTE VAL ~ CHECK(N) 
DO I-= 1,8 

IF (N .EQ. 2 .AND. (I .EQ. 2 .OR. I .EQ. 3» GOTO 10 
IF (N .EQ. 2 .AND. (I .EQ. 7 .OR. I .EQ. 8» GOTO 10 
IF (N .EQ. 3. AND. I .EQ. 8) GOTO 10 
BIT = BYTE VAL .AND. MASK(I) 
IF (BIT .NE. 0) THEN 

TYPE 2,ILINE,ERRORS(N,I) 
WRITE (2,2) ILINE,ERRORS(N,I) 

2 FORMAT (lX, 'ERROR ON LINE: ',I4,lX,A15) 
IERROR =: 1 

ENDIF 
10 ENDDO 

ENDDO 
RETURN 
END 

SUBROUTINE BADSCAN (ILINE,MSU) 

REAL*4 MSU(300,11,4),XMISS(4) 
DATA XMISS /4*999.9/ 
TYPE *,' EDITING SCAN AT: ',ILINE 
WRITE (2,*) , EDITING SCAN AT: ',ILINE 
DO J ::I 1,11 

DO K ::I 1,4 
MSU(ILINE,J,K) = XMISS(K) 

ENDDO 
ENDDO 
RETURN 
END 



Appendix B 

FORTRAN - 77 PROGRAM MSULIMB 

The limb-correction procedure used in this program was developed by 

Smith and Woolf, 1974. The procedure is discussed in more detail by Grody, 

1983. It uses regression equations to compute nadir brightness temperature 

of a given channel based on a linear combinatioon of all channel 

measurements at a particular scan angle. Synthesized clear and cloudy 

brightness temperatures computed from a climatological set of atmospheres 

are used to derive the regression equations. The coefficients for NOAA-1 0, 

used by program MSULIMB in thi~ study, are included at the end of this 

appendix. Figure 2.13b shows a sample limb-corrected brightness 

temperature file that correspond to the uncorrected file shown in Figure 2.13a. 

PROGRAM LIMB CORRECTION 
C READ, LIMB-CORRECT, AND OUTPUT TOVS-MSU DATA 
C 

CHARACTER*20 COLFIL(300), FNAMEL(300) -
CHARACTER*8"O HEADER-,FNAME',OUTNAME, DUMMY * 2 0 . 
CHARACTER*2 ISAT 
COMMON /MSU/ DLAT(300,11),DLON(300,11),Z(300,11),V(300,11,4) 
COMMON /MLC/ V2(300,11,4) 

WRITE (6,*) 'ENTER NUMBER OF FILES TO BE LIMB CORRECTED' 
READ (5,*) NFlLE 

C OBTAIN FILES TO BE LIMB CORRECTED FROM FILE.COL 
C AND STORE LIMB CORRECTED FILE NAMES IN FILEL. COL. 

OPEN (UNITall,FlLE~'FILE.COL',STATUS='OLD') 
OPEN (UNIT~12,FlLE~'FILEL.COL',STATUSa'NEW') 

DO 30 IFlLE = 1,NFlLE 
READ (11,1) COLFIL(IFlLE) 
DUMMY = COLFIL(IFlLE) 
OPEN (UNIT=3,FlLE=DUMMY,STATUS='OLD',FORM2'FORMATTED') 

READ (3,1) HEADER 
1 FORMAT (A) 

-
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ISAT = HEADER(S:6) 
10 READ(3,2,END=20) J,I,DLAT(I,J),DLON(I,J),(V(I,J,K) ,K=1,4) 
2 FORMAT(lX,I2,I4,F6.2,F7.2,6X,4F6.1) 

C 
C 

C 

NLINE = I 
GOTO 10 

. CLOSE (UNIT=3) 

CALL MSULCS (ISAT,NLINE) 

OUTPUT ARRAY OF LIMB CORRECTED DATA 

FNAME = COLFIL(IFILE) 
IPTR = INDEX(FNAME,'.') 
OUTNAME(l:IPTR-l) =- FNAME(l:IPTR-l) 
OUTNAME(IPTR:IPTR+4) = 'L.DAT' 
FNAMEL(IFILE) = OUTNAME 
WRITE(12,1) FNAMEL(IFILE) 

C STORE LIMB CORRECTED FILE ON MAGNETIC TAPE ON DRIVE MUA12: 

OPEN (UNIT=1,FILE=-'ROMU15$MUA12:'//OUTNAME, 
1 STATUS2'NEW',FORM-'FORMATTED') 

WRITE (1,1) HEADER 
DO I :0 1,NLINE 

00 J = 1,11 
WRITE (1,3) J,I,DLAT(I,J),DLON(I,J),(V2(I,J,K),K=1,4) 

3. FORMAT (lX, I2, I4, F6. 2, F7 • 2, 6X, 4F6 .1) 
ENDOO 

ENDOO 
TYPE 4, OUTNAME 

4 FORMAT(' OUTPUT LIMB CORRECTED DATA FILE IS: ',A16) 
3 CONTINUE 

CLOSE (UNIT-l) 
CLOSE (UNIT""ll) 
CLOSE (UNIT=12) 
END 

SUBROUTINE MSULCS (ISAT,NLINE) 
C This version corresponds to MSULCS of 20 May 1983 as used bj 
C MCIDAS TOVS processing system 

CHARACTER*2 ISAT 
COMMON /MSU/ DLAT(300,11),DLON(300,11),Z(300,11),V(300,11,4) 
COMMON /MLC/ V2(300,11,4) 
COMMON /MSULIM/ COEFL(S,S,18),ASYM(3,11),ASZM(3,S) 
DIMENSION CMSU(4),XMISS(4) 
DIMENSION C(4),CRIT(6) 
DATA CRIT/236.,238.,240.,24S.,2S0.,260./ 
DATA NC/4/,NI/S/,INIT/O/ 
DATA XMISS /4*999.9/ 

CALL RMLCOEF (ISAT)· 
C 00 FOR EACH FOV 
C 

00 ILINE - l,NLINE 
00 IELE ,.. 1,11 

DO K .. 1,4 
CMSU(K) ,.. V(ILINE,IELE,K) 

ENDOO 
DO K := 1,4 

IF (CMSU(K) .EQ. XMISS(K» GO TO 20 
ENDDO 

L :0 IABS(IELE-6) 
15 ::II 1 
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IF (CMSU(l) .LT. CRIT(L+l» 15=2 
IF (15.NE.15T) 15=3 
K = 3*L+15 

DO J = 1, NC 
SUM=COEFL(NI,J,K) 

DO I = 1,NC 
SUM = SUM + COEFL(I,J,K)*CMSU(I) 

ENDDO 
C(J)=SUM 

ENDDO 
DO J = 1,NC 

CMSU(J) = CMSU(J)+C(J) 
ENDDO 

C STORE NEW VALUES IN ARRAY V2 
20 DO K = 1,4 

V2(ILINE,IELE,K) ~ CMSU(K) 
ENDDO 

ENDDO 
ENDDO 
RETURN 
END 

SUBROUTINE RMLCOEF (ISAT) 

CHARACTER*SO FNAME 
~:tARACTER*2 ISAT 
:~MMON/MSULIM/CBUF(49a) 

TYPE 1, ISAT 
1 FORMAT(' READING COEFFICIENTS FOR NOAA',A2) 

IF (ISAT(2:2) .EQ. ' ') THEN 

FNAME 2 'MCOEF'//ISAT(l:l)//'.DAT' 
ELSE 

FNAME ~ 'MCOEF'//ISAT(1:2)//'.DAT' 
ENDIF 
OPEN(2,FILEaFNAME,STATUSm'OLD',ACCESS·'SEQUENTIAL',READONLY) 

C READ COEFFICIENTS 
READ(2,lOO,END-10) CBUF 

100 FORMAT(lX,9FS.4) 
CLOSE (2) 
RETURN 

10 TYPE *,' ERROR IN RMLCOEF -- EOF ENCOUNTERED' 
STOP 
END 
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COEFFICIENTS FOR NOAA-10, USED IN MSULIMB 

-0.9268 1.5105 -0.4Qg8 0.0728-43.~99 -0.0213 0.0191 0.0271 -0.0111 
-1.0023 0.0016 0.0133 -0.0411 0.0153 2.3994 -0.0025 -0.0195 0.0325 
-0.0167 1.7517 0.0038 -0.oog9 0.0117 -0.0018 -0.1920 -1.0024 1.8211 
-0.4165' 0.0624-45.5429 -0.0200 0.0191 0.0041 -0.oag9 2.5231 0.0046 
0.0184 -0.0395 0.0141 0.4481 -0.0075 -0.0157 0.0461 -0.0204 -0.5433 

-0.0041 -0.0009 -0.0092 0.0049 1.8052 -1.0434 1.8671 -0.4152 0.0571 
-47.4847 -0.0290 0.0260 0.0195 -0.0181 1.0938 -0.0005 0.0163 -0.0356 

0.0115 1.7217 -0.0001 -0.0256 0.0392 -0.0182 1.4341 0.0010 -0.0168 
-0.0034 0.0031 2.3366 -0.9205 1.5012 -0.3996 0.0682-43.9721 -0.0191 
0.0263 0.0172 -0.0158 -1.2232 0.0011 0.0252 -0.0492 0.0119 2.3148 

-0.0023 -0.0217 0.0433 -0.0228 2.5001 0.0159 -0.0291 0.0155 -0.0022 
-0.0263 -0.9978 1.6182 -0.4113 0.0597-48.1399 -0.0181 0.0266 -0.0041 
-0.0081 2.2235 0.0045 0.0301 -0.0434 0.0112 0.4686 -0.0083 -0.0233 
0.0583 -0.0214 0.2269 -0.0146 -0.0104 -0.0093 0.0052 6.5111 -1.0407 
1.6651 -0.4013 0.0528-48.1613 -0.0216 0.0344 0.0096 -0.0162 0.8116 

-0.0008 ).0283 -0.0441 0.0085 1.6858 0.0 -0.0338 0.0504 -0.0245 
2.2483 0.0063 -0.0233 -0.0069 0.0060 4.4155 -0.9006 1.4793 -0.3784 
0.0562-44.7104 -0.0121 0.0511 -0.0158 -0.0100 -1.8687 0.0 0.0621 

-0.0121 -0.0003 2.0022 -0.0010 -0.0544 0.0775 -0.0423 5.5604 0.0586 
-0.0975 0.0300 -0.0038 2.6470 -0.9864 1.6174 -0.4013 0.0514-47.9489 
-0.0132 0.0532 -0.0362 -0.0025 1.2828 0.0013 0.0642 -0.0143 0.0005 
0.3211 -0.0105 -0.0478 0.0963 -0.0494 2.9030 -0.0395 -0.0475 -0;0022 
0.0035 19.3191 -1.0331 1.6689 -0.3g53 0.0422-50.1815 -0.0236 0.0634 

-0.0245 -0.0101 -0.0605 -0.0016 0.06SO -0.0617 -0.0031 1.4586 0.0005 
-0.0608 0.0858 -0.0448 5.0951 0.0194 -0.0638 -0.0136 0.0132 11.0341 
-0.8637 1.4512 -0.3688 0.0451-45.1;78 -0.0013 0.0948 -0.0166 0.0023 
-2.7817 -0.0024 0.1313 -0.1117 -0.0195 1.2159 -0.0019 -0.1019 0.1405 
-0.0794 11.0108 0.1438 -0.2405 0.0680 -0.0089 8.0965 -0.9801 1.6334 
-0.4347 0.0587-49.8380 -0.0052 0.1034 -0.0987 0.0110 -0.1098 0.0040 
0.1325 -0.1225 -0.0175 0.3153 "0.0180 -0.088S 0.1638 -0.0905 1.8255 

-0.0571 -0.1324 0.0205 -0.0018 37.2787 -1.0215 1.6974 -0.4122 0.0374 
-52.0308 -0.0174 0.1174 -0.0898 0.0036 -1.4558 -0.0034 0.1M3 -0.1168 
-0.0215 1.0459 O.COOS -0.1082 0.1508 -0.0828 10.3966 0.0822 -0.1922 
-0.0153 0.0289 23.0101 -0.7972 1.4099 -0.3917 0.0439-43.6022 0.0177 
0.1617 -0.1814 0.0280 -3.1815-0.0024 0.2401 -0.1919 -0.0479 -0.5407 

-0.0026 -0.1190 0.2537 -0.1492 19.5395 0.3104 -0.5419 0.1677 -0.0290 
18.3471 -0.9144 1.6604 -0.5239 0.0880-SO.013O 0.0048 0.1872 -0.2103 
0.0399 -1.5365 0.0089 0.2354 -O.1991 -0.0435 -0.8089 -0.0240 -0.1489 
0.2158 -0.1639 15.3148 -0.02'" -0.3304 0.0845 -0.0149 50.1701 -1.0083 
1.7748 -0.4982 0.0525-05.4147 -0.0102 0.2081 -0.2060 0.0331 -2.7661 

-0.0027 0.2428 -0.1051 -0.0478 -0.4349 0.0003 -0.1858 0.2669 -0.1548 
18.6525 0.2848 -0.5880 0.0629 0.0410 45.0809 -0.6369 1.2593 -0.5037 
0.0978-30.0125 0.0613 0.2390 -0.3772 0.0921 1.3041 -0.0028 0.4314 

-0.3349 -O.08OS -4.4031 -0.0006 -0.3013 0.4911 -0.3086 29.6741 0.6g18 
-1.2954 0.5527 -0.1403 34.5670 -0.7871 1.5~ -0.1343 0.2003-34.g743 
0.0276 0.30S4 -0.4320 0.1184' ~.0488 0.0106 0.4136 -0.33g3 -0.0749 

-3.5728 -0.0358 -0.2312 0.4863 -0.3166 24.1373 0.1711 -0.g014 0.3573 
-0.OQ19 87.2581 -0.9874 1.9334 -0.8018 0.16;1-49.1817 -0.0030 0.3501 
-0.4435 0.1120 -0.0018 -0.0020 0.4318 -0.3437 -0.0184 -3.5227 -0.0005 
-0.20;1 0.S03; -0.3184 28.1553 0.9880 -2.0509 0.7081 -0.0950 92.5724 
0.4358 0.7288 -0.0488 0.395~0.4080 0.0326 0.3220 0.2124 0.0080 
0.1148 0.127~ 0.0105 0.0436 0.0578 0.0051 0.0 0.0 0.0 
0.0372 0.0010 0.0205 0.1238 0.0195 O.O~ 0.2;59 0.0505 0.0587 
0.4527 0.2221 0.0758 0.3305 0.4417 0.0775 0.2071 0.2570 -0.3120 

-0.0047 0.2228 -0.1308 0.0351 0.1771 -0.0889 -0.0123 0.1192 -0.0399 
-0.0011 0.0609 -0.0209 



Appendix C 

FORTRAN - 77 PROGRAM MSUMAP 

Program MSUMAP is used to to produce the global MSU brightness 

temperature fields shown in Section 2.5.2. It calls the CONRAN (contouring 

objective analysis routine) and EZMAP (map projection routine) utilities. along 

with other graphics options. Subroutine MAPTRAN translates each 

latitudellongitude data point onto a u/v - plane. subroutine CONRAN performs. 

a user specified contour analysis. and subroutine SUPMAP creates a map 

according to the desired projection. A linear interpolation scheme was called 

by CONRAN for all the MSU fields contoured in this study. 

PROGRAM MSUMAP 
C ********************************************************************** 
C THIS PROGRAM DRAWS AN EARTH-BASED PROJECTION MAP AND CONTOURS DATA 
~ USING LINEAR INTERPOLATION AND NCAR GRAPHICS ROUTINES. 

C THE OUTPUT GRAPHIC CAN BE SEND TO A SCREEN (0) OR A PRINTER (1). 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

THZ SUBROUTINE "SUPMAP" PLOTS THE MAP. 

THE COORDINATE TRANSFORMATION IS HANDLED BY SUBROUTINE MAPTRN. 

THE CONTOURING IS PERFORMED BY SUBROUTINE CONRAN. 

TH! NUMBER OF DATA POINTS MUST BE SPECIFICED BY THE USER BY RESETTING 
THE PA.RAHETER VARABLE "MDATA" AND RECOMPILING THE PROGRAM. 

THE INPUT FILES ARE MAPDRI.DAT: CONTAINING CRIVER FOR EARTH-BASED 
PROJECTION MAP 

IRMAP.DAT: CONTAINING DRIVER FOR CONTOURING 
IRREGULAR DATA FILE 

THE OUPUT FILE IS ERROR. OAT: CONTAINING THE ERROR MESSAGE. 
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C 
C THE INPUT VARIABLES ARE THE FOLLOWS: 
C MAPDRI.DAT (UNITal) : XLOW,XROW,YBOW,'iTOW = SIZE OF THE WINDOW 
c 
c 
c 
c 

<... 

C 
c 
c 
c 
c 
C 
c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

IRDATA.DAT (UNIT-2) 

FILENM (UNIT-l) 

JPiU = TYPE OF MAP PROJECTION 
PLAT ... SUB-POINT IN LATITUDE 
PLON ,. SUB-POINT IN LONGITUDE 
ROTA a ROTATING THE MAP 
PLM1,P~~2,PLM3.PLM4 ... SIZE OF THE MAP 
JLTS ,. USE WITH P~~1,PLM2,PLM3 AND, PLM4 

JGRIC ... DRAWING LONGITUDE AND LATITUDE 
IOUT ... TYPE OF OUTLI~ES 
ICOT ,. OUTLINES PATTERN 

SSA .. HEIGHT OF THE SATELLITE IN TERMS OF 
EARTH RADIUS FROM EARTH CENTER 

(FOR MORE SPECIFIC DEFINITATION SEE NCAR MANNULS) 
FlLENM ... NAME OF THE INPUT DATA FILE 

lLOC .. FLAG FOR DISPLAYING DATA POINT 
(ANYTHING BUT ZERO) 

IDEF ... FLAG FOR DETERMINING CONTOURING 
(ANYTHING BUT ZERO) 

ARRAY (1) .. HIGH 
ARRAY (2) .. LOW 

CINC .. CONTOUR INCREMENT 
IEXT .. FLAG FOR DETERMINING EXTRAPOLATION 

(ANYTHING BUT ZERO) 
DLON(K) .. LONGITUCINAL POSITION WITH ELEMENT K 
DLAT(K) - LATITUCINAL POSITION WITH ELEMENT K 

ZC(K) - DATA VALUES WITH ELEMENT K 

C THE OUTPUT VARIABLE IS : 
C ERROR. CAT (UNIT-20) : IERR .. ERROR MESSAGE 
C 
(" 

C 

••••••••••••••• * •• *.********************** •• * ••••••• * ••• * ••••••••••••••• 
PARAMETER (MDATA-11000) 
DIMENSION ZD(MDATA),OLON(MDATA)/CLAT(MDATA) ,XC(MOATA) ,~C(MDATA) / 

1 WK(ll*MDATA), IWK(ll*MDATA), SCRARR(40.*2), ARRAY (2) , 
2 DNUM(MDATA) 

CHARACTER*lO FlLENM 

C OPTION: SCREEN OF PRINTER 
C 

C 

WRITE (6,/(lX/A)') 'DISPLAY OR PRINTER (0/1)' 
READ (5,'(Il)') ICH 
IF (ICH .GT. 1) GOTO 10 

C OPTION: MAP ONLY OR MAP WITH CATA OVERLAYED 
C 

WRITE (6,'(lX,A)') 'MAP ONLY OR MAP WITH OVERLAYING DATA (0/1)' 
20 READ (5/'(Il)') lNAP 

IF (ICH .GT. 1) GOTO 20 
C 
C INPUTTING DATA FROM NAPDRI.DAT AND IRDATA.DAT 
C 

OPEN (UNIT-l, FIIZ-'NAPDRI. OAT' , STATUS-'OLD') 
READ (1, *) XLOW, XROW / YBOW / now 
READ (1,*) JPRJ 
READ (1, *) PLAT / PLON , ROTA 
READ (1,*) PLM1/PLM2,PLM3,PLM4 
READ (1,*) JLTS,JGRID,IOUT,IDOT 
READ (1/*) SSA 

CLOSE (UNIT-l) 
IF (IMAP.EQ.1) THEN 

OPEN (UNIT-2,FILE-'IRoATA.DAT',STATUS-'OLD') 
READ (2,*) FILENM 
READ (2,*) lLOC 
READ (2,*) IOEF,ARRAY(1),ARRAY(2) ,CINC 
READ (2,*) IEXT 

CLOSE (UNIT-2) 

.... 
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OPEN (UNITaJ,FILEaFILENM.STATUS.'OLD') 
00 250 Kal,~DATA 
READ (J,*,ENDa 260,ERR-270) DLAT(K) ,DLON(K) ,DNUM(K) ,ZD(K) 

250 CONTINUE 
NDP ,. MDATA 
GOTO 280 

260 NDP ,. K-l 
GOTO 260 

270 PRINT *, 'ERRORS DETECTED IN READING DATA FILE' 
GOTO 260 

260 CLOSE (UNITa 3) 
ENDIF 

C BEGIN PLOTTING ROUTINE 
CALL OPNGKS 
CALL GSCLIP(O) 

C INCREASE RESOLUTION FOR LASERPRINTER 
CALL MAPSTI ( , RE' , 1024)· 
CALL MAPSTI('EL',l) 

C SET UP WORKING AREA ON THE SCREEN/PAPER 
CALL MAPPOS(XLOW,XROW,~BOW,~TOW) 

C FOR SATELLITE PROJECTION ONL1 

C 

IF (lABS (JPRJ) .EQ.7) THEN 
CALL MAPSTR( 'SA' ,SSA) 

ENDIF 
CALL SUPMAP (JPRJ,PLAT,PLON,ROTA,PLM1,PLM2,PLM3,PLM4,JLTS, 

1 JGRID,IOUT,IDOT,IERR) 

C CALL MAPPING AND CONTOURING USING CONREC OR CONRAN 
IF (IMAP.EQ.l) THEN 

00 400 IJ- 1,NDP 
CALL MAPTRN (OLAT(IJ) ,OLON(IJ) ,XD(IJ) ,~O(IJ» 

400 CONTINUE 
IF (ILOC.EQ.O) THEN 

IF (IDEr.EQ.O) THEN 
CALL CONOPl ('DEF') 

ELSE 
CALL CONOP1('ITP-LIN') 
CALL CONOP1('LAS-oN') 

ENDlr 
IF (IEXT.EQ.O) THEN 

CALL CONOPl ('EXT-oFF') 
ELSE 

CALL CONOPl (' EXT-oN' ) 
ENDIr 

ELSE 
CALL CONOP1('ITP-LIN') 
CALL CONOP3 ( , CHL-ON' , ARRAY, 2) 
CALL CONOP3('CIL-ON',CINC,1) 

ENDIr . 
CALL CONOPl ('SCA-oFr') 
CALL CONUN (XO, YO, ZO, NDP, WK, IWK, SCRARR) 

ENDI!' 

C OUTPUT ERROR MESSAGE TO FILE 
C 

C 

OPEN (UNIT-20, FILE-'ERROR. OAT' ,STATUS-'UNKNOWN') 
WRITE (20,*) IERR 

CLOSE (UNIT-20) 
CALL FRAH!l 
CALL CLSGKS 

STOP 
END 

SUBROUTINE SUPMAP (JPRJ,PLAT,PLON,ROTA,PLM1,PLM2,PLMJ,PLM4,JLTS, 
1 JGRID, lOUT, lOOT, IERR) 
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C CALL UP DIFFERENT MAP PROJECTIONS 

C STEREOGRAPHIC---l 
IF (IABS(JPRJ) .EQ.l) THEN 

'CALL MAPROJ('ST' ,PLAT,PLON,ROTA) 
C ORTHOGRAPHIC---2C 

ELSE IF (IABS(JPRJ) .EQ.2) THEN 
CALL MAPROJ('OR' , PLAT, PLON,ROTA) 

C LAMBERT CONFORMAL CONIC---3 
ELSE IF (IABS(JPRJ) .EQ.3) THEN 

CALL MAPROJ('LC' , PLAT, PLON, ROTA) 
C LAMBERT EQUAL-AREA---4 

ELSE IF (IABS(JPRJ).EQ.4) THEN 
CALL MAPROJ('LE' , PLAT, PLON,ROTA) 

C GNOMONIC---S 
ELSE IF (IABS(JPRJ).EQ.5) THEN 

CALL MAPROJ('GN',PLAT,PLON,ROTA) 
, AZIMUTHAL EQUIDISTANT---6 

ELSE IF (IABS(JPRJ).EQ.6) THEN 
CALL MAPROJ('AE',PLAT,PLON,ROTA) 

C SATELLITE-VIEW---7 
ELSE IF (lABS (JPRJ) .EQ.7) THEN 

CALL MAPROJ('SV',PLAT,PLON,ROTA) 

C CYLINDRICAL EQUIDISTANT---S 
ELSE IF (IABS(JPRJ) .EQ.S) THEN 

CALL MAPROJ('CE',PLAT,PLON,ROTA) 
C MERCATOR---9 

ELSE IF (IABS(JPRJ).EQ.9) THEN 
CALL MAPROJ('ME',PLAT,PLON,ROTA) 

C MOLLWEIDE TYPE---10 
ELSE IF (IABS(JPRJ).EQ.10) THEN 

CALL MAPROJ('MO',PLAT,PLON,ROTA) 

ENOIF 

C CALL UP MAP-SETTING FOR BOtJNDARYS' OPTIONS 
C 

C 

IF (IABS(JLTS) .EQ.l) THEN 
CALL MAPSET ('MA',PLM1,PLM2,PLM3,PLM4) 

ELSE IF (IABS(JLTS).EQ.2) THEN 
CALL MAPSET ('CO',PLM1,PLM2,PLM3,PLM4) 

ELSE IF (IABS(JLTS).EQ.4) THEN 
CALL MAPSET (' AN' , PLM1, PLM2 , PLM3 , PLM4) 

ELSE IF (IABS(JLTS).EQ.S) THEN 
CALL MAPSET ('PO',PLM1,PLM2,PLM3,PLM4) 

ENDIr 

C PUT MERIDIANS AND PARALLELS EVERY JGRID DEGREES IN DOTTED LINEC 
CALL MAPSTI ('GR' ,JGRID) 
CALL MAPSTI ( , DA' , 3 ) 

C 
C OUTLINES OPTIONS 
r 

IF (IABS(IOUT).LE.l) THEN 
IF «JPRJ.GE.O) .AND.(IOUT.EQ.O» THEN 

CALL MAPSTC (' OU' , , CO ' ) 
ELSE IF «JPRJ.GE.O).AND.(IABS(IOUT).EQ.l» THEN 

CALL MAPSTC ('OU', 'US') 
CALL MAPSTC ('OU', 'CO') 

ELSE IF «JPRJ.LT.O).AND.(IOUT.EQ.O» THEN 
CALL MAPSTC ('OU','NO') 

ELSE IF «JPRJ.LT.O).AND.(IABS(IOUT) .EQ.l» THEN 
CALL MAPSTC ('OU','US') 

EHDIF 
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ELSE IF (IABS(IOUT) .GT.l) THEN 
IF (IOUT.EQ.-2) THEN 

CALL MAPSTC ('OU', 'NO' 1 
ELSE IF (IOUT.EQ.2) THEN 
. CALL MAPSTC ('OU','CO') 
ELSE IF (lOUT.EQ.3) THEN 

CALL MAPSTC ('OU','US') 
ELSE IF (IOUT.EQ.4) THEN 

CALL MAPSTC ('OU','PS') 
ELSE IF (lOUT.GE.S) THEN 

CALL MAPSTC ('OU','PO') 
ENOlF 

ENOlF 

SOLID(O) ,DOTTEO(l), OASHED(2), OR DOT-DASHED(3) OUTLINES 
IF (IDOT.EQ.O) THEN 

CALL MAPSTI ('00',0) 
ELSE IF (IDOT.EQ.l) THEN 

CALL MAPSTI (' DO' , 1) 

ELSE IF (IDOT.EQ.2) THEN 
CALL MAPSTI (' DO' ,2) 

ELSE IF (IDOT.EQ.3) THEN 
CALL MAPSTI ('00',3) 

ENDIF 

C CALL UP DRAWING ROUTINE 
CALL MAPDRW 

C 

C CALL UP ERROR MESSAGE ROUTINE 
CALL MAPGTI('ER',IERR) 

RETURN 
END 



Appendix D 

PROGRAMMING METHODS USED TO PRODUCE ECMWF FIELDS 

The CCM processor code will execute on either the CRAY -1 or the CRA Y X­

MP from a job deck maintained on the NCAR IBM 4381. The entire submis­

sion deck for the CCM processor can be summarized in two job steps. The 

first part is a CRAY job control language (JCL) deck used to acquire and run 

the processor code (Figure 0.1). The second part consists of user modified in- ~ 

put control parameters (ICPs), used to specify how you want the CCM proces­

sor to manipulate the ECMWF data sets. ICPs are used to select the desired 

history tapes, perform functions such as time averaging, and output graphics. 

An example of ICP coding is shown in Figure 0.2 

Input Control Parameters are organized under a "keyword" concept. Each . 
keyword used in the processor code controls a function performed by the CeM 

processor. For example, the keyword TIMAVGA set to "YES" will cause the 

processor to perform a time average on the data selected as user specified 

case A. The desired time period is selected by calling history tapes and re­

questing specific days using the OAYA keyword. The keyword HPCINT set 

equal to ' T " 500. ,5. tells the processor to plot and contour the 500 mb tem­

perature field on a horizontal projection with a contour interval of five degrees 

farenheit. 8y setting the projection keyword to POLAR, northern and southern 

hemisphere polar sterographic projections may be obtained. An unabridged 
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"I 987}. Several simple examples of ICP structure and usage are presented in 

the CCM tutorial (Oias, 1987). 

==--= JOB ,IN=VR02 ,US=648835081140 ,0111=100, T=250, f/1S ,CL=8G1. 
===== ACCOUNT ,AC=04883S0S1140. 
===== DISPOSE,DN=$OUT,DEFER,DC=ST,DF=CH,TEXT=/FLNM=EZMAP,FLTY=OUT'. 
=== * 
==--== *SET(GQ=/CHECK/Hl 
=== *THIS ALLOWS A CHECK ~ TO CHECK SYNTAX ETC 01<; RUN EXP CLASS 
== * SET 61 TO NUI1BER OF JOBSTEPS 
== 5ET(61=1) 
=== f INITIAlIZE 62 AS A COI.tfTER OF STEPS 
===--= SET (62=1) 
=== f 53 IS 00. OF PLOT FRA/£S IN ClMNT SET 
===== SET(63=O) 
== t INITIAlIZE 64 AS TI£ PLOT DISPOSE 6RCA.f 
== SET (64=1) 
= ?ROC. 
- OISPLOT,STAT. 
= IF(G3.6T.01TI£N 
== PRSI",I=PINlEX,O=PLTD. 
===== FO IND ,DN=$Pl. T • 
= C(f'YD, I=$Pl T ,0=Pl TD. 
--- FOINO ,IlFPL TD. 
---.- IF(~5TAT.EQ./ABDRT/1 

= DISPOSE ,DN=PLTD ,If=8I ,f!F=IO,DC=PT ,NONAIT, A 

==== TEXT=/I1DS,TITLE=PROC02 PLOTS - ADT'. 
== 8...SE. 
==== DISPOSE,I:t4=PLm,tf=BI ,"'=IO,OC=PT ,tOftIT,· 
- TEXT='I1DS,TITLE=PROC02 PlOTS'. 
===== ENDIF. 
=--== SET (63=0) 

= ENDIF. 
= ENIfROC. 
===== ACQUIRE ,rH=AilPROC ,~02CXAB ,1f'=ttS, TEXT: I FUfP/COf'ROC/02/CX lAB I • 

==== ACQUIRE,DN=$DEBU6,P~02CXDB,MF=ttS,TEXT=/FlJfP/CCMPROC/02/CX/DB' • 
= LIXP. 
===== EXITLOOP(S2.6T.61) 
== ABPRa:. 
===- SET (82=62+1) 

EHIlIXP. 
==== DISPlOT, 'tCRt' • 
===- EXIT. 
==== IlW-lOB. 
== lEO; ,BlOCKS ,PASES--SO. 
===== DISPLOT,/ABORT'. 
=--= EXIT. 
===- DISPLOT, I ABORT' • 
== \EOF 

Figure 0.1: JCL Used to access the CCM Processor. 
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==--= C INPUT CONTROl.. PARAMETERS - JOB STEP 1 
===== C SPECIFICATION Of CASE A 
===== TYPEA='PTP1' 
=;:== C 
===== C TITLE ON PLOTS 
==== TITLEA='ECPtWF T42 8 JAN 1987 - 31 JAN 1987' 
==== C 
=== C INITIAl. NarES ON MASS STORE PATH NAME 
===== MSPFXI=' /TRENBERT/CTGAN/ ' 
=== C 
==--= C LAST NODE ON MASS STORE PATH NAME (CAN LIST MORE THAN ONE NA/1E IF U WI 
==== C 
==== TAPESA='ET428701A' ,'ET428701B' 
--- DPl1l1F=' 19' 
-- TH1AVGA=' YES' 
----- DAYSA=3294.0,3317.5,O.5 
----- FIELDA1='PSI' ,'POIF' 
--- SPCAl=' YES' 
--- DERFLD = 
== 'PSl-FTl' ,61,1,2,O,'PSI' ,'.SHIFTlP',' .SHIFTlP', 
== ' .SHIFTLf' " .SHIFTUP' " .ENO' , 
==--= 'PDIF' ,61,1 ,2,O,'PSI', 'PSrfTl',' :I'IU(JS' " .END' 
== 1-ffiOJ='P(lAR' 
== f£l'tIS=' SOOTH I 
-- MXASPRT=O.5 
==C 
== C eMU INTERVfL Fm t-mIZOOAl. PLOTS 
--- HPCINT= 'PSI' ,1000.,-1.,'PSI' ,300.,0., 
--- 'PSI' ,200.,-1., 
-- 'PDIF' ,1000. ,-1., 'PDIF' ,300. ,0., IPDIF' ,200. ,-1., 
-- 'DIV' ,1000.,-1. 
=c 
== C COOU IHT£RVfLS Fm I£RIDICfW. CROSS-SECTIONS 
==c 
= CI1XCINT= 'T' ,5., 'u' ,5. 
= ENIXFDATA 
== \EOF 
== •• f End of File f • f 

Figure 0.2: Sample Input Control Parameters. requests CCM processor to 
manipulate ECMWF data sets. 
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