
..

REPRINTED BY DORF·
INTeRNATIONAL ENCYCLOPEDIA OF ROBOTICS

APPLICATIONS AND AUTOMATION
COPYRIGHT © 1988 BY JOHN WILEY & SONs: INC.

Other vehicles used in factories and warehouses simply follow
a reflective tape track on the floor or sense the presence of a
trail laid down with invisible inks and chemicals.

That "computers were the technological revolution of thls
modern age" was an understatement for their evolution into
mobile servants will more than confirm such a statement.

We had better prepare; for ...

The Robots are coming!

BIBLIOGRAPHY

General References

R. Malone, The Robot Book, Push Pin Press, New York, 1978
A Silverstein and V. Silverstein, The Robots are Here, Prentice-Hall,

N.J., 1983

P. Berger, Robot Catalogue, Dodd, Mead & Company, New York, 1984.
Chapter 2 has an excellent survey of entertainment robots.

H. Geduld and R. Gottesman, Robots-Robots-Robots, Little, Brown
and Company, New York, 1978.

J. Reichardt, Robots, Viking Press, New York, 1978.
P. Marsh, Robots, Salamander Books, UK, 1985.
B. Krasnoff, Robots: Reel to Real, Arco Publishing, New York, 1982
Design Quarterly, Robots, MIT Press, Cambridge, Mass., 1983
R. M. Hefley, Starlog Robot Guide, Starlog Press, New York, 1979.

Provides excellent reference for robots in films and television.

SIMULATORS, GRAPHIC
C. A. KLEIN
A. A. MA.ctE.lEWSKI

Ohio State University
Columbus, Ohio

PURPOSE OF USING GRAPHIC ROBOTIC SIMULATION

There are many situations in which a computer simulation
with a graphic display can be very useful in the design of a
robotic system. First of all, when a robot is planned for an
industrial application, there are many commercially available
arms that can be selected. A graphics-based simulation would
allow the manufacturing engineer to evaluate alternative
choices quickly and easily (1). The engineer can also use such
a simulation tool to design interactively the workcell in which
the robot operates and integrate the robot with other systems,
such as part feeders and conveyors with which it must closely
work. Even before the the workcell is assembled or the arm
first arrives, the engineer can optimize the placement of the
robot with respect to the fixtures it must reach and ensure
that the arm is not blocked by supports. By being able to
evaluate workcell designs off-line and away from the factory
floor, changes can be made without hindering factory produc­
tion and thus the net productivity of the design effort can be
increased.

Once a robot is installed, graphic simulations are very valu­
able in the generation and verification of trajectory plans. By
viewing a proposed trajectory on a computer screen, many

SIMULATORS, GRAPHIC 1599

errors can be discovered that would have been dangerous for
the real robot to attempt to perform. A programming or teach­
ing error could cause the actual arm to strike the end effector
into a work table, another part of the arm, fixturing, or a
human teaching the arm with a pendant. Collision avoidance,
though, involves more than simply preventing the end effector
from striking an object in the work space. Often, without a
graphics simulation, it is hard to anticipate which parts of
the arm, such as protruding portions, may hit supports. Even
when the robot is present, it may be preferable to program
one leg of a trajectory path, view the simulation on a screen,
and then actually perform it (2).

Beyond safety considerations, graphic simulations are also
used to optimize motion trajectories. Trajectories can be de­
signed so that no joint is pushed to a kinematic limit or exceeds
its maximum velocity or acceleration. Plans can be interac­
tively modified to minimize travel time and increase manufac­
turing throughput. A complete simulation will verifY that
when an arm is reaching for parts stacked in a pallet, for
example, it can reach the most distant part at the required
orientation. Automatically generated plans can be previewed.

Where multiple arms are at work sharing a common work­
space, the- need for a careful graphics simulation is even
greater (3). Such a design makes greater use of common facili­
ties such as feeders and fixtures, but requires more careful
planning. The two arms must be coordinated, and each must
be considered as a dynamically moving obstacle with respect
to the other arm (4).

The mechanical designer can advantageously use a graphics
simulation in designing arms. Computer graphics can show
the workspace of a given geometric configuration without even
requiring a built model. The location of singularities can be
determined and modified. The control engineer can use graphic
simulations to choose motors and a control system design for
a new robot. Graphics output is a desirable part of dynamic
simulations, since a visual display can provide more informa­
tion to the designer than would printed numerical values.
Without simulation tools, u{any systems would have been im­
possible to design. For example, the Space Shuttle arm is inca­
pable of operating in a full gravitational field and was instead
designed, to a large extent, based on simulations (5).

Lastly, the value of graphic simulation cannot be underesti­
mated in education and research. Many of the principles of
robotic control can be taught through simulation, utilizing re­
alistic graphics to relatively large groups of students inexpen­
sively and safely. New robotic techniques are being developed
by researchers through simulation long before the actual hard­
ware systems are tested.

COMPONENTS OF A ROBOTIC SIMULATION SYSTEM

Depending on the application, there are many possible configu­
rations for a robotic graphic simulator system in terms of the
type of display, mode of entering data, method of saving the
output, the computer hardware doing the processing, and the
software controlling the system. Choices depend on the degree
of realism required, whether the simulation must run in real
time, the amount and type of interaction desired, and the
amount of resources that can be devoted to the system.

Displays can be based on either vector or raster display

I
1600 SIMULATORS, GRAPHIC

Figure 1. Real-time vector display of a new
robot geometry under development. Super­
imposed on the robot image is a dynamic
display of joint angles to allow the designer
to evaluate automatically generated trajec­
tories.

devices. Vector displays draw lines at arbitrary angles on a
screen and can quickly draw outlines of robotic systems. These
devices can be further subdivided into vector refresh displays
and storage-tube systems. In a vector refresh display, the
points are held in a memory and are constantly being drawn
on the screen. Figure 1 illustrates an application where the
features of this type of display are desirable. Vector refresh
displays allow smooth animation; but have the disadvantage
of flickering when a large number of points are on the screen.
Storage tubes accumulate an image in the screen itself and
eliminate the flicker even for very complicated drawings. Ex­
cept for a "write-through" mode where a weaker image can
be drawn, as on a vector refresh terminal, animation is only
possible by erasing the entire screen and redrawing. Raster
displays, on the other hand, are like conventional television
screens. Raster displays can be used to show solid-color-shaded
representations of objects, but require more computer process­
ing to generate a complete image. Figure 2 shows an applica­
tion (6) where such a solid representation is important in eval­
uating clearance between objects. Raster displays, of course,
can also be used to draw wire-frame skeletons of robot images.
Some simulation systems may use both vector and raster dis­
plays, a vector display to view a simulation in real or near
real time and a raster display to generate realistic images
for later documentation.

For recording the graphic output of a graphic simulation,
a number of devices are available. Plotters are ideal for saving
the images of vector displays. Some of the new laser printers
can be programmed to act as a plotter, and some can draw
shaded polygons and thus permit a realistic display. Of course,
for raster color-shaded graphics, film, video tapes, or laser
disks can be used for recording animations. An additional out­
put of some simulators is a file of robot motion commands.
Although the operator may specify the desired motion in a
format independent of the robot manufacturer, some systems,
in effect, compile this specification to one that the particular
robot can use later.

A number of input devices are used to enter commands
and graphical data into simulators. Virtually all systems in­
clude keyboards to enter information. A device such as a digi­
tizer, mouse, trackball, or a light pen can also be used to enter
graphical information. Often the graphic input device is used
to enter commands by moving a cursor on the computer screen
to a labeled area. The user then activates that choice by some
action such as pressing a button on a mouse or hitting a car-

Figure 2. A more realistic color-shaded image of a manipulator dis­
played on a raster device. This robot has the same kinematic geometry
as the one illustrated in Figure 1, but shows a more complete physical
description of the links. One of the purposes of this simulation was
to evaluate an automatic obstacle-avoidance scheme for the guidance
of an arm through the window of a car door (6). Courtesy of The
International Journal of Robotics Research, MIT Press.

riage return key. Some systems include data bases of alterna­
tive robot geometries, thus greatly reducing the amount of
graphic data that needs to be manually entered.

A wide range of computer hardware supports graphic simu­
lations. Simulators run on micro-, mini-, and mainframe com­
puters. Figure 3 provides an example of a commercially avail­
able microprocessor-based system. The display may be a
graphics terminal connected to a host through a serial line.
Display processors can be more sophisticated and may be con­
nected to a host by parallel ports with DMA (direct memory
access) access to the host's memory. Display processors include
high performance vector displays with real-time update capa­
bilities. Some raster systems contain frame buffers, which are
memory arrays of dimension of the screen resolution and con­
tain the color data for each pixel on the screen. Many systems
add local processing power to do polygen fill, vector generation,
character and circle generation, zoom, pan, and so on. Several
systems are based on special-purpose VLSI (very large scale
integration) scale chips that have been designed to perform
quickly computations needed in graphics (7). Some systems
combine processing power and memory to do hardware depth
sorting, ie, polygons in three-dimensional space are properly
displayed so that closer polygons obscure more distant ones,
independently of the order in which they are drawn. Some
graphics controllers reside in the backplane of a personal com­
puter (PC) and share memory with the host microprocessor.
Other graphic simulations run on engineering workstations.
Such systems are usually based on powerful computer pro­
cessors, often have sophisticated graphics, and are designed
for a single user. Whereas many of these systems run a variety
of software products, some are designed to be a complete turn­
key system, as a dedicated tool for a particular analysis or
design problem, such as mechanical CAD/CAM.

Similarly, software varies considerably for different robotic
simulators. Many robot designers and researchers have writ­
ten their own software systems to meet the needs of their
requirements and have explained the basic principles through
publications (8-10). In some cases, software is available specif­
ically for robot simulation; in others, it is within the capabili­
ties of other software systems such as mechanical CAD/CAM

Figure 3. The CimStation interactive workcell modeling system by
SILMA, showing their computer-graphic-simulation option running
on a personal computer. Courtesy of SILMA, Inc., Los Altos, Calif.

SIMULATORS, GRAPHIC 1601

packages. For many systems, the graphics can be used as a
final output, verifying programming, operation, or control
specified by some robot-control or simulation language (11).
Some new systems are designed in the framework of expert
systems and allow the user to specify the robotic structure
in an object-oriented programming style (12).

ROBOT MODELING

In this section, the theory behind robot simulations is dis­
cussed. There are two general types of robot simulations: kine­
matic and dynamic (see also KINEMATics). Kinematic simula­
tions show the motion of a manipulator without regard to
how those motions are achieved by actuator forces and torques,
whereas dynamic simulations consider masses, forces, and
torques to calculate the resulting motion (13). If it is known
that the robot has been designed to meet certain kinematic
specifications, then the production engineer does not need to
consider the systems dynamics explicitly and can instead con­
centrate on motion planning. Even when a dynamic simulation
is done, the resulting motion can be specified kinematically
and then displayed with a kinematic-based graphics system.

The modeling of a robot system can be divided into a func­
tional description of its motion and a physical description of
its actual geometry. The first part of the model can be divided
into a kinematic description of the robot itself and a means
of trajectory planning to achieve a desired motion. The second
part is concerned with modeling and three-dimensional char­
acteristics of the robot's shape.

Kinematics

In order to simulate the motion of a robot, the kinematic struc­
ture of the particular robot must first be defined. This structure
is usually described by a notation like that developed by De­
navit and Hartenberg (14). Using this notation, each degree
of freedom within an articulated robot is assigned a unique
coordinate system, with the relationship between adjacent co­
ordinate systems defined by four parameters. The degrees of
freedom of the robot, either rotary or prismatic, are referred
to as joints and the interconnecting portions are call~d links.
The four parameters used to specify the relationships between
coordinate systems are the length of the link a, the twist of
the link a, the distance between links d, and the angle between
links 9. The definition of these parameters for both rotary
and prismatic degrees of freedom is illustrated in Figure 4.
A simple procedure for defining the origins of the various coor­
dinate systems is given in Ref. 15. More complicated joints,
such as ball-and-socket joints, can be modeled mathematically
as combinations of simple joints. It should be noted that these
parameters only specify the kinematic structure of a robot
and do not describe the physical appearance of its links.

Given the above specification of coordinate frames, the rela­
tionship between adjacent coordinate frames is given by a rota­
tion of 9, followed by translations of d and a, and a final rota­
tion of a. By combining these transformations, it can be shown
(15) that the relationship between adjacent coordinate frames
i and i - 1, denoted by i-1A; is given by the homogeneous
transformation matrix

•
1602 SIMULATORS, GRAPHIC

Figure 4. The definition of the Denavit and Hartenberg parameters for describing the kinematic
relationship between robot links. The joint rotation angle, as depicted, is negative. Courtesy of
Pergamon Press.

where

and

[
Rsxs Pax1l· i-1~=

0 0 0 1

[

cos 8;

R = s~8;
- cos «;sin 6;

cosa;cos6;
sin a;

sin «;sin 6; l
- sin «;cos 6;

cos«;

p• [:;:::].

(1)

(2)

(3)

The above homogeneous transformation matrix has an easily
visualized physical interpretation. The submatrix R, which
is sometimes called the rotation matrix, is composed of the
direction cosines between the two related coordinate systems;
thus it represents the three-dimensional rotation required to
align the two coordinate systems. The vector p is a position
vector, which specifies the difference in position between the
origins of the two coordinate systems.

By multiplying adjacent link transformations, the homoge­
neous transformation between any two coordinate systems i
andj may be computed as follows:

iA _;A i+lA i-lA (4)
j- i+l ~+2·.. j

Using the above equation, the position and orientation of a
robot's end effector can be computed given the values of the
joint variables, ie, 8 for rotary joints and d for prismatic joints.
This computation is typically referred to as the direct kinemat­
ics problem. Note, however, that when applying robots for
the completion of some useful task, the reverse problem needs
to be solved. That is, given the position and orientation of
the robot's end effector, the required joint values need to be
found. This problem, referred to as the inverse kinematics
problem, is not as easily solved (15).

Trajectory Planning

The solution of the inverse kinematics problem usually relies
on the evaluation of inverse trigonometric functions and is
restricted to particular robot geometries. A general closed-form
solution for an arbitrary robot structure has not been found.
However, for those geometries for which solutions do exist,
inverse kinematics represents the simplest method for control­
ling robots used in pick-and-place tasks. For tasks described
in these terms, such as some assembly and materials handling
tasks, only selected configurations of the end effector are im­
portant for successful task ·completion. Paths between such
configurations are unconstrained, except for such global con­
siderations such as collision avoidance. Motion planning for
such cases can consist of inverse kinetriatics for selected
configurations with joint interpolation in between. In other
cases, some Cartesian control between configurations may be
required. Thus straight-line motion, combined with one- or
two-axis rotations between configurations, is popularly em­
ployed (16,17).

In a growing number of applications, however, the above
inverse kinematics techniques are not sufficient. When used
for arc welding or paint spraying, for example, tool paths re­
quired for successful completion are not only based on a fixed
set of positions and orientatio~. but must be controlled along
particular trajectories at specified rates. In order to simulate
motion planning at this level, the concept of resolved-motion
rate control was developed (18). Essential to this concept is
the Jacobian matrix. The Jacobian matrix J relates the velocity
of the robot's end effector to the joint variable velocities
through the equation

Ja= [xw·] (5)

where x is a three-dimensional vector defining the transla­
tional velocity, w is a three-dimensional vector defining the
rotational velocity, and 9 is ann-dimensional vector represent­
ing the joint velocities, n being the number of degrees of free­
dom that the robot possesses. Although a number of techniques

for calculating the Jacobian have been studied (19), a particu­
larly elegant and efficient method for graphic simulators is
available that only uses the position vector p and one column
of the rotation matrix R of the homogeneous transformations
0Ai, fori= 1-n (20). In this application of screw-axis variables,
the only computation required, other than that required for
the homogeneous transformations, is a single cross-product
per column of J. This formulation, therefore, is particularly
useful for graphic simulators, since the individual homoge­
neous transformation matrices must already be computed for
generating a display of the robot.

Thus for tasks specified as desired end-effector velocities,
the required joint velocities to achieve the task are obtained
by solving the linear set of equations given by equation 5.
The desired joint velocities are given by

(6)

if J is square and nonsingular. For those cases where the
number of degrees of freedom do not match the dimension of
the specified velocity or if J is singular, J-1 is not defined.
In these cases, even though the inverse of the Jacobian does
not exist, there do exit generalized inverses or other techniques
that provide useful solutions to equation 6 (21-23).

Geometric Representation

The kinematic specification of robots described above is suffi­
cient for defining motion; however, it says nothing about the
physical structure of a robot, ie, what are the shapes of the
various links, actuators, and so on. These qualities, which
are important for checking for such critical features as colli­
sions as well as providing a realistic graphic display, require
geometric modeling techniques (24). There exist a variety of
ways to represent the shape of three-dimensional objects, but
they all belong to basically one of two groups: boundary or
surface representations, and solid representations.

Surface representations, as the name implies, consist of
two-dimensional primitives which are used to define the
boundary or surface of the solid object to be modeled. There
is no explicit modeling of the soll.d composing the object other
than that implied by a closed surface. Whereas there are a
number of different primitives used for describing surfaces,
planar polygons are the most frequently employed. This is
due to the fact that planes can be described by linear equations
which greatly simplifY many of the algorithms required to
display objects (see the following sections). Thus a solid three­
dimensional object can be modeled by a collection of polygons
which are used to approximate its surface. These polygons
are usually described by the positions of their vertexes. A typi­
cal data format for objects described in the above manner is
seen in Figure 5. The variables i andj are integers that corre­
spond to the number of points and the number of polygons,
respectively, used to describe the object. The next i rows of
numbers corresponds to the x, y, and z coordinates of the
points. The last j rows of numbers are integers that define
the vertexes of the polygons. The first column contains the
number of vertexes for that particular polygon, with the re­
maining columns specifying the vertexes by an index into the

SIMULATORS, GRAPHIC 1603

i - number of points
j - number of polygons

Figure 5. A typical data-file format for the description of objects de­
fined by polygonal surfaces.

point list. Since each vertex "coordinate is defined only once
and is referenced in a polygon by its index, a considerable
amount of storage is saved over explicitly listing the coordi­
nates in each polygon. Additional parameters can be added
to describe such properties as color, reflectance, etc, which
are then used by the illumination model.

The difficulty with describing object surfaces as a collection
of planar polygons is that they provide a poor approximation
to curved surfaces. For this reason, primitives called para­
metric surfaces or patches, which are usually described by
higher order polynomial equations, are often used (25). Of
these, bicubic equations are commonly employed since they
allow first-order continuity between adjacent patches, result­
ing in smooth composite surfaces. It should be noted, however,
that the same features of parametric surfaces that bring flexi­
bility to surface modeling also result in complexity in display
algorithms. Although display algorithms that use parametric
surfaces directly do exist, it is common to first subdivide
patches into a collection of polygons and then deal with the
simpler linear surfaces.

In contrast to surface representations, solid representations
explicitly describe the interior as well as the boundary of ob­
jects. One such representation is constructive solid geometry,
where an object is defined by Boolean operations on a set of
solid primitives (26). The solid primitives used are usually
restricted to very simple shapes and therefore have difficulty
in modeling free-form solids. In contrast, probably the most
flexible solid representation is the three-dimensional general­
ization of the parametric surface known as a hyperpatch (27).
Once again, however, this flexibility results in computational
complexity for the display algorithms so that this representa­
tion is only used when such flexibility is essential.

COMPUTER GRAPHICS

Viewing Transformations

One of the major purposes of computer-graphics is to simulate
the three-dimensional characteristics of an object visually, by
displaying what that object would look like from various differ­
ent points of view. In order to describe the relationship be­
tween the viewer and the objects to be simulated, it is conve­
nient to define three parameters that specify this relationship:
the eyepoint (EP), which is the simulated position of the
viewer; the center of interest (COl), which is the point at which

1604 SIMULATORS, GRAPHIC

the viewer's eyes are directed; and the view angle (VA), which
defines the cone of vision. Having defined these three parame­
ters, the positions of objects described in a world data-base
coordinate system can now be related to the coordinates of a
particular graphics output device through the use of homoge­
neous transformations.

The first of these transformations, which is typically re­
ferred to as a point-of-view transformation, aligns the direc­
tions of the x, y, and z axes to those of the output device.
This resulting coordinate system is sometimes referred to as
eyespace coordinates. The homogeneous transformation relat­
ing coordinates in worldspace to eyespace is given by

resolution, and device-coordinate system position and orienta­
tion. Whereas it is possible to combine all three transforma­
tions by multiplying together the three corresponding ma­
trices, the final screen transform is usually performed
separately. The intermediate form of the object data after the
perspective transform is then used for further processing, the
first step of which involves clipping.

Clipping

Clipping is the process by which only the desired portions of
objects are retained for display, with the others being "clipped."

[

cos 9
- sin9 sin<!>
- sin9cos<!>

0

0
cos<!>

""'"sin<!>
0

-CO!, cos 9 +CO!, sin 9 l
COl, sin 9 sin <I> - COl,. cos <I> + COIZ cos 9 sin <I>

CO!, sin 9' cos <I> + co:r,. s~ <I> + COIZ cos 9 cos <I> + I vi

- sin9
-cos9sin<!>
-cos9cos<!>

0

with

COS 9 = Vz
yv2 + v2

X Z

sin 9 = Vx
ylv2 + v2

X Z

"'~ cos'+'= lvl

v
cos <I>= .:z

I vi

where v is the vector from the EP to the COL
The next transformation that is typically applied is a per­

spective transform, which results in realistic depth perception.
It is convenient to represent this transform in the following
form:

VA
0 0 0 cot-

2

0
VA

0 0 cot-
2

0 0 Zmax ZminZmax

Zmax- Zmin Zmin- Zmax

0 0 1 0

This transform is in a device-independent format, with screen
coordinates being in the range -1 to + 1 in the horizontal x
and the vertical y directions, and 0-1 in the depth z direction.
This is particularly useful for simulators that possess multiple
output devices of different resolutions. The values Zmin and
zma:c are the minimum and maximum eyespace coordinate
values, which are to be mapped to screen coordinates. The
use of screen z coordinates in the context of hidden surface
removal will be discussed in a following section. For display
on a particular device, objects must only undergo ,one final
transformation, which contains the device-dependent charac­
teristics. This transformation includes such information as
horizontal and vertical screen resolution, aspect ratio, depth

This is usually required since most output display devices
have a limited range of coordinates; thus display coordinates
must be limited to available values in order to prevent wrapa­
round. The particular choices of the view angle, and zmin and
zma:c in the transformations discussed above, imply a volume
of allowable coordinates in three-dimensional space. Due to
the perspective transformation, this volume is in the shape
of a truncated pyramid. An important step in all clipping algo­
rithms is determining whether a point lies inside or outside
of this volume. This problem is usually broken down into six
subproblems, ie, whether a point lies on the inside of the six
planes that define the truncated pyramid. It is important to
note that even though these points have been multiplied by
the perspective transformation matrix, normalization, ie, divi­
sion by the homogeneous coordinate, should not be performed
before clipping (28).

.The choice of clipping algorithm depends to some extent
on the form of the desired output, in particular, whether the
output will be displayed as a line drawing or as shaded poly­
gons. Even though there are a number of efficient algorithms
for clipping objects described as a collection of line segments
(29), there are advantages to using a more computationally
expensive polygon .clipping algorithm. In Particular, since a
polygonal format is most widely used for graphics data bases,
a polygon clipper will preserve this format. In addition, clipped
data in a polygonal format can be displayed equally well as
a line drawing or a shaded image, thus retaining flexibility
in output devices. The most popular polygon clipping algorithm
is one developed by Sutherland and Hodgman (30). This algo­
rithm, referred to as reentrant polygon clipping, defines a poly­
gon to be a collection of vertexes that are checked against
the six clipping planes in turn. Those vertexes that are inside
are retained, whereas those on the outside are discarded, with
additional vertexes added when a polygon edge intersects a
clipping plane.

Hidden Surface Removal

Whereas the above clipping process guarantees that all re­
maining objects are within the defined viewing area, they are
still not all visible on the display. A further processing step
is needed to determine which objects or portions of objects
are in front of and occluding others. This process, known as

~-

1

hidden surface removal, has a number of different solutions,
a taxonomy of which is presented in Ref. 31. The common
characteristic of all algorithms is that they must sort objects
in order to determine which ones are in front of others. One
major difference between algorithms is based on whether this
sorting is done in object space, that is, the coordinate space
in which the objects are defined, or in image space, ie, the
screen-coordinate system. The object-·space algorithms are in
general more precise; however, image-space algorithms enjoy
an advantage in efficiency. Although no one algorithm is
clearly superior over all others, the depth or z-buffer algorithm
is currently the most widely implemented for graphic simula­
tors.

The z-buffer algorithm is basically an extension of the
frame-buffer concept. It is a simple hardware solution to hid­
den surface removal, which maintains an additional buffer

" that is used to store the current depth value of the closest
object at each pixel. Thus depth sorting is trivially accom­
plished by checking an object's depth against that which is
currently in the z-buffer. The chief disadvantage previously
cited against this algorithm was the large amount of memory
required to maintain this additional buffer. When considering
the current trends in size and cost of high speed memory,
however, these concerns are no longer a prohibitive factor.
Additional disadvantages include aliasing effects, but exten­
sions to the z-buffer algorithm have shown that these can be
corrected as well (32). All in all, the z-buffer's simplicity and
speed account for its popularity, especially in cases where real­
time simulation is required.

Illumination Models

When dealing with solid-shaded graphic displays, an illumina­
tion model must be included in the simulation in order to
determine the displayed intensity of objects. In the real world,
the way an object appears is a result of various physical proper­
ties of the object, which determine how light is absorbed, trans­
mitted, and reflected. Other factors that affect this appearance
include properties of the light source and positional relation­
ships among the object, viewer, and light sources. The extent
to which these factors are included in the simulation deter­
mines the amount of realism achievable. The tradeoff, natu­
rally, is that the more accurately these effects are represented
in the computer model, the more computationally expensive
it becomes. For this reason, there exists an entire range of
illumination models that are used in graphic simulations.

Basic illumination models start with a simple model of dif­
fuse illumination based on Lambert's law (29). This gives the
reflected intensity of an object as being only a function of the
incident-light direction and the object's surface normal. The
modeling of ambient light is typically included as a constant
term, except in the more refined models. The modeling of spec­
ular reflection can be included as an additive component by
also considering the relative position of the viewer. Further
refinements to the specular component can include modeling
of the spatial distribution of the reflected light, as well as its
wavelength dependence. The application of these models to
objects defined by planar elements will result in shading dis­
continuities due to the discontinuity in surface normals.
Whereas this may be of no concern for objects that actually
do consist of planar surfaces, it presents difficulties when mod-

SIMULATORS, GRAPHIC 1605

eling smooth curved surfaces. Solutions to this problem, with­
out increasing the number of polygons used to describe the
surface, have been presented (33). By using bilinear interpola­
tion on the intensities obtained at polygon vertexes, a smooth
shaded surface will result. Improvements in this smooth-shad­
ing scheme can be made by interpolating the surface normals
instead of the intensity at the expense of extra computation
(34).

The common characteristic of the models discussed above
is that they all use only local information, such as surface
normals, incident-light direction, and line-of-sight direction,
to determine an object's intensity. Although these models are
the most common for graphic simulators due to their computa­
tional efficiency, models that incorporate global information
can produce much more realistic images. The most common
of these algorithms are based on ray tracing (35). Ray tracing
is based on following a beam of light from the viewer's eye,
through a pixel, and into the world in which the objects are
defined. Calculations, based on which objects this beam inter­
sects and how it is split due to reflection and refraction, are
used to determine the intensity displayed at that pixel. This
technique easily incorporates shadows, transparency, reflec­
tion, and refraction, and has resulted in the most realistic
computer-generated images to date. Its major disadvantage,
however, is that it is very computationally expensive and as
such is typically employed for small numbers of high quality
promotional photos.

Aliasing

When using raster display devices, the effects of aliasing
should be considered if high quality images are desired. Alias­
ing effects, which are most often represented by the jagged
or staircase appearance of straight lines, are an inherent part
of fixed-period sampling. Algorithms that use such spatial
sampling to determine the intensity of pixels on the screen
will exhibit aliasing effects. Aliasing effects are particularly
objectionable when viewed in animations, since the viewer
readily notices this display artifact changing over time. Tem­
poral aliasing can also be present in animations as a result
of sampling in time. The funda.Jl!ental principle in either type
of sampling, spatial or temporal, is that frequencies greater
than one-half of the sampling frequency cannot be distin­
guished and will appear to be composed of lower frequency
"aliases." There are basically three approaches to solving the
aliasing problem, or in other words, antialiasing.

The first approach to antialiasing is to increase the sam­
pling frequency. Thus for a display device with a given resolu­
tion, instead of computing one intensity for each pixel, the
image is computed at a higher resolution with the samples
then averaged to provide the intensity for a pixel (36). Whereas
this technique works reasonably well, it becomes impractical
when a scene contains very high frequency components. A
second approach is to limit the frequency components of objects
within a scene to below half of the sampling frequency. This
operation is known as low pass filtering or convolution (29).
A simple method that is equivalent to low pass filtering is to
consider pixels as consisting of finite areas instead of point
samples. Filtering operations, however, are in general rather
computationally expensive. A third approach to antialiasing
is to avoid using fixed-period sampling. If stochastic techniques

1606 SIMULATORS, GRAPHIC

are applied to the sampling process, it can be shown that
aliases will not be present (37,38). The tradeoff is that instead
of aliases, stochastic sampling introduces broad-band noise
into the image. It appears, however, that this noise is psycho­
logically less objectionable than the ordered error of aliases
and is therefore a viable technique for antialiasing.

GRAPHIC SIMULATOR ORGANIZATION

This section is a discussion of how the above concepts are
integrated into a complete system, with an overview of the
software modules involved and an emphasis on their interac­
tion. A diagram of a generic graphic-simulator system is pre­
sented in Figure 6, where various input and output databases
and their associated program modules are defined. This figure
is meant to be a functional diagram only and does not necessar­
ily imply a physical separation between its elements. For ex­
ample, the blocks of this figure commonly are coroutines in a
large integrated system.

The first requirement of a robotic simulator is to have a
means of specifying the robot to be simulated. Conceptually,
a robot representation can be divided into two components: a
functional definition of its kinematic parameters and associ-

KINEMATICS
MODELLING
PROGRAM

ROBOT
KINEMATICS
DATA BASE

GRAPHICS/
ANIMATION

CAD/CAM
MODELLING
PROGRAM

OBJECT POSITIONING

PROGRAM

FIXTURES and
PRODUCT
DATA BASE

WORK CELL
DATABASE

Figure 6. Organization of a general graphic-robotic-simulation sys­
tem. Rectangles indicate software modules and circles indicate data.

ated data, such as joint limitations; and a physical description
of the actual geometry of the robot's links, actuators, and so
on. A software module that can define and modify the kine­
matic parameters of a robot is useful for determining such
features as workspace limitations and is instrumental in the
design process. The modeling of a robot's physical geometry
is performed by standard mechanical CAD/CAM-type soft­
ware. This modeling software serves a dual purpose since it
is also used to model the desired final product, a:s well as
fixtures with which the robot is to operate. A complete robot
specification, functional and geometric, is often stored in a
database library of commercially available robot systems. This
simplifies the selection process and allows flexibility in evalu­
ating the performance of prospective robots for a particular
task or workcell arrangement. The capability of modifying
these robot specifications, however, is still important since
standard models are sometimes customized for special applica­
tions.

Since one of the major applications of graphic simulators
is to model the integration of robots into a manufacturing
process, it is essential to have software available that can
aid in the specification of workcell arrangements. The inputs
into such a program are the complete robot description, fix­
tures and/or other machines that are required by the process,
and a description of the product itself. The positioning of the
robot and other movable objects and transport systems can
then be specified. This process is to some extent an iterative
procedure in which objects are placed, and then such con­
straints as the working envelope are checked until an optimum
solution is achieved. This may require substitution of alterna­
tive robot geometries, illustrating the interaction with the soft­
ware module described above.

The static positioning of objects within a workcell, however,
is only a small part of its design. The major responsibility of
robotic simulators is to model time-varying characteristics to
ensure proper operation. This requires a complete geometric
description of all objects within the workcell, including how
they change over time; the kinematic, dynamic, and controller
information for the robot being simulated; and a description
of the task or process to be completed. This is the level that
corresponds to teaching a physical robot. Robot simulation
as a means of off-line· programming has a mi.mber of advan­
tages in terms of cost, time, and safety. The level at which
the designer interacts with this module varies with the sophis­
tication of the system. Some systems are menu-driven, which
has a certain resemblance to teaching a robot with a pendant
since discrete choices are made. However, a menu-driven sys­
tem is more powerful since some options correspond to opera­
tions not easily performed with a physical manipulator. Alter­
natively, many simulators use a device-independent pro­
gramming language, which is used to specify the robot's
motion. This language can be of a relatively low level, which
requires position information for the robot's end effector. More
sophisticated languages, however, can take into account all
of the geometric information available from the workcell and
product descriptions, as well as process-control specifications,
and independently produce end-effector trajectory information
from high level commands. Once again, the optimization of
motion control is more or less an iterative procedure, which
may require modification of the robot's trajectory or the work-

SIMULATORS, GRAPHIC 1607

Figure 7. A graphic simulation display of a complete workcell with two arms cooperating on a
product assembly line. This display is from McDonnell/Douglas using their integrated family of
robot simulation systems. Courtesy of McDonnell/Douglas Manufacturing and Engineering Sys­
tems Company.

cell arrangement. It may be even necessary to go back and
try a different robot geometry. Once the process is completed,
most simulators can translate the motion-specification com­
mands into a device-dependent controller format for download­
ing into the physical robot on the factory floor.

The final logical software component of the simulator sys­
tem is used concurrently with all of the above procedures,
namely, the actual graphic display and animation software.
While performing the previously described design stages, the
engineer uses computer graphics to view the progress of the
design interactively. Saved data can also be postprocessed to
achieve even more realistic representation for documentation.
Graphic simulations give the designer the ability to take geo­
metric models and display them in three dimensions, allowing
the designer to look at them from any angle or any degree of
detail. Thus it is used during the initial CAD/CAM modeling
phase to provide direct visual feedback on product or robot
specifications. In the next stage, it also provides the ideal inter­
face for evaluating the workcell design. Figure 7 shows an
example simulation of an entire workcell in operation. With
the information on the time-changing variables from the mo­
tion-control module, it can produce real-time animations for
detecting collisions between elements, optimizing end-effector
motion, and generally checking the quality of the overall man­
ufacturing process.

BIBLIOGRAPHY

1. M. Donner, "Computer Simulation to Aid Robot Selection" in A.
Pugh, ed., Robotic Technology, Peter Peregrinus Ltd, London, UK,
1983, pp. 103-111.

2. R. Mahajan and J. S. Mogul, "An Interactive Graphic Robotics
Instructional Program-I GRIP: A Study of Robot Motion and
Workspace Constraints," Robots 8, 41-56 (June 1984).

3. J. F.,e'allan, "The Simulation and Programming of Multiple-arm
Robot Systems," Robotics Eng. 8 (4), 26-29 (Apr. 1986).

4. E. Freund and H. Hoyer, "Collision Avoidance in Multi-robot Sys­
tems" in H. Hanafusa and H. Inoue, eds., Robotics Research: The
Second International Symposium, MIT Press, Cambridge, Mass.,
1985, pp. 135-146.

5. A. K Bejczy, "Sensors, Controls, and Man-machine Interface for
Advanced Teleoperation," Science, 208, 1327-1335 (June 20,
1980).

6. A. A. Maciejewski and C. A. Klein, "Obstacle Avoidance for Kine­
matically Redundant Manipulators in Dynamically Varying Envi­
ronments," Int. J. Robotic Res. 4(3), !09-117 (Fall1985).

7. J. H. Clark, ''The Geometry Engine: A VLSI Geometry System
for Graphics," Comput. Graphics 16(3), 127-133 (July 1982).

8. A. A. Maciejewski and C. A. Klein, "SAM-Animation Software
for Simulating Articulated Motion," Comput. Graphics 9(4), 383-
391 (1985).

•
1608 SIMULATORS, GRAPHIC

9. M. Hornick and B. Ravani, "Computer-aided Off-line Planning
and Programming of Robot Motion," Int. J. Robotics Res. 4(4),
18-31 (Winter 1986).

10. P. A. Fitzhom and W. 0. Troxell, "A Dynamic Approach to the
Robotic Design Cycle" in 1986 Proc. IEEE Int. Conf on-Robotics
and Automation, San Francisco, Calif., Apr. 1986, pp. 353-358.

11. W. A. Gruver, B. I. Soroka, J. J. Craig, and T. L. Turner, "Indus­
trial Robot Programming Languages: A Comparative Evaluation,"
IEEE Trans. Syst. Man Cybernetics SMC-14(4), 1-7 (July-Aug.
1984).

12. R. Dillmann and M. Huck, "A Software System for the Simulation
of Robot Based Manufacturing Processes," Robotics 2(1), 3-18
(Mar. 1986).

13. K S. Fu, R. C. Gonzalez, and C. S. G. Lee, Robotics: Control,
Sensing, Vision, and Intelligence, McGraw-Hill, Inc., New York,
1987.

14. J. Denavit and R. S. Hartenberg, "A Kinematic Notation for Lower
Pair Mechanisms Based on Matrices," ASME J. Appl. Mech. 22(2),
215-221 (June 1955).

15. R. Paul, Robot Manipulators: Mathematics, Programming, and
Control, MIT Press, Cambridge, Mass., 1981.

16. R. Paul, "Manipulator Cartesian Path Control," IEEE Trans. Syst.
Man Cybernetics, SMC-9(11), 702-711 (Nov. 1979).

17. R. H. Taylor, "Planning and Execution of Straight Line Manipula­
tor Trajectories," IBM J. Res. Dev. 23(4), 253-264 (July 1979).

18. D. Whitney, "The Mathematics of Coordinated Control of
Prostheses and Manipulators," J. Dyn. Syst. Meas. Control94(4),
303-309 (Dec. 1972).

19. D. E. Orin and W. W. Schrader, "Efficient Jacobian Determination
for Robot Manipulators" in M. Brady and R. Paul, eds., Robotics
Research: The First International Symposium, MIT Press, Cam­
bridge, Mass., 1984, pp. 727-734.

20. K J. Waldron, "Geometrically Based Manipulator Rate Control
Algorithms," Mech. Mach. Theory, 17(6), 379-385 (1982).

21. C. A. Klein and C. H. Huang, "Review of Pseudoinverse Control
for Use with Kinematically Redundant Manipulators," IEEE
Trans. Syst. Man Cybernetics SMC-13(2), 245-250 (Mar.-Apr.
1983).

22. A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory
and Applications, Wiley-lnterscience, New York, 1974.

23. T. L. Boullion and P. L. Odell, Generalized Inverse Matrices, Wiley­
Interscience, New York, 1971.

24. M. E. Mortenson, Geometric Modeling, John Wiley & Sons, Inc.,
New York, 1985.

25. D. F. Rogers and J. A. Adams, Mathematical Elements for Com­
puter Graphics, McGraw-Hill, Inc., New York, 1976.

26. A. A. G. Requicha, "Representations for Rigid Solids; Theory,
Methods, and Systems," Comput. Suro. 12(4), 437-464 (Dec.1980).

27. M. S. Casale and E. L. Stanton, "An Overview of Analytic Solid
Modeling," IEEE Comput. Graphics Appl. 5(2), 45-56 (Feb. 1985).

28. J. F. Blinn and M. E. Newell, "Clipping Using Homogeneous Coor­
dinates," Comput. Graphics, 12(3), 245-251 (1978).

29. D. F. Rogers, Procedural Elements for Computer Graphics,
McGraw-Hill, Inc .. New York, 1985

30. I. E. Sutherland and G. W. Hodgman, "Reentrant Polygon Clip­
ping," CACM 17(1), 32-42 (1974).

31. I. E. Sutherland, R. F. Sproul, and R. A. Schumacker, "A Charac­
terization of Ten Hidden Surface Algorithms," Comput. Surveys,
6(1), 1-55 (1974).

32. L. Carpenter, "The A-buffer: An Antialiased Hidden Surface
Method," Comput. Graphics 18(3), 103-108 (July 1984).

33. H. Gouraud, "Continuous Shading of Curved Surfaces," IEEE
Trans. Comput. C-20(6), 623-629 (June 1971).

~4. B. T. Phong, "Illumination for Computer Generated Pictures,"
CACM 18(6), 311-317 (June 1975).

35. T. Whitted, "An Improved Illumination Model for Shaded Display,"
CACM 23(6), 343-349 (June 1980).

36. F. C. Crow, "A Comparison of Antialiasing Techniques," IEEE
Comput. Graphics Appl. 1(1), 40--70 (Jan. 1981).

37. M. A. Z. Dippe and E. H. Wold, "Antialiasing Through Stochastic
Sampling," Comput. Graphics 19(3), 69-78 (July 1985).

38. M. E. Lee, R. A. Redner, and S. P. Uselton, "Statistically Optimized
Sampling for Distributed Ray Tracing," Comput. Graphics 19(3),
61-67 (July 1985).

SOFTWARE ELEMENTS
T.J.TARN
Washington University
St. Louis, Missouri

A. K. BEJCZ¥

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

INTRODUCTION

In recent years the use of industrial robots throughout indus­
try has increased significantly. In many industrial applications
such as painting, transporting, palletizing and many times
even arc welding, programming of a sequence of movements
is done through a "teaching by doing" process in which a hu­
man operator physically takes the robot hand through the
desired sequence. When operating the robot, the controller
reads the memory by a playback method. In such a situation,
however, the robot can only repeat what it has been taught.

In some cases, where the kinematic design is simple enough
and the dynamic control demands are low, on-board computing
power is used to perform the necessary coordinate transforma­
tion between the joint coordinates, which are controlled di­
rectly, and the task coordinates, which are convenient to the
task description. In such cases robot motions can be pro­
grammed from a computer keyboard, and the motions of robot
arm joints can be controlled through the kinematic transfor­
mation of coordinates.

When the performance requirements for industrial robots
are increased and involve accurate, fast, and versatile manipu­
lations, dynamic effects become significant. This requires the
control of a multi-input multi-output system described by a
set of highly nonlinear, strongly coupled differential equations.

During the last decade, many papers discussed the control
of robots through dynamic effects. Refs. 1-5 suggest using
linearized system models as the basis for control. However,
the implementation of a linear regulator in a robot system
leads to many problems because the complex robot control
has been synthesized based on the approximate linear model.
This was demonstrated by a digital computer simulation of
various control methods in Ref. 6.

I
f

