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ABSTRACT

The dry weight rank method was applied to data from eight grassland
and shrub communities. These varied from the complex, rapidly changing
early stages of old field succession in Tennessee to the simple, climax
vegetation of the salt desert shrub community of western Colorado. Through
computer analysis of these data sets, the variation in the results due
te plot size, observer variability, and analysis options was determined.
It was found that there was no statistically significant difference in
predictions due to plot size or observer variability. Effect of using
each of the analysis options is presented. The field and analytical study
results indicate that dry weight rank is a suitable method of determining
the botanical composition of the variety of communities to which it was
applied. Suggestions are given for field use of the method. Subsequent
studies were made with the ranking of species in sets of simulated plot data
with known distributional characteristics. These studies suggested it
was questionable if dry weight rank estimates converged and if the rise
of the technique actually reduced variance estimates as'compared to
clipping alone. Our overall conclusion after widespread field usage,
data analysis, and simulation studies was that the dry weight rank method,

as we applied it, was inadvisable for further widespread use in our studies.



1.0 INTRODUCTION

Native plant species seldom grow in pure stands over appreciable
land areas and these species vary with regard to their palatability,
digestibility, toxicity, and nutrient value to grazing animals. Deter-
mination of plant composition and yield is not only justifiable, but
also economically imperative in ecological and agricultural researches.
A knowledge of plant composition, yield, and how these may be maintained
or altered, is necessary for proper grassland management.

Early in the US/IBP Grassland Biome study numerous methodological
investigations were undertaken on techniques to be utilized in the field,
the laboratory, or in both typeés of studies in the program. These
studies were reported to scientists within the program, and sometimes
the methods were adapted for utilization throughout the Biome. In some
instances, particularly with the present case, although the method was

adapted it was later replaced by other techniques.

1.1 Available Botanical Analysis Methods
Some of the more common methods of determining botanical composition
and yield are weight estimate, hand separation, constituent differential,

and dry weight rank. These vary in accuracy, precision, and time requirements.

1.1.1 Hand separation

Hand separation is the most accurate, and for this reason it is used
as the "standard" to which the other methods are compared. The method
involves clipping all plots by plant species, oven-drying the samples,
and determining from the dry weight the part of the total yield which is
contributed by each species. Hand separation is accurate for determining

the plant composition of each plot that is sampled, but many plots are



required to obtain a reasonably good prediction of the species proportions
of a large area. In most plant communities, the number of plots required
is large with the result that the hand separation method is monetarily

costly and time consuming.

1.1.2 Procedures involving double sampling

The three remaining methods utilize a double-sampling procedure
in which a fast but less accurate method is combined with a slower but
more accurate procedure (National Academy of Sciences--National Research
Council 1962),

The constituent differential method of estimating species composition
consists of measuring the constituent concentration of a large sample from
each plot and the species components from small samples taken at random
from plots treated alike (Cooper et al. 1957). Species composition of
the large sample is then computed using appropriate formulae., Oven-dry
matter, calcium, or c¢crude protein can be used as the constituents. When
dry matter is used, not only must the samples be handled rapidly to
aveid moisture loss, but also time of day, precipitation, and humidity
may introduce error.

In the weight estimate method, observers undergo intensive training
before sampling an area and weight of each plant species to the nearest
10 g is estimated on a plet basis {Pechanec and Pickford 1937). A variation
of this method requires the assigning of percentages of the total weight
to each species. Between 10% and 20% of all plots are both weight-estimated
{(grams or percentage) and hand-separated. A regression is run to derive
an equation that will adjust for any error that might exist. This method
requires much initial training and also continued training to maintain a

reasonable degree of accuracy.



The dry weight rank method should not be confused with ranked-set
sampling (McIntyre 1952), Although similarly named, the two do not
determine the same values. Ranked-set sampling is a method of stratifica-
tion of a population into subpopulations for increased sampling efficiency.
Dry weight rank was developed and subsequently improved upon by Mannetje
and Haydock (1963).

Field use of the dry weight rank method is simple. Observers need
only to distinguish relative, not absolute, amounts of vegetation by
species. A rank of 1 is assigned to the species which in the observer's
opinion contributes the most to the total dry weight of the plot. The
species which contributes the next highest amount to the £otal plot
welght receives a rank of 2. This pattern of ranking continues until
the plant species which contributes the least amount to the total weight
receives a rank which is equal in magnitude to the total number of
species on the plot. Some plots are both ranked and hand-separated in
order to determine the relationship between ranking and actual weight
proportions. The field and lab procedures and mathematical foundations
are explained more fully later.

Dry weight rank can only determine the percent or proportion of the
total vegetation dry weight that iIs contributed by each specles. Some
independent determination of the total herbage must be used with dry
weight rank in order to get the weight yield by plant species.

Ranking, if it gives comparable results, is more advantageous to
use than (i) hand separation because it is faster, (ii) constituent
differential because it requires less laboratory work, or (iii) weight
estimate because it requires less training and subjectivity. Once adequate
multipliers have been derived, dry weight rank is nondestructive and with

certain types of studies this is desirable.



1.1.3 Previous use of the dry weight rank method

Mannetje and Haydock (1963) found significant differences between
exact-rank dry weight rank and hand separation for 3 of the 12 botanical
components. The most serious of these was the underestimation by 4% of a
component which comprised 69% of the total dry weight by hand separation
and 65% by dry weight rank. No differences between mean values for four
quadrat sizes from 1 up to 25 dm2 were detected for any pasture component.
From their data, the minimum number of quadrats required could not be
determined, but Mannetje and Haydock felt that good results could be obtained
by taking 50 to 100 quadrat estimates per acre. They were able to find
affirmative answers to their questions about dry weight with the result
that they were optimistic about future use of this method. It is now
used widely in Australia (L. T. Mannetje, personal communication with
G. M. Van Dyne).

Zorich (1966) evaluated the previously mentioned four methods
of determining species composition on two perennial grass pastures in
Oregon. On fescue pastures each of the methods proved to be equally good
at estimating the botanical composition. Each of the four methods did
not prove to be equally good when tested on the ryegrass pastures. Dry
weight rank was especially poor in that it generally underestimated the
ryegrass percentages. But Zorich used rank multipliers derived and reported
by Mannetje and Haydock (1963). Zorich found the constifuent differential
method to be the most promising.

Cpstrup (1968) made use of dry weight rank in determining the species
composition of Festuea and Andropogon communities in Tennessee. The

estimated values for each replicate were based on a combination of 20



clipped plots and 50 "ranked oniy" plots. The actual values were based
on the 20 clipped plots. Opstrup concluded that estimates of species
composition can be improved appreciably by using the dry weight rank
method as an adjunct to clipping plots.

These studies suggest considereable gain in efficiency can be made
using the dry weight rank method, but leave many questions unanswered

regarding the adaptability, reiiability, and precision of the method.

1.2 Rationale for Evaluation of a Statistical Estimator

Determination of fractional vegetation biomass in different plant
species occurring on a geographical area can be regarded as a problem in
determination of the best "statistical estimator" for a set of variables
which are in general unobservable. The unobservable variables represent
the means of the populations of vegetation biomass densities for plant
species occurring on the area. Various observations can be made on the
area and the observations can be interpreted as estimates of the unob-
servable wvariables.

We will regard one such observation (made by clipping the vegetation
on a unit area and separating the material into species categories and
weighing each category) as a "standard" method based upon sampling of a
population which is for practical purposes infinite in extent. There
will be variations in this estimator because of inherent variation of the
population in space, and also components of variation because of the phys-
ical procedures involved in determining the weights. All of these' sources
will sum up to a certain total variability in the procedure. The statistical

characteristics of the resulting species' weight estimates can be calculated



by taking several samples and deriving a mean vector and a covariance
matrix for the estimates according to the standard statistical formulae.
Another method of estimating this vector of biomass fractions is
the dry weight rank technique described in section 1.1.3. This technique
has the disadvantage that the intitial numerical values obtained from
each unit area or plot observed (ranks of each species) cannot be regarded
as direct estimates of the biomass composition. Instead it is necessary
to observe a number of plots and then go through a numerical technique
invelving the clipping of some of the plots to derive a vector which can
be regarded as an estimate of the true population values. Thus it is
not pbssible (except by subsampling) to utilize the dry weight rank
technique to get an estimate of the covariance matrix; only an estimate
of the mean vector can be determined. In dry weight rank technique the
cost or personnel time requirement for sampling a plot is a small fraction
of that for the clipping estimate; dry weight rank has an economic
advantage over the clipping method if the characteristics of the estimate

produced are acceptable.

1.2.1 The problem of bias

In the statistical sense an estimator for the characteristics of
a population having some known or unknown statistical distribution function
should have certain characteristics in order for it to be useful. One of
these characteristics is unbiasedness. Intuitively unbiasedness means
that if the estimator is repeated many times in statistically independent
trials, the mean of the several estimators should approach the true
population parameter as the number of trials increases. Mathematically,
the expected value of an estimator should be equal to the population

parameters being estimated. Ancther characteristic which a "good"



estimator should have is that of minimum variance over a certain class

of possible estimators. Generally the minimization is performed with
respect to various mathematical methods of making an estimation; however,
here we are concerned with the variance also caused by the physical pro-
cedures involved in making the estimate. In particular, we are concerned

with minimizing variance over only two possible estimation procedures.

1.2.2 Simulated plot data

The difficulty in evaluating unbiasedness or the relative variance
of an estimation procedure is that the characteristics of the true
population being sampled are rarely if ever known. This is certainly
true in the case of estimating biomass fractions. In addition, there
is a difficulty involved in the cost of producing estimates. It is an
expensive procedure to go into the field and clip vegetation, and it is
also expensive, though less so, to rank vegetation in the field. Fop
these reasons we have decided to use a computational technique to produce
possible estimates of biomass fractions based upon the two methods described
above and based upon some assumptions about the statistical properties of
the field samples. We shall assumé that the amounts of biomass in the
various species' categories, as measured by the clipping technique, are
distributed according to a multivqriate normal distribution function.
Making this assumption, we can use a numerical procedure to generate
data which are statistically indistinguishable from field data if the
assumption is valid. Thus we have a relatively inexpensive method of
producing great numbers of estimates based upon the clipping technique.
By applying the dry weight rank procedure to groups of these artificial

data, we also have a great number of corresponding estimates based on



this alternate technique. By repeatedly evaluating biomass fraction
estimates based on the two techniques, we can examine the statistical
properties of both estimators. The estimate based on clipping is a
simple average of the normally distributed numbers produced, and its
statistical properties are well known. Thus we use it as a basis with
which to compare the hypothetical dry weight rank technique. Certain
errors involved in the assumption of normal distribution for biomass

estimates are discussed later in this paper,

2.0 OBJECTIVES

There are three primary objectives of the present research of field
studies of dry weight rank method: (i) How well does the method predict
percentage composition by species for an array of grassland communities?
(ii) what observer variability is there? (iii) how are predictions
affected by the various analysis options? Incidental to the primary
objectives some of the data were used to determine: (iv) the effect of
plot size on percentage compesition prediction and (v) the prediction
difference between field and laboratory ranking. This paper also reports
on subsequent investigation into the efficacy of the dry weight rank
technique by utilizing computer simulation techniques based on traditional
statistical concepts of the "goodness" of a statistical estimator.
Specific objectives were (i) to make a decision on the use of dry weight
rank method as a biomass estimator technique in the Grassland Biome
program of the International Biological Program and (ii) to investigate

in general the properties of the dry weight rank technique.
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3.0 METHODS
3.1 Field Sites and Methods

We applied the dry weight rank method to several pasture and range
communities that varied from the early stages of old field succession in
eastern Tennessee to the climax vegetation of the salt desert shrub
community of western Colorado. Pertinent information about all sampled
areas is given in Table 1. Species lists, including standing crop in
pounds per acre for each species, for communities are given in Appendix
A.

The range of tests of dry weight rank to which any one data set
could be, and was subjected to, varied. Sets from Montana and South
Dakota were collected for purposes other than dry weight rank. These
two sets could be used only to test the prediction ability of perfect,
known error, and randomly assigned ranks by assigning these ranks to the
existing weight data. Tennessee data have been used to test the difference
between using nonlinear programming and Lagrangian multiplier, least
squares fitting of rank multipliers and the effect of lab vs, field
ranking. Sandhills grass community data from Akron, Colorado, were used
for only a few analyses because of the small numbers of ranks and species
which precluded this data from being considered as representative. The
remaining four Coloradeo data sets were utilized in most of the experi-
mentation of analysis because they had many species and ranks, and data
were replicated for one community.

Field procedures included randomly locating plots in experimental
areas, ranking species by one or more observers, and clipping current

annual growth. Details are reported by Hughes (1969).
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3.2 Least Squares, Lagrangian Multiplier Method

Dry weight rank has two sets of knowns: (i) the observed dry
weight proportion of each plant species and (ii) the proportion of times
that each species was assigned each rank. The observed dry weight pro-
portion of each species is that fraction of the total dry weight of
clipped vegetation of a set of plots which is attributable to each
species. The weight fractions for all species will sum to 1.

For greater clarity, the proportion of times that a species receives
a particular rank will be explained by an example. Let the species be
blue grama and the rank be 1. Simply divide the number of plots on
which blue grama receives a rank of 1 by the total number of plots
taken. If blue grama receives rank 1 on 25 of 100 plots, then the
proportion of times that blue grama receives first rank is 0.25. For a
rank that occurs on all plots, the sum of the proportions for that rank
will be 1. For example, rank 1 will occur on all plots because all the
plots have at least some vegetation, if only a small quantity of one
species., However, the sum of the rank proportions will prebably not be
1 for some of the higher ranks. Possibly only one plot in a set of 100
would have as many as 10 ranks. The species receiving the rank of 10
would have a rank proportion for rank 10 of 0.0i. This would also be
the suﬁ of the rank proportions for rank 10 because this value for each
of all the other species is 0. Note that individual plot identity is
lost and replaced by plot set identity with reduction of ranks and
weights to rank and weight proportions.

This method has one set of unknowns-_the muitipliers by which the
rank proportions for a species ¢an be multiplied to obtain an accurate

prediction of dry weight proportion for that species. Mannetje and
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Haydock (1963) give the following mathematical equation showing the

relationship between the knowns and the unknowns:

K1%15 * RoXaiy * KgXg5q = Py

Only ranks 1, 2, and 3 are considered in their equation--more ranks
are possible--the only requirement is that there be as many or more
species than ranks (i > 3).

Rank multipliers, the unknowns, are the k's. The proportion of

th

times that i received a rank of 1 in the j set of plots is denoted by

Xiij' The rank proportions for this species for ranks 2 and 3 are,

respectively, inj and xaij' The proportion of the total dry weight of

plot set j contributed by species i is given as pij' In solving for the

values of kl’ k kn’ the constraint is made that these multipliers

gy tes
must sum to 1 or 100 (depending upon whether the rank proportions are
given in terms of decimal proportions or percentage proportions).
With a least squares fit, the multipliers are obtained so as to
minimize the weight proportions sum of squares deviation,
I(Observed weight proportions - Predicted weight proportions)Q.

The field data are converted into a matrix R and a vector W. The
R matrix contains the proportions of times that the ith species receives
the jth rank, and the W vector is the proportion of the total dry weight
that is attributed to the ith species. The subscript i varies from i =
1, 2, ..., n where n is the total number of species that occurs on a set
of plots and j takes on values between j = 1, 2, ..., m where m is the
maximum number of ranks (species or species groups) that occurs on any
one plot in a particular set of plots., The R matrix and the W vector
are the numerical representations‘of the two known sets of values for

the dry weight rank method. Using matrix algebra techniques, this

matrix and vector will be manipulated to obtain a least squares estimate
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of the rank multipliers. The transpose of R is obtained and will be
symbolized by RT. The dimensions of RT are m by n. A new matrix and

. vector will be formed: (i) C is an m by n matrix, which is the product
of the premultiplication of R by RT, and (ii) D is an m x 1 vector, the
product of RT and W. The constraint that the set of multipliers must
sum to 1 is now applied,

This is accomplished by adding an equation of constraint which, in
this case, is a row of 1's adjoined at the bottom of &, However, this
additional row of values for C has made the system of equations unsolvable.
The system is made solvable by use of Lagrange's method (Taylor 1955)
which requires the adjoining of a column of 1's to the right side of the
original matrix. The coefficient, in the final solution, for this
additional column of 1's is known as the Lagrange Multiplier. Other
than to make the set of constrained equations solvable, its exact
meaning or usefulness in this particular problem is unknown. The new
element created by adjoining the row and column of 1's, Chtimt® is

given a value of 0. The constraint is also applied to D, the weight

vector, by creating a new element d whose value is 1. The vector of

mt+l1

multipliers, E, is obtained by pre-multiplying B constrained by the

inverse of C constrained., In equation form, the solution is described:

E

(RT-R cons.tr*ained)-1 « (RT+W constrained)

c 1 constrained « D constrained

Appendix B gives a sequential listing of the matrices obtained in
the solution of rank multipliers for the simple five-species, five-rank
eastern Coloradé sandhills grass community.

Multipliers are first used to predict weight proportions for the
data set from which they were derived. These predicted weight proportions

by species are compared to the actual weight proportions by use of a

1



14—

statistic which would be the Square of the correlation coefficient

(R) if there were no constraints. 1In the case at hand, R2 (coefficient
of determination) is a biased estimate of the variance of the predicted
welght proportion which can be attributed to its linear regression on

the actual weight proportions:

- zwi . zwi 2
2 E(Wi ’ Wi) T TN
R® = s -
~ 5 (zwi) 5 (zwi)‘
z(wi) - . z(wi) - 3

where Wi = predicted weight proportion of the ith species, Wi = actual
weight proportion of the ith species, and N = the number of species.

A more valid test of the multipliers was made when they were used to
predict weight proportions of an independent set of data. Independent data
sets were collected from the same area and vegetation type from which the
multipliers were derived. A coefficient of determination (R2) was calculated
by the previously mentioned eguation.

The "goodness'" of the R2 must be tested in a manper different from the
common practice because of a small number of degrees of freedom. Through
analysis of several data sets, a trend has become noticeablea. If an
R2 of 0.95 or greater is obtained from the dependent data set, an R? of
0.85 or greater can be expected when the same multipliers are used on an
independent data set. Such an R2 calculated for the independent test is
"statistically good." For most of our data sets considered, an R2 in the

range of 0.4 to 0.6 is significant at the 1% level.

3.3 Double Sampling and the Optimum Ratio
Dry weight rank utilizes a double sampling procedure. Specifically,

ranking is very fast on a plot basis and clipping is relatively slow, but

N )
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also very accurate, in predicting botanical composition. Unlike
double-sampling for weight estimation, the two methods incorporated

in dry weight rank do not independently estimate the dry weight pro-
portions. Ranking is dependent upon the multipliers that are obtained
from the plots that are both ranked and clipped. The fast method 1is
meaningless without the slow method.

In using a double sampling procedure, time cost should be minimized,
but a reasonable level of accuracy must also be maintained. Calculation
of the optimum ratio followed from Wilm, Costello, and Klipple (1944)
as modified by Van Dyne, Glass, and Opstrup (1968). The optimum ratio
incorporates "accuracy'" in the form of the R2 statistic and also time costs
by considering the time required to perform the fast, fixed, and slow
processes. The fast process involves ranking only, the fixed process is
plot location, and the slow process is plot clipping and sample pro-
cessing. Table 2 gives process time césts for the seveﬁ of the data

sets inciuded in this study. The equation for optimum ratio (OR) is:

2
ORz\/ : Q.CTCECF
1 -R

where OR = number of plots to be ranked only for each plot that is both

ranked and clipped, €S = the total cost of ranking and ¢lipping a plot
and sample processing, CT = time cost of locating a plot, CF = time
cost of only ranking a plot, and R2 = the coefficient of determination

between observed and predicted species dry weight proportions.

3.4 Nonlinear Programming Method
Nonlinear programming was employed to solve for the rank multipliers

using as the objective function:
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Tabie 2. Cost factors given in man-minutes for the slow, fixed,
and fast processes of the dry weight rank method for
seven shrub and grassland communities.

Time cost

Community
Slow Fixed Fast
Shortgrass
mixed prairie, .
S. D. 22 1 2
Shortgrass
mixed prairie,
Mont. 45 1 3
Shortgrass
sandhills,
Colo. : 45 1 3
Shortgrass
mixed prairie,
Colo. 35 1 3
28 1 2
23 1 2
22 1 2
Pinyon-juniper 45 2 3
Sait desert 19 1 1
15 1 1

Oak brush 75 1 2
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n m 5
Qip = L (w, ~ T k.r,.)

i=1 j=1 ]
with the constraints that,

m

I k., =1
j=1 -
k. >0
] —_—

where Qmin = minimum sum of squares of deviations between observed and
predicted species weight proportions, w. = observed weight proportion of
.th . _ e ok .th .
the 1 specles, kj = rank multiplier for the ) rank, Pij = proportion of
. .th . . .th
times that the i~ species received the J rank, n = number of plant
species, and m = number of ranks.
The objective function is formed such that a set of rank multipliers
K, is determined while at the same time the sum of squares of deviations
between observed and predicted dry weight proportions is held at a minimum,
Qmin' These multipliers are subjected to the constraints that each

multiplier is equal to or greater than 0 and that, when added, the

multipliers sum to 1,

3.5 Procedure for Generating Simulated Data

In order to study the variance of the biomass pefcentage estimates
made by the dry weight rank technique, in compérisbn with those made
on a straightforward clipping procedure, the following algorithm was
designed:

(i) CGenerate a set M of m vectors vi (thx1),1i=1, ..., musing
a multivariate normal vector generator as described by Naylor et al.
(1966). Each vector is drawn from a multivariate normal population

having a mean vector p (n x 1) and covariance matrix C (h x h). If
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a component of vy is generated as less than zero, then substitute zero
for that component. Thus we are using a truncated multivariate normal
distribﬁtion. Eaéh component of the vectors v, isg interﬁreted as the biomass
measured on a clipped plot in an area of homogeneous vegetation statistically
described by mean u and covariance matrix C (multivariate normal, truncated).
Normalize the vectors vy by dividing each vector by the sum of its components.
Thus each component of vy is a number between 0.0 and 1.0 and the components
sum to 1. Now v, can be interpreted as a vector giving the fractional
amount of biomass in each of h species. M represents all sampled plots
whether ranked only or clipped and ranked.

(ii) For a subset ¢ C M consisting of n of the m vectors in M,
generate vectors Yis i=1, ..., n in the following manner. Let Yij and
v.. be the jth component of the vectors Y and v respectively. Let

1]

y.. = 1 if v., is the largest component in v., let y.. = 2 if v.. is
1] 1] ER 1] 1]

the second largest component of Vis ete. Thus 0 is a vector of the

ranks of the relative species biomasses in vy with the largest biomass
being given rank 1. The vector y. will be called a rank vector. C
represents those plots which are both clipped and ranked. M - C represents
plots which are ranked only.

(iii) Form a matrix R1 (h x h) whose components are Pij' Let

1 . ' ' . . th .
rij be E—tlmes the number of times the lt component of the vectors in

¢ received the jth rank. R1 is called a rank matrix.

(iv) Calculate the average weight vector based on clipping wy

1 N
(k x 1): m1 = ; -§ \)i.
i=1

(v) Form the augmented rank matrix RI {k+1 % k+1) by adding a

row and a column of ones, with a zero in the last diagonal position,

to Rlz
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2R
1
s [Ry 8 .
Ri = where § =1.
s 0 (hx1) i

Reasons for this augmentation will be discussed below.

.. % k% f
(vi) Find a vector of multipliers e (k+1 X 1) such that R, e = w1

where wz (k+1 x 1) is formed from w, by adding a 1 as the k+1St component

% %* xoq
If Rl is non-singular, then £ = R1 1 w, . There is no guarantee that

wta
"

RI will be non-singular; in fact a certain proportion of the possible R1

matrices are certain to be singular. This point will be discussed later.
(vii) TForm a matrix R2 (n x h) in a manner analogous to the formation

of R1 in (iii); however, R2 is to be based on the vectors in M - ¢ rather

than ¢. Thus R2 is a summary of the ranking information on the ramnked

w

] e
only plots. Also form R analogously to the formation of R; in (v).

il )

3 I & %

(viii) Calculate W, = R2 £ . The oy and W, (formed from wy and wy

X
&

by deleting the last component) are two simulated estimates of the fractional
biomass in an area of homogeneous vegetation. The Wy is based on clipping
n plots; w, is based on clipping and ranking the same n plots, then
ranking m - n more plots and applying the dry weight rank technique.
(ix) Repeat (i) through (vii) for k times, each time using the same
mean vector p, and covariance matrix C, but generating independent sets
M. Each time (i) through (vii) are done, a gimulation has been performed
for a total of k simulations. After ecach simulation, calculate the mean
and variance of each component of wy and W, based on all the simulations
done so far.

The algorithm described above was programmed in FORTRAN for the

CDC 6400 computer and run for various combinations of w, C, m, n, and k.
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4,0 RESULTS
The subjection of every data set to all possible options and facets
of analysis was considered neither practical nor necessary. Only a few
example results are presented herein from the many analyses that were

made.

4.1 Dependent testing

A gross answer to the question "How well does dry weight rank work
on the vegetation types considered?" is given in Tables 3, 4, 5, and 6.
The tables contain results of previously explained dependent testing.
In each table the column of most validity and usefulness here is the
one presenting the coefficient of determination (RQ) obtained when the
data were used in- simple form (unweighted) with the rank matrix columns
not forced to sum to 1. The remaining columns in these tables will be
explained later.

Analysis of variance was computed from R2‘s for the data sets given
in Tables 3, #, 5, and 6 and showed no significant difference at the
5% level between results obtained from the three rankers or between the
four shrub communities of western Colorado. Similarly, there was no
statistically significant difference which can be attributed to the
differences between the two rankers or the four plot sizes used on the
shortgrass prairie of the Pawnee National Grassland in Colorado. There
is no significant difference between field ranking versus laboratory
ranking or between the three rankers for the Tennessee data. There is
a highly significant difference between the 14 field locations in
Tennessee. This is because the field locations varied greatly with respect

to plant complexity. In field locations with a minimum of one or two
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Table 3. Western Colorado shrub. Comparison of three rankers, three shrub
communities, and four analysis options giving the coefficient of
determination (R?) and optimum ratio (OR).

Rank matrix columns Rank matrix columns
Shrub community may not sum to 1 gum to 1
and
ranker Simple data Weighted data  Simple data  Weighted data
R? OR  R? OR RZ OR  R? OR
Pinyon-juniper
A 0.950 13 1.0 8u7 0.948 13 1.0 847
B 0.963 15 1.0 715 Q0,967 16 1.0 707
C 0.983 23 1.0 1163 0.983 23 1.0 1163

8alt desert 2

A 0.975 19 1.0 1273 0.979 21 1.0 1296

B 0.945 13 0.988 28 0,945 13 0.989 29

C 0.916 10 1.0 1410 0.926 11 1.0 1393
Salt desert 3

A 0.866 7 1.0 480 0.861 7 1.0 481

B 0.946 11 1.0 1135 0.974 17 1.0 u79

C 0.930 10 1.0 1274% 0.933 10 1.0 1253
Oak brush

A 0.962 25 1.0 5030 0.962 25 1.0 5022

B 0.913 16 1.0 2304 0.913 16 1.0 2304

C 0.926 18 1.0 5415 (.923 18 1.0 5426
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Table 4. Pawnee National Grassland. Comparison of two rankers, four
plots sizes, and four analysis options giving the coefficient
of determination (R2) and optimum ratio (OR).

Rank matrix columns Rank matrix columns
may not sum to 1 sum to 1
Ranker and
plot size Simple data Weighted data Simple data Weighted data
R? OR R2 OR R2 OR R? OR

Ranker A
50 x 50 cm 0.996 L6 1.0 9684 0.%96 n7 1.0 9695
1 x 2 ft 0.992 35 1.0 103781 0.991 33 1.0 104539
25 x 25 cm 0.951 12 1.0 77 0,946 12 1.0 856
15 x 30 cm 0.973 17 1.0 2965 0,945 11 1.0 2965
Ranker B
50 x 50 cm 0.982 22 1.0 quL6 0.985 24 1.0 3L
1 x 2 ft C.984 24 1.0 58209 0.984 2u 1.0 58297
25 x 25 cm 0.988 25 1.0 19083 0.988 25 1.0 19177
15 x 30 cm 0.967 i5 1.0 4023 0.966 14 1.0 yp23




Table 5. Eastern Colorado sandhills.
true ranks giving four analysis options.

23~

Comparison of three rankers and

Rank matrix columns

Rank matrix columns

may not sum to 1 sum to 1
Ranker and . _
ranks Simple data Weighted data  Simple data Weighted data
R2 OR  R? OR R2 OR R2 OR
Ranker
A 0.983 25 1.0 905 1.0 2732 1.0 2372
B. 0.958 16 0.999 188 1.0 2732 1.0 2372
c 0.914 11 0.999 87 1,0 2732 1.0 19,895,331
True 0.9%4 43 1.0 47 1.0 2732 1.0 2372
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Table 6. Tennessee: Comparison of three rankers, laboratory versus field
ranking and 14 field locations giving the coefficient of deter-
mination (R2) between predicted and observed dry weight proportions.

Field Lab
e Nt Moictes rame Ranker - Ranker
A B C A B C

A 10 22 5 0,903 0.938 0.95¢ 0.947 0.878 0.867
B 10 22 53 0.866 0.963 0.700 0,979 0.965 Q.964
C 11 22 4 0.780 0.808 0,787 0.784 0.766 0,749
D 12 25 4 0.964 0.968 0,938 0.974 0.968 0.940
E 12 26 15 0.879 0O.884 0.8%3 0.918 0.905 0.863
r i6 . 24 L 0.925 0.930 0.926 0.916 0.911 0.881
G 18 23 3 0.978 0.994 0.859 0.978 0.968 0.962
H 21 21 3 n.952 0.972 0.942 0.965 0.821 0.985
I 18 17 3 0,951 0.888 0.927 0,933 0.770 0.932
J 24 23 3 0.980 ©0.971 0.986 0.986 0,976 0.988
K 23 2u 3 0.860 0.941 0.826 0.835 0.948 0.901
L 13 14 3 0.984 1.000 0.999 1.000 1.000 0.999
M 25 17 2 0.979 0,974 0.989 0,995 0.973 0.987

N 25 7 1 0.990 0.940 0,967 0.976 0.935 0.974
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species per plot, the R2‘s ranged in the 0.90's whereas locations with
a minimum of four to six speclies per plot gave RQ'S in the 0.70 to 0.90
range for the dependent test. Plot sets with a minimum of one or two
species are unrealistic and probably should not be considered in the
analyéis. If these were not considered, there would probably be no
difference due to field locations.

These results suggest that dry weight rank is relatively insensitive
to reasonable amounts of ranker and community variability. Plot size
within the range of sizes used has no adverse effect on accuracy. Also,
plots can be clipped and brought to the laboratory for ranking without

loss of prediction accuracy.

4,2 Forcing the Rank Matrix Colummns to Sum to 1

Complexity of communities in the present studies ranged from the
salt desert shrub community with 16 plant species to the pinyon-juniper
with 32 plant species (Table 1). Individual plots within a community
were quite variable with regard to the number of plants to be ranked.
Maximum variability occurred in the oak brush community with plots having
between 3 and 15 rankable plant species. For this reason, all ranks could
not be filled on each plot. Mannetje and Haydock's (1963) recommendation
(but without justification) with regard to the simple community with which
they worked was that "when the three ranks are not all filled in one
or more quadrats, the calculations must be carried cut on number instead
of proportion of quadrats." Their recommendation was not followed,
but two alternative ways of dealing with unfilled ranks were tested.

In a properly filled rank proportion matrix, the columns sum to 1

because every rank occurs on every plot. This matrix, for each of the
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communities now being discussed, never contained a complete sef of columns
that summed to 1. In fact, columns beyond rank 3 seldom sum to 1. Rank
matrix columns were forced to sum to 1 by basing calculations for a
particular rank upon the number of plots that received that rank instead
of the total number of plots in a data set. To determine the effect that
this has on prediction, R2 from data that were forced to have all columns
sum to 1 is compared in Tables 3, 4, 5, and & to the same data that
were not constrained in this manner.

There is no consistent significant difference between the constrained

and non-constrained data with regard to prediction ability.

4.3 Weighting the Data

The effect of many ranks and species, and the resulting unfilled ranks,
on the accuracy of prediction was also tested by ancother means. This was
accomplished by using the weight proportion of each species as a weighting
¢actor. The rank proportions and actual weight percentage for a speciles
were multiplied by the weighting factor. In effect, the data were weighted
in favor of the heavier species. Hopefully, the accuracy of prediction
would be improved by making the important species numerically more important
and the inéignificant species only traces. Comparison of weighted versus
nonweighted (simple) data is given in Tables 3, 4, 5, and B.

The tables indicate that weighting the data significantly increases
the value of R2. A value of 1 is common for this statistic. It should
be noted that the R2 is calculated from the weighted data, before it is
peconverted into usable dry weight percentages. Converted percentages,
actual percentages, and unweighted data percentages along with R2 relating

these are given in Table 7.
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Table 7. Comparison of actual dry weight percentages (Column 1) to

predicted percentages usin

weighted data (Column 3}

parable to Columns 1 and 2.

simple data (Column 2) and

.27 Predictions from weighted
data have been unweighted to put them into form com-

Values are from a dependent

test of dry weight rank from Badger Wash, Ranker A.

Predicted
Species A?;?al (%)
Simple Weighted
Atriplex confertifolia 46,9 38.3 46.9
Chrysothamus viscidiflorus 22.5 26.3 22.4
Gutierreaia sarothrae 9.93 6.90 9.47
Hilaria jamesii 5.16 12.0 13,4
Atriplex nuttallii 4,88 2.34 2.26
Eriogonum sp. 4,01 3.54 4.85
Oryzopsis hymenoides 1.76 6.13 10.1
Salsola kali 1.76 -3.38 -6.27
Unidentified forb 1.49 3.50 2.88

a/

—-R2 between actual and simple = O

R2 between actual and weighted =

. 866

0.828

R2 between actual and weighted (before unweighting)

1.00
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It seems that weighting increases the accuracy of prediction for
the three or four dominant species at the expense of the lighter, rarer
ones, This loss of accuracy on the lighter species probably is not
important for two reasons. At best, prediction of these species may be
far from accurate with any method. If the amount of herbage is the

objective of determination, these light species are unimportant.

4.4 Subset Matrix Alterations

Subset rank matrices were constructed to be the same size as the
one containing all the data from a set. If for a given subset a particular
rank or species never occurred, the column corresponding to the rank or
the row corresponding to the species was made up completely of zeros.
Some subsets contained many such celumns and rows. It was decided to
test effect on R2 of removal of these columns and rows, An example of
the effect of collapsing the rank matrix on the R2 value obtained from
subsets 1s given in Table 8.

Some of the smaller but unaltered subsets gave extremely high R2
values. This is because specles not occurring in the subset had zero
weight and this could be predicted with 100% accuracy. Collapsing the
matrix as shown by the lower Rz's in the right-ﬁand column of Table 8

eliminates this problem.

4,5 Imposition of Known Error and Random Ranking
Two data sets were altered so that known error could be injected
into a correctly ranked data set. Then this newly created, known error
data were analyzed. The correct data are known as 0% ranks and the
error sets are 5%, 10%, and 15% ranks. The 5% ranks will be used as an

example to explain the method of creating known error.
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Table 8. Comparison of pesults given in terms of coefficient of
determination (R?) and opt imum ratio (OR) obtained when

subset rank matrices were collapsed opposed to subset
rank matrices that were not collapsed. Data from Badger

Wash, Ranker C.

et

Collapsed matrix Non-collapsed matrix

No. of plots r2 OR No. of plots R? OR
17 0.661 5 15 0.970 15
18 0.604 y 17 0.946 11
24 0.850 8 18 0.880 7
25 0.939 13 18 0.940 11
27 0.485 3 18 0.936 10
31 0.950 15 20 0.923 10
33 0.947 14 27 - 0.888 8
35 9.899 10 28 0.892 8
37 0.951 15 33 0.839 6

40 0.930 12 40 0.930 10
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Weights of all species on each plot of the 0% ranks data were
compared to each other. If two weights were within 5% of each other in
magnitude, the ranks corresponding to these weights were switched: one-
half of the time. Theoretically, this simulates the ability of a ranker
to correctly rank 50% of the time when a <5% difference occurs in the
weights of twe plant species. The 10% and 15% ranks similarly simulate
the ability of a ranker to correctly rank one-half the time plants which
differ in weight by 10% and 15%.

The R2 values increase with an increase in ranking error (Table 9).
This increase is illogical even though it is not statistically signifi-
cant. A check of the data sets indicates that ranking has actually been
changed little at the extreme 15% error level. Even so, logically the
trend of values should be reversed.

The known error results led to further analysis of a similap type.
Ranks were randomly assigned to species for a set of data. The results
of this random ranking and an independent test of the "random" multipliers
show a reasonably good least-squares fit of the multipliers which can be
obtained through the random ranking, but the multipliers thus obtained
are inadequate.in the independent test (Table 10). The independent test
and examination of predicted and observed weight proportions does
indicate, as expected, that the frequency of occurrence of a species,
i.e., the number of times that it receives all ranks in a data set, is
correlated with its dry weight proportion for that data set. The R2
obtained from the independent test of the random multipliers for the two
data sets is 0.47 in both cases which is significant at the 1% level for
the shortgrass community.

These results suggest that if the rank matrix were properly constructed,
percentage composition could be predicted if frequency data alone were

used.
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Table 9. The effect of known error on ability to predict weight
proportions as measured by coefficient of determination
(R2) and optimum ratio (OR).

Montana South Dakota
Percentage (108 plots) (58 plots)
error
R2 OR R2 OR
0 0.995 48 0.997 L5
S 0.996 53 0.998 60
106 0.996 53 0.998 57

15 0.997 62 0.999 79
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Table 10. Comparison of random ranking to some standard of ranking for
the data set using the coefficient of determinatien (R?) and
the optimum ratio (OR) as comparison statistics.

Deriving data Independent data
Community Ranker
No. of 2 No. of 2
plots R O plots R OR
S5alt desert True 40 0.933 10 Lo 0.7u7 5
Random uQ 0.730 6 40 0.477 3
Montana
shortgrass True 40 0.984 26 68 0.802 6
Random Lo 0.912 11 68 0.474 3
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used. Similarly, dry weight rank deletes correlation between the ranks
assigned and the weights that each represents and replaces it with a
correlation between rank proportions and weight proportions for each
species. By doing this, tﬁe method is insensitive to a few errors on
the part of the ranker. In fact, it has also been observed that the
ranker can be consistently biased and yet the method continues to give
good predictions., For example, plant litter was included as a species
on the plots taken on the shortgrass prairie near Nunn, Colorado. It
accounted for 38% of the total weight for the 50 x 50 cm set of plots
while blue grama amounted to 31%. The rankers consistently but wrongly
ranked blue grama first on 27 of the 30 plots while they similarly
ranked litter second on 23 plots. The ranks should have been reversed
on almost every plot, and yet dry weight rank was able to fit multipliers
to the data so that litter was predicted to be 38% of the total welight.
Granted, this incorrect ranking might not work as well in a community
dominated by more than two or three Plant species. This does indicate,
however, that incorrect ranking is not élways penalized and that when

penalized, it is in varying degrees.

4.6 Solution of Negative Predictions and Predictions
That Do Not Sum to 1

In every data set analyzed, a few negative weight proportions have
been predicted, but intuitively and biologically they are impossible,
These negative values are an artifact of the mathematics involved in the
solution for the rank multipliers. The constraint that the multipliers
sum to 1 has forced some of the multipliers to be negative to off-set
the positive multipliers that sum to greater than 1. These negative

multipliers are generally for the higher ranks (usually rank 4 op larger),
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Forcing the multipliers to sum to 1 has not in like fashion forced the
predicted dry weight proportions to sum to 1. This also is disturbing
even though usually only species of minor importance are thus affected.

The negative predicted weights cannot be allowed to remain negative.
Column 1 of Table 11 gives the observed weight proportions by species;
column 2 is the predicted proportions, including some negative predictions;
column 3 indicates the predicted proportions that were obtained using the
first technique for eliminating negative proportions. The correction
technique is as follows: (i) Column 2 was searched for the most negative
value that it contains which is in this example -0.1581, (ii) this amount
was added to each entry in that column, and (iii) the column thus created
was scaled so that it summed to 1. Column 3 is merely a scaling of column
2 and thus its R2 value of 0.801 with the observed values of column 1
is the same as that between column 1 and column 2. Column 3 shows that
accuracy of predictions for important species has been reduced even
though the R? has been maintained. Negative predictions must be eliminated
in some other way.

Fortunately, negative predictions are usually made for species that
individually make up less than 1% of the total weight. This percentage
is smaller than the resolution of the dry weight rank method. For this
reason, all negative predictions could be in¢reased to zero or an arbitrarily
small positive value. The results of this alteration are given in column
4 of Table 11. The R2 of 0.849 between column 1 and column 4 is a slight
improvement over the R2 of 0.801 between column 2 and column 3. The
predicted weight proportions are acceptable. All species below the
resolution of the method (perhaps 5% of the total weight) could be lumped

into a miscellaneous category. Acceptable weight percentages could be
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Table 11. Comparison of observed species weight percentages
(Column 1) and three se}s of predicted percentages
(Columns 2, 3, and 4).2 column 2 is the set of pre-
dictions obtained with simple data and rank matrix
not forced to sum to 1. Column 3 is a scaling of
Column 2 such that all values ape equal to or greater
than 0 and they sum to 1, Column & is identical to
Column 2 except that all negative values have been
replaced by 0.00. Values are from an independent
test of 50 x 50 cm Pawnee National Grassland plots
using multipliers from 25 x 25 cp plots. The var-
ious predictions are compared to the observed per-
centages using the R2 statistic.
Column
Species
1 2 3 4
1 38.9 59.0 16.7 59.0
2 31.2 18.9 7.74 18.9
3 21,0 19.9 7.98 19.9
4 3.11 2.76 4.15 : 2.76
5 2.29 0,494 3.64 0.49y4
6 1.21 2.77 4.15 2.77
7 0.669 ~4.16 2.60 0.00
8 0.u476 0.580 3.66 0.580
g 0.286 1.78 3.93 1.78
10 0.216 -0.377 3,44 0.00
11 ¢.119 -0.562 3.41 0.00
12 0.108 3.96 4.4l 3.96
13 0,097 1.69 3.91 1.69
14 ¢.092 0.958 3.74 0.958
15 0.059 0.580 3.66 0.580
16 0.043 1.40 3.84 1.40
17 0.038 0.958 3.74 0.958
18 0.027 2.4y 4,07 2.44
19 0,022 -15.8 0.000 ¢.00
20 0.022 1.69 3.91 ' 1.69
21 0.005 1.69 3.91 1.69
22 0,005 -0.562 3.91 0.562
a/ 2 -
— R” between Column 1 and 2 = 0.801
R2 between Column 1 and 3 = 0,801

R2 between Column 1 and 4 = 0.8u49
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summed and subtracted from 100%. The bercentage resulting from this
subtraction would be given to the miscellaneous group. For the example
given here, the latter method is preferable for handling negative pre-

dicted dry weight percentages and predictions that do not sum to 1.

4.7 Nonlinear Programming vs. Least Squares,
Lagrange Multiplier Method
A data set was subjected to analysis by both the method of nonlinear
programming and the method of least squares, Lagrangian multipliers., Rank
ﬁultipliers derived were almost exactly the same and the two R2's obtained
were 0.866 and 0.867. These results indicate that the two analyses give
results that are not significantly different and thus either method would

work equally well.

4.8 Reduciﬁg the Number of Rank Levels

The three western Colorado shrub community data setg for Ranker C
were subjected to analysis to determine the results if only the important
plant species were ranked. Systematically, the number of ranks was
reduced by one rank at a time until only four ranks were left. Two
separate simulations were run. In the first, weights for the omitted
ranks were allowed to remain in the weight vector. This would indicate
that all vegetation on a plot was clipped, but that only important species
were ranked. In the second simulation, weights were omitted at the same
time that corresponding ranks were omitted, thus simulating the case
where only Important species were ranked and clipped.

Reducing ranks also reduced the RZ (Table 12) probably because of at
least two factors. If the full weight vector is maintained, some species

which never receive a rank as high as the cut-off rank level have a predicted
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Table 12. Changes in coefficient of determination (R2) as a result of de-
creasing the number of rank levels used on three shrub communities.
Column 1 in each case is the R? obtajned when ranks were dropped
but the weight vector was maintained. Column 2 is the R2 obtained
by dropping ranks and weights corresponding to these ranks.
Number Pinyon-juniper Desert 2 Desert 3 Oak brush
Pagis_ 1 2 1 2 1 2 1 2
1y 0.926 0.926
13 0.924 (0.925
12 0.983 0.983 0.923 0.923
11 0.983 0.983 0.917 0.917
10 0.983 0.983 0.917 0.917
9 0.983 0.983 0.916 0.917
8 0.968 0.968 0.916 0.916
7 0.965 0.966 0.916 0.916 0.914 0.915
6 0.929 0.956 0.865 0,867 0.930 0.930 0.908 0.909
5 0.927 0.952 0.864 0,864 0.9286 0.926 0.902 0.901

0.915 0.945 0.860 0.858 0.3927 0.927 0.897 0.894
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percentage of zero, and yet the observed weight vector has a positive
value for these species. Thus, the variance between the observed and
predicted percentages increases and the R2 is lowered. A second factor,
which was mentioned by Mannetje and Haydock (1963), is also causing this
reduction in accuracy of prediction. They noted that as the number of
ranks is increased, the sensitivity of the method increases. A small
number of ranks will not do an adequate job of predicting the percentage

composition, especially in plant communities with many species.

4.9 Laboratory vs. Field Ranking

There are several advantages of ranking species after plots have been
clipped and samples brought into the laboratory if accuracy is comparable.
Field time often is more costly than laboratory time if one considers
adverse weather and travel expenses. Field work should be limited to
those activities that can be accomplished only, or less expensively, in
the field. If plots contain tall, thick vegetation, laboratory ranking is
also more likely to reveal minor species that would go undetected in the
field. In addition, more representative subsamples of each plot can be
taken in the laboratory fdr species separations with a corresponding
reduction in time requirements. The laboratory ranking in this test
utilized a 10% aliquot of each field plot taken. There is a 0.99 correlation
between predictions for each of the two ways of ranking and thé observed
dry weight proportions (Fig. 1). The indication is that laboratory and
field ranking are equally good and thus plots should be ranked where it

is the cheapest and most convenient.

4.10 Effects of Dominant and Troublesome Species
Plant litter was considered as a category to be ranked in the

shortgrass prairie on the Pawnee National Grassland, and because it was
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Figure 1.

I 10
Laboratory Predictions

Predicted dry weight percentages by species for laboratory
ranking of 1964 Tennessee data is plotted on the x-axis with
predictions from field ranking of the same plots given on
the y-axis. Predictions too small to round to 0.1% have
been omitted.

100
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always the most important component, it could affect results obtained using
the dry weight rank method. The R2 were calculated between observed and
predicted dry weight proportions for Plot sets with litter and for these
same data sets with the litter category eliminated. In every comparison,
the plot set with litter included has an R2 higher than the same plot

set with litter excluded (Table 13).

Prediction of litter was highly accurate with the result that
inclusion of litter increased the sums of squares due to regression and
consequently the Rz. Litter serves as the example for any plant species
that is clearly dominant and maintains its rank position. Its percentage
of the total composition can be predicted with good accuracy and thus
such species contribute significantly to the regression sum of squares

and to the R2.

%.11 Independent Testing

The usefulness of the dry weight rank method lies in the ability
of a derived set of multipliers to be used on subsequently collected rank
data and accurately predict dry weight proportions. Several data sets
were subjected to a test of the previously derived multipliers. To give
equal basis for comparison, multipliers were fitted to a subset of un-
weighted data in which the columns of the rank matrix were not forced
to sum to 1. These multipliers were then used to obtain predicted weights
for the independent data set, i.é., the plots remaining after the original
subset was taken.

The vegetation types tested in this manner give reasonably good
results with RQ's for the independent data set in the range of 0,768

to 0.982 (Table 14). These R2's are sound and are based upon one dependent
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Table 13. Comparison of results with plant litter included and
with it excluded on the same plots for the Pawnee
National Grassland data using coefficient of deter-
mination (R%) and optimum ration (OR) as comparison

statistics.
. With litter Without litter

Plot size

R OR R2 OR
50 x 50 ¢cm 0.996° 46 0.993 34
1 x 2 ft 0.992 35 0.952 14
25 x 25 cm 0.951 12 0.889 8
15 x 30 cm 0.971 17 0.924 9




T,

Table 14. Test of multipliers from deriving data on independent data
using coefficient of determination (R?) and optimum ratio
(OR) as testing statisties.

Deriving data Independent data

Community

loczzgon giét:f R2 OR g;ét:f R2
Oak brush 15 0.873 13 25 0.870 13
Salt desert 40 0.870 8 40 0.768 6
Pinyon-juniper 23 0.948 13 17 0.862 8
Montana (0%) 40 0.984 26 68 0.802 6
Montana (15%) 27 0.995  us 27 o.m2 1y
Montana (15%) 27 0.995 L8 27 0.968 18
Montana (15%) 27 0.995 48 27 0.943 14
South Dakota 58 0.996 45 51 0.982 20
Pawnee National

Grassiand 30 0.951 12 30 0.801 6
Eastern Colorado 18 0.966 18 18 0.920 12
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and one independent variable. Dry weight rank may need more testing

on independent data sets., The independent data sets used here were small
in size, from the same general plot locations, and collected at the same
time as the data from which the multipliers were derived. Turther testing
should involve independent data collected throughout the year, collected in
other areas having the same vegetation type, and collected over several
years. This, however, is a general problem in applying prediction to

to independent data sets.

4.12 Tests for Bias in Simulation Studiés

In any computer simulation procedure it is essential to determine
that the computer program (and the algorithm itself)} are behaving correctly
according to the desired characteristics of the simulation. This is
especially important in this case because of the truncated normal dis-
tribution function utilized in the simulation.

Though the assumption of normal distribution in field data of the
type being simulated is frequently made, this distribution can only
approximate the actual distribution of data of this type. This is because
any variable distributed normally will have a finite probability of having
a negative value which is impossible for biomass estimates. The large
variances usually experienced in field situations make this a practical
as well as theoretical problem. Thus it was necessary to truncate the
distribution function by assuming that the biomass value generated was
zero whenever the normal distribution number generator gave a value less
than zero. This assumption is not as far from reality as it might seem
for there are fréquent cases in field data where one or more of a set
of species will not be found in each of the plots measured. A more

logical procedure would have been to statistically evaluate the precise



Ly

distribution function of a measured set of data and determine the approximate
percentage of zero biomasses for each of the given groups of species
and generate the simulation data accordingly. However this would have
involved more time and money than was available at the outset of this
study.

The unbiasedness of the dry weight rank and clipping estimates has
been evaluated by generating data sets according to a specific set of
distribution parameters. The approach of the estimates to the true popu-
lation parameters (the set) was tested by developing a graph of parameter
values as a function of number of simulations. When the estimates were
examined on a fine scale there was some question as to whether or not
the dry weight rank estimate was converging exactly. However, any bias
in the estimate is small compared to the errors usually inherent in plant
biomass estimations. We have assumed that the dry weight rank procedure
is unbiased for practical purposes. We assumed a covariance matrix
with zero non-diaszonal entries because of computational difficulties associ-
ated with the determination of parameters for the truncated distribution.
For a data set generated with non-zero covariances, the parameter deter-

mination would have involved further investment in computer time,

4.13 Reduction in Variance with the Dry Weight Rank Method
For subsequent analysis a mean vector and covariance matrix calculated
from actual field data was utilized for input to the simulation program,
This is given in Table 15 and is taken from data reported by Hughes
(1969). This data involves six species of plants. The variances for some
of the species were quite high so there was considerable truncation involved
in the simulation. The cost of a simulation run for a reasonable number

of simulations turned out to be quite high as a result of the fact that



Table 15,

normal random vectors.

mg/ha.
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Statistical parameters used in generating truncated multivariate

Taken from Hughes (1969). Biomass is in

Mean Vector

339.698u6

Variance-covariance matrizx

9243,966
-878,342
-2622.284
74,051
-37.863
333.115
Correlation
1.00000
-0.21003
-0.57686
0.03941
~0.06631

0.1274Q

27.75077

-878.342
1892.016
-354.069
=27.072
139.458
-84.,300
matrix
-0.21003
1.00000
-0.17217
-0,03185
0.53983

-0.07126

23.34308

-2622, 284

-354.069

2235.391

-128.037

-43.181

-102.324

-0.57686

~0.17217

1.00000

-0.13858

-0.15378

-0.07958

10.63231

74.051

-27.072

~128.037

381.849

-27.078

267.836

0.03941

-0.03185

-0.13858

1.00000

~-0,23331

(0.50398

6.40154

~37.863
139.458
-43.181
-27.078

35.274

-24.,362

-0.06631
0.53983
-0.15378
-0.23331
1.000G0

-0.15083

11.32615

333.115
-84,300
-102.324
267.836
-24.362

739.632

0.12740
-0.071286
-0.07958

0.50398
-0.15083

1.00000
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a 6 x 6 matrix had to be inverted for each simulation. It was also for
this reason that data with more than six species were not chosen for this
simulation. Three hundred simulations (k = 300) were chosen as a COMpro~
mise between too many simulations with resulting high computer costs

and too few simulations with inadequate degrees of freedom for statistical
testing of resulting variances.

Table 16 shows results of simulation runs presented as ratios of the
variances (variance of dry weight rank estimate/variance of clipping
estimate) of estimates resulting from 300 simulations. The table shows
the results for two of the six species; results for the other four species
were not qualitatively different. However, we will discuss only the first,
which is the most abundant, since the other tables depict essentially the
same results. As described earlier the objective of the dry weight rank
technique is to achieve an estimation of biomass fractions having a lower
variance than the estimates based on clipping techniques for equivalent
amounts of work put into the two techniques. For purposes of the data
presented in Table 16 we have assumed that there is a ratio of 10:1 in the
cost of ranking a field plot over that of clipping it. This ratio may
be in error; however, we will show later that the cost ratio does not
affect our conclusions.

A ratio of variances calculated in the manner described can be tested
by comparison with percentile points of Fisher's F distribution with 300
df for each parameter. Consider a null hypothesis that the variances due
to the two techniques for equal amounts of work done are equal. Consider
two alternate hypotheses, one that there is a significant reduction
in the variance because of the dry weight rank technique, and the second

that the clipping-only technique gives a significantly lower variance
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Table 16. Variance ratios of dry weight rank and clipping estimates
predicted for two of the six species with various combina-
tions of clipping and ranking. Variances were computed
from 300 independent trials and are based on equal costs
expended in both ranking and clipping with a 10:1 cost
ratio. Costs are shown in inset in terms of equivalent
number of plots clipped.

No. of
] clipped No. of ranked only
Species and
50 100 150 250
ranked
Sp. 1 5 2.11 2,40 4,34 5.51 @
Sp. 3 5.41 3.m 7.21 0.922
Sp. 1 10 1.17 1.97 @ 2,62 -
Sp. 3 4,65 7.40 3.78 -—
Sp. 1 15 1.59 @ 1.90 @ 1.73 -

Sp. 3 11.20 5.03 17.09 -
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of the estimates. The 90th percentile point of the F distribution with
120 df for both parameters is about 1.18. On comparison with the data

of Table 16 we must reject the null hypothesis that the two methods give
equal variance, reject the first alternate hypothesis that dry weight
rank is an improved technique, and aécept the second alternate hypothesis
that clipping will give an improved estimate, over dry weight rank, of the

biomass fractions for a given amount of time in sampling.

4,14 Cost Considerations

This conclusion is based upon the assumption of a 10:1 ratio in the
cost of ranking ovér the cost of clipping. Variance ratios for the other
five species support the conclusicn more strongly than the first species.
The indication is sufficiently strong that there can be little doubt
that a correct rejection of the null hypothesis has been made.

If the cost ratio iy different from 10:1 for the two techniques, the
previocus conclusion may not be valid. Suppose the cost of ranking a plot
is less than one-tenth that of clipping the plot. If the ratic is
sufficiently large that it may be considered infinite, then the cost of
getting a dry weight rank estimate is the same as the cost of clipping the
plots on which the dry weight rank multipliers are based, i.e., ranking
requires no additional expenditure. The question is: "Does ranking plots
give any improvement in the biomass estimates over the estimate based
on the clippped plots alone?" Table 17 is structured similarly to Table
16 in that it shows ratios of the variances of the estimates by the two
techniques. However, in Table 17 the variances for the clipping procedure
are calculated from estimates based on the clipped plots required to do
the ranking. Basically a similar result can be seen as in Table 16:

Though it costs no more to do the ranking, the biomass estimators are




Table 17. Variance ratios of dry weight rank and clipping estimates
predicted for two of the six species with various combina-
tions of clipping and ranking. Variances were computed
from 300 independent trials and are based on infinite cost
ratios.

No: of No. of ranked only
. clipped
Species d
an 50 100 150 250
ranked
Sp. 1 s 1.16 1.10 0.949 1.03
Sp. 3 2.78 1.33 1.85 0.992
. . 0.9 . —

Sp. 1 10 1.03 41 1.10

Sp. 3 4,65 7.40 3.78 -

Sp. 1 15 1.10 1.05 1.02 -

Sp. 3 9.15 3.02 9.11 -
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not improved as.a result. The variance ratio is not always significant

in this table at the 90% level. In one case (5:150 clip: rank ratio)

a variance ratio is less than one. Notice that the ratio is not so low

as to be significant in the opposite direction (F = 1.0/1.18 = 0.85) and

supports the first alternate hypothesis (dry weight rank better than

clipping). On the basis of the other variance ratios, this can be regarded

as a chance occurrence caused by random fluctuations in the test statistic.
The data of Table 17 suggest the hypothesis that the variance of

the dry weight rank estimates approaches the clipping estimate asymptotically

from above as the number of ranked plots increases. Fig, 2 gives a plot

of the standard deviations of biomass estimates as a function of the number

of clipped plots and shows this trend more clearly. Thus dry weight rank,

if this hypothesis is correct, only adds noise to the clipping estimates.

Since the clipping estimate is based on a sufficient statistic for the

population mean, the implication is that ranking of plots carries no new

information about the mean (see Mood and Graybill (1963) for a definition

of sufficient statistic). This hypothesis might be difficult to test by

the simulation techniques used herein; it would certainly be expensive in

terms of computer time. Analytical studies might be more appropriate.

5.0 CONCLUSIONS
Dry weight rank is reportedly a fast, accurate, nondestructive,
botanical mensuration tedhnique. Several questions must be considered

in its use, however.

5.1 TField Application

As the Pawnee results indicate, plot size is not critical, hut

plots should be large enough to insure inclusion of several plant species.



‘g *ds *q ¢7 *ds p $0Ti®d 380D T:QT uo paseq s31soD Tenba aog
Atuo BurddrTo pue AquBL 1yBrem Adp uo peseq SelewTls

paddi|) sjoid jo sequnp

g
:

og_

@ UOT1DBJIJ SSBWOTG JO SUOTIBTASP PJEpURLS  *Z suan8Tg
Oc Q ol
g8 g
8 m —40¢
2 +ov
o
—0¢
buidd}jo o v
8
oSz . 409
yup4
wybjem! OSI O
Kip | 001 v
oc m 04

OOO! X UOIIDIABQ PIDPUDIS



-52_

All plots will‘be ranked and clipped in a preliminary study because
several parameters must be accurately determined. Between 50 and 100
plots will be required, depending upon the complexity of the community.
The previously explained fime data must be recorded.

One value of dry weight rank method is that the samples may be
clipped in the field to be sorted later in the lab when time permits.
This increases the épeed of field work if the trained personnel are
utilized in the field for ranking plots only and untrained personnel
for clipping plots which have previously been ranked. Thus, one man
ranking might be able to rank 20 to 50 times as many plots as one man
clipping. He would need only to rank unclipped plots, for these studies
have shown no significant difference in ranking in the field and in the
lab.

To determine if dry weight rank gives the desired results for the
allowable expenditure of time or money one could use one-half of the data

for an analysis to determine multipliers.

5.2 Analysis Options

It seems that the best combination of analysis options will vary
with the objective one has in mind and with the data set in question.
The analysis options and expected consequences of using eagh are éiven
in Table 18,

The R2 value obtained using one-half of the data from a preliminary
sample gives an indication of how well the multipliers fit the data from
which they were derived. This R? should be above 0.85. The multipliers
must now be tested on the independent data, i.e., the remaining one-half

of the initial data set. According to Kozak (1966), the minimum conceivable
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R2 for any data set at this second stage of testing is 0.4. One other
important parameter, the optimum ratio, should be calculated to give an
estimate of the number of plots which can be ranked for each plot that is
both ranked and clipped.

The total number of plots that must be taken to give an acceptable
accuracy must also be determined according to usual procedures,

In using the dry weight rank method, in order to obtain estimates of
variances of percentage composition of individual species, it is necessary
to locate plots in replicates. Thus, independent estimates of species
composition can be made for each replicate.

Some decision must be made concerning exactly how the plot set from
which the multipliers were derived will be merged with the ranked-plot
plots. The answer to this question remains unanswered.

As the number of ranks increases and the vegetation type becomes more
complex, the accuracy of the method declines for a given sample size. This
is to be expected even with hand separation. Dry weight rank should be

abandoned if the expenditure exceeds the value of the information gained.

5.3 Limitations of the Simulation Technique

In attempting to derive a general scientific result by inductive
rather than deductive means, there is always the danger that a special
situation has been utilized to reach the conclusions.. Thus there is a
possibility that the validity of the assumptions concerning the multivar-
iate normal distribution or the errors introduced by the use of its
truncated form might alter the conclusions. We feel that the specifie
case simulated and the assumptions made are sufficiently close to the
real field situation that the probability of an error due to these causes

is minimal,
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One problem of the form of the dry weight rank technique used in
this analysis should be discussed. This is that the matrix of rank pro-
portions (Ri) is sometimes singular. The reader can experiment with some
possible R1 matrices for small data sets and verify this fact. The
simulation procedure handled this problem by simply discarding such singular
matrices when they were generated and regenerating the data set. The
nonlinear programming method of deriving the multipliers does not suffer
from this disadvantage and there are indeed methods of manipulating the
R, matrix to avoid the problem. The methods involve use of a "generalized"
or "least squares" inverse (Graybill 1969) instead of the traditional inverse
of Rl' The problem does not frequently occur in a field application of
the dry weight rank technique because of various conventions used to
normalize Rl' The exact proportion of the possible R1 matrices which are
singular is a very knotty problem in matrix algebra. We are assuming
in our conclusions that the method used to resolve the problem of singular
R1 matrices is not significantly affecting the result.

A final comment concerning the cost of this study is in order. The
computer program required large amounts of time for execution in each one
of 300 simulations. The variance ratio in the 50:150 column of Table 16

cost about $40 to produde. Total computational costs for the project

were about $600.

5.4 Programmatic Application and Rejection
The purpose of this report is to document the background planning,
analysis, and preliminary study activities that went into the examination
of the dry weight rank method of botanical analysis which was utilized

widely throughout the Grassland Biome study during one phase of work.
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Much of the information in this report was presented to the participants
at the 12-14 November 1970 annual review meeting of the US/IBP Grassland
Biome study. Botanical investigators adapted the methodology for field
studies in 1971 for further tests. The extreme difficulty of working with
estimates of plant biomass densities By species via the clipping technique
makes the dry weight rank method an extremely attractive proposition.
While laboratory and field applications gave promising results, the
simulation studies suggest variance estimates are not reduced below

those by clipping., We tﬁink that the dry weight rank method is a false
hope and other means must be sought to alleviate experimental difficulties
in this area. Difficulties were encountered in processing and analyzing
data and interpreting results. Subsequently the weight-estimation
sampling procedure was utilized as a botanical analysis method in

Grassland Biome investigations.
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APPENDIX II

THE VARIOUS MATRICES AND VECTORS OBTAINED IN THE STEPS LEADING
TO A LEAST SQUARES, LAGRANGIAN MULTIPLIER FIT OF THE RANK
MULTIPLIERS ARE LISTED. THE COMPLETE SET OF EASTERN COLORADO
SANDHILLS DATA WHICH APPEARS IN APPENDIX III HAS BEEN USED.
FIVE SPECIES AND FIVE RANKS ARE INCLUDED.

W =[§.u1598 0.13535 0.27206 0.14638 o.oaoz@]
[0 . bisyy 0.30556 0.25000 0.22220 0.00000]
0.1944Y 0.11111 0.19u44 0.16667 0.00000
R =|0.27778 0.41667 0.11111 0.05556 0.00000
0.08333 0.16667 0.16667 0.19u44 0.08333
0.00000 0.00000 0.25000 0.33333 0.30556
[0.31944 0.28704 0.19367 0.0640k4 0.00694)
T 0.28704 0.30710 0.17207 0.07407 0.11389
= R'R =/0.18367 0.17207 0.20293 . 15432 0.09028
0.06404 0.07407 0.15432 0.17978 0.11806
0.00694 0.01389 0.09028 0.11806 0.10031
adjoined =
(0. 319u1 0.28704 0.19367 0.06L40L 0.00694 1.00000
0.28704 0.30710 0.17207 0.07407 0.01339 1.00000
0.19367 0.17207 0.20293 0.15432 0.09028 1.00000
0.08404 0.07407 0.15432 0.17978 0.11806 1.00000
0.00694 0.01389 0.09028 0.11806 0.10031 1.00000
1.00000 1.00000 1.00000 1.,00000 1.00000 0.00000
adjoined =
[@.29897 0.27990 ,19250 0.07621 0.02144 1.oooo§]
T
= R'W =[§.29897 0.27990 0.19250 0.07621 o.o21u€]

RTR adjoined inverse =

r'.119.9'73'42 -62.61267 -147,40834 108,23777 -18.19018 2.39073
-62.61267 40.23486 64.30478 -50.49049 8,56352 -0.82761
-147.40834 64.30478 215.73079 =157.24184 24.61461 -3.25093
108.23777 -50.49049 -157.24184 140.12914 -40.63458 1.67803
-18.19018 B8.56352 24,61461 -40.63458 25.64663 1.00979
2.39073 -0.827861 ~3.25093 1.67803 1.00979 -0.01101]

(RTR)‘1 RT = CD =

[?.2173691 G.u42388609 0.7486583 -0.55441867 0.1595285 -0.0041665]
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APPENDIX III

EASTERN COLORADO SANDHILLS, JUNE 1967,
BASED 0O RANKER A.

THIS IS THE ORIGINAL DATA FROM WHICH THE FOLLOWING
10 RUN(S) WILL BE MADE

DRY WEIGHT IN LB/ACRE

Plot BOGR CALO STCO ZZ grass Forbs Total
1 374,00 0. 0. 300.00 12.00 686.00
2 264,00 328.00 160.00 92.00 4,00 848,00
3 392.00 339,00 0. 12,00 0. 742.00
y 346,00 114.00 284,00 234,00 0. 978,00
5 340,00 224.00 628,00 342.00 0. 1534.00
6 140.00 48.00 126.00 156.00 88.00 558.00
7 140,00 294,00 3u6.00 0. 76.00 - 856.00
8 518.00 240.00 132.00 46.00 32.00 968.00
9 324,00 6.00 582,00 20.00 4,00 936,00

10 216.00 214,00 100.00 158.00 0, 688,00
11 266.00 146,00 - 206,00 128.00 Q. 746,00
12 784.00 116.00 268.00 0. 20.00 1188.,00°
13 310.00 0. iuy, 00 732.00 80.00 1266,00
14 160.00 42.00 710.00 146,00 16.00 1074,00
15 536.00 64,00 208.00 0. 26.00 834,00
i6 312.00 0. 104,00 76,00 0. 492,C0
17 378.00 482.00 222.00 0. 26.00 1108.00
18 536,00 8.00 466,00 26.00 16.00 1052,.00
19 338.00 0. a. 88.00 0. 426.00
20 426.00 0. 0. 52.00 0. 478.00
21 616,00 0. 490,00 0. 8,00 . 1114.00
22 304,00 0. 70.00 o, 0. 374,00
23 436,00 16,00 622,00 78.00 0. 1152.00
24 136.00 164.00 182.00 0. 20.00 502,00
25 606,00 0. 58.00 22,00 0. 686.00
26 148.00 6.0 592.00 218.00 0. _96L.00
27 200,00 0. 208.00 852.00 4,00 ° 1264.00
28 386.00 112.00 266.00 0. 10.00 774,00
29 260.00 0. 90.00 . 180,00 $30.00
30 198.00 432.00 8.00 0. 66.00 704,00
31 356.00 98.00 6u4.00 2.00 30.00 - 560.00
32 892,00 108.00 0. 614,00 60.00 1674.00
33 136.00 314,00 2u6,00 52,00 14.00 762.00
34 274 .00 120.00 108.00 0. 10.00 512.00
as 204,00 50,00 y34.00 0. 90,00 859.00
36 4B0.00 89.00 262.00 66.00 40,00 936.00

Ave. wt. 536.17 115.89 232.94 125.33 25,89 856.22

SD 177.94 134.97 205.83 207.79 38.21 306.99

COSTS OF THE SLOW, FIXED, ARD FAST PROCLSSES

45,0000 1.0000 3.0000
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APPENDIX III (cont.)

RANKS ASSIGNED

Forhs

BOGR CALO STCO ZZ Grass

Plot
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THIS WAS

”

AN UNWEIGHTED REGRESSION
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APPENDIX III (cont.)

No. of Simgle SimPle . . Lagrangian
plots R optlTum Rank multipliers multiplier
ratio

17 .9937 L2 17570 .50293 -72995 -.38046 -.02812 -.00732

18 . 9657 18 .77206 .15998 -.07593 .13678 . 00711 00608

22 . 9869 29 40019 . 31265 45483 ~.17589 .00821 -.00394

24 L9874 30 .40811 .31253 .65582  -,38u4s5 .00798  -.00989

25 .9628 17 -.22531 .67678 1.04952 -.97389 .47289 01343

27 .9750 21 .91265 14037 -.53762 73227 -. 24766 -.00305

29 . 9932 26 . 90246 -14359 -.32690 .30231 -.02145 .01052

31 . 9953 L9 .11785 . 36484 . 88416 -.62999 .26315 .00605

33 .9741 21 .29105 .40027 .68124 - .59520 .22265 -.00070

36 .9830 25 .21737 .42886 . 74866 -. 55442 .15953 ~-.00417

PREDICTED AND OBSERVED WEIGHTS FOR LAST RUN

41481 41597
.14309 .13535
. 29146 27206
.11986 .14638
.05110 .03024
R MATRIX COLUMNS MAY NOT SUM TO 1.0
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APPENDIX III (cont.)

MULTIPLIERS FROM 18 PLOTS TESTED ON THE OTHER 18 PLOTS

. Simple
No. of Slmgle optimum Rank multipliers
plots R ratio
18 .9199 11 . 77206 .15998 -.07593 .13678 .00711

PREDICTED AND OBSERVED WEIGHTS FOR THIS RUN

- 36648 L2468
L4771 .09487
.28894 .27681
12487 .17888
.03368 .02476

UNWEIGHTED R MATRIX COLUMNS MAY NOT SUM TO 1.0

PREDICTED DRY WEIGHT PROPORTIONS WERE CALCULATED WITH AN UNWEIGHTED

RANK MATRIX
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