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Other vehicles used in factories and warehouses simply follow 
a reflective tape track on the floor or sense the presence of a 
trail laid down with invisible inks and chemicals. 

That "computers were the technological revolution of thls 
modern age" was an understatement for their evolution into 
mobile servants will more than confirm such a statement. 

We had better prepare; for ... 

The Robots are coming! 

BIBLIOGRAPHY 

General References 

R. Malone, The Robot Book, Push Pin Press, New York, 1978 
A Silverstein and V. Silverstein, The Robots are Here, Prentice-Hall, 

N.J., 1983 

P. Berger, Robot Catalogue, Dodd, Mead & Company, New York, 1984. 
Chapter 2 has an excellent survey of entertainment robots. 

H. Geduld and R. Gottesman, Robots-Robots-Robots, Little, Brown 
and Company, New York, 1978. 

J. Reichardt, Robots, Viking Press, New York, 1978. 
P. Marsh, Robots, Salamander Books, UK, 1985. 
B. Krasnoff, Robots: Reel to Real, Arco Publishing, New York, 1982 
Design Quarterly, Robots, MIT Press, Cambridge, Mass., 1983 
R. M. Hefley, Starlog Robot Guide, Starlog Press, New York, 1979. 

Provides excellent reference for robots in films and television. 

SIMULATORS, GRAPHIC 
C. A. KLEIN 
A. A. MA.ctE.lEWSKI 

Ohio State University 
Columbus, Ohio 

PURPOSE OF USING GRAPHIC ROBOTIC SIMULATION 

There are many situations in which a computer simulation 
with a graphic display can be very useful in the design of a 
robotic system. First of all, when a robot is planned for an 
industrial application, there are many commercially available 
arms that can be selected. A graphics-based simulation would 
allow the manufacturing engineer to evaluate alternative 
choices quickly and easily (1). The engineer can also use such 
a simulation tool to design interactively the workcell in which 
the robot operates and integrate the robot with other systems, 
such as part feeders and conveyors with which it must closely 
work. Even before the the workcell is assembled or the arm 
first arrives, the engineer can optimize the placement of the 
robot with respect to the fixtures it must reach and ensure 
that the arm is not blocked by supports. By being able to 
evaluate workcell designs off-line and away from the factory 
floor, changes can be made without hindering factory produc­
tion and thus the net productivity of the design effort can be 
increased. 

Once a robot is installed, graphic simulations are very valu­
able in the generation and verification of trajectory plans. By 
viewing a proposed trajectory on a computer screen, many 
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errors can be discovered that would have been dangerous for 
the real robot to attempt to perform. A programming or teach­
ing error could cause the actual arm to strike the end effector 
into a work table, another part of the arm, fixturing, or a 
human teaching the arm with a pendant. Collision avoidance, 
though, involves more than simply preventing the end effector 
from striking an object in the work space. Often, without a 
graphics simulation, it is hard to anticipate which parts of 
the arm, such as protruding portions, may hit supports. Even 
when the robot is present, it may be preferable to program 
one leg of a trajectory path, view the simulation on a screen, 
and then actually perform it (2). 

Beyond safety considerations, graphic simulations are also 
used to optimize motion trajectories. Trajectories can be de­
signed so that no joint is pushed to a kinematic limit or exceeds 
its maximum velocity or acceleration. Plans can be interac­
tively modified to minimize travel time and increase manufac­
turing throughput. A complete simulation will verifY that 
when an arm is reaching for parts stacked in a pallet, for 
example, it can reach the most distant part at the required 
orientation. Automatically generated plans can be previewed. 

Where multiple arms are at work sharing a common work­
space, the- need for a careful graphics simulation is even 
greater (3). Such a design makes greater use of common facili­
ties such as feeders and fixtures, but requires more careful 
planning. The two arms must be coordinated, and each must 
be considered as a dynamically moving obstacle with respect 
to the other arm (4). 

The mechanical designer can advantageously use a graphics 
simulation in designing arms. Computer graphics can show 
the workspace of a given geometric configuration without even 
requiring a built model. The location of singularities can be 
determined and modified. The control engineer can use graphic 
simulations to choose motors and a control system design for 
a new robot. Graphics output is a desirable part of dynamic 
simulations, since a visual display can provide more informa­
tion to the designer than would printed numerical values. 
Without simulation tools, u{any systems would have been im­
possible to design. For example, the Space Shuttle arm is inca­
pable of operating in a full gravitational field and was instead 
designed, to a large extent, based on simulations (5). 

Lastly, the value of graphic simulation cannot be underesti­
mated in education and research. Many of the principles of 
robotic control can be taught through simulation, utilizing re­
alistic graphics to relatively large groups of students inexpen­
sively and safely. New robotic techniques are being developed 
by researchers through simulation long before the actual hard­
ware systems are tested. 

COMPONENTS OF A ROBOTIC SIMULATION SYSTEM 

Depending on the application, there are many possible configu­
rations for a robotic graphic simulator system in terms of the 
type of display, mode of entering data, method of saving the 
output, the computer hardware doing the processing, and the 
software controlling the system. Choices depend on the degree 
of realism required, whether the simulation must run in real 
time, the amount and type of interaction desired, and the 
amount of resources that can be devoted to the system. 

Displays can be based on either vector or raster display 
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Figure 1. Real-time vector display of a new 
robot geometry under development. Super­
imposed on the robot image is a dynamic 
display of joint angles to allow the designer 
to evaluate automatically generated trajec­
tories. 

devices. Vector displays draw lines at arbitrary angles on a 
screen and can quickly draw outlines of robotic systems. These 
devices can be further subdivided into vector refresh displays 
and storage-tube systems. In a vector refresh display, the 
points are held in a memory and are constantly being drawn 
on the screen. Figure 1 illustrates an application where the 
features of this type of display are desirable. Vector refresh 
displays allow smooth animation; but have the disadvantage 
of flickering when a large number of points are on the screen. 
Storage tubes accumulate an image in the screen itself and 
eliminate the flicker even for very complicated drawings. Ex­
cept for a "write-through" mode where a weaker image can 
be drawn, as on a vector refresh terminal, animation is only 
possible by erasing the entire screen and redrawing. Raster 
displays, on the other hand, are like conventional television 
screens. Raster displays can be used to show solid-color-shaded 
representations of objects, but require more computer process­
ing to generate a complete image. Figure 2 shows an applica­
tion (6) where such a solid representation is important in eval­
uating clearance between objects. Raster displays, of course, 
can also be used to draw wire-frame skeletons of robot images. 
Some simulation systems may use both vector and raster dis­
plays, a vector display to view a simulation in real or near 
real time and a raster display to generate realistic images 
for later documentation. 

For recording the graphic output of a graphic simulation, 
a number of devices are available. Plotters are ideal for saving 
the images of vector displays. Some of the new laser printers 
can be programmed to act as a plotter, and some can draw 
shaded polygons and thus permit a realistic display. Of course, 
for raster color-shaded graphics, film, video tapes, or laser 
disks can be used for recording animations. An additional out­
put of some simulators is a file of robot motion commands. 
Although the operator may specify the desired motion in a 
format independent of the robot manufacturer, some systems, 
in effect, compile this specification to one that the particular 
robot can use later. 

A number of input devices are used to enter commands 
and graphical data into simulators. Virtually all systems in­
clude keyboards to enter information. A device such as a digi­
tizer, mouse, trackball, or a light pen can also be used to enter 
graphical information. Often the graphic input device is used 
to enter commands by moving a cursor on the computer screen 
to a labeled area. The user then activates that choice by some 
action such as pressing a button on a mouse or hitting a car-

Figure 2. A more realistic color-shaded image of a manipulator dis­
played on a raster device. This robot has the same kinematic geometry 
as the one illustrated in Figure 1, but shows a more complete physical 
description of the links. One of the purposes of this simulation was 
to evaluate an automatic obstacle-avoidance scheme for the guidance 
of an arm through the window of a car door (6). Courtesy of The 
International Journal of Robotics Research, MIT Press. 



riage return key. Some systems include data bases of alterna­
tive robot geometries, thus greatly reducing the amount of 
graphic data that needs to be manually entered. 

A wide range of computer hardware supports graphic simu­
lations. Simulators run on micro-, mini-, and mainframe com­
puters. Figure 3 provides an example of a commercially avail­
able microprocessor-based system. The display may be a 
graphics terminal connected to a host through a serial line. 
Display processors can be more sophisticated and may be con­
nected to a host by parallel ports with DMA (direct memory 
access) access to the host's memory. Display processors include 
high performance vector displays with real-time update capa­
bilities. Some raster systems contain frame buffers, which are 
memory arrays of dimension of the screen resolution and con­
tain the color data for each pixel on the screen. Many systems 
add local processing power to do polygen fill, vector generation, 
character and circle generation, zoom, pan, and so on. Several 
systems are based on special-purpose VLSI (very large scale 
integration) scale chips that have been designed to perform 
quickly computations needed in graphics (7). Some systems 
combine processing power and memory to do hardware depth 
sorting, ie, polygons in three-dimensional space are properly 
displayed so that closer polygons obscure more distant ones, 
independently of the order in which they are drawn. Some 
graphics controllers reside in the backplane of a personal com­
puter (PC) and share memory with the host microprocessor. 
Other graphic simulations run on engineering workstations. 
Such systems are usually based on powerful computer pro­
cessors, often have sophisticated graphics, and are designed 
for a single user. Whereas many of these systems run a variety 
of software products, some are designed to be a complete turn­
key system, as a dedicated tool for a particular analysis or 
design problem, such as mechanical CAD/CAM. 

Similarly, software varies considerably for different robotic 
simulators. Many robot designers and researchers have writ­
ten their own software systems to meet the needs of their 
requirements and have explained the basic principles through 
publications (8-10). In some cases, software is available specif­
ically for robot simulation; in others, it is within the capabili­
ties of other software systems such as mechanical CAD/CAM 

Figure 3. The CimStation interactive workcell modeling system by 
SILMA, showing their computer-graphic-simulation option running 
on a personal computer. Courtesy of SILMA, Inc., Los Altos, Calif. 
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packages. For many systems, the graphics can be used as a 
final output, verifying programming, operation, or control 
specified by some robot-control or simulation language (11). 
Some new systems are designed in the framework of expert 
systems and allow the user to specify the robotic structure 
in an object-oriented programming style (12). 

ROBOT MODELING 

In this section, the theory behind robot simulations is dis­
cussed. There are two general types of robot simulations: kine­
matic and dynamic (see also KINEMATics). Kinematic simula­
tions show the motion of a manipulator without regard to 
how those motions are achieved by actuator forces and torques, 
whereas dynamic simulations consider masses, forces, and 
torques to calculate the resulting motion (13). If it is known 
that the robot has been designed to meet certain kinematic 
specifications, then the production engineer does not need to 
consider the systems dynamics explicitly and can instead con­
centrate on motion planning. Even when a dynamic simulation 
is done, the resulting motion can be specified kinematically 
and then displayed with a kinematic-based graphics system. 

The modeling of a robot system can be divided into a func­
tional description of its motion and a physical description of 
its actual geometry. The first part of the model can be divided 
into a kinematic description of the robot itself and a means 
of trajectory planning to achieve a desired motion. The second 
part is concerned with modeling and three-dimensional char­
acteristics of the robot's shape. 

Kinematics 

In order to simulate the motion of a robot, the kinematic struc­
ture of the particular robot must first be defined. This structure 
is usually described by a notation like that developed by De­
navit and Hartenberg (14). Using this notation, each degree 
of freedom within an articulated robot is assigned a unique 
coordinate system, with the relationship between adjacent co­
ordinate systems defined by four parameters. The degrees of 
freedom of the robot, either rotary or prismatic, are referred 
to as joints and the interconnecting portions are call~d links. 
The four parameters used to specify the relationships between 
coordinate systems are the length of the link a, the twist of 
the link a, the distance between links d, and the angle between 
links 9. The definition of these parameters for both rotary 
and prismatic degrees of freedom is illustrated in Figure 4. 
A simple procedure for defining the origins of the various coor­
dinate systems is given in Ref. 15. More complicated joints, 
such as ball-and-socket joints, can be modeled mathematically 
as combinations of simple joints. It should be noted that these 
parameters only specify the kinematic structure of a robot 
and do not describe the physical appearance of its links. 

Given the above specification of coordinate frames, the rela­
tionship between adjacent coordinate frames is given by a rota­
tion of 9, followed by translations of d and a, and a final rota­
tion of a. By combining these transformations, it can be shown 
(15) that the relationship between adjacent coordinate frames 
i and i - 1, denoted by i-1A; is given by the homogeneous 
transformation matrix 
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Figure 4. The definition of the Denavit and Hartenberg parameters for describing the kinematic 
relationship between robot links. The joint rotation angle, as depicted, is negative. Courtesy of 
Pergamon Press. 
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The above homogeneous transformation matrix has an easily 
visualized physical interpretation. The submatrix R, which 
is sometimes called the rotation matrix, is composed of the 
direction cosines between the two related coordinate systems; 
thus it represents the three-dimensional rotation required to 
align the two coordinate systems. The vector p is a position 
vector, which specifies the difference in position between the 
origins of the two coordinate systems. 

By multiplying adjacent link transformations, the homoge­
neous transformation between any two coordinate systems i 
andj may be computed as follows: 

iA _;A i+lA i-lA (4) 
j- i+l ~+2·.. j 

Using the above equation, the position and orientation of a 
robot's end effector can be computed given the values of the 
joint variables, ie, 8 for rotary joints and d for prismatic joints. 
This computation is typically referred to as the direct kinemat­
ics problem. Note, however, that when applying robots for 
the completion of some useful task, the reverse problem needs 
to be solved. That is, given the position and orientation of 
the robot's end effector, the required joint values need to be 
found. This problem, referred to as the inverse kinematics 
problem, is not as easily solved (15). 

Trajectory Planning 

The solution of the inverse kinematics problem usually relies 
on the evaluation of inverse trigonometric functions and is 
restricted to particular robot geometries. A general closed-form 
solution for an arbitrary robot structure has not been found. 
However, for those geometries for which solutions do exist, 
inverse kinematics represents the simplest method for control­
ling robots used in pick-and-place tasks. For tasks described 
in these terms, such as some assembly and materials handling 
tasks, only selected configurations of the end effector are im­
portant for successful task ·completion. Paths between such 
configurations are unconstrained, except for such global con­
siderations such as collision avoidance. Motion planning for 
such cases can consist of inverse kinetriatics for selected 
configurations with joint interpolation in between. In other 
cases, some Cartesian control between configurations may be 
required. Thus straight-line motion, combined with one- or 
two-axis rotations between configurations, is popularly em­
ployed (16,17). 

In a growing number of applications, however, the above 
inverse kinematics techniques are not sufficient. When used 
for arc welding or paint spraying, for example, tool paths re­
quired for successful completion are not only based on a fixed 
set of positions and orientatio~. but must be controlled along 
particular trajectories at specified rates. In order to simulate 
motion planning at this level, the concept of resolved-motion 
rate control was developed (18). Essential to this concept is 
the Jacobian matrix. The Jacobian matrix J relates the velocity 
of the robot's end effector to the joint variable velocities 
through the equation 

Ja= [xw·] (5) 

where x is a three-dimensional vector defining the transla­
tional velocity, w is a three-dimensional vector defining the 
rotational velocity, and 9 is ann-dimensional vector represent­
ing the joint velocities, n being the number of degrees of free­
dom that the robot possesses. Although a number of techniques 



for calculating the Jacobian have been studied (19), a particu­
larly elegant and efficient method for graphic simulators is 
available that only uses the position vector p and one column 
of the rotation matrix R of the homogeneous transformations 
0Ai, fori= 1-n (20). In this application of screw-axis variables, 
the only computation required, other than that required for 
the homogeneous transformations, is a single cross-product 
per column of J. This formulation, therefore, is particularly 
useful for graphic simulators, since the individual homoge­
neous transformation matrices must already be computed for 
generating a display of the robot. 

Thus for tasks specified as desired end-effector velocities, 
the required joint velocities to achieve the task are obtained 
by solving the linear set of equations given by equation 5. 
The desired joint velocities are given by 

(6) 

if J is square and nonsingular. For those cases where the 
number of degrees of freedom do not match the dimension of 
the specified velocity or if J is singular, J-1 is not defined. 
In these cases, even though the inverse of the Jacobian does 
not exist, there do exit generalized inverses or other techniques 
that provide useful solutions to equation 6 (21-23). 

Geometric Representation 

The kinematic specification of robots described above is suffi­
cient for defining motion; however, it says nothing about the 
physical structure of a robot, ie, what are the shapes of the 
various links, actuators, and so on. These qualities, which 
are important for checking for such critical features as colli­
sions as well as providing a realistic graphic display, require 
geometric modeling techniques (24). There exist a variety of 
ways to represent the shape of three-dimensional objects, but 
they all belong to basically one of two groups: boundary or 
surface representations, and solid representations. 

Surface representations, as the name implies, consist of 
two-dimensional primitives which are used to define the 
boundary or surface of the solid object to be modeled. There 
is no explicit modeling of the soll.d composing the object other 
than that implied by a closed surface. Whereas there are a 
number of different primitives used for describing surfaces, 
planar polygons are the most frequently employed. This is 
due to the fact that planes can be described by linear equations 
which greatly simplifY many of the algorithms required to 
display objects (see the following sections). Thus a solid three­
dimensional object can be modeled by a collection of polygons 
which are used to approximate its surface. These polygons 
are usually described by the positions of their vertexes. A typi­
cal data format for objects described in the above manner is 
seen in Figure 5. The variables i andj are integers that corre­
spond to the number of points and the number of polygons, 
respectively, used to describe the object. The next i rows of 
numbers corresponds to the x, y, and z coordinates of the 
points. The last j rows of numbers are integers that define 
the vertexes of the polygons. The first column contains the 
number of vertexes for that particular polygon, with the re­
maining columns specifying the vertexes by an index into the 
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i - number of points 
j - number of polygons 

Figure 5. A typical data-file format for the description of objects de­
fined by polygonal surfaces. 

point list. Since each vertex "coordinate is defined only once 
and is referenced in a polygon by its index, a considerable 
amount of storage is saved over explicitly listing the coordi­
nates in each polygon. Additional parameters can be added 
to describe such properties as color, reflectance, etc, which 
are then used by the illumination model. 

The difficulty with describing object surfaces as a collection 
of planar polygons is that they provide a poor approximation 
to curved surfaces. For this reason, primitives called para­
metric surfaces or patches, which are usually described by 
higher order polynomial equations, are often used (25). Of 
these, bicubic equations are commonly employed since they 
allow first-order continuity between adjacent patches, result­
ing in smooth composite surfaces. It should be noted, however, 
that the same features of parametric surfaces that bring flexi­
bility to surface modeling also result in complexity in display 
algorithms. Although display algorithms that use parametric 
surfaces directly do exist, it is common to first subdivide 
patches into a collection of polygons and then deal with the 
simpler linear surfaces. 

In contrast to surface representations, solid representations 
explicitly describe the interior as well as the boundary of ob­
jects. One such representation is constructive solid geometry, 
where an object is defined by Boolean operations on a set of 
solid primitives (26). The solid primitives used are usually 
restricted to very simple shapes and therefore have difficulty 
in modeling free-form solids. In contrast, probably the most 
flexible solid representation is the three-dimensional general­
ization of the parametric surface known as a hyperpatch (27). 
Once again, however, this flexibility results in computational 
complexity for the display algorithms so that this representa­
tion is only used when such flexibility is essential. 

COMPUTER GRAPHICS 

Viewing Transformations 

One of the major purposes of computer-graphics is to simulate 
the three-dimensional characteristics of an object visually, by 
displaying what that object would look like from various differ­
ent points of view. In order to describe the relationship be­
tween the viewer and the objects to be simulated, it is conve­
nient to define three parameters that specify this relationship: 
the eyepoint (EP), which is the simulated position of the 
viewer; the center of interest (COl), which is the point at which 



1604 SIMULATORS, GRAPHIC 

the viewer's eyes are directed; and the view angle (VA), which 
defines the cone of vision. Having defined these three parame­
ters, the positions of objects described in a world data-base 
coordinate system can now be related to the coordinates of a 
particular graphics output device through the use of homoge­
neous transformations. 

The first of these transformations, which is typically re­
ferred to as a point-of-view transformation, aligns the direc­
tions of the x, y, and z axes to those of the output device. 
This resulting coordinate system is sometimes referred to as 
eyespace coordinates. The homogeneous transformation relat­
ing coordinates in worldspace to eyespace is given by 

resolution, and device-coordinate system position and orienta­
tion. Whereas it is possible to combine all three transforma­
tions by multiplying together the three corresponding ma­
trices, the final screen transform is usually performed 
separately. The intermediate form of the object data after the 
perspective transform is then used for further processing, the 
first step of which involves clipping. 

Clipping 

Clipping is the process by which only the desired portions of 
objects are retained for display, with the others being "clipped." 

[ 
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where v is the vector from the EP to the COL 
The next transformation that is typically applied is a per­

spective transform, which results in realistic depth perception. 
It is convenient to represent this transform in the following 
form: 
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This transform is in a device-independent format, with screen 
coordinates being in the range -1 to + 1 in the horizontal x 
and the vertical y directions, and 0-1 in the depth z direction. 
This is particularly useful for simulators that possess multiple 
output devices of different resolutions. The values Zmin and 
zma:c are the minimum and maximum eyespace coordinate 
values, which are to be mapped to screen coordinates. The 
use of screen z coordinates in the context of hidden surface 
removal will be discussed in a following section. For display 
on a particular device, objects must only undergo ,one final 
transformation, which contains the device-dependent charac­
teristics. This transformation includes such information as 
horizontal and vertical screen resolution, aspect ratio, depth 

This is usually required since most output display devices 
have a limited range of coordinates; thus display coordinates 
must be limited to available values in order to prevent wrapa­
round. The particular choices of the view angle, and zmin and 
zma:c in the transformations discussed above, imply a volume 
of allowable coordinates in three-dimensional space. Due to 
the perspective transformation, this volume is in the shape 
of a truncated pyramid. An important step in all clipping algo­
rithms is determining whether a point lies inside or outside 
of this volume. This problem is usually broken down into six 
subproblems, ie, whether a point lies on the inside of the six 
planes that define the truncated pyramid. It is important to 
note that even though these points have been multiplied by 
the perspective transformation matrix, normalization, ie, divi­
sion by the homogeneous coordinate, should not be performed 
before clipping (28). 

.The choice of clipping algorithm depends to some extent 
on the form of the desired output, in particular, whether the 
output will be displayed as a line drawing or as shaded poly­
gons. Even though there are a number of efficient algorithms 
for clipping objects described as a collection of line segments 
(29), there are advantages to using a more computationally 
expensive polygon .clipping algorithm. In Particular, since a 
polygonal format is most widely used for graphics data bases, 
a polygon clipper will preserve this format. In addition, clipped 
data in a polygonal format can be displayed equally well as 
a line drawing or a shaded image, thus retaining flexibility 
in output devices. The most popular polygon clipping algorithm 
is one developed by Sutherland and Hodgman (30). This algo­
rithm, referred to as reentrant polygon clipping, defines a poly­
gon to be a collection of vertexes that are checked against 
the six clipping planes in turn. Those vertexes that are inside 
are retained, whereas those on the outside are discarded, with 
additional vertexes added when a polygon edge intersects a 
clipping plane. 

Hidden Surface Removal 

Whereas the above clipping process guarantees that all re­
maining objects are within the defined viewing area, they are 
still not all visible on the display. A further processing step 
is needed to determine which objects or portions of objects 
are in front of and occluding others. This process, known as 
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hidden surface removal, has a number of different solutions, 
a taxonomy of which is presented in Ref. 31. The common 
characteristic of all algorithms is that they must sort objects 
in order to determine which ones are in front of others. One 
major difference between algorithms is based on whether this 
sorting is done in object space, that is, the coordinate space 
in which the objects are defined, or in image space, ie, the 
screen-coordinate system. The object-·space algorithms are in 
general more precise; however, image-space algorithms enjoy 
an advantage in efficiency. Although no one algorithm is 
clearly superior over all others, the depth or z-buffer algorithm 
is currently the most widely implemented for graphic simula­
tors. 

The z-buffer algorithm is basically an extension of the 
frame-buffer concept. It is a simple hardware solution to hid­
den surface removal, which maintains an additional buffer 

" that is used to store the current depth value of the closest 
object at each pixel. Thus depth sorting is trivially accom­
plished by checking an object's depth against that which is 
currently in the z-buffer. The chief disadvantage previously 
cited against this algorithm was the large amount of memory 
required to maintain this additional buffer. When considering 
the current trends in size and cost of high speed memory, 
however, these concerns are no longer a prohibitive factor. 
Additional disadvantages include aliasing effects, but exten­
sions to the z-buffer algorithm have shown that these can be 
corrected as well (32). All in all, the z-buffer's simplicity and 
speed account for its popularity, especially in cases where real­
time simulation is required. 

Illumination Models 

When dealing with solid-shaded graphic displays, an illumina­
tion model must be included in the simulation in order to 
determine the displayed intensity of objects. In the real world, 
the way an object appears is a result of various physical proper­
ties of the object, which determine how light is absorbed, trans­
mitted, and reflected. Other factors that affect this appearance 
include properties of the light source and positional relation­
ships among the object, viewer, and light sources. The extent 
to which these factors are included in the simulation deter­
mines the amount of realism achievable. The tradeoff, natu­
rally, is that the more accurately these effects are represented 
in the computer model, the more computationally expensive 
it becomes. For this reason, there exists an entire range of 
illumination models that are used in graphic simulations. 

Basic illumination models start with a simple model of dif­
fuse illumination based on Lambert's law (29). This gives the 
reflected intensity of an object as being only a function of the 
incident-light direction and the object's surface normal. The 
modeling of ambient light is typically included as a constant 
term, except in the more refined models. The modeling of spec­
ular reflection can be included as an additive component by 
also considering the relative position of the viewer. Further 
refinements to the specular component can include modeling 
of the spatial distribution of the reflected light, as well as its 
wavelength dependence. The application of these models to 
objects defined by planar elements will result in shading dis­
continuities due to the discontinuity in surface normals. 
Whereas this may be of no concern for objects that actually 
do consist of planar surfaces, it presents difficulties when mod-
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eling smooth curved surfaces. Solutions to this problem, with­
out increasing the number of polygons used to describe the 
surface, have been presented (33). By using bilinear interpola­
tion on the intensities obtained at polygon vertexes, a smooth 
shaded surface will result. Improvements in this smooth-shad­
ing scheme can be made by interpolating the surface normals 
instead of the intensity at the expense of extra computation 
(34). 

The common characteristic of the models discussed above 
is that they all use only local information, such as surface 
normals, incident-light direction, and line-of-sight direction, 
to determine an object's intensity. Although these models are 
the most common for graphic simulators due to their computa­
tional efficiency, models that incorporate global information 
can produce much more realistic images. The most common 
of these algorithms are based on ray tracing (35). Ray tracing 
is based on following a beam of light from the viewer's eye, 
through a pixel, and into the world in which the objects are 
defined. Calculations, based on which objects this beam inter­
sects and how it is split due to reflection and refraction, are 
used to determine the intensity displayed at that pixel. This 
technique easily incorporates shadows, transparency, reflec­
tion, and refraction, and has resulted in the most realistic 
computer-generated images to date. Its major disadvantage, 
however, is that it is very computationally expensive and as 
such is typically employed for small numbers of high quality 
promotional photos. 

Aliasing 

When using raster display devices, the effects of aliasing 
should be considered if high quality images are desired. Alias­
ing effects, which are most often represented by the jagged 
or staircase appearance of straight lines, are an inherent part 
of fixed-period sampling. Algorithms that use such spatial 
sampling to determine the intensity of pixels on the screen 
will exhibit aliasing effects. Aliasing effects are particularly 
objectionable when viewed in animations, since the viewer 
readily notices this display artifact changing over time. Tem­
poral aliasing can also be present in animations as a result 
of sampling in time. The funda.Jl!ental principle in either type 
of sampling, spatial or temporal, is that frequencies greater 
than one-half of the sampling frequency cannot be distin­
guished and will appear to be composed of lower frequency 
"aliases." There are basically three approaches to solving the 
aliasing problem, or in other words, antialiasing. 

The first approach to antialiasing is to increase the sam­
pling frequency. Thus for a display device with a given resolu­
tion, instead of computing one intensity for each pixel, the 
image is computed at a higher resolution with the samples 
then averaged to provide the intensity for a pixel (36). Whereas 
this technique works reasonably well, it becomes impractical 
when a scene contains very high frequency components. A 
second approach is to limit the frequency components of objects 
within a scene to below half of the sampling frequency. This 
operation is known as low pass filtering or convolution (29). 
A simple method that is equivalent to low pass filtering is to 
consider pixels as consisting of finite areas instead of point 
samples. Filtering operations, however, are in general rather 
computationally expensive. A third approach to antialiasing 
is to avoid using fixed-period sampling. If stochastic techniques 
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are applied to the sampling process, it can be shown that 
aliases will not be present (37,38). The tradeoff is that instead 
of aliases, stochastic sampling introduces broad-band noise 
into the image. It appears, however, that this noise is psycho­
logically less objectionable than the ordered error of aliases 
and is therefore a viable technique for antialiasing. 

GRAPHIC SIMULATOR ORGANIZATION 

This section is a discussion of how the above concepts are 
integrated into a complete system, with an overview of the 
software modules involved and an emphasis on their interac­
tion. A diagram of a generic graphic-simulator system is pre­
sented in Figure 6, where various input and output databases 
and their associated program modules are defined. This figure 
is meant to be a functional diagram only and does not necessar­
ily imply a physical separation between its elements. For ex­
ample, the blocks of this figure commonly are coroutines in a 
large integrated system. 

The first requirement of a robotic simulator is to have a 
means of specifying the robot to be simulated. Conceptually, 
a robot representation can be divided into two components: a 
functional definition of its kinematic parameters and associ-

KINEMATICS 
MODELLING 
PROGRAM 

ROBOT 
KINEMATICS 
DATA BASE 

GRAPHICS/ 
ANIMATION 

CAD/CAM 
MODELLING 
PROGRAM 

OBJECT POSITIONING 

PROGRAM 

FIXTURES and 
PRODUCT 
DATA BASE 

WORK CELL 
DATABASE 

Figure 6. Organization of a general graphic-robotic-simulation sys­
tem. Rectangles indicate software modules and circles indicate data. 

ated data, such as joint limitations; and a physical description 
of the actual geometry of the robot's links, actuators, and so 
on. A software module that can define and modify the kine­
matic parameters of a robot is useful for determining such 
features as workspace limitations and is instrumental in the 
design process. The modeling of a robot's physical geometry 
is performed by standard mechanical CAD/CAM-type soft­
ware. This modeling software serves a dual purpose since it 
is also used to model the desired final product, a:s well as 
fixtures with which the robot is to operate. A complete robot 
specification, functional and geometric, is often stored in a 
database library of commercially available robot systems. This 
simplifies the selection process and allows flexibility in evalu­
ating the performance of prospective robots for a particular 
task or workcell arrangement. The capability of modifying 
these robot specifications, however, is still important since 
standard models are sometimes customized for special applica­
tions. 

Since one of the major applications of graphic simulators 
is to model the integration of robots into a manufacturing 
process, it is essential to have software available that can 
aid in the specification of workcell arrangements. The inputs 
into such a program are the complete robot description, fix­
tures and/or other machines that are required by the process, 
and a description of the product itself. The positioning of the 
robot and other movable objects and transport systems can 
then be specified. This process is to some extent an iterative 
procedure in which objects are placed, and then such con­
straints as the working envelope are checked until an optimum 
solution is achieved. This may require substitution of alterna­
tive robot geometries, illustrating the interaction with the soft­
ware module described above. 

The static positioning of objects within a workcell, however, 
is only a small part of its design. The major responsibility of 
robotic simulators is to model time-varying characteristics to 
ensure proper operation. This requires a complete geometric 
description of all objects within the workcell, including how 
they change over time; the kinematic, dynamic, and controller 
information for the robot being simulated; and a description 
of the task or process to be completed. This is the level that 
corresponds to teaching a physical robot. Robot simulation 
as a means of off-line· programming has a mi.mber of advan­
tages in terms of cost, time, and safety. The level at which 
the designer interacts with this module varies with the sophis­
tication of the system. Some systems are menu-driven, which 
has a certain resemblance to teaching a robot with a pendant 
since discrete choices are made. However, a menu-driven sys­
tem is more powerful since some options correspond to opera­
tions not easily performed with a physical manipulator. Alter­
natively, many simulators use a device-independent pro­
gramming language, which is used to specify the robot's 
motion. This language can be of a relatively low level, which 
requires position information for the robot's end effector. More 
sophisticated languages, however, can take into account all 
of the geometric information available from the workcell and 
product descriptions, as well as process-control specifications, 
and independently produce end-effector trajectory information 
from high level commands. Once again, the optimization of 
motion control is more or less an iterative procedure, which 
may require modification of the robot's trajectory or the work-
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Figure 7. A graphic simulation display of a complete workcell with two arms cooperating on a 
product assembly line. This display is from McDonnell/Douglas using their integrated family of 
robot simulation systems. Courtesy of McDonnell/Douglas Manufacturing and Engineering Sys­
tems Company. 

cell arrangement. It may be even necessary to go back and 
try a different robot geometry. Once the process is completed, 
most simulators can translate the motion-specification com­
mands into a device-dependent controller format for download­
ing into the physical robot on the factory floor. 

The final logical software component of the simulator sys­
tem is used concurrently with all of the above procedures, 
namely, the actual graphic display and animation software. 
While performing the previously described design stages, the 
engineer uses computer graphics to view the progress of the 
design interactively. Saved data can also be postprocessed to 
achieve even more realistic representation for documentation. 
Graphic simulations give the designer the ability to take geo­
metric models and display them in three dimensions, allowing 
the designer to look at them from any angle or any degree of 
detail. Thus it is used during the initial CAD/CAM modeling 
phase to provide direct visual feedback on product or robot 
specifications. In the next stage, it also provides the ideal inter­
face for evaluating the workcell design. Figure 7 shows an 
example simulation of an entire workcell in operation. With 
the information on the time-changing variables from the mo­
tion-control module, it can produce real-time animations for 
detecting collisions between elements, optimizing end-effector 
motion, and generally checking the quality of the overall man­
ufacturing process. 
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INTRODUCTION 

In recent years the use of industrial robots throughout indus­
try has increased significantly. In many industrial applications 
such as painting, transporting, palletizing and many times 
even arc welding, programming of a sequence of movements 
is done through a "teaching by doing" process in which a hu­
man operator physically takes the robot hand through the 
desired sequence. When operating the robot, the controller 
reads the memory by a playback method. In such a situation, 
however, the robot can only repeat what it has been taught. 

In some cases, where the kinematic design is simple enough 
and the dynamic control demands are low, on-board computing 
power is used to perform the necessary coordinate transforma­
tion between the joint coordinates, which are controlled di­
rectly, and the task coordinates, which are convenient to the 
task description. In such cases robot motions can be pro­
grammed from a computer keyboard, and the motions of robot 
arm joints can be controlled through the kinematic transfor­
mation of coordinates. 

When the performance requirements for industrial robots 
are increased and involve accurate, fast, and versatile manipu­
lations, dynamic effects become significant. This requires the 
control of a multi-input multi-output system described by a 
set of highly nonlinear, strongly coupled differential equations. 

During the last decade, many papers discussed the control 
of robots through dynamic effects. Refs. 1-5 suggest using 
linearized system models as the basis for control. However, 
the implementation of a linear regulator in a robot system 
leads to many problems because the complex robot control 
has been synthesized based on the approximate linear model. 
This was demonstrated by a digital computer simulation of 
various control methods in Ref. 6. 
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