
DISSERTATION

THE NUMERICAL ALGEBRAIC GEOMETRY APPROACH TO POLYNOMIAL

OPTIMIZATION

Submitted by

Brent R. Davis

Department of Mathematics

In partial fulfillment of the requirements

For the Degree of Doctor of Philosophy

Colorado State University

Fort Collins, Colorado

Summer 2017

Doctoral Committee:

Advisor: Daniel J. Bates
Co-Advisor: Chris Peterson

Michael Kirby
A.A. Maciejewski

Copyright by Brent R. Davis 2017

All Rights Reserved

ABSTRACT

THE NUMERICAL ALGEBRAIC GEOMETRY APPROACH TO POLYNOMIAL

OPTIMIZATION

Numerical algebraic geometry (NAG) consists of a collection of numerical algorithms,

based on homotopy continuation, to approximate the solution sets of systems of polynomial

equations arising from applications in science and engineering. This research focused on

finding global solutions to constrained polynomial optimization problems of moderate size

using NAG methods. The benefit of employing a NAG approach to nonlinear optimization

problems is that every critical point of the objective function is obtained with probability-

one. The NAG approach to global optimization aims to reduce computational complexity

during path tracking by exploiting structure that arises from the corresponding polynomial

systems. This thesis will consider applications to systems biology and life sciences where

polynomials solve problems in model compatibility, model selection, and parameter estima-

tion. Furthermore, these techniques produce mathematical models of large data sets on

non-euclidean manifolds such as a disjoint union of Grassmannians. These methods will also

play a role in analyzing the performance of existing local methods for solving polynomial

optimization problems.

ii

ACKNOWLEDGEMENTS

I would like to thank my PhD advisors, Professors Dan Bates and Chris Peterson for

supporting me during the last six years. They have both been extremely generous with the

time and funding and I could not imagine achieving what I have without them. Dan has an

immense quantity of community outreach. What I have learned from Dan is that volunteering

and giving back to the mathematics community is just as important as producing high quality

research. He is a true visionary in numerical algebraic geometry and strives at looking toward

the future of the area rather than what is going to be in the next publication. Chris has a

wealth of knowledge of almost every aspect of mathematics. On any give day, he could show

you probably 20 different unique and interesting projects. I really enjoyed working with him

in his office and learned so much.

I am thankful for Professors Anton Leykin and Josephine Yu who had organized the 2012

IMA PI Summer Program for Graduate Students. This was one of my first big events as a

graduate students and really kick started my interested in conferences in general. One of the

highlights of this event was hiking up Stone Mountain, walking through the trees filled with

fireflies, and then watching the lazer show projected on the side of the mountain detailing

the history of the civil war.

Thanks go to out to the local organizers of MEGA 2013 in Frankfurt, Germany. This was

not only my first international conference but also my first time traveling to a foreign country.

It was an amazing opportunity and Tara and I especially enjoyed the white asparagus,

apfelwein, and visit to Heidelberg during our short time there.

Thanks also go out to the organizers of AG15 in South Korea. This was an extremely

well run conference and especially loved exploring the countryside and visiting the Buddist

iii

temples near Daejeon. One of my highlights was of this trip was visiting Seoul on departure

day with Chris Peterson and Hirotachi Abo. On this day we managed traveled to Seoul by

train, visit one of the largest Buddhist temples in South Korea, travel around and visit the

cities monuments, and just barely have enough time to get to the gate at the airport. I would

especially like to thank Abraham Martin Del Campo for all of our interesting conversations

we had especially while sipping Soju in South Korea. It has always been a pleasure to have

your around and I always look forward to seeing you.

Also thank you to the organizers of the Pingree Park summer school. It was really fun to

hear lectures from the leaders of computational algebraic geometry and socialize. One of the

highlights of this trip was when Frank Sottille decided on organizing a group to hike up the

Mummy Range. In an extremely short amount of time, (a few hours in between lectures),

we tried to hike (run), up to the summit all while learning how difficult hiking at such a high

elevation in a short amount of time really is. Ironically, Frank Sottille sprained his ankle

immediately after arriving back to Pingree Park from the hike.

Special thanks to Dr. Andrew Sommese. When Andrew visited CSU on sabbatical he

and I spend hours discussing the foundations of numerical algebraic geometry. It was truly

an honor to be able to hear directly from one of the creators of the area in a context that I

would have never been able to achieve by simply reading books and papers.

I would also like to acknowledge all of the graduate students that were in the basement

of Weber during the first couple of years that I was at CSU especially Farrah, Tegan, Tim,

Douglas, and Josh. It was really nice to have a good support group in my first few years

of graduate school. I would also like to thank everyone in the front office of the Math

Department especially Bryan Elder and Sheri Hoefling.

iv

In addition, I would like to acklowedge SIAM for giving me the opportunity to represent

CSU at the annual meeting as well as my fellow officers during my two years of service: Tim

Marrinan, Farrah Sadre-Mirandi, Tegan Emerson, Melissa Swager, Bahaudin Hasmi, Eric

Hanson, Steve Ihde, Sofya Chepushtanova, and Drew Schhwickerath.

I would also like to acknowledge all of my collaborators in various forms and degrees:

Elizabeth Gross, Heather Harrington, Ken Ho, Michael Kirby, Dan Bates, Chris Peterson,

Justin Marks, Matt Niemerg, Eric Hanson, Matt Niemerg, Dani Brake, Tim Hodges, Andrew

Sommese, Jon Hauenstein, Joseph Rusinko, Emily Castner, Abraham Martin Del Campo,

Jose Rodriguez, Tim Marrinan, and David Ecklund. It was a pleasure to work will all of

you.

I also would like to thank my new friends I have gained since moving to Fort Collins

especially Kohli, Petrops, and ADB. They provided me with a balance in my life that I was

missing in the first couple of years of graduate school and I am grateful for their friendship.

I especially thank my mom, dad, and sister. My mom taught me to never give up even

when it felt impossible to move forward. She really motivated me to continue through my

third and fourth year of graduate school where I struggled the most. I would also like to

thank my dad for his unconditional love and genuine interest in what I have been up to each

week. I would also like to thank Sassafrass who was Tara’s beloved cat. Sassafrass passed

away this year and he will never be forgotten for his gentleness and affection.

The best part about moving to Colorado by far was meeting my girlfriend Tara. Tara has

played the largest role in my time here at CSU. Tara had been there supporting me through

nearly every major event as a graduate student including my first international conference,

part II of my qualifying exam, my preliminary exam, and finally in the last few days before

I submit my thesis to my committe by helping me edit and proofread it. She has provided

v

unconditional love even during my most stressful and pessimistic points along the way. I

enjoy seeing all of her successes between receiving her Master’s degree, working at CACI,

and finally becoming what she always wanted to be: a real forester. All of your success

and ability to handle failure has motivated and made me a stronger person. I love you very

much.

vi

TABLE OF CONTENTS

Abstract . ii

Acknowledgements . iii

List of Tables . xii

List of Figures . xiv

Chapter 1. Introduction . 1

Chapter 2. Mathematical Background. 5

2.1. Polynomial Systems. 5

2.1.1. Polynomials . 6

2.1.2. Algebraic Sets . 7

2.1.3. Irreducibility . 7

2.1.4. Zariski Topology and Complex Topology . 8

2.1.5. Singular Solutions and Multiplicity . 8

2.1.6. Probability-One and Genericity . 10

2.1.7. Randomization . 11

2.1.8. Numerical Approximation and Function Residual . 11

2.2. Homotopy Continuation. 12

2.2.1. Basic Idea of a Homotopy . 13

2.2.2. Homotopies . 14

2.2.3. Total-Degree Homotopies . 15

2.3. Predictor-Corrector Methods . 16

2.3.1. Continuation and Path Tracking . 16

vii

2.3.2. Path Tracking . 17

2.3.3. Predictor-Corrector Methods . 18

2.4. Parameter Homotopy . 19

2.5. Multihomogeneous Homotopy . 22

2.5.1. Multiprojective Space . 22

2.5.2. Multihomogeneous Homotopies . 22

2.5.3. Obtaining a Multihomogeneous Root Count . 24

2.6. Numerical Irreducible Decomposition. 25

2.6.1. Slicing and Degree . 25

2.6.2. Witness Sets and the NID . 26

2.6.3. Computing Witness Sets . 27

2.6.4. Pure-Dimensional Decomposition . 28

2.6.5. Completing the Picture . 30

Chapter 3. Perturbed Regeneration . 31

3.1. Introduction and Motivation . 31

3.2. Mathematical Background . 32

3.3. Regeneration. 32

3.4. Need for Perturbation . 36

3.5. Perturbed Regeneration Algorithm . 37

3.6. Justifying Algorithm 1 . 38

3.6.1. Multiplicity . 40

3.6.2. Nonsquare Systems. 41

3.7. Examples and Experimentation . 41

3.7.1. Simple Illustrative Example . 41

viii

3.7.2. cpdm5 System . 42

3.7.3. Fairness of Craps Game . 43

3.7.4. Butcher Problem . 45

3.7.5. Nine-Point Four-Bar Design Problem . 47

3.8. Singular Homotopy Techniques . 48

3.8.1. Regeneration with Deflation . 48

3.8.2. Regenerative Cascade . 49

3.8.3. The Cheater’s Homotopy . 49

3.9. Perturbing Positive-Dimensional Components . 50

3.9.1. Failure to Compute Numerical Irreducible Decomposition. 50

Chapter 4. Max-Length Vector Line of Best Fit . 52

4.1. Introduction and Motivation . 52

4.2. Mathematical Background . 53

4.2.1. The Grassmann Manifold and its Representations . 53

4.2.2. Principal Angles between Subspaces . 54

4.2.3. Karcher Mean. 55

4.3. Formulations of the Optimization Problem . 55

4.3.1. Problem Formulation. 56

4.3.2. Geometric Interpretation . 58

4.4. Multivariate Eigenvalue Problem . 59

4.4.1. Solutions to the MLV Line Equations. 59

4.4.2. Iterative Methods . 60

4.4.3. Convergence to Global Solutions . 61

4.4.4. Degenerate Cases . 61

ix

4.4.5. Measure of Correlation . 62

4.5. A Multivariate Eigenvalue Homotopy . 63

4.5.1. MEV Homotopy . 64

4.5.2. Comparison of Root Counts . 66

4.6. Examples applying the MLV Line . 67

4.6.1. Small Example . 67

4.6.2. Large Example . 67

4.6.3. Iterative Method . 68

4.6.4. Application to Image Data . 69

Chapter 5. Model Selection . 73

5.1. Introduction and Motivation . 73

5.2. Problem Statement . 74

5.2.1. Model Validation . 75

5.2.2. Model Selection . 79

5.2.3. Parameter Estimation . 79

5.3. Geometry . 80

5.3.1. NAG Techniques Used . 82

5.4. Algorithms. 82

5.4.1. Algorithm: Model Validation . 84

5.4.2. Nonnegativity Considerations . 85

5.4.3. Algorithm: Model Selection . 87

5.4.4. Algorithm: Parameter Estimation . 88

5.4.5. Illustrative Example. 88

5.5. Results and Experiments . 90

x

5.5.1. Cell Death Activation . 90

5.5.2. HIV Progression . 98

5.5.3. Multisite Phosphorylation . 101

Chapter 6. Conclusion . 114

Bibliography . 116

xi

LIST OF TABLES

3.1 Basic properties of the cpdm5 problem. 43

3.2 Timings for the cpdm5 problem. 43

3.3 Paths tracked for the cpdm5 problem . 43

3.4 Timings for the unfair dice problem . 45

3.5 Paths tracked for the unfair dice problem . 45

3.6 Irreducible components of the Butcher problem . 46

3.7 Timings for the Butcher problem . 46

3.8 Timings for the nine point problem . 47

4.1 Root counts of MLV solution methods . 67

5.1 Timings for clustering model . 96

5.2 Reactions for HIV model. 99

5.3 Variables for MAP Kinase models . 102

5.4 Parameters for MAP Kinase models . 103

5.5 Reaction velocities for MAP Kinase models . 103

5.6 Equations for MAP Kinase models . 104

5.7 Parameter values for MAP Kinase models . 104

5.8 EGF loading data . 106

5.9 Path counts for MAP Kinase models . 110

5.10 Timings for MAP Kinase models . 110

5.11 Test statistic for distributive model . 111

xii

5.12 Test statistic for processive model . 112

xiii

LIST OF FIGURES

4.1 Appending the unknown subject . 70

4.2 Changing basis of subspaces . 70

4.3 MLV line on data . 71

5.1 NAG framework for model selection. 83

5.2 Illustrative example for model validation . 89

5.3 Test statistics for MAP Kinase models versus EGF loading. 113

xiv

CHAPTER 1

INTRODUCTION

Numerical algebraic geometry (NAG) consists of a collection of numerical algorithms

based on homotopy continuation to approximate solution sets to systems of polynomial

equations arising from applications in science and engineering [9, 69]. The study of NAG was

initially interested in solving a host of difficult problems in robot kinematics. Over the last

twenty years, NAG has revolutionize how engineers approach robot kinematics problems [69,

68, 70]. Most notably was the complete solution to the nine-point problem for four-bar

linkages, a fundamental problem in robot kinematics [78]. The complete solution was solved

in 1992 using NAG methods nearly 70 years after its initial problem statement.

Beyond robot kinematics there has been a push to expand NAG into other applica-

tions including (but not excluding): optimal control [66], nonlinear ordinary differential

equations [2], vibrations of thin plates [53], guage and string theory [56], necrotic tumor

models [35], and multicomponent mixture models [67].

I have focused my research on finding global solutions to constrained polynomial opti-

mization problems of moderate size using NAG methods. The motivation for applying NAG

methods is that the global solution is always obtained using probability-one arguments from

NAG. There is no guarantee that traditional local methods will perform well because a given

optimization problem may contain a large number of critical points.

For example, an iterative gradient descent method may get trapped in a region where a

local nonglobal critical point is obtained instead of a global critical point. Another example

arises from the area of binary integer programming where the optimization problems that

1

are proven to be NP-hard such as those appearing in Karp’s famous 21 NP-complete prob-

lems [45]. Polynomial optimization problems are difficult to solve in general but techniques

can be applied to solve some medium-sized problems arising from applications.

The benefit of employing a NAG approach to nonlinear optimization problems is that

every isolated critical point of the objective function is obtained with probability-one. A

global solution is then obtained simply by evaluating the objective function at every critical

point and selecting the one with the minimum objective value. There are also techniques

for polynomial optimization using semidefinite programming which aim to solve a related

optimization problem using convex relaxations (see [15] and reference within), there is no

guarantee that these methods will find the global solution. Howevr, theses methods do

provide a certification if a global solution is found using a duality principle [15]. Recent

trends in this area have been aimed at exploiting the sparsity structure of the objective

function and contraints [15]. This approach helps increase the applicability to a variety of

new and challenging problems [15].

Just as semidefinite programming aims to minimize computational complexity, the NAG

approach to global optimization also aims to reduce computational complexity during path

tracking by exploiting structure that arises from the corresponding polynomial systems [9,

69]. For example, a common structure arises from solving parameterized optimization prob-

lems where a large set of related optimization problems must be solved. Here, a parameter

homotopy approach form NAG is most appropriate in solving the corresponding polyno-

mial equations and drastically reduces the average cost to solve systems at each parameter

value [16].

2

In addition, if the optimization problem is constrained one can use a Lagrange multiplier

method whose equations are linear in the Lagrange multiplier variables. In this case a multi-

homogeneous homotopy from NAG significantly reduces path tracking during the homotopy

continuation routine of NAG [9, 69].

Polynomials arising from optimization problems that are suited for NAG methods arise

in the fields of systems biology and life sciences where polynomials solve problems in model

compatibility, model selection, and parameter estimation [5]. For example, given a prescribed

set of experimental output data one can select from a collection of mathematical models that

best describe multisite phorphorylation mechanisms [5]. This information can then be used

to explain how these biological mechanisms behave differently in vivo versus in vivio [4].

Futhermore, optimization problems where NAG may be applied arise in geometric data

analysis problems [6]. Solutions to polynomials construct the minimum arguments of a

prescribed optimization problem [6]. One can then produce mathematical models of large

data sets on non-euclidean manifolds such as a disjoint union of Grassmannians. Modeling

data on a Grassmannian has the benefit of preserving orthogonal invariance than if relevant

in data sets where illumination plays a large role in data clustering subroutines. The max-

length vector line of best fit can be defined in such as way as to extract common features

of a data set hidden from the naked eye [6]. As will be shown, the polynomial system that

arises is the so-called multivariate eigenvalue problem; a generalization of the traditional

eigenvalue problem [22].

In addition, NAG plays a role in analyzing the performance of existing local methods

for solving polynomial optimization problems where they may have issues of obtaining the

global solution [6]. By comparing solutions obtained using NAG methods to local methods,

one can analyze what proportion of the time the local methods found the global solutions [6].

3

Chapter 2 contains a survey the major mathematical background from the field of NAG

as it relates to this dissertation. Much of NAG is documented in the two textbooks: Nu-

merically solving polynomial systems with Bertini [9] and The numerical solution of systems

of polynomials arising in engineering and science [69]. This chapter lays the foundation

for the chapters that follow which use concepts such as: genericity, randomization, good

homotopies, intersection geometry, and the numerical irreducible decomposition.

Chapter 3 contains a novel mathematical technique called perturbed regeneration. Per-

turbed regeneration is a method to compute all isolated solutions to polynomial systems of

equations including singular solutions. This method works especially well in solving systems

of equations arising from optimization problems especially when a large set of parameter

values are considered.

Chapter 4 contains a new mathematical model for data sets called the max-length vector

line of best fit (MLV line). The MLV line aims to described a collection of data sets arising

as points on a Grassmannian manifold.

Finally, chapter 5 discusses a new paradigm for model selection. In this chapter, we solve

three fundamental problems in science: model validation, model selection, and parameter

estimation. The NAG approach to model selection is built on geometric principles. The tech-

niques not only use NAG to find every critical point of corresponding optimization problems

but also uses a fundamental structure in NAG, the numerical irreducible decomposition, to

determine intersections of algebraic sets that represent compatiblity of model with prescribed

data.

4

CHAPTER 2

MATHEMATICAL BACKGROUND

The aim of this chapter is to discuss the numerical algebraic geometry (NAG) background

necessary for Chapter 3–51. A discussion of polynomial systems in general is found in §2.1.

The foundations of how to intepret and explain solutions to polynomial systems are laid

out. In §2.2 homotopy continuation is discussed. Homotopy is the main mechanism that all

NAG algorithms are built on. In §2.3 predictor-corrector methods bridge the gap between

theory and computation. Predictor-corrector methods are the means to realize homotopy

continuation using numerical approximation and solve problems from applications. Then

in §§2.4–2.5 more specific homotopy routines are discussed that arise from applications and

optimization; the parameter and multihomogeneous homotopies. Finally, the numerical

irreducible decomposition is discussed in §2.6 where NAG is employed to handle positive-

dimensional solutions such as curves and surfaces.

2.1. Polynomial Systems

This section discusses the relevant aspects of polynomials that will be employed through-

out the remaining chapters. §2.1.1 discusses a basic introduction to polynomials. It is then

followed by §§2.1.2–2.1.3 on algebraic sets and irreducibility. The Zariski topology is dis-

cussed in §2.1.4 which lay the foundation for genericity arguments and randomization in

§§2.1.6–2.1.7. Singular solutions and multiplicity are described in §2.1.5. Finally, aspects of

numerical approximation are discussed in §2.1.8.

1Nearly the entirety of material from this chapter is taken from two very useful sources: Numerically solving
polynomial systems with Bertini [9] and The numerical solution of systems of polynomials arising in engi-
neering and science [69]. These are the current textbooks on numerical algebraic geometry to date. Citations
outside these references are done normally within the text.

5

2.1.1. Polynomials. We are interested in computing the solution set of a polynomial

system of equations:

f(z) =


f1(z1, . . . , zN)

...

fn(z1, . . . , zN)

 = 0

where each fi(z) is a multivariable polynomial function with complex coefficients in the

variables z = (z1, . . . , zN). Algebraically, f i(z) ∈ C[z1, . . . , zN], the polynomial ring in the

indeterminants z over the field C. Here, N could be different from n. When N = n, we

say the system is square. When N > n, there are more variables then equations and we

say the system is underdetermined. When N < n, the system is said to be overdetermined.

Square systems are important to NAG and often times we can “square up” the system using

randomization.

For example, a degree two polynomial in variables x, y has the form:

�x2 + �xy + �y2 + �x+ �y + �

where ‘�’ is shorthand notation and designates a complex number that may be different on

each of the six terms.

Example 2.1.1. Consider the polynomial system defined by:

f(x, y) =

x(x− 1)

x(y − 1)

 .
The solutions of f(x, y) consist of the y-axis (where x = 0) together with the isolated

point (x, y) = (1, 1). As this simple example demonstrates, polynomial systems exhibit

solutions that are more complicated than solutions to systems of linear equations where

there is either exactly one solution, no solutions, or infinitely many solutions expressed as a

linear subspace of Euclidean space.

6

2.1.2. Algebraic Sets. An affine complex algebraic set :

V(f1, . . . , fn) = {z ∈ CN | f1(z) = · · · = fn(z) = 0}

is a locus of solutions on CN of a system of polynomials with complex coefficients. By the

fundamental theorem of algebra, any degree d univariate polynomial has exactly d roots,

counting multiplicities [24]. In the multivariable case, we have a similiar result. Hilbert’s

Nullstellensatz states that if V(f1, . . . , fn) ⊂ CN is empty, there exists polynomials g1, . . . , gn

such that:

f1g1 + · · ·+ fngn = 1.

A smooth point p∗ = (p∗1, . . . , p
∗
N) of X = V(f1, . . . , fn) is a point p∗ ∈ X with a nonempty

neighborhood U ⊂ X such that for some mapping Φ(z1, . . . , zN), Φ|U maps U bijectively to

a neighborhood of the origin in Ck for some k. The set of smooth points is often denoted

Xreg and the complex dimension of X at p∗ is k.

2.1.3. Irreducibility. A single polynomial f(z) is said to be irreducible if it cannot be

factored as f = gh where g, h are nonconstant polynomials. A polynomial f(z) is irreducible

if and only if V(f)reg is connected as a complex manifold. Over the complex numbers, for

any algebraic set X, the closure of any connected component of Xreg is also an algebraic set.

The component may therefore be cut out by a collection of polynomials.

Every polynomial f may be factored as f = pm1
1 · · · pm`` where mj ∈ N>0 and each pj is

an irreducible polynomial. Then one has a decomposition:

V(f) =
⋃̀
j=1

V(pj).

V(f) decomposes as a union of closures of the complex connected components of V(f). An

affine complex algebraic set X = V(f1, . . . , fn) ⊂ CN is irreducible if Xreg is connected.

7

Xreg is the complement of an affine complex algebraic set, therefore Xreg is dense in X. For

p∗ ∈ X, the dimension of X at p∗ is the maximum dimension of the irreducible components

that pass through p∗, denoted dimp∗ X. The dimension of X is:

dimX = max{dimp∗ X |p∗ ∈ X}.

An affine complex algebraic set X is called pure-dimensional if dimX = dimp∗ X for all

p∗ ∈ X. For any non-constant polynomial f , the complex algebraic set V(f) has dimension

N − 1 at every point of V(f) and we call V(f) a hypersurface. We discuss the irreducible

decomposition in §2.6.

2.1.4. Zariski Topology and Complex Topology. Complex algebraic sets X ⊂

CN have a complex topology where open sets are unions of the intersections of X with open

balls centered at points of CN . We may also place a Zariski topology on X with open set

defined as the intersection of X with complements of complex algebraic subsets of CN . An

open set in the complex topology need not be an open set in the Zariski topology.

If U is a Zariski open subset of X the closure of X in both the complex and Zariski

topologies are equal. Also if X is irreducible then every nonempty Zariski open subset

U ⊂ X is path connected. U is the complement in X of a complex codimension one subset

Z of X where Z has Lebesgue measure zero. Often Z referred to as a “thin” subset.

2.1.5. Singular Solutions and Multiplicity. As illustrated in example 2.1.1 poly-

nomials can exhibit solution sets that are zero-dimensional (points) or positive-dimensional

(curves, surfaces, ect.). A solution z∗ ∈ CN to a polynomial system f(z) is isolated if there

exists a r > 0 such that z∗ is the only solution in an open ball of radius r centered at

z∗. Isolated solutions may be either nonsingular or singular and depend on the defining

polynomials.

8

Consider a general univariate polynomial f(z) with solution z∗. We say the multiplicity

of the solution z∗ of f(z) is k if f (j)(z∗) = 0 for 0 ≤ j < k and f (k)(z∗) 6= 0. Singular

solutions to univariate polynomials have multiplicity at least two.

In the case for multivariate systems of polynomials multiplicity is more difficult to define

but there is still a notion of singular and nonsingular. Consider a multivariate polynomial

f(z) in N variables and n equations. We say a solution z∗ is nonsingular if z∗ is a solution

to f(z) and the Jacobian matrix of f(z) at z∗ denoted Jf(z∗) is full rank. That is,

rank Jf(z∗) = min(N, n). Otherwise z∗ is singular and the Jacobian matrix drops rank.

One useful fact is that if z∗ is a solution to f(z) and on a positive-dimensional component

then z∗ is always a singular solution but could be a smooth point of the corresponding

complex manifold.

Numerical methods to compute approximate solutions to polynomial systems behave

poorly near singular solutions. The Newton-Raphson method is an iterative method to

compute numerical approximations to solutions of nonlinear systems of equations. Given a

starting guess zi for a solution of f(z), Newton’s method produces an updated guess:

zi+1 = zi − [Jf(zi)]
−1f(zi)

with Newton residual ‖zi+1 − zi‖. Consider a polynomial system f(z) with nonsingular

solution z∗ and an initial guess z0 sufficiently close to z∗. Newton’s method will converge

quadratically to z∗. That is:

lim
k→∞

‖zk+1 − z∗‖
‖zk − z∗‖2 <∞.

Quadratic convergences of Newton’s method does not necessarily hold for singular solutions.

There does not exist any neighborhood of z∗ such that Newton’s method with starting guess

z0 will converge quadratically to the solution z∗. In some cases while implementing Newton’s

9

method iterates will diverge away from the solution z∗ such as the Griewank and Osborn

system will demonstrate in the following example. Quadratic convergence plays a large role

in the definition for approximate solutions to polynomials.

Example 2.1.2. Consider the Griewank and Osborn system [31]:

g(x, y) =

29
16
x3 − 2xy

y − x2

 .
The solution set of g(x, y) has only one singular solution (0, 0). Even if a starting point

(x, y) = (x0, y0) is arbitraily close to but not equal to (0, 0), it have been proven that

Newton’s Method will diverge away from (0, 0).

2.1.6. Probability-One and Genericity. A statement P(z) parameterized by z,

where z belongs to a nonempty irreducible complex algebraic set X, is said to be generically

true or true with probability one if P(z) is true for all z in a nonempty Zariski open subset of

X. If X is irreducible then a nonempty Zariski open subset U ⊂ X, which is the complement

in X of a complex codimension one subset, is connected. The closure of U is X and X \ U

is a measure one set. This means that a property P(z) holds for essentially all of X. An

example of genericity in action is Bertini’s Theorem.

Theorem 2.1.1. (Bertini’s Theorem) Suppose f1(z), . . . , fn(z) are polynomials defined

on a nonempty Zariski open subset U of an irreducible affine algebraic set X ⊂ CN so

that given any point z ∈ U , there is at least one i such that fi(z) 6= 0. Then there

exists a nonempty Zariski open subset V ⊂ Cn such that for λ = (λ1, . . . , λn) ∈ V ⊂ Cn,

fλ(z) = λ1f1(z)+ · · ·+λnfn(z) has the property that V(fλ(z)) is empty or pure dimension

N − 1 and V
(
fλ(z), ∂fλ(z)

∂z1
, . . . , ∂fλ(z)

∂zN

)
= ∅.

10

An extension of Bertini’s Theorem tell us that there is a nonempty Zariski open subset

U of k × n matrices Ck×n such that for any A ∈ U then V(Af) is empty or pure dimension

N − k.

2.1.7. Randomization. In §2.2 techniques of homotopy continuation are described to

solve polynomial systems of equations. However, the number of equations and variables must

be the same to employ the methods. Given a collection of polynomials f1, . . . , fn, a random

linear combination has the form:

�f1 + · · ·+ �fn

where the �’s are say, independently and identically distributed (i.i.d.) draws of complex

numbers whos moduli are sampled from a Guassian distribution with mean µ = 1 and

small variance σ. The arguments of these complex numbers are sampled uniformly from the

interval [0, 2π]. Often times, we will say the �’s are chosen randomly, but keep this notion

of randomness in mind.

To randomize an overdetermined system (N < n), we replace the polynomials f1, . . . , fn

with N random linear combinations of the polynomials. That is, for a random matrix

A ∈ CN×n we replace the system fT = (f1, . . . , fn)T with the system R(f) = Af where

we say that R(f) is a randomization of f . Randomizations of f are often referred to as

“squaring up the system”. If z∗ is a solution to f(z), then it is also a solution to R(f)(z)

according to and application of theorem 2.1.1.

2.1.8. Numerical Approximation and Function Residual. Given a polynomial

system f(z) = 0 suppose z∗ is a solution to f(z). We want to compute a complex vector ẑ

so that:

‖z∗ − ẑ‖ < ε

11

for some sufficiently small ε > 0 using the Euclidean 2-norm, for example. In this case, we say

that ẑ is an approximate solution to f(z). Note that an alternate definition of approximate

solution is to use quadratic convergence of Newton’s method as a definition discussed briefly

in §2.1.5. We must be careful in quantifying approximate solution since even thought the

distance may be small, the function residual may be quite large.

Lemma 2.1.1. [69] Given a univariate polynomial p(z) = zd +�zd−1 + · · ·+� and ε > 0,

the area of the set of z ∈ C such that |p(z)| ≤ ε is at most dπε2/d.

Although this estimate is not sharp we may intepret lemma 2.1.1 as stating that as the

degree d increases or the tolerance ε on the function residual is tightened the regions where

the function residual is small shrinks.

2.2. Homotopy Continuation

Homotopy continuation is the fundamental computation in NAG. Consider the problem

of finding the finite solutions of a square system:

f(z) =


f1(z1, . . . , zN)

...

fN(z1, . . . , zN)

 = 0

for z ∈ CN . Square systems are relevant to all aspects of NAG ranging from theory to

applications. For example, if we can find solutions to square systems then overdetermined

systems are easy to handle due to randomization.

In §2.2.1 we will discuss the high-level details of how a homotopy is used to find solutions

to polynomial systems. In §2.2.2 we discuss homotopies in greater detail and define good

homotopies, and finally in §2.2.3 we discuss the total-degree homotopy which is a canonical

good homotopy that is always ensured to find isolated solutions with probability-one.

12

2.2.1. Basic Idea of a Homotopy. In order to “solve” a polynomial system of equa-

tions f(z) = 0 first solve a similiar and related system g(z) = 0 that is “easy” to solve and

then “deform” the solutions of g to f . First form a one-real parameter family of polynomials

called a homotopy. Homotopies are the mechanism to allow us to deform solutions of g to

f . There are three steps used to solve a polynomial system f(z):

(1) (Construct and solve a start system g(z)) First construct a start system g(z)

whose properties are “similiar” enough to f(z). The solutions of g(z) are called

start points.

(2) (Construct a homotopy between f(z) and g(z)) Define a homotopy function.

One such example is the straight-line homotopy H(z, t) = tg(z) + (1 − t)f(z)

where t is some parameter. Note that H(z, 1) = g(z) and H(z, 0) = f(z) so that

the homotopy recovers the “start” and “target” systems at these parameters. For

correctly chosen g(z) the solutions of H(z, t) = 0 as t varies in the interval (0, 1]

will be smooth and vary continuously with probability-one. These define smooth

strictly increasing paths from the start points of g(z) and the target solutions of

f(z).

(3) (Track paths from t=1 to t=0) Use predictor-corrector methods described in §2.3

to follow paths from t=1 to t=0. Path tracking using predictor-corrector methods

is usually done on a subset of the interval (0, 1], and then the so-called endgames

are employed to track paths as t→ 0. Often times, the number of solutions of f(z)

is far fewer that the number of solutions of g(z) in which case we need to address

divergent paths.

13

2.2.2. Homotopies. A homotopy is a smooth function:

H(z, t) : CN × [0, 1]→ CN .

For our purposes, H is obtained via a sequence of compositions first from a family of systems

H(z; s) where s ∈ U ⊂ CM and s = q(t) for a real parameter t. More precisely we have:

(1) A mapping H(z; s) : CN × U → CN , where U is an open subset of CM and the

coordinates are polynomial functions in the variables z and complex analytic in the

parameters s.

(2) A differentiable mapping q : [0, 1]→ U which is the path parameterized by t going

from s1 = q(1) to s0 = q(0) in the parameter space U .

We then construct H by taking the composition H(z, t) := H(z; q(t)) : CN × [0, 1]→ CN .

Tracking is the process of approximating paths with the goal of obtaining the solutions of

H(z, 0). The details of predictor-corrector methods are discussed in §2.3. A good homotopy

H(z, t) for the system:

f(z) =


f1(z1, . . . , zN)

...

fN(z1, . . . , zN)

 = 0

together with a set of D solutions S1 of g(z) = H(z, 0) is a homotopy of infinitely differen-

tiable functions:

H(z, t) =


H1(z1, . . . , zN)

...

HN(z1, . . . , zN)


such that:

(1) For any choice of t ∈ [0, 1], H(z, t) is a polynomial system.

(2) For any of the D start points wj ∈ S1, for 1 ≤ j ≤ D, there is a smooth mapping

pj(t) : (0, 1]→ CN so that pj(1) = wj and has the property that,

14

(3) pj is smooth on (0,1] and for each t∗ ∈ (0, 1], there does not exist distinct integers

1 ≤ j, k ≤ D and t∗ ∈ (0, 1] so that pj(t
∗) = pk(t

∗) and in addition points pj(t
∗)

are smooth isolated solutions of H(z, t∗).

(4) Choose D startpoints of S1 of g(z) = H(z, 1) = 0 so that the set:

S0 = {z ∈ CN | ‖z‖2 <∞ and z = lim
t→0
pj(t)}

contains every isolated solution of f(z).

Essentially this technical definition states that a good homotopyH(z, t) for a system f(z) =

0 is one that will find all isolated solutions of f(z) using paths that “vary smoothly” and

don’t interfer with other paths on the interval (0, 1] and produce the solutions of f(z) as

t→ 0. One useful property is that the paths satisfy the homotopy. That is, H(pj(t), t) = 0

for all t ∈ (0, 1] and 1 ≤ j ≤ D.

2.2.3. Total-Degree Homotopies. In this subsection, we discuss the famous total-

degree homotopy. Total-degree homotopies give us a direct way of constructing good homo-

topies that were described in §2.2.2. The homotopy has the form:

H(z, t) = (1− t)


f1(z1, . . . , zN)

...

fN(z1, . . . , zN)

+ γt


g1(z1, . . . , zN)

...

gN(z1, . . . , zN)

 .
Let di = deg fi. Then choose N polynomials g1, . . . , gN of degree d1, . . . , dN , respectively, so

that the system gi(z) = zdii − 1. We enumerate the start points S1 as the set:

S1 =

{(
e

2j1πi
d1 , . . . , e

2jNπi

dN

)
| 0 ≤ j1 ≤ d1 − 1, . . . , 0 ≤ jN ≤ dN − 1

}
.

Now construct γ = r exp (2θπ
√
−1) ∈ C sampled randomly. The “gamma trick” ensure that

the homotopy is a good homotopy with probability-one [60].

15

With this construction we call H(z, t) a total-degree homotopy since the number of

solutions of H(z, 1) is D = d1 · · · dN , the total-degree of the system f(z). The product of

the degrees of a square system f(z) provides a bound on the number of isolated solutions of

f(z) by applying Bèzout’s theorem [69].

2.3. Predictor-Corrector Methods

In §2.2 we discussed how homotopies are used to find isolated solutions to polynomial

systems and defined good homotopies; homotopies with desirable properties for finding so-

lutions. Good homotopies will enable us to design numerical algorithms to approximate

solution paths through a homotopy with the ultimate goal of obtaining solutions to polyno-

mials.

2.3.1. Continuation and Path Tracking. Assume we are given a differentiable

mapping p(t) : (0, 1] → CN where w = p(1) is a solution to H(z, 1) = 0 and p(t) is a

nonsingular solution of H(z, t) = 0 for t ∈ (0, 1]. Our aim is to compute limt→0 p(t) denoted

s0. p(t) has the property that H(p(t), t) = 0 for t ∈ (0, 1]. This leads to the Davidenko

differential equation which places conditions on paths p(t). Differentiating H(z(t), t) = 0

with respect to t gives:

∂H

∂z

dz

dt
+
∂H

∂t
= 0.

We are not given p(t) a priori but we know that it must satisfy the Davidenko differential

equation. In order to solve the ordinary differential equation (ODE) to find the roots of

H(z, 0), we first ‘solve’ the ODE for t ∈ [ε, 1] with ε ≥ 0, and then estimate s0 by approx-

imating the limiting process limt→0 p(t). We focus our attention on the region of t ∈ [ε, 1].

Endgames are more appropriate for t ∈ [0, ε) and a full discussion may be found in [69, 9].

16

2.3.2. Path Tracking. We are now in a position to lay the foundation for predictor-

corrector methods. Assume we have:

(1) A family of functions on CN :

H(z; q) =


H1(z1, . . . , zN ; q1, . . . , qM)

...

HN(z1, . . . , zN ; q1, . . . , qM)

 = 0

where Hi are polynomial in z ∈ CN and complex analytic in q ∈ CM .

(2) Differentiable mappings φ : t ∈ [0, 1] → q ∈ CM and ψ : t ∈ [0, 1] → z ∈ CN

where H(ψ(t),φ(t)) = 0 for t ∈ (0, 1] and JH(ψ(t),φ(t)), the Jacobian matrix

with respect to z at (z, q) = (ψ(t),φ(t)), has rank N for t ∈ (0, 1].

We construction H and φ so that ψ exists with ψ(1) = p0, for some p0 ∈ CN (say with a

total-degree homotopy). Our goal is to compute p∗ = ψ(0) the target solution corresponding

to this path. Differentiating H(ψ(t),φ(t)) = 0 with respect to t we have the Davidenko

inital value problem (IVP):

N∑
i=1

∂H(ψ(t),φ(t))

∂ψi

dψi(t)

dt
+

M∑
i=1

∂H(ψ(t),φ(t))

∂φi

dφi(t)

dt
= 0, with ψ(1) = p0.

Often time we may reduce to the situation when M = 1 and q1 = t. This is the case in the

total-degree homotopy explain in §2.2.3. Here, after relabeling ψ(t) as z(t) we then have

the Davidenko IVP:

N∑
i=1

∂H(z(t), t)

∂zi

dzi(t)

dt
+
∂H(z(t), t)

∂t
= 0, with z(1) = p0.

Let JHψ(ψ,φ) denote the Jacobian matrix with respect to the variables ψ:

JHψ =
∂H

∂ψ
=


∂H1

∂ψ1
· · · ∂H1

∂ψN
...

. . .
...

∂HN
∂ψ1

· · · ∂HN
∂ψN



17

evaluated at (ψ,φ) and let:

ψ(t) =


ψ1(t)

...

ψN(t)


denote the N × 1 column vector of solutions. Similarly we may arrive at notation for the

N ×M matrix JHφ as the Jacobian matrix with respect to the variables φ and M × 1

column notation for φ(t). Rewriting the Davidenko differential equation we have:

JHφ(ψ(t),φ(t))
dφ(t)

dt
+ JHψ(ψ(t),φ(t))

dψ(t)

dt
= 0.

Since JHψ(ψ(t),φ(t)) is invertible we have:

dψ(t)

dt
= −[JHψ(ψ(t),φ(t))]−1JHφ(ψ(t),φ(t))

dφ(t)

dt
.

Now in the simple case when M = 1, and q1 = t and again relabeling ψ(t) to z(t), we drop

the subscript dependence on JH and have:

dz(t)

dt
= −[JH(z(t), t)]−1

∂H(z(t), t)

∂t
.

There are many approaches to numerically solve the above ODE with given initial condition.

We highlight two special properties of the Davidenko ODE. In the case that H(z, t) = 0:

(1) “Correct” the path by using the implicit definition equation H(z, t) = 0.

(2) The path is a complex analytic curve so construct a local model of the curve near

the endpoint of the path p∗. This is useful in the region of t ∈ [0, ε).

2.3.3. Predictor-Corrector Methods. A class of ODE solvers that work particu-

larly well for implicitly-defined homotopies are called predictor-corrector methods. We use

the simplified form H(z, t) = 0 (i.e. when M = 1 and q1 = t) as described in §2.3.1. Begin-

ning at t0 = 1 with p0 an initial value compute successive approximation p1,p2, . . . at values

18

t0 > t1 > · · · > 0 using Euler’s method called a predictor step:

pi+1 = pi − [JH(pi, ti)]
−1∂H(pi, ti)

∂t
∆ti, where ∆ti = ti+1 − ti.

Geometrically, we predict along the line tangent to the solution path centered at (ti,pi).

Predictors could in theory be used along the entire path. However a more efficient

approach is to introduce a corrector step. Once a prediction of pi+1 is made using Euler’s

Method apply Newton’s method to the polynomial H(z, ti+1) starting at z0 = pi+1:

zi+1 = zi − [JH(zi, ti+1)]
−1H(zi, ti).

Here t = ti+1 is completely fixed. Replace pi+1 with its updated value after applying New-

ton’s method and then proceed with Euler’s method to compute pi+2 and so on. Often times

a higher-order predictor such at rkf45 is used in order to relax the step size while maintaining

a smaller error in prediction.

2.4. Parameter Homotopy

This section aims to described the background for parameter homotopies. Systems of

polynomials arising from science and engineering applications almost always have some ad-

ditional structure that can be exploited during computation. One such notable structure is

when a polynoimal system of parameterized. That is, several systems of polynomials need

to be solved all of which are supported on the same parameter set.

One first solves a parameterized polynomial system at generic parameters using any

method such as total-degree (§2.2.3), multihomogeneous (§2.5), or regeneration (§3.3). Then

a parameter homotopy solves every subsequent member in the parameterized family using

a number of paths equal to the number of nonsingular solutions found in the first step.

Often times the number of solutions found in the first step is far fewer than the number of

19

paths required to find the isolated solutions of each system individually specialized at their

parameter values. Thus, parameter homotopies provide an efficient approach to computing

a collection of parameterized polynomials.

Let f(z; q) = 0 be a parameterized family of polynomial systems:

f(z; q) =


f1(z1, . . . , zN ; q1, . . . , qK)

...

fN(z1, . . . , zN ; q1, . . . , qK)

 = 0.

If the system is nonsquare we may “square up’ the system using a randomization procedure

(§2.1.7). We label z ∈ CN as the variables and q ∈ CK are the parameters. There are some

fundamental results on parameter homotopies that appear in [61, 69, 9]. That is:

(1) (Solution preservation) The number of nonsingular isolated solutions of f(z; q)=0

is constant for generic parameter values of q ∈ CK .

(2) (Path connectedness) Parameters where the number of nonsingular solutions will

changes from a general set of parameters form a proper algebraic subset of CK .

In this way this space is a “thin” subset of CK . Furthermore, the set of generic

parameters form a path connected subset of CK .

(3) (Upper semi-continuity) Specializing at nongeneric parameter values only decreases

the number of isolated solutions.

(4) (Trackable paths) Suppose φ(t) ∈ CK , t ∈ [0, 1], is a continuous path in parameter

space so that the system f(z;φ(t)) has the generic number of solutions for t ∈ (0, 1]

(that is, φ(t) is a generic path). Then:

(a) Nonsingular isolated solutions of f(z;φ(t)) = 0 vary continuously for t ∈ [0, 1].

(b) The endpoints of solution paths of the homotopy f(z;φ(t)) = 0 include all

nonsingular isolated solutions of f(z;φ(0)) = 0.

20

The parameter homotopy method is as follows:

(1) (Ab initio): Select generic parameters q∗ ∈ CK and find all nonsingular solutions S

of f(z; q∗) = 0 using any approach.

(2) (Parameter homotopy) For any q ∈ CK choose a path φ(t) ⊂ CK that is generic

for t ∈ (0, 1] with φ(1) = q∗ and φ(0) = q. Then follow every nonsingular isolated

solution of the homotopy f(z;φ(t)) = 0 using solutions S as t→ 0. The endpoints

of these paths include all isolated solutions of f(z; q∗) = 0.

In practice, generic parameters q∗ are chosen randomly using a probablity-one argument.

Genericity and probability-one arguments are discussed in §2.1.6. One can also simplify the

choices of generic paths φ(t). That is, if φ(t) is chosen as:

φ(t) = tq∗ + (1− t)q(1)

then φ(t) will stay generic with probability-one.

There are scenarios where it is beneficial to select q∗ not at random and in this case care

must be taken to ensure paths constructed are generic [9]. In addition there is a simplification

that can be made if the parameters appear linearly in the polynomials.

Instead of constructing φ(t) explicitly as in equation (1) it sufficies to construct the

homotopy:

γtf(z; q∗) + (1− t)f(z; q) = 0.

For generic choices of γ ∈ C this homotopy may instead be used at the parameter homo-

topy stage and may reduce path tracking computations. This homotopy is often useful for

implementation purposes especially when there are many parameter values. This parameter

homotopy does not work if parameters do not appear linearly.

21

2.5. Multihomogeneous Homotopy

2.5.1. Multiprojective Space. A multiprojective space is a product of m projective

spaces of various dimensions denoted Pn1 × · · · × Pnm . When m = 1 this becomes the usual

projective space Pn1 . One may place homogeneous coordinates on multiprojective space as

a cross product of homogeneous coordinates on each individual projective space.

A multihomogeneous polynomial :

f(z1, . . . , zm) : Cn1+1 × · · · × Cnm+1 → C

of multidegree (d1, . . . , dm) is a polynomial such that:

f(λ1z1, . . . , λmzm) = λd11 · · ·λdmm f(z1, . . . , zm)

for every ((λ1, . . . , λm), z1, . . . , zm) ∈ Cm × Cn1+1 × · · · × Cnm+1.

Example 2.5.1. Consider the polynomial p(x, y) = xy−1. One can first multihomogenize

the polynomial by defining homogeneous coordinates x = X/U and y = Y/W so that:

P ([X,U], [Y,W]) = XY − UW.

P is a multihomogeneous polynomial of multidegree (1, 1) defined over P× P since:

P (λ[X,U], µ[Y,W]) = (λX)(µY)− (λU)(µW) = λµ(XY − UW) = λµP ([X,U], [Y,W]).

for any ((λ, µ), (X,U), (Y,W)) ∈ C2 × C2 × C2.

2.5.2. Multihomogeneous Homotopies. In this section we outline multihomogenous

homotopies. Multihomogeneous homotopies and the references within are discussed in [9, 69].

First consider the simple example to motivate the use of multihomogeneous homotopies.

22

Example 2.5.2. Consider the following polynomial system:

f(x, y) =

xy − 1

x2 − 1

 = 0.

The total degree of f is four but one can verify that the system has only two solutions. Put

another way we could homogenize f over P2 by defining homogeneous coordinates x = X/Z

and y = Y/Z so that:

F 1([X, Y, Z]) =

XY − Z2

X2 − Z2

 = 0

is a homogenization of f and has exactly four solutions guaranteed by Bézout’s Theorem.

Thus, interpreting f in this context, there are only two solutions of f over an affine patch

(Z = 1) of P2.

Now instead, consider multihomogenizing f over P × P. That is, define x = X/U and

y = Y/V so that:

F 2([X,U], [Y, V]) =

XY − UV
X2 − U2

 = 0

is a multihomogenization of f . As will be discussed in §2.5.3, F2 has only 2 solutions over

P× P.

As demonstrated in this example, there are advantages in using multihomogenous struc-

tures as long as we can define an efficient homotopy method that can be applied over mul-

tiprojective space.

Rather than explain multihomogenous homotopies in general, again, we motivate it

through example 2.5.2. First notice that:

xy − 1 ∈ 〈xy, x, y, 1〉

x2 − 1 ∈ 〈x2, x, 1〉

23

(i.e. contained in the ideals) by exploiting the multihomogeneous structure of f . Then

construct a polynomial:

g(x, y) =

 (�x+ �)(�y + �)

(�x+ �)(�x+ �)

 = 0

where ‘�’ denotes generic coefficient parameters. This system has exactly two solutions. As

will be explained in §2.5.3 the multihomogeneous root count of f is two which motivates the

use of g. Using multihomogenous homotopy theory the homotopy:

H(x, y, t) = γtg(x, y) + (1− t)f(x, y) = 0

starting at solutions of g(x, y) = 0 are nonsingular for t ∈ (0, 1] and the endpoints of

the paths as t → 0 include all nonsingular solutions of f(x, y) = 0 for generic choices of

γ ∈ C. This homotopy may be extended to multiprojective space P×P by defining the same

coordinates as those in example 2.5.2. This produces a homotopy that may be tracked over

an affine patch of multiprojective space:

H̃(X,U, Y, V, t) =


γt(�X + �U)(�Y + �V) + (1− t)(XY − UV)

γt(�X + �)(�X + �) + (1− t)(X2 − U2)

a1X + a2U − 1

b2Y + b2V − 1

 = 0

for generically chosen a1, a2, b1, b2 by rescaling the start solutions of g(x, y) = 0 so they

satisfy each patch equation.

2.5.3. Obtaining a Multihomogeneous Root Count. Obtaining a multihomoge-

nous root count may be a useful step in performing a multihomogeneous homotopy as dis-

cussed above §2.5.2. One may see references [9, 69] for examples and theory on how to

compute the root counts. In chapter 4 these computations are used to obtain root counts

for the multivariate eigenvalue problem with various multihomogeneous structures.

24

2.6. Numerical Irreducible Decomposition

The aim of this section is to illustrate how NAG handles positive-dimensional solution

sets through the numerical irreducible decomposition (NID). As discussed in §2.1.3 a single

polynomial may be decomposed as a union of its irreducible components. In general, the

solution set of a polynomial system of equations also decomposes into a union of irreducible

components.

Given a polynomial system f1, . . . , fn with X = V(f1, . . . , fn) there is a decomposition:

X =
⋃
i∈I

Xi

where Xi is a pure i-dimensional affine complex algebraic set and I is a subset of the positive

integers {0, 1, . . . , dimX}. Furthermore, there are nonempty sets Ji such that:

X =
⋃
i∈I

⋃
j∈Ji

Xij(2)

where each Xij is an irreducible i-dimensional affine complex algebraic set where Xij (

X −Xij. A decomposition of X such as equation (2) is called an irreducible decomposition

of X. The aim of NAG is to develop a numerical analog of the irreducible decomposition

called the numerical irreducible decomposition. Irreducible components of X will be encoded

with a so-called witness set.

As discussed in §2.1.3 irreducible components, say Xij, can be written as closures of

Xijreg, the set of manifold points of Xij. As stated previously Xijreg is dense and path

connected in Xij.

2.6.1. Slicing and Degree. Every irreducible algebraic set X has a corresponding

dimension. One other invariant attached to X is called the degree. The degree of X may

be found by intersecting X with a general linear space of complimentary dimension to X.

25

In CN , a generic linear space L of dimension k will intersect X (of dimension say m) in an

algebraic set of dimension k+m−N [69]. If k+m−N < 0 then the spaces will not intersect

in a generic sense.

A k-dimensional set in CN will have codimension N − k. Often it is more convenient

to phrase statements using codimension rather than dimension. Using the statement about

intersection above, if L has codimension m then L will intersect X at isolated points (a

0-dimensional set) with probability-one so as long as L is generically chosen. The parameter

space of linear spaces L where this intersection has dimension 0 is dense. Furthermore, the

degree of X, degX, is formulated as the number of points of intersection of X with a generic

linear space of codimension m. Slicing irreducible sets with linear spaces of complimentary

dimension lays the foundation of a witness set and the NID.

2.6.2. Witness Sets and the NID. Consider an algebraic set X with irreducible

decomposition:

X =
⋃
i∈I

⋃
j∈Ji

Xij.(3)

A witness set for Xij is a set:

Wij = {f ,Lij,Wij}

where f is a system such that Xij is an irreducible component of V(f), Lij is a system

of i generic linear polynomials and Wij, called a witness point set, is a collection of points

constructed as the intersection of Xij with V(Lij).

The numerical irreducible decomposition W of X is a formal union of sets:

W =
⋃
i∈I

⋃
j∈Ji
Wij

where Wij corresponds to a witness set of the irreducible component Xij of X.

26

2.6.3. Computing Witness Sets. In §2.6.2 we defined a witness set for an irreducible

algebraic set and defined the NID; the numerical analog of the irreducible decomposition.

In order to compute witness sets, for each dimension i one:

(1) computes a witness point superset Ŵi in dimension i, and

(2) reduces a witness point super set Ŵi to witness sets Wij.

A witness point superset is a finite collection of points Ŵi ⊂ V(f) that contains Wij for each

i-dimensional irreducible component of V(f).

Witness Point Supersets. One approach is to construct a witness point superset which is

constructed one dimension at a time. Although this method is not the state of the art its

steps describe the process of computing a witness point superset well and lay the foundation

for more sophisticated methods. If X is any algebraic set of pure-dimension k and L is a

linear space defined by m generic linear equations then:

(1) if m < k, then X ∩ L has dimension k −m,

(2) if m = k, then X ∩L has dimension 0 and consists of the degX number of isolated

points, and

(3) if m > k, then X ∩ L = ∅.

Using the argument explained in section 9.2 of [37] the dimension of each irreducible com-

ponent of V(f) is between N−rankf and N−1. Definition of rank can be found in §3.2.

Next consider the intersection of V(f) with N−rankf ≤ k ≤ N−1 hyperplanes and

computing isolated points. Consider then the system:

gi(z) =


f(z)

`1(z)
...

`N−1(z)



27

for i = 1, . . . , rankf . This system consists of the intersection of V(f) with a generic linear

space of dimension i using N − i hyperplanes. By counting dimensions V(gi) will consists

of isolated points on each (N − i)-dimensional component of V(f). It may also contain

nonisolated points of each component of V(f) whose dimension is larger than N − i. Since

the system gi may be nonsquare we may require “squaring up” the system. Squaring up

and randomization is discussed in §2.1.7. For each i = 1, . . . , rankf we solve the system

gi(z) = 0 and produce a witness point superset Ŵi that each contain the witness point sets

Wij.

Junk Removal. After we have obtained a witness point superset Ŵi in each dimension

i we would like to break these into witness point sets Wij for each irreducible component

Xij. Junk removal aims to remove any points in Ŵi that are contained on components of

dimension larger that i called junk points.

In fact, removing junk points produces a union of witness point sets Wi for the pure

i-dimensional components of V(f). Note however we are not done at this stage as Wi needs

to be further broken into witness point sets Wij for each irreducible components Xij to

complete the NID.

Junk points are removed using a combination of the local dimension test and the mem-

bership test. In essence, junk removal using membership testing requires a specialized ho-

motopy. Junk removal is a technical step and we refer the interested reader to [37] for more

information.

2.6.4. Pure-Dimensional Decomposition. Once the junk points are removed from

Ŵi we obtain Wi; a union of witness point sets for the pure i-dimensional components of

V(f). This is a capstone computation and finishes a major portion of the NID.

28

Wi must then be further processed into witness point sets Wij for each irreducible com-

ponent Xij of V(f). The subdivision is achieved using a combination of the trace test and

monodromy as described in the following two subsections.

Trace Test. Suppose X ⊂ CN is a pure k-dimensional algebraic set and L is a generic

linear space of codimension k. As stated previously X ∩ L consists of degX number of

isolated points. The idea behind a trace test is that the centroid (i.e. the average of these

points) will move linearly as the linear space L is moved parallel to itself. Furthermore, if

X was instead reducible, then the centroid of some nonempty proper subset of these points

would also move linearly as L is moved parallel to itself.

We may detect if the centroid moves linearly by constructing a generic linear combination

of each point and then moving the slice L in parallel to two other locations. Using these

three test points, we can construct two “slopes”. If the centroid was in fact moving linearly,

then the difference of these slopes should be nearly zero. The difference of these slopes is

the so-called trace test of a point. If we did this for every point in X ∩ L considered, then

the sum of the various trace tests should evaluate to zero.

Then one applies the trace tests to witness sets as follows. With probability one a set

T ⊂ Wi is a witness point set for an irreducible component if and only if the sum of the

traces is zero and is not equal to zero for any nonempty proper subset S ⊂ T .

In practice witness sets for irreducible components may be built by considering all com-

binations of points from a pure i-dimensional witness set, evaluating their traces, and then

seeing what sums of traces evaluate to zero. The trace test method is very computationally

intensive as considering a large quantity of points is often too costly. This is especially true

for irreducible components with large degrees.

29

Monodromy. As discussed in the prior subsection on trace test the trace test approach

may be very costly especially when the degree of the irreducible components is large. The

monodromy method aims to reduce the cost of computing traces by partially breaking points

into groups. This partial break up helps alleviate the cost of evaluating so many combinations

of traces.

Monodromy is built on the foundation that the set of smooth points of an irreducible

component are path connected. If two points lie on an irreducible component X there is a

path in Xreg between the two points. In addition, the so-called monodromy action will detect

if two (or more) points lie on the same irreducible component. Detecting a monodromy action

involves tracking a collection of homotopies. There is no guarantee that a finite collection

of random “monodromy loops” will determine how all the points on pure i-dimensional

components are interconnected but this at leasts aids in computing combination of traces.

For more on the specifics of monodromy see [37, 69].

2.6.5. Completing the Picture. Given an algebraic set X = V(f) ⊂ CN we sum-

marize computing a NID for V(f) as follows:

(1) Compute rankf . Then for each N−rankf ≤ i ≤ N−1 compute a witness point

superset Ŵi at dimension i by solving gi(z) = 0.

(2) For each witness point superset Ŵi remove junk points using a combination of

membership testing and the local dimension test. This produces Wi; a union of all

the witness point sets Wij.

(3) Using Wi decompose this further into witness point sets using a combination of the

trace test and monodromy.

(4) The output is Wij a witness point set for each irreducible component Xij of X. This

completes the construction of W ; the NID of X.

30

CHAPTER 3

PERTURBED REGENERATION

3.1. Introduction and Motivation

The field of numerical algebraic geometry (NAG) has a wide reaching set of numerical

algorithms which seek to compute and manipulate numerical approximations to systems

of polynomial equations2. A class of methods called regeneration methods [38, 39] seek

to compute all nonsingular isolated solutions to a polynomial system by regenerating one

equation at a time. This will often increase the number of paths required to compute all

nonsingular isolated solutions but at the same time increase the quality or conditioning of

each path. This reduces the dependence on increased precision and decreased step sizes in

adaptive precision which may result in a net increase in performance.

The one disadvantage of regeneration methods is that the multiplicity of isolated singular

solutions may be destroyed or in many cases isolated singular solutions may not be obtain at

all. Perturbed regeneration seeks to broaded the application of regeneration by computing

all singular isolated solutions and when the system is a priori a square system, we also are

capable of correctly computing the multiplicity of each isolated solution using this method.

In this chapter we will compute every isolated solution of V(f) including isolated singular

solutions using homotopy continuation and NAG. We first explain the necessary mathemat-

ical background needed (§3.2) and then explain regeneration (§3.3); the main computational

2The aim of this work is to determine the utility of perturbation and regeneration for computing isolated
solutions to polynomials. This chapter includes a version of the published manuscript, Perturbed regeneration
for finding all isolated solutions of polynomial systems (Daniel J. Bates, Brent R. Davis, David Eklund,
Eric Hanson, Chris Peterson, Applied Mathematics and Computation, 2014). My contributions to this
publications include organizing the theoretical foundations of the paper, performing runs and analysis for all
examples, and experimentation and writing portions of the manuscript. Some sections have been modified
from the manuscript so that the thesis as a whole has been presented in a uniform way to adhere to the
formatting guidelines.

31

task we will analyze. Then we discuss the need for a perturbation and why standard re-

generation is not sufficient to find all isolated solutions (§3.4). Finally we arrive at the

perturbed regeneration algorithm (§3.5) and include various theorems that justify perturbed

regeneration so as to ensure all isolated solutions will be computed and that paths preserve

multiplicity information (§3.6). Various examples and experiments are considered to evaluate

the performance of perturbed regeneration (§3.7) and we discuss related singular homotopy

methods and how they compare to perturbed regeneration (§3.8).

3.2. Mathematical Background

Denote the isolated solution of V(f) as V0(f). A necessary but not sufficient condition

for a system to contain isolated solutions if that rankf is maximal. In what follows we

assume this is the case. When the rank is not maximal we may use the numerical irreducible

decomposition (NID) to create numerical representatives of irreducible components. See §2.6

for more on the NID.

Let f := (f1, . . . , fN) : CN → CN be a square polynomial system with solution set:

V(f) := {z ∈ CN : fi(z) = 0, for i = 1, . . . , N}.

Since rankf = N there is a nonempty Zariski open dense subset Z ⊆ CN such that for every

z∗ ∈ Z, rankJf |z=z∗ , the rank of the Jacobian matrix of f at z∗, equals N .

3.3. Regeneration

This section outlines the regeneration method to compute all isolated nonsingular solu-

tions of a polynomial system. Let f := (f1, . . . , fN) : CN → CN be a square system with

rankf = N . Denote di as the degree of the polynomial fi for i = 1, . . . , N and:

L
(j)
i (z) = �z1 + · · ·+ �zN − 1

32

be a linear polynomial with random coefficients for i = 2, . . . , N and j = 1, . . . , di. Assume

the solutions to: 
f1(z)

L
(1)
2 (z)

...

L
(1)
N (z)

 =


0

0
...

0


is solved by reducing the system to a degree d1 univariate polynomial. Consider the sequence

of d2 − 1 homotopies: 

f1(z)

L
(1)
2 (z)

L
(1)
3 (z)

...

L
(1)
N (z)


→



f1(z)

L
(2)
2 (z)

L
(1)
3 (z)

...

L
(1)
N (z)


→ · · · →



f1(z)

L
(d2)
2 (z)

L
(1)
3 (z)

...

L
(1)
N (z)


.

where equations 1, 3, . . . , N are held fixed and at the kth step the 2nd homotopy equation

becomes:

L
(k)
2 (z)(1− t) + L

(k+1)
2 (z)t

for k = 1, . . . , d2 − 1. Denote S2,1, . . . , S2,d2 the set of nonsingular isolated solutions at each

step of the sequence of homotopies above. By observation,
⋃
j S2,j is the set of nonsingular

isolated solutions of the system:

f1(z)

L
(1)
2 (z)L

(2)
2 (z) · · ·L(d2)

2 (z)

L
(1)
3 (z)

...

L
(1)
N (z)


.

33

The 2nd stage of regeneration is complete by following the homotopy:

f1(z)

L
(1)
2 (z)L

(2)
2 (z) · · ·L(d2)

2 (z)

L
(1)
3 (z)

...

L
(1)
N (z)


→



f1(z)

f2(z)

L
(1)
3 (z)

...

L
(1)
N (z)


where the homotopy for equations 1, 3, . . . , N are held fixed and the the 2nd homotopy

equation is:

L
(1)
2 (z)L

(2)
2 (z) · · ·L(d2)

2 (z)(1− t) + f2(z)t.

We say that f2 has been regenerated.

In general the `th step is as follows. Assume that f1, . . . , f`−1 have been regenerated.

That is, the nonsingular isolated solutions to:

f1(z)

f2(z)
...

f`−1(z)

L
(1)
` (z)

...

L
(1)
N (z)


are known. Consider the sequence of d` − 1 homotopies:

f1(z)

f2(z)
...

f`−1(z)

L
(1)
` (z)

L
(1)
`+1(z)

...

L
(1)
N (z)



→



f1(z)

f2(z)
...

f`−1(z)

L
(2)
` (z)

L
(1)
`+1(z)

...

L
(1)
N (z)



→ · · · →



f1(z)

f2(z)
...

f`−1(z)

L
(d`)
` (z)

L
(1)
`+1(z)

...

L
(1)
N (z)



34

where the homotopy equations 1, . . . , ` − 1, ` + 1, . . . , N are fixed and the `th homotopy

equation at the kth step becomes:

L
(k)
` (z)(1− t) + L

(k+1)
` (z)t

for k = 1, . . . , dj − 1.

Let S`,1, . . . , S`,d` be the set of nonsingular isolated solutions to the d` systems above.

Then
⋃
j S`,j is the set of all nonsingular isolated solutions of the system:

f1(z)

f2(z)
...

f`−1(z)

L
(1)
` (z)L

(2)
` (z) · · ·L(d`)

` (z)

L
(1)
`+1(z)

...

L
(1)
N (z)


The `th stage of regeneration is complete by following the homotopy:

f1(z)

f2(z)
...

f`−1(z)

L
(1)
` (z)L

(2)
` (z) · · ·L(d`)

` (z)

L
(1)
`+1(z)

...

L
(1)
N (z)



→



f1(z)

f2(z)
...

f`−1(z)

f`(z)

L
(1)
`+1(z)

...

L
(1)
N (z)


where the homotopy equations 1, . . . , `− 1, `+ 1, . . . , N are held fixed and the `th homotopy

equation becomes:

L
(1)
` (z)L

(2)
` (z) · · ·L(d`)

` (z)(1− t) + f`(z)t

35

We say that f` has been regenerated. At every stage of regeneration the nonsingular solu-

tions of the target system are guaranteed with probability one. In addition, all nonsingular

solutions to the system that regenerates f` are guaranteed with probability one.

Once the final polynomial fN has been regenerated we recoved a set of solutions S ⊆ f(z)

that contains the set of all nonsingular isolated solutions to V(f). Additional details and

analysis of regeneration are found in the hallmark papers [38, 39].

3.4. Need for Perturbation

In this section we illustrate the issues that regeneration has with computing every isolated

solution of V(f). Consider the polynomial system of equations, f(x, y) = 0:y(x− 2)2

x(y − 3)

 =

0

0

 .
Here, V(f) = {(0, 0), (2, 3)}. The solution (0, 0) is nonsingular and the solution (2, 3) is

singular with multiplicity two. Consider the 1st stage of regeneration by solving: y(x− 2)2

r1x+ r2y − 1

 =

 0

0


where r1, r2 are generic parameters. By implicit substitution the solutions are:

{(1/r1, 0), (2,−(2r1 − 1)/r2)}

where (2,−(2r1−1)/r2) is a singular solution. At this stage, to apply regeneration directly the

isolated solution (2,−(2r1− 1)/r2) must be discarded if we are to regenerate the polynomial

x(y − 3). Proceeding with the 2nd stage of regeneration we follow the homotopy: y(x− 2)2

r1x+ r2y − 1

→
 y(x− 2)2

s1x+ s2y − 1



36

for generic parameters s1, s2 ∈ C. The polynomial x(y − 3) is regenerated by following the

homotopy:  y(x− 2)2

(r1x+ r2y − 1)(s1x+ s2y − 1)

→
y(x− 2)2

x(y − 3)

 .
Using this regeneration scheme only the nonsingular solution (0, 0) is obtained.

3.5. Perturbed Regeneration Algorithm

In this section we will produce an algorithm that computes every isolated solution of

V(f) including isolated singular solutions using homotopy continuation and NAG. Denote

each isolated solution to V(f) as V0(f). A necessary but not sufficient condition for a system

to contain isolated solutions if that rankf is full. We make the additional assumption that

rankf is full.

To remedy the issue of only guarantees to nonsingular solutions of f(z) using regener-

ation directly we introduce a perturbation of the problem. That is, f(z) is replaced by a

polynomial system fp(z) = f(z)−p for a generically chosen parameter p ∈ CN . This trivial

perturbation of f(z) significantly alters the multiplicity structure of f(z). The perturbed

regeneration algorithm is contained in algorithm 1.

Algorithm 1 Perturbed homotopy algorithm

Input: Polynomial system f : CN → CN .
Output: All isolated solutions V of f(z).

1: Compute rankf . If rankf < N , then V = ∅.
2: Otherwise, choose a random p ∈ C. Set pT = (p, p, . . . , p) ∈ CN .
3: Use a homotopy method (e.g. regeneration, total degree, or multihomogeneous) to nu-

merically approximate all isolated nonsingular solutions T of fp(z) = f(z)−p.
4: Follow paths beginning at points T of fp(z) = f(z)−p through a parameter homotopy

f(z)−tp for t ∈ (0, 1] storing every solution V̂ .

5: Remove from V̂ all non-isolated solutions z ∈ V̂ − V using a local dimension test to
produce V . One may use the local dimension approach as described in [7].

37

3.6. Justifying Algorithm 1

The theory underlying algorithm 1 is largely due to [37, 59, 69]. Application of this

theory has been organized in the context of perturbed homotopies for finding all isolated

solutions. In this section we provide justification for algorithm 1.

Recall that rankf denotes the rank of a polynomial system. Another characterization of

rankf is the dimension of f(CN) ⊆ CN ; the smallest algebraic subset of CN that contains

f(CN). rankf is an upper bound on the codimension of every irreducible component of V(f)

[69]. An immediate result is that a necessary condition for f(z) to have isolated solution is

rankf = N .

Example 3.6.1. Let f : C3 → C3 be a polynomial system. Suppose rankf = 2. Then

every irreducible component of V(f) has codimension no more than 2. Therefore, V(f)

contains no isolated solutions.

Theorem 3.6.1. For any polynomial system f : CN → CN , algorithm 1 produces nu-

merical approximations to all isolated solutions of f(z) with probability one.

Theorem 3.6.1 may be proven by applying the main result from [50]. We provide an

alternative approach in this section. There are three lemmas that support theorem 3.6.1,

lemmas 3.6.1–3.6.3.

Lemma 3.6.1. Given a polynomial system f : CN → CN there is a Zariski open subset

W ⊆ f(CN) such that for every p ∈ W the solution set of f(z)−p consists of smooth,

irreducible components of dimension N−rankf . In the special case that rankf = N , the

solution set of f(z)−p consists of only nonsingular isolated solutions.

38

Lemma 3.6.2. Given a polynomial system f : CN → CN , if rankf = N , then f(CN) =

CN .

Lemma 3.6.3. Given a polynomial system f : CN → CN suppose that rankf = N .

There exists a Zariski open subsetW ⊆ f(CN) such that for every p ∈ W and every isolated

solution w ∈ V(f) there is at least one smooth path z(t) beginning at a solution of f(z)−p

and ending at w via the homotopy H(z, t) = f(z) − p for t ∈ (0, 1] and the number of

paths leading to w through the homotopy H(z, t) equals the multiplicity of w as a solution

of f(z) = 0.

If the system f : CN → CM is overdetermined (M > N) then a randomization R(f)

to a square system will destroy multiplicity structure associated to the isolated solutions of

f . Lemma 3.6.3 shows the utility of perturbed regeneration in the case that the system is

square since multiplicity information will be preserved.

Proof of Theorem 3.6.1. If rankf < N , then V(f) contains no isolated solutions.

Assume rankf = N . According to lemma 3.6.2 f is a dominant map and therefore f(CN)

is dense in CN . By lemma 3.6.1, W = CN and the closed set CN−W has codimension at

least one.

By lemma 3.6.1, given a random p ∈ CN , the polynomial f(z) − p will contain only

nonsingular isolated solutions. It is sufficient to choose a random p ∈ C and define pT =

(p, p, . . . , p) ∈ CN because the algebraic set P = {(p, p, . . . , p) ∈ CN : p ∈ C} has codimen-

sion N−1. Thus, (CN−W)∩P has codimension at least N . Therefore, P−(CN−(W)∩P))

is dense in W .

Using NAG, numerical approximations to the solution set of f(z)−p may be computed

using regeneration, total degree, or multihomogeneous method for example. Lemma 3.6.3

39

guarantees that for every isolated solutionw of f(z) = 0 there is a homotopy path beginning

from a point in V(f(z)−p) and ending at w. By following the homotopy H(z, t) as defined

in lemma 3.6.3, we obtain a superset V̂ that contains V . Finally, using a local dimension test

V may be obtained from V̂ . Thus all isolated solutions of f(z), including singular isolated

solutions are obtained by algorithm 1. �

In algorithm 1 we obtain a superset V̂ of solution to f(z) = 0 that contain all isolated

solutions V . In the case that V̂−V 6= ∅, algorithm 1 also computes numerical approximations

to solutions on positive-dimensional components of V(f) if these components exist. Note

that V may be obtained from V̂ via a local dimension test. Non-isolated solutions often exist

using total degree or multihomogeneous methods.

Generalization of each lemma may be found in appendix A of [69] as a consequence of

Sard’s theorem. Lemma 3.6.1 is proven as theorem A.6.1 in [69], lemma 3.6.3 is proven as

theorem A.6.1 in [69], and lemma 3.6.2 is given as an exercise in [36] and its related result for

a pure d-dimensional algebraic subset is in [37] for d > 0. In the assumption of lemma 3.6.2

we have the following proof:

Proof of Lemma 3.6.2. Since V(f) contains a pure 0-dimensional algebraic subset,

rankf = N . f is full rank and equivilently f(CN) = CN . �

Now that theorem 3.6.1 has been justified, there are a few extensions of it.

3.6.1. Multiplicity. The multiplicity, µ(zi), of every isolated solution zi of f(z) = 0

may be computed trivially using algorithm 1. Using the definition of multiplicity defined in

[69] we have:

Corollary 3.6.1. Algorithm 1 produces the multiplicity µ(zi) of every isolated solution

zi of V(f).

40

Corollary 3.6.1 is justified using theorem A.14.1(3) in [69], that each isolated solution zi

will be the endpoint of µ(zi) paths beginning at solutions of V(f − p).

3.6.2. Nonsquare Systems. In the case of nonsquare systems f : CM → CN with

M 6=N , algorithm 1 may be applied using a randomization of f , R(f). In this case V(f) ⊆

V(R(f)) and every isolated solution of V(f) is also an isolated solution of V(R(f)). However,

if w is an isolated solution of V(f) and µ(w) > 1, then µ(w) may increase as an isolated

solution of V(R(f)). Isolated solutions w that satisfy V(R(f)) but not V(f) may be filter

by evaluating f(w) and determining if f(w) is numerically nonzero. Thus, algorithm 1 may

be applied to nonsquare systems using randomization with the caveat that multiplicities may

increase and additional superfulous solutions may be introduced that must be sifted away.

3.7. Examples and Experimentation

In this section we evaluate the performance of perturbed homotopies. All computational

experiments were tested using Bertini v1.4 [8]. All reported timings except for example 3.7.5

were implemented on a 3.2 GHz core of a Dell Precision Workstation with 12 GB of memory.

Example 3.7.5 was implemented using 145 2.67 Ghz Xeon 5640 cores with 144 workers.

3.7.1. Simple Illustrative Example. Consider the example from §3.4 to illustrated

algorithm 1:

f(x, y) =

y(x− 2)2

x(y − 3)

 =

 0

0

 .
This system had two isolated solutions {(0, 0), (2, 3)}. A näıve implementation of regener-

ation will not obtain the solution (2, 3) where µ((2, 3)) = 2. Using a perturbed homotopy

41

using regeneration, we first solve the perturbed system:

fp(x, y) =

y(x− 2)2 − p1
x(y − 3)− p2

 =

 0

0


using a näıve implementation of regeneration where pT = (p1, p2) ∈ C2 is chosen randomly.

Suppose that:

pT = (−0.521957 + 0.810510i,−0.0312394− 0.602051i).

Then the perturbed system fp(x, y) has three solutions approximated as:

(x, y) = (2.2896− 0.4818i, 3.0399− 0.2546i),

= (1.6965 + 0.4895i, 2.8885− 0.3227i),

= (0.0243 + 0.1930i,−0.0901− 0.2274i).

This is followed by the homotopy:

H(x, y; t) =

y(x− 2)2 − tp1
x(y − 3)− tp2


that deforms solutions of fp(x, y) to solutions of f(x, y). Two solution paths approach (2, 3)

and the other solution path converges to (0, 0) as guaranteed by corollary 3.6.1.

In summary, by using regeneration on a perturbed system followed by a parameter ho-

motopy we were capable of recovering the singular solution not found using a näıve imple-

mentation of regeneration.

3.7.2. cpdm5 System. In this example we consider the well-known cpdm5 system from

the repository of polynomial systems [77]. The cpdm5 system was originally considered in

[29]. This system contains five equations in five variables whose solution set is described

in table 3.1. The five singular solutions each have multiplicity 11. As expected, a näıve

implementation of regeneration does not find any singular solutions for the cpdm5 solution

42

Table 3.1. Basic properties of the cpdm5 solution set.

Real solutions Non-real solutions Total solutions
Non-singular 38 120 158

Singular 5 0 5
Total 43 120 163

set. Timings and paths tracked for regular and perturbed total degree and regeneration

methods are provided in tables 3.2–3.3. One interesting takeaway from the results are that

timings for the perturbed runs (regeneration and total degree) vary less that those of the

unperturbed runs as indicated by the standard deviation in table 3.2. Users may wish to use

a näıve implementation of regeneration if singular isolated solutions are not of importance.

While most examples in this section show that perturbed regeneration should be used instead

to find all isolated solutions, including singular solutions, this example shows that a total

degree (or perturbed total degree) homotopy can be faster.

Table 3.2. Run times for the cpdm5 system. Each timing is averaged over
100 runs.

Step 1 Step 2 Total Std dev
Perturbed regeneration 2.3 sec 1.2 sec 3.6 sec 0.2 sec
Perturbed total degree 0.7 sec 1.2 sec 1.9 sec 0.2 sec
Regeneration – – 4.3 sec 0.9 sec
Total degree – – 1.9 sec 0.8 sec

Table 3.3. Paths tracked for the cpdm5 system.

Step 1 Step 2 Total
Perturbed regeneration 363 paths 213 paths 576 paths
Perturbed total degree 243 paths 213 paths 456 paths
Regeneration – – 363 paths
Total degree – – 243 paths

3.7.3. Fairness of Craps Game. In [62], the fairness of a game of craps was analyzed

when a pair of dice were loaded. Using algebraic geometry, this problem of determining fair-

ness became equivilent to finding nonnegative real solutions to the corresponding polynomial

43

system found in [62]:

6∑
i=1

pi = 1 =
6∑
i=1

qi

p1q1 = 1
36

= p6q6

p1q2 + p2q1 = 2
36

= p5q6 + p6q5

p1q3 + p2q2 + p3q1 = 3
36

= p4q6 + p5q5 + p6q4

p1q4 + p2q3 + p3q2 + p4q1 = 4
36

= p3q6p4q5 + p5q4 + p6q3

p1q5 + p2q4 + p3q3 + p4q2 + p5q1 = 5
36

= p2q6 + p3q5 + p4q4 + p5q3 + p6q2

p1q6 + p2q5 + p3q4 + p4q3 + p5q2 + p6q1 = 6
36
.

The system of equations contains 12 variables and 13 equations so is overdetermined. Thus,

if we randomize the polynomial system we may destroy some of the multiplicity information.

In any case, there are 51 solutions zi such that
∑

i µ(zi) = 252 with 50 isolated singular so-

lutions and one nonsingular solution. A randomization scheme can be significantly simplified

by taking a complex combination of 12 fixed polynomials and one other polynomial.

A randomization procedure does not increase the total degree if we take complex multiples

of
∑6

i=1 pi− 1 or
∑6

i=1 qi− 1. Set f =
∑6

i=1 pi. This leads to the square polynomial system:

6∑
i=1

qi + a1f = 1

p1q1+a2f = 1
36

= p6q6+a3f

p1q2+p2q1+a4f = 2
36

= p5q6+p6q5+a5f

p1q3+p2q2+p3q1+a6f = 3
36

= p4q6+p5q5+p6q4+a7f

p1q4+p2q3+p3q2+p4q1+a8f = 4
36

= p3q6p4q5+p5q4+p6q3+a9f

p1q5+p2q4+p3q3+p4q2+p5q1+a10f = 5
36

= p2q6+p3q5+p4q4+p5q3+p6q2+a11f

p1q6+p2q5+p3q4+p4q3+p5q2+p6q1+a12f = 6/36.

44

A näıve implementation of regeneration found no solutions. Timings for several methods are

provided in table 3.4 and paths tracked in table 3.5. Note for this example that perturbed

2-homogeneous performed best when compared to several methods.

Table 3.4. Run times for the unfair dice system. Each timing is averaged
over 10 runs.

Step 1 Step 2 Total Std dev
Perturbed regeneration 47.92 sec 5.28 sec 53.20 sec 6.01 sec
Perturbed total degree 28.50 sec 5.13 sec 33.63 sec 7.27 sec
Perturbed 2-hom 20.97 sec 9.39 sec 30.36 sec 6.54 sec
Total degree – – 30.97 sec 6.87 sec
2-hom – – 43.68 sec 23.36 sec

Table 3.5. Paths tracked for unfair dice system. Regeneration paths aver-
aged over 10 runs.

Step 1 Step 2 Total Std Deviation
Pertubed regeneration 2587 475 3062 66
Perturbed total degree 2048 504 2552 –
Perturbed 2-hom 924 504 1428 –

3.7.4. Butcher Problem. We consider the following system:

f =



zu+ yv + tw − w2 + (1/2)w − 1/2

zu2 + yv2 − tw2 + w3 + w2 − (1/3)t+ (4/3)w

xzv − tw2 + w3 − (1/2)tw + w2 − (1/6)t+ (2/3)w

zu3 + yv3 + tw3 − w4 − (3/2)w3 + tw − (5/2)w2 − (1/4)w − 1/4

xzuv + tw3 − w4 + (1/2)tw2 − (3/2)w3 + (1/2)tw − (7/4)w2 − (3/8)w − (1/8)

xzv2 + tw3 − w4 + tw2 − (3/2)w3 + (2/3)tw − (7/6)w2 − (1/12)w − (1/12)

−tw3 + w4 − tw2 + (3/2)w3 − (1/3)tw + (13/12)w2 + (7/24)w + 1/24


which first appeared in [18]. Computing the NID [9, 69], the solution set consists of 10

irreducible components of various dimensions provided in table 3.6. In this example all

isolated solutions are nonsingular.

When a näıve implementation of regeneration is applied only five nonsingular solutions

are approximated. If perturbed regeneration is applied there are 11 nonsingular solutions

45

Table 3.6. Summary of irreducible components of the Butcher problem system.

Dimension Components Degree
3 3 1
2 2 1
0 5 1

corresponding to the perturbed system. In step two of perturbed regeneration five nonsin-

gular solutions are obtain; two singular solutions are on a 3-dimensional component and the

remaining three points diverge to infinity.

In this experiment, the two singular solutions lie approximately on the same 3-dimensional

component which do not lie on the intersection of any two components. An implementa-

tion of isosingular deflation [40] by Bertini [8] verifies that these are smooth points on this

component.

A perturbed or non-perturbed total degree homotopy also finds points on positive-

dimensional components but computation time increases because hundreds of singular solu-

tions are approximated on various components.

Table 3.7 shows timings for various methods. In this example, perturbed regeneration

performed best even when compared to basic regeneration. Perturbed regeneration does not

encounter singular solutions at any point along regeneration. This is in contrast to non-

perturbed regeneration where several singular solutions are encounted at each level of the

regeneration procedure.

Table 3.7. Run times for the Butcher problem. Every timing is averaged
over 100 runs, whereas perturbed and non-perturbed total degree is averaged
over 50 runs.

Method Step 1 Step 2 Total Std dev
Perturbed regeneration 32.4 sec 0.5 sec 32.9 sec 7.5 sec
Perturbed total degree 663.4 sec 0.5 sec 663.8 sec 113.4 sec
Regeneration – – 41.0 sec 15.3 sec
Total Degree – – 1106.0 sec 158.3 sec
Regenerative Cascade – – 117.4 sec 70.1 sec

46

3.7.5. Nine-Point Four-Bar Design Problem. We consider the nine-point four-

bar design problem. The problem formulation and specific details may be found in example

5.5.2 of [9]. The system has eight equations and variables. Its total degree is 5,764,901,

2-homogeneous root count is 4,587,520, and 4-homogeneous root count is 645,120. There are

8,652 nonsingular isolated solutions total and several positive-dimensional components.

Table 3.8. Run times for the nine point problem. Each timing is an average
over 10 runs.

Method Computation Time
Step 1 Step 2 Total Std Dev

Perturbed Regeneration 2 h 18 m 19 s 1 m 19 s 2 h 19 m 38 s 42 m 1 s
Perturbed Total Degree > 6 h – > 6 h –
Perturbed 2-hom > 6 h – > 6 h –
Perturbed 4-hom > 6 h – > 6 h –
Regeneration – – 46 m 53 s 24 m 12 s
Total Degree – – > 6 h –
2-hom – – > 6 h –
4-hom – – > 6 h –

Table 3.8 tells us that basic regeneration is the fastest followed by perturbed regenera-

tion. All other homotopy strategies were deemed too costly when compared to perturbed

regeneration. Positive-dimensional components are ignored through tracking using basic re-

generation but are tracked when following a perturbed regeneration. This partially explains

the increase in computational cost where the easiness of path tracking is outweighed by the

increased number of paths tracked.

In all homotopy methods from table 3.8, the Bertini [8] configuration settings were held

fixed. Configuration settings could be modified for each method independently, but then it

would be difficult to compare across each method. As a result of this, a very small portion

of paths failed, to a varying degree, across the methods. However, there were approximately

290,000 paths tracked for perturbed regeneration compare to 175,000 paths tracked for basic

regeneration.

47

We conclude that perturbed regeneration does not outperform basic regeneration, but

this is not too suprising in the case that there we know a priori that there are no singular

isolated solutions. Perturbed regeneration does have value in cases where singularities are

not known and are interesting to the application.

3.8. Singular Homotopy Techniques

This section describes prexisting techniques that are used to compute all isolated so-

lutions. §3.8.1 describes how regeneration can be paired with deflation to find singular

solutions. In addition, we discuss the regenerative cascade (§3.8.2), a positive-dimensional

method where as a by-product enough information is retained to compute isolated singular

solutions. Finally in §3.8.3 we describe the cheater’s homotopy which is a general pertur-

bation technique to find singular solutions. The cheater’s homotopy was one of the first

methods used to solve polynomial systems that involved a perturbation.

3.8.1. Regeneration with Deflation. Regeneration can be combined with a defla-

tion procedure to compute isolated singular solutions [38]. Deflation replaces a polynomial

system f(z) defined on CN with a deflated polynomial system f̂(z, ξ) defined on CN ×CM

so that if z∗ is an isolated singular solution to f(z) then (z∗, ξ∗) is a nonsingular isolated

solution of f̂(z, ξ) [64, 63]. There is a body of work related to deflation highlighting proofs

of nonsingularity and strong deflation [49, 63, 40].

In practice, deflation is applied to every intermediate system of regeneration where a

singularity may occur. Because the size of the deflated system increases path tracking is less

efficient. In addition, deflation often requires a randomization procedure which may destroy

the polynomial structure of the equations. Algorithm 1 avoided these type of issues but at

the cost of potentially increasing the relative paths tracked.

48

3.8.2. Regenerative Cascade. Regenerative cascade provides an method to compute

the NID whose approach is based on regeneration [39]. As compared with basic regenera-

tion, regenerative cascade retains enough information to compute singular isolated solutions.

Cascading through dimensions one and a time comes as a significant computational cost if

only isolated solutions are of interest. Perturbed regeneration avoids cascading entirely but

regenerative cascade is the state of the art if a more complete description of the irreducible

components is desired.

3.8.3. The Cheater’s Homotopy. Parameterized polynomials f(z;p) arise frequently

in applications where one needs to solve at several parameters p = p1, . . . ,pk in parameter

space. A general discussion of parameter homotopies are discussed in §2.4.

Parameter homotopies first solve a general member in a parameterized family of polyno-

mials f(z,p∗) and then ensure that the solution curves are smooth. The so-called “cheater’s

homotopy” addresses this issue by including exactly the same parameter as in lemma 3.6.3 [50].

The cheater’s homotopy solves a parameterized system f(z;p) by first solving f(z;p∗)+

q∗ where p∗, q∗ are generically chosen. Solutions to this system are then used as start points

as the solutions of the homotopy H(z, t) = f(z; tp∗+ (1− t)p̂) + tq∗ at t = 1 and solutions

for a parameter p̂ of interest are recovered as t→ 0.

To distinguish the work in this chapter we highlight that a perturbation was introduced

to improve and extend basic regeneration and not to compete with the cheater’s homotopy.

However, regeneration is compatible with a cheater’s homotopy if we use regeneration to

solve f(z,p∗) + q∗ for p∗, q∗ generically chosen.

49

3.9. Perturbing Positive-Dimensional Components

A natural question is to consider how positive-dimensional irreducible components in-

teract with perturbation. For example, does a non-reduced component “break apart” into

several reduced components? Can we use perturbed regeneration to compute a NID? Is

there any information about components of perturbed systems that helps understand its

corresponding non-perturbed system? §3.9.1 discusses perturbation in obtaining a NID.

3.9.1. Failure to Compute Numerical Irreducible Decomposition. For a gen-

eral discussion of NID see §2.6. It is tempting to see if using a perturbed homotopy would

provide enough information to find at least one generic point on every irreducible compo-

nent. That is, given a polynomial system f(z), consisting of irreducible components, first

solve the perturbed system f̂(z) for which all irreducible components have been “broken”

into points under perturbation and then use a homotopy to recover points on the irreducible

components of f(z).

As f̂(z) → f(z) the goal is to obtain at least one point on each irreducible component

of V(f). After this, a post-processing step would identify what points belong to the same

irreducible component and if a witness set could be verified using monodromy and the trace

test. Monodromy and the trace test are discussed in §2.6.4.

We have positive results if f : CN → Cn is a polynomial system of rank n, with N ≥ n

and the dimension of the solution set of f(z)−p is N−n for generic p ∈ Cn. By intersecting

the algebraic set with N − n generic hyperplanes, we reduce to points for which we may

track using a homotopy to solutions of f(z). We are guaranteed at least one point on each

irreducible component of f : CN → Cn.

50

However, from a practical standpoint the point obtained may not contain generic prop-

erties on each irreducible component. For example, consider the simple polynomial system

with multiplicity structure:

f(x, y) =

 x2
xy

 .
It is easy to see that f(x, y) has rank two and a perturbation f̂(x, y) has dimension zero for

a generic perturbation parameter. One may verify that the solution set of f(x, y) consists

of the y-axis. A perturbed homotopy is used to find a point on the y-axis. However, the

point that is always obtained is a non-generic point at the origin (x, y) = (0, 0). This simple

example illustrates the issues with perturbation to compute the NID. That is, a point is

found on the component but it may not be generic.

Further analysis is done on example 3.7.4 involving the Butcher problem. The solution

set consists of five positive-dimensional components but a perturbation of the system yields

only two point on the five components. After further investigation these points lie at the

intersection of one or more of the components. As we can see, perturbation is not a reliable

method to construct a NID but is useful in finding isolated singular solutions.

51

CHAPTER 4

MAX-LENGTH VECTOR LINE OF BEST FIT

4.1. Introduction and Motivation

When confronted with a large data set there is a variety of techniques that can be

employed to understand the structure of the data set3. When a data set can be thought of a

point in a non-Euclidean geometric space, such as a Grassmann or Stiefel manifold, additional

insight can be revealed while working with these manifolds [1, 13, 21, 46, 54, 65, 75, 76, 80].

Using the singular value decomposition (SVD), for example, one can model or capture

features of a data set when thought of as a linear subspace expressed as the span of a set of

orthonormal vectors. Thinking of data as points on Grassmann manifolds and their related

Stiefel manifolds has led to algorithms to represent, classify, or compare data sets [20, 34,

74, 58, 79].

The aim of this chapter is to discuss the clustering problem. Given a collection of data,

now thought of as a cluster of points on a Grassmann (Stiefel) manifold, we would like to

represent the data cluster via a representative point in that space. In practice, this helps to

reduce the cost of classification algorithms and related clustering tasks [10, 23, 25, 26, 44, 71].

Generally speaking, our problem is as follows: Let V be a vector space. Suppose C be

finite collection of linear subspaces such that C ∈ V for every C ∈ C. Find a line ` ∈ V

that best represents C. There are many possible ways to approach this problem. A common

3The aim of this work is to demonstrate how numerical algebraic geometry can be used to solve clustering
subroutine problems in geometric data analysis. This chapter includes a version of the published manuscript,
The max-length-vector line of best fit to a collection of vector spaces (Daniel J. Bates, Brent R. Davis, Michael
Kirby, Justin Marks, Chris Peterson, Numerical Linear Algebra with Applications, 2015). My contributions
to this publications include organizing the theoretical foundations of the paper, performing runs and analysis
for examples and experimentation including implementation details and writing portions of the manuscript.
Minimial changes of content have been made to adhere to the formatting guidelines. Permission to reproduce
this manuscript has been granted by John Wiley and Sons under license #4132640334358. Copyright 2015
John Wiley & Sons, Ltd.

52

method is to express ` as the minimum argument of an optimization problem that depends

on the data C. Specifically, we will discuss the scenario where the objective function is

expressed as a sum of cosines of singular values between elements of C and `. We call this

representative the max-length-vector line of best fit for a collection of subspaces (MLV line).

§4.2 discusses mathematical background such as Grassmann manifolds, principal angles,

and manifold means for data clusters on Grassmannians. Then §4.3 discusses the problem

formulation and several equivilent forms. In §4.4 we show how the solution will correspond

to solutions of a multivariate eigenvalue problem (MEP). Then §4.5 will discuss techniques

that will solve the MEP. Finally in §4.6 we look at several examples including an application

to a set of image data acquired from the Pattern Analysis Laboratory (PAL) at Colorado

State University (CSU).

4.2. Mathematical Background

4.2.1. The Grassmann Manifold and its Representations. Let Gr(p, n) denote

the set of all p-dimensional linear subspaces of Rn. Gr(p, n) has the structure of a smooth

manifold of dimension p(n − p). With this structure refer to Gr(p, n) as a Grassmann

manifold. In order to cluster subspaces we would like a represent elements of Gr(p, n) using

matrices. Given an element of Gr(p, n) represent it as the column space of a full rank n× p

matrix M . This representation is not unique. For example, if A ∈ GL(p,R), the set of p×p

invertible matrices over R, then the column space of M and MA are equivilent.

Denote [M] as the equivilence class of full rank n × p matrices that have the same

column space as M . With this definition, the set of all equivilence classes of this form can

be identified with Gr(p, n). Given an equivilence class [M], represented by a full rank n× p

matrixM , we may construct a orthonormal matrixN via Gram-Schmidt orthonormalization

53

whose columns span those of M . Thus [M] = [N] ∈ Gr(p, n). Furthermore, M may

be represented by NA for any A ∈ O(p), the space of all p × p orthonormal matrices.

This identifies Gr(p, n) with the quotient manifold O(n)/(O(p) × O(n−p)). In practice,

this identification allows us to represent a data point [M] ∈ Gr(p, n) with an orthonormal

matrix. We use this representation throughout the rest of the chapter.

4.2.2. Principal Angles between Subspaces. Let [X] and [Y] be p and q dimen-

sional nontrivial subspaces of Rn, respectively. Without loss of generality assume that

p = dim [X] ≥ dim [Y] = q. The principal angles θ1([X], [Y]), . . . , θq([X], [Y]) ∈ [0, π/2]

between [X], [Y] are defined recursively as:

cos(θk([X], [Y])) = max
x∈[X]

max
y∈[Y]

xTy := yTkxk

xTx = yTy = 1,

yTyi = xTxi = 0, for 1 ≤ i ≤ k − 1.

The set of orthonormal vectors {x1, . . . ,xq} and {y1, . . . ,yq} are called the principal vectors

for the pair of subspaces [X], [Y], respectively. The principal angles have the property that

θk([X], [Y]) ≤ θk+1([X], [Y]) for 1 ≤ k ≤ q − 1.

There is a nice procedure to compute principal angles [14]. Suppose matricesQX ,QY are

othonormal representatives of the subspaces [X], [Y], respectively. Orthonormal representa-

tions can be obtained using the QR decomposition. By the singular value decomposition, the

p× q matrix QT
XQY may be expressed as UΣV T where U is a p× q orthonormal matrix, Σ

is a q× q diagonal matrix whose entries are nonnegative real numbers, and V T is a q× q or-

thogonal matrix. The diagonal entries σi of QT
XQY are called the singular values of QT

XQY

and the columns of U and V are called the left-singular vectors and right-singular vectors

of QT
XQY . The singular values of QT

XQY may be ordered so that σ1 ≤ σ2 ≤ · · · ≤ σq.

54

In [14] there is a strong connection between the principal angles and vectors between

[X], [Y] and the singular value decomposition of XTY :

Principal angles: cos θk([X], [Y]) = σk(X
TY) for 1 ≤ k ≤ q,(4)

Principal vectors: [x1 · · ·xq] = QXU and [y1 · · ·yq] = QY V .(5)

Equations (4)–(5) give an efficient way to compute principal angles and principal vectors

between subspaces [X] and [Y].

4.2.3. Karcher Mean. Given a finite collection of points X = {[X1], . . . , [Xk]} ⊂

Gr(p, n), define the Karcher mean [µKM] ∈ Gr(p, n) for the set X as:

[µKM] = argmin[µ]∈Gr(p,n)

k∑
i=1

θi([µ], [Xi])
2.

The Karcher mean is not unique in general but for points of X lying close enough to one

another the Karcher mean has a unique minimum [10]. In practice, the Karcher mean is

approximated iteratively and the approach is guaranteed to converge when the point are

close to one another [10].

In addition to the Karcher mean there are several other subspace means and medians

that may be placed on a collection of subspaces. In [55], they discuss a variety of subspace

means and analyze their quantitative properties on data sets.

4.3. Formulations of the Optimization Problem

In this section, after stating the entry optimization problem of interest, several equivalent

constructions will be made that will characterize a line as the span of a vector that maximizes

the length of a set of unit length vectors each of which are contained in a set of subspaces.

Because of this intepretation we call the representative the MLV line.

55

4.3.1. Problem Formulation. Let V = {V1, V2, . . . , Vk} ⊂ Gr(1, n)⊕· · ·⊕Gr(n−1, n)

and set di = dimVi. Suppose Y i is a n× di orthonormal matrix whose column space spans

the subspace Vi. From §4.2 we showed that the column space [Y i] can be identified with Vi

for 1 ≤ i ≤ k.

Let L ∈ Gr(1, n) and denote θ(L, Vi) as the principal angle between L and Vi for 1 ≤ i ≤ k.

In §4.2 we showed an efficient way to compute principal angles between subspaces in general.

Define a one-dimensional subspace LMLV as:

LMLV = argmaxL∈Gr(1,n)

k∑
i=1

cos θ(L, Vi).(6)

Note that LMLV need not be unique. We explain this caveat in §4.6.

In order to introduce data represented as a subspace Vi and put equation (6) in a com-

putable form we must reformulate the corresponding optimization problem. This procedure

is summarized in proposition 4.3.1.

Proposition 4.3.1. Suppose V = {V1, . . . , Vk} ∈ Gr(1, n) ⊕ · · · ⊕ Gr(n − 1, n) and

Vi = [Y i] where Y i is an n×di orthonormal matrix whose columns span Vi with di = dimVi

for 1 ≤ i ≤ k. Then LMLV is the span of the longest length vector v that can be expressed

in the form v =
∑k

i=1 Y iαi for unit length vectors αi ∈ Rdi .

Proof. Suppose V ∈ Gr(d, n) and V = [Y] for a n×d orthonormal matrix Y . According

to equation (4), if L is the span of a unit length vector `, then cos θ(L, V) is the singular

value of `TY . Expanding the SVD, we have:

Y T` =
Y T`

‖Y T`‖ cos θ(L, V).

Therefore ‖Y T`‖ = cos θ(L, V) but then ‖projV `‖ = ‖Y T`‖, thus ‖projV `‖ = cos θ(L, V).

By construction, projV ` minimizes the angle between ` and any unit length vector v ∈ V .

56

Returning to optimization problem (6), we see that:

max
L∈Gr(1,n)

k∑
i=1

cos θ(L, Vi)

is equivalent to:

max
`,vi

k∑
i=1

`Tvi(7)

subject to ‖`‖ = 1,(8)

vi ∈ Vi with ‖vi‖ = 1 for 1 ≤ i ≤ k(9)

Now if vi ∈ Vi we have vi = Y iαi for some αi ∈ Rdi . Thus ‖vi‖ = 1 implies that

vTi vi = αTi Y
T
i Y iαi = αTi α

T
i = 1. Therefore equations (7)–(9) are equivalent to:

max
`,αi

k∑
i=1

`TY iαi(10)

subject to ‖`‖ = 1,(11)

‖αi‖ = 1 for 1 ≤ i ≤ k.(12)

By linearity of matrix multiplication, equations (10)–(12) are equivalent to:

max
`,αi

`T
k∑
i=1

Y iαi(13)

subject to ‖`‖ = 1,(14)

‖αi‖ = 1 for 1 ≤ i ≤ k.(15)

Set v =
∑k

i=1 Y iαi. For a fixed ` since ‖`‖ = 1 and `Tv = ‖`‖‖v‖ cosφ, where φ is the

angle between ` and v, `Tv is as large as possible when the angle φ = 0. In other words v

is a multiple of `. Therefore an optimal solution to equations (13)–(15) may be obtained by

maximizing the length of v. Consider then the optimization problem:

max
αi

∥∥∥∥∥
k∑
i=1

Y iαi

∥∥∥∥∥
2

(16)

‖αi‖ = 1 for 1 ≤ i ≤ k.(17)

57

Denote the maximum argument to equations (13)–(15) as {α∗1, . . . ,α∗k}. By construction

` points in the direction of v∗ =
∑k

i=1 Y iα
∗
i . Therefore the solution to equation (6) is

LMLV = [v∗]. �

4.3.2. Geometric Interpretation. In §4.3.1 and proposition 4.3.1 we showed that

solving optimization problem (6) was equivalent to optimization problem (13)–(15). The

vector v =
∑k

i=1 Y iαi has a geometric interpretation. The set of column vectors in Y i form

an orthonormal basis for the subspace Vi. The constraints αTi αi = 1 restrict the vector Y iαi

to have unit length. Thus, the vector v is the vector of maximal length that can be obtained

by adding k unit length vectors v1,v2, . . . ,vk with vi ∈ Vi. In other words, each vector vi

lies on the (dimVi−1)-dimensional unit hypersphere centered at the origin contained in the

respected subspace Vi. With this geometric interpretation we call L = span v the MLV line.

As mentioned the condition that the columns of Y i are orthonormal and αTi αi = 1

shows that Y iαi lies on the unit hypersphere contained in the column space of Y i denoted

Vi. In applications it is often desireable to relax the condition that Y i be instead orthogonal.

That is, each column may not necessarily have unit length. By the SVD, a real full-rank

orthonormal n× k matrix Y may be decomposed as UΣ where U is an n× k orthonormal

matrix and Σ is a k×k diagonal matrix whose diagonal entries are nonnegative and may be

arranged in decreasing order. For some v in the column space of Y , given an orthogonality

condition vTv = 1, we have v = UΣα for some α so that:

vTv = αTΣUTUΣα = αTΣ2α = 1.

Since Σ2 is clearly positive-semidefinite we may geometrically consider v = Y α as points

on a hyperellipsoid whose semi-axes are defined by the entries of Σ2.

58

Thus, given a collection of orthogonal matrices Y i finding the longest vector of the form

v = ΣiY iαi subject to αTi Σ2
iαi = 1 is equivalent to finding the longest vector that can be

decomposed as a sum of vectors lying in a respective hyperellipsoid contained in the vector

space spanned by Y i.

4.4. Multivariate Eigenvalue Problem

In this section our aim is to solve the nonconvex optimization problem (16)–(17). We

provide standard conditions for optimality using Lagrange multipliers and describe iterative

solving methods and degenerate cases. In §4.4.1 we show that critical points of (16)–(17)

satisfy the so-called multivariate eigenvalue problem (MEP). In §4.4.2 iterative methods to

solve the MEP are discussed. Global convergence properties of these methods are discussed

in §4.4.3. Finally, in §4.4.4 degenerate cases are discussed which are rare but worth discussing

and motivate the methods from NAG.

4.4.1. Solutions to the MLV Line Equations. Since the constraints (17) form a

convex set and the objective function (16) is continuous the optimal solution to optimization

problem (16)–(17) is obtained. The local optimal critical points are solutions of a polynomial

system using Lagrange multipliers. Construct the Lagrangian function:

L(α1, . . . , αk, λ1, . . . , λk) =

∥∥∥∥∥
k∑
i=1

Y iαi

∥∥∥∥∥
2

−
k∑
i=1

λi(α
T
i αi − 1).

Our aim is to set the gradient of L to zero and solve for every solution. For notional

convenience denote di as the number of columns of Y i, and αi = (αi,1, . . . , αi,di)
T as an

ordered set of coordinates corresponding to Vi with respect to the orthonormal matrix Y i.

Also set αT = (αT1 , . . . ,α
T
k) where α is an ordered (

∑k
i=1 di)× 1 column vector. Employing

59

a general formulation as in [66], solutions to (16)–(17) satisfy:

∇α
∥∥∥∥∥

k∑
i=1

Yiαi

∥∥∥∥∥
2

+
k∑
i=1

λi∇α(αi
Tαi − 1) = 0

αTi αi − 1 = 0 for 1 ≤ i ≤ k

(18)

where ∇α denotes the gradient operator with respect to the variables α.

Define the block matrix Y = (Y 1 |Y 2 | · · · |Y k). Since each Y i is orthonormal we have

the block structure:

Y TY =


I [d1] Y T

1Y 2 · · · Y T
1Y k

Y T
2Y 1 I [d2] · · · Y T

2Y k

...
...

. . .
...

Y T
kY 1 Y T

kY 2 . . . I [dk]


where I [di] denotes the di×di identity matrix for 1 ≤ i ≤ k. The system of polynomials (18)

may be written in a more compact form as:

Y TY α = Λα

αTi αi = 1 for 1 ≤ i ≤ k.
(19)

where Λ = diag(λd11 , λ
d2
2 , . . . , λ

dk
k) is a diagonal matrix that has the multiplier λi repeated di

times for 1 ≤ i ≤ k. In the case that Y i is relaxed to being simply orthogonal the block

diagonal matrices of Y TY instead become diagonal matrices. We call equations (19) the

MLV line equations. In [22, 81] equation (19) is the so-called multivariate eigenvalue problem

(MEP). An efficient method for solving a MEP based on homotopy continuation is discussed

in [22, 81]. We will employ this method using the tools from NAG in §4.5.

4.4.2. Iterative Methods. We discuss several iterative methods which solve the mul-

tivariate eigenvalue problem [22, 43, 81, 82]. The Horst-Jacobi method [43] is a generalization

of the power method used to find eigenpairs of an eigenvalue problem. Horst’s method ap-

plies k steps of the power method to the k block rows of the matrix Y TY in equation (19).

60

Expanding on this idea and using the block structure of Y TY Gauss-Seidel [22] is based on

a successive over-relation method.

Local convergence was proven in [22] for Horst-Jacobi and [81] for Gauss-Seidel. Also

in [81] a Rayleigh quotient-based algorithm was developed that accounts for the constraints

αTi αi = 1 from problem (16)–(17). The ideas of [22] were then extended to the alternating

variable method in [82].

4.4.3. Convergence to Global Solutions. Nonconvex optimization problems of-

ten exhibit the phenomena of multiple local critical points and in some cases have entire

critcal sets of positive dimension. Often times local methods may either not converge or

converge to a local nonglobal critical point. That is, locally it minimizes the objective

function but does not globally on the entire feasible set.

In [22] it was shown empirically that Horst-Jacobi often coverges to a local nonglobal so-

lution. Convergence to a global solution was improved on using a starting point strategy [81].

In the examples presented in [22, 81] it was shown that the Gauss-Seidel algorithm, with

a starting point strategy, outperformed Horst-Jacobi. Convergence to a global solution us-

ing the alternating variable method outperformed both Horst-Jacobi and Gauss-Seidel [82].

Furthermore in [82] it was shown that global convergence could be further improved based

on additional assumptions on the properties of the block diagonal matrices of Y TY in equa-

tion (19). These are applicable in our case where the block diagonal matrices are highly-

structured. We demonstrate good global convergence properties in example 4.6.3.

4.4.4. Degenerate Cases. In almost every case there is a unique MLV line. However,

there are many cases where there may be more than one line that minimizes the objective

61

function in (16). There are several reason when this can occur such as when too few condi-

tions are imposed by the subspaces or when there is a lot of symmetry between subspaces.

Cases where this may occur are as follows:

(1) (Many finite solutions due to symmetry) There are finitely many solutions. If

Vx, Vy, Vz denote the coordinate axes in R3 then there are four representative lines

of best fit due to the symmetry between the coordinate axes.

(2) (Infinitely many lines due to dimension) There could be infinitely many lines of best

fit due to a positive intersection dimension between subspaces. Since V1 and V2

share a subspace and the dimension is larger than one any line in this subspace will

maximize the objective function (6).

(3) (Infinitely many lines due to symmetry) There could be infinitely many lines of best

fit due to the symmetry between subspaces. Consider the z-axis and the xy-plane

in R3. Due to the symmetry there are an infinitely many number of best fit lines

whose union is a pair of cones meeting at the origin; one “above” the xy-axis for

z ≥ 0 and one “below” the xy-axis for z ≤ 0.

In theory the above cases struggle using the iterative methods described in §4.4.2 since

they assume generic behavior such as when there is one and only one line of best fit. The

above cases can be handled using a NID using tools from NAG.

4.4.5. Measure of Correlation. There are two extreme cases that are worth con-

sidering when evaluating the max-length vector. The first case is when k subspaces Y i of

dimension di are mutually orthogonal to one another. In this scenario the matrix Y TY = IN

62

for N =
∑k

i=1 di. Thus, the MLV equation (19) becomes simply:

α = Λα

αTi αi = 1 for 1 ≤ i ≤ k.
(20)

If λi 6= 0 then it must be 1. In either case (the other case being λi = 0) the vector αi can

be any vector so as long as ‖αi‖ = 1. There are infinitely many solutions to (20) if there is

at least one subspace of dimension at least two.

Without loss of generality assume αi = e1, the first standard basis vector in Rdi . Thus

the expression v =
∑k

i=1 Y iαi =
∑k

i=1 yi1, where yi1 denotes the first column of Y i. Futher-

more, we know that yi1 ⊥ yj1 for i 6= j and 1 ≤ i, j ≤ k. Since the sum of k orthonormal

vectors has length
√
k the max-length vector has length

√
k.

The second case is when k subspaces share at least a one-dimensional subspace in com-

mon. The max-length vector becomes as long as possible once we select k identical vectors

in the intersection of the subspaces Vi. Therefore, the max-length vector has length k since

it is the sum of k identical unit-length vectors. If v∗ denotes the max-length vector then

√
k ≤ v∗ ≤ k.

4.5. A Multivariate Eigenvalue Homotopy

As explained in §4.4.2 iterative methods are not guaranteed to converge to the global

critical point. Issues of nonconvergence and increasing the probability of reaching a global

critical point is discussed in §4.4.3.

It would be beneficial to have a technique that will always find the global solution with

probability one using NAG. Using NAG we instead will globally solve the optimization

problem using the following procedure:

63

(1) Compute all local nonglobal critical points by solving the MLV equation (19).

(2) For each critical point compute the value of the objective function (16) and from

among them select the critical point that maximizes the objective.

We call the homotopy by which we find all critical points the MEV homotopy.

In §4.5.1 we discuss the MEV homotopy which is in many cases optimal for a parame-

terized family of polynomials. Then in §4.5.2 we compute various root counts for homotopy

methods to solve the MLV equations. For a general discussion of homotopy continuation see

§2.2. For a general discussion of parameter homotopies see §2.4.

4.5.1. MEV Homotopy. A powerful homotopy method for handling parameterized

polynomial systems is a parameter homotopy. One first solves a parameterized polyno-

mial system for a general member in the parameter space. One may then solve a special

member of the family via a straight-line homotopy through parameter space while tracking

solution curves by homotopy continuation. The up-front cost of solving a general member

of this family may be costly but each subsequent solve is often significantly more efficient

for systems arising from applications.

The MLV equation (19) fit nicely into this framework. In fact a suprisingly simple method

will obtain all solutions to a general member without using a homotopy. We call this the

multivariate eigenvalue homotopy (MEV homotopy). The MEV homotopy constructs start

solutions similiarly to how solutions to a total degree start system may be iterated using

analytic expressions for the roots of unity. The homotopy approach was first described in [22]

and used curves over real Euclidean space. The following general member is an adequate

64

start system for a parameter homotopy:

(diag(z1, z2, . . . , zN)−Λ)α = 0

αTi αi − 1 = 0 for 1 ≤ i ≤ k.
(21)

The zi ∈ C are generic random for 1 ≤ i ≤ N and N =
∑k

i=1 di with notation adopted from

§4.4.1.

The start system (21) may be solved directly on each of the k blocks. For the jth block

we have the (dj + 1)× (dj + 1) subsystem:(
diag(z1, z2, . . . , zdj)−Λj

)
αj = 0

αTj αj − 1 = 0
(22)

where Λj is the jth subdiagonal block of Λ. The following 2dj solutions to (22) of the form

(λj, αj,1, . . . , αj,dj) are simply the following:

{
(z1,±1, 0, . . . , 0), (z2, 0,±1, 0, . . . , 0), . . . , (zdj , 0, . . . , 0,±1)

}
for 1 ≤ i ≤ k.

Due to the block structure of the solutions we consider solutions to (21) on the produce

space Cd1 × Cd2 · · · × Cdk as a k-fold product of the 2dj solutions from every jth block. In

total there are
∏k

j=1 2dj solutions.

Now given a collection of subspaces V1, . . . , Vk ∈ Rn, represented by orthonormal matrices

Y 1, . . . ,Y k, we consider its corresponding block matrix Y and construct the parameter

homotopy function:

(23) H(α, λ1, . . . , λk; t) =


(
(t diag(z1, z2, . . . , zN) + (1− t)Y TY)−Λ

)
α

αTi αi − 1 for 1 ≤ i ≤ k.

and consider its solutions for t ∈ (0, 1].

In the limit (as t→ 0) we obtain all isolated solutions of (19) using theory from parameter

homotopies. Furthermore, because the cost function in (16) has a natural ±–symmetry

(‖v‖2 = ‖ − v‖2), we only need solutions up to sign. Put another way (for a fixed t), if

65

(α, λ1, . . . , λk) is a solution then (−α, λ1, . . . , λk) is also a solution to (23). Because the

±–symmetry persists across the entire homotopy we only track half of the total solutions

and reduce the computational cost.

4.5.2. Comparison of Root Counts. With all continuation methods a general inter-

est is to count the number of solution curves that need to be tracked. Ideally we desire an

approach that minimizes the number of paths in tracking to a general member of a family

of polynomial systems.

In our case the total degree homotopy requires tracking 2N+k solution curves where

N =
∑k

i=1 di. This is easy to count since each polynomial that occurs in (19) has degree two

and there are N + k of them.

If we wanted to use a multihomogeneous homotopy with variable grouping {α, λ} then

the first N polynomials have multidegree (1, 1) and the remaining k polynomials have mul-

tidegree (2, 0). We obtain the root count using the method mentioned in §2.5.3. That is,

construct the expression (α + λ)N(2α)k and obtain the coefficient on the αNλk term. To

compute this first find the coefficient of the αN−kλk term in the expression (α + λ)N . The

binomial formula of (α + λ)N is:

(α + λ)N =
N∑
j=0

(
N

j

)
αN−jλj

so that the coefficient of the αN−kλk term is
(
N
k

)
. The coefficient of the αNλk term of

(α + λ)N(2α)k is therefore
(
N
k

)
2k. Thus, the multihomogeneous root count with variable

grouping {α,λ} is
(
N
k

)
2k. We summarize the root counts in table 4.1. One remark is that

each homotopy method is independent of the dimension of the ambient space Rn and depends

only on the quantity and dimension of the subspaces.

66

Table 4.1. Summary of root counts for various homotopy methods to solve
the MLV equations.

Homotopy method Paths tracked
Total degree 2k2N

Multihomogeneous 2k
(
N
k

)
MEV 2k−1

∏k
j=1 dj

4.6. Examples applying the MLV Line

This section highlights a variety of examples illustrating the computations and appli-

cations of the MLV line. Examples 4.6.1–4.6.2 illustrate an application of the homotopy

continuation method discussed in §4.5.1 on randomly generated data. Example 4.6.3 high-

lights the iterative alternating variable method (AVM). The AVM was briefly discussed in

§§4.4.2–4.4.3. Finally, example 4.6.3 applies the MLV line to a novel data set generated from

images taken at the Pattern Analysis Lab (PAL) at Colorado State University (CSU).

4.6.1. Small Example. Consider five randomly generated subspaces represented by

full rank matrices Y 1, . . . ,Y 5 ∈ R10 of dimensions 4, 3, 3, 2, and 2, respectively. Matrices

were generated by sampling each entry uniformly from the interval [−1, 1] and orthonormal

matrices were then approximated using a QR decomposition. The MEP homotopy was

implemented in parallel with Bertini v1.3.1 using 18 2.67 GHz Xeon-5650 compute notes

with a CentOS 6.4 operating system. In total 2,304 paths were tracked in approximately 6

seconds. Among the 2,304 paths 1,776 paths converged to finite isolated solutions of which

86 were real. Note that path tracking does not depend on the ambient dimension so this

may be increased arbitrarily.

4.6.2. Large Example. Consider nine randomly generated subspaces represented by

full rank matrices Y 1, . . . ,Y 9 ∈ R100 of dimensions 4, 3, 3, 3, 3, 2, 2, 2, and 2, respectively.

Matrices were sampled using the procedure described in example 4.6.1. The MEP homotopy

67

was implemented in parallel with Bertini v1.3.1 using 272 2.67 GHz Xeon-5650 compute

notes with a CentOS 6.4 operating system. In total 1,327,104 paths were tracked in approxi-

mately 30 minutes. Among the 1.3 million paths only 2,542 solutions were real. In particular

the max-length-vector had length 4.27 which is between 3 and 9; the theoretical upper and

lower bounds described in §4.4.5.

4.6.3. Iterative Method. In this example we consider the performance of the AVM

on random orthonormal matrices. 100 sets of five orthonormal matrices of ranks 2 to 10 were

considered. In this case random matrices were constructed by choosing entries of the matrix

from a standard Guassian normal distribution then orthonormal matrices were approximated

using the QR decomposition. In all cases we embed subspaces in R100.

In [82], a similiar experiment with 1,000 sets of five matrices was designed whose di-

mensions also varied between 2 and 10. However, matrices considered were not necessarily

orthonormal. Success of the method was then quantified using techniques from semidefi-

nite programming. In our case, we instead use the MEP homotopy to find global solutions

directly and then use it to assess the performance of the AVM.

In the context of orthonormal matrices the number of iterations required to converge to

at least six digits and the success rate of the method in converging to the global optimal

solution were improved when compared with table 2 of [82]. The success rate was computed

by applying AVM 1,000 times to each set of matrices considered. In all cases we randomly

generated a starting point by selecting each entry uniformly.

We measure the ratio of success/failure and then average this ratio across the 100 sets

of matrices. Average number of iterations were computed similiarly. The average number of

iterations was approximately 61 and the success rate of the method was 95% in finding the

global solutions on the first attempt.

68

There is a nonzero probability that the method will fail using just one attempt. However,

over multiple attempts the probability will increase dramatically and the iterative method

will find the global solution in at least 1,000 trials.

Since all local solutions are found using the MEV homotopy additional information is

obtained. For example, the number of local solutions that satisfied the global optimal cri-

terion as in [82]. The global optimal criterion requires that all multivariate eigenvalues to

be greater than or equal to one [82]. In this case, there was a relatively small number of

solutions that satisfied this condition. We believe the success of AVM relies on the fact that

the block diagonal matrices Y TY are simply identity matrices.

4.6.4. Application to Image Data. In this example we compute the MLV line to a

collection of images thought of as subspaces in a high-dimensional ambient space. Images

were collected from PAL at CSU. A subset of images were collected from a database consisting

of human subjects under varying lightning, illumination, pose, and expression conditions (i.e.

smiling, frowning). We limit the scope by considering subjects under varying illumination

angles with the ambient lights off under a still neutral expression. The data consists of

1080×1440×3 arrays which consist of three 1080×1440 arrays seperating the red, green, and

blue color bands. We then reduce the arrays to matrices by converting to grayscale images.

Each matrix is then vectorized column-wise to produce a 1, 555, 200×1 column vector.

Three subjects are given labels X, Y , and Z under illuminations sampled across various

illumination conditions. Then we select five, six, and seven illuminations of subjects X, Y ,

Z, respectively. In [11, 12] the set of illuminations of a fixed object is approximated by a

convex polyhedral cone. The illumination cone can be modeled using a small set of images

using a linear subpace [11, 12].

69

To illustrate the utility of the MLV line we introduce another subject A to X, Y, Z. Then

we select three distinct illuminations of A and append these to the illuminations of X, Y, Z.

The span of these subspaces have dimensions six, seven, and eight illustrated in figure 4.1.

We then change the basis of each subspace by taking random convex combinations with the

weight on A reduced shown in figure 4.2. Features of A are nearly hidden after taking

Figure 4.1. Rows of pictures correspond to subspaces of subject A together
with subjects X, Y, Z under various illuminations.

Figure 4.2. Recompute bases for subspaces in figure 4.1. Take convex com-
binations of generates. Subject A is difficult to identify.

70

convex combinations. Then compute orthonormal bases for the three subspaces and label

them [Y 1], [Y 2], [Y 3] and their matrices Y 1,Y 2,Y 3, respectively.

The MLV line to [Y 1], [Y 2], [Y 3] is presented in figure 4.3. Two quantitative statistics

Figure 4.3. MLV line to [Y 1], [Y 2], [Y 3]. We “recover” A although A is
“hidden” in figure 4.2

come with the max-length-vector computation including the three multivariate eigenvalues

and the length of the max-length-vector. The length of the vector is 2.9416 and the multi-

variate eigenvalues are:

(λ1, λ2, λ2) ≈ (2.9087, 2.8673, 2.8770).

The length of the max-length vector is a measure of the subspaces “willingness” to share a

common line in the optimization sense of problem (16)–(17). The multivariate eigenvalues

measure if the solution to problem (16)–(17) may be approximated by the solution of a

related eigenvalue problem. That is, if λ1 = λ2 = λ3 then the multivariate eigenvalue

problem reduces to the standard eigenvalue problem:

Y TY α = Λα(24)

αTα = 1.(25)

Eigenvalue problem (24)–(25) may be solved numerically with standard methods. The ap-

proximate solution to (16)–(17) corresponds to the eigenpair with the largest eigenvalue.

71

It is interesting to note that the solution to (24)–(25) is related to problem (6) by instead

maximizing the sum of the squared cosines of the principal angles [23].

A property we may interpret of the MLV line of best fit is its ability to extract the “most

correlated” signal in each subspaces even if the signal is weakly represented. Therefore, the

MLV line is more closely tied to the properties of the extrinsic manifold mean, the L2-median,

and the flag mean [55, 23] rather than the Karcher mean which tries to “average” out the

subspaces.

72

CHAPTER 5

MODEL SELECTION

5.1. Introduction and Motivation

There are a variety of scenarios where mathematical models are constructed and studied

to better understand real-world phenomena4. In some situations several mathematical mod-

els are constructed that are built upon alternative hypotheses. The central question then

becomes: “What model best explains the experimental data?”. In other words, we would

like to select what model best fits noisy experimental data. This is a central problem called

model selection, a fundamental scientific problem [17, 19, 47].

For example, when dealing with models from the life sciences a standard procedure for

model selection is to estimate all model parameters and hidden variables and then select a

model with the minimal best-fit error that also minimizes model complexity [51, 52].

For the situations we will consider the models are described as the steady-state equilib-

rium of polynomial ordinary differential equations (ODEs) whose system of equations are

labeled f(a,x)=0 where a and x denote the model parameters and variables, respectively.

As is often the case, some of the variables in x may not be measurable. However, we may

have measurable ‘outputs’ z = g(x) that depend on the non-measurable variables in x.

4The aim of this work is to determine how numerical algebraic geometry can be used in model selection.
This chapter includes a version of the published manuscript, Numerical algebraic geometry for model se-
lection and its application to the life sciences (Elizabeth Gross, Brent R. Davis, Ken Ho, Daniel J. Bates,
Heather Harrington, Journal of the Royal Society Interface, 2016). My contributions to this publications
include organizing the theoretical foundations of the paper, performing runs and analysis for examples and
experimentation including implementation details and writing portions of the manuscript. The manuscript
and its supplementary material have been combined so that the thesis as a whole has been presented in a
uniform way to adhere to the formatting guidelines. The manuscript and supplementary material has been
published as open access under the CC-BY licence v4.0.

73

Model selection may then be formulated as a least-squares optimization problem:

min
a,x,z
‖z − y‖2 s.t.

 f(a,x) = 0

z = g(x)
(26)

where y denotes the observed data. In general, problem (26) is a non-convex optimization

problem and there is no guarantee that a local approach [48, 3] will find a global critical

point. Since f and g are polynomials problem (26) may be solved globally by finding all

roots of an associated polynomial system using a Lagrange multiplier method.

The aim of this chapter is to propose a method for model selection using polynomial

deterministic models using techniques from NAG. As stated in §2.2 and §2.1.6 a NAG ap-

proach has a probability-one guarantee to find all isolated solutions to a polynomial system

of equations. This may be interpreted as finding all isolated critical points of problem (26).

In §5.2 model fitting and parameter estimation will be approached using a maximum-

likelihood perspective. In §5.3 the geometry of problem (26) will be discussed which will allow

us to make sense of dimensions of intersection of the model and data varieties. Finally in

§5.5 the NAG approach will be applied to three examples from biology: cell death activation,

HIV progression, and multisite phosphorylation using experimental data.

5.2. Problem Statement

Consider a mathematical model whose dynamics are described using a system of first-

order polynomial ODEs:

x′(t) = f(a,x)(27)

where a = (a1, . . . , ak) are parameters (e.g. rate constants in a deterministic model such

as a chemical reaction network with mass-action kinetics), x = (x1, . . . , xn) are variables,

and f = (f1, . . . , fr) are polynomials in x and a with measurable outputs z = g(x) where

74

z = (z1, . . . , zm) (m ≤ n) and g = (g1, . . . , gm) are polynomials in x. In our discussion of

the problem statement the parameters in a will be considered as fixed variables but during

computational stages they may be grouped together with x and be also called variables.

Define the real model variety is the solution set of the system:

f(a,x) = 0(28)

z − g(x) = 0, that is,(29)

(VM)R := {(a,x, z) ∈ Rk+n+m : f(a,x) = 0, z − g(x) = 0}

corresponding to the steady state equilibria of the model. In the situation that only one

data point y = (y1, . . . , ym) is considered the real data variety is the affine linear space:

(VD)R := {(a,x, z) ∈ Rk+n+m : zi = yi, 1 ≤ i ≤ m,

with dim(VD)R = k + n. As with all experimental data it is important to consider the

possibility for extrinsic measurement error. That is, there are errors {ε1, . . . , εm} on the

observable data y. Assume the errors are uncorrelated random variables and each error εi

is normally distributed with known variance σi. The three fundamental scientific problems

we will consider: model validation, model selection, and parameter estimation may then be

described using (VM)R and (VD)R.

5.2.1. Model Validation. The fundamental problem of model validation is to deter-

mine whether a polynomial model M is compatible with data according to a certain signif-

icance level α. Using the noise assumption described in §5.2 above each modelM gives rise

to a statistical model.

75

Given a deterministic system x′(t) = f(x,a) with an observation y made a steady-state

the statistical model under consideration is:

Yi = zi + εi, εi ∼ N (0, σi), 1 ≤ i ≤ m(30)

f(x,a) = 0(31)

z − g(x) = 0(32)

where x,a, z are all unknown, and σi is known for all i.

The question of model compatibility may be formulated as asking if a model is a “good

fit’ for the data using significance testing. A common goodness-of-fit statistic is:

d2 := min
m∑
i=1

(zi − Yi)2
σ2
i

subject to (a,x, z) ∈ (VM)R.(33)

When the variances σ2
i differ d2 may be thought of as the minimum-squared weighted

Euclidean distance between (VM)R and (VD)R. Under the assumption that the variances are

all one the statistic (33) is the standard minimum-squared distance. In what follows assume

all variances are one since we could rescale variables and observable data in the case the

variances differ from one (but are equal).

Optimization problem (33) may be interpreted using maximum-likelihood estimation.

Assume a data point y = (y1, . . . , ym) is a perturbation y = ξ + ε of some unknown true

value ξ = (ξ1, . . . , ξm), where each component εi of the error ε = (ε1, . . . , εm) is an indepen-

dent zero-mean Gaussian random variable with variance σ2
i . The aim is to determine the

probability that y comes from a model defined by VM. As described above a point on VM

has the form (a,x, z).

76

The probability that y comes from a given point (a,x, z) ∈ VM (i.e. that y is a pertur-

bation of z where (a,x, z) ∈ VM for some a and x) is then:

Pr(y | a,x, z) = Pr(y | ξ = z) =
m∏
i=1

Pr(yi | ξi = zi).

This is also called the likelihood L(a,x, z |y) of (a,x, z) and the aim is to find its maximizer

over all (a,x, z) ∈ VM. This can equivalently be done by considering the log-likelihood which

gives:

logL(a,x, z | y) =
m∑
i=1

log Pr(yi | ξi = zi) =
m∑
i=1

(
1

2
log 2πσ2

i −
(zi − yi)2

2σ2
i

)
by the so-called normality assumption. The maximizer (â, x̂, ẑ) can therefore be found by

solving the optimization problem:

d2 = min
(a,x,z)∈VM

m∑
i=1

(zi − yi)2
σ2
i

,

where the optimum is the test statistic (33). The values â, x̂, and ẑ are the maximum

likelihood estimates for, respectively, the parameters, the unobservable variables, and the

output values.

The test statistic d2 itself also has a useful interpretation. Suppose that y comes from a

point (a,x, z) ∈ VM. Then:

d2 =
m∑
i=1

(ẑi − yi)2
σ2
i

≤
m∑
i=1

(zi − Yi)2
σ2
i

by definition of minimum. Regarding each yi as a random variable each term (zi − yi)/σi

in the summation above is standard normal. Therefore, the right-hand side has a chi-

squared distribution with m degrees of freedom (χ2
m). The inequality should be interpreted

by regarding d2 as a random variable subject to the same source of randomness. This can

77

be written clearer as:

d2(ω) ≤
m∑
i=1

(zi − yi(ω))2

σ2
i

,

where the underlying dependence of both sides on the same random realization ω is explicitly

written and the inequality then holds for each value of ω. Consequently, we conclude that:

Pr(d2 ≤ u) ≥ Pr(U ≤ u), U ∼ χ2
m,

so

Pr(d2 ≥ pα) ≤ Pr(U ≥ pα) = α, U ∼ χ2
m,(34)

where pα is the upper α-percentile for χ2
m. This can be used to test the hypothesis that y

comes from VM.

In summary what has been shown is that minimizing the argument in (33) is equivalent

to maximizing the log-likelihood function:

logL(a,x, z|y) =
m∑
i=1

(
1

2
log 2πσ2

i −
(zi − yi)2

2σ2
i

)
(35)

and in addition provides an approach to test the hypothesis that y comes from VM using

inequality (34).

Model compatibility may be summarized as follows. The null hypothesis is that the

observable data y is generated from the statistical model defined by M. As stated above the

distribution function of d2 is dominated by χ2
m. We reject the null hypothesis and call model

M incompatible if the observed value d2 is greater than pα, the upper α-percentile for χ2
m.

Otherwise, we fail to reject the null hypothesis and say the model M is compatible with

significance level α.

There are a few subtle features of model compatibility that must be discussed mov-

ing forward. It may be the case that the real model and data varieties intersect, that is

78

(VM)R ∩ (VD)R 6= ∅ so that d2 = 0. In this case, we say the model is compatible with the

data. Furthermore, if there are restrictions on (a,x,y) (i.e. all parameters and variables

should be nonnegative) then finding d2 will become a constrained optimization problem.

These aspects will be discussed in more detail in §5.3.

5.2.2. Model Selection. The fundamental problem of model selection is given a set

of models, {M1, . . . ,Ms} one wants to determine the model of best fit to prescribed data.

Deciding the model of best fit comes down to selecting a model that minimizes the test

statistic (33).

If the test statistic d2 evaluates to zero for all (or even multiple) models then we are unable

to make a selection between models. This issue can be addressed by designing (potentially

more costly) experiments that yield more relevant information to help select a model. When

more variables are measured the intersection (VM)R ∩ (VD)R is often reduced. Once this

intersection is empty across every model considered model selection can be performed.

5.2.3. Parameter Estimation. The fundamental problem of parameter estimation is

finding the point (â, x̂, ẑ) ∈ (VM)R that minimizes the test statistic (33). This may be put

in a maximum-likelihood estimate context as finding the point (â, x̂, ẑ) that maximizes the

log-likelihood function (35) under prescribed noise assumptions.

The parameters â may be extracted directly from (â, x̂, ẑ). In addition the estimate on

hidden variables x̂ and the denoised outputs ẑ are also found. As described in §5.2.1 there

may be concerns about the intersection (VM)R ∩ (VD)R being nonempty. In this scenario

there may be more than one choice for (â, x̂, ẑ). If the intersection is empty one is selecting

points that geometrically minimize the distance between (VM)R and (VD)R. Setting up these

polynomial systems is discussed in detail in §5.3.

79

5.3. Geometry

In §5.2 three fundamental problems of model compatibility, model selection, and param-

eter estimation were discussed. In all the cases we must evaluate the test statistic d2 (33)

considered as a nonlinear optimization problem. One must also consider the dimension of

(VM)R and (VD)R and specifically the situation where the intersection is nonempty. Geo-

metrically one is minimizing the distance between the algebraic varieties (VM)R and (VD)R

or determining if they intersect at real points.

Most optimization methods for solving nonlinear problems are local in nature, that is,

there is no guarantee the method will obtain the global minimum. However, using NAG we

are able to obtain all local extrema over C with probability one. Employing NAG to solve

nonlinear optimization has been usedd in other contexts [32, 72] as well as in chapter 4 in

computing the MLV line.

It is important to discuss the underlying geometry between (VM) and (VD) as this will

lay the foundation for computing the test statistic (33). Let VM ⊆ Ck+n+m be the (complex)

Zariski closure of (VM)R and VD ⊆ Ck+n+m be the (complex) Zariski closure of (VD)R. See

§2.1.4 for a discussion on the Zariski closure and its topology. VM and VD will be called the

model variety and data variety, respectively, and they are distinguished between their real

counterparts (VM)R and (VD)R which we called the real model and data varieties from §5.2.

The intersection of VM and VD is comprised of the solution set of the union of polynomials

defining VM and VD, respectively. This union may be represented numerically using a witness

set via the numerical irreducible decomposition (NID). The background for witness sets and

NID is described in §2.6. The intersection may be composed of several irreducible components

of varying dimensions. Since we are interested in only the real points we may use the method

described in [37] to determine if there are any feasible real points in (VM)R ∩ (VD)R.

80

In the case that VM ∩ VD is empty we are geometrically selecting points on the model

variety and data variety that minimize the distance to one another. The set of points may

also be defined using a polynomial system of equations. NAG techniques may then be

employed to solve the system. A well-known necessary condition for local extrema is given

by the Fritz John (FJ) conditions related to Lagrange multipliers. In what follows we assume

that r +m = codimVM; however, when this is not the case the number of equations can be

reduced as will be demonstrated in §5.5.

Proposition 5.3.1 (Equations given by Fritz John conditions). Let r + m = codim

VM. Let f(a,x) = 0, z − g(x) = 0 be defined on a Zariski open set of VM and define

h(a,x, z) = {f(a,x), z − g(x)} (for simplicity of notation below). If (a,x, z) ∈ (VM)R is

a local minimum of:

(36)
m∑
i=1

(zi − yi)2,

then there exists λ := (λ0, λ1, . . . , λr+m) ∈ Pr+m such that (a,x, z,λ) is a solution to the

system:

f(a,x) = 0,(37)

z − g(x) = 0,(38)

λ0

 0

z − y

+
r+m∑
i=1

λi∇a,x,zhi(a,x, z) = 0,(39)

where Pr+m refers to complex projective space and ∇a,x,z refers to the operator consisting

of all first-order derivatives with respect to a, x, and z.

Solving system (37)–(39) using NAG produces all local extrema of the objective (36).

From there we select a pair of nearest points that minimize the objective.

81

5.3.1. NAG Techniques Used. Much of the NAG background necessary for this chap-

ter is discussed in chapter 2 but it is useful to discuss specific NAG aspects employed in §5.5

with broad strokes.

If x ∈ RN is a real solution of f = 0 it is either isolated among the complex solutions

or it lies on a positive-dimensional complex irreducible component. In the former case the

methods of NAG will find x and recognize it as real. In the latter case x can be difficult to

uncover.

For the purposes of this chapter it is usually only required to verify the existence of a

real solution especially in model compatibility discussed in §5.2.1. In this case we can find

witness points on all positive-dimensional components and then use the procedure in §2.1 of

[37] to verify the existence of real points.

In addition parameterized homotopies will be employed throughout §5.5 and as described

in §2.4 this approach significantly reduces computational complexity when many parameter

values are considered.

5.4. Algorithms

In this section we outline three algorithms related to model validation, model selection,

and parameter estimation discussed in §5.2. Then §5.4.1 discusses the main algorithm for

model validation. In §5.4.2 a detour is taken to consider the case when variable and parame-

ter are nonnegative. Then in §§5.4.3–5.4.4 we return to the two final algorithms to solve the

model selection and parameter estimation problem both of which will be build upon algo-

rithm 2 for model validation. Figure 5.1 helps to illustrate the three algorithms considered

and a simple illustrative example is discussed in §5.4.5 as a lead in to the more complicated

models considered from the life sciences in §5.5.

82

A

B

Model variety Data variety Intersection?

Compute dimension of intersection

Selection requires

more information

dim(VMi ∩ VD)

Find closest points

 between and

(VMi ∩ VD)

PositiveEmpty

Compute distance d
between and

Ex: Syn Bio

(Could recover parameters)
Ex: MAP kinase, HIV

Is d less than tolerance? No, reject

 model

Yes, model compatible

Compare d for all

models and select

Ex: Syn Bio, MAP kinase

Given

Zero

VDVMi

VM1,VM2, . . . ,VMr and VD

VMi VD
Find point in

 ?
2 If dim(VM ∩ VD

(VM)R ∩ (VD)R

Yes, model compatible
Ex: Cell death

(VM)R (VD)R

Figure 5.1. Schematic of NAG framework corresponding to model valida-
tion, selection, and parameter estimation. (A) Input to algorithms include
model translated into a model variety (red), and steady-state data translated
into a data variety (blue). (B) Flow chart of model compatibility, parameter
estimation, and model selection methods. Examples (green) are described in
§5.5

.

83

5.4.1. Algorithm: Model Validation. The goal of algorithm 2 is to solve the model

validation problem poised in §5.2.1. The goal is to find a pair of points that minimize the

distance between (VM)R and (VD)R. In the case that (VM)R ∩ (VD)R = ∅ this is obtained

by solving (37)–(39); otherwise a point is selected on real connected components of the

nonempty intersection (VM)R ∩ (VD)R.

Algorithm 2 Model validation

Input: model M, data D = {y}, tolerance α
Output: yes or no

1: If VM ∩ VD = ∅ go to step 3.
2: If dim(VM ∩ VD) ≥ 0 and (VM)R ∩ (VD)R 6= ∅ return yes ; else go to step 3.
3: Find a pair ((â, x̂, ẑ), (â, x̂,y)) ∈ (VM)R × (VD)R that minimizes (36) using NAG.
4: If ||ẑ − y||2 < pα return yes; else no.

Determining the dimension of the intersection VM ∩ VD in steps 1 and 2 of algorithm 2

may be computed several ways. First one could compute dim(VM) and dim(VD) using the

NID from NAG. If dim(VM)+dim(VD) exceeds the ambient dimension then they will almost

always intersect unless the varieties are in very special positions to one another. For example,

two complex 2-planes in C3 will almost always intersect unless they are parallel translations

to one another. If the ambient dimension exceeds dim(VM) + dim(VD) then VM ∩ VD will

often be empty.

A more direct approach is to compute the intersection dimension by solving a correspond-

ing polynomial system of equations. Given data y replace equation (38) with y − g(x) = 0

and solve this together with equation (37). Here what is meant by “solve” is to compute a

NID of the corresponding polynomial system of equations using NAG.

In step 2 of algorithm 2 one may be confronted with the possibility that dim(VM∩VD) = 0.

In this scenario the intersection of the two varieties consist of finitely-many complex points.

The condition (VM)R ∩ (VD)R 6= ∅ indicates that at least one of the points is real which is

84

straightforward to determine. If dim(VM ∩ VD) > 0, to check if (VM)R ∩ (VD)R 6= ∅, one

needs to apply the technique explained in [37]. The approach of [37] returns a point in

the intersection of (VM)R ∩ (VD)R if it exists. If the point has the additional smoothness

property then the real dimension of (VM)R∩(VD)R is equal to the complex dimension VM∩VD.

Smoothness is discussed in §2.1.2 and this technique will be illustrated in §5.5.

To find the pair ((â, x̂, ẑ), (â, x̂,y)) in step 3 of algorithm 2 one solves the polynomial

system of equations (37)–(39). If there is a positive-dimensional set of complex critical points

then the approach of [37] may return a real point. For example, if a complex plane and line

are parallel to one another in C3 but do not intersect there is an infinite number of points

that minimize the distance; in fact every real point contained on the complex line. The issue

of nonnegativity of variables and parameters is discussed in §5.4.2 below.

5.4.2. Nonnegativity Considerations. A common constraint placed on the vari-

ables and parameter is that they must be nonnegative. In this case the objective func-

tion (36) is minimized over the nonnegative orthant intersected with (VM)R. Algorithm 2

must be modified in this scenario. If dim(VM ∩ VD) = 0 or VM ∩ VD = ∅ then instead of

minimizing the distance between to real algebraic set we minimize the distance between two

semi-algebraic sets (i.e. sets defined by polynomial equalities and inequalities).

Let SM ⊂ (VM)R denote the semi-algebraic set associated to the model (i.e. SM =

VM ∩ Rk+n+m
≥0) then the appropriate statistic is:

d2 = min
m∑
i=1

(zi − yi)2 subject to (a,x, z) ∈ SM.(40)

If only an upper bound on d2 is sufficient then one could use the test statistic defined in

proposition 5.3.1. This would find a local critical point of (36) defined on the interior of SM

but not necessarily its boundary along Rk+n+m
≥0 .

85

If the exact value of d2 is needed on SM then one should solve the FJ system of equations.

Let F1, . . . , Fr, h1, . . . , hs be polynomials in the ring:

R[a1, . . . , ak, x1, . . . , xn, z1, . . . , zm].

Let SM be the semi-algebraic set of all (a,x, z) ∈ Rk+n+m that satisfies:

Fi(a,x, z) = 0 for i = 1, . . . , r,

hi(a,x, z) ≤ 0 for i = 1, . . . , s,

and define λ0, λ1, . . . , λr, µ1, . . . , µs as indeterminates corresponding to Fi and hi, respec-

tively. These indeterminates are called the FJ multipliers. The FJ system is written as:

F = 0(41)

λ0

 0

z − y

+
r∑
i=1

λi∇a,x,zFi +
s∑
i=1

µi∇a,x,zhi = 0(42)

µ1h1 = 0(43)

...(44)

µshs = 0.(45)

If (a∗,x∗, z∗) is a critical point the FJ constraint qualification states that there exists a

nonzero vector [λ0, . . . , λr, µ1, . . . , µs] with µi ≥ 0 for i = 1, . . . , s so that:

((a∗,x∗, z∗), [λ0, . . . , λr, µ1, . . . , µs])

satisfies equations (41)–(45). To find a global minimum of (40) one uses NAG to solve

equations (41)–(45) and then filters solutions appropriately so they satisfy the FJ constraint

qualification and constraints. This technique was first employed in [66].

The approach using the FJ system is appropriate to minimize the objective when F is a

complete intersection. However this is not always the case. In the latter one needs to design

86

an alternative approach in order to employ NAG techniques. The idea is to minimize the

objective function over (VM)R and then check the boundaries of SM. In other words, remove

the explicit inequality constraints hi(a,x, z) ≤ 0 from the FJ equations and then minimize

the objective along the boundary conditions.

Following proposition 5.3.1 assume that h(a,x,y) are equations that define a complete

intersection whose solutions contain VM using a complex randomizaton approach as discussed

in §2.1.7 if necessary. First solve the equality constrained optimization problem on (VM)R

using the polynomial system in proposition 5.3.1. Computing d2 along SM this way provides

an upper bound on (40). The space Rk+n+m
≥0 is naturally a convex polytope made up of faces of

various dimensions. Each of the j faces in dimension i, Fi,j, is contained in its affine hull Fi,j,

the smallest affine space that contains that face. Over the nonnegative orthant Fi,j is defined

simply by imposing natural equality constraints. Then one minimizes d2 over VM ∩ Fi,j for

each combination of i, j and filters out solutions not contained in VM ∩ Rk+n+m
≥0 . This is

equivalent to minimizing d2 over SM once every face of the convex polytope is considered.

If there are N indeterminates there are 2N−1 faces to consider. This amount to solving

2N−1 FJ systems. The number of faces to consider grows very large as N → ∞. However

the dimension of VM ∩Fi,j is less than or equal to the dimension of VM with the inequality

being strict when VM (Fi,j. If VM∩Fi,j is empty then VM∩S is also empty for any subset

S ⊂ Fi,j. Using this fact the number of lower-dimensional faces to check is significantly

reduced as they are intersections of higher-dimensional faces.

5.4.3. Algorithm: Model Selection. During model selection there are several com-

petiting models whos steady-state equilibria are defined by distinct polynomial systems. Al-

gorithm 2 is applied for each model under consideration. If a significance level α is prescribed

87

then first reject any model that does not support the observed data (d2 ≥ pα) and then a

model is selected that minimizes the value d2.

5.4.4. Algorithm: Parameter Estimation. The algorithm for parameter estima-

tion is built upon algorithm 2. In this situation only the model M and data D are pre-

scribed. One assumes that there are unknown parameters to be estimated and parameters

are produced that are the best fit between the model M and the data D. The outputs for

step 4 of algorithm 2 is removed from the algorithm as there is no significant level α being

considered in parameter estimation. Instead of returning yes or no algorithm 2 is modified

to return simply the value (â, x̂, ẑ) for which the estimated parameters â may be recovered.

5.4.5. Illustrative Example. Before looking at more complex examples in §5.5 we

first consider a simple model to illustrate algorithm 2. Consider a model with three variables

x, y, z and three parameters a, b, c satisfying the equation for an ellipse centered at the origin:

x2

a2
+
y2

b2
+
z2

c2
= 1.

Consider first a significance level of α = 0.1 and variances on the errors σ2
i = 0.1. The model

variety VM is illustrated in figure 5.2(A). Now set a, b, c = 1.

Suppose the outputs are x, y, and z is an unobserved variable. We make an observation of

x′, y′ = 0. One concludes that VD is the z-axis and it intersects VM at two points illustrated

in figure 5.2(B). Following along with algorithm 2 step 2 tell us yes the model is compatible

with the data.

Now suppose instead an observation of x′ = 0 is made and y, z are unobserved variables.

In this case VD becomes the yz-axis. Due to the simple geometry we know the intersection

contains real points so the model would be compatible from step 2 of algorithm 2. For

the sake of argument the NID of the intersection VM ∩ VD would have dimension one. We

88

y

x

z

b

a
c

α

cc

y

x

z

p1

p2ppp2222

ppp11

p

1ppp111ppp

y

x

z

y

x

z

p1 p2ppppppp

αααααααα

y

x

z

p1p2pppppppp

αααα

pppp

αααα

ppppp

A

B C

D E

Outside tolerance

In�nite y-z solutions

Data �ts model Possibly compatible

Reject model Model compatible

Within tolerance

Two solutions for z

Model variety

Parameters
Suppose (a, b, c) = (1, 1, 1)

= (x, y, z)

ance α

Variables

Model set-up

Tolerance =

Figure 5.2. Simple example demonstrating model compatibility following
algorithm 1.

could then determine compatibility using the approach of [37] by finding real points on each

connected component of (VM)R ∩ (VD)R. This is illustrated in figure 5.2(C).

Now suppose an observation of x′ = 1.7 and y′ = 0 is made so that z is an unobserved

variable. The model variety defines a line parallel to the z-axis and does not intersect VM

over R. Therefore one applies step 3 of algorithm 2 and finds a point ((1, 0, 0), (1.7, 0, 0)) ∈

(VM)R × (VD)R. Thus the scaled test statistic is:

d2 =
(x− x′)2

σ2
1

+
(y − y′)2

σ2
2

=
(1− 1.7)2

0.1
+

(0− 0)2

0.1
= 4.9.

89

The upper 0.1 percentile of χ2 with two degrees of freedom is p0.1 = 0.4605. Therefore since

d2 > p0.1 we reject the null hypothesis that the model is compatible with the data. This is

illustrated in figure 5.2(D).

Similiarly if x′ = 1.01 and y′ = 0 then again VM ∩VD is empty and step 3 of algorithm 2

is applied and a point ((1, 0, 0), (1.01, 0, 0)) ∈ (VM)R×(VD)R is found. In this case d2 = 0.001

so that d2 < p0.1 = 0.4605. We fail to reject the null hypothesis and conclude that the model

is compatible with the data. This is illustrated in figure 5.2(E).

5.5. Results and Experiments

The NAG approach to model selection will be demonstrated in three examples: cell death

activation, human immunodeficiency virus (HIV) progression, and multisite phosphorylation.

Each model is governed by a 1st order polynomial ODE of the form x′(t) = f(a,x) at steady

state. The aim of this section is to explain the core computational steps required in applying

model validation, selection, or parameter estimation. Where appropriate an explanation of

the findings will also be explained.

In §5.5.1 we look at a model of receptor-mediated programmed cell death and illustrate

how model compatibility can be determined from simulated data when the dimension of

intersection of the model and data variety is positive. Then in §5.5.2 we look at a model

describing long-term HIV dynamics and show how the natural death of HIV parameter may

be estimated from simulated data. Finally in §5.5.3 we study two conflicting models of

phosphorylation mechanisms of cellular signaling. Using experimental data from in vitro

and in vivio measurements we illustrate model selection and parameter estimation.

5.5.1. Cell Death Activation. Consider a model of receptor-mediated programmed

cell death initiated by activation of death receptors under detection of extracellular death

90

ligands via the Fas mechanism [27, 57, 73]. There are a variety of models to explain the data

and in this example we choose to study the so-called cluster model [42]. The cluster model

is interesting in that it exhibits the phenomena of bistability in equilibria. The aim of this

example is to illustrate model validation in the scenario that the intersection of the model

and data varieties are nonempty.

Setting up the model. The model includes a variety of mechanisms including constitutive

receptor opening and closing, pairwise open Fas stabilization, higher-order open Fas stabi-

lization enabled by FasL, and ligand-induced receptor opening. Fas is assumed to be one of

three species: closed (X1); open, unstable (X2); and open, stable (X3). Suppose the ligand

FasL is denoted by the variable L. The cluster model is defined using the reactions:

X2
kc−−⇀↽−−
ko

X1,

X3
ku−−→ X2,

jX2 + (i− j)X3
k
(i)
s−−→ (j − k)X2 + (i− j + k)X3,

L+ jX2 + (i− j)X3

k
(i)
`−−→ (j − k)X2 + (i− j + k)X3,

for i ∈ {2, 3}, j = 1, . . . , i, and k = 1, . . . , j. The first reaction defines receptor opening and

closing. The second reaction describes destabilization of open Fas. The third reaction(s)

define higher-order cluster-stabilization by open Fas independent of the ligand FasL and

similarly for the fourth reaction(s) dependent on the ligand FasL.

Assuming the reactions behave according to mass-action kinetics we may translate to a

system of 1st order ODEs:

x′1(t) = −v1,(46)

x′2(t) = v1 + v2 − v3 − v4,(47)

x′3(t) = v3 + v4 − v2,(48)

91

where: 

v1 = kox1 − kcx2,

v2 = kux3,

v3 = 6k
(3)
s x32 + 3k

(3)
s x22x3 + 3k

(2)
s x22 + k

(3)
s x2x

2
3 + k

(2)
s x2x3,

v4 = 6k
(3)
` x32`+ 3k

(3)
` x22x3`+ 3k

(2)
` x22`+ k

(3)
` x2x

2
3`+ k

(2)
` x2x3`.

Here vi define the reaction velocities for the variables xi. Lowercase letters denote the

concentrations of their corresponding species defined in the model reactions above. The

model parameters for the cell death cluster model are:

a = (ko, kc, ku, k
(2)
s , k(3)s , k

(2)
` , k

(3)
`),

the variables are:

x = (`, x1, x2, x3),

and the outputs are:

z = (λ, ρ, ζ).

The outputs represent the total ligand concentration, total receptor concentration, and the

total downstream “death signal”, respectively, as given by the equations:

λ− ` = 0,(49)

ρ− (x1 + x2 + x3) = 0,(50)

ζ − x3 = 0.(51)

The model variety VM may be constructed as the zero set of equations defined by setting

the right hand side of (46)–(48) to zero together with equations (49)–(51). A simple dimen-

sion count shows that VM is contained in C14 whose coordinates are defined by the model

parameters a, variables x, and outputs z.

92

Given an observable data point y = (λ′, ρ′, ζ ′) the data variety is defined as:

VD = {(x,a, z) ∈ C14 : λ = λ′, ρ = ρ′, ζ = ζ ′}.(52)

VD has dimension 11 since there are zero degrees of freedom in the variables λ, ρ, and ζ.

Returning to VM a simple codimension count provides a lower bound on the dimension

of VM. We expect the dimension of VM to be at least 14−6 = 8 assuming the equations are

consistent (i.e. the ideal generated by the polynomials are not equal to the ideal (1)). In

order to be more precise one could compute a NID of VM. Using Bertini [8] shows that VM

is a 9-dimensional complex set of degree 10.

A steady-state data point:

y = (λ′, ρ′, ζ ′) = (1.7784308, 2.31883024, 2.16896112)

was simulated from the ODE model (46)–(48) with all parameters and initial concentrations

taken as i.i.d. draws from the log-normal distribution lnN (0, 4) then combined and corrupted

with i.i.d. noise from N (0, 0.1) to obtain y.

As discussed in §5.4.1 since dimVM + dimVD = 9 + 11 > 14 = dimC14 we expect

VM ∩ VD 6= ∅. A direct computation of the NID shows that VM ∩ VD is a 6-dimensional

complex algebraic set of degree 5. Modifying the observable data point y by adding noise

to each coordinate drawn from the distribution N (0, 0.1) did not affect the dimension or

degree.

At this point step 1 of algorithm 2 is complete and what has been shown is that

dim(VM ∩ VD) > 0. The intersection provides evidence that (VM)R ∩ (VD)R 6= ∅ but there

is no guarantee. Our goal moving forward is to find at least one nonnegative point in

(VM)R ∩ (VD)R.

93

Fritz John Conditions. In order to find real points we apply the methods described

in [37]. First randomly select a real positive point (a∗,x∗) whose coordinates are chosen on

a nonnegative closed interval. The point will determine z∗ using equations (49)–(51). The

aim is then to solve the constrained optimization problem:

(53)
minimize ‖(a,x, z)− (a?,x?, z?)‖2

subject to (a,x, z) ∈ (VM)R ∩ (VD)R.

Geometrically optimization problem (53) is minimizing the distance between (a∗,x∗, z∗) and

(VM)R ∩ (VD)R.

In what follows the aim is to set up the polynomial system of equations that finds all

critical points of (53). We take a perturbed regeneration approach to solving the defining

system. Perturbed regeneration is discussed in chapter 3. Refer to the system defining

VM ∩ VD as f ∗(a,x, z).

The first subroutine is to “square up” f ∗. The theoretical foundation of squaring up a

system is discussed in §2.1.7. First we compute the codimension of VM∩VD using the informa-

tion gained above and observe the codimension is 14−6 = 8. There exists a nonempty Zariski

open set A ⊆ C8×9 such that for every matrix A ∈ A, we have VM ∩VD ⊆ V(Af∗(a,x, z)).

Elements of matrices A are chosen uniformly along the complex unit circle. If a point

(a,x, z) ∈ V(Af∗(a,x, z)) then (a,x, z) ∈ VM∩VD may be verified by function evaluation

of f∗. Furthermore, if VM ∩ VD contains a smooth real point then (VM)R ∩ (VD)R has real

dimension six.

The polynomial system to find all critical points of (53) is the so-called FJ conditions for

optimality. That is, if (a,x, z) ∈ (VM)R ∩ (VD)R is a critical point of (53) it must satify the

FJ conditions. We would like a homotopy that is designed to find all solutions that satisfy

these conditions.

94

Setting up the Homotopy. Given a point (a∗,x∗, z∗) ∈ R14/(VM)R ∩ (VD)R the FJ con-

dition for optimality states that ξ = (a,x, z) ∈ (VM)R ∩ (VD)R is a local critical point

of ‖(a,x, z) − (a∗,x∗, z∗)‖2 if there exists a λ̃ ∈ P8, complex projective space, so that

(ξ, λ̃) ∈ (VM)R ∩ (VD)R × P8 satifies:

Af∗ = 0,(54)

((a,x,y)− (a∗,x∗, z∗))Tλ0 + J(Af∗)T (λ1, . . . , λ8)
T = 0,(55)

where λ = [λ0, . . . , λ8] ∈ P8 and J(Af∗) denotes the Jacobian matrix of the functions Af∗

with respect to the variables (a,x, z). A generic affine patch of P8 is then chosen so that the

system may be solved using affine coordinates. This is a necessary step in order to perform

homotopy continuation. More specifically there is a nonempty Zariski open subset B ∈ C9

so that for every α ∈ B the FJ conditions may be solved in affine coordinates:

Af∗ = 0,(56)

((a,x, z)− (a∗,x∗, z∗))Tλ0 + J(Af∗)T (λ1, . . . , λ8)
T = 0,(57)

α0λ0 + α1λ1 + · · ·+ α8λ8 − 1 = 0.(58)

The components of α are chosen uniformly on the complex unit circle. Since VM ∩ VD is a

complex six-dimensional algebraic set using witness sets the hypotheses of Theorem 5 [37]

apply.

The results of theorem 5 [37] are as follows. Let w ∈ R8, γ ∈ C, and homotopy H :

C14 × C9 × C→ C23 be defined by:

H(a,x,y,λ, t) =


Af∗ − tγw

((a,x, z)− (a∗,x∗, z∗))Tλ0 + J(Af∗)T (λ1, . . . , λ8)
T

α0λ0 + α1λ1 + · · ·+ α8λ8 − 1

 .(59)

H therefore has the properties that the roots of H(a,x, z, λ, 1) are finite and nonsin-

gular, the number of solutions of H(a,x, z, λ, 1) = 0 is maximal for generically-chosen

95

w, γ, (a∗,x∗, z∗), and α. Furthermore, the one real-dimensional solution paths defined by

the homotopy H starting at t = 1 are capable of computing the solutions ξ that satisfy the

FJ condition after projecting solutions (ξ, λ̃) onto ξ as t→ 0. The polynomial system (59)

consists of 23 variables and equations.

Finding Solutions. The nonsingular isolated solutions of H(a,x, z,λ, 1) = 0 are com-

puted numerically using regeneration. Regeneration is discussed in detail in §3.3. As ex-

plained in §3.3 regeneration is more appropriate when only nonsingular solutions are desired.

Since theorem 5 [37] only requires nonsingular solutions at t = 1 this approach is appropriate.

After the nonsingular roots of H(a,x, z,λ, 1) are obtained a straight-line parameter homo-

topy is performed and critical points that satisfy the FJ conditions are found approximately

as t→ 0. Parameter homotopies are discussed in §2.4.

All of the subexpressions of (49)–(51) are affine linear. In this scenario employing the

use of intrinstically-defined variables significantly reduces computation time. For example,

the regeneration and parameter homotopy routines are run explicity using a subset of the

variables and parameters x1, ko, kc, ku, k
(2)
s , k

(3)
s , k

(2)
` , k

(3)
` . The other variables and outputs,

`, x2, x3, λ, ρ, ζ are parameterized in terms of the others.

Timing and Implementation. A timing summary may be found in table 5.1. Timings

include computing the NID of VM and VM ∩ VD and the two steps to approximate the

critical points. The NIDs and parameter homotopy were implemented on a Apple MacBook

Table 5.1. Timings collected over 20 runs. The table includes the average
time and standard deviations associated to the four computations described
in this section.

Timing

Compute VM 0.79 sec ± 0.10 sec
Compute VM ∩ VD 0.35 sec ± 0.10 sec

Regeneration (parallel) 13.69 sec ± 2.40 sec
Parameter homotopy 0.04 sec

96

Pro with 2.4 GHz Intel “Core i5” processor using a serial implementation of Bertini [8].

Regeneration was implemented on 24 (2.67 GHz Xeon-5650) compute nodes with a CentOS

5.11 OS using a parallel implementation of Bertini [8].

Interpreting the output. After approximating and examining critical points there are

three solutions that correspond to real points on (VM)R ∩ (VD)R. Among the three solutions

two are nonnegative. One then verifies these are solutions to (VM)R ∩ (VD)R by function

evaluation of f∗(a,x, z) and thus are also solutions of (VM)R. It is interesting to speculate

if the two positive real solutions found were contained on distinct connected components of

(VM)R∩(VD)R corresponding to the the bistable “branches”. Algorithm 2 is then completely

applied and one concludes that the clustering model VM is compatible with the observable

data y.

Concerns with the approach. The first concern is that model compatibility may need to

be determined for a large set of outputs rather than just one. This issue is easily addressed

by employing a parameter homotopy scheme. In this case since regeneration only needs to be

applied once every instance of outputs requires simply a straight-line homotopy that takes

on the order of 0.03 seconds to complete for the clustering model.

The second concern is that the intersection of the model and data varieties, VM ∩ VD,

may be composed of several complex components of varying dimension. In addition each

pure-dimensional component may consist of several irreducible components that are either

conjugate pairs or self-conjugate. In the later case real points of (VM) ∩ (VD) are contained

on the intersection of these components whose real dimension is less than expected. These

issues are addressed using the theory from [37] guaranteeing that at least one real point is

obtained on each real connected component.

97

In a systematic way one constructs systems of the form Af∗ via randomization so that

the codimension of V(Af∗) pertains to the dimension of each pure-dimensional component

of VM∩VD. When there are several pure-dimensional component a homotopy must be solved

for each dimension.

5.5.2. HIV Progression. In this example we illustrate parameter estimation discussed

in §5.4.4. The parameter estimation algorithm is build upon algorithm 2 related to model val-

idation. The model considered aims to model long-term HIV dynamics from initial viremia,

latency, and virus increase [41, 33].

In this model the HIV virus inhibits the CD4+T cell population while promoting macrophage

proliferation, and eventually houses the replicating virus. As macrophages proliferate the

virus reservoir increases so the model describes a HIV patients progression to AIDS. The

model can have two real equilibria [33], one of which is stable, representing patients that are

“long-term non-progressors” [41].

Setting up the model. Model variables x are uninfected CD4+ T cells (T), infected CD4+

T cells (Ti), uninfected macrophages (M), infected macrophages (Mi), and HIV virus popu-

lation (V). The parameters a are (s1, s2, k1, . . . , k6, δ1, . . . , δ5) where si represents synthesis

of T cells and macrophages, k are rate constants describing interactions between variables

x, and δi represents natural death parameters of the model variables x, respectively. We

assume that all of the variables are measurable outputs so that y = x.

The reactions for the HIV model are summarized in table 5.2. Assuming mass-action

kinetics the reactions from table 5.2 may be translated into a 1st order system of ODEs:

T ′(t) = s1 + k1TV − k2TV − δ1T,(60)

T ′i (t) = k2TV − δ2Ti,(61)

M ′(t) = s2 + k3MV − k4MV − δ3M,(62)

98

M ′
i(t) = k4MV − δ4Mi,(63)

V ′(t) = k5Ti + k6Mi − δ5V.(64)

The model variety VM can be constructed by considering the zero set of the polynomials

defined by the right hand side of equations (61)–(64). By computing an NID of VM one finds

two irreducible components V1 and V2. More specifically generators for the ideal of these

Table 5.2. Reactions for HIV model. The parameter values used are from [41].

Description Reaction Parameter

Generation of new CD4+T cells ∅ s1−−→ T 10

Generation of new macrophages ∅ s2−−→M 0.15

Proliferation of T cells by presence of pathogen T+V
k1−−→ (T+V)+T 0.002

Infection of T cells by HIV T+V
k2−−→ Ti 0.003

Proliferation of M by presence of pathogen M+V
k3−−→ (M+V)+M 0.000745

Infection of M by HIV M+V
k4−−→Mi 0.000522

Proliferation of HIV within CD4+T cell Ti
k5−−→ V +Ti 0.537

Proliferation of HIV within macrophage Mi
k6−−→ V +Mi 0.285

Natural death of CD4+T cells T
δ1−−→ ∅ 0.01

Natural death of infected T cells Ti
δ2−−→ ∅ 0.44

Natural death of macrophages M
δ3−−→ ∅ 0.0066

Natural death of infected macrophages Mi
δ4−−→ ∅ 0.0066

Natural death of HIV V
δ5−−→ ∅ 3

components are:

I(V1) = 〈5742M−2453Mi − 130500,

259908Ti−46607Mi+4840000δ5−20200500,

17721T+46607Mi−4840000δ5+2479500,

484000V δ5−184547Mi+4840000δ5−20200500,

2453MiV −72600Mi+130500V 〉

99

and

I(V2) = 〈V, Mi, 11M−250, Ti, T−1000〉.

V2 is called an extinction component and is not interesting to use for parameter estimation.

Instead we replace VM with V1 and use this to perform parameter estimation.

Estimating natural death of HIV. Using the model variety V1 our aim is to estimate the

natural death of HIV parameter δ5. We use the long-term nonprogression steady-state values

from table 3 of [41] to construct y and corrupt these values with noise drawn fromN (0, 1). In

particular the data variety, VD, is defined using y = (6383
20
, 937

20
, 8109

100
, 13667

100
, 2121

100
). Furthermore

s1, s2, k1, . . . , k6, δ1, . . . , δ4 are treated as known parameters using the values from table 1

of [41]. One may verify that V1 ∩ VD = ∅ by computing a NID or showing that the ideal

I(V1∩VD) = (1) using a computer algebra system such as Macaulay2 [30]. Using Bertini [8]

one may then solve the system from proposition 5.3.1:

5742M−2453Mi−130500 = 0,(65)

259908Ti−46607Mi+4840000δ5−20200500 = 0,(66)

17721T+46607Mi−4840000δ5+2479500 = 0,(67)

484000V δ5−184547Mi+4840000δ5−20200500 = 0,(68)

2453MiV −72600Mi+130500V = 0,(69)

T+17721λ3−6383/20 = 0,(70)

Ti+259908λ2−937/20 = 0,(71)

M+5742λ1−8109/100 = 0,(72)

2453λ5+Mi−2453λ1−46607λ2+46607λ3−184547λ4−72600λ5−13667/100 = 0,(73)

484000δ5λ4+2453Miλ5+V +130500λ5−2121/100 = 0,(74)

484000V λ4 + 4840000λ2 − 4840000λ3 + 4840000λ4 = 0.(75)

100

Solving equations (66)–(75) produces 16 complex solutions where three of which are real

solutions. The real solution that minimizes the test statistic d2 estimates a value of the

natural death of HIV to be δ̄5 ≈ 2.99876 which is approximately the same as the true value

δ5 = 3. Computations took 48 seconds total and were performed on an Apple MacBook Pro

with a 2.6 GhHz Intel Core i5 processor.

5.5.3. Multisite Phosphorylation. In this example we look into the phosphoryla-

tion mechanisms of cellular signaling using experimental data. The goal of this example

is to illustrate how the model selection and parameter estimation algorithms are applied.

Furthermore we will analyze the results of the output of the model selection algorithms.

Phosphorylation is a key cellular regulatory mechanism that has been studied both exper-

imentally and theoretically [28]. One aspect of interest in the mechanism by which a kinase

phosphorylates a two-site substrate. For example, the kinase could phosphorylate distribu-

tively where the kinase adds at most one phosphate before dissociating. However, the kinase

could also phosphorylate processively where it can add both phosphates in sequence.

The so-called MAPK/ERK pathway is a well-known system for studying phosphory-

lation where MEK (kinase) phosphorylates ERK (the substrate). There is experimental

evidence using polynomial ODEs that suggests that the mammalian MAPK/ERK pathway

acts distributively in vitro but acts processively in vivo [4].

Setting up the experiment. We will consider 12 different levels of EGF stimulus rang-

ing from 0.0244140625 ng/mL to 50 ng/ML. We study EGF stimulus because EGF acti-

vates cRAF which then phosphorylates MEK and finally doubly phosphorylates ERK. The

observable data consists of measurements of three replicates of: nonphosphorylated ERK

(np-ERK), tyrosine monophosphorylated ERK (pY-ERK), and doubly phosphorylated ERK

(pTpY-ERK) at each stimulus level. Data is given as a percentage of total ERK (ERKtot)

101

and one uses the concentration measurement for each of these ERK states. The goal is to

understand what model, either processive or distributive, best explains EGF stimulus using

the approach explain in §5.4.2 and in addition perform parameter estimation.

Mathematical models. Model variables are given in table 5.3, and model parameters are

given in table 5.4. The model parameters for the distributive model are:

a = (k1, . . . , k27, c1, c2),

the variables are:

x = (x1, . . . , x12, cRAFtot,MEKtot,ERKtot),

and the outputs are:

z = (np-ERK, pY-ERK, pYpT-ERK).

The variables for the processive model are the same as for the distributive model except

Table 5.3. Description of variables for distributive and processive MAP Ki-
nase models.

variable species variable species

x1 MEK x8 pY-ERK nuc
x2 cRAF x9 pT-ERK cyt
x3 pMEK x10 pT-ERK nuc
x4 np-ERK cyt x11 pTpY-ERK cyt
x5 MEK np-ERK x12 pTpY-ERK nuc
x6 np-ERK nuc x13 pMEK np-ERK
x7 pY-ERK cyt x14 pMEK pY-ERK

for two additional variables x13, x14. The reaction velocities are given in table 5.5 and the

corresponding equations are given in table 5.6. In vitro parameters estimates are used from

table S2 of [4] for k2, . . . , k27, c1, c2 and the conserved quantities MEKtot, cRAFtot, ERKtot are

listed in table 5.7. The unknown parameter k1 describes the rate of MEK phosphorylation

and depends on the level of EGF stimulation which varies from the output data.

102

Table 5.4. Description of parameters for distributive and processive MAP
Kinase models.

parameter name parameter name

k1 kphos MEK pMEK k15 kdphos pY np cyt
k2 kdphos pMEK MEK k16 kdphos pT np cyt
k3 kf MEK ERK binding k17 kdphos pTpY pY nuc
k4 kb MEK ERK dissociation k18 kdphos pTpY pT nuc
k5 kimport np k19 kdphos pY np nuc
k6 kexport np k20 kdphos pT np nuc
k7 kimport pY k21 kphos np pY
k8 kexport pY k22 kphos pY pTpY
k9 kimport pT k23 kphos pT pTpY
k10 kexport pT k24 kf MEK ERK binding
k11 kimport pTpY k25 kb MEK ERK dissociation
k12 kexport pTpY k26 kphos np pY
k13 kdphos pTpY pY cyt k27 kphos pY pTpY MEKERK
k14 kdphos pTpY pT cyt c2,c1 cyt vol, nuc vol

Table 5.5. Reaction velocities for the MAP Kinase distributive and proces-
sive model. The processive model uses the additional reaction velocities
v18, v19, v20.

v1 = k1x1x2 − k2x3 v2 = k3x1x4 − k4x5 v3 = k5x4 − c2k6x6
v4 = k7x7 − c2k8x8 v5 = k9x9 − c2k10x10 v6 = k11x11 − c2k12x12
v7 = k13x11 v8 = k14x11 v9 = k15x7
v10 = k16x9 v11 = c2k17x12 v12 = c2k18x12
v13 = c2k19x8 v14 = c2k20x10 v15 = k21x3x4
v16 = k22x3x7 v17 = k23x3x9
v18 = k24x3x4 − k25x13 v19 = k26x13 v20 = k27x14

The output variables are np-ERK, pY-ERK, and pYpT-ERK which are sums of species

concentrations. For the distributive model the output equations are:

np-ERK− (x4 + x5 + x6) = 0,(76)

pY-ERK− (x7 + x8) = 0,(77)

pYpT-ERK− (x11 + x12) = 0,(78)

whereas for the processive model we include two additional species:

np-ERK− (x4 + x5 + x6 + x13) = 0,(79)

103

pY-ERK− (x7 + x8 + x14) = 0,(80)

pYpT-ERK− (x11 + x12) = 0.(81)

Table 5.6. Equations for distributive and processive MAP Kinase models.

Variable Distributive Processive

x′1 = −v1 − v2 −v1 − v2
x′2 = 0 0
x′3 = v1 v1 − v18 + v20
x′4 = −v2 − v3 + v9 + v10 − v15 −v2 − v3 + v9 + v10 − v18
x′5 = v2 v2
x′6 = v3 + v13 + v14 v3 + v13 + v14
x′7 = −v4 + v7 − v9 + v15 − v16 −v4 + v7 − v9 − v16
x′8 = v4 + v11 − v13 v4 + v11 − v13
x′9 = −v5 + v8 − v10 − v17 −v5 + v8 − v10 − v17
x′10 = v5 + v12 − v14 v5 + v12 − v14
x′11 = −v6 − v7 − v8 + v16 + v17 −v6 − v7 − v8 + v16 + v17 + v20
x′12 = v6 − v11 − v12 v6 − v11 − v12
x′13 = v18 − v19
x′14 = v19 − v20

0 = MEKtot − (x1 + x3 + x5) MEKtot − (x1 + x3 + x5 + x13 + x14)
0 = cRAFtot − x2 cRAFtot − x2
0 = ERKtot −

∑12
i=4 xi ERKtot −

∑14
i=4 xi

Table 5.7. Parameter values for MAP Kinase models

parameter value parameter value parameter value

k2 0.0096 k13 0.004 k24 0.18
k3 0.18 k14 0.0055 k25 0.27
k4 0.27 k15 0.0067 k26 0.073
k5 0.0017 k16 0.0068 k27 0.05
k6 0.013 k17 0.0032 c1 1.0
k7 0.0025 k18 0.0038 c2 0.2
k8 0.017 k19 0.0077 cRAFtot 0.013
k9 0.0022 k20 0.0058 MEKtot 1.2
k10 0.049 k21 0.039 ERKtot 0.74
k11 0.0082 k22 0.021
k12 0.0076 k23 0.02

Model Selection and Parameter Estimation. The model variety VMd of the distributive

model is defined by (76)–(78) and the equations obtained by setting the “distributive” column

104

of table 5.6 equal to zero. Denote the system defining VMd as F . The model variety VMp

of the processive model is defined by (79)–(81) and the equations obtained by setting the

“processive” column of table 5.6 equal to zero.

The ambient dimension of VMd is 16 since the coordinates that define VMd include

x1, . . . , x12, np-ERK, pY-ERK, pYpT-ERK, and the model parameter k1. All other param-

eters and variables are known constants. The ambient dimension for the processive model is

18 since it includes the added variables x13 and x14.

Given data y = (np-ERK′, pY-ERK′, pYpT-ERK′) define the data variety for the dis-

tributive model as:

VDd =
{

(a,x, z) ∈ C16 : z = y
}
.

The data variety VDd has dimension 13. The data used takes the form of 36 concentration

measurements of three aggregate phosphoforms over a range of 12 EGF stimulation levels

and obtained directly by the authors of [28]. The EGF output data is summarized in ta-

ble 5.8. The data variety VDp for the processive model is defined similarly. Moving forward

computations will be for the distributive model only. Computations for the processive model

will be similiar. Information for both models will be recorded.

First one computes a NID of VMd using Bertini [8]. VMd consists of a one-dimensional

complex algebraic set of degree 8. Similarly for the processive model, the model variety

VMp is a one-dimensional complex algebraic set of degree 11. Several variables are then

intrinsically defined to save computation. Variables x1, x2, x7, x11, and x4 are written in

terms of the other variables. In addition VMd∩VDd = ∅ and VMp∩VDp = ∅ using Bertini [8].

Variables np-ERK, pY-ERK, and pYpT-ERK are intrinsically defined to save computation.

Since VMd ∩ VDd = ∅ and VMp ∩ VDp = ∅, algorithm 2 instructs us to minimize the distance

105

between (VMd)R and (VDd)R and similiarly between (VMp)R and (VDp)R for each data point

in order to perform model selection using the distributive and processive models.

Table 5.8. Summary of EGF Level output data. np-ERK, pY-ERK, and
pTpY-ERK are measured as percentage of total ERK. Each of the 12 levels of
EGF loading consists of three aggregate phosphoforms.

EGF loading np-ERK % pY-ERK % pTpY-ERK %

0.0244140625 ng/mL 0.968688845401175 0.0273972602739726 0.00391389432485323
0.970703125 0.015625 0.013671875
0.946135831381733 0.0351288056206089 0.0187353629976581

0.048828125 ng/mL 0.951219512195122 0.043360433604336 0.00542005420054201
0.97423887587822 0.0210772833723653 0.00468384074941452
0.937662337662338 0.0441558441558442 0.0181818181818182

0.09765625 ng/mL 0.937313432835821 0.0477611940298507 0.0149253731343284
0.958937198067633 0.0265700483091787 0.0144927536231884
0.885135135135135 0.0777027027027027 0.0371621621621622

0.1953125 ng/mL 0.893700787401575 0.0708661417322835 0.0354330708661417
0.921182266009852 0.0394088669950739 0.0394088669950739
0.853582554517134 0.0965732087227414 0.0498442367601246

0.390625 ng/mL 0.760180995475113 0.0950226244343891 0.144796380090498
0.831288343558282 0.0552147239263804 0.113496932515337
0.791411042944785 0.0828220858895705 0.125766871165644

0.78125 ng/mL 0.535211267605634 0.131455399061033 0.333333333333333
0.64453125 0.08203125 0.2734375
0.584837545126354 0.169675090252708 0.245487364620939

1.5625 ng/mL 0.535211267605634 0.131455399061033 0.333333333333333
0.64453125 0.08203125 0.2734375
0.584837545126354 0.169675090252708 0.245487364620939

3.125 ng/mL 0.0923076923076923 0.292307692307692 0.615384615384615
0.223300970873786 0.140776699029126 0.635922330097087
0.146718146718147 0.258687258687259 0.594594594594595

6.25 ng/mL 0.0276497695852535 0.271889400921659 0.700460829493088
0.120218579234973 0.202185792349727 0.677595628415301
0.0773809523809524 0.1875 0.735119047619048

12.5 ng/mL 0.0159362549800797 0.294820717131474 0.689243027888446
0.107981220657277 0.178403755868545 0.713615023474179
0.0753768844221105 0.278894472361809 0.645728643216081

25 ng/mL 0.0304182509505703 0.254752851711027 0.714828897338403
0.0867924528301887 0.166037735849057 0.747169811320755
0.050561797752809 0.264044943820225 0.685393258426966

50 ng/mL 0.00819672131147541 0.278688524590164 0.713114754098361
0.0646551724137931 0.193965517241379 0.741379310344828
0.0450450450450451 0.18018018018018 0.774774774774775

106

“Squaring up” the polynomial system defining VMd is a necessary step in order to accu-

ractely construct the polynomial system from proposition 5.3.1. Squaring polynomial sys-

tems via randomization is discussed in §2.1.7. The codimension of VMd is c = 16− 1 = 15.

There exists a nonempty Zariski open subset A ⊂ C15×17 so that VMd ⊆ V(AF) for every

A ∈ A. Therefore let A ∈ C15×17, whose entries are taken randomly from the complex unit

circle, and set f∗(a,x, z) = AF (a,x, z). The aim is to solve the optimization problem:

(82)
minimize ‖z − y‖2

subject to (a,x, z) ∈ (VM)R ∩ R16
≥0.

Fritz John Conditions. The Fritz John conditions are:

f∗(a,x, z) = 0,(83)

15∑
j=1

∂f ∗j (a,x, z)

∂a1
λj = 0,(84)

15∑
j=1

∂f ∗j (a,x, z)

∂xi
λj = 0, for 1 ≤ i ≤ 12,(85)

(zi − yi)λ0 +
15∑
j=1

∂f ∗j (a,x, z)

∂zi
λj = 0, for 1 ≤ i ≤ 3,(86)

where λ = [λ0, λ1, · · · , λ15] ∈ P15. Equations (83)–(86) consist of 31 variables and equations

defined on C16 × P15. In addition there exists a nonempty Zariski open subset B ⊂ C16

so that for each α = (α0, α1, . . . , α15) ∈ B equations (83)–(86) may be defined using affine

coordinates using a patch equation:

α0λ0 + α1λ1 + · · ·+ α15λ15 − 1 = 0.

The Fritz John conditions for optimality state that (a,x, z) is a critical point of ‖z−y‖2

for (a,x, z) ∈ (VM)R if there is a λ ∈ P15 so that (a,x, z,λ) is a solution to equations

(83)–(86). Critical points are then obtained by projecting onto (a,x, z) using the mapping

107

π(a,x, z,λ) = (a,x, z). Our approach computes every critical point from equations (83)–

(86) and evaluates ‖z − y‖2 at each critical point.

We need to ensure that x1, . . . , x12, a1, z1, z2, z3 are nonnegative. That is, the model

variety is replaced by SMd = VMd ∩ R16
≥0. To minimize the distance between SMd and

VDd using a NAG approach first solve the system (83)–(86) and then solve related systems

by setting combinations of x1, . . . , x12, a1, z1, z2, z3 to zero. This approach was outlined in

§5.4.2. Since the complex dimension of VMd is one and VMd does not contain any coordinate

hyperplanes as components (i.e. where any coordinates of (a,x, z) are zero), one can verify

that VMd restricted to every coordinate hyperplane is zero-dimensional. In this case, checking

the boundary conditions of VMd ∩ R16
≥0 becomes trivial.

Finding Critical Points. Consider the 36 data points where each consists of a triple y =

(np-ERK′, pY-ERK′, pYpT-ERK′) define by table 5.8. Our aim is perform model selection

on the data points to select either the processive or distributive model. Rather than solve

equations (83)–(86) independently for each data point instead define a homotopy H : C32×

C3 → C32:

H(a,x, z,λ;p) =



f∗(a,x, z)∑15
j=1

∂f∗j (a,x,z)
∂a1

λj∑15
j=1

∂f∗j (a,x,z)
∂xi

λj, for 1 ≤ i ≤ 12

(zi − pi)λ0 +
∑15

j=1

∂f∗j (a,x,z)
∂zi

λj for 1 ≤ i ≤ 3

α0λ0 + α1λ1 + · · ·+ α15λ15 − 1


(87)

using a general parameter p = (p1, p2, p3) ∈ C3. When the parameter is specialized to p = y,

the Fritz John conditions for a given optimization problem using data y is recovered. Using

theory of parameter homotopies (see §2.4) there is a nonempty Zariski open subset P ⊆ C3

such that the number of nonsingular isolated roots of H(a,x, z,λ;p) is maximal for p ∈ P .

108

Furthermore for any p∗ ∈ P every isolated root of H(a,x, z,λ;y) may be obtained by

constructing the straight-line homotopy H(a,x, z,λ;p∗t + (1 − t)y) and tracking the one

real-dimensional solution paths starting at the nonsingular isolated roots ofH(a,x, z,λ;p∗)

and obtaining the isolated roots of H(a,x, z,λ;y) as t→ 0. The advantages of employing

a parameter homotopy is explained in §2.4. Concretely, applying a parameter homotopy

amounts to a 58 times speed up for the distributive model and approximately a 100× speed

up for the processive model when a multihomogeneous structure is used.

In addition to employing a parameter homotopy solving scheme equations (83)–(86) have

a natural homogeneous product structure. That is, after equations (83)–(86) are multiho-

mogenized with respect to the product of projective spaces P16 × P15, where the first space

corresponds to the coordinates (a,x, z) and the second space corresponds to the coordinates

λ, the number of tracked paths is significantly reduced when compared to the space P31.

Multihomogeneous homotopies are discussed in §2.5. Together with parameter homotopies

an efficient homotopy is used to solve H(a,x, z,λ;p∗) for p∗ ∈ P .

One way to reduce further computation is to define variables that occur in (83)–(86)

intrinsically. This is easily applied when variables can be expressed as a linear combination

of other variables. Specifically we know from table 5.6 that:

x2 = cRAFtot

where cRAFtot is constant in table 5.7. x2 is then removed from explicity computation. That

is, partial derivatives are no longer necessary with respect to the variable x2 and x2 is no

longer defined explicitly when tracking homotopy paths.

Timing and Paths. Table 5.9 summarizes the sequence of reductions made in the number

of paths by imposing a {(a,x, z),λ}-homogeneous structure followed by intrinsically defining

109

Table 5.9. Path counts of models. ‘{(a,x, z),λ}-hom’ corresponds to
{(a,x, z),λ} variable grouping and ‘intrinsic x2’ corresponds to the intrin-
stically defined x2.

Total Degree (a,x, z),λ-hom {(a,x, z),λ}-hom + intrinsic x2
Distributive Model 124,416 paths 3,744 paths 1,152 paths
Processive Model 248,832 paths 7,488 paths 2,304 paths

the variable x2 along with the number of paths required using the standard total degree

homotopy. See §2.2.3 for information about total degree homotopies.

Timing summaries for both the processive and distributive model can be found in ta-

ble 5.10 . These timings include the NID required to compute the dimension of each pure-

Table 5.10. Expected timings for the MAPK model collected over 20 ‘ran-
dom’ runs.

Compute Dimension Initial Solve (parallel) Data Solve (all 36)

Distributive Model 4.50 sec ± 0.53 sec 44.80 sec ± 4.85 sec 27.80 sec ± 3.16 sec
Processive Model 6.64 sec ± 0.48 sec 91.67 sec ± 7.69 sec 32.77 sec ± 5.06 sec

dimensional component of the model variety VMd and VMp, computing the nonsingular

solutions of (87) for the distributive model at a generic parameter p∗ ∈ P required to em-

ploy a parameter homotopy scheme (and a similiar solve for the processive model), and the

parameter homotopy to solve equations (83)–(86) for each data point (and a similiar param-

eter homotopy for the processive model). Timings to compute the dimension of the model

variety and the data solve were done in serial using a Apple MacBook Pro with 2.4 GHz

Intel core i5 processor. The initial solves for the parameter homotopies were done in parallel

using 96 (2.67 GHz Xeon-5650) compute nodes on the CentOS 5.11 operating system. The

data solves were then done in serial using the same MacBook Pro.

Analyzing the output. Tables 5.11–5.12 record the distances between the data and model

varieties for all 36 data points. A missing “interior” distance in tables 5.11–5.12 indicate

there were no positive real critical points found on the interior of VMd ∩ R16
≥0 for the given

110

EGF level and replicate, for example. However we may still compute a distance to the

boundary of the semi-algebraic set corresponding to each model. Distances are measured

Table 5.11. Distance to (smaller) distributive model variety.

EGF level Replicate “Interior” distance “Boundary” distance

1 1 0.0025 0.0309
2 0.0118 0.0266
3 0.0145 0.0496

2 1 0.0024 0.0485
2 0.0036 0.0249
3 0.0130 0.0581

4 1 0.0098 0.0594
2 0.0117 0.0377
3 0.0218 0.1062

8 1 0.0221 0.0981
2 0.0312 0.0714
3 0.0259 0.1349

16 1 0.0870 0.2189
2 0.0838 0.1559
3 0.0814 0.1904

32 1 0.1243 0.4343
2 0.1505 0.3374
3 0.0791 0.3784

64 1 0.0388 0.6990
2 0.1312 0.4648
3 0.0473 0.5889

128 1 0.0959 0.8398
2 0.0725 0.7501
3 0.0594 0.7931

256 1 — 0.9093
2 0.0427 0.8353
3 — 0.8839

512 1 0.1291 0.9154
2 — 0.8556
3 0.0947 0.8597

1024 1 — 0.9111
2 — 0.8817
3 0.0970 0.8883

2048 1 — 0.9272
2 — 0.8948
3 — 0.9197

111

as averages across the three replicates at various EGF levels are summarized graphically in

figure 5.3.

Table 5.12. Distance to (larger) processive model variety

EGF level Replicate “Interior” distance “Boundary” distance

1 1 0.0176 0.0309
2 0.0066 0.0266
3 0.0183 0.0496

2 1 0.0281 0.0485
2 0.0130 0.0249
3 0.0247 0.0581

4 1 0.0282 0.0594
2 0.0137 0.0377
3 0.0421 0.1062

8 1 0.0379 0.0981
2 0.0154 0.0714
3 0.0514 0.1349

16 1 0.0284 0.2189
2 0.0156 0.1559
3 0.0246 0.1904

32 1 0.0392 0.4343
2 0.0424 0.3374
3 0.0561 0.3784

64 1 0.0735 0.6990
2 0.0444 0.4648
3 0.0717 0.5889

128 1 0.1218 0.8398
2 0.0550 0.7501
3 0.0899 0.7931

256 1 — 0.9093
2 0.0557 0.8353
3 — 0.8839

512 1 — 0.9154
2 — 0.8556
3 0.1149 0.8597

1024 1 — 0.9111
2 — 0.8817
3 0.1105 0.8883

2048 1 — 0.9272
2 — 0.8948
3 — 0.9197

112

10
−2

10
−1

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

EGF (ng/mL)

M
in
im
u
m
d
is
ta
n
c
e
to
m
o
d
e
l
v
a
ri
e
ty

distributive

processive

Figure 5.3. Distance plot for model selection between distributive and pro-
cessive models.

One can intepret figure 5.3 as follows. Under low EGF stimulations the model selection

estimates for d2 are nearly identical with a slight preference for the distributive model.

Under high EGF stimulation the models are nearly identical with no preference for one

model over the other. The main difference between the distributive and processive models

are the dynamics that model a nonlinear switching behavior tha occur at intermediate EGF

stimulation levels. At medium EGF stimulation, there is a slight preference to select the

processive model. This supports the findings of [4].

113

CHAPTER 6

CONCLUSION

The aim of this thesis was to demonstrate how numerical algebraic geometry can be used

to solve global optimization problems arising from applications in science and engineering.

In chapter 2, I explained the fundamentals of numerical algebraic geometry that laid the

foundation of the remaining chapters on perturbed regeneration, MLV line, and model se-

lection. Development on the fundamentals of NAG is an activate area of research and there

are still a wealth of challenging problems to solve.

Chapter 3 focused on perturbed regeneration. Perturbed regeneration is a technique to

find all isolated solutions of a polynomial system including singular solutions. As we saw, this

method performs well especially when singular solutions are desired, but there are also many

other methods that may peform better. A future direction of study is to try and determine

automatically what approach to take such as multihomogeous or regeneration homotopies

and their respective perturbed versions. In chapter 5, perturbed regeneration was then

applied to solving the FJ conditions for optimality for model validation in the cluster model.

Perturbed regeneration appears to work well in this context when it is unclear how the data

and model varieties will intersect.

Chapter 4 focused on the max-length vector line of best fit to a collection of subspaces.

Using numerical algebraic geometry we found all the critical points of an objective function

involving principal angles between subspaces. Under a reformulation, we could define the

critical points as solutions to the multivariate eigenvalue problem. By relaxing the condition

of orthonormality, this method could be extended for finding the longest vector obtained

by summing vectors from a collection of hyperellipsoids. The utility of the MLV line was

114

demonstrated on image data generated from the Pattern Analysis Lab and Colorado State

University. The numerical algebraic geometry approach could be extended to other types of

manifold means such as weighted max-length vector lines, k-dimensional subspaces of best

fit, and flags of best fit, for example.

Finally in chapter 5 we focused on a new model selection paradigm. Here numerical

algebraic geometry was applied to tackle three fundamental problems in science: model

selection, model validation, and parameter estimation for polynomial dynamical systems.

We highlighted models selection with experimental data in the MAPK/ERK pathway and

showed for intermediate EGF levels were the most informative for model selection. It would

be interesting to develop more computational efficient numerical algebraic geometry methods

to handle inequality constraints as I believe this is the next step toward making NAG more

applicable for global optimization.

115

BIBLIOGRAPHY

[1] Pierre-Antoine Absil, Robert Mahony, and Rodolphe Sepulchre. Riemannian geometry

of Grassmann manifolds with a view on algorithmic computation. Acta Appl. Math.,

80(2):199–220, 2004.

[2] Eugene L. Allgower, Daniel J. Bates, Andrew J. Sommese, and Charles W. Wampler.

Solutions of polynomial systems derived from differential equations. Computing, 76(1–

2):1–10, 2006.

[3] James Anderson and Antonis Papachristodoulou. On validation and invalidation of

biological models. BMC Bioinformatics, 10(1):132, 2009.

[4] Kazuhiro Aoki, Masashi Yamada, Katsuyuki Kunida, Shuhei Yasuda, and Michiyuki

Matsuda. Processive phosphorylation of ERK MAP kinase in mammalian cells. Proc.

Natl. Acad. Sci. U.S.A., 108(31):12675–12680, 2011.

[5] Daniel J. Bates, Brent R. Davis, Elizabeth Gross, Heather Harrington, and Ken Ho.

Numerical algebraic geometry for model selection and its application to the life sciences.

J. R. Soc. Interface, 2016.

[6] Daniel J. Bates, Brent R. Davis, Michael Kirby, Justin Marks, and Chris Peterson.

The max-length-vector line of best fit to a set of vector subspaces and an optimization

problem over a set of hyperellipsoids. Numer. Linear Algebr., 22(3):453–464, 2015.

[7] Daniel J. Bates, Jonathan D. Hauenstein, Chris Peterson, and Andrew J. Sommese. A

numerical local dimension test for points on the solution set of a system of polynomial

equations. SIAM J. Numer. Anal, 47(5):3608–3623, 2009.

[8] Daniel J. Bates, Jonathan D. Hauenstein, Andrew J. Sommese, and Charles W.

Wampler. Bertini: Software for numerical algebraic geometry.(2015).

116

[9] Daniel J. Bates, Jonathan D. Hauenstein, Andrew J. Sommese, and Charles W.

Wampler. Numerically solving polynomial systems with Bertini, volume 25. SIAM,

2013.

[10] Evgeni Begelfor and Michael Werman. Affine invariance revisited. IEEE Comput. Soc.

Conf. CVPR, 2:2087–2094, 2006.

[11] Peter N. Belhumeur and David J. Kriegman. What is the set of images of an object

under all possible illumination conditions? Int. J. Comput. Vision, 28(3):245–260, 1998.

[12] Peter N. Belhumeur and David J. Kriegman. What is the set of images of an object

under all possible illumination conditions? IEEE T. Pattern Anal., 23:643–660, 2001.

[13] J. Ross Beveridge, Bruce A. Draper, Jen-Mai Chang, Michael Kirby, Holger Kley, and

Chris Peterson. Principal angles separate subject illumination spaces in YDB and CMU-

PIE. IEEE T. Pattern Anal., 31(2):351–363, 2009.

[14] Åke Björck and Gene H. Golub. Numerical methods for computing angles between linear

subspaces. Math. Comput., 27(123):579–594, 1973.

[15] Grigoriy Blekherman, Pablo A. Parrilo, and Rekha R. Thomas. Semidefinite optimiza-

tion and convex algebraic geometry. SIAM, 2012.

[16] Daniel A. Brake, Matthew Niemerg, and Daniel J. Bates. Paramotopy: parallel param-

eter homotopy through bertini. Software available at www.paramotopy.com, 2013.

[17] Kenneth P. Burnham and David R. Anderson. Model selection and multimodel inference:

a practical information-theoretic approach. Springer Science & Business Media, 2003.

[18] John C. Butcher. An application of the runge-kutta space. BIT, 24(4):425–440, 1984.

[19] Thomas C. Chamberlin. The method of multiple working hypotheses. Science,

148(3671):754–759, 1965.

117

[20] Jen-Mei Chang, Michael Kirby, Holger Kley, Chris Peterson, Bruce Draper, and J. Ross

Beveridge. Recognition of digital images of the human face at ultra low resolution via

illumination spaces. In Computer Vision-ACCV 2007, pages 733–743. Springer, 2007.

[21] Yasuko Chikuse. Procrustes analysis on some special manifolds. Commun. Stat. Theory,

28(3-4):885–903, 1999.

[22] Moody T. Chu and J. Loren Watterson. On a multivariate eigenvalue problem, Part I:

Algebraic theory and a power method. SIAM J. Sci. Comput., 14(5):1089–1106, 1993.

[23] Bruce Draper, Michael Kirby, Justin Marks, Tim Marrinan, and Chris Peterson. A flag

representation for finite collections of subspaces of mixed dimensions. Linear Algebra

Appl., 451:15–32, 2014.

[24] David Steven Dummit and Richard M. Foote. Abstract algebra, volume 3. Wiley Hobo-

ken, 2004.

[25] Alan Edelman, Tomás A. Arias, and Steven T. Smith. The geometry of algorithms with

orthogonality constraints. SIAM J. Matrix Anal. A., 20(2):303–353, 1998.

[26] P. Thomas Fletcher, Suresh Venkatasubramanian, and Sarang Joshi. The geometric me-

dian on Riemannian manifolds with application to robust atlas estimation. NeuroImage,

45(1):S143–S152, 2009.

[27] Simone Fulda and Klaus-Michael Debatin. Extrinsic versus intrinsic apoptosis pathways

in anticancer chemotherapy. Oncogene, 25(34):4798–4811, 2006.

[28] Alan S. Futran, A. James Link, Rony Seger, and Stanislav Y. Shvartsman. ERK as a

model for systems biology of enzyme kinetics in cells. Curr. Biol., 23(21):R972–R979,

2013.

[29] Karin Gatermann. Symbolic solution of polynomial equation systems with symmetry.

Konrad-Zuse-Zentrum für Informationstechnik Berlin, 1990.

118

[30] Daniel R. Grayson and Michael E. Stillman. Macaulay 2, a software system for research

in algebraic geometry, 2002.

[31] Andreas Griewank and Michael R. Osborne. Analysis of Newton’s method at irregular

singularities. SIAM J. Numer. Anal., 20:747–773, 1983.

[32] Elizabeth Gross, Sonja Petrović, and Jan Verschelde. Interfacing with phcpack. Journal

of Software for Algebra and Geometry, 5(1):20–25, 2013.

[33] M. Hadjiandreou, Raul Conejeros, and Vassilis S. Vassiliadis. Towards a long-term

model construction for the dynamic simulation of HIV infection. Math. Biosci. Eng.,

4(3):489–504, 2007.

[34] Jihun Hamm. Subspace-based learning with Grassmann kernels. PhD thesis, University

of Pennsylvania, 2008.

[35] Wenrui Hao, Jonathan D. Hauenstein, Bei Hu, Yuan Liu, Andrew J. Sommese, and

Yong-Tao Zhang. Continuation along bifurcation branches for a tumor model with a

necrotic core. J. Sci. Comput., 53(2):395–413, 2012.

[36] Robin Hartshorne. Algebraic geometry, volume 52. Springer Science & Business Media,

1977.

[37] Jonathan D. Hauenstein. Numerically computing real points on algebraic sets. Acta.

Appl. Math., 125(1):105–119, 2013.

[38] Jonathan D. Hauenstein, Andrew J. Sommese, and Charles W. Wampler. Regeneration

homotopies for solving systems of polynomials. Math. Comput., 80(273):345–377, 2011.

[39] Jonathan D. Hauenstein, Andrew J. Sommese, and Charles W. Wampler. Regenerative

cascade homotopies for solving polynomial systems. Appl. Math. Comput., 218(4):1240–

1246, 2011.

119

[40] Jonathan D. Hauenstein and Charles W. Wampler. Isosingular sets and deflation. Found.

Comput. Math., 13(3):371–403, 2013.

[41] Esteban A. Hernandez-Vargas, Dhagash Mehta, and Richard H. Middleton. Towards

modeling HIV long term behavior. IFAC Proceedings Volumes, 44(1):581–586, 2011.

[42] Kenneth L. Ho and Heather A. Harrington. Bistability in apoptosis by receptor clus-

tering. PLoS Comput. Biol., 6(10):e1000956, 2010.

[43] Paul Horst. Relations among m sets of measures. Psychometrika, 26(2):129–149, 1961.

[44] Hermann Karcher. Riemannian center of mass and mollifier smoothing. Commun. Pur.

Appl. Math., 30(5):509–541, 1977.

[45] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of Com-

puter Computations, pages 85–103. Springer, 1972.

[46] Tae-Kyun Kim, Josef Kittler, and Roberto Cipolla. Learning discriminative canonical

correlations for object recognition with image sets. In Computer Vision–ECCV 2006,

pages 251–262. Springer, 2006.

[47] Paul Kirk, Thomas Thorne, and Michael P. H. Stumpf. Model selection in systems and

synthetic biology. Curr. Opin. Biotech., 24(4):767–774, 2013.

[48] Scott Kirkpatrick, C. Daniel Gelatt, Mario P. Vecchi, et al. Optimization by simulated

annealing. Science, 220(4598):671–680, 1983.

[49] Anton Leykin, Jan Verschelde, and Ailing Zhao. Higher-order deflation for polynomial

systems with isolated singular solutions. In Algorithms in Algebraic Geometry, pages

79–97. Springer, 2008.

[50] Tien-Yien Li, Tim Sauer, and James A. Yorke. The cheater’s homotopy: an efficient pro-

cedure for solving systems of polynomial equations. SIAM J. Numer. Anal., 26(5):1241–

1251, 1989.

120

[51] Juliane Liepe, Paul Kirk, Sarah Filippi, Tina Toni, Chris P. Barnes, and Michael P. H.

Stumpf. A framework for parameter estimation and model selection from experimen-

tal data in systems biology using approximate Bayesian computation. Nat. Protoc.,

9(2):439–456, 2014.

[52] Gabriele Lillacci and Mustafa Khammash. Parameter estimation and model selection

in computational biology. PLoS Comput. Biol., 6(3):e1000696, 2010.

[53] Alan E. Lindsay, Wenrui Hao, and Andrew J. Sommese. Vibrations of thin plates with

small clamped patches. P. R. Soc. A, 471(2184), 2015.

[54] Yui-Man Lui, J. Ross Beveridge, and Michael Kirby. Action classification on product

manifolds. In 2010 IEEE Conference on CVPR, pages 833–839. IEEE, 2010.

[55] Tim Marrinan, J. Ross Beveridge, Bruce Draper, Michael Kirby, and Chris Peterson.

Finding the subspace mean or median to fit your need. In Proceedings of the IEEE

Conference on CVPR, pages 1082–1089, 2014.

[56] Dhagash Mehta, Yang-Hui He, and Jonathan D. Hauenstein. Numerical algebraic ge-

ometry: a new perspective on gauge and string theories. J. High Energy Phys., 7:1–32,

2012.

[57] Pascal Meier, Andrew Finch, and Gerard Evan. Apoptosis in development. Nature,

407(6805):796–801, 2000.

[58] Bishwarup Monadal, Satyaki Dutta, and Robert. W. Heath. Quantization on the Grass-

mann manifold. IEEE T. Signal Proces., 55(8):4208–4216, 2007.

[59] Alexander P. Morgan and Andrew J. Sommese. Computing all solutions to polynomial

systems using homotopy continuation. Appl. Math. Comput., 24(2):115–138, 1987.

121

[60] Alexander P. Morgan and Andrew J. Sommese. A homotopy for solving general polyno-

mial systems that respect m-homogeneous structures. Appl. Math. Comput., 24:101–113,

1987.

[61] Alexander .P. Morgan and Andrew J. Sommese. Coefficient-parameter polynomial con-

tinuation. Appl. Math. Comput., 29(2):123–160, 1989.

[62] Ian Morrison and David Swinarski. Can you play a fair game of craps with a loaded

pair of dice? Am. Math. Monthly, 123(2):136–148, 2016.

[63] Takeo Ojika. Modified deflation algorithm for the solution of singular problems. I. A

system of nonlinear algebraic equations. J. Math. Anal. Appl., 123(1):199–221, 1987.

[64] Takeo Ojika, Satoshi Watanabe, and Taketomo Mitsui. Deflation algorithm for the

multiple roots of a system of nonlinear equations. J. Math. Anal. Appl., 96(2):463–479,

1983.

[65] Inam U. Rahman, Iddo Drori, Victoria C. Stodden, David L. Donoho, and Peter

Schröder. Multiscale representations for manifold-valued data. Multiscale Model. Sim.,

4(4):1201–1232, 2005.

[66] Philipp Rostalski, Ioannis A. Fotiou, Daniel J. Bates, A. Giovanni Beccuti, and Man-

fred Morari. Numerical algebraic geometry for optimal control applications. SIAM J.

Optimiz., 21(2):417–437, 2011.

[67] Hythem Sidky, Jonathan K. Whitmer, and Dhagash Mehta. Reliable mixture critical

point computation using polynomial homotopy continuation. AIChE J., 62:4497–4507,

2016.

[68] Andrew J. Sommese, Jan Verschelde, and Charles W. Wampler. Advances in polynomial

continuation for solving problems in kinematics. J. Mech. Design, 126(2):262–268, 2004.

122

[69] Andrew J. Sommese and Charles W. Wampler. The Numerical solution of systems of

polynomials arising in engineering and science, volume 99. World Scientific, 2005.

[70] Andrew J. Sommese and Charles W. Wampler. Numerical algebraic geometry and

algebraic kinematics. Acta Numerica, 20:469–567, 2011.

[71] Anuj Srivastava and Eric Klassen. Monte carlo extrinsic estimators of manifold-valued

parameters. IEEE T. Signal Proces., 50(2):299–308, 2002.

[72] Bernd Sturmfels, Jonathan D. Hauenstein, and Jose Rodriguez. Maximum likelihood

for matrices with rank constraints. In ISSAC, page 17, 2014.

[73] Craig B. Thompson. Apoptosis in the pathogenesis and treatment of disease. Science,

267(5203):1456, 1995.

[74] Pavan Turaga, Ashok Veeraraghavan, Anurag Srivastava, and Rama Chellappa. Sta-

tistical computations on Grassmann and Stiefel manifolds for image and video-based

recognition. IEEE T. Pattern Anal., 33(11):2273–2286, 2011.

[75] Katharine Turner. Cone fields and topological sampling in manifolds with bounded

curvature. Found. Comput. Math., 13(6):913–933, 2013.

[76] Kush R. Varshney and Alan S. Willsky. Linear dimensionality reduction for margin-

based classification: High-dimensional data and sensor networks. IEEE T. Signal Pro-

ces., 59(6):2496–2512, 2011.

[77] Jan Verschelde. Algorithm 795: PHCpack: A general-purpose solver for polynomial

systems by homotopy continuation. ACM T. Math. Software, 25(2):251–276, 1999.

[78] Charles W. Wampler, Alexander P. Morgan, and Andrew J. Sommese. Complete solu-

tions to the nine-point path synthesis problem for four-bar linkages. J. Mech. Design,

114:153–159, 1992.

123

[79] Tiesheng Wang and Pengfei Shi. Kernel Grassmannian distances and discriminant anal-

ysis for face recognition from image sets. Pattern Recogn. Lett., 30(13):1161–1165, 2009.

[80] Lior Wolf and Amnon Shashua. Learning over sets using kernel principal angles. J.

Mach. Learn. Res., 4:913–931, 2003.

[81] Lei-Hong Zhang and Moody T. Chu. On a multivariate eigenvalue problem: II. Global

solutions and the Gauss-Seidel method. http://www4.ncsu.edu/~mtchu/Research/

Papers/On%20the%20%20MEP%20II_04.pdf, 2009.

[82] Lei-Hong Zhang and Li-Zhi Liao. An alternating variable method for the maximal

correlation problem. J. Global Optim., 54(1):199–218, 2012.

124

