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ABSTRACT

GRASSMANN, FLAG, AND SCHUBERT VARIETIES IN APPLICATIONS.

This dissertation develops mathematical tools for signal processing and pattern recogni-

tion tasks where data with the same identity is assumed to vary linearly. We build on the

growing canon of techniques for analyzing and optimizing over data on Grassmann mani-

folds. Specifically we expand on a recently developed method referred to as the flag mean

that finds an average representation for a collection data that consists of linear subspaces

of possibly different dimensions. When prior knowledge exists about relationships between

these data, we show that a point analogous to the flag mean can be found as an element of a

Schubert variety to incorporates this theoretical information. This domain restriction relates

closely to a recent result regarding point-to-set functions. This restricted average along with

a property of the flag mean that prioritizes weak but common information, leads to practical

applications of the flag mean such as chemical plume detection in long-wave infrared hyper-

spectral videos, and a modification of the well-known diffusion map for adaptively visualizing

data relationships in 2-dimensions.
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CHAPTER 1

INTRODUCTION

1.1. Pattern Recognition and Signal Processing

The focus of this dissertation is in developing tools and algorithms for pattern recognition

and signal processing tasks that exploit underlying geometric structure in high-dimensional

data sets. Pattern recognition encompasses a broad class of applications that involve classify-

ing inputs into identity categories based on features found within the data. The classification

is often accomplished via machine learning algorithms in both supervised and unsupervised

contexts. Signal processing describes the abstract process of extracting or transferring usable

information from digital signals of all types. The scope of this dissertation is in building

theory and applications through these two lenses where data samples from within a class

demonstrate structured variations; specifically variation that can be represented at least

locally by a linear subspace. Such tasks arise in a variety of problems including activity

modeling and recognition [70], shape analysis [52], appearance recognition [49], action clas-

sification [37], face recognition [31], noisy image classification [45], chemical detection in

hyperspectral images [46], and general manifold clustering [5, 29] to name a few. In each

of the aforementioned applications data can be represented by linear subspaces that span

some form of variation intrinsic to the class or identity of a sample. In this context, the

natural place to perform data analysis is the Grassmann manifold, i.e., the parametrization

of k-dimensional subspaces of an n-dimensional space, because elements of this space are

invariant under changes of basis and related metrics reflect this invariance.

Finding a map between data and a structured manifold allows us to analyze the data

using the distances between manifold representatives as a measure of similarity. A simplistic
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analogy is that when comparing travel routes on the Earth, it behooves us to measure

distance around the globe rather than using straight-line distances which may pass through

the mantle or core. An alternative to finding manifold representatives for data points is to

treat data as elements of a high-dimensional vector space. In this context, researchers looks

to uncover structure within the data cloud itself that might indicate relationships between

samples. Both perspectives build bridges to areas of mathematics and statistics from which

algorithm developers can draw tools and inspiration. In this dissertation, we stick to the

former perspective and thus the job of finding an appropriate mapping between data and

a manifold is a crucial step that relates directly to the success of the representation and

resulting applications.

Once a map between data and the appropriate manifold has been established, many of

these problems benefit from computing summary information for the manifold representa-

tives. Such tools are used to identify what is common between samples corresponding to

a single class, but distinct from samples outside of that class. Along this vein numerous

averages have been developed for data on Grassmann manifolds. One average of particular

interest is the flag mean, which associates a nested sequence of subspaces with a collection

of points such that the elements of the flag are the best averages of each fixed dimension.

The flag mean is valuable tool because it behaves like a median, in that it best represents

the dominant process in a collection of data, but it retains the computational advantages of

a mean. It exists as an fast method for summarizing data clouds on Grassmann manifolds,

and is the result of an algebraic solution to a geometrically motivated cost function.

Another relevant tool recently developed for data analysis on Grassmann manifolds is a

notion of point-to-set distances that agrees with the natural point-to-point Grassmannian

2



distances in the presence of appropriate restrictions. This technique was discovered con-

currently and proved independently by Schwickerath [60] and by Ye and Lim [72]. This

development opens the door for advances in optimization and analysis when the domain of

a problem is restricted to a subset of points on a Grassmannian.

In this dissertation we attempt to generalize the problem solved by the flag mean to

include domain constraints. We look for an element of a Schubert variety, or a subset of

points on a Grassmannian that obey a sequence of intersection constraints, that averages the

data. In this context the data is not constrained to live on the variety, that requirement is

only applied to the resulting average representation. The flag mean and it’s subsequent gen-

eralization allow us to connect mathematical advances with algorithms for solving practical

problems in pattern recognition and signal processing, as was our original goal.

1.2. Overview

In Chapter 2, we provide some general background. As much as possible we strive for

this dissertation to be self-contained. Therefore we begin by defining the objects of interest,

Grassmann, flag, and Schubert varieties, and proceed by explaining their context in data

analysis. We give an explicit derivation for the flag mean, and distinguish it from other

subspace averages. We discuss point-to-set distances and explain their relationship to the

task at hand.

In Chapter 3, we develop the machinery for Schubert variety constrained optimization.

We describe and prove the scenarios for which we can find an optimal solution. We also

introduce an iterative algorithm that achieves a locally optimal solution in a more general

context. We demonstrate examples of subspace constrained averaging and Schubert variety
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constrained averaging, and evaluate the solutions using a decomposition of the tangent space

of a point represented by an affine patch of the Grassmannian.

Based on the theory discussed in Chapter 2 and Chapter 3, we create an algorithm for

chemical plume detection in hyperspectral videos in Chapter 4. We discuss the difficulty of

extracting usable signals from long-wave infrared hyperspectral data, and we introduced some

of the common existing algorithms for detecting material signatures in such data. We then

contrast our algorithm with the baseline algorithms on real data that allows for practical,

qualitative comparisons, and on synthetic data which allows for quantitative results.

Chapter 5 moves to an application of the flag mean in the domain of visual sorting of

nanoparticle images for forensic analysis. Here we discuss a host of algorithms for dimen-

sionality reduction, and modify the existing diffusion map to generate a robust visualization

algorithm that is cued on prior knowledge about the data at hand. This updated algorithm

allows users to create clusters of related images and display a global spatialization based on

other images relationships to these clusters.

Finally, we review our contributions in Chapter 6. We discuss open questions and data

sets where these techniques might yield interesting and useful results.
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CHAPTER 2

BACKGROUND

2.1. Linear Subspace Models for Data Analysis

High-dimensional data has become ubiquitous in pattern recognition, signal processing,

and hosts of other application domains, but the often used moniker “big data” ambiguously

refers to many distinct representations. It can be applied to streaming data such as Twitter

feeds where the number of features per sample is small, but the number of samples is massive

and dynamic. It can be used to describe genetic data where observations are only made a

few times, but the number of observed pathways is huge. It can refer to monstrously large

databases where look ups are costly, and big data can describe applications where both the

number of samples and the size of each sample are big, as in analyzing content in YouTube

videos. Each aspect of largeness comes with its own set of challenges.

The most common and simplistic setting for big data analysis is a high-dimensional

Euclidean space. In this context, each sample is represented by a vector whose entries

correspond to quantitative features of the sample. For example, a black and white digital

image is a matrix whose entries correspond to the light intensity measured at that pixel. If

this image is raster scanned, i.e., if the rows or columns are concatenated to form a vector,

then the resulting vector can be treated as a point in a vector space whose dimension is equal

to the number of pixels in the image. The benefits of treating an image (or any datum) as

a point in a vector space are that many tools exist for statistics, optimization, and analysis

in this simple setting.

However, in many applications this representation is insufficient. Suppose that you have

two black and white images where one is the photo negative of the other. The scenes
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Figure 2.1. Illustration of illumination spaces as points on a Grassmann
manifold. The basis for each subspace is a set of images of a single person
with varying illumination. The pose of the subject is distinct for each subspace,
because that change to the image is not linear. Therefore, the identity of each
sample is tied to the subject and the pose. The green curve represents the
minimal geodesic, or the shortest path between the two points that respects
the geometry of the manifold.

visualized are the same, but the colors are inverted. Are these distinct images two examples

of the same thing? Do they share an identity? The average of these two images as points in

a Euclidean space would be a vector with all entries equal which represents no discernible

scene. If the identity of these samples is the same, shouldn’t the average share that identity?

Issues like this one motivate the need for data representations that encode more of the

identity of a sample. Thus we build a theoretical bridge to manifolds where the geometry

makes sense of some of the structure known to be present in the data. In particular, in this

dissertation the notion of a sample will correspond to a linear subspace of a high-dimensional

Euclidean space. This representation allows us to include variation in our model, making it

robust to addition and scalar multiplication. There are new issues that arise because of this

representation, however. Not all mathematical tools that exist in Euclidean space have been

generalized to work in this setting. It will be our task then to discuss the existing techniques

and develop novel solutions in areas of need. Using subspaces to represent data invokes a

natural connection with the Grassmann manifold as a setting for data analysis.
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2.2. Grassmann Manifolds

Definition 2.2.1. The Grassmann manifold Gr(k,V) is a manifold whose points

parametrize the subspaces of dimension k inside the vector space V.

In this dissertation, we will assume that V is an n-dimensional real vector space. We

denote by Gr(k, n) the Grassmann manifold of k-dimensional subspaces of Rn, GL(k) denotes

the general linear group of invertible k× k matrices and O(k) denotes the orthogonal group

of k × k orthogonal matrices. Let Rn×k denote the vector space of n× k matrices with real

entries and let (Rn×k)◦ denote the open submanifold of full rank n × k matrices. For each

Y ∈ (Rn×k)◦, let [Y ] denote the column space of Y . There is a surjective map φ : (Rn×k)◦ →

Gr(k, n) given by φ(Y ) = [Y ] (with [Y ] identified with its corresponding point on Gr(k, n)).

It is clear that φ(X) = φ(Y ) if and only if there exists an A ∈ GL(k) such that XA = Y .

Thus a point q on Gr(k, n) corresponds to a k-dimensional subspace Vq of Rn and can be

represented by any element of a GL(k) orbit of a full rank n × k matrix, Y , whose column

space [Y ] is equal to Vq.

If Y is a representative with orthonormal columns and if B ∈ O(k) then Y B will be

another representative with orthonormal columns. Identifying n×k orthonormal bases with

the same span gives an interpretation of the Grassmannian as a quotient space. That is,

(1) Gr(k, n) ≃ O(n)
/
O(k)×O(n− k) .

As a quotient space, a point on the Grassmann manifold can be written as the set

(2) [Q] ≃




Q



Qk 0

0 Qn−k




∣∣∣∣∣∣∣
Q ∈ O(n), Qk ∈ O(k), Qn−k ∈ O(n− k)





,
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Figure 2.2. Illustration of the tangent and normal spaces of a Grassmannian.

which is equivalent to the set of n × k matrices whose columnspace is equal to the span of

the first k columns of Q. We will abuse notation slightly and use [Q] to represent either the

span of the first k columns of an n× k matrix or the span of the first k columns of an n× n

matrix. The quotient space interpretation makes it easy to see that the dimension of the

Grassmannian is k(n− k).

2.2.1. Tangent and Normal Space. An n-dimensional manifold is a space that looks

locally like Rn. The Grassmannian falls into a category of manifolds known as differentiable

manifolds because we can compute derivatives to curves on the manifold. The derivative to

a curve γ : [0, 1] → Gr(k, n), at the point [X], is a vector γ′(t) lying in the vector space

TXGr(k, n) known as the tangent space of Gr(k, n) at [X].

Intuitively, the tangent space at a point can be visualized as the plane tangent to the

manifold as shown in Figure 2.2. The Grassmannian, Gr(k, n), has dimension k(n− k) and

therefore the tangent space centered at any point does as well. The normal space is the

orthogonal complement of the tangent space, and thus has dimension n − k(n − k) in this

instance. The normal space at a point [X] ∈ Gr(k, n) is the set of matrices of the form

(3) Y = XA

8



where A is a k×k anti-symmetric matrix. Therefore the tangent space of the Grassmannian

at [X], TXGr(k, n), is the set of all n× k vectors Z such that

(4) XTZ = 0 or Z = X⊥B.

The matrix B ∈ R
(n−k)×k corresponds to the directions free of rotations mixing the basis

given by the columns of X.

There is an inner product 〈·,·〉[X] uniquely defined on each tangent space of the manifold,

which allows us to measure the length of a curve. Let γ : [0, 1]→ Gr(k, n) be a differentiable

curve, and define the length of γ to be

(5) L(γ)
.
=

∫ 1

0

‖γ′(t)‖γ(t)dt

where ‖ · ‖X is the norm induced by the inner product in the tangent space TXGr(k, n).

2.2.2. Geodesics. Geodesics on manifolds generalize the concept of straight lines in

R
n. Geometrically, a straight line in R

n can be thought of as the image of a curve γ(t) :

[0, 1]→ R
n with zero acceleration for all t ∈ [0, 1]. A geodesic on Gr(k, n) observes the same

property, which is to say, the acceleration vector is normal to the manifold at every point

along a geodesic. Additionally, a geodesic between two points represents the shortest curve

connecting the two points in the sense of the length function defined in Equation 5. The

distance between [X], [Y ] ∈ Gr(k, n) is thus a function of the length of the minimal geodesic

between the two points. A geodesic γ(t) : [0, 1]→ Gr(k, n) emanating from γ(0) = [Q] with

9



Q ∈ O(n) can be written as

(6) γ(t) = QetB with B =




0 −BT

B 0




for any B ∈ R
(n−k)×(n−k), and the derivative of γ(t) is γ′(t) = γ(t)B [13]. In light of this

definition and the quotient representation of the Grassmannian indicated in Equation 2, the

Grassmannian geodesic emanating from the point [Q] ∈ Gr(k, n) is [γ(t)]. This is however

not a very useful formula for computations. In order to compute geodesics, or to move on

the Grassmannian in the direction of tangent vectors, we need maps between the manifold

and the tangent space of the manifold at a point.

Definition 2.2.2. For every Z ∈ TXGr(k, n) there exists a unique geodesic γ(t) : [0, 1]→

Gr(k, n) that depends on [X] and Z such that γ(0) = [X] and γ′(0) = Z. The mapping

ExpX : TXGr(k, n)→ Gr(k, n) defined by

(7) ExpX(Z)
.
= γ(1)

is called the exponential map of Z at [X].

The exponential map computes the retraction of a tangent vector onto the Grassmannian,

and can be calculated as

(8) ExpX(Z) = XV cos (Σ)V T + U sin (Σ)V T

where UΣV T is the thin singular value decomposition of the tangent vector Z. Pseudocode

for computing the exponential map can be found in Algorithm 1, and leads directly to the

computation of a geodesic as follows.

10



Algorithm 1 The exponential map of Z at [X]

function ExpX([X], Z)
UΣV T ← thin SVD(Z)

return XV cos(Σ)V T + U sin(Σ)V T

Theorem 2.2.1 (Computing Geodesics on the Grassmann manifold). Let γ : [0, 1] →

Gr(k, n) be a curve with initial point γ(0) = [X] ∈ Gr(k, n) and tangent vector γ′(0) =

Z ∈ TXGr(k, n). A point on the geodesic emanating from [X] in the direction of Z can be

computed as

(9) γ(t) = XV cos (tΣ)QT + U sin (tΣ)QT

where UΣV T is the thin singular value decomposition of the tangent vector Z and Q is any

element of O(k).

The proof of Theorem 2.2.1 can be found in §2.5.1 of [13]. It relies on the definition

of the Grassmannian geodesic as a quotient of the orthogonal group quotient described in

Equation 6 and a clever parametrization of the singular value decompositions of the matrix B.

It should be clear that the computational formula for a geodesic on the Grassmannian is very

closely related to the exponential map. In fact, the only difference is evaluation at the point t

along that path, as well as the post-multiplication by the matrix Q. According to Edelman et

al., leaving off the matrix Q would give another representative of the same equivalence class,

however, the tangent vectors to γ(t) would have to be modified similarly [13]. Pseudocode

for constructing a geodesic in the direction of a tangent vector can be found in Algorithm 2.

Algorithm 2 The geodesic emanating from [X] in the direction Z.

function Geodesic([X], Z, t)
UΣV T ← thin SVD(Z)

return XV cos (tΣ)V T + U sin (tΣ)V T

11



Definition 2.2.3. The inverse of the exponential map, LogX : Gr(k, n) → TXGr(k, n),

is referred to as the logarithmic map. It takes an element of the manifold to a point in

the tangent space at [X], and is computed as

(10) LogX([Y ]) = UΣV T

where UΘV T is the thin singular value decomposition of the matrix (I − XXT )Y (XTY )−1

and Σ = tan−1(Θ).

LogX([Y ]) maps [Y ] into the tangent space of the manifold at [X], TXGr(k, n). The

logarithmic map is only defined within a convex ball of [X], the size of which is determined

by the dimension of Gr(k, n). More details pertaining to the size of a convex ball on the

Grassmannian can be found in [5]. There is no obvious closed form equation for the logarith-

mic map, but the algorithm described in Definition 2.2.3 can be verified as follows. Given

[X], [Y ] ∈ Gr(k, n), we seek to find Z ∈ TXGr(k, n) such that ExpX(Z) = Y . Let UΣV T

be the thin singular value decomposition of Z so that U is an n× k slice of an orthonormal

matrix, Σ is a k × k diagonal matrix, and V is a k × k orthonormal matrix. Then

(11) Y = XV cos(Σ)V T + U sin(Σ)V T

as per the definition of the exponential map. We need to solve for U,Σ, and V in order to

reconstruct Z. Since Z is a tangent vector to [X], XTZ = 0. Thus we know that

XTY = XT (XV cos(Σ)V T + U sin(Σ)V T )(12)

= V cos(Σ)V T(13)
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and that

(I −XXT )Y = Y −XXTY(14)

= XV cos(Σ)V T + U sin(Σ)V T −XV cos(Σ)V T(15)

= U sin(Σ)V T .(16)

Leveraging these equalities and rearranging terms, we see that

(I −XXT )Y (XTY )−1 = U sin(Σ)V T
(
V cos(Σ)V T

)−1
(17)

= U sin(Σ) cos−1(Σ)V T (because V is orthogonal)(18)

= U tan(Σ)V T .(19)

So that finally if we compute UΘV T as the SVD of (I −XXT )Y (XTY )−1, we can construct

Z = UΣV T with Σ = tan−1(Θ) as desired. Pseudocode for computing the logarithmic map

in a computationally efficient way can be found in Algorithm 3.

Algorithm 3 The logarithmic map of [Y ] at [X]

function LogX([X], [Y ])
UΣV T ← thin SVD

(
Y (XTY )−1 −X

)

Θ← tan−1(Σ)
return UΘV T

The last relevant map on the Grassmann manifold that we will discuss is parallel trans-

lation. The main idea is that we can easily move tangent vectors through paths on the

manifold using our equation for geodesics. However, because the direction of the vector is

constant while it travels and the manifold is not flat, the vector will likely not be tangent to

the manifold in it’s new location. This issue is corrected by removing the normal component

from the vector after each infinitesimally small step on the manifold.
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Figure 2.3. Illustration of parallel translation of a tangent vector Z along a
curve γ(t) on a Grassmann manifold. τZ represents the translated version of
Z that is tangent to the point γ(ǫ) = [X] + ǫZ.

Theorem 2.2.2 (Parallel translation on the Grassmann manifold). Let Z1 and Z2 be

tangent vectors to a point [X] ∈ Gr(k, n). The parallel translation of Z1, denoted τZ1, along

the geodesic in the direction of Z2 is

(20) τZ1(t) =
(
−XV sin(tΣ)UT + U cos(tΣ)UT +

(
I − UUT

))
Z1

where UΣV T is the thin singular value decomposition of Z2.

The proof of Theorem 2.2.2 can be found in §8.1.1 of [2]. A cartoon version of this process

can be seen in Figure 2.3. In order to illustrate parallel transport in two dimensions, we

set Z2 = Z1. That is two say, the tangent vector Z1 will be moved along the geodesic γ(t)

in the direction it is already pointing, Z1. The basepoint for Z1 is the point γ(0) = [X].

After traveling an infinitesimally small distance ǫ along the geodesic, the difference between

the vectors Z1 and τZ1 located at γ(ǫ) = [X] + ǫZ1is the removal of the normal component

of Z1. The pseudocode for computing the parallel translation of a tangent vector can be

found in Algorithm 4, and simply reiterates Theorem 2.2.2. There is, however, a maximum

distance that a tangent vector can be transported via this method because it relies on the
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exponential and logarithmic maps. This distance is the maximum radius of a convex ball on

a particular Grassmann manifold, and is a function of the dimension of the manifold. An

explicit computation of this distance can be found in [5].

Algorithm 4 τZ1, the parallel translation of Z1 along the geodesic emanating from [X] in
the direction Z2.

function ParTrans([X], Z1, Z2, t)
Ensure XTX = I
UΣV T ← thin SVD (Z2)

return
(
−XV sin(tΣ)UT + U cos(tΣ)UT +

(
I − UUT

))
Z1

2.2.3. Metrics and Similarity Measures. Since we use matrices to represent points

on a Grassmannian, metrics need to be independent of our choice of coordinates and therefore

orthogonally invariant.

Definition 2.2.4. Let d : Gr(k, n) × Gr(k, n) → R be a metric. The metric, d, is

said to be orthogonally invariant if for every [X], [Y ] ∈ Gr(k, n) and every A ∈ O(n),

d([X], [Y ]) = d([AX], [AY ]).

It has long been known that the principal angles between linear subspaces are orthogo-

nally invariant, because they depend only on the relative position of the subspaces. Thus

numerous distance metrics on Grassmannians have been developed as functions of principal

angles [7].

Definition 2.2.5. Let [X] and [Y ] be subspaces of Rn with q = min {dim([X]), dim([Y ])}.

The principal angles θk ∈ [0, π/2] between [X] and [Y ] are defined for k = 1, 2, . . . , q by

(21) cos θk = max
v∈[X]

max
u∈[Y ]

uTv = uT
k vk,
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subject to the constraints ‖u‖ = ‖v‖ = 1, and uT
j uk = vTj vk = 0 for j = 1, 2, . . . k − 1. The

vectors {u1, u2, . . . uq} and {v1, v2, . . . vq} are the principal vectors of the pair of spaces.

If QX and QY are orthonormal bases for [X] and [Y ], the principal angles and vectors

between [X] and [Y ] can be calculated by finding the thin singular value decomposition of

QT
XQY [7]. Write the decomposition as QT

XQY = UΣV T . The principal vectors of [X] are

the columns of the matrix QXU , the principal vectors of [Y ] are the columns of QY V , and

the principal angles between the spaces are the inverse cosines of the singular values, i.e.

cos θk = σk. Note that if A,B ∈ O(k), then the matrix QT
XQY has the singular values as

(QXA)
T (QYB). Two metrics arising as functions of principal angles are relevant in this

dissertation, the geodesic distance based on arc length and the projection Frobenius norm.

A method for computing the principal angles between two subspaces of arbitrary subspace

dimension can be found in Algorithm 5.

Algorithm 5 Principal angles separating [X] and [Y ]

function Θ([X], [Y ])
Ensure XTX = I, Y TY = I
r ← min {dim([X]), dim([Y ])}
UΣV T ← thin SVD

(
XTY

)
, such that [σ1, . . . , σr]

T = diag(Σ)
for i = 1, . . . , r do

if σi < 1× 10−8 then

θi ← cos−1(σi)
else

θi ←
√
2(1− σi)

return [θ1, . . . , θr]
T

Definition 2.2.6. If [X], [Y ] ∈ Gr(k, n), then the geodesic distance based on arc

length between the two is defined as

(22) d([X], [Y ])
.
= ‖Θ‖2,
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where Θ is the k-dimensional vector of principal angles between [X] and [Y ].

This is the canonical metric on the Grassmann manifold in the sense that it is equivalent

to the Euclidean metric in the tangent space of a single point on the Grassmannian. Pseu-

docode for computing the geodesic distance based on arc length can be found in Algorithm 6.

Algorithm 6 Geodesic distance based on arc length between [X] and [Y ]

function d([X], [Y ])
Θ← Θ ([X], [Y ])

return ‖Θ‖2

Definition 2.2.7. Let [X], [Y ] ∈ Gr(k, n). The projection Frobenius norm is

(23) dpF ([X], [Y ])
.
= 2−

1
2‖XXT − Y Y T‖F .

It is an elementary exercise to show that dpF is an orthogonally invariant metric on

Gr(k, n). The projection Frobenius norm arises from the identification of points in Gr(k, n)

with n×n projection matrices of rank k. This distance can also be computed as the ℓ2-norm

of the vector of the sines of the principal angles between [X] and [Y ]. That is, dpF ([X], [Y ]) =

‖ sinΘ‖2 where Θ is the k-dimensional vector of principal angles between [X] and [Y ][13].

It can be be shown that for [X] 6= [Y ], d([X], [Y ]) > dpF ([X], [Y ]), and that these metrics

are asymptotically equivalent. Thus for points close together, d([X], [Y ]) ≈ dpF ([X], [Y ]).

Additionally, since both metrics are based on principal angles, distances on Gr(k, n) are

bounded. A method for computing the Projection Frobenius norm between two subspaces

can be found in Algorithm 7.

Proposition 2.2.3. For all [X], [Y ] ∈ Gr(k, n),

d([X], [Y ]) ≤ (π/2)
√
k and dpF ([X], [Y ]) ≤

√
k.(24)
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Algorithm 7 Projection Frobenius norm between [X] and [Y ]

function dpF ([X], [Y ])
Θ← Θ ([X], [Y ])

return ‖ sin (Θ) ‖2

Proof. Let [X], [Y ] ∈ Gr(k, n). Then k = min {dim([X]), dim([Y ])}, and θi ∈ [0, π/2]

for i = 1, 2, . . . k. Thus we have

d([X], [Y ]) = ‖Θ‖2 =

√√√√
k∑

i=1

θ2i ≤

√√√√
k∑

i=1

(π/2)2 =
√

k(π/2)2 = (π/2)
√
k, and(25)

dpF ([X], [Y ]) = ‖ sinΘ‖2 =

√√√√
k∑

i=1

sin2(θi) ≤

√√√√
k∑

i=1

1 =
√
k as desired.(26)

�

2.3. Flag Manifolds and Schubert Varieties

The Grassmann manifold will be the main setting for data analysis in this dissertation.

However some applications require us to generalize or restrict our view to objects beyond a

set of fixed-dimensional subspaces. One overt advantage to representing data as points on a

Grassmannian is that natural linear variation is included in each representative. Sometimes

though, different dimensions of a subspace are more important than others. This weighting

suggests a connection to flag manifolds.

On the other hand, restricting analysis to a subset of points on a Grassmannian may

also provide a more accurate picture of an application if not all subspaces are within the

domain of the problem. There are many possible restrictions, with one of the simplest being

a collection of subspaces that overlap with a distinguished subspace or sequence of subspaces

in some prescribed dimensions. This type of constraint characterizes a Schubert variety, and

will see use in the applications that follow.
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Figure 2.4. Illustration of a nested sequence of subspaces that would cor-
respond to a point on the flag manifold FL(n; [1, 2, 3, . . .]).

2.3.1. Flag Manifolds. We begin by describing flags, because they are prerequisite

for understanding Schubert varieties.

Definition 2.3.1. Let q = {q0, q1, q2, . . . , qM , qM+1} be a strictly increasing set of integers

such that 0 = q0 < q1 < q2 < . . . < qM < qM+1 = n. A flag, F , in R
n of type q is a nested

sequence of subspaces

(27) F
.
= {0} ⊂ [S1] ⊂ [S2] ⊂ · · · ⊂ [SM ] ⊂ [SM+1] = R

n

such that dim([Si]) = qi. The flag manifold, FL(n; q), is the manifold whose points corre-

spond to all flags of type q.

If the signature of the flag, q, includes all of the natural numbers between 0 and n, the

resulting flags are referred to as full flags. Figure 2.4 shows an illustration of the nested

structure present in the low-dimensional elements of a full flag. If the set of integers that

defines the flag includes only one integer other than zero and the ambient dimension, q =

{0, q1, n}, then the flag manifold FL(n; q) is equivalent to the Grassmann manifold Gr(q1, n).

Alternatively, the flag manifold can be thought of as a submanifold of the product of the

Grassmann manifolds Gr(qi − qi−1, n) for i = 1 . . .M + 1.
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The idea that the flag manifold is a generalization of the Grassmann manifold and the

structure of the elements in the set described in Equation 2 hint at a natural quotient space

interpretation for a flag manifold. Let q = {0 = q0, q1, q2, . . . , qM , qM+1 = n}. Then we have

(28) FL(n; q) ≃ O(n)
/
O(q1)×O(q2 − q1)× · · · ×O(n− qM) ,

suggesting that dim(FL(n; q)) =
∑M

i=1 qi(qi+1 − qi). In particular, a full flag has dimension

n(n−1)/2. We will not deal with distances between points on flag manifolds, but it is simple

to see how Grassmannian distances can be used as the basis for metrics in that setting.

The sum of the Grassmann distances between elements of the same size, will generate a

metric between points on a flag manifold. For more explanation of flag manifolds and their

geometry, refer to [48].

2.3.2. Schubert Varieties. Schubert varieties carve out a subset of points on a Grass-

mann manifold that all intersect with a distinguished sequence of subspaces. The most

common setting for discussing Schubert varieties is enumerative geometry, or intersection

theory. Early questions in the field were things like, “How many lines intersect four given

lines in R
3?” A thorough treatment of Schubert varieties from the enumerative geometry

perspective can be found in [18]. Schubert varieties have garnered much less interest as a

setting for data analysis, however some advances have been made recently [60, 72]. There

are several equivalent definitions, but we find the following to be the most intuitive with

respect to our description of the Grassmann manifold.

Definition 2.3.2. Fix a Grassmannian Gr(k, n) and a flag F = {0} ⊂ [W1] ⊂ [W2] ⊂

· · · ⊂ [WM ] ⊂ R
n with signature q = {0 = q0, q1, q2, . . . , qM , qM+1 = n}. Given an increasing

sequence of integers α = {0 = α0 ≤ α1 ≤ · · · ≤ αM ≤ αM+1 = k} where αi ≤ min{qi, k}, the
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Figure 2.5. The grey surface represents the Grassmannian of 2-planes in
R

3, Gr(2, 3). The closed, red curve represents the Schubert variety of planes
that fully contain the span of the second canonical basis vector [e2]. That is
Ω(F ,α) for F = [e2] and α = 1. Points not on the closed curve intersect [e2]
as points, as demonstrated by the plane in the upper right.

associated Schubert variety, Ω(F ,α), is defined as

(29) Ω(F ,α)
.
= {[X] ∈ Gr(k, n) | dim([X] ∩ [Wi]) ≥ αi} .

The dimension of this Schubert variety is equal to
∑M

i=1 (qi − αi). An example illustration

of a simple Schubert variety can be seen in Figure 2.5. As with flag manifolds, we are not

presently interested in computing distances between points on a Schubert variety. Since the

varieties carve out a subset of points on a Grassmannian, we can use Grassmann distances

if we want to measure similarity without respecting the geometry of the Schubert variety.

However, we care about the distance between a given point on a Grassmann manifold and

the Schubert variety itself.

In the case where the flag that defines the Schubert variety contains a single subspace,

i.e. F = {0} ⊂ W ⊂ R
n, the distance between a point and the variety has been described

by Schwickerath [60].
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Proposition 2.3.1. Let F = {0} ⊂ W ⊂ R
n and α = {0, α, k}. Given the Schubert

variety Ω(F ,α) and a point [X] ∈ Gr(k, n), the principal angles between [X] and any point

[Y ] ∈ Ω(F ,α) are bounded below by

(30) [0k−α,Θ1,...,α ([W ], [X])] ≤ Θ1,...,k ([Y ], [X]) ,

where Θ is the vector of principal angles separating [X] and [Y ] as defined in Algorithms 5.

In other words, each principal angle on the left-hand side is less than or equal to the corre-

sponding principal angle on the right-hand side.

The proof of Proposition 2.3.1 can be found in [60], however the point that realizes

this lower bound can be constructed as follows. Given that W,X are orthonormal bases

for [W ], [X] respectively, let UΣV T = W TX be a singular value decomposition. The left

principal vectors are then written as Wui for i = 1, . . . , k where ui is the ith column of U .

Let [Zα]
.
= [Wu1|Wu2| · · · |Wuα], and let [Zk−α] be any set of k − α orthonormal vectors

from the intersection of [X] and the orthogonal complement of [Zα]. The lower bound on

the principal angles is then achieved by any point [Z] ∈ Ω(F ,α) where [Z] = [Zα|Zk−α]. It

should be clear that there is often not a unique point that achieves this lower bound. It may

be less obvious that [Zα], the portion of [Z] that intersects [W ], may also not be unique.

Colloquially, this is because the Schubert variety is not a convex set on the Grassmann

manifold and thus projection is not unique. Further details can be found in [60, 72].

2.4. Grassmannian Averages

For the applications in this dissertation we are concerned with grouping subspaces based

on similarity. In some contexts a nearest neighbors comparison can give a complete picture
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of the interconnections between points, but when the data is noisy it is possible that rela-

tionships are established because of noise rather than signal. Examples of such a scenario

can be found in [45]. For this reason, subspace averages are often used to identify common

information in related subsets of the data. As in Euclidean space there are numerous ways to

average points on Grassmannians; each with benefits and drawbacks. This dissertation will

focus primarily on the flag mean, however for context we now explain the common methods

for computing subspace averages and attempt to build intuition about their properties.

2.4.1. The Karcher mean. The Karcher mean, µK , is the intrinsic or canonical mean

on the Grassmann manifold. It is the point that minimizes the mean squared error using

the canonical metric,

(31) µK = argmin
[µ]∈Gr(k,n)

P∑

i=1

d([Xi], [µ])
2.

The Karcher mean is most commonly found by using an iterative algorithm like Newton’s

method or first-order gradient descent [1, 5]. These algorithms exploit the matrix Exp

and Log maps to move the data to and from the tangent space of a single point at each

step. A unique optimal solution is guaranteed for data that lives within a convex ball on

the Grassmann manifold, but in practice not all data sets satisfy this criterion [5, 30, 47].

Using the geodesic distance based on arc length, Proposition 2.2.3 shows that the maximum

distance between two points on Gr(k, n) is (π/2)
√
k. As illustrated by Begelfor and Werman

the convexity radius is π/4 [5]. This means that if the point cloud being averaged has a

radius greater than π/4 the logarithmic map is no longer bijective, and the Karcher mean

is no longer unique. Pseudocode for a steepest descent method for computing the Karcher

mean can be seen in Algorithm 8. This method is adapted from [5].
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Algorithm 8 The Karcher mean of {[X1], [X2], . . . , [XP ]} given error tolerance ǫ

function µK({[X1], [X2], . . . , [XP ]}, ǫ)
µ1 ← X1

while d([µi], [µi+1]) > ǫ do

Z ← 1
P

∑P

j=1 Logµi
(Xj)

µi+1 ← Expµi
(Z)

return µi+1

2.4.2. The L2-median. The L2-median, µL2
, is one of many ways of generalizing the

median for 1-dimensional data into higher dimensions. It is referred to by many names [11,

23, 63] including the spatial median, the geometric median, the mediancentre, and confus-

ingly the L1-median. By any name, the L2-median is the point that minimizes the sum of

the distances to the sample points, rather than the sum of the squares of the distances. For

subspace data it solves

(32) µL2
= argmin

[µ]∈Gr(k,n)

P∑

i=1

d([Xi], [µ]),

where again d([Xi], [µ]) is the geodesic distance based on arc length. As a direct generaliza-

tion of the median for 1-dimensional data, the L2-median is robust to outliers [11]. That is

to say, if the data being averaged comes from multiple underlying processes, µL2
will better

represent the dominant process rather than the entire set of data. This is in contrast to the

behavior of the Karcher mean, which represents the center of mass.

Methods for finding µL2
also take advantage of the matrix exponential and logarithmic

maps, and thus fall prey to the same uniqueness condition as the Karcher mean. One

such method comes from Fletcher et al., and adapts the Weiszfeld algorithm to Riemannian

manifolds [17]. Pseudocode for this method can be found in Algorithm 9.

One distinction between the Karcher mean and the L2-median is that the latter is robust

to outliers. A common method for measuring the robustness from the statistics literature is
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Algorithm 9 The L2-median of {[X1], [X2], . . . , [XP ]} given error tolerance ǫ

function µL2
({[X1], [X2], . . . , [XP ]}, ǫ)

µ1 ← X1

while d([µi], [µi+1]) > ǫ do

Z ←∑P

j=1

Logµi ([Xj ])

d([µi],[Xj ])
∗
(∑P

i=1
1

d([µi],[Xj ])

)−1

µi+1 ← Expµi
(Z)

return µi+1

the finite sample breakdown point. Without giving an explicit definition, the finite sample

breakdown point is the fraction of samples that can be corrupted to infinity before the average

is corrupted to infinity as well. The Grassmann manifold is compact, and all metrics on it

are bounded, so this point cannot be computed directly. However, when the cost function

of the L2-median is used on an unbounded manifold the breakdown point is 0.5, meaning

that half the data can be corrupted arbitrarily before the L2-median is corrupted [17]. On

the other hand, when the cost function of the Karcher mean is evaluated on an unbounded

manifold, the breakdown point is 0. If any data point is pulled infinitely away, the mean will

be pulled with it. For more information on robust statistics, refer to Peter Huber’s book [26].

2.4.3. The flag mean. In many applications, it can be natural and advantageous to

represent aspects of data through subspaces lying in a fixed ambient space that are of differing

dimensions. In such applications, a set of subspaces live naturally on a collection of Grass-

mann manifolds rather than on a single Grassmann manifold. Suppose that [X] ∈ Gr(k1, n)

and [Y ] ∈ Gr(k2, n) for k1 < k2. As illustrated in Bjork and Golub’s foundational paper [7],

there will be p1 principal angles between [X] and [Y ] and we can redefine dpF ([X], [Y ]) as

the ℓ2-norm of the vector of the sines of the k1 principal angles between [X] and [Y ]. Note

that dpF is no longer a metric due to the possibility of dpF ([X], [Y ]) = 0 while [X] 6= [Y ] (for

instance, if [X] is a proper subspace of [Y ]).

25



The flag mean, denoted µpF , is a nested sequence of subspaces that is central to a subspace

point cloud in the sense that the kth subspace within the flag is the best k-dimensional

representation of the data with respect to a cost function based on the projection Frobenius

norm. Let {[Xi]}Pi=1 be a finite collection of subspaces of Rn such that XT
i Xi = I. Let

Q̃ = {q1, . . . , qP} be a collection of positive integers, and suppose that dim([Xi]) = qi for

i = 1 . . . P . We can consider {[Xi]}Pi=1 to be a point cloud in the disjoint union of a set of

Grassmannians,
∐

Q̃ Gr(qi, n).

For these subspaces we wish to find the 1-dimensional subspace [u(1)] ∈ Gr(1, n) that

minimizes the sum of the squares of projection Frobenius norms between itself and [Xi] for

i = 1 . . . P . The projection Frobenius norm loses its distinction as a metric when it is used

to compare points that do not live on the same manifold. However, it still measures the

similarity between the objects. Metrics exist in the scenario where points live on just two

Grassmann manifolds, but even in this case the similarity measures are more useful than the

actual metrics. This topic is discussed at length in [60, 72]. Thus we aim to solve

(33)

argmin
[u(1)]∈Gr(1,n)

P∑

i=1

dpF ([u
(1)], [Xi])

2

subject to u(1)Tu(1) = 1.

After finding the optimal [u(1)], the problem is extended to find a sequence of 1-dimensional

subspaces that optimize Equation 33 with additional constraints. By solving

(34)

argmin
[u(j)]∈Gr(1,n)

P∑

i=1

dpF ([u
(j)], [Xi])

2

subject to u(j)Tu(j) = 1

u(j)Tu(k) = 0 for k < j,
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it is possible to find r ordered 1-dimensional subspaces, {[u(1)], [u(2)], . . . , [u(r)]}, where r is

the dimension of the span of ∪Pi=1[Xi]. These subspaces are then central to the collection of

points {[Xi]}Pi=1. From this sequence of mutually orthogonal vectors, the flag mean is defined

explicitly as

(35)

µpF = span{u(1)} ⊂ span{u(1), u(2)} ⊂

. . . ⊂ span{u(1), . . . , u(r)}.

While the subspaces {[u(1)], [u(2)], . . . , [u(r)]} are derived iteratively, they can actually be

computed analytically. It has been shown that {[u(1)], [u(2)], . . . , [u(r)]} can be computed as

the left singular vectors of the matrixX = [X1|X2| . . . |XP ], where Xi is an orthonormal basis

for [Xi] [12]. The pseudocode for computing the flag mean can be found in Algorithm 10.

More recently, Santamaria et al. have shown that for a given set of data, there is an optimal

subspace dimensions that can be chosen from µpF to minimize the mean squared error of a

slightly modified cost function [57].

Algorithm 10 The flag mean of {[X1], . . . [XP ]}
function µpF ({[X1], . . . [XP ]})

Ensure XT
i Xi = I for i = 1, . . . , P

X← [X1|X2| . . . |XP ]
r ← dim

(
span

{
∪P

i=1[Xi]
})

UΣV T ← thin SVD(X), such that U = [u(1)|u(2)| . . . |u(r)]
return

{[
u(1)
]
,
[
u(1)|u(2)

]
, . . . ,

[
u(1)| . . . |u(r)

]}
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CHAPTER 3

SCHUBERT VARIETY CONSTRAINED OPTIMIZATION

3.1. Introduction

Many of the applications discussed in this dissertation represent data as points on a

Grassmann manifold. Finding each element of the flag mean for these points can be thought

of as an unconstrained optimization problem, because the only constraints observed are those

which keep our solutions on the appropriate manifold. In Euclidean space, the simplest

constraints to impose on optimization problems are usually linear, that is, they require the

solution to live within some linear subspace of the ambient space. Points in Euclidean space

are 0-dimensional objects, thus overlap with a linear subspace and containment in a linear

subspace are equivalent. On Grassmann manifolds however the two relations can be unique,

and Schubert varieties are used to describe those sets of points. Thus we would like to impose

a constraint on our Grassmannian optimization that requires the solution to be an element

of a Schubert variety as a generalization of the linear constraints used in Euclidean space.

There are ready-made applications of this type of constrained optimization in geometric

analysis and signal processing. In geometric multi-resolution analysis as described by Allard

et al., the goal is to approximate a non-linear low-dimensional manifold structure of a point

cloud in high-dimensional Euclidean space by fitting piecewise affine spaces of appropriate

dimension to the data [4]. The problem of identifying intrinsic dimension of data and ap-

proximating its structure has been recognized as important in numerous applications such

as the analysis of sounds, images, gene arrays, and EEG signals [4]. Incorporating Schu-

bert variety constraints into the solution of Allard et al. would allow researchers to restrict
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approximations of data to agree with linear subspaces that represent physical or domain

specific knowledge of problems that might not be well captured in observed data.

In related signal processing applications, Hagege and Francos, and Yavo et al. try to

discover low-dimensional linear embeddings of images under geometric deformations [22,

71]. The former authors investigate the noise-free case and the latter team tackles the

problem in the presence of contaminated observations. In both instances, the authors look

to approximate a true, underlying, linear space from observed data. However, it is possible

that a theoretical linear space exists that should contain the observations. The prior work

by Hagege and Francos suggests that such an oracle subspace does, in fact, exist [21]. In

this case, it would make sense to incorporate information from both the observed samples

and the oracle subspace into the low-dimensional embedding. This is an ideal example of an

application for Schubert variety constrained averaging as we will describe it.

3.2. General Problem

Given a flag F = {0} ⊂ [W1] ⊂ · · · ⊂ [WM ] ⊂ R
n such that dim([Wi]) = qi as prescribed

by the signature q = {0 = q0, q1, . . . , qM , qM+1 = n}, let α = {0 = α0 ≤ α1 ≤ · · · ≤

αM ≤ αM+1 = k} be a sequence of integers and Ω(F ,α) be the associated Schubert variety.

The generic goal of Schubert variety constrained optimization is then to find a point on a

Grassmann manifold [X] ∈ Gr(k, n) that minimizes

(36)

argmin
[X]∈Gr(k,n)

f([X])

subject to dim ([X] ∩ [Wj]) ≥ αj,

for j = 1 . . .M and some differentiable function f : Gr(k, n)→ R.
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Figure 3.1. A schematic representation of Schubert variety constrained av-
eraging on Gr(2, 3). The closed curve represents a Schubert variety. The black
dots represent the data to be averaged, [Q1], [Q2], . . . , [QP ] ∈ Gr(2, 3). The
fuchsia dot, µpF , marks the flag mean of the data, and the green dot, [X],
indicates the point on the Schubert variety that minimizes the cost function.

This problem is likely too broad to solve in one shot, therefore we restrict our attention

to a sub-problem. First, we will be minimizing a class of functions that can be written as the

sum of the squared distances between a collection of observed data on a Grassmann manifold,

[Q1], [Q2], . . . , [QP ] ∈ Gr(k, n), and the point of interest. That is, f([X])
.
=
∑P

i=1 d([X], [Qi])
2

for some distance function d. Minimizing the f will result in an average of the observed data

restricted to the Schubert variety. Second, we will choose a flag that consists of just a single

subspace, F = {0} ⊂ W ⊂ R
n, with dim(W ) = j. It will be easy to generalize our approach

for more general flags following the same method. For our initial investigation we will

further restrict the distance function to be the projection Frobenius norm, dpF ([X], [Qi]) =

2−
1
2‖XXT −QiQ

T
i ‖F so the optimization problem from Equation 36 is modified to become

(37)

argmin
[X]∈Gr(k,n)

1

P

P∑

i=1

dpF ([X], [Qi])
2

subject to dim ([X] ∩ [W ]) ≥ α.

Figure 3.1 depicts a schematic of Schubert variety constrained averaging on Gr(2, 3). The
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fuchsia dot, µpF , indicates the unconstrained average, or the 2-dimensional element of the

flag mean, while green point, [X], is the sought after minimizer that lives on Ω(F ,α).

3.2.1. Gradient descent on Grassmannians. In Algorithm 8 we presented a simple

steepest descent method for solving the Karcher mean optimization problem using the tools

developed in Section 2.2. In this limited case, the gradient was determined by averaging

tangent space representations of the data, and stepping along the geodesic in the direction

of that average. For other real functions of points on the Grassmannian, the gradient can

be computed as follows.

Definition 3.2.1. Let f : Gr(k, n)→ R be a differentiable function and define fX ∈ R
n×k

to be the matrix of partial derivatives of f with respect to the elements of the matrix X, i.e.,

(38) (fX)ij =
∂f

∂Xij

.

The gradient of the real-valued function f at [X] is then defined to be the tangent

vector ∇f such that

(39) tr(fT
XZ) = d(∇f, Z) .

= tr
(
(∇f)TZ

)

for all tangent vectors Z ∈ TXGr(k, n).

The second definitional equality in Equation 39 comes from the fact that the geodesic

distance based on arc length is equivalent to the Euclidean distance in the tangent space.

Solving for ∇f such that XT∇f = 0 we get the formula, ∇f = (I −XXT )fX , that works
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for any real-valued, differentiable function. The formula is presented as pseudocode in Algo-

rithm 11. This generic gradient expression will allow us to apply the Riemannian conjugate

gradient method to our optimization problem, which boasts superlinear convergence rates.

Algorithm 11 The gradient of f at [X]

function ∇f([X])
Ensure XTX = I
(fX)ij ← ∂f

∂Xij

return fX −XXTfX

3.2.2. Conjugate gradient. We follow the method for conjugate gradient modified for

the Grassmann manifold that was detailed by Edelman, Arias, and Smith [13]. Colloquially,

this method minimizes a sequence of line searches along geodesics on the manifold where

search directions are determined using only gradient information (which in turn is used to

approximate information about the Hessian). At the (k − 1)st step of the algorithm, we

step from [Xk−1] to [Xk] by minimizing the objective function f : Gr(k, n) → R along the

geodesic γk−1(t) emanating from [Xk−1] in the tangent direction Zk−1. The next search

direction is then chosen to be a weighted combination of the gradient at the new location

and the translated version of the old search direction. If Zk−1 is the search direction for the

geodesic originating at [Xk−1], then the updated search direction will be

(40) Zk = ∇f([Xk]) + αkτZk−1

for some choice of αk, where τZk−1 is the parallel translated version of Zk−1 as described

in Theorem 2.2.2. For our implementation of conjugate gradient we use the Polak-Ribière

formula,

(41) αk =
〈Zk, Zk − τZk−1〉[Xk]

〈Zk−1, Zk−1〉[Xk−1]

,
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which approximates the second derivative using the difference of gradients. Pseudocode for

conjugate gradient on the Grassmann manifold can be seen in Algorithm 12.

Algorithm 12 Conjugate gradient on the Grassmann manifold

1: function ConjGrad(f, [X0])
2: Ensure XT

0 X0 = I
3: Y0 ← ∇f([X0])
4: Z0 ← −Y0

5: γ0(t)← Geodesic([X0], Z0, t)
6: t0 ← argmin f(γ0(t)) ⊲ Minimize using any line search algorithm
7: while tk 6= 0 do

8: [Xk+1]← γk(tk)
9: Yk+1 ← ∇f([Xk+1])
10: τZk ← ParTrans([Xk], Zk, Zk, tk)
11: τYk ← ParTrans([Xk], Yk, Zk, tk)
12: αk ← 〈Yk+1,Yk+1−τYk〉[Xk+1]/〈Yk,Yk〉[Xk] ⊲ Polak-Ribière formula
13: Zk+1 ← −Yk+1 + αkτZk

14: γk+1(t)← Geodesic([Xk+1], Zk+1, t)
15: tk+1 ← argmin f(γk+1(t))
16: k ← k + 1

return γk(tk)

3.2.3. The Schubert variety constraint as a penalty function. The descent

method characterized in Algorithm 12 requires that we be able to compute a gradient at each

iterate in order to step forward. In general circumstances this is not a restrictive require-

ment as we have straightforward methods for computing tangent vectors on the Grassmann

manifold. However, restricting the domain of the optimization to a Schubert variety signif-

icantly complicates this process, because Schubert varieties are singular. Since more than

one tangent space can computed at these singular points, the direction of descent cannot be

easily chosen. To the best of our knowledge, there is no closed form method for computing

tangent vectors that point strictly within a Schubert variety. Since we have no general form

for the tangent vectors at every point on the Schubert variety, we look to add the intersection

constraints into the optimization as penalty terms.
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For a thorough treatment of penalty methods, please consult [8]. The general idea is

that constraints in the optimization problem are moved into the objective function via a

penalty function which increases the cost of a solution when the constraint is violated. The

amount that violating a constraint affects the cost is controlled via a penalty parameter.

The penalty method employed here starts with an infeasible solution (a point that is not

on the Schubert variety), and iteratively increases the weight of the penalty parameter until

the constraint is met. At each iteration the penalty parameter is fixed and the problem is

minimized with respect to the points on the Grassmannian. This process creates a sequence

of iterates with non-decreasing costs. Chong and Zak show that under convexity constraints

for the feasible region, the upper bound of these costs is the minimum of the constrained

problem [8]. Pseudocode for the penalty method can be found in Algorithm 13.

Algorithm 13 Penalty method for constrained optimization

1: function PenaltyMethod(f, P, [X0], ǫ)
2: Select η > 1 ⊲ Set growth parameter
3: Select λ0 ⊲ Set initial value of penalty parameter
4: Ensure [X0] /∈ Ω(F ,α) ⊲ Choose infeasible starting point
5: [X1]← argmin f([X]) + λ0P ([X])
6: while d([Xk−1], [Xk]) > ǫ do
7: λk ← ηλk−1

8: [Xk]← argmin f([X]) + λk−1P ([X])
return [Xk]

The optimization problem in Equation 37 can be rewritten using this standard penalty

method to include the Schubert variety constraint in the objective function. To do so, we

first parametrize all points on Ω(W ,α) using a fixed basis Ŵ ∈ O(n) and a coefficient

matrix A ∈ R
n×k. Choose

(42) [Ŵ ]
.
= [w1|w2| · · · |wj|w⊥

1 |w⊥
2 | · · · |w⊥

n−j] = [W |W⊥]
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where the columns of W⊥ complete W to a basis for Rn and Ŵ is orthonormal. In a slight

abuse of notation, let O(n×k) indicate the set of matrices with n rows and k columns whose

columns are mutually orthogonal and unit length. Define

(43) A .
=




A ∈ R

n×k

∣∣∣∣∣∣∣
A =




B
D

C


 , B ∈ O(j × α), C = 0, D ∈ O(n× (k − α))





to be the set of all matrices that can be written as the span of orthonormal columns whose

lower left block is all zeros. In the block structure defined, B is a j×α slice of an orthonormal

matrix, C is an (n− j)× α matrix of zeros, and D is an n× (k− α) slice of an orthonormal

matrix such that it’s columns are orthogonal to the first α columns of A. Thus for all

[X] ∈ Ω(W ,α), there exists a A ∈ A such that [X] = [ŴA].

Now by replacing [X] in Equation 37 with [ŴA] we define f : Gr(k, n)× R>0 → R as a

function of [A] and the penalty, λ. That is,

(44) f([A], λ) =
1

M

M∑

i=1

dpF ([ŴA], [Qi])
2 + λ

∥∥∥∥∥∥∥

[
0L IL

]
A



IR

0R




∥∥∥∥∥∥∥

2

F

where IL and IR are both identity matrices such that IL ∈ R
(n−j)×(n−j), and IR ∈ R

(k−α)×(k−α).

The second term in Equation 44 is equivalent to the the penalty times the squared Frobenius

norm of the lower left block of [A], that is, λ‖C‖2F and is zero if and only if C = 0. Thus

when the penalty term is zero, [X] = [ŴA] is a point on the Schubert variety Ω(F ,α).

The derivative of the augmented objective function is taken with respect to A instead of

[X], however the method for computing that gradient remains straightforward. For tips on

taking derivatives of matrix functions, refer to [39, 53]. The result of this differentiation is,
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(45) fA([A], λ) =

(
I − 2

M

M∑

i=1

Ŵ TQiQ
T
i Ŵ

)
A+ 2λ



0 0

0 IL


A



IR 0

0 0




and then ∇f([A]) = fA − AATfA as prescribed by Algorithm 11. The augmented objective

function in Equation 44 and its gradient can be used with a combination of the penalty

method described by Algorithm 13 and the conjugate gradient method for the Grassmann

manifold presented in Algorithm 12 to perform Schubert variety constrained optimization

on the Grassmann manifold. A practical example will follow in Section 3.4.

3.3. Subspace Constrained Averaging

Neither the conjugate gradient nor the penalty method are specific to the cost func-

tion that we have chosen. Thus, so long as we can compute a derivative with respect to

the coefficient matrix, [A], we will be able to implement this method for Schubert variety

constrained optimization. However, for this particular cost function, we are able to find an

algebraic solution in certain cases. We present Lemma 3.3.1 and subsequently Theorem 3.3.2

as a technique for finding the subspace constrained average of a set of points on a Grass-

mann manifold. We begin by finding the corner of the distinguished subspace [W ] that best

averages the data.

Lemma 3.3.1. Subspace constrained average Let {[Qi]}Pi=1 ∈ Gr(k, n) be a finite

collection of linear subspaces with respective orthonormal bases Qi for i = 1 . . . P . Given an

additional subspace [W ] ∈ Gr(j, n) with orthonormal basis W and an integer α ≤ min{j, k},

the α-dimensional subspace, [X], that minimizes
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(46)

argmin
[X]∈Gr(α,n)

f([X]) =
1

P

P∑

i=1

dpF([X], [Qi])
2

subject to [X] ⊆ [W ],

is the span of the matrix WV , where V = [v1|v2| . . . |vα] are the α dominant eigenvectors of

the symmetric, j × j matrix Y, defined as

(47) Y = W T

(
M∑

i=1

QiQ
T
i

)
W.

Proof. We initially wish to solve the problem for α = 1. That is,

(48)

[x] = argmin
[x]∈Gr(1,n)

1

P

P∑

i=1

dpF([x], [Qi])
2

subject to [x] ⊆ [W ].

Since [x] is a 1-dimensional subspace of [W ], we can write x = Wv for some v ∈ R
j, and v

can be chosen such that vTv = 1. Thus Equation 48 can be rewritten as

(49)

[v] = argmin
v∈Rj

1

P

P∑

i=1

dpF([Wv], [Qi])
2

subject to vTv = 1.

To solve this problem for v, we can rewrite the cost function using the singular value decom-

position of (Wv)TQi. That is, (Wv)TQi = UΣV T where U = ±1, Σ = cos θ, and V is a unit
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vector in Rk. Applying this decomposition we have,

(50)

[v] = argmin
v∈Rj

1

P

P∑

i=1

dpF([Wv], [Qi])
2

=argmin
v∈Rj

1

P

P∑

i=1

1√
2
‖ sin θi‖22

=argmin
v∈Rj

1√
2

P∑

i=1

sin2 θi

=argmax
v∈Rj

1√
2

P∑

i=1

cos2 θi

=argmax
v∈Rj

1√
2

P∑

i=1

(Wv)TQiQ
T
i (Wv)

= argmax
v∈Rj

1√
2
vTW T

(
P∑

i=1

QiQ
T
i

)
Wv.

Let Y = W T
(∑P

i=1 QiQ
T
i

)
W . Then the entire problem can be written via the method

of Lagrange multipliers as a function to be maximized,

(51) f(v, λ) =
1√
2
vTY v − λ(vTv − 1).

The first order necessary conditions for optimality are satisfied by points that simultaneously

solve the partial derivatives of f with respect to v and λ. That is, the points that solve

∂f

∂v
=

2√
2
Y v − 2λv(52)

∂f

∂λ
= vTv − 1.(53)

Clearly the (v, λ)-pair that maximizes Equation 51 is the eigenvector, v, of Y associated

with the largest eigenvalue, λ.
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This result is extended for values of α > 1 by solving the base case, [x1], as described, and

then including the additional constraint xT
i xj = 0 for all i < j. Since Y is real and symmetric

it is possible to find eigenvectors that form and orthogonal basis for the columnspace of Y .

Thus the point [X] ∈ Gr(α, n) that minimizes Equation 48 is the span of the matrix WV ,

where V = [v1|v2| . . . |vα] are the α dominant, mutually orthogonal eigenvectors of Y . �

Algorithm 14 Subspace constrained average

1: function µSCA([W ], α, {[Qi]}Mi=1)
2: Ensure W TW = I
3: Ensure α ≤ min{j, k}
4: Y ← W T

(∑M

i=1 QiQ
T
i

)
W

5: ΛV ← Y V ⊲ Eigenvector decomposition of Y
return [Wv1| · · · |Wvα1 ] ⊲ The α dominant eigenvectors from V

Lemma 3.3.1 provides the machinery to find the subspace of the distinguished space [W ]

that is closest to the collection of points {[Qi]}Pi=1. Pseudocode for computing µSCA, the

subspace constrained average, can be found in Algorithm 14. If we can extend the basis for

µSCA to span a k-dimensional space, these α-dimensions will satisfy the overlap requirement

for the Schubert variety Ω([W ], α). Theorem 3.3.2 demonstrates how to choose those k − α

dimensions to be the best remaining dimensions in the orthogonal complement, which leads

to a point on the Schubert variety that contains the best α-dimensional subspace of [W ].

Theorem 3.3.2. Subspace constrained flag of averages Let {[Qi]}Pi=1 ∈ Gr(k, n)

be a collection of linear subspaces. Given a flag F = {0} ⊂ [W1] ⊂ [W2] ⊂ · · · ⊂ [WM ] ⊂ R
n

with dim([Wi]) = qi and a sequence of integers α = {0 = α0 ≤ α1 ≤ · · · ≤ αM ≤ αM+1 = k}

where αi ≤ min{mi, k}, define a Schubert variety

(54) Ω(F ,α)
.
= {[X] ∈ Gr(k, n) | dim([X] ∩ [Wi]) ≥ αi} .
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There exists an element [X∗] ∈ Ω(F ,α) such that [X∗] = [X(1)] ⊕ [X(2)] ⊕ · · · ⊕ [X(M+1)]

where [X(i)] ⊆ [Wi]
∖{

[X(1)]⊕ [X(2)]⊕ · · · ⊕ [X(i−1)]
}
is a subspace of dimension αi − αi−1

that minimizes the function f(i) : Ω([Wi]
∖{

[X(1)]⊕ [X(2)]⊕ · · · ⊕ [X(i−1)]
}
, αi − αi−1) ⊂

Gr(αi − αi−1, n)→ R defined as

(55) f(i)([X]) =
1

P

P∑

i=1

dpF([X], [Qi])
2.

The proof is constructive and invokes Lemma 3.3.1 multiple times. For clarity, the

purpose of Theorem 3.3.2 is to find a point on the Schubert variety, Ω(F ,α), that averages

the data under the restriction that [X(1)] is the best α1-dimensional portion of [W1], [X
(1)]⊕

[X(2)] is the best α2-dimensional subspace of [W2] such that it contains the best subspace

of [W1], and so on. In some cases this [X∗] will be the point on Ω(F ,α) ⊆ Gr(k, n) that

minimizes f([X]) = 1
P

∑P

i=1 dpF([X], [Qi])
2, but not in all instances. These cases will be

elucidated following the proof.

Proof. Using Lemma 3.3.1, find [X(1)] ⊆ [W1] as the solution to

(56)

[
X(1)

]
= argmin

[X]∈Gr(α1,n)

1

P

P∑

i=1

dpF([X], [Qi])
2

subject to [X] ⊆ [W1].

Define [W̃2]
.
= [W2]

∖
[X(1)] =

[(
I −X(1)X(1)T

)
W2

]
which can be computed by projecting

[W2] into the orthogonal complement of [X(1)], and finding an orthonormal basis for the
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projection. [X(2)] ⊆ [W̃2] is then found as the solution to

(57)

[
X(2)

]
= argmin

[X]∈Gr(α2−α1,n)

1

P

P∑

i=1

dpF([X], [Qi])
2

subject to [X] ⊆ [W̃2]

which ensures that dim
(
[X(1)]⊕ [X(2)] ∪ [W2]

)
≥ α2 as desired. Iterate this procedure to

construct [X(1)], [X(2)], . . . , [X(M)] as described. Let [W̃(M+1)]
.
= R

n
∖{

[X(1)]⊕ [X(2)]⊕ · · · ⊕ [X(M)]
}
,

and find [X(M+1)] as the solution to

(58)

[x] = argmin
[x]∈Gr(k−αM ,n)

1

P

P∑

i=1

dpF([x], [Qi])
2

subject to [x] ⊆ [W̃(M+1)].

If we define [X∗] = [X(1)]⊕ [X(2)]⊕· · ·⊕ [X(M+1)], then [X∗] ∈ Ω(F ,α) ⊆ Gr(k, n) with the

desired properties. �

3.3.1. When do the two problems agree? The problem solved by Theorem 3.3.2

is not the same as the one presented in Equation 37, but they do have overlaps. For this

reason, we refer to the result of Theorem 3.3.2 as a subspace constrained flag of averages,

rather than a Schubert variety constrained average. The result of Theorem 3.3.2 is a point

[X∗] ∈ Gr(k, n) that is also an element of the Schubert variety Ω(F ,α). [X∗] has the

property that it contains the best α1-dimensional subspace of [W1], [X(1)], and the best

α2-dimensional subspace of [W2] with the caveat that it must also contain [X(1)], and so on.

Returning to the problem in Equation 37, The flag of interest is F = {0} ⊂ [W ] ⊂ R
n

with dim([W ]) = j. [X∗] is then the solution to Equation 37 when the distinguished subspace

[W ] is fully contained within [X∗] or when [X∗] is a subspace of [W ]. In other words, if

j ≤ k and α = 0 < j < n or if k ≥ j and α = 0 < k < n, then [X∗] is the optimal average
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Algorithm 15 Subspace constrained flag of averages

1: function µSFCA(F ,α, {[Qi]}Mi=1)
2: Ensure F = {0} ⊂ [W1] ⊂ · · · ⊂ [Wp] ⊂ R

n

3: Ensure α = {0 = α0, α1, . . . , αp, αp+1 = k}
4: [X(1)]← µSCA([W1], α1, {[Qi]}Mi=1)
5: for i = 1 . . .M do

6: [W̃i+1]←
(
I −

[
X(i)|X(i−1)| · · · |X(1)

] [
X(i)|X(i−1)| · · · |X(1)

]T)
Wi+1

7: [X(i+1)]← µSCA([W1], αi+1 − αi, {[Qi]}Mi=1)
return

[
X(1)

∣∣X(2)
∣∣· · ·
∣∣X(M+1)

]

of {[Qi]}Pi=1 ∈ Gr(k, n) restricted to Ω(F ,α). However, the second case is equivalent to

reducing the dimension of the ambient space and finding the unconstrained average so the

result should not be surprising. Pseudocode implementing the subspace constrained flag of

averages can be found in Algorithm 15.

3.4. Tangent Space Decomposition Using Affine Patches

In limited cases, we can decompose the tangent space for a point on a Schubert variety into

the dimensions that point within the variety and those that do not. These toys examples

can be useful in gaining intuition into more general cases. Let us examine an example

where Theorem 3.3.2 provides the optimal solution to Equation 37. That is, the subspace

constrained average is equivalent to the Schubert variety constrained average.

Let

(59) [W ] =




1

0

0

0




and define a Schubert variety, Ω(F ,α), on Gr(2, 4) such that F = {0} ⊂ [W ] ⊂ R
4 and

α = {0 < 1 < 2}. Points on this Schubert variety can be represented without loss of
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generality as the columnspace of matrices in the form

(60) [Y ] =




1 0

0 y1

0 y2

0 y3




for y1, y2, y3 ∈ R such that y21+y22+y23 = 1, however this is not the most useful representation

for the example at hand. There is an affine patch of the Grassmannian where all points can

be written as

(61) [X] =




1 0

x1 x2

0 1

x3 x4




for x1, x2, x3, x4 ∈ R, which includes all points on Ω(F ,α) in the form of Equation 60 where

y2 6= 0. From this representation for an affine patch a spanning set of tangent vectors should

be relatively obvious. Remember from Equation 4 that the tangent vectors to [X] on Gr(k, n)

are the matrices Z of size n × k such that XTZ = 0. Additionally, since the dimension of

Gr(2, 4) is k(n − k) = 4, we are looking for four linearly independent vectors to span the

tangent space. One basis for the tangent space is then

(62)
∂X

∂x1

=




0 0

1 0

0 0

0 0




,
∂X

∂x2

=




0 0

0 1

0 0

0 0




,
∂X

∂x3

=




0 0

0 0

0 0

1 0




,
∂X

∂x4

=




0 0

0 0

0 0

0 1




.
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These vectors do not necessarily point within the Schubert variety. In fact, the dimension

of Ω(F ,α) is
∑M

i=1 qi − αi = (0 − 0) + (1 − 1) + (4 − 2) = 2, so the tangent space to the

Schubert variety at a point is 2-dimensional as well. Our choice of affine patch representation

anticipated this dimension, so a basis for this space is relatively clear. Vectors ∂X
∂x2

and ∂X
∂x4

are both tangent to almost all points on Ω(F ,α), and we can see that for such points the

span of [X]+c2
∂X
∂x2

+c4
∂X
∂x4

(c2, c4 ∈ R and sufficiently small) will also contain [W ] as required.

3.4.1. Computational examples. We already have a proof of Theorem 3.3.2, but

using the tangent space decomposition we can provide empirical evidence that the theory

is correct. Let [W ] and Ω(F ,α) be defined as above. The set of data to be averaged will

be 4 points on Gr(2, 4) that are generated as perturbation of a random point with variance

σ = 0.5. In this case, the random point is

(63) [Q0] =




−0.6665 −0.0415

−0.6927 −0.2602

0.1042 0.2700

0.2549 −0.9261




and the data to be averaged are

[Q1] =




−0.2471 −0.6550

0.9269 −0.3733

−0.1701 −0.3295

−0.2254 −0.5683




, [Q2] =




−0.4100 0.6882

−0.8080 −0.0021

−0.1075 −0.4538

0.4093 0.5661




,(64)
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[Q3] =




−0.7921 −0.4687

−0.3160 −0.2333

0.0061 −0.0122

0.5222 −0.8519




, [Q4] =




−0.5008 −0.0127

−0.8652 −0.0225

0.0021 −0.0493

−0.0257 0.9985




(65)

The subspace [W ] is not contained in any of them and the minimal principal angle separating

it from any of these four points is 0.4018 radians between [W ] and [Q3]. The unconstrained

average of these four points, that is 2-dimensional element from the flag mean, is

(66) [µpF ] =




0.6866 0.0284

0.6499 −0.4716

−0.0026 −0.0458

0.3259 0.8802




and has a cost of 1
4

∑4
i=1 dpF([µpF ], [Qi])

2 = 0.3371. Clearly this does not observe the Schu-

bert variety constraint, in fact it is 0.8132 radians away from the subspace of interest, but

it gives us a baseline against which to compare our constrained averages. Using the method

described in Algorithm 15, the subspace constrained flag of averages is

(67) [µSFCA] =




1.0000 0

0 −0.5198

0 −0.0456

0 0.8530




and has a cost of 1
4

∑4
i=1 dpF([µSFCA], [Qi])

2 = 0.6816. Using Algorithm 12 c Algorithm 13

identifies the same minimizer as the Schubert variety constrained average.
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(a) Cost for points of the form [µSFCA] + c2
∂X
∂x2

+ c4
∂X
∂x4

. The minimum is at

c2 = c4 = 0, indicating that [µSFCA] is the local minimum.

(b) Cost for points of the form [µSFCA] + c1
∂X
∂x1

+ c3
∂X
∂x3

. The minimum is at
c1 = c3 = 0.225, thus we can decrease the cost if we leave the Schubert variety.

Figure 3.2. Cost surfaces for points near [µSFCA], the subspace constrained
average of {[Qi]}4i=1.

Points of the form [µSFCA] + c2
∂X
∂x2

+ c4
∂X
∂x4

where c2, c4 ∈ R and are small enough stay

within the tangent space of the Schubert variety. Thus we can see that [µSFCA] is at least
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a local minimum in the feasible region. Figure 3.2a shows how the cost of the optimization

problem changes if we nudge [µSFCA] in a direction that stays on the Schubert variety. The

minimum over this region is for c2 = c4 = 0, indicating that we are at a local solution.

However, if we move in directions that are tangent to [µSFCA] on Gr(2, 4) but do not stay

within the Schubert variety [µSFCA]+c1
∂X
∂x1

+c3
∂X
∂x3

, then we can observe a decrease in the cost

of our objective function. Figure 3.2b shows the cost associated with nudging the average

in these directions. The direction 0.0225 ∂X
∂x1

+ 0.0225 ∂X
∂x3

appears to provide the steepest

decrease with an associated cost of 0.665. Unfortunately the point that achieves this cost

reduction is out of the feasible region and no longer contains [W ]. Thus Figure 3.2 suggests

that we are simultaneously solving the sequence of functions described by Equation 55 and

the cost function in Equation 37, so the subspace constrained flag of averages is equivalent

to the Schubert variety constrained average in this instance.

It is not always the case that the same point will satisfy both Equation 55 and Equa-

tion 37. With a small modification of the previous example we can demonstrate a case when

the solutions are distinct. Let

(68) [W ] =




1 0

0 1

0 0

0 0




and again define a Schubert variety, Ω(F ,α), on Gr(2, 4) such that F = {0} ⊂ [W ] ⊂ R
4

and α = {0 < 1 < 2}. Points on this Schubert variety are slightly trickier to represent
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generically. However if we start with a matrix of the form

(69) [Y ] =




y1 y2

y3 y4

0 y5

0 y6




and require that

y21 + y22 = 1(70)

y22 + y24 + y25 + y26 = 1(71)

y1y2 + y3y4 = 0(72)

then we will be able to describe any point on Ω(F ,α) by the columnspace of [Y ]. Even

though this generic representation is more involved than the one for the 1-dimensional [W ],

we can use the same affine patch from Equation 61 to describe a large subset of this Schubert

variety as well. Additionally, the tangent vectors from Equation 62 span the tangent space

here as well. The main difference between these two examples is the dimension of the

Schubert variety has increased to
∑M

i=1 qi − αi = (0 − 0) + (2 − 1) + (4 − 2) = 3 with ∂X
∂x1

,

∂X
∂x2

, and ∂X
∂x4

all pointing within the Schubert variety.

Computing the subspace constrained flag of averages for the data yields the point

(73) [µSFCA] =




0.6553 0.2570

0.7554 −0.2230

0 −0.0432

0 0.9393



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(a) Cost for points of the form
[µSFCA] + c2

∂X
∂x2

+ c4
∂X
∂x4

. The
minimum is at c2 = c4 = 0.

(b) Cost for points of the form
[µSFCA] + c1

∂X
∂x1

+ c2
∂X
∂x2

. The
minimum is at c1 = 0.022,
c2 = −0.017.

(c) Cost for points of the form
[µSFCA] + c1

∂X
∂x1

+ c4
∂X
∂x4

. The
minimum is at c1 = 0.022,
c4 = −0.011.

Figure 3.3. Cost surfaces for points near [µSFCA], the subspace constrained
average of {[Qi]}4i=1, that remain on the Schubert variety. Figure 3.3b and
Figure 3.3c do not have minimums at the origin, indicating that [µSFCA] is
not a local minimum of Equation 37.

with an associated cost of 0.3377. The three obvious 2-dimensional cost surfaces that we

can create from points in the form [µSFCA] + c1
∂X
∂x1

+ c2
∂X
∂x2

+ c4
∂X
∂x4

indicate that while this

is the optimal solution for subspace constrained averaging, it is not a local minimum for the

Schubert variety constrained cost function from Equation 37. Figure 3.3 shows these three

cost surfaces.
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If we follow the path of steepest descent we eventually arrive at a locally optimal solution

for the Schubert variety constrained average,

(74) [µSchub] =




−0.6336 0.2646

−0.7737 −0.2167

0 −0.0431

0 0.9387




.

This point lives on Ω(F ,α) and has an associated cost of 0.3371. Additionally, the cost

surfaces shown in Figure 3.4 indicate that nudging this point within the variety will increase

the cost. This optimal solution can also be found using the conjugate gradient with penalty

method when initiated with a nearby starting point. These two points are very close together,

the geodesic distance based on arc length between them is 0.0268, but this is an extremely

simply example. It is not always the case that the distinct solutions are that close together.

3.5. Summary

In Chapter 3 we introduced the machinery for performing Schubert variety constrained

optimization in some cases. Specifically, when we rewrite the Schubert variety constraint

using a coefficient matrix, we can convert the constraint into a second term in the objective

function. This allows us to leverage the penalty method in conjunction with conjugate

gradient to perform Schubert variety constrained optimization for any objective function

that we can differentiate with respect to the coefficient matrix. In Subsection 3.2.3 we were

formulating the coefficient matrix A to suit the cost function described by Equation 37,

which has only one subspace [W ] in it’s flag. The formulation is much more general than
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(a) Cost for points of the form
[µSchub] + c2

∂X
∂x2

+ c4
∂X
∂x4

. The
minimum is at c2 = c4 = 0.

(b) Cost for points of the form
[µSchub] + c1

∂X
∂x1

+ c2
∂X
∂x2

. The
minimum is at c1 = c2 = 0.

(c) Cost for points of the form
[µSchub] + c1

∂X
∂x1

+ c4
∂X
∂x4

. The
minimum is at c1 = c4 = 0.

Figure 3.4. Cost surfaces for points near [µSchub], the Schubert variety con-
strained average of {[Qi]}4i=1, that remain on the Schubert variety. Figure 3.3a,
Figure 3.3b and Figure 3.3c all have minimums at the origin, indicating that
[µSchub] is a local minimum of Equation 37.

that, however. We could design a block coefficient matrix in the style of Equation 43 to suit

any flag. First, we would modify Ŵ so that the span of the first qi columns is a basis for

subspace [Wi]. Then we would create blocks within A of the appropriate dimension to mix

columns for each subspace in the flag. That is, the first block in the upper right of A would

be a slice of an orthonormal matrix of size j1×α1, with a block of zeros of size (n− j1)×α1

below it. To the right of these columns would be a block of size j2×(α2−α1) that is a slice of

an orthonormal matrix, and zeros filling out the rows beneath. This pattern continues until

all of the proper subspaces in the flag have been accounted for and the remaining columns
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complete the matrix to a basis for Rn. Of course the penalty function would have to modified

slightly as well to ensure that zeros ended up in the proper places in the coefficient matrix

once the optimization was complete.

Although this process can be extended for Schubert varieties of all types, the efficacy of

the method leaves much to be desired. In experimental trials, the initial guess of the solution

needs to be close to the actual solution for the method to converge to the correct optimum.

It appears that the penalty method, at least in our implementation, creates very steep walls

around iterates as they near the feasible region. This means that we converge to stationary

points based on our augmented cost function, but they are not actually local solutions to

the initial problem. Additionally, because the Schubert variety constraint is not convex it is

possible that there are many local solutions to Equation 37 that are not globally optimal.

The other main contribution of this chapter was to introduce the notion of a subspace

constrained flag of averages as described by Theorem 3.3.2. The idea is that a different

problem can be solved to find the portion of each subspace in a flag that is closest to

a collection of data. The flag and/or point constructed from spanning these portions is

sometimes equivalent to the solution to the Schubert variety constrained average. Section 3.4

provided two concrete examples of this process; one where the solutions agreed and one where

they did not. In these simple examples we were able to decompose the tangent space at a

point on the Grassmannian into the directions that stay within the Schubert variety and

those that do not. This allowed us to identify when solutions to the subspace constrained

averaging problem do not solve the Schubert variety constrained averaging problem.
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CHAPTER 4

HYPERSPECTRAL CHEMICAL PLUME DETECTION

4.1. Introduction

The problem of detecting chemical plumes in long-wave infrared hyperspectral images

has grown increasingly popular in the last decade. Military and civilian applications are

abundant as can be inferred from the variety of disciplines that research the topic [40,

64, 50, 20, 69]. Most algorithms for chemical plume detection, such as matched filters

[58, 59], normalized matched filters [44], and subspace detectors [32], use information from a

single hyperspectral image to perform their detections. The accuracy of these methods are

improved by supervised estimation of plume-free background statistics. For images generated

by ground-level sensors, the problem of estimating the radiance of the background clutter is

exacerbated by the unequal distances between objects in the scene and the sensor itself.

One unsupervised method for estimating the plume-free background of an image is to

keep the sensor in a static location and image the scene at a time known to be free of chemical

agents. This alleviates the difficulty of compensating for differences in path-length between

objects and the sensor, and ensures that the background estimate will not be contaminated

with the chemical being detected. Using a static sensor to repeatedly image the same scene

is referred to as a ’persistent stare’ application and can be useful for monitoring emissions

from industrial facilities or as an early warning of dangerous chemicals near cities or sensitive

government buildings [69, 20, 33, 16]. What this method does not account for are changes

in lighting and temperature due to the change in time between the images being used for

detection. These physical changes affect the at-sensor measurements, and must be taken

into account by any technique using this type of background estimate.
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(a) Each pixel in a long-wave infrared
hyperspectral image corresponds to a
vector whose elements are the response
of that pixel to different wavelengths of
infrared light.

(b) The linear model for the
observed spectrum of pixel xi,j,t,
most simply consists of the sum
of the gas spectrum (S), the
background of that pixel (Bi,j,t)
and Gaussian noise (ν).

Figure 4.1. Pixels of hyperspectral images correspond to vectors that can
be decomposed into distinct endmembers.

In this chapter, we propose a method for detecting chemical plumes that utilizes tempo-

ral information to estimate the plume-free background of a hyperspectral image. With this

information, we substitute an element of the flag mean for each hyperspectral pixel in an

image that contains dimensions which span the background clutter, the changes in illumi-

nation and temperature, and the signature of the chemical agent of interest. By measuring

the similarity between the laboratory signature for a chemical and the representative flags,

we determine a scalar statistic that predicts the presence of the chemical at each pixel in an

image. This method of including background information in the model for each pixel, rather

than projecting away from it, provides a sensitive detector that appears to provide improved

detection accuracy for weak or optically thin chemical plumes. 1

1The material in this chapter was largely published in [46], and was a collaboration with J. Ross Bev-
eridge, Bruce Draper, Michael Kirby, and Chris Peterson.
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There are numerous thorough and well written introductions to hyperspectral image

processing available for reference [40, 42]. Thus we review only the details relevant for the

technique at hand. The most widely used spectral model is the linear mixing model [3].

This model assumes that the observed spectrum of a pixel consists of a linear combination of

distinct spectral endmembers. In other words, pixel (i, j) is represented by a vector xi,j ∈ R
b

where b is the number of spectral bands captured by the imaging device. Then we can write

xi,j = S +Bi,j + ν where S is the spectrum of the gas, B is the spectrum of the background

at that pixel location, and ν is white noise. Alternatively, either S or Bi,j can be replaced

by matrices whose columns correspond to endmembers. In this case, the matrices would be

multiplied by a unit length vector that provides a convex combination of these endmembers.

Figure 4.1 shows an illustration depicting the correspondence between a pixel in the scene

and a linear combination of spectral endmembers.

Algorithm 16 Adaptive cosine (coherence) estimator detection statistic

1: function ηACE(x, s, Γ̂, µ̂)

2: Ensure Γ̂ is invertible. ⊲ Use diagonal loading if necessary
3: x̃← x− µ̂
4: s̃← s− µ̂

return
(s̃T Γ̂−1x̃)

2

(s̃T Γ̂−1s̃)(x̃T Γ̂−1x̃)

Two of the detection algorithms in the literature that assume a linear mixing model

are the adaptive cosine (or coherence) estimator (ACE) [32, 59] and the matched filter

(MF) [43]. The ACE algorithm has become particularly popular in practice because of it

broad applicability, simple implementation, and speed [41]. Assume that s, x, µ̂ ∈ R
b such

that s is the spectrum of a target signature, x is the spectrum of a test pixel, µ̂ is the sample

mean of the pixels, and Γ̂ ∈ R
d×d is the sample covariance of the mean subtracted pixels. The

ACE detection statistic is then the cosine of the angle between whitened versions of target
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signature and the test pixel. The pseudocode for computing the ACE detection statistic is

presented in Algorithm 16, which takes a value of 1 if the whitened target spectrum and the

whitened pixel are collinear, and a value of 0 if they are orthogonal.

Alternatively, the commonly used implementation of the matched filter assumes that

the target and background classes have the same covariance matrix and that the observed

spectra have uncorrelated components [43]. This assumption is can be satisfied, in part, in

a scenario where there is no structured interference in the background pixels. Pseudocode

for the computation of the matched filter can be found in Algorithm 17.

Algorithm 17 Matched filter detection statistic

1: function ηMF(x, s, Γ̂, µ̂)

2: Ensure Γ̂ is invertible. ⊲ Use diagonal loading if necessary
3: x̃← x− µ̂
4: s̃← s− µ̂

return s̃T Γ̂−1x̃

s̃T Γ̂−1s̃

Thresholding these statistics allows us to compute a binary detection mask on a hy-

perspectral image. However, to determine the possible effectiveness of this thresholding

we report empirical receiver-operator-characteristic (ROC) curves and area under the curve

(AUC) scores. Of particular interest is the front end of the ROC curves, where the false

positive rate is low.

4.2. Flag-based Chemical Plume Detection

Given a hyperspectral movie with pixelwise correspondence between frames, the flag-

based detection algorithm preprocesses the data by creating a subspace from the span of a

hyperspectral pixel at a time known to be free from gas, and the associated pixel from the

frame under test, that is [Xi,j,t] = span{xi,j,0, xi,j,t}. If a pixel contains the target spectrum

in one frame and not the other the subspace will be 2-dimensional. Thus [Xi,j,t] ∈ Gr(2, b) or
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Gr(1, b), where b is the number of spectral bands in the movie. Three horizontally adjacent

subspaces (pixels) are then averaged using the flag mean from Algorithm 10, pushing mutual

information to the front and creating a new representative

(75) [X i,j,t] = the 3-dimensional element of µpF ([Xi,j−1,t], [Xi,j,t], [Xi,j+1,t])

for the pixel. If all of the subspaces being averaged are 2-dimensional, the largest element

of the flag mean could potentially be a 6-dimensional subspace. If the three subspaces being

averaged came from pixels with homogeneous background, the 1-dimensional element of the

flag will represent the background spectrum, thus in practice this dimension is discarded.

However, if two of the three subspaces being averaged contain the target spectrum, the

median-like property of the flag mean will push this into the second or third element of

the flag mean depending on the magnitude of change in ambient conditions. The detection

statistic for the flag-based detection technique can be computed using the pseudocode in

Algorithm 18.

Algorithm 18 Flag-based detection statistic

1: function ηF([Xi,j−1,t], [Xi,j,t], [Xi,j+1,t], s)
2: [X i,j,t]← µpF ([Xi,j−1,t], [Xi,j,t], [Xi,j+1,t]) ⊲ 3-dimensional element of µpF

3: [s]← span{s} ⊲ A 1-dimensional subspace
4: Θ1 ← Θ([X i,j,t], [s]) ⊲ Smallest angle via Algorithm 5

return 1− 2Θ1

π

4.3. Data Set Description

The long-wave infrared data for which we compute detections is a 4-dimensional ar-

ray (hyperspectral movie) from the Fabry - Pérot Interferometer Sensor Data Set of size

256 rows × 256 columns × 20 bands × 561 frames created by the Naval Research lab [35].

The spectrometer used to collect this data is an imaging spectroradiometer that operates
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efficiently in the 811 micron range. An explosive burst was used to launch and disperse the

simulant Triethyl Phosphate (TEP) near frame 111 of the movie. The hyperspectral images

from this movie will be used to demonstrate the effectiveness of the detection algorithms

on plume-free images into which target signatures have been synthetically added, and on

images after the release of the simulant to use in demonstrate practical scenarios.

4.4. Quantitative Results on Synthetic Data

The statistic computed by the flag-based detection algorithm reduces to a monotonic

function of the principal angle separating the target signature from a test subspace, however,

the process used to generate that representative subspace encodes a stronger signal if a

neighbor of that pixels also contains the target. Hence this algorithm improves detections for

signals with very small signal-to-interference-plus-noise ratios (SINR). This property will first

be demonstrated on hyperspectral images where target signatures have been synthetically

added to a plume-free scene at different SINRs. This artificial data will provide ground truth

by which to benchmark the three algorithms quantitatively. The SINR is computed as the

ratio of the signal power to the total power of the background plus white noise. Specifically,

artificial plume pixels were created as xi,j = Sα+Bi,j + ν where S is the signature for TEP,

α is a constant that is scaled to achieve the desired SINR, Bi,j is the background spectrum

at pixel (i, j), and ν is white noise with variance σ2 = 0.2 and covariance Γ as described

below. Thus

(76) SINR =
1
b

∑b

k=1(S(k)α)
2

1
b

∑b

k=1(Bi,j(k))2 + σ2

is the computed ratio and is typically reported in decibels as SINRdB = 10 log10(SINR).
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(a) Randomly generated synthetic
binary detection mask.

(b) ROC curves for TEP added to the
hyperspectral image with SINRdB = 5.

Figure 4.2. Detection accuracy for TEP inserted into a plume-free hyper-
spectral image.

Each wavelength used in the observations of the Fabry - Pérot data was selected to

maximize detection sensitivity of TEP, however, the adjacent bands are highly correlated.

Thus, we follow the lead of Sakla et al. [56] and utilize a first-order Markov-based model,

defined as ν ∼ Nb[0,Γ] to generate the additive white noise. The covariance matrix Γ is

defined as Γ = σ2R where R is the Toeplitz correlation matrix defined according to the

first-order Markov model [27],

(77) R =




1 ρ ρ2 · · · ρ3 ρb−1

ρ 1 ρ ρ2 · · · ρb−2

ρ2 ρ 1 ρ · · · ρb−3

...
. . .

...

ρb−2 · · · ρ2 ρ 1 ρ

ρb−1 · · · ρ3 ρ2 ρ 1




and σ2 is a fixed variance. In the experiments the variance was fixed at σ2 = 0.2. The

method for estimating ρ also follows that of Sakla et al. [56].

Using the above method, and scaling α to generate the appropriate SINRdB, TEP was

added to a randomly generated rectangle accounting for 1% of the pixels in a plume-free
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Figure 4.3. Box plots representing the AUC scores for detections of syn-
thetically added TEP. Rectangular plumes were randomly generated 100 times
for each reported SINR level.

hyperspectral image. An example of one such binary detection mask is shown in Figure 4.2a.

White noise with the same variance and covariance was added to all pixels of the image not

included in the plume. To compute detections as fairly as possible, the plume mask was

used by the MF and ACE algorithms so that calculated background statistics would be as

accurate as possible. The flag-based algorithm used a plume-free version of the same image

with different white noise to create the initial 2-dimensional subspaces to be averaged. The

experiment was repeated 100 times at each SINRdB level to generate the box plot of AUC

scores in Figure 4.3. As can be seen, the biggest advantage of the flag-based detection

algorithm over the ACE and MF methods comes at very low SINRdB levels. However, even

when the SINRdB level is positive and all methods do well, the flag-based detection has a

probability of detection for a low probability of false alarm as can be seen in Figure 4.2b.
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4.5. Qualitative Results

Other researchers have used temporal information to segment hyperspectral videos as a

way to detect and track chemical plumes [19, 65]. These methods do not predict whether

or not a chemical agent is present, but rather cluster related hyperspectral pixels so that

contiguous regions can all be identified as containing a chemical or not with another method.

In an attempt to provide some measure of the success of our detections on real data, we have

employed a less sophisticated supervised clustering technique to find the pixels associated

with the gas plume in frame 150 of the Fabry - Pérot data, i.e. after the simulant was

released. This clustering will then be used as an approximate plume mask for computing

ROC curves on our various detections in that frame.

To generate the approximate plume mask, first, the temporal singular value decomposi-

tion of each pixel in the hyperspectral movie was compute. That is to say a basis was found

for the space spanned by all of the spectra of a single pixel through time. The background

of each pixel was estimated as the span of the first three dimensions of its basis. Each

pixel was then projected into the orthogonal complement of this basis to remove most of

the background information. The resulting background-removed hyperspectral pixels were

clustering using k-means. The cluster membership along with an visualization of the spec-

tral mean of the image was manually inspected to determine which clusters contained the

plume, and those pixels were used to create the approximate plume mask. This process was

heavily supervised, and while replicable, was not automated. An example of the plume mask

generated for frame 150 can be seen in Figure 4.4a.

Detections were performed on images using the three algorithms. For the flag-based

algorithm, the first scene of the hyperspectral movie which is free of simulant, was used as

the plume-free frame to build the initial 2-dimensional subspaces for each pixel. For the MF
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(a) Approximate plume mask
computed by clustering
background-removed hyperspectral
pixels.

(b) Detection map for flag-based algorithm.

(c) Detection map for ACE algorithm. (d) Detection map for matched filter
algorithm

Figure 4.4. Detection scores associated with frame 150 of the Fabry - Pérot
data. Higher scores indicate a greater likelihood of TEP being present in a
given pixel.

and ACE algorithms, the approximate plume mask was used to achieve a better estimate

of the background statistics. Figure 4.4 shows the detections maps for each algorithm on

frame 150 of the data, and Figure 4.5 shows the associated ROC curves computed from the

approximate plume mask.

In Figure 4.4d, the scores from matched filter algorithm, we see the highest detection

statistics. However this does not necessarily translate to the best detection performance.
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Many of the high scoring detections are false alarms in the upper right sky pixels. In

Figure 4.4c we see the detections of the ACE algorithm. These are mostly low scores, but the

plume is distinct along the horizon. Contrast is more important than high scores achieving a

good level of detection, which is generally good for the ACE detections. There are a handful

of speckle noise errors in the foreground of the image that generate a poor probability of

detection for small probabilities of false alarm however. This agrees with the information in

the ROC curves that suggests that the ACE and MF algorithms do not perform quite as well

in the left-hand side of the ROC curves in Figure 4.5. Overall the AUC for the flag-based

algorithm is higher than the two standard algorithms, and it performs better on the left

side of the ROC curve. This can be identified in the detection images by the slightly better

contrast between the plume and the speckle noise detections in the background.

From the AUC scores computed to be between 0.78 and 0.86, the results on synthetic

data in Figure 4.3 would suggest that this image has a SINRdB around −7 however this

cannot be computed exactly. The somewhat contiguous, higher detection statistics in the

sky in Figure 4.4b may be attributable to the change in temperature between the first frame

of the movie and the 150th frame as there is approximately a 6 second lag between frames

during the capturing process and the video was capture in the morning.

4.6. Summary

In this chapter we presented a novel flag manifold based method for detecting chemical

plumes in long-wave infrared hyperspectral movies. The technique leverages knowledge of

the radiance of the background scene, taken from a frame of a hyperspectral movie at a time

known to be free of chemical agents, to improve the detection of chemical signatures in other

frames of the movie.
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Figure 4.5. ROC curves generated from detections on frame 150 of the data
using approximate plume as truth.

The technique used to create the flags pushes information about the background clutter,

ambient conditions, and potential chemical agents into the leading elements of the flags. The

result of exploiting this temporal information by way of the flag structure is a novel algorithm

for detecting gas plumes that appears to be sensitive to the presence of weak plumes.

Quantitative results on synthetic data show that the flag-based algorithm consistently

performs better on data when the SINRdB is low, and beats the ACE and MF algorithms in

probability of detection for low probabilities of false alarm even when the SINRdB is high.

Qualitative experiments suggest that these results hold true on real data, when images of

the scene are available at a time known to be free of the target signature.
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CHAPTER 5

ADAPTIVE VISUAL SORT AND SUMMARY

5.1. Introduction

Forensic analysis of nanoparticles is often conducted through the collection and identifi-

cation of electron microscopy images to determine the origin of suspected nuclear material.

Each image is carefully studied by experts for classification of materials based on texture,

shape, and size. Manually inspecting large image datasets takes enormous amounts of time.

However, automatic classification of large image datasets is a challenging problem due to the

complexity involved in choosing image features, the lack of training data available for effec-

tive machine learning methods, and the lack of availability of user interfaces to parse through

images. Therefore, a significant need exists for automated and semi-automated methods to

help analysts perform accurate image classification in large image datasets.

The overarching goal of this chapter is to create a 2-dimensional visualization of a collec-

tion of data that reflects semantic, or describable, relationships between the data 2. On the

surface, there are many algorithms that already address this issue. See, for example, non-

linear embeddings like Isomap [68], Locally Linear Embedding [54], Laplacian Eigenmap [6],

Diffusion Map [9], etc. While these methods retain a great deal of relationship information in

their low dimensional embeddings, it may not be related to the primary objective of the data

analysis. There are many scenarios in which each method excels or fails. Instead, we present

INStINCt, our Intelligent Signature Canvas, as a method for quickly organizing image data

2The work in this chapter was done in collaboration with Elizabeth Jurrus, Nathan Hodas, Nathan Baker,
and Mark D. Hoover, and was supported by the Pacific Northwest National Laboratory National Security
Directorate PhD Internship Program. The novel contributions to this dissertation are mainly contained in
Section 5.2.3. The full text of the publication that resulted from this work can be found in [29].
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in a web-based canvas framework. Images are partitioned using small sets of example im-

ages, chosen by users, and presented in an optimal layout based on features derived from

convolutional neural networks [61]. The optimal layout chosen by the system is the result

of applying the diffusion map embedding to a graph whose edges are weighted by the angle

between individual images and the flag means of subsets of images chosen by the user as

anchors for the visualization.

To demonstrate the value of such a technique, assume that a collection of data consists

of images to be classified by a domain scientist. An oncologist might look at a massive

collection of blood cell images to determine by morphological appearance if circulating tumor

cells (CTCs) are present. It is a non-trivial task to identify and count the CTCs even with

advanced machine learning techniques because the expected ratio of CTCs to healthy blood

cells is incredibly small and many healthy cells may appear malformed if they have been

imaged poorly. Pathologists can manually judge whether cells that have been automatically

classified as CTCs are in fact cancerous but this requires significant time on the part of the

physician or technician. Our task in this analogy would be to then sort the collection of

images based on their relationship to some small collection of cells that the human operator

has manually identified to be CTCs. If our initial sorting of the images contained errors, we

would like the human operator to be able to affect the sorting globally by interacting with

a small number of images directly (rather than with parameters in the model).

The idea of allowing users to interact with mathematical models to improve clustering

and classification has a long history of research in the semi-supervised clustering domain.

Methods such as iPCA [28], SCREEN [67], and many others allow user guidance to affect

their lower dimensional embeddings. However, these methods require that users manipulate

parameters directly. In iPCA, for example, users adjust the weights associated with the
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various basis dimensions to adjust the view of the data. While this type of manipulation will

respect the restrictions of the mathematical model, it may frustrate users who are experts in

other domains but not in data reduction techniques. Instead, we would like human operators

to be able to manipulate the visualization directly, and to have the intent of that interaction

translated into parameter updates.

A pipeline called Visual to Parametric Interaction (V2PI) where users interact purely in

the visual domain, but affect changes to the model parameters that update the underlying

mathematical model and hence the visualization on a global scale was introduced by Leman

et al. [36]. The pipeline that Leman proposes appears to build on work of Endert et al. [14]

that argues against direct manipulation of model parameters, saying “The drawback of [direct

parametric] interaction is that users are expected to be experts in the underlying model that

generates the visualization”.

The results of the INStINCt framework are demonstrated qualitatively using particle im-

ages from the Capstone Depleted Uranium (DU) Aerosol Characterization and Risk Assess-

ment Program [51], which a team led by Pacific Northwest National Laboratory conducted

under the auspices of the U.S. Army Public Health Command. This dataset consists of a

large set of backscattered electron (BSE) images from scanning electron microscopy (SEM)

of aerosol samples collected during perforation of an Abrams tank and a Bradly vehicle with

DU muntions. The details of the aerosol collection in the high-energy environment of the

Capstone study have been described by Holmes et al. [25]. The motivation for examining the

images of the particles is to determine the particle morphology, especially in the nano-size

range. This morphology provides insight into the relationship between the chemical forma-

tion, the solubility, and the dissolution rates [51] present during their formation. As reported

by Krupka et al. [34], ultrafine aerosols of aluminum and iron from the vehicle armor were

67



Figure 5.1. Example nanoparticle images from the CDC Capstone DU
Aerosol Study.

observed in the analysis of the Capstone particle images. The mechanism of the formation for

such particles in the nano-size range from high temperature processes involves vaporization-

condensation mechanisms. Guilemette and Parkhurst [38] further reported that little to no

evidence was obtained that demonstrated the existence of DU nanoparticles. Examples of

BSE images of a selection of these particles can be seen in Figure 5.1.

5.2. Adaptive Visual Sort and Summary

The INStINCt framework was developed to enable efficient organization of SEM im-

ages through the integration of a web-based interface, state-of-the-art image feature vectors,

and a new clustering technique. The user interacts with the INStINCt interface through a

light weight web client application that provides a virtual canvas for organizing images and

enabling different users to collaborate on the same datasets. The canvas displays images

represented by a 4096-dimensional feature vector computed from OverFeat, a convolutional

neural network [61]. Since we cannot easily visualize these high dimensional feature vectors,

we attempt to map these feature vectors into a 2-dimensional space while preserving their

class relations. The method we implemented to perform dimensionality reduction is an adap-

tive spatialization method. First, the user selected images are clustered using DBSCAN [15]

and “anchors” for each group are computed. The positions of the remaining images are
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updated in the 2-dimensional spatialization using a coordinates determined by the similarity

of the images to these clusters. Similarity is measured by the angle between a feature vector

and the low-dimensional subspace of created as an anchor. The relationships between unla-

beled images and small, user-selected clusters of images are visualized via diffusion map [9]

in the canvas. This representation is therefore distinct from the related L-Isomap embed-

ding where the algorithm attempts to preserve distances between landmarks, and fits the

remaining data into the embedding by triangulating distances from the landmarks [10]. One

of the advantages of our method for representing the clusters is that in the inevitable case

that the visualization does not represent all the of the semantic information recognized by

the domain expert, the visualization can be globally updated by moving a small number of

samples closer to or further from the clusters.

5.2.1. User Interface. Central to the INStINCt implementation is the web-based soft-

ware for displaying images and recording human operator interactions. We leverage the ac-

tiveCanvas web application from Hodas et al. [24] to display the computed visualizations.

The activeCanvas allows image files to be uploaded to a server, from which they can be

organized into a 2D layout by means of JSON files that contain most relevantly, file names,

(x, y)-coordinates, and a Boolean flag that indicates whether or not an image was moved on

the canvas. The activeCanvas includes the ability to zoom and pan across the canvas as well

as an image magnifier that allows users to see an enlarged version of the currently selected

image. It also includes the ability to group select multiple images to quickly arrange images

on screen as the user desires according to the task at hand.

Via a representational state transfer (RESTful) interface, the user sends the JSON file,

containing new (x, y)-coordinates and the updated “moved” Boolean flag for each image, to

the server. The server analyzes only the images the user moved, and computes a new location
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for all images on the screen according the distance-to-anchors diffusion map embedding

described in Section 5.2.3. The updated (x, y)-coordinates are placed in the JSON, and that

information is pushed back to the web-interface. Images on the screen smoothly translate

to the new positions calculated by the server. The full translation takes about 1.5 seconds,

providing the user with a visual trace of the changes. The user then adjusts additional

images according to their tasks, based on the new positions, to provide additional input to

the prediction algorithm. The cycle repeats until the user is satisfied with all the positions of

the images on the screen, and then the user may export the JSON to another application for

further analysis such as building a classifier. Additionally, users can upload supplementary

images as part of the main workflow, adding additional data to the layout if needed.

5.2.2. Feature Selection. Feature selection for computer vision is a challenging prob-

lem. There are many methods for finding relevant features in images and creating feature

vectors to represent each image. Some of the most relevant work in this area focuses on

keypoint detection and aggregation of similar keypoints to identify similarities across im-

ages [66]. Instead of trying to find the best keypoint detector for our data, we chose to

represent each image with a 4096-dimensional feature vector that is computed as the output

of Sermanet et al.’s convolutional neural network called OverFeat [61]. OverFeat was ex-

haustively trained to identify object boundaries on a massive corpus of real-life images from

the ImageNet Large Scale Visual Recognition Challenge [55]. It turns out that this train-

ing also acts as a very good general feature descriptor for image data [62]. We found that

when we performed a qualitative evaluation of the OverFeat features against standard image

descriptors, the OverFeat features provided better separation of different particle images.
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5.2.3. Dimensionality Reduction. As a result of the mapping from the original pixel

space of the images to the feature space via the convolutional neural network, the SEM data

it may be possible for pathologists to discern the existence of the relevant clusters in R
4096.

However visualization in 4096 dimensions is not feasible, so we attempt to preserve class

relations in a reduced dimension visualization. Most low dimensional mappings look to

preserve pairwise relationships between all data points either locally or globally under the

assumption is that little is known about the data itself. Conversely, our application domain

is centered around a human operator who has working knowledge of the data, and some

relevant relationships. The operator’s goal is to explore other hypothetical relationships in

the data or to quickly organize the images with respect to the known, relevant information

rather than to all possible information.

With this task in mind, we look to display points based on their relationship to user

selected clusters of data. Starting from a naive 2-dimensional layout of the image data, a

user specifies a few small collections of related images by moving them into separate, spatially

contained regions of the visualization. The initial layout presented to the user could be as

simple as a tessellation of the images or randomly generated (x, y)-coordinates. We would

like to illustrate the improvements that our adaptive method for visual sort and summary

provides over existing techniques, so we generate our initial layout using the well-known

nonlinear embedding technique diffusion map [9].

Diffusion map constructs a Gaussian kernel from the distances between data points; a

technique that works equally well in Euclidean space or on a manifold equipped with a

metric. The initial description of diffusion map involved point clouds in Euclidean space,

and thus used Euclidean distance between points as a measure of similarity. Here data

has been mapped to points on a Grassmann manifold so distances for this kernel will are
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measured using the minimum principal angle between two subspaces. As described by Björck

and Golub [7], principal angles can be computed for subspaces of different dimensions, and

specific to our application it will work for measuring the angle between one feature vector

and a subspace generated from the span of a collection of feature vectors.

Algorithm 19 t-step diffusion map [9]

1: function DiffusionMap(Y, ǫ, t)
2: Ensure Y is an N ×N similarity matrix.
3: Ensure ǫ > 0 ⊲ ǫ controls the width of the Gaussian.
4: Ensure t > 0 ⊲ t-step diffusion process.
5: Wi,j ← exp(

−Yi,j

ǫ
) ⊲ Compute the Gaussian kernel.

6: di ←
∑N

j=1 Wi,j ⊲ Compute degree

7: Li,j ← Wi,j

di
⊲ Compute normalized graph Laplacian

8: Li,j ← Li,j

(didj)
⊲ Approximate Laplace-Beltrami operator

9: Di,j ←
∑N

j=1 Li,j ⊲ Compute sampling density

10: M ← D−1L ⊲ Re-normalize
11: A←M t ⊲ Compute t-step diffusion probabilties
12: ΛV ← AV ⊲ Eigendecomposition of M
13: Ensure V = [v1|v2| . . . |vN ] are ordered such that λ1 ≥ λ2 ≥ . . . ≥ λN

14: for i = 1 . . . N do

15: yi ← [v2(i)|v3(i)]T ⊲ yi ∈ R
2

return {yi}Ni=1 ⊲ 2-dimensional diffusion map coordinates

This Gaussian kernel is used to compute a normalized graph Laplacian, and each row of

the Laplacian is rescaled based on the sampling density so as to find the 1-step transition

probabilities. The eigenvectors corresponding to the largest magnitude eigenvalues of this

matrix then represent the coordinates of the low dimensional embedding, with the exception

that the first eigenvector is constant and is thus dismissed. Figure 5.2 shows the initial

layout of the CDC images using a standard 1-step diffusion map.

The dimensionality reduction performed in the INStINCt framework is cued by user-

created clusters. Thus our description here will follow this process. As an example, suppose

a user manually creates three small clusters of related images by moving them into distinct,
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spatially constrained areas of the activeCanvas as is shown by the circled images in Figure

5.3. The interaction with the activeCanvas is recorded using a JSON file that indicates the

new (x, y)-coordinates of the moved images as well as the Boolean flag showing that they

have been touched. This file can be exported from the activeCanvas if further analysis and

computations are desired.

Because of a intentional limitation in the architecture, we are not allowed knowledge of

the previous locations of the images. Thus we cannot determine the user’s intentions strictly

based on an image’s updated coordinates. For example, we would not know that two images

have been moved closer together from the information in the JSON file. We would only

know that both images were moved and their current coordinates. Instead, we interpret

the human operators actions by clustering the images that have been moved based on their

2-dimensional coordinates. For this task we employ the Density-based spatial clustering

of applications with noise (DBSCAN) algorithm of Ester et al. [15]. The DBSCAN method

looks for areas of high density in the data to create clusters. DBSCAN was chosen because it

does not require knowledge about the number of clusters ahead of time, it can find clusters of

arbitrary shape, and it allows for some points to remain unclustered if they are not located

in dense regions. The final point is advantageous because sometimes the user wishes to

inject class information by pushing dissimilar images further apart, rather than by grouping

similar images. Thus the INStINCt framework does not require that an image movement

away from a cluster necessarily forces that image into another cluster. One additional note,

the DBSCAN method assumes that clusters are of relatively equal size, so skewed group sizes

generated by a user may yield less desirable results. Pseudocode implementing the DBSCAN

method can be found in Algorithm 20.

73



Algorithm 20 DBSCAN Algorithm [15]

1: function DBSCAN(Y , {yj}j∈Y , ǫ, MinPts)
2: Ensure Y ⊆ X ⊲ Index set of images that were moved by user
3: Ensure yj ∈ R

2 for all j ∈ Y ⊲ 2-dimensional coordinates of moved images
4: Ensure ǫ > 0 ⊲ Upper bound on neighborhood diameter
5: Ensure MinPts≥ 0 ⊲ Lower bound cluster size
6: i← 0
7: Ci ← {} ⊲ Create an empty index set for noise points
8: for j ∈ Y do

9: if yj has been visited then

10: Continue to next point

11: Mark yj as visited
12: NbrPts ← {k ∈ Y|d(yj, yk) ≤ ǫ} ⊲ Indices of points near yj
13: if |NbrPts| < MinPts then
14: Mark yj as noise
15: else

16: i← Next Cluster
17: Ci ← {Ci ∪ j} ⊲ Add the index of yj to cluster i
18: for p ∈ NbrPts do
19: if yp has not been visited then

20: Mark yp as visited

21: NbrPts(p) ← {k ∈ Y|d(yp, yk) ≤ ǫ} ⊲ Indices of points near yp
22: if |NbrPts(p)| ≥ MinPts then

23: NbrPts← {NbrPts ∪ NbrPts(p)} ⊲ Combine the indices of points

24: if p is not in any cluster then
25: Ci ← {Ci ∪ p}
26: K ← max({i})

return {Ci}Ki=0, K ⊲ Sets of cluster indices and total number of clusters

The DBSCAN clustering step determines which images a user thinks are similar. The

inferred knowledge from the clusters is then used to create a subspace “anchor” as a repre-

sentative for each similarity group. An anchor consists of a subspace average of the feature

vectors for the images in that cluster. We impose the constraint that the space spanned by

each anchor must not overlap with the anchors for any of the other clusters. Additionally,

moved images that were not assigned to a cluster are represented in the anchor of the nearest

cluster with a reduced weight proportional to their distance from that group.
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For instance, let {xi}i∈X be a collection of data with xi ∈ R
4096 for all i, and let {yi}i∈X be

the coordinates of these feature vectors in an initial, arbitrary 2-dimensional spatialization.

Assume that a human operator moved some images into two dense clusters, and moved a few

other images into a non-clustered region away from those sets. The index set of all moved

images is Y and their coordinates are updated for the vectors in the set {yi}i∈Y . Let C1 ⊆ Y

and C2 ⊆ Y be index sets for the elements of cluster 1 and 2 respectively so that {xi}i∈C1

and {xi}i∈C2 are the collections feature vectors for each cluster. Let C0 ⊆ Y be an index

set that denotes the images that were moved, but not placed in a cluster by DBSCAN, so

that {xi}i∈C0 is the collection of feature vectors associated with these images, and we have

Y = C1 ∪ C2 ∪ C0. Finally, let C(1)0 ⊆ C0 be a subset of those indices corresponding to the

points that are closer in 2-dimensional Euclidean distance to cluster 1 than cluster 2 and

vice versa for C(2)0 . The set of feature vectors associated with these points would then be

{xi}i∈C(1)
0

and {xi}i∈C(2)
0

respectively.

The anchor U1 for cluster 1 is computed as follows. Associate a weight of λi = 1 with

each element of {xi}i∈C1 and a weight of

(78) λi =
1

min{‖yi − yj‖2 for j ∈ C1}

with each element of {xi}i∈C(1)
0
. The anchor U1 is then computed as the weighted flag mean of

this input data using the method described by Draper et al. [12]. The anchor U2 is computed

for cluster 2 in an analogous fashion. Algorithm 21 contains pseudocode for computing the

anchor of one cluster.

Using these subspace anchors, the principal angle between each feature vector in the data

set and each of these anchors are computed. Let N be the number of points in the data set

and let K be the number of clusters that the human operator has formed. Suppose Q is a
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Algorithm 21 Compute an anchor for an INStINCt cluster

1: function InstinctAnchor(X , Ck, C(k)0 , {xi}i∈X , {yi}i∈X )
2: Ensure xi ∈ R

4096 for all i ∈ X . ⊲ Feature vectors of full dataset
3: Ensure yi ∈ R

2 for all i ∈ X ⊲ 2-dimensional coordinates of all images
4: for i ∈ Ck do

5: λi ← 1
6: [xi]← Orthonormal basis for span{xi}
7: for i ∈ C(k)0 do

8: λi ← 1
min{‖yi−yj‖2 for j∈Ck}

9: [xi]← Orthonormal basis for span{xi}
10: D ← {[λixi]}i∈Ck ∪ {[λixi]}i∈C(k)

0
⊲ Set of weighted subspaces to be averaged

11:
{[

u(1)
]
,
[
u(1)|u(2)

]
, . . . ,

[
u(1)| . . . |u(r)

]}
← µpF (D) ⊲ Weighted flag mean of D

return [u1|u2|u3] ⊲ 3-dimensional element of µpF

square, symmetric matrix of dimension (N +K) × (N +K). Populate the elements in the

lower left K × N block of Q, and symmetrically the upper right N × K block of Q, with

the principal angles between the feature vectors and the anchors. The values in the upper

left N × N submatrix are set to a small constant, α1, and the values lower right K × K

submatrix are set to a relatively large constant α2. From this symmetric matrix, we compute

the 1-step diffusion map to get the updated coordinates of the visualization, {ỹi}i∈X . The

pseudocode for a full INStINCt update is shown in Algorithm 22.

The result of setting the pairwise distances of the images, i.e. the upper left block of Q,

to a small constant is that images want to collapse to a single point in the diffusion map

embedding. Only their relative distances to the anchors pull them apart. Similarly, the large

constant value set for the lower right block of Q attempts to push the distinct clusters away

from each other. As we will show in the following Section (and in Figure 5.4), this provides

something like a gradient between the different types of particles in our dataset.
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Algorithm 22 INStINCt Visualization Update

1: function InstinctUpdate(X ,Y , {xi}i∈X , {yi}i∈X , α1, α2)
2: Ensure Y ⊆ X ⊲ Index set of images that were moved by user
3: Ensure xi ∈ R

4096 for all i ∈ X . ⊲ Feature vectors of full dataset
4: Ensure yi ∈ R

2 for all i ∈ X ⊲ 2-dimensional coordinates of all images
5: Ensure α1 << α2

6: {Ci}Ki=0, K ← DBSCAN(Y , {yj}j∈Y ,
√
2
3
, 3) ⊲ Do DBSCAN on moved images

7: for k = 1 . . . K do

8: C(k)0 ← {i|yi is closest to cluster Ck}
9: [Uk]← InstinctAnchor(X , Ck, C(k)0 , {xi}i∈X ,X , {yi}i∈X )

10: N ← |X |
11: A← N ×N matrix with all values equal to α1

12: Diagonal of A← 0
13: B ← K ×K matrix with all values equal to α2

14: Diagonal of B ← 0
15: C ← N ×K matrix of zeros
16: for i = 1 . . . N do

17: for k = 1 . . . K do

18: C(i, k)← d([xi], [Uk]) ⊲ Geodesic distance via Algorithm 6

19: Q←
[
A CT

C B

]
⊲ Construct similarity matrix

20: {ỹi}N+K
i=1 ← DiffusionMap(Q, 1, 1) ⊲ 1-step diffusion map

return {ỹi}Ni=1 ⊲ Updated 2-dimensional coordinates

5.3. Qualitative Results

In our application domain we assume that the human operator has some knowledge about

the data, and they are looking to explore other hypothetical relationships or to organize the

data relative to this known information rather than to all the information available. Thus, we

are only looking to display points based on their relationship to some user selected clusters

of data. Figure 5.2 shows an initial layout of the CDC data using a standard 1-step diffusion

map. From this initial layout, the user manually creates three small clusters of related images

by moving them in the INStINCt framework, as is shown by the circled images in Figure 5.3.

The purpose of the clustering step is to determine which images the user thinks are related.

Once that information is gathered, we create an “anchor” to represent each cluster. The

anchor consists of an average of the feature vector representations of the images in that
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Figure 5.2. Initial diffusion map layout of the CDC data.

Figure 5.3. CDC data with three user created clusters of images.

cluster. The remaining images are arranged according to their distances to those anchors.

The results of the associated update is shown in Figure 5.4.
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Figure 5.4. CDC data with three clusters after the distance-to-anchor dif-
fusion map update.

These initial results using clustering indicate there is a strong correlation between shape

and texture and particle type. However, this data is missing labels and requires an approach

that combines clustering on feature data with input from the user to perform semi-automated

classification on particle types.

5.4. Summary

This chapter presents a new method for user analysis of particle image data produced

by SEM. The work presented in this chapter represents an exploration into an adaptive

data visualization technique through the representation of high dimensional spaces. The

results appear to reflect semantic relationships in a way that is hopefully valuable to human

operators. Users indicate relationships via the positions chosen on the client canvas, which

can be indicative of shape, size, texture. The novel contributions to this dissertation are

mostly contained in Section 5.2.3 and include the method for dimensionality reduction that
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preserves distances between data points and user selected clusters, the practical use of the

flag mean as a stand-in for a cluster of data points, and the use of principal angles between

subspaces as a measure of similarity for a diffusion map embedding.

There are a number of directions for extending this research in future work. First, we have

not compared our representation to any previous methods for visualization. This is because

many of the algorithms for visualization are not publicly available, but more specifically none

of the previous methods would work out of the box in the context described, as they have

largely been implemented for data living in a Euclidean space. Generalizing these methods

for subspace data would allow for a fair comparison of methods. We would also like to

incorporate multiple feature vectors for each particle image. For the case of the data set

at hand, each particle has been imaged exactly once and therefore corresponds to a single

feature vector. However, the method implemented in INStINCt is flexible enough to handle

the span of multiple feature vectors as a representative for a single particle. This situation

could arise if the particles were additionally analyzed as high-resolution secondary electron

images. We also would like to take into account the scale of each particle to incorporate size

to our analysis. Finally, we would like to extend this proof-of-concept to include a database

that would enable more flexibility for saving user input, such as image groupings, labels, and

possible explicit relationships.
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CHAPTER 6

CONCLUSION

6.1. Contributions

This dissertation focused on developing theory and algorithms for pattern recognition and

signal processing on Grassmann manifolds. Specifically we made the following contributions:

• We introduced a parametrization for points on a Schubert variety that allows us to

reformulate a Schubert variety domain restriction as a penalty term.

• The parametrization allowed us to implement a penalty method algorithm based

around a conjugate gradient method for Grassmann manifolds to descend onto the

solution of the Schubert variety constrained averaging problem through a sequence

of infeasible points that converge to a locally optimal solution.

• We introduced subspace constrained averaging as an alternative method for find-

ing domain-restricted averages of Grassmannian data, and proved that the optimal

solution to this problem can be found algebraically.

• We demonstrated the similarity and difference between the Schubert variety con-

strained average and the subspace constrained average using a novel decomposition

of affine patches of the tangent space at a point.

• We described a novel algorithm for detecting targets of interest in long-wave in-

frared hyperspectral images, and provided evidence that it outperforms competing

detection algorithms when the signal-to-noise-plus-interference ratio of the data is

very low.

• We identified a method for generating useful synthetic data for evaluating hyper-

spectral target detection methods.
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• We modified the popular diffusion map embedding to create an updatable visual-

ization for inferring relationships between image data.

• We provided simple and thorough algorithms for implementing all of the techniques

described in this dissertation.

6.2. Future Work

There are a number of directions that this work can be advanced in the future. With

respect to Chapter 3, we would first like to extend the theory relating to the Schubert

variety constrained averaging problem. Even when the subspace constrained average is not

the optimum of Schubert variety constrained problem, there is evidence that the optimum is

nearby. What does the solution look like in a general case? Can we describe how close the

initial guess must be for the penalty method and conjugate gradient algorithm to descend on

an actual local optimum? Can we use the tangent space decomposition of affine patches to

create a more robust descent algorithm for generic examples? Along with these theoretical

questions, we would also like to implement this constrained averaging in the applications

described in Section 3.1.

For the hyperspectral image analysis done in Chapter 4, the algorithm described for

identifying targets relies on multiple images of the same scene and pixelwise correspondence

across the images. This requirement is sometimes easily satisfied, but in other circumstances

nearly impossible to meet. An algorithm was developed for this dissertation as a snapshot

method for doing target detection with the flag mean that only requires a single image of

the scene. The algorithm attempts to better approximate the observed spectrum in the

image by reconstructing the the library spectrum for the target from a small number of

in-scene endmembers using sparse canonical correlation analysis. The algorithm was not
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presented in this dissertation because some real issues of practicality remained unresolved.

The algorithms tries to approximate a the laboratory radiance spectrum using the real-life

absorption spectrum in an image. It isn’t clear that this approximation should exist as a

sparse linear combination of spectra from the scene if the absorption spectrum is saturated.

Despite initially promising results, the final prognostication was that the space spanned by

these endmembers was typically too large to be useful. It would often include the target

spectrum, but would introduce a large number of false positives from other spectra that were

close to the identified subspace. Improving this snapshot method or finding a new solution

to the single image problem would prove very valuable in practical detection scenarios.

The work in Chapter 5 is largely self-contained, and the code for the active canvas that

displays the images at the coordinates computed by the distance-to-anchors diffusion map

is not freely available. Thus further work in that direction would require the recreation of

some existing material. For those involved with the INStINCt project however, the frame-

work developed leaves ample room for advancement. The distance-to-anchors diffusion map

embedding was computing using geodesic distances and flag means, although the data exam-

ined is only represented by 1-dimensional subspaces. Fattening those representations with

additional images or different measurements of the same particles would significantly im-

prove the utility of the adaptive visualization because there would be more features for the

averages to identify similarity within. This functionality is already coded, and just requires

appropriate data to exploit it.

The theory and applications developed in this dissertation broaden the toolset for per-

forming pattern recognition and signal processing on Grassmann manifolds. We view this

work as a starting point for further exploration into Schubert varieties as an alternative

means of including variability in a model rather than identifying invariant features. The
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techniques described in this dissertation are applicable to a wide range of big data problems

given that the flag and Grassmannian representations encode large volumes of data as a

single point. This method of including variability tends to produce more robust algorithms,

and we are thus better able to leverage the geometric relationships contained in the original

data.

The Matlab code implementing the experiments and algorithms described in this disser-

tation (with the exception of some portions of Chapter 5) will be made publicly available at

www.tmarrinan.com for transparency and reproducibility.
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