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Abstract

Energy- and Thermal-aware Resource Management for

Heterogeneous High-Performance Computing Systems

Today’s high-performance computing (HPC) systems face the issue of balancing elec-

tricity (energy) use and performance. Rising energy costs are forcing system operators to

either operate within an energy budget or to reduce energy use as much as possible while

still maintaining performance-based service agreements. Energy-aware resource manage-

ment is one method for solving such problems. Resource management in the context of

high-performance computing refers to the process of assigning and scheduling workloads to

resources (e.g., compute nodes). Because the cooling systems in HPC facilities also consume

a considerable amount of energy, it is important to consider the computer room air condi-

tioning (CRAC) units as a controllable resource and to study the relationship (and energy

consumption impact) between the computing and cooling systems. In this thesis, we present

four primary contributing studies with differing environments and novel techniques designed

for each of those environments. Each study proposes new ideas in the field of energy- and

thermal-aware resource management for heterogeneous HPC systems.

Our first contribution explores the problem of assigning a collection of independent tasks

(“bag-of-tasks”) to a heterogeneous HPC system in an energy-aware manner, where task

execution times vary. We propose two new measures that consider these uncertainties

with respect to makespan and energy: makespan-robustness and energy-robustness. We

design resource management heuristics to either: (a) maximize makespan-robustness within

an energy-robustness constraint, or (b) maximize energy-robustness within a makespan-

robustness constraint.
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Our next contribution studies a rate-based environment where task execution rates are

assigned to compute cores within the HPC facility. The performance measure in this study is

the reward rate earned for executing tasks. We analyze the impact that co-location interfer-

ence (i.e., the performance degradation experienced when tasks are simultaneously executing

on cores that share memory resources) has on the reward rate. Novel heuristics are designed

that maximize the reward rate under power and thermal constraints, considering the inter-

actions between both computing and cooling systems.

As part of the third contribution, we design new techniques for a geographical load dis-

tribution problem. That is, our proposed techniques intelligently distribute the workload to

data centers located in different geographical regions that have varying energy prices and

amount of renewable energy available. The novel techniques we propose use knowledge of

co-location interference, thermal models, varying energy prices, and available renewable en-

ergy at each data center to minimize monetary energy costs while ensuring all tasks in the

workload are completed.

Our final contribution is a new energy- and thermal-aware runtime framework designed

to maximize reward earned from completing individual tasks by their deadlines within energy

and thermal constraints. Thermal-aware resource management strategies often consult ther-

mal models to intelligently determine which cores in the HPC facility to assign workloads.

However, the time required to perform the thermal model calculations can be prohibitive

in a runtime environment. Therefore, we propose a novel offline-assisted online resource

management technique where the online resource manager uses information obtained from

offline-generated solutions to help in its thermal-aware decision making.
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CHAPTER 1

Introduction and Overview

Increasing the processing speed of high-performance computing (HPC) systems offers

enormous benefits to many fields, such as providing the means to rapidly comprehend com-

plex biological processes through protein-folding, decreasing the amount of time necessary

to predict weather patterns and earthquakes through computationally-intensive simulations,

and providing better or faster optimization of manufacturing processes. But enhancing the

performance of such HPC systems is becoming increasingly difficult as the power and energy

consumption of these systems increases with the performance. Energy consumption has been

identified as a key factor limiting growth of HPC systems [5] as large-scale computing sys-

tems require an increasing amount of electricity to power a large number of compute cores

and also power the cooling infrastructure required to maintain safe operation. The increased

energy consumption leads to increased total costs of ownership to operate such facilities.

One method that HPC systems incorporate to increase the energy efficiency of their

systems is the use of heterogeneous hardware. By incorporating general-purpose graphics

processing units (GPGPUs) and having a mix of energy efficient and high-performance pro-

cessing units, heterogeneous HPC systems are able to provide a trade-off between low power

or high-performance operation, and thus able to obtain more performance per watt when

high-performance is not required. In fact, the Green500 list (see Figure 1.1 (a)) [2] that

ranks the most energy efficient HPC systems has heterogeneous systems filling out the top

ten energy efficient machines. In addition, the push to exascale [6] is largely prohibited by

electricity consumption. For example, the highest-performing supercomputer according to

the Top500 list (see Figure 1.1 (b)) is the Tianhe-2 system that at 33.86 petaFLOPS has
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Figure 1.1. (a) The top three supercomputers from the Green500 List [2],
and (b) the top three supercomputers from the Top500 List [3].

a peak power consumption of 17,808 kW, which would cost approximately $17 million per

year in electricity using the average cost of electricity in commercial sectors in the U.S. [3, 7].

Extrapolating this system to exascale results in an energy cost of $500 million per year, or

approximately $1.37 million per day for one HPC system. The high cost of energy for HPC

systems today (and projected to be higher in the future), combined with the prohibitive

cost of energy for an exascale system, makes the energy-aware management of HPC systems

of paramount importance. The goal of the research presented in this thesis is to design

intelligent and robust resource management techniques for heterogeneous HPC systems that

are performance, energy, power, and thermal-aware. Resource management in the context

of high-performance computing refers to the process of assigning and scheduling workloads

to resources (e.g., compute nodes). This research contributes novel ideas to the field of het-

erogeneous HPC systems to help fulfill the needs of future systems.

Chapter 2 considers a heterogeneous HPC system in which the resource manager is given

a bag-of-tasks to allocate to processing cores in a robust and energy-efficient manner. We as-

sume cores have dynamic frequency and voltage scaling (DVFS) enabled, allowing the cores
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to operate in discrete performance states (P-states). Employing DVFS provides a trade-off

between task execution times and power consumption. Task execution times can vary from

available estimates, and are thus modeled stochastically as random variables. In addition

to being energy efficient, we want our resource management techniques to be robust against

these variations. We develop probabilistic measures for performance and energy consump-

tion, which we denote as makespan-robustness and energy-robustness. Makespan-robustness

is defined as the probability of meeting a makespan deadline, and energy-robustness is de-

fined as the probability of meeting an energy budget. We design, analyze, and compare four

new heuristics that address two problems: (a) maximizing the makespan-robustness subject

to an energy-robustness constraint, and (b) maximizing the energy-robustness subject to a

makespan-robustness constraint. We evaluate our techniques through simulated experiments

on two different-sized HPC platforms that vary in number of machines and tasks, and per-

form sensitivity analysis of our techniques against the degree of heterogeneity in the system.

We propose new variations of a Tabu Search heuristic and a genetic algorithm and results

demonstrate the significance of the novel local search operators that are used in our proposed

techniques.

The cooling systems required to operate data centers at safe levels account for a sig-

nificant portion of the total power consumed by such facilities. Chapter 3 takes a holistic

approach to power-aware resource management by considering the thermal relationships be-

tween compute nodes and computer room air conditioning (CRAC) units. A depiction of

an HPC facility cooled by a CRAC unit is shown in Figure 1.2. We study a rate-based

environment where task execution rates are assigned to compute cores within the HPC fa-

cility. We incorporate the effects of co-location interference caused by cores competing for

shared memory into our model. We design novel heuristics to maximize the reward earned
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Figure 1.2. HPC facility cooled by CRAC system.

for completing tasks by their deadline, while also ensuring the system remains within im-

posed power and thermal constraints. These heuristics include a non-linear programming

(NLP) technique that considers co-location interference, a greedy technique that assigns task

types to their most power-efficient node type and P-state, and a genetic algorithm enhanced

with local search. We perform in-depth analyses of our techniques when (a) they consider

co-location interference versus when they are näıve to these effects, (b) different HPC facility

system sizes are considered, and (c) the cold-aisles in the HPC facility are isolated versus

non-isolated. We also perform sensitivity analyses of our techniques under a range of values

for the power and thermal constraints, as well as workload environments.

The proliferation of geographically distributed data centers has motivated researchers

to study energy cost minimization at the geo-distributed level. Chapter 4 examines the

geographical load distribution problem using a rate-based environment, and proposes three

novel heuristics that minimize energy cost at the geodistributed level while ensuring all tasks

complete (i.e., the service rate of the system exceeds the arrival rate of tasks). The three

primary benefits of intelligently distributing the workload among data centers are: (a) lower
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latency for clients due to shorter communication distances, (b) workloads can be shifted to

locations in different time zones to concentrate workload in regions with the lowest electricity

prices at that time to exploit time-of-use pricing, and (c) an opportunistic distribution of

the workload of data centers during periods of peak demand can allow individual nodes to

run in slower but possibly more energy-efficient P-states or exploit on-site renewable energy

sources, further reducing electricity costs. We use detailed models of power, temperature,

and co-location interference at each data center to provide more accurate information to

the geo-distributed resource manager. We demonstrate that our best heuristic for the geo-

distributed resource manager can, on average, achieve a cost reduction of 37% compared to

the state-of-the-art prior work.

In Chapter 5, we study runtime thermal and energy aware resource management in-

stead of rate-based (offline), as was studied in Chapters 3 and 4. Incorporating intelligent

decisions into proactive thermal-aware resource management requires a thermal model to

predict the thermal implications of allocating tasks to different cores around the facility.

Smart decisions regarding where to place incoming tasks can offer the benefit of operating

the HPC facility at a hotter CRAC temperature (and therefore consuming less cooling en-

ergy) by avoiding hotspots. However, using a thermal model to predict temperatures can

be a time-consuming process that requires complicated air flow patterns to be calculated

for every mapping decision. Therefore, we propose a novel offline-assisted runtime resource

management framework in which offline analysis is used to predict the thermal implications

of mapping a given workload, and provide the runtime manager useful information regarding

CRAC temperature settings, a set of cores to which the runtime resource manager is allowed

to map tasks, and which floor vents to open or close to better direct cold air. The goal of our
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proposed technique is to maximize the reward of completing tasks by their individual dead-

lines throughout the day while adhering to a daily energy budget and temperature threshold

constraints.

Chapter 6 summarizes the research presented in this thesis. A discussion of possible

future directions for the studies presented are in Chapter 7.
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CHAPTER 2

Energy-Aware Robust Resource Allocation∗

2.1. Introduction

A recent study [10] estimates that the electricity used by data centers has increased

by 56% worldwide between the years 2005 and 2010. With the electricity demands increas-

ing and the energy costs of operating a data center surpassing 20% of the total costs [11],

it has become common practice to either operate within an electricity budget or to reduce

electricity use while maintaining service guarantees. The need for energy-efficient data cen-

ters is becoming more apparent as both power consumption and operating costs continue to

rise. Energy-aware resource management techniques that can improve energy efficiency are

therefore becoming increasingly important.

A commonly used technique to manage the energy efficiency in computing systems is

to employ dynamic voltage and frequency scaling (DVFS ) in server processors [12]. DVFS

allows the cores in a processor to operate in discrete performance states (P-states), with

lower-numbered P-states consuming more power but reducing the execution time of tasks.

Because server processors use a large portion of the energy in a data center, we can employ

DVFS to provide a trade-off between execution time and energy consumption.

∗The full list of co-authors is at [8]. The other co-authors of this work are: Sudeep Pasricha, Anthony
A. Maciejewski, H. J. Siegel, Jonathan Apodaca, Dalton Young, Luis Briceno, Jay Smith, Shirish Bahirat,
Bhavesh Khemka, Adrian Ramirez, and Yong Zou. A preliminary version of portions of this work appeared
in [9]. This research was supported by the NSF under grant numbers CNS-0615170, CNS-0905399, and
CCF-1302693, and by the Colorado State University George T. Abell Endowment. This research used the
CSU ISTeC Cray System supported by NSF Grant CNS-0923386.
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Many large-scale computing facilities (e.g., data centers) incorporate heterogeneous re-

sources that utilize a mix of different machines to execute workloads with diverse computa-

tional requirements. The execution times of tasks on heterogeneous machines are typically

inconsistent such that if machine A is faster than machine B for a given task, machine A

may not be faster for all tasks [13]. By assigning tasks to machines in an intelligent manner,

it is possible to leverage machine heterogeneities to reduce task execution times and energy

consumption.

The act of assigning tasks to machines is commonly referred to as resource allocation.

Resource allocation decisions often rely on estimated values for task execution times whose

actual values vary and may differ from available estimates (e.g., due to cache misses or

data dependent execution times). These uncertainties in task execution times may cause a

completion time (makespan) deadline or energy budget to be violated, therefore we want

resource allocation techniques to be robust against these variations.

This research addresses the problem of statically allocating a workload of independent

tasks to a heterogeneous computing cluster. Static mapping is used in several environments

[13, 14], such as planning an efficient schedule for some set of jobs to be run at some time in

the future. In the resource management literature, it is common to assume that information

that characterizes the execution times of frequently executed tasks can be collected, e.g.,

[15–18]. We work closely with Oak Ridge National Labs, and in their environment, as well

as others, similar types of tasks are executed frequently allowing for the collection of histor-

ical information about the execution times of tasks on machines. In this study, we assume

knowledge of the means and variances of the execution times of each task on each machine,

and can use this information to build probability distributions that approximate historical

information. We want our resource allocations to be robust against the variations in the
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task execution times, where we define energy-robustness as the probability that the energy

budget is not violated, and makespan-robustness as the probability a makespan deadline is

not violated. These probabilities are calculated using the means and variances of the task

execution times.

By intelligently allocating resources and configuring DVFS, we utilize the heterogeneities

in execution time and power to address two problems: (1) optimizing (maximizing) the

makespan-robustness with a constraint on energy-robustness; and (2) optimizing (maximiz-

ing) the energy-robustness with a constraint on makespan-robustness. We refer to (1) as

MO-EC (makespan-robustness optimization under an energy-robustness constraint) and (2)

as EO-MC (energy-robustness optimization under a makespan-robustness constraint). This

study focuses on the design and analysis of makespan- and energy-robust resource alloca-

tion heuristics for a heterogeneous computing cluster to address both the energy-constrained

and deadline-constrained problems. We also analyze the impact of four different methods of

constrained optimization used within the heuristics, and we demonstrate the flexibility and

performance of the heuristics when the constraints are easy or difficult to meet. In summary,

we make the following contributions:

• The design and analysis of resource management techniques for both optimizing

makespan-robustness with an energy-robustness constraint (MO-EC) and optimiz-

ing energy-robustness with a makespan-robustness constraint (EO-MC).

• An enhanced power model that uses real system specifications for CPU voltage and

frequency of DVFS P-states and overhead power of additional server components.

Also a workload model where tasks have varying degrees of compute and memory

intensity.
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• An analysis on the effectiveness of our techniques on two different sized platforms

that vary in both number of machines and tasks.

• A sensitivity analysis of our techniques against the level of heterogeneity.

The rest of this chapter is organized as follows. Section 2.2 discusses related work. The

system model and workload are defined in Section 2.3. Section 2.4 describes the stochas-

tic measures for makespan and energy consumption. The energy-aware resource allocation

heuristics are proposed in Section 2.5, and the methods of constrained optimization used in

conjunction with the heuristics are discussed in Section 2.6. Section 2.7 discusses the results,

and finally we give the conclusions in Section 2.8.

2.2. Related Work

Energy-aware resource allocation in high performance computing (HPC) systems is

an important research area as high power consumption and associated energy costs are dif-

ficult obstacles. Therefore, numerous recent works have focused on energy-aware resource

allocation techniques that exploit energy saving techniques such as DVFS to reduce the en-

ergy consumption of computing systems. To the best of our knowledge, our work is the first

to address energy-aware resource allocation of a bag-of-tasks with uncertain task execution

times to a heterogeneous computing system with goals of considering robustness of both

makespan and energy consumption.

Energy-aware scheduling on heterogeneous platforms that considers deterministic task

execution times has been previously studied (e.g., [19–21]). Li et al. [19] consider energy-

aware scheduling of a collection of independent tasks on a heterogeneous platform that is

DVFS-enabled. The primary contribution is the design of a resource allocation algorithm

that minimizes energy consumed while ensuring the collection of tasks completes by a com-

mon deadline. Energy-aware scheduling of a bag-of-tasks application to a heterogeneous
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computing system is considered in [20]. The goal in that paper is to allocate the bag of

same-size tasks to the heterogeneous system to minimize energy consumed under a through-

put constraint. Energy-aware scheduling on milliclusters is studied in [21]. Milliclusters are

a collection of numerous low-power processing elements (e.g., those found in mobile devices)

that are organized into a large cluster for scientific computing purposes. Three heuristics are

designed to minimize energy consumption to complete a collection of tasks while adhering

to each task’s individual deadline. Our work is novel and different from those listed because

it considers uncertain task execution times (modeled as random variables) and the design

of relevant performance measures to capture the robustness of both makespan and energy

consumption against these uncertain task execution times.

Robust resource allocation of tasks with uncertain execution times has been studied,

e.g., [22–25]. These works do not consider energy consumption, which is the focus of our

work. Energy-aware resource allocation of tasks with uncertain execution times was studied

in [26]. The goal for the resource allocation techniques in [26] is to finish as many tasks as

possible by their individual deadlines without violating an energy constraint. The definition

of robustness is the expected number of tasks that will complete by their individual dead-

lines. Our work considers complex resource management techniques designed for a static

scheduling problem, probabilistic measures for both energy consumption and performance,

and a more accurate power model that includes the overhead power of compute nodes and

static power consumption of cores.

2.3. System Model

2.3.1. Compute Nodes. The cluster we model consists of N heterogeneous compute

nodes, and each node i contains ni homogeneous cores. Cores are the most basic processing

element in this study, with each core processing one task at a time, e.g., as done in a Cray [27].
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Cores are also DVFS-enabled to use P-states that allow a core to change operating voltage

and frequency to provide a trade-off between the execution time and power consumption of

the processor. Each core of compute node i has PSi P-states available. We assume each core

in the system can operate in an individual P-state, and our resource allocation techniques

are designed such that P-states do not switch during task execution. Lower-numbered P-

states consume more power, but provide faster execution times, e.g., P-state 0 provides the

shortest execution times but also consumes the most power.

2.3.2. Power Model. The power consumption of a node includes the dynamic

power of the cores, the static power consumption of the cores, and the base overhead power

of the node (e.g., for disks, memory, network interface cards) [28]. We assume that when

a core is finished processing its assigned workload, the core is able to deactivate and the

power consumption (both dynamic and static) becomes negligible. Similarly, when all cores

of a compute node are finished with their assigned workloads, the entire node is able to

deactivate and consume no overhead power. For our static resource allocation problem with

independent tasks, nodes do not have idle time because nodes are active when processing

tasks and then deactivate when finished with their assigned workload, the ACPI S6 state

[12].

For core j within node i operating in P-state π, we use the well-known equation for

dynamic power (P dyn
ijπ ) using the load capacitance (Ci), the supply voltage (V ddjπ), and

the frequency (fjπ) as [29]

(1) P
dyn
ijπ ∝ Ci · V dd2jπ · fjπ.

We consider the static power consumption of cores and the overhead power used by

additional components (e.g., memory, disks, add-on cards). We assume the static power of
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a core and the overhead power of a node are constant and independent of the voltage and

frequency of the P-state that the core is currently in.

2.3.3. Workload. The workload consists of a collection of T independent tasks to

be completed before a given system deadline δ and within a given energy budget of ∆.

Such a collection of independent tasks is known as a bag-of-tasks. We assume the tasks to

be executed are known a priori such that we can perform a static (i.e., off-line) mapping.

The actual values of task execution times vary (e.g., due to cache misses or data dependent

execution times), and we model the execution times stochastically to account for these

variations. That is, we are provided a mean and a variance that describe an execution time

probability density function (pdf ) for each task executing on each compute node in each

P-state. In an actual system, the means and variances of these Gaussian execution time

distributions can be approximated using historical, experimental, or analytical techniques

[30–32]; in Section 2.7 we discuss our values for evaluation. The use of Gaussian distributions

allows us to sum task execution times using a closed-form equation rather than having to

perform convolution, however our proposed resource management techniques are applicable

for task execution times that are described by any distribution.

It has been shown [33] that the arithmetic intensity (the number of operations performed

per word of memory transferred) of a workload can greatly affect how the execution time of a

task scales with the frequency of the CPU. The execution times of tasks with high arithmetic

intensity generally scale proportionally with frequency, e.g., when the frequency is halved the

execution time of the task doubles. Because the overhead power of a compute node remains

constant regardless of P-state, the greater execution times resulting from low-power P-states

can result in greater energy consumption than when executing the task as fast as possible in

P-state 0. The most energy-efficient P-state depends on the ratio of compute energy saved
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by operating in a low-power P-state to the amount of overhead energy consumed over the

longer execution time that results from the decrease in frequency. With memory intensive

workloads (i.e., workloads with low arithmetic intensity), a reduction in frequency has less

impact on the execution times of tasks, because the processor spends a large portion of

cycles waiting for data from memory. Memory intensive tasks offer greater potential for

energy savings using DVFS, as power can be greatly reduced with little effect on execution

time. We assume each task is one of a set of task types that is representative of the arithmetic

intensity of the task. Our method for the scaling of execution time by task type and frequency

is detailed in Appendix A.

2.4. Stochastic Measures

2.4.1. Overview. The traditional performance measure for bag-of-tasks scheduling

problems is makespan, the time required for all tasks within the bag to finish execution.

In this study, we also are concerned with the energy consumption required to execute the

bag-of-tasks, however, typically both makespan and energy are measures that rely on de-

terministic values for time. Because real environments have uncertainty, resource allocation

decisions in such environments should be based on this stochastic information and be robust

against the variations in the task execution times.

We define a “robust” resource allocation as one that can mitigate the impact of un-

certainties on both performance and energy objectives. To claim robustness for a system,

the following three questions must be answered [34]: (1) What behavior makes the system

robust? In our system, a resource allocation is considered makespan-robust if the entire

workload completes within the system deadline δ, and energy-robust if the workload can

be completed within an energy budget of ∆. (2) What uncertainties is the system robust

against? We want our system to be robust against the uncertain task execution times. (3)
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How is the robustness of the system quantified? We quantify the makespan-robustness of a

resource allocation as the probability that the entire workload is completed by δ, and the

energy-robustness as the probability that the workload uses no more than ∆ energy.

2.4.2. Makespan-Robustness. The execution time distribution for each task on

each node is modeled as a Gaussian distribution with a given mean and variance. For a

given resource allocation, let the set Tij denote tasks in T that have been assigned to core j

in compute node i and let tx
ij

∈ Tij where 1 ≤ x ≤ |Tij|. Let PS(tx
ij
) denote the assigned

P-state for task tx
ij
. We denote the mean execution time associated with task tx

ij
executed

in P-state π as µ(tx
ij
, π) and the associated variance as V (tx

ij
, π).

The calculation of the completion time of core j when using a stochastic model for task

execution times is performed by taking the convolution of the random variables (representing

the execution times of tasks) for all tasks assigned to core j. The convolution of two inde-

pendent normally distributed random variables α and β produces a normally distributed

random variable with its mean being the sum of the means of α and β and the variance

being the sum of the variances of α and β.

The expected finishing time of core j in compute node i, denoted Fij , is the sum of the

mean execution times of all tasks assigned that core and is given as

(2) Fij =
∑

∀tx
ij
∈Tij

µ(tx
ij
,PS(tx

ij
)).

The variance of the completion time distribution of core j, denoted σ2
ij
, is the sum of the

variances of the execution times of all tasks assigned to that core and is given as

(3) σ2
ij

=
∑

∀tx
ij
∈Tx

ij

V (tx
ij
,PS(tx

ij
)).
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Thus, the completion time distribution of all tasks assigned to core j in compute node i can be

expressed as the distribution N (Fij, σ
2
ij
). Given deadline δ, we can compute the probability

that N (Fij, σ
2
ij
) is less than δ by converting N (Fij, σ

2
ij
) to its associated cumulative

density function (cdf ) and finding the probability associated with that core finishing before

time δ (i.e., P(N (Fij, σ
2
ij
) ≤ δ)). We define the overall makespan-robustness of a resource

allocation, denoted Ψ, as the minimum probability across all cores. That is, each core has

a probability of at least Ψ that it will complete its assigned workload by deadline δ. We

calculate Ψ as

(4) Ψ = min
∀i∈N

(min
∀j∈ni

P(N (Fij, σ
2
ij
) ≤ δ)))

We denote the makespan-robustness constraint as Γ, so for EO-MC we require resource

allocations to meet this constraint (i.e., Ψ ≥ Γ). When using a distribution other than

the normal distribution for task execution times, the completion time for all tasks on a

given core can be calculated by taking the convolution of all of the task execution time

random variables assigned to that core. The makespan-robustness can then be calculated by

converting the result into its associated cdf and then finding the probability associated with

that core finishing before the deadline.

2.4.3. Energy-Robustness. The energy required to process the workload is deter-

mined by summing the energy used by all tasks in the workload. In our model, the overhead

power of nodes (Oi), the dynamic power of cores (P dyn
ijπ ), and the static power of cores

(P stat
ijπ

) all contribute to the total energy consumed. These power values are multiplied by

the mean execution times of tasks to calculate the expected energy to process the workload,

or by the variances of the execution times of tasks to calculate the variance in energy con-

sumed to process the workload. Let T π
ij

denote the subset of tasks assigned to core j of
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compute node i processed in P-state π, i.e., T π
ij

= {∀tx
ij

∈ Tij | PS(tx
ij
) = π}. The

energy consumed is calculated as the product of execution time (a random variable) and

average power (a deterministic value). The multiplication of a random variable with a scalar

value has the effect of multiplying the expected value by that value and the variance by

the square of that value [35]. The expected dynamic energy spent by core j in compute

node i at P-state π, denoted Meandyn
ijπ , is the sum of the mean values of dynamic energy

consumption for all tasks assigned to that core and is given as

(5) Meandyn
ijπ =

∑

tx
ij
∈Tπ

ij

P dyn
ijπ · µ(tx

ij
, π).

Likewise, the variance of the dynamic energy spent by core j in compute node i in P-state

π, denoted V ardynijπ , is the sum of the variance values for dynamic energy consumption for

all tasks assigned to that core and is given as

(6) V ardynijπ =
∑

tx
ij
∈Tπ

ij

(P dyn
ijπ )2 · V (tx

ij
, π).

Similarly, the expected static energy consumed by core j on node i, denotedMeanstat
ijπ

,

is the sum of the mean values of static energy consumption for all tasks assigned to that

core and is given as

(7) Meanstat
ijπ

=
∑

tx
ij
∈Tπ

ij

P stat
i

· µ(tx
ij
, π).

The variance of static energy, denoted V arstat
ijπ

, is the sum of the variance values of static

energy consumption for all tasks assigned to that core and is given as

(8) V arstat
ijπ

=
∑

tx
ij
∈Tπ

ij

(P stat
i

)2 · V (tx
ij
, π).
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Recall that a node remains active and consumes overhead power (Oi) until all cores within

the node are finished with their workload. Let Fi be the maximum expected completion time

among cores in node i, and σ2
i
be the associated variance. The energy required to process

the workload includes the overhead power, the dynamic power consumed by cores, and the

static energy consumed by cores. We calculate the expected energy required to process the

entire workload across all compute nodes, denoted ζ, as

ζ =
N
∑

i=1

(

Fi · Oi

+

ni
∑

j=1

∑

∀π∈PSi

(Meandyn
ijπ +Meanstat

ijπ
)

)

(9)

The variance of the energy required to process the entire workload, denoted γ, is

γ =
N
∑

i=1

(

σ2
ij
· (Oi)

2

+

ni
∑

j=1

∑

∀π∈PSi

(V ardynijπ + V arstat
ijπ

)

)

(10)

The distribution for the total energy consumed to process the workload can be expressed

as N (ζ, γ). Given an energy budget of ∆, we can compute the probability that N (ζ, γ)

is less than ∆ by converting N (ζ, γ) to its associated cdf and finding the probability that

the energy required to process the workload is less than ∆ (i.e., P(N (ζ, γ) ≤ ∆)). We

denote this probability as φ, i.e., φ is the energy-robustness of a resource allocation. The

energy-robustness constraint is denoted η, so for MO-EC we require resource allocations to

meet this constraint (i.e., φ ≥ η).
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2.5. Heuristics

2.5.1. Overview. The goal of this study is to design and analyze resource alloca-

tion heuristics with two different goals, MO-EC and EO-MC. In this section, we present

three greedy heuristics and three non-greedy heuristics that have been adapted for our envi-

ronment. The Minimum Expected Energy and Min-Min Completion Time (Min-Min CT )

heuristics provided poor results, but were found to be useful as seeds for our non-greedy

heuristics. We define a solution generated by a resource allocation technique as a complete

mapping of tasks to both cores and P-states. Though we use Gaussian distributions for

task execution times in our simulation study, our heuristics can use the mean values of any

distribution to perform resource allocation.

2.5.2. Minimum Expected Energy. The Minimum Expected Energy (Min-Energy)

heuristic greedily assigns each task to the maximum makespan-robustness core in the node

and P-state combination that minimizes the expected energy consumption of the task.

2.5.3. Min-Min Completion Time. Min-Min Completion Time (Min-Min CT ) is

a two-phase greedy heuristic, based on concepts in [13, 36–38]. We consider two variations

of the heuristic, Min-Min Pmax and Min-Min Pmin, that differ in how P-state assignments

are selected.

Min-Min Pmin: All tasks are initially “unmapped” (placed in the unmapped batch).

Each unmapped task is then paired to the core that yields the minimum expected completion

time (MECT ) when each core is considered to be executing in the lowest-numbered P-state

(P-state 0). In the second phase, the task-core combination that yields the overall MECT

is selected for assignment in P-state 0, and the task is removed from the unmapped batch.

The ready times of all cores are updated and the heuristic begins another iteration. This
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process continues until all tasks are mapped (i.e., the unmapped batch is empty).

Min-Min Pmax: Same as Min-Min Pmin except using the highest-numbered P-state.

2.5.4. Min-Min Balance. Min-Min Balance starts from an initial solution (either

Min-Min Pmin or Min-Min Pmax and tries to improve the solution using greedy modifica-

tions. The minimum makespan-robustness core, denoted coreminM , refers to the core that

has the least probability of finishing its assigned workload by the deadline, that is, the core

that determines the makespan-robustness measure of the solution. The maximum makespan-

robustness core, denoted coremaxM , refers to the core that has the greatest probability of

finishing its workload by the deadline. We now show how we design the Min-Min Balance

heuristic for MO-EC and EO-MC.

MO-EC: We start by generating an initial mapping using Min-Min Pmax. The solution

is then modified to increase makespan-robustness by reassigning tasks and P-states, keeping

moves that improve the solution (i.e., greater makespan-robustness value without violating

the energy-robustness constraint). The first step reassigns an arbitrary task from coreminM

to coremaxM in the lowest-numbered P-state that does not violate the energy-robustness

constraint. Then coreminM and coremaxM are recalculated, and this step is repeated until

any task transferred from coreminM does not result in an improved solution. The second

step changes the P-state of an arbitrary task on coreminM to a lower-numbered (i.e., better

performing) P-state unless the energy-robustness constraint will be violated. If the con-

straint is not violated, coreminM is recalulated and the process is repeated until decreasing

the assigned P-state of any task on coreminM violates the energy-robustness constraint.

EO-MC: We start by generating an initial mapping using Min-Min Pmin. We use two

steps that modify the allocation to improve energy-robustness, keeping moves that improve
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the solution (i.e., better energy-robustness without violating the makespan-robustness con-

straint). The first step reassigns an arbitrary task from coreminM to coremaxM in the

P-state that most improves energy-robustness without violating the makespan-robustness

constraint. Then coreminM and coremaxM are recalculated, and this step is repeated until

any task transferred from coreminM does not result in an improved solution. The second

step increases the value of the assigned P-state of an arbitary task on coremaxM by one

unless the makespan-robustness constraint will be violated. If the constraint is not violated,

coremaxM is recalculated and the process is repeated until increasing the assigned P-state

of any task on coremaxM violates the constraint.

2.5.5. Tabu Search∗∗.

2.5.5.1. Overview. The distinguishing feature of Tabu Search is its exploitation of

memory through the use of a Tabu List [39]. We use a Tabu List to store regions of the

search space that have been searched and should not be searched again. Our implementation

of Tabu Search, based on concepts in [13], combines intelligent local search (“short hops”)

with global search (“long-hops”) in an attempt to find a globally optimal solution.

Local search is performed using three short-hop operators: (1) task swap, (2) task re-

assignment, and (3) P-state reassignment. One short-hop consists of one iteration of all

three operators. Long-hops are performed when local search terminates, with the purpose of

jumping to a new neighborhood in the search space, while avoiding areas already searched.

After each long-hop, short-hops are again performed to locally search the region near the

long-hop solution. The Tabu List stores unmodified long-hops (i.e., starting solutions) that

indicate neighborhoods that have been searched before, and may not be searched again. A

new solution generated by a long-hop must differ from any solution in the Tabu List by 25%

∗∗Though we refer to this heuristic as Tabu Search in this thesis and our published version of this chapter
[8], it could be more accurately described as an iterative local search.
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Algorithm 1 Pseudo-code for our Tabu Search heuristic

1. while termination criteria not met do
2. generate new long-hop, avoiding Tabu areas
3. while solution is improving do
4. task swap
5. task reassignment
6. P-state reassignment
7. end while
8. end while

of the task-to-core and P-state assignments, otherwise a new long-hop solution is generated.

Pseudo-code for the Tabu Search heuristic is given in Algorithm 1.

We now discuss how long-hops are performed and the purpose of the mean rank matrix

before detailing the three short-hop operators (task swap, task reassignment, and P-state

reassignment).

2.5.5.2. Long-hops. The purpose of a long-hop is to jump to new areas of the solution

space to begin a new local search (i.e., short-hops), while avoiding areas of the search space

that have already been searched through the use of a Tabu List. The initial solution (first

long-hop) is generated using the appropriate Min-Min Balance allocation (for MO-EC or

EO-MC) to help ensure that the constraints are met. Subsequent long-hop solutions are

generated by first unmapping 25% of arbitrary tasks then reassigning them using Min-Min

Balance, as before.

2.5.5.3. Mean Rank Matrix. We introduce the concept of a mean rank matrix that

contains the rank of each heterogeneous node for each task, based on mean execution times.

That is, for a given task, the nodes are ranked by how fast the nodes can execute the task

(e.g., if node i can execute task t faster than node j, node i is given a better rank for task

t). Let the rank of task t on node i be rank(t, i), where

1 ≤ rank(t, i) ≤ N. We define the best-ranked (fastest) node for a task as the rank 1 node.

When comparing the rank of any two tasks A and B on node i, task A is ranked lower
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(better) than task B if rank(A, i) is less than rank(B, i). The mean rank matrix is used in

some of the short-hop operators.

2.5.5.4. Short-hops Overview. The short-hop operators are used to perform greedy

local search on a solution generated by a long-hop. Task swap swaps two tasks between

two different cores, task reassignment transfers a task from one core to another, and P-state

reassignment changes the P-state of a task. The task reassignment and P-state reassignment

operators modify the assignments of specific tasks and cores, whereas task swap incorporates

some randomness by selecting arbitrary cores to swap tasks. We found that incorporating

some randomness with greedy intelligence provided the best results. We tried several varia-

tions of the three short-hop operators but only present our best-performing methods for the

sake of brevity. The decisions made by the three short-hop operators change depending on

whether it is desired to solve MO-EC or EO-MC. We first detail the operators when designed

for MO-EC, then explain changes when designed for EO-MC.

2.5.5.5. Short-hop Operators for MO-EC. Task Swap The goal of the task swap

operator is to swap tasks that are assigned to poorly (high) ranked nodes to better (low)

ranked nodes, a move that can potentially improve both makespan and energy-robustness.

We divide the task swap operator into four steps. (1) We first choose an arbitrary core j

and create a task list consisting of all tasks assigned to core j on compute node i, recalling

that the notation for such a task list is Tij . (2) Tij is sorted in descending order by the rank

of each task for node i. (3) We select the first task in the list, denoted taskA, and find the

rank 1 node for the task, denoted nodebest. Within nodebest, an arbitrary core z is chosen.

The task from core z that has the lowest rank for node i, denoted taskB, is selected for

swap. (4) The core assignments for taskA and taskB are swapped, and the best P-state

combination (according to the method of constrained optimization used) is found to run the
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cores in when executing the tasks. If the solution improves, the swap is kept and task swap

ends. Otherwise, the swap is not kept, and task swap repeats using the next task in the list

Tij until the solution improves or all tasks in Tij have been considered.

Task Reassignment The goal of task reassignment is to improve makespan-robustness

by transferring tasks from the core with the worst makespan-robustness to another core.

Task reassignment consists of three steps. (1) Find the minimum makespan-robustness core

(core j on compute node i) and create a task list consisting of all tasks assigned to that core

(Tij). (2) Tij is sorted in descending order by the rank of each task for node i. (3) We select

the first task in the list (taskA), and find the rank 1 node for the task (nodebest). Within

nodebest, the highest makespan-robustness core is selected as the target core (core z ), and

taskA is assigned to core z in the best P-state (according to the constrained optimization

method). If the solution improves, the new assignment is kept and task reassignment ends.

Otherwise, the new assignment is not kept, and task reassignment repeats using the next

task in the list Tij until the solution improves or all tasks in Tij have been considered.

P-state Reassignment The goal of P-state reassignment is to change P-state assign-

ments of tasks to greedily optimize the performance metric if the constraint is met, or to

greedily meet the constraint if the constraint is violated. If the energy-robustness constraint

has been met (i.e., φ ≥ η), the minimum makespan-robustness core (core j on compute

node i) is chosen, and a task list is generated consisting of all tasks assigned to that core

(Tij). A task is chosen arbitrarily from the list (taskA), and the P-state of the task is

decreased by 1 if not already currently assigned to execute in P0.

If the energy constraint has not been met (i.e., φ < η), the maximum makespan-

robustness core (core j on compute node i) is chosen, and a task list is generated consisting

of all tasks assigned to that core (Tij). A task is chosen arbitrarily from the task list (taskA),
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and the P-state of the task is changed to the one that gives the highest system-wide energy-

robustness.

For both cases, if the solution improves, the new P-state is kept and P-state reassignment

ends. Otherwise, the new P-state is not kept, and P-state reassignment repeats using the

next task in the list Tij until the solution improves or all tasks in Tij have been considered.

2.5.5.6. Short-hop Operators for EO-MC. Task Swap We make the following two

changes to task swap to optimize for EO-MC instead of MO-EC. First, step 2 is changed to

sort Tij in descending order of expected energy consumption instead of rank. Second, Step 3

is changed to find the minimum energy node for taskA and selects taskB from core z that

consumes the least expected energy for node i.

Task Reassignment We change step 2 of task reassignment from MO-EC to sort Tij

in descending order by expected energy consumption instead of rank, and in step 3 the

minimum energy node is found as the destination for the transfer of taskA rather than the

rank 1 node.

P-state Reassignment If the makespan-robustness constraint has been met (i.e., Ψ ≥

Γ), the maximum makespan-robustness core (core j on compute node i) is chosen, and a

task list is generated consisting of all tasks assigned to that core (Tij). A task is chosen

arbitrarily from the list (taskA), and the P-state of the task is assigned to the P-state that

gives the best energy-robustness.

If the makespan-robustness constraint has not been met (i.e., Ψ < Γ), the minimum

robustness core (core j on compute node i) is chosen, and a task list is generated consisting

of all tasks assigned to that core (Tij). A task is chosen arbitrarily from the list (taskA),

and the P-state of the task is decreased by 1 if not already currently assigned to execute in

P0.
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2.5.6. Genetic Algorithm.

2.5.6.1. Overview. Genetic algorithms have been shown to be effective in resource al-

location and job shop scheduling problems (e.g., [13, 40]). The Genitor [41] GA implemented

in this study operates on a population of 200 chromosomes (determined empirically). Each

chromosome is used to represent a solution (i.e., a complete resource allocation). A chro-

mosome consists of a collection of |T | genes, where each gene represents a task assignment

to a core and P-state. The initial population is generated using four solutions generated

heuristically using Min-Energy, Min-Min Pmax and Pmin, and Min-Min Balance heuristics

(using the appropriate Min-Min Balance method for MO-EC or EO-MC), and 196 randomly

generated solutions.

After the initial population generation, all chromosomes in the population are evaluated

and ranked (based on the method of constrained optimization used, detailed in Section 2.6).

Crossover and mutation operators are used to generate offspring chromosomes by altering

existing solutions. The GA enforces the population size by eliminating the lowest-ranked

chromosomes such that the population remains fixed at its original size. We now discuss

how crossover and mutation are used to generate new offspring.

2.5.6.2. Crossover and Mutation. Two crossover operators are used to swap task as-

signments or P-states between chromosomes: i) task-assignment crossover and ii) P-state

crossover. Both crossover operators start by selecting two parent chromosomes using a lin-

ear bias [41] and two crossover points x and y are generated such that x < y ≤ |T |. In

task-assignment crossover, all of the task-to-core assignments in genes ranging from x to y of

the first chromosome are swapped with all of the task-to-core assignments in genes ranging

from x to y of the second chromosome. Because cores on different nodes may have different

numbers of P-states available, if a task changes nodes we assign the task in the P-state that
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is closest to the clock frequency of its previous assignment. After task-assignment crossover,

P-state crossover is performed. P-state crossover also considers the offspring generated by

task-assignment crossover when selecting parent chromosomes (i.e., an intermediate popu-

lation of 202 chromosomes). In P-state crossover, all of the P-state assignments in genes

ranging from x to y of the first chromosome are swapped with all of the P-states in genes

ranging from x to y of the second chromosome. Assume an offspring is created from genes

1 to x−1 and y+1 to |T | of parent A, and genes x to y of parent B. Gene i (x ≤ i ≤ y) of

the offspring is assigned to the P-state of parent B that most-closely matches the frequency

of the P-state of gene i in parent A. The crossover operators generate two new offspring each

(four total).

Two mutation operators are used to alter task-to-core assignments and P-states: i) task-

assignment mutation, and ii) P-state mutation. Task-assignment mutation is probabilistically

performed on both of the offspring generated by task-assignment crossover and P-state mu-

tation is probabilistically performed on both of the offspring generated by P-state crossover.

For both mutations, offspring chromosomes have a probability pm of being mutated (empiri-

cally set to 0.1). If a chromosome is selected for mutation, each gene in that chromosome has

a probability pmg of being mutated (empirically set to 0.001). In task-assignment mutation,

if a gene is mutated the task corresponding to that gene is assigned to a random core (in a

P-state selected as in task-assignment crossover). In P-state mutation, if a gene is mutated

the task corresponding to that gene is assigned to a random P-state. After crossover and

mutation, offspring chromosomes are added to the population, evaluated (as specified in

Section 2.6), and the least-fit chromosomes are discarded to bring the population back to

its original size. This completes one generation of the GA. This process is repeated for a
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predetermined time limit (see Section 2.7), and the most-fit chromosome is returned as the

solution.

2.5.6.3. Differences between MO-EC and EO-MC. The genetic algorithm is versatile

because its intelligence lying in how solutions are evaluated and ranked. Therefore the only

differences between MO-EC and EO-MC are the different Min-Min Balance seeds used and

how the chromosomes are ranked (detailed in Section 2.6).

2.5.7. Genetic Algorithm with Local Search. Our genetic algorithm with

local search (GALS) combines the population-based global search from the GA with the

local search techniques from our Tabu Search heuristic. After both crossover and mutation

operations are finished (as performed in the GA), a local search is applied to the offspring

chromosomes using the three local search operators from our Tabu Search heuristic under

the condition that an offspring chromosome is at least as “good” as the worst chromosome

in the population, so as to not waste time trying to improve a poor solution. The number of

iterations of local search on each offspring chromosome was experimentally found to provide

the best results at 200 iterations.

The differences between MO-EC and EO-MC for GALS are the same as for the GA, and

the short-hop operators from Tabu Search (detailed in Sections 2.5.5.5 and 2.5.5.6).

2.6. Constrained Optimization

2.6.1. Overview. The previous section described the heuristics we propose to use for

our resource allocation problem. Incorporating constraints into heuristics that are typically

designed to optimize for an unconstrained objective (e.g., Tabu Search and GA) is a difficult

problem and a research topic in itself. In this section we present several constraint-handling

methods adapted from the literature [42–45] that we use in combination with some of the
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proposed heuristics. These methods help us determine solutions that are “better” than other

alternatives over the search space examined by the heuristics. In this section, we present the

“static penalty function,” “dynamic penalty function,” and “superiority of feasible solutions”

techniques. Details of the less-effective “limiting the search space” technique can be found

in Appendix C.

2.6.2. Static Penalty Function. The static penalty function technique [42, 44,

45] reduces the objective function value of infeasible solutions based on the solution’s distance

from feasibility, but still allows infeasible solutions to be considered when searching for an

optimal feasible solution. The distance from feasibility of a solution for MO-EC is

(11) dφ = η − φ.

For EO-MC, the distance from feasibility is

(12) dΨ = Γ − Ψ.

We denote c as a constant used to control how strongly a constraint will be enforced. Our

penalized objective function for MO-EC is

(13) ψΨ =



















Ψ − c · dφ if dφ > 0

Ψ if dφ ≤ 0

.

Our penalized objective function for EO-MC is

(14) ψφ =



















φ− c · dΨ if dΨ > 0

φ if dΨ ≤ 0

.
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When dφ or dΨ are greater than zero, it indicates that the constraint has not been met.

We then penalize the objective functions (ψφ or ψΨ) by subtracting a weighted value of the

distance from feasibility. A high value of the coefficient c (i.e., high penalty for an infeasible

solution) can produce low quality solutions by restricting exploration of the infeasible region.

However, c must be large enough that a feasible solution is found. In our experiments, the

best results were obtained when setting c to 2.

When dφ or dΨ are less than or equal to zero it indicates the constraint has been met.

Solutions are not rewarded when dφ or dΨ are less than zero, as all that matters is the

constraint is not violated. Heuristics incorporating the static penalty function return the

best solution encountered that meets the constraint.

2.6.3. Dynamic Penalty Function. The static penalty function has a primary

deficiency in that solutions obtained greatly depend on the penalty weight c, and a “good”

value for c will vary depending on the heuristic used and even from iteration to iteration

within a heuristic. A dynamic penalty function [44, 45] uses knowledge of the current search

state to guide the search along the boundary of feasibility where the optimal solution is likely

to occur. For evolutionary algorithms (e.g., GA and GALS), this is done by adjusting the

penalty weight to guide the search in such a way that the population has an equal number of

feasible and infeasible solutions. We set the penalty weight (c) to 2, and at the end of each

generation of the GA or GALS, the penalty weight is increased by a small amount (0.01) if

less than half of the population are feasible solutions or decreased by a small amount (0.01)

if at least half of the population are feasible solutions. For Tabu Search, the penalty weight

is increased by 0.01 at the end of an iteration if the solution is infeasible or decreased by 0.01

if feasible. Heuristics incorporating the dynamic penalty function return the best solution

encountered that meets the constraint.
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2.6.4. Superiority of Feasible Solutions. By adopting the rule that any feasi-

ble solution is better than any infeasible solution [43], it is possible to avoid experimentally

tuning penalty parameters. Our heuristics use this method in the following way: (1) any

feasible solution is better than any infeasible solution, (2) when two infeasible solutions are

compared, the one with the smallest distance from feasibility (see Equations 11 and 12) is

considered better, and (3) when two feasible solutions are compared, the one with the better

objective function value is considered better.

2.7. Results

We consider two different simulation sizes in our simulation study. The small simu-

lation size consists of 25 compute nodes (N ), based on 25 different servers listed in the

SPECpower ssj2008 results [46], and 10,000 tasks. The large simulation size consists of

250 compute nodes and 100,000 tasks. In Appendix A we provide data collected from

SPECpower ssj2008, give details on how we use this data for our system parameters, pro-

vide information on how we obtain our voltage/frequency values for P-states, and workload

generation details.

We conducted simulations to find a balance of short-hops and long-hops in Tabu Search

(see Appendix B), compare the different heuristics using our constrained optimization tech-

niques (Fig. 2.1), demonstrate the effectiveness of each heuristic at handling various degrees

of difficulty to meet the deadline and energy budget (Figs. 2.2 and 2.3), analyze the trends

on the large simulation size compared to the small simulation size (Figs. 2.4 and 2.5), and

perform a sensitivity analysis of our heuristics across environments of varying heterogeneity

(Fig. 2.6). Results in this section show the mean and 95% confidence interval error bars

of 96 trials, with the means and variances for task execution times varying between trials.

These trials simulate numerous diverse heterogeneous workload/system environments. For
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the sake of brevity, we do not include results for the Min-Energy or Min-Min Pmin and

Pmax heuristics as they performed poorly by themselves but were found useful as seeds in

the GA, GALS, and Tabu Search heuristics. Unless otherwise stated, for experiments con-

sidering the small simulation size, the system deadline (δ) was set to 15,500 seconds, the

energy budget (∆) was set to 58 megajoules (MJ). For the large simulation size, the system

deadline was set to 13,500 seconds, the energy budget was set to 580 MJ. In both cases, the

energy/makespan-robustness constraints (η and Γ) were set to 90%.

Figure 2.1 compares the different methods of constrained optimization for Tabu Search,

GA, and GALS for the MO-EC problem using the small simulation size. Heuristics are

terminated after six hours of heuristic execution time. The heuristics show similar trends

for the methods of constrained optimization. All heuristics and methods of constrained op-

timization produced solutions that met the energy-robustness constraint. The dynamic

and static penalty functions can sometimes prefer infeasible solutions with a large objective

value over feasible solutions with a smaller objective value, based on the relative value of Ψ

and the weighted distance from feasibility. This can help the heuristics obtain a better objec-

tive value by allowing exploration into the infeasible region and guiding the search towards

a better feasible solution in the end. The “superiority of feasible solutions” and “limiting

the search space” techniques always prefer feasible solutions over infeasible ones, hindering

the ability of the heuristics to accept high makespan-robustness solutions that may barely

violate the energy-robustness constraint and eventually guide the heuristics to better feasible

solutions, which led to worse results than the penalty function techniques.

The static penalty function must have a high enough penalty weight so that a feasible

solution is found, but small enough such that the heuristics sometimes allow infeasible solu-

tions to be accepted. We experimented with setting c equal to 0.5, 1, 2, and 5, and found the
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Figure 2.1. Comparison of constrained optimization techniques for MO-EC
with Tabu Search, GALS, and GA (25 node system, 458 total cores, and 10,000
tasks). The system deadline was set to 15,500 seconds, the energy budget was
set to 58 MJ, and the energy-robustness constraint was set to 90%.

best results when setting c equal to 2, which allowed the heuristics to accept some infeasible

solutions but to mostly prefer feasible ones. Compared to the static penalty function, the

dynamic penalty function is able to fine tune the penalty weight over the course of the search

by adapting the penalty weight after each iteration of Tabu Search or generation of GALS

and GA, resulting in better solutions than the static penalty function.

The “limiting the search space” technique is the same as the “superiority of feasible

solutions” for Tabu Search, as Tabu Search starts with a Min-Min Balance solution that is

feasible for the deadline and energy budget considered. However, for GALS and GA, the

“limiting the search space” technique performs the worst as the initial population is gener-

ated with only feasible solutions, causing the chromosomes to lack diversity and hindering
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the benefits of the crossover operator. The results for EO-MC show the same trends as Fig-

ure 2.1 across constrained optimization techniques. Because the dynamic penalty function

performed best, we use this as our method of constrained optimization for other experi-

ments.

Figures 2.2 and 2.3 show the results of the heuristics at handling different values for

the energy budget (∆) and deadline (δ) for the small simulation size. Figure 2.2 shows

the results of the heuristics when maximizing makespan-robustness (Figure 2.2(a)) with an

energy-robustness constraint (Figure 2.2(b)) when varying the energy budget (i.e., varying

the difficulty of meeting the energy constraint). Figure 2.3 shows the results of the heuristics

when maximizing energy-robustness (Figure 2.3(a)) with a makespan-robustness constraint

(Figure 2.3(b)) when varying the deadline. The energy-robustness and makespan-robustness

constraints (η and Γ) were set to 90%.

For the MO-EC problem, Figure 2.2 shows how well the heuristics perform at exploiting

the trade-off between energy-robustness and makespan-robustness to sacrifice the probabil-

ity of meeting the deadline (makespan-robustness) to meet the energy constraint. For this

experiment, each of the 96 trials were executed with the deadline set to 15,500 seconds and

the energy budget set to a value between 50 MJ and 64 MJ in 0.5 MJ increments. Each trial

of the Tabu Search, GALS, and GA heuristics was terminated after six hours. Within this

time, Figure 2.2(a) shows that Tabu Search is able to obtain the best solutions at all energy

budgets. Tabu Search and GALS are able to outperform GA in the allotted time as the

intelligent local search operators used in Tabu Search and GALS are able to quickly identify

moves that improve the solution, whereas the GA must rely on random genetic search which

can go through several generations before finding better solutions. Tabu Search focuses on

performing many short-hops on one solution and escaping local optima through long-hops,
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which outperforms the GALS that performs fewer short-hops (i.e., iterations of local search)

on many different solutions over the course of the search and relies on random crossover and

mutation to escape local optima.

We can observe that Tabu Search is able to achieve non-zero makespan-robustness and

meet the energy-robustness contraint at energy budgets as small as 51 MJ, due to the local

search operators intelligently assigning tasks to execute in low-power P-states on high-ranked

nodes. In Figure 2.2(b), at energy budgets up to 53 MJ for GALS and 55 MJ for GA, GALS

and GA return solutions of 1.0 energy-robustness (feasible) but 0.0 makespan-robustness.

At these tight energy budgets, the Min-Min and Min-Min Balance seeds and randomly gen-

erated solutions of GALS and GA have very poor energy-robustness and are therefore highly

penalized, so the population quickly converges to solutions similar to the Min-Energy solu-

tion that has 1.0 energy-robustness and poor makespan-robustness. Also, when the energy

budget is set to greater than approximately 60 MJ, the energy-robustness exceeds our set

constraint of 0.9 for the GA and Min-Min Balance heuristics, indicating that when given

a large energy budget, GA and Min-Min Balance are able to achieve feasible solutions but

unable to use all available energy to increase makespan-robustness as desired. This is be-

cause the GA and Min-Min Balance heuristics do not incorporate the P-state reassignment

operator that greedily assigns tasks to run in faster P-states until all available energy is used

(e.g., until energy-robustness equals the constraint of 0.9). At higher energy budget values

(over 60 MJ), GALS and Tabu Search have similar performance because the energy budget

becomes easy enough that the energy-robustness constraint can be achieved when most tasks

are running in the highest-power P-state (P0) (through the P-state reassignment operator

for MO-EC), thus both heuristics can attain high makespan-robustness values while meeting

the energy-robustness constraint.
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Figure 2.3 compares results of heuristics for EO-MC when varying the deadline (i.e.,

making the makespan-robustness constraint more or less difficult to attain). For this exper-

iment, the energy budget is fixed at 58 MJ and system deadline is varied between 13,500

seconds and 17,000 seconds. Again, we can observe that Tabu Search and GALS outperform

the GA, indicating the significance of the local search operators for the smaller simulation
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Figure 2.2. Varying the energy budget for MO-EC: (a) makespan-
robustness, and (b) energy-robustness (25 node system, 458 total cores, and
10,000 tasks). The system deadline was set to 15,500 seconds, the energy-
robustness constraint was set to 90%. The heuristics were terminated after six
hours of execution time.

size. Tabu Search outperforms GALS at most deadline values, as the benefit associated

with improving one solution through using many short-hops and escaping local optima with

long-hops exceeds the benefit associated with performing fewer local search iterations on

numerous solutions and relying on random crossover and mutation to escape local optima,

as in GALS. At higher deadline values (over 16,200s), GALS and Tabu Search have similar

performance because the deadline becomes easy enough that the makespan-robustness con-

straint can be achieved when most tasks are running in the lowest-power P-states (through
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Figure 2.3. Varying the system deadline for EO-MC: (a) energy-robustness,
and (b) makespan-robustness (25 node system, 458 total cores, and 10,000
tasks). The energy budget was set to 58 MJ and the makespan-robustness
constraint was set to 90%. The heuristics were terminated after six hours of
execution time.

the P-state reassignment operator for EO-MC), thus both heuristics can attain high energy-

robustness values while meeting the makespan-robustness constraint.

The 25 node (458 total cores) platform is relatively small for a modern HPC system, so

we also experimented with our heuristics on a larger simulated platform consisting of 250

nodes (4,580 total cores) and 100,000 tasks. Figure 2.4 compares results of Tabu Search and

GALS over 72 hours of heuristic execution time for MO-EC. With the smaller simulation

size of only 25 nodes and 10,000 tasks, Tabu Search often achieved the best results (see

Figs. 2.1, 2.2, 2.3). However, Figure 2.4 shows that for 12 hours of heuristic execution time

for the larger simulation size, GA outperforms both Tabu Search and GALS, and GALS

outperforms Tabu Search. The local search operators used by Tabu Search and GALS are

not as effective on the large simulation size, and there are two primary reasons: (1) the local

search operators used by Tabu Search and GALS take considerably longer to execute when

having to examine considerably more cores and tasks to intelligently swap and reassign tasks
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Figure 2.4. Comparison of Tabu Search, GA, and GALS heuristics over
72 hours of execution time for MO-EC using the large simulation size (250
nodes, 4,580 total cores, and 100,000 tasks). The system deadline was set to
13,500 seconds, the energy budget was set to 580 MJ, and energy-robustness
constraint was set to 90%.

and P-states, and (2) local search operators only change one task and/or P-state assignment

each, which can result in small improvements per iteration when considering 100,000 tasks

instead of only 10,000 tasks. Genetic search (crossover and mutation) can change numerous

task and P-state assignments per generation, which can lead to large improvements early

in the heuristic. Over time, however, the randomness of the genetic search becomes less

effective and improvements become incremental, leading the intelligent choices made by the

Tabu Search and GALS to outperform GA. To help illustrate these observations, Figure 2.5

compares the progress of one trial of Tabu Search, GALS, and GA over 72 hours of heuris-

tic execution time using the small simulation size (Figure 2.5(a)) and large simulation size

(Figure 2.5(b)).

On the small simulation size (Figure 2.5(a)), Tabu Search is able to perform approxi-

mately 350,000 total iterations of local search over the 72 hours of heuristic execution time,

however on the large simulation size (Figure 2.5(b)) Tabu Search is only able to perform
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Figure 2.5. Progress of Tabu Search, GALS, and GA for MO-EC over 72
hours of heuristic execution time for the (a) small simulation size (25 nodes,
458 total cores, 10,000 tasks), and (b) large simulation size (250 nodes, 4,580
total cores, and 100,000 tasks). For the small simulation size, the system
deadline was set to 15,500 seconds, the energy budget was set to 58 MJ, and
the energy-robustness constraint was set to 90%. For the large simulation size,
the system deadline was set to 13,500 seconds, the energy budget was set to
580 MJ, and energy-robustness constraint was set to 90%.

about 30,000 total iterations of local search, due to the increased time it takes for the short-

hop operators to identify intelligent assignments. Figure 2.5(a) shows Tabu Search being

very effective on the small simulation size compared to GALS and GA, as the intelligent

short-hop operators are fast and can focus on improving one solution until a long-hop is

performed (the sharp decreases in makespan-robustness). The genetic search of GALS and

GA leads to large improvements early, but the genetic search becomes less effective as the

population becomes less diverse over time. GALS is able to perform few local search itera-

tions on many different solutions, leading to a gradual improvement over time. Figure 2.5(b)

shows that with the large simulation size, Tabu Search does not perform any long-hops over

72 hours of heuristic execution time, meaning that the local search has yet to meet the ter-

mination criteria. We can see that the genetic search of GALS and GA is able to perform

large jumps to better solutions early compared to the gradual improvement of Tabu Search

due to crossover being able to change numerous assignments per generation through random
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recombination of chromosomes. The genetic search becomes less effective as the population

converges, and Tabu Search obtains similar results to that of GALS after approximately 24

hours.

Figure 2.6 compares the makespan-robustness results for MO-EC using our Tabu Search,

GALS, and GA heuristics when the computing environment has high and low heterogeneity

to evaluate the effectiveness of our heuristics across different heterogeneous environments.

One measure for characterizing the heterogeneity of a computing environment is task machine

affinity (TMA) [47]. TMA captures the degree to which some tasks are better suited to run

on specific machines. In an environment with low TMA, typically a node that is faster for

one task is typically faster for all tasks. In contrast, an environment with high TMA contains

nodes that are better-suited for some tasks, but other machines are better-suited for different

tasks. We use methods detailed in [48] to modify the mean task execution time values from

the CoV method (Appendix A) to create high and low TMA environments.

Figure 2.6 shows all heuristics performing better on environments with high TMA

than low TMA. In the environment with low TMA, all tasks execute the fastest on cores
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Figure 2.6. Comparison of Tabu Search, GALS, and GA across heteroge-
neous environments with varying TMA for MO-EC using the small simulation
size (25 nodes, 458 total cores, and 10,000 tasks). The system deadline was
set to 15,500 seconds, the energy budget was set to 58 MJ, and the energy-
robustness constraint was set to 90%.
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in the fastest node, leaving many tasks executing on subpar nodes when the workload is

load balanced. In the high TMA environment, different tasks execute fastest on different

nodes, leaving many tasks assigned to their fastest nodes when the workload is load bal-

anced. We can also observe that in the high TMA environment, the makespan-robustness of

Tabu Search and GALS exceed the performance of the GA by far more than in the low TMA

environment. This is because the task swap and task reassignment local search operators

employed by Tabu Search and GALS move tasks onto nodes that are better according to

the mean rank matrix. In a high TMA environment, this makes the task swap and task

reassignment operators very effective because placing tasks on their best-ranked nodes often

leads to natural load balancing, giving high makespan-robustness. In the heuristic execution

time given, Tabu Search and GALS greatly outperform the random combinations produced

by GA. In the low TMA environment, placing tasks on better-ranked nodes does not load

balance, leading to Tabu Search and GALS giving performance closer to that of the GA.

In summary, we found that the dynamic penalty function served as the most-effective

constrained optimization technique (Fig. 2.1). Also, our Tabu Search heuristic gave the best

results among the heuristics for the small simulation size (Figs. 2.2 and 2.3) and the large

simulation size when given at least 24 hours to execute (Figs. 2.4 and 2.5). Tabu Search

was also able to provide the best results in environments with low and high heterogeneity

(Fig. 2.6).

2.8. Conclusions

In this chapter, we design energy-aware resource allocation techniques to address two

challenges that appear in today’s data centers: (a) trying to optimize the makespan when

subject to an energy budget constraint, and (b) trying to optimize energy consumption when

subject to a makespan deadline. This problem becomes more complex when the execution
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times are modeled stochastically rather than deterministically. We develop probabilistic

measures for both makespan and energy consumption, which we call makespan-robustness

and energy-robustness. Makespan-robustness is the probability of meeting a makespan dead-

line, and energy-robustness is the probability of meeting an energy budget.

We approach this problem through the design of energy-aware resource allocation tech-

niques incorporated with methods of constrained optimization from the literature. We com-

pared the methods of constrained optimization using our Tabu Search, GALS, and GA

heuristics. For a small simulation size, the intelligent search techniques of Tabu Search in

combination with the dynamic penalty function outperformed the other resource allocation

methods within the computation time given to execute the heuristics. For the large simula-

tion size, however, the computation time overhead of our intelligent local search operators

caused GA and GALS to outperform Tabu Search unless Tabu Search is given at least 24

hours to execute. The comparison of heuristics and constrained optimization techniques

revealed great potential for our Tabu Search and GALS heuristics when combined with the

dynamic penalty function for managing compute resources in an energy-aware manner for

both deadline-constrained and energy-constrained systems. Possible directions for future

studies in this area are presented in Chapter 6.
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CHAPTER 3

Rate-based Thermal, Power, and Co-location

Aware Resource Management for Heterogeneous

High Performance Computing Systems†

3.1. Introduction

Faster execution time has long been the highest priority design objective for high-

performance computing (HPC) systems. The great success achieved thus far in optimizing

performance of these systems has come at the cost of increased power consumption, leading

to increased ownership costs from powering and cooling these systems. Furthermore, the

increased demand for performance from these systems has led to chip designers increasing

the number of cores in their multicore processors, and led HPC system administrators to

include these high-performance multicore processors in their facilities. The increased num-

ber of processing chips in HPC also has increased the power consumption of computing and

cooling. The increased number of cores per chip has led to greater interference between

cores competing for shared resources. The push to exascale will require even more on-chip

parallelism, thereby reducing performance and requiring larger systems to meet needs, thus

exacerbating power consumption.

Motivated by the need to reduce electricity costs and encourage green computing, the

Green500 list aims to switch the paradigm of performance as a primary design objective

†This work was performed jointly with student Eric Jonardi, and is currently under review. The other
co-authors of this work are: Sudeep Pasricha, Anthony A. Maciejewski, Gregory A. Koenig, Patrick J. Burns,
and H. J. Siegel. A preliminary version of portions of this work appeared in [4]. This research was supported
by NSF grants CNS-0905399, CCF-1302693, and CCF-1252500. This research used the CSU ISTeC Cray
System supported by NSF Grant CNS-0923386. We thank Hewlett Packard for donating servers for this
work.
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to metrics such as energy efficiency and performance-per-watt as higher priority design ob-

jectives. The L-CSC supercomputer currently tops the Green500 list with a performance-

to-power ratio of 5.27 GFLOPS/Watt [49]. A linear extrapolation of the L-CSC system to

exascale results in a power consumption of 190 MW, or approximately $60 million per year in

electricity in the United States. The Defense Advanced Research Projects Agency (DARPA)

has set the target for an exaflop capable system to consume no more than 20 MW [6], nearly

an order of magnitude of power consumption lower than today’s most power-efficient super-

computer.

Designing new power-aware and thermal-aware resource management techniques is one

method to reduce power consumption of an HPC system and alleviate the amount of cooling

to further reduce power consumption and total cost of ownership. Examples of power-aware

and thermal-aware resource management include exploiting different power and performance

characteristics of heterogeneity across compute nodes, configuring dynamic voltage and fre-

quency scaling (DVFS) in cores, and setting computer room air conditioning (CRAC) ther-

mostats to higher temperatures during operation. These decisions must ensure the temper-

atures of the compute nodes do not exceed the red-line threshold, defined as the maximum

allowable equipment intake temperature [50].

The prevalence of multicore processors in modern HPC systems has given rise to heavy

contention for shared resources among the cores, such as at the last-level cache and DRAM.

This has led to performance degradation when running applications on cores that share these

resources, with a significant impact on the execution time of those applications [51]. The

performance degradation can range from negligible to severe, and the amount of degradation

is correlated with such attributes as: how many applications are co-located (i.e., running

on cores within the same processor), the memory intensity of the co-located applications
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(defined as the ratio of last-level cache misses to the total number of instructions executed),

and clock frequency of the target core. With knowledge of these workload characteristics,

it is possible to predict the execution time degradation of applications under co-location

interference effects [52]. Typically, performance degradation is more severe when memory

intensive applications are co-located, because they try to access shared memory simultane-

ously more often than compute intensive applications. Therefore, to mitigate interference, it

is intuitive to co-locate memory intensive applications with compute intensive applications.

We consider an HPC system with workload arrival rates that can be predicted over a

decision interval (epoch) [53, 54], where the task arrival rates, temperatures at compute

nodes and CRAC units, and the power consumption of the computing system and CRAC

units remain virtually invariant over that interval of time. That is, a day split into epochs,

and over the course of an epoch the workload arrival rates can be reasonably approximated

as constant, e.g., the Argonne National Lab Intrepid log that shows mostly-constant arrival

rates over large intervals of time [55]. The performance of the HPC system is measured

by the reward collected from completing tasks by their individual deadlines, where reward

represents the worth of completing that task to the system. In a rate-based resource manage-

ment framework, maximizing reward is equivalent to maximizing the reward rate. The goal

of our resource management techniques is to maximize reward rate. Our techniques mitigate

the impact of co-location interference by maximizing a reward rate objective function that

considers co-location interference. The problem we solve is to maximize the reward rate

earned by the system while obeying red-line temperature thresholds and a power constraint

on the whole facility (both compute and cooling power). By taking a holistic approach to

the control of such a facility, we maximize the reward rate earned while ensuring that the

compute nodes do not exceed their red-line temperatures and the total power consumed by
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the compute nodes and CRAC units do not exceed a given power constraint. We assume

an oversubscribed environment where it would be common to execute the workload in the

fastest P-state, however due to the power budget constraint, our resource management tech-

niques intelligently select P-states to earn more reward within that power budget. To solve

this optimization problem, we design a new greedy heuristic, a genetic algorithm (GA) based

approach, and improve a non-linear programming (NLP) approach from our previous work

[56] to consider the effect of co-locating tasks on multicore processors. We perform exten-

sive analyses of these techniques on different workload environments, HPC facility cold-aisle

isolation configurations, and HPC system sizes (large and small).

In summary, we make the following novel contributions:

• Derivation of a new detailed model of a heterogeneous HPC system that considers

the power consumption and performance of the compute nodes and cooling system,

thermal constraints, DVFS, and co-location interference.

• Design of resource management techniques based on a greedy heuristic, a GA with

local search, and an adaptation of a previously proposed NLP approach with con-

sideration of co-location while ensuring that power consumption and thermal con-

straints are obeyed.

• In-depth analyses of resource management techniques under several important phys-

ical HPC facility configurations with different system sizes and cold-aisle isolation

capabilities.

• Sensitivity analysis of our resource management techniques under a range of values

for the power and thermal constraints across different cold-aisle isolation configura-

tions and workload environments.
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The rest of the chapter is organized as follows. We discuss related work in Section 3.2.

In Section 3.3, we explain our models for compute nodes, CRAC units, and workload, as

well as how we consider co-location interference. Section 3.4 describes our proposed resource

allocation techniques. Our evaluation setup and results are in Sections 3.5 and 3.6. In

Section 3.7, we conclude and discuss ideas for future work.

3.2. Related Work

3.2.1. Overview. HPC systems and data centers use a large amount of power, re-

sulting in high electricity costs and a large carbon footprint. In an attempt to encourage

green data center design by reducing the power consumption in data centers, the authors

of [57] have identified four factors that can drive green data center design: (1) improved

physical design to reduce heat recirculation and hot-spots, (2) using highly energy-efficient

computing and cooling systems, (3) using sustainable energy sources such as solar power, and

(4) using intelligent computing resource management strategies. In this study, we choose to

focus on the last point by designing and analyzing green resource management techniques.

Temperature, power, and performance of the compute nodes are all tightly coupled, and

thus we take a holistic approach to HPC resource management that considers heterogeneous

compute nodes, spatial temperature knowledge, DVFS performance states (P-states), CRAC

outlet temperatures, and interference caused by co-location on multicore processors.

3.2.2. Thermal-Aware Scheduling. While larger data centers such as Google’s have

small power usage effectiveness (PUE) and therefore only 6% of the power consumption is

due to cooling and power distribution [58], a survey conducted in 2014 found an average data

center PUE of 1.7 that implies approximately 40% of data center power consumption is due

to cooling and power distribution [59]. Also, our collaboration with Oak Ridge National Labs
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(ORNL) has demonstrated that HPC systems (e.g., Titan) have significant cooling power

costs. A holistic approach to management of both the cooling and computing components of

an HPC facility is vital in reducing electricity costs. The power and temperature relationship

between the compute nodes and cooling infrastructure is highly correlated. That is, reducing

the power of compute nodes also reduces the temperatures of those nodes, therefore easing

the load on the cooling infrastructure and reducing cooling costs. However, thermal-aware

and power-aware computing decisions are often conflicting. Power-aware computing tech-

niques often attempt to concentrate the workload to a few active nodes, allowing those nodes

without a workload to switch into an idle state or be deactivated. Intuitively, this leads to

high heat dissipation in a small area, creating thermal hotspots and increasing the local

cooling power for just a small number of the nodes. Thermal-aware scheduling techniques

reduce cooling power by minimizing hotspots and total heat generated [60].

Both minimizing hotspots and total heat generated is examined in [61], where virtual

machines are dynamically migrated based on temperatures and compute node loads to try

and satisfy the conflicting objectives of reducing cooling costs by spreading the workload,

and reducing compute node power costs by consolidating the workload. The fundamental

idea of their migration algorithm is to detect overheating compute nodes (through onboard

sensors), and migrate virtual machines from an overheated compute node to the coolest one

in the facility. By placing a temperature cap for detecting overheating, and then migrating

loads from hot nodes to the coolest ones, hotspots are managed and heat is spread more

evenly throughout the room. But neither DVFS nor heat recirculation is considered.

The research in [62] takes an interesting approach in its thermal-aware workload man-

agement by considering multiple facilities, each located in different geographical locations.

Each facility has intermittent and unreliable renewable energy sources attached (e.g., wind
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or solar), making it sensible to migrate “time insensitive” batch workloads to facilities with

high renewable energy generation at a given point in time. The computing facilities also

are equipped with a thermal energy storage (TES) system. The intuition behind the two

kinds of thermal energy storage systems in today’s computing facilities are to either: (1)

excessively cool the HPC facility when an abundance of renewable energy is available so it

remains at a reasonable temperature when no renewable energy is available, or (2) attach a

dedicated thermal storage unit that uses renewable energy to chill liquid for use later. That

paper considers the latter, and models the thermal storage unit similarly to a battery with a

capacity, charge, and discharge rate. The problem is formulated as an economics problem to

minimize the operating cost (energy and “bandwidth” cost for migration) to complete the

workload. Unlike [62], our research considers heterogeneity of compute nodes, DVFS, and

CRAC unit control in our resource management techniques.

There have been many recent works that consider thermal-aware resource management

(e.g., [63–69]). Some do not consider heterogeneity in their work ([62, 69, 61]) or recirculation

of heat in the room ([61, 62, 66, 68]). Others do not consider DVFS control ([62, 64–68, 61])

or CRAC unit control ([62, 67, 68, 61]), leaving the thermal-aware allocation choices lim-

ited to only turning nodes on/off or basing the choices on CPU utilization. Lastly, some

thermal-aware works only examine thermal and power metrics, while not considering perfor-

mance metrics of any sort ([61]). Today’s systems typically require abiding by performance

constraints to ensure either deadlines or SLAs are not violated.

3.2.3. Co-location Interference. Multicore processors are prominent in today’s

HPC systems, and the number of cores per processor is increasing. In such processors,

many (if not all) cores share resources such as the last-level cache, causing contention and

performance degradation for applications executing on those cores because of the thrashing
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in shared caches or competition for main memory bandwidth. The degradation experienced

is dependent on the characteristics of the co-located applications, and ranges from negligible

to severe [51]. The problem of co-location interference between applications on multicore

processors is fairly new, thus most recent works are still related to measuring or modeling the

phenomena, with very few on the actual design of resource management techniques that use

such predictive models to mitigate interference effects. The prominence of multicore proces-

sors in modern HPC systems, and the large likelihood that the number of cores per processor

will continue increasing, has spurred researchers to investigate predictive models and design

techniques to mitigate the effects of co-location interference. The research in [70] proposes a

general methodology for measuring application interference in multicore processors, and tests

it in a real data center. In [71], an empirical approach to predict performance degradation

is proposed. Focusing on shared cache and memory bandwidth as the two shared resources

that affect performance the most, functions that predict an application’s pressure on those

subsystems are found. Both linear models and neural network models are created using em-

pirical data in [52]. A set of benchmarks from both the PARSEC benchmark suite and NAS

benchmark suite are co-located on cores of multicore processors in numerous configurations

to collect data for correlated features such as last-level cache misses, memory intensities, and

execution times. These models allow predictions to be made for performance degradation

when multiple applications are co-located on a multicore processor.

To mitigate co-location interference among virtual machines allocated to the same mul-

ticore processor, the algorithm in [72] aims to leverage information from applications the

system has seen in the past to classify and then schedule applications without violating QoS

guarantees. In [73], it is argued that consolidation of several applications onto a compute

node (e.g., through virtualization) increases utilization but results in degrading application
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performance significantly. Therefore, a technique that increases node utilization while still

maintaining SLAs is proposed and tested. A weighting scheme is used to determine the

pairings for critical (strict SLA agreements) and non-critical workloads onto compute nodes.

Our study does not focus on modeling co-location interference effects as [51, 70, 71, 52]

do. We focus on the design of resource management techniques that use predictive models

to avoid interference effects, such as [72, 73]. However, our work also considers power and

temperature as constraints in the decision matrix of our resource management techniques.

3.3. System Model

3.3.1. Overview. Our model of an HPC system and workload builds on the model

proposed in [56]. We assume the facility is configured in a hot aisle/cold aisle fashion

(Fig. 3.1). In such a configuration, cold air is supplied from the CRAC units to a cold aisle

through perforated floor tiles that face the inlets of the compute nodes. The compute nodes

consume power and expel hot air through the opposite end to a hot aisle. The CRAC units

draw the hot air from the hot aisles to cool. If the cold aisles are isolated using containment

technology (e.g., using plastic curtains or commercial Plexiglass systems), the recirculation

of heat among compute nodes in an HPC system may or may not be important to consider.

Some facilities have isolated aisles (e.g., the research computing facility at Hewlett Packard

in Fort Collins, CO) and some have non-isolated aisles (e.g., the HPC computing facility

at Colorado State University). In our work, we compare both and examine the benefits of

isolation.

3.3.2. Compute Nodes. The number of compute nodes in the HPC system isNN ,

and each compute node j belongs to a compute node type NT (j). We assume a heteroge-

neous system with the number of compute node-types equal to NNT , and compute nodes
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Figure 3.1. HPC facility in hot aisle/cold aisle configuration.

that belong to a specific compute node-type are identical and contain the same number of

cores, power characteristics, and performance characteristics. Cores within a compute node

are homogeneous, and we assume the cores can be independently assigned performance states

(P-states) that provide a tradeoff between power and performance [12]. P-states are discrete

voltage and clock frequency pairings, with lower-numbered P-states consuming more power

but increasing the execution speed of tasks. We model a case where a core is deactivated by

adding one additional P-state to the available P-states of a core, where the deactivated state

is the highest-numbered P-state. The total number of cores in the HPC system is NC, and

CT (k) is the type of the compute node to which core k belongs. If core k is in node j, then

CT (k) = NT (j).

3.3.3. Workload. We assume that we have a set of T known task types. The arrival

rate of tasks of type i is given by λi. A reward ri is obtained for completing a task of type

i by its individual deadline di, relative to its arrival time.
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The system we consider is heterogeneous, i.e., the power and performance characteristics

of the compute node-types are different. Therefore, tasks of the same types can have different

execution rates on different node-types and P-states. We assume that we know the estimated

computational speed (ECS) of any task of type i on a core of type j in P-state k, ECS(i,j,k)

(measured in number of tasks per second). In many HPC environments, such as those in

national labs (e.g., NCAR, ORNL) and industry (e.g., DigitalGlobe), the tasks executed

are from a known set of applications and can therefore be pre-characterized using historical,

experimental, or analytical techniques [30–32]; in Section 3.5 we discuss the values used for

our evaluation using benchmark data collected from server class machines.

We assign a desired fraction of time each core k will spend executing tasks of type i,

denoted DF (i, k), and the P-state each core k is configured to when executing tasks of

type i, denoted PS(i, k). Our goal is to maximize the reward we can obtain and meet the

power and thermal constraints of the system. Given DF (i, k) and PS(i, k), we calculate

the execution rate of tasks of type i on core k, ER(i, k), as

(15) ER(i, k) = DF (i, k) · ECS(i, CT (k), PS(i, k)).

3.3.4. Power Model. We consider the idle power consumption of a compute node

(e.g., from main memory, disks, fans) in addition to the power consumption of the CPU

cores. We assume that CPU cores are able to change P-states over time depending on

what task-type is currently being executed, and that the time associated with switching

P-states is negligible in comparison to the execution time of tasks. The power consumed

by cores is a function of the task-type being executed and the P-state in which the core is

executing the task. Let I(j) be the overhead power consumption of compute node j, let

APC(i,NT (j),PS(i, k)) be the average power consumed by a core k in a node of type
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NT (j) executing tasks of type i in P-state PS(i, k), and NCN(j) be the set of cores in

node j. We calculate the power consumption of node j, PN(j), as

PN(j) = I(j)

+
∑

k∈NCN(j)

T
∑

i=1

APC(i,NT (j), PS(i, k)) ·DF (i, k).

(16)

The power consumed at a CRAC unit is a function of the heat removed at that CRAC

unit in addition to the Coefficient of Performance (CoP) of the CRAC unit [74]. Let NCR

be the total number of CRAC units in the HPC facility, TCin(i) be the inlet temperature

of CRAC unit i, TCout(i) be the outlet temperature of CRAC unit i, ρ be the density of

air, C be the specific heat capacity of air, and AFC(i) be the air flow rate of CRAC unit

i. The power consumed by CRAC unit i, PC(i), is calculated as [74]

(17) PC(i) =
ρ · C ·AFC(i) · (TCin(i) − TCout(i))

CoP (TCout(i))
.

3.3.5. Thermal Model. To calculate the temperatures at compute nodes and CRAC

units, we use the concept of thermal influence indices that characterize the causal relationship

between heat sources and sinks from [75]. That is, the thermal influence indices are used to

help estimate the recirculation of air between compute nodes and CRAC units. We derive

the thermal influence indices from computational fluid dynamics (CFD) simulations using

the physical layout of the HPC facility we study (see Section 3.5). Let TN in(j) be the inlet

temperature at compute node j and TNout(j) be the outlet temperature at compute node j.

54



The outlet temperature at compute node j is a function of the inlet temperature, the power

consumed, and the air flow rate of the node AFN(j), calculated as

(18) TNout(j) = TN in(j) + PN(j)/ (ρ · C ·AFN(j)) .

Let TCout and TCin be the vectors of outlet and inlet temperatures of CRAC units. Also, let

ACRAC be a matrix of thermal influence indices where each element ACRAC[i, y] represents

the percentage of heat transferred from CRAC unit i to CRAC unit or node y, and let

ANode be a matrix of indices where each element ANode[j, y] represents the percentage of

heat transferred from node j to CRAC unit or node y. We can then calculate the inlet

temperatures of any CRAC unit or node y as [75]

T in(y) =
NCR
∑

i=1

ACRAC[i, y] · TCout(i)

+
NN
∑

i=j

ANode[j, y] · TNout(j)

(19)

If we let Tredline be the vector of red-line temperatures, the thermal constraint is the element-

wise inequality

(20) Tin ≤ Tredline.

3.3.6. Co-Location Interference. Tasks competing for shared memory in mul-

ticore processors can cause severe performance degradation, especially when competing tasks

are memory intensive [51]. The memory intensity of a task refers to the ratio of last-level

cache misses to the total number of instructions executed [52]. We employ a linear regression

model from [52] that combines a set of disparate features (i.e., inputs that are correlated with
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application execution time) based on the current applications assigned to a multicore proces-

sor to predict the execution time of a target application i on a target core k. A description

of the features we use, in addition to the symbols representing each feature, is given in Table

3.1. In a linear model, the output is a linear combination of all features and their calculated

Table 3.1. Description of features for predicting execution time

name symbol description

number of co-located applications A(i, k) the number of applications co-located with target application i on core k

base execution time B(i, k) base execution time of target task i when executing alone on core k in P-state

PS(i, k)
frequency of target core C(i, k) clock frequency of target core k when running target application i in P-state

PS(i, k)
average memory intensity D(k) average memory intensity of all applications on the multicore processor that

contains core k

target memory intensity E(i, k) memory intensity of target application i on core k

coefficients, where the coefficients are used to combine the disparate features together into

one measure. We classify the task-types into memory intensity classes to calculate these

coefficients for the different memory intensity classes using the linear regression model. If

we denote u, v, w, x, and y as the coefficients for feature symbols A, B, C, D, and E

(from Table 3.1) for a task-type of memory intensity class m on core k, then with z as the

constant; the equation for co-located execution time of a task-type i on core k (CET (i, k))

is

CET (i, k) = u(m, k) ·A(i, k) + v(m, k) ·B(i, k)

+w(m, k) · C(i, k) + x(m, k) ·D(k)

+y(m, k) · E(i, k) + z(m, k)

(21)

The execution rate is the reciprocal of the execution time. Therefore the co-located

execution rate for task-type i on core k, CER(i, k), is 1/CET (i, k). To assist our resource

56



management techniques in estimating actual reward rate under the effects of co-location

interference, we introduce an objective function called reward rate, calculated as

(22) RR =
T
∑

i=1

(

ri ·min(
NC
∑

k=1

CER(i, k), λi)

)

.

Equation (22) states that the reward rate for a given task-type i is the product of the reward

earned and its co-located execution rate. The min function in Equation (22) enforces the

constraint that if a task is assigned for execution at a faster rate than its arrival rate λi,

additional reward is not earned.

We also present an objective named näıve estimated reward rate, denoted NERR.

NERR uses the execution rate (ER) rather than co-located execution rate (CER) values,

and is therefore näıve to co-located interference effects. NERR is a false reward rate, how-

ever, because co-location interference exists. We use NERR as an objective in co-location

unaware versions of the techniques we propose to demonstrate the value of considering co-

location interference effects. NERR is calculated as

(23) NERR =
T
∑

i=1

(

ri ·min(
NC
∑

k=1

ER(i, k), λi)

)

.

Reward is only earned when tasks are completed by their deadline. We have no way

of guaranteeing deadlines are met in our rate-based model, but we can help minimize the

number of deadlines that would be missed by eliminating any task-type/core-type/P-state

combinations from consideration that would result in a missed deadline even if a task of type
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i starts immediately after its arrival, i.e., we eliminate combinations from consideration that

violate

(24)
1

ECS(i, CT (k), PS(i, k))
≥ di.

The goal of this study is to maximize true reward rate when subject to power consumption

and thermal constraints, and we believeRR is a better estimate of reward rate thanNERR

because co-location interference exists. The total power consumed by both CRAC units and

compute nodes must be less than the power constraint, denoted as φ. The thermal constraint

is defined in Equation (20). In the next section, we describe several approaches to solve this

problem.

3.4. Heuristics

3.4.1. Non-linear Programming Approach. We adapt a power and thermal-aware

approach from [56], and improve it to include the effects of co-location by using our RR

objective to estimate the reward rate instead of NERR. The problem in [56] is formulated

as a non-linear program and then solved using approximations, heuristics, and linear pro-

gramming. The complexity of common interior point algorithms (i.e., the type of algorithms

used in many non-linear programming solvers) is O(n3.5L), where n is the number of vari-

ables and L is the input length of the problem [76]. We refer the reader to [56] for the full

details of this technique, but give the problem formulation in Appendix E in addition to a

brief summary below.

The NLP technique is divided into three steps to solve the formulated mixed integer NLP

for maximizing näıve estimated reward rate (using Equation (23)) while obeying the power

and thermal constraints. (1) The first step relaxes the integer constraint on P-states (by

assuming continuous P-states) and solves for the CRAC outlet temperatures and power con-

sumption of compute cores such that reward rate is maximized and the power and thermal
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constraints are met. (2) Using the core power consumption values obtained from the first

step, the second step uses a simple heuristic to round the continuous power consumption

values of cores to discrete P-states, while maintaining the power and thermal constraints.

(3) Lastly, a linear program is solved to maximize reward rate assuming the CRAC outlet

temperatures from the first step and the discrete P-state assignments from the second step.

A non-feasible solution can sometimes be returned by the NLP if the power or thermal con-

straints are set to extreme values. In that case, the local search technique from the GA

(Alg. 3) is performed on the resulting solution to set the CRAC outlet temperatures such

that the thermal constraint is met (but possibly not the power constraint).

We improve upon this approach in two ways. First, we incorporate the knowledge of

the memory intensity of tasks by considering the APC matrix (because a core consumes a

different amount of power based on task-type) instead of assuming all task-types consume

the same amount of power in a given P-state. The scaling of ECS values for different P-states

is based on real data, and therefore is now also a function of memory intensity and clock

frequency. Second, we incorporate knowledge of co-location interference in this algorithm by

maximizing our RR measure, which is a better estimate of reward rate than NERR.

3.4.2. Greedy Heuristic. We designed a two-phase greedy approach similar in concept

to “Min-min” in [13, 37] to assign task-types to cores. For this heuristic, cores are dedicated

to a single particular task-type (i.e., 100% of the core’s time is dedicated to tasks of that

type). Our greedy heuristic (see Alg. 2) iteratively assigns task-types to cores to find the

most efficient mapping, where we define efficiency for a task mapping of type i on a node of

type j in P-state k, EFF (i,j,k), as

(25) EFF (i, j, k) = ECS(i, j, k)/APC(i, j, k).
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We start by finding the P-states with the highest EFF values for all task-types and node-

types (line 1); all other P-states are not considered. All T ×NNT task-type to node-type

pairings are then sorted by their efficiency in descending order (line 2). At each iteration of

the heuristic, the first pairing (i.e., most efficient) is selected and the heuristic checks if at

least one core within the chosen node-type remains unmapped. If so, that core is assigned

a 100% desired fraction of time for that task-type (line 6). After making an assignment,

that core is removed from consideration (line 7). If the new mapping results in the execution

rate of the task-type exceeding its arrival rate (line 8), that core is unmapped (line 9), re-

turned to the pool of available cores (line 10), and that task-type/node-type pair is removed

from future consideration (line 11). The heuristic uses the CER value to estimate execution

rate (line 8), thus making the decision to provision task-type execution rates as long as the

CER value does not exceed the arrival rate. The CRAC outlet temperatures are set to the

red-line temperature, and then the outlet temperatures of all CRAC units are iteratively

decreased by one degree until the thermal constraints are met (line 12). If no unmapped

cores within the selected node-type exist, the current task-type/node-type pair is removed

from consideration (line 14). The algorithm repeats using the next pairing until the power

constraint is violated, or there are no more task-type/node-type pairings to consider (line

3).

3.4.3. Genetic Algorithm.

3.4.3.1. Overview. We also designed a GA based on the Genitor GA [13, 41] to solve our

optimization problem. Our GA in this study operates on a population of 200 chromosomes

(empirically determined). Each chromosome represents one possible solution, i.e., a complete
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Algorithm 2 Pseudo-code for our greedy heuristic

1. get most efficient P-state for each task-type/node-type pair
2. sort these task-type/node-type pairs by efficiency
3. while power constraint not violated and at least one task-type/node-type pair remains
4. choose first task-type/node-type pair
5. if unmapped core within selected node-type exists
6. assign 100% desired fraction of time for selected task-type to a core from selected
node-type
7. remove core from future consideration (mapped)
8. if execution rate of task-type exceeds its arrival rate
9. unmap core running that task-type
10. return unmapped core to pool of available cores
11. remove task-type/node-type pair from future consideration
12. set CRAC outlet temperatures to hottest temperatures such that thermal constraints are
met
13. else

14. remove task-type/node-type pair from consideration
15. end while

resource allocation. Each chromosome consists of a matrix of T ×NC genes, where each

gene is a pair ofDF (i, k) and PS(i, k) values representing the desired fraction of time and

P-state of a task-type/core combination. The initial population is generated by assigning

random desired fractions of time and P-states to each gene within the chromosome, and then

normalizing the desired fractions of time so that cores cannot spend greater than 100% of

their time executing tasks. That is, if a core k is spending greater than 100% of the time

executing tasks, we normalize theDF (i, k) values on that core. Normalization is performed

by summing the desired fractions of time all task-types spend executing on a given core k,

denoted SumDF (k), and dividing the desired fraction of time values for all T task-types

by SumDF (k), forcing their sum to equal 100%. Normalization is not performed on a core

if the value of SumDF (k) is less than 100%.

One chromosome of the initial population is from the greedy heuristic to seed the GA and

assist the GA by providing better genetic material than randomly generated chromosomes.

After the initial population generation, the chromosomes in the population are evaluated
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and ranked by reward rate. We then perform crossover and mutation that alter existing

solutions to generate offspring chromosomes. After the offspring are generated, local search

is performed on the offspring to meet the power consumption and thermal constraints. The

population is then evaluated and ranked, and subsequently the population is trimmed to its

original size by eliminating the least-fit chromosomes.

3.4.3.2. Crossover and Mutation. Crossover starts by selecting two parent chromosomes

using a linear bias [41] and generates two points, x and y, such that x < y ≤ NC. All

genes for cores ranging from x to y are swapped among parent chromosomes to create two

offspring solutions. This operation spans over all task-types for the cores ranging from x to

y.

Mutation is probabilistically performed on offspring chromosomes to introduce pertur-

bations in the genes, allowing a broader search. Offspring chromosomes have a probability

pm of being mutated (empirically set to 0.1). If a chromosome is selected for mutation, each

gene has a probability pg of being mutated (empirically set to 0.05). If a gene is selected

for mutation, the desired fraction of time and P-state for its task-type on this core are set

to random values. Then the chromosome is normalized so that the desired fractions of time

for all cores sum to 100%. Unlike the greedy heuristic that dedicates a core to one task-type

(i.e., 100% desired fraction to one task-type), the GA can have cores assigned to execute

multiple task-types.

3.4.3.3. Local Search. We perform a local search on (possibly mutated) offspring chromo-

somes that sets CRAC outlet temperatures and P-states such that the power consumption

and thermal constraints are met. The pseudo-code for our local search is given in Alg. 3.

The step described in line 3 is performed by setting the CRAC outlet temperatures to the

red-line temperature, and then the outlet temperatures of all CRAC units are iteratively

62



Algorithm 3 Pseudo-code for our local search technique

1. repeat for maxIter or until power and thermal constraints met
2. set CRAC outlet temperatures to hottest temperatures such that thermal constraints are met
3. find node with highest temperature (node j)
4. while node j is hottest node and not all core/task-type combinations in node j are assigned
maximum P-state
5. choose random core/task-type combination from node j
6. increase P-state assignment by 1 if not already in maximum P-state
7. end while

decreased by one degree until the thermal constraints of the nodes are met. The steps per-

formed in lines 4 to 7 have a two-fold effect to reduce power consumption. First, increasing

the P-state assignment (i.e., reducing the power and frequency) directly reduces the power

consumption of the hottest node. Second, the CRAC units may be able to run with a higher

outlet temperature, reducing the overall power required to maintain red-line temperatures.

In our environment, our local search typically ensures that the power and thermal constraints

are met, but the resource allocation may have a poor reward rate. If the power and thermal

constraints are difficult to meet, there is a limit to how long the search proceeds (maxIter)

before allowing the GA to continue. We set the value of maxIter to 2,000 in this study.

We examine the effects of our resource management techniques under different power and

thermal constraint values in Section 3.6.4.

3.5. Evaluation Setup

3.5.1. Overview. In our simulations, we consider two heterogeneous platforms of

different sizes. The small platform (see Fig. 3.2(a)) consists of one CRAC unit, and 30

compute node cabinets of size 42U with 36 nodes per cabinet (typically some cabinet slots

are left empty, e.g., due to power and cooling requirements). This gives a total of 1,080

compute nodes, where each node is one of three node types (see Table 3.2). Error values for

the thermal and co-location execution time models can be found in Appendix F, in addition
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to values for many of the simulation parameters used in this study. The large platform (see

Fig. 3.2(b)) consists of two CRAC units, and 120 compute node cabinets with 36 nodes per

cabinet (a total of 4,320 compute nodes), where each node is one of the three node types. The

power characteristics of our different node-types were obtained from power measurements

of three server class machines when executing different PARSEC benchmarks across all P-

states (see Table 3.2), and the workload characteristics were also obtained from executing
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     hot                                 hot

     hot                                 hot

cold                                cold

cold                                cold

4-core systems        6-core systems      12-core systems
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Figure 3.2. (a) Small HPC platform configuration, and (b) large HPC plat-
form configuration.

Table 3.2. Node-Types Used In Simulations

node-type
Lenovo TS140 HP Z600 HP Z820

processor (Xeon) E3-1225v3 E5649 E5-2697v2
architecture 22nm 32nm 22nm
number of cores 4 6 12
number of P-states 16 9 16
case fans 2 x 80mm 2 x 92mm,

1 x 80mm
3 x 92mm

air flow rate (m3/s) 0.0284 0.0519 0.0566
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the benchmarks on the node-types listed in Table 3.2. The power constraint was set to 900

kW for the large platform, and 230 kW for the small platform. The red-line temperature

was set to 30◦C, which is on the high end of ASHRAE’s temperature guidelines [50].

3.5.2. Workload. The task-types are from the PARSEC benchmark suite, and cor-

responding ECS matrix entries for each benchmark on each node-type in each P-state are

obtained from taking the reciprocals of the execution times of those benchmarks on each

of the machines and P-states. We chose to represent the workload in this study based on

the PARSEC benchmark suite because of the diverse set of applications it offers, including

scientific applications for HPC systems. For example, benchmarks we consider are associ-

ated with fluid dynamics, option pricing, body tracking of a person, simulated annealing

optimization, and pricing a portfolio of swap options. In all, the following benchmarks were

used: canneal, cg, ua, sp, lu, fluidanimate, blackscholes, bodytrack, ep, and swaptions. With

regards to their memory intensity class, canneal, cg, and ua were classified as “heavy,” sp,

lu, and fluidanimate were classified as “medium,” blackscholes and bodytrack were classified

as “light,” and ep and swaptions were classified as “very-light.”

We split the benchmarks into three workload environments based on their memory in-

tensities to be representative of three different types of real-world computing environments.

The memory intensive workload consists of canneal, cg, ua, sp, and lu to represent a database

style workload. The hybrid workload includes ua, sp, lu, fluidanimate, and blackscholes to

form an all-purpose group of both CPU and memory intensive applications. Finally, the CPU

intensive environment is formed of fluidanimate, blackscholes, bodytrack, ep, and swaptions

to emulate scientific computing.
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Figure 3.3. (a) Reward rate comparison between different workload envi-
ronments on the 1,080 nodes sytem, and (b) power consumption comparison
in relation to power budget constraint (red-line). Solid bars represent the GA,
NLP, or greedy technique when usingRR as the objective (co-location aware),
and the hashed bars represent those techniques when using NERR as the
objective (co-location unaware).

3.5.3. CRAC Units. In this study, we assume that the CRAC units are homogeneous.

The CoP for a CRAC unit is a function of its outlet temperature, τ , given by CoP (τ ) =

0.0068τ 2 + 0.0008τ + 0.458 [74]. The air flow rate of each CRAC unit is set to 26.1

m3/s, which is the air flow rate of a CRAC unit with capacity to cool approximately 350

kW [77].

3.6. Results

3.6.1. Overview. The primary contribution of this research is to provide extensive anal-

yses of our co-location interference and thermal-aware techniques for maximizing reward

under a range of physical HPC facility configurations and workload environments. Large-

scale computing systems fall into several different categories that execute a diverse set of

workloads, making it important to simulate a variety of environments so a system admin-

istrator can choose resource management techniques that are most applicable to a specific

environment. For example, it is common in supercomputing environments to run scien-

tific applications that are compute intensive, with less co-location interference effects and
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therefore less of a need to consider them in resource management. However, in a data pro-

cessing environment the applications access memory often (memory intensive), and ignoring

co-location interference effects can cause severe performance issues. The analyses we present

are also useful for physical HPC facility design (compute node placement optimization),

where researchers can determine potential hotspots and optimal use of space for node and

CRAC placement with an “average” workload.

The bar graphs discussed in the rest of this section represent the averages of 48 trials,

with each trial varying in the deadline, reward, and arrival rate values of the task-types.

The ECS and power values are obtained from experimental data of the PARSEC bench-

marks (see Section 3.5.2) on three heterogeneous server class machines. The error bars are

the 95% confidence intervals around the mean of those 48 trials.
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3.6.2. Workload Experiments. In our first experiment, we examine the effects that

the different workload environments have on the performance of our resource management

techniques. Fig. 3.3 shows a comparison of the greedy, GA, and NLP techniques across

the three different workload environments: CPU intensive, hybrid, and memory intensive.

In this figure, we also compare each of the co-location aware techniques (non-hashed bars)

with versions that are co-location unaware (hashed bars). That is, we compare the GA and

NLP techniques when using either the näıve estimated reward rate (NERR) or reward rate

(RR) as their objective functions, and greedy uses either the ER values or CER values

to estimate execution rates (line 8). The NLP technique that uses RR as its objective (co-

location unaware) is similar to [56]. The reward rate is normalized by the total reward rate

that the system is capable of obtaining, i.e., when all task-types are allocated to execute at

rates equal to their respective arrival rates. To make a fair comparison between the NLP

and GA techniques, the GA was terminated at the same time as it took the NLP to finish

(approximately four hours). All techniques were able to meet the constraints.

We can see in Fig. 3.3(a) that for all workload types, the NLP technique works best,

GA is second best, and greedy last. We can also see, within the same power budget, that all

techniques earn significantly less reward as the memory intensity of the workload increases

(moving from CPU intensive to hybrid, and hybrid to memory intensive). Intuitively, this

makes sense as the co-location interference effects become exacerbated as the memory inten-

sity increases. The NLP technique achieves approximately half of the reward on the memory

intensive workload environment than on the CPU intensive environment. Comparing the

co-location interference aware techniques with those that are unaware, we can see the bene-

fits of considering co-location interference, and those benefits become more significant as the

memory intensity of the workload increases.
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Another observation to note is the difference in performance of algorithms within a given

workload type. For example, we can see in Fig. 3.3(a) that the dropoff in performance be-

tween the NLP and greedy techniques is fairly insignificant for the CPU intensive workload,

at least in comparison to the memory intensive workload. Depending on the requirements

of the system administrator and the mapping event interval (epoch length), it may be more

worthwhile to employ a simple greedy heuristic when the workload environment experiences

little co-location interference because it is much faster to make decisions than the GA and

NLP. The performance difference between the NLP, GA, and greedy heuristics become more

pronounced and extremely significant when executing the memory intensive workload envi-

ronment, with the greedy performing half as well as the NLP in that case.

3.6.3. Isolation Experiments. The isolation of the cold-aisles in an HPC facility pro-

vides many benefits at a low upfront cost to purchase the isolation system. Isolating cold

aisles can be done using several different methods (e.g., hanging plastic curtains, installing

custom Plexiglass walls and ceiling), all with the same goal of minimizing the heat recircula-

tion among nodes. Isolating the cold aisles has previously been shown to have the intuitive

result of significantly reducing node inlet temperatures when CRACs are set to the same

outlet temperatures or higher [78]. In our thermal-aware resource management problem, re-

ducing the inlet temperatures of the compute nodes allows the CRAC units to run at higher

temperatures, reducing the cooling power required and allowing more power budget to be

allocated to the compute nodes for executing tasks.

To quantify the impact of isolation, we experiment with our resource management tech-

niques after calculating an additional set of the thermal influence indices (i.e., theACRAC[i, y]

and ANode[j, y] values). These coefficients were calculated by placing isolation curtains

around the cold aisles in the mesh of the computational fluid dynamic (CFD) simulations.
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Fig. 3.4 shows a comparison between using the isolated and non-isolated aisles for the CPU

intensive and memory intensive workload environments. In Fig. 3.4(a), the normalized re-

ward rate is shown, and in Fig. 3.4(b), the power consumption is shown, with hashed portion

of the bars showing the power consumed by the CRAC unit and the solid portion of the bars

showing the power consumed by the compute nodes.

In Fig. 3.4(a), we observe that the reward earned is more in an isolated configuration for

all techniques, following similar trends as the non-isolated configuration. Fig. 3.4(b) gives

the reason why the isolated configuration can earn more reward: under the same power

constraint, the techniques when using the isolated configuration are able to use less power

for cooling (hashed portion of the bars) and more power for computing (solid portion of the

bars). If the reward earned is analogous to some form of revenue (e.g., cloud computing),

the initial cost of isolating the aisles could be worth the price over time.

3.6.4. Power and Thermal Constraint Sensitivity Analysis. Our third set of

experiments examines the effects of varying the power and thermal constraints on the reward

that can be earned in both isolated and non-isolated configurations. The values of both of

these constraints have a significant effect on the ratio of power consumed by cooling and

computing, and the reward that can be earned by the system. Such studies are valuable

to the system administrator or HPC facility owner to answer “what-if” questions, such as

“what-if” the system is allowed 20% more power, or “what-if” the maximum allowable (red-

line) temperature is reduced to increase reliability?

The results of our temperature and power constraint sensitivity analysis are shown in

Figs. 3.5 and 3.6. Figure 3.5 shows the reward rate and associated total power consumption

results of our resource management techniques when varying the thermal constraint (red-line

temperature) from 24◦C to 32◦C with the power constraint set to 230 kW. Figure 3.6 shows
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Figure 3.5. Sensitivity analysis of our greedy, GA, and NLP resource man-
agement techniques for both isolated and non-isolated HPC facility configura-
tions using the 1,080 node system on the thermal (red-line) constraint.

the reward rate and total power consumption of our resource management techniques when

varying the power budget constraint from 200 kW to 300 kW in 10 kW increments with the

thermal constraint set to 30◦C.

Note in Fig. 3.5 that if the red-line temperature becomes difficult to meet (less than 26◦C

for the isolated configuration and less than 28◦C for the non-isolated configuration), none

of the techniques are able to meet the power constraint. This is due to the thermal-aware

aspects of the techniques, where the CRAC outlet temperatures are set such that the thermal

constraints are met. When the CRAC outlet temperatures are set low for the compute node

temperatures to be under red-line, the power consumption of the CRAC units becomes very
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Figure 3.6. Sensitivity analysis of our greedy, GA, and NLP resource man-
agement techniques for both isolated and non-isolated HPC facility configura-
tions using the 1,080 node system on the power constraint.

high (see Equation (17)), and the system is unable to meet the power budget even with most

(if not all) of the compute cores deactivated (either assigned zero desired fraction of time, or

running in the highest-numbered P-state). With all cores deactivated, a compute node still

consumes idle power (I(j)) and would still require cooling. Also note that the amount of

reward earned decreases non-linearly with the red-line temperature threshold. This makes

sense, because when the CRAC units have to run at a lower temperature to ensure that

red-line temperatures are not violated, more of the power budget must be used for cooling.

The relationship is non-linear most likely because of the non-linearity of the CoP (see Section
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3.5.3). The non-isolated configuration shows the techniques earning less reward, and also

violating the power constraint at lower red-line temperature values, but overall similar trends

as the isolated configuration. However, in the isolated configuration we see that the greedy

technique does not use all available power when the red-line threshold is set to 32◦C. This

is because assigning all core/task-type combinations to execute in their most power-efficient

P-state, in combination with the small amount of cooling power required to maintain a 32◦C

threshold, does not use all of the allotted power budget. The GA and NLP are able to assign

core/task-types to execute in faster P-states to consume that additional power.

Fig. 3.6 shows that all techniques are effective at using all of the power budget and

not violating the power budget. The reward earned varies almost linearly with the power

budget, and the relationship between power budget and reward rate is not as exaggerated as

in Fig. 3.5. Giving the system a greater power budget to operate within does result in more

reward rate earned, because nodes can operate in faster P-states and execute more tasks.

However, as evidenced by Fig. 3.5, it may be more worthwhile to operate the compute nodes

and CRAC units at a slightly higher temperature to realize significant gains in reward rate

earned. If reward rate is analogous to a revenue generated for computing, analyses such as

these would give important insights into the most profitable operating point.

3.6.5. Scalability Analysis. As HPC facilities become larger, it is important to ad-

dress the practicality of resource allocation techniques on larger system complexities. Figs.

3.3 and 3.4 showed that NLP was able to achieve the best results for a 1,080 node platform

size across three different workload environments and both non-isolated and isolated cold-

aisle configurations. However, the primary drawback associated with the NLP technique

is its poor scalability. GAs hold an advantage in that they are able to provide a solution
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within any given algorithm runtime bounds, though typically better results are obtained the

longer they run. Fig. 3.7(b) shows a comparison of greedy and GA on the large (4,320 node)

platform. We recorded the performance of GA at many different heuristic execution times

to examine the benefits of running it for different time intervals. The NLP is excluded, as it

was unable to finish within two weeks.

In summary, for a small platform and problem size, the better results obtained using the

NLP approach motivates its use to generate resource allocations that optimize reward rate.

However, as the platform size becomes larger, the NLP technique becomes intractable, and

GA offers a solution in a reasonable amount of time. In the next subsection, we discuss

epoch time interval considerations and how the interval impacts the selection of resource

management technique.
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Figure 3.7. Comparison of reward rate on the (a) small (1,080 node) plat-
form, and (b) large (4,320 node) platform. NLP excluded in (b) because it
was unable to finish within two weeks.

3.6.6. Epoch Size Interval Considerations. The length of the epoch interval has

a large impact on the choice of a resource management technique. For an HPC system

that has long running and predictable jobs (e.g., supercomputing environments dedicated to

climate analysis or molecular biology simulations), the task arrival rates would not change
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significantly in short periods of time and thus not frequently require new resource allocations.

Setting a longer epoch interval time and performing resource management using the longer

running techniques (GA or NLP) lends itself to such environments. In an environment where

the types or arrival rates of the workload changes rapidly, resource allocation decisions would

have to be fast, motivating the use of the greedy technique. That is, if a resource allocation

needs to be found for a short epoch interval time, our greedy heuristic may be the desired

approach to take. Over time, however, our GA and NLP heuristics are able to provide better

solutions, and the GA can be terminated at any point, e.g., at the start of a new epoch when

new execution rates and P-states need to be found.

3.7. Conclusions

We study the problem of maximizing the reward collected for completing tasks by their

deadlines subject to power and thermal constraints for heterogeneous high-performance com-

puting systems. Co-location interference can have a significant impact on the execution

speeds of tasks (and thus total reward). We capture these effects with our more accurate

performance metric that considers co-location. We analyze several resource management

techniques: a greedy technique based on assigning tasks to machines in order of their effi-

ciency (most performance per unit of power), a GA combined with a local search technique

that maximizes the reward rate and ensures the power and thermal constraints are met,

and an NLP technique building on our prior work to maximize reward rate instead of näıve

estimated reward rate.

The primary contributions of this research were to provide in-depth analyses of the prob-

lems and solutions associated with co-location and thermal-aware resource management in

heterogeneous computing systems. We use a new thermal model that directly considers
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CRAC units in its calculation of the thermal influence coefficients, and a new co-location

interference model created from a linear regression technique using data from our lab servers.

Because the amount of co-location interference can vary greatly between workloads, we clas-

sify task-types into three different workload environments of varying memory intensities. We

found that our greedy technique can perform almost as well as the more complex GA and

NLP techniques when interference between applications is small, but the complex techniques

become significantly better at heavy interference.

Isolation of the cold-aisles has a significant impact on the thermal profile of the HPC

facility. We quantify the usefulness of isolation by comparing the reward rate our resource

management techniques are able to earn in both configurations. We then show a power

and thermal constraint sensitivity analysis to answer some “what-if” questions that would

help system administrators and facility operators in deciding what power budget or thermal

constraints would be ideal. Possible directions for future studies in this area are presented

in Chapter 6.
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CHAPTER 4

Energy Cost Optimization for Geographically

Distributed Heterogeneous Data Centers‡

4.1. Introduction

vspace0.15in The strong success and extensive growth of cloud computing has resulted

in data center operators geographically distributing their data center locations (e.g., Google

[80]). Distributing data centers geographically offers benefits to the clients (e.g., low latency

due to shorter communication distances). However, a strong motivating factor for data center

operators to geographically distribute their data centers is to reduce operating expenditures

by exploiting time-of-use (TOU) electricity pricing [81], and reducing electricity costs is now

a focus of data center management.

Relocating workload among geo-distributed data centers offers several benefits. First,

workloads can be shifted to locations in different times zones to concentrate workload in the

regions with the lowest electricity prices at that time. Second, an opportunistic distribution

of the workload among data centers during periods of peak demand can allow individual

nodes to run in slower but possibly more energy-efficient performance states (P-states),

further reducing electricity costs. Due to the ever-increasing electricity consumption of data

centers, the use of on-site renewable energy sources (e.g., solar and wind) has grown in recent

years. Adding on-site renewable power can provide additional opportunities for geographical

load distribution (GLD) techniques to reduce electricity costs.

‡This work was performed jointly with student Eric Jonardi, and was presented at the Energy-efficient

Networks of Computers workshop (E2NC ’15) [79]. The other co-authors of this work are: Sudeep Pasricha,
Anthony A. Maciejewski, and H. J. Siegel. This research was supported by NSF grants CNS-0905399,
CCF-1302693, and CCF-1252500. We thank Hewlett Packard for donating servers for this work.
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The goal of our research is to design techniques for geographical load distribution that

will minimize energy cost for executing incoming workloads. We use detailed models of

power, temperature, and co-location interference at each data center to provide more accurate

information to the geo-distributed workload manager. This work applies to environments

where there is information about the history of the types of tasks being executed (e.g.,

DigitalGlobe, Google, DoD). By considering TOU pricing and renewable power models at

each data center, we design three new workload management techniques that assume varying

degrees of co-location interference knowledge to distribute or migrate the workload to low-

cost data centers at regular time intervals, while ensuring all of the workload completes. We

compare to the state-of-the-art method [1], and show that our best heuristic can, on average,

achieve a cost reduction of 37% comparatively. The contributions of this work are as follows:

• A new hierarchical framework for the GLD problem that considers cost-minimization

workload management at both the geo-distributed and local heterogeneous data

center level;

• A data center model that considers heterogeneous compute node types, P-states,

node temperatures, cooling power, renewable power sources, and co-location inter-

ference;

• The design of three novel heuristics which possess varying degrees of co-location

interference prediction knowledge to demonstrate and motivate the use of detailed

models in workload management decisions.

4.2. Related Work

Workload distribution for geo-distributed data centers has been studied in [82–87]. Knowl-

edge of TOU pricing is typically used to either minimize electricity costs across all geo-

distributed data centers (e.g., [82, 88, 84–87]), or to maximize profits when a revenue model
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is included for computing (e.g., [83]). A quality of service (QoS) constraint of some form is

recognized in most of the aforementioned works, typically as a queuing delay constraint

[88, 84, 86]. Others incorporate QoS violations into the cost function, where a mone-

tary penalty is associated with violating queuing delay [83], latency [85], or migration [82]

service level agreements (SLAs). The modeling detail varies significantly, some works include

dynamic voltage and frequency scaling (DVFS) in decision making [84], some include power

consumption of the cooling system in addition to the computing system [85, 86], others con-

sider real-world TOU pricing data [83, 84], and one considers renewable energy sources at

each data center location [82]. Our research includes all aforementioned modeling aspects to

assist in workload management decisions: DVFS to exploit the power/performance tradeoffs

of P-states, cooling system power to include thermal awareness and reduce cooling cost,

TOU pricing data from an actual electric company, and renewable power sources at each

data center. To the best of our knowledge, our work is the first to encompass all of these

aspects within the GLD problem. In addition, unlike any prior work in GLD, we consider

co-location interference as part of our load distribution techniques; a phenomena that occurs

when multiple cores within the same multicore processor are executing applications simul-

taneously and compete for shared resources (e.g., last-level cache or DRAM).

Similar to [82], our study considers a renewable energy source at each geo-distributed

data center, a cooling system at each data center, and migration penalties associated with

moving already-assigned workloads to different data centers. We differ significantly from [82]

by including TOU electricity pricing traces, consideration of DVFS P-state decisions in our

management techniques, and integrating interference caused by the co-location of multiple

tasks to cores that share resources.
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4.3. System Model

4.3.1. Geo-distributed Level. The goal of the geo-distributed resource manager

(GDRM) is to minimize the total monetary cost of the system while servicing all requests.

We divide time evenly into intervals called epochs. As an example, in this work an epoch is

an hour of time (T e), thus a 24-epoch period is a full day.

We assume that the beginning of each epoch is a steady-state scheduling problem where

we assign execution rates of a set of I task types to D data centers. A task type i ∈ I is

characterized by its arrival rate ARi, and its estimated computational speeds on each of the

heterogeneous compute nodes in all P-states. The assignment problem at the geo-distributed

level is to map execution rates for each task type i to each data center d ∈ D such that

total energy cost across all data centers is minimized, and the execution rates of all task

types meet or exceed their arrival rates. For each epoch τ , we assign a desired data center

execution rate ERDC
d,i

for each task type i to each data center d such that the total execution

rate for all task types exceed (or equal) the corresponding arrival rate, ARi, thus ensuring

the workload is completed. That is,

(26)
D
∑

d=1

ERDC
d,i

(τ ) ≥ ARi(τ ), ∀i ∈ I.

4.3.2. Data Center Level.

4.3.2.1. Overview. Each data center d houses NNd compute nodes that are arranged in

hot aisle/cold aisle fashion (Fig. 4.1), and a cooling system comprised of NCRd computer

room air conditioning (CRAC) units. A compute node n is of a heterogeneous compute node

type, where node types vary in their execution speeds, power consumption characteristics,
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and number of cores, i.e., they are heterogeneous. Cores within a compute node are homo-

geneous, and each core is DVFS-enabled to allow independent configuration of its P-states.

The number of cores in node n is NCNn, and NTk is the compute node type to which

core k belongs.

4.3.2.2. Core Execution Rates. At each data center d, the sum of execution rates of all

cores that are assigned to execute task type i must exceed or equal ERDC
d,i

(τ ). We assume

that we know the estimated computational speed (ECS) of any task of type i on a core of

node type n in P-state p, ECS(i, n, p).

The execution rate of task type i on core k, ERcore
i,k

, is the product of the assigned desired

fraction of time core k spends executing tasks of type i, DFi,k(τ ), and the execution speed

that core executes tasks of type i in P-state PSi,k(τ ). That is, the execution rate of task

type i on core k is

(27) ERcore
i,k

(τ ) = DFi,k(τ ) · ECS(i,NTk, PSi,k(τ )).

At the data center level, we assignDFi,k(τ ) and PSi,k(τ ) such that power is minimized

(see Section 4.3.2.3), and the execution rates of all task types on cores in data center d meets

or exceeds the execution rate assigned by the GDRM, ensuring that the arriving workload

is fully executed. That is,

(28)

NNd
∑

n=1

NCNn
∑

k=1

ERcore
i,k

≥ ERDC
i,d

∀i ∈ I, ∀d ∈ D.

4.3.2.3. Power Model. The power consumption of a compute node consists of the over-

head (“idle”) power consumption and dynamic power consumed by cores executing tasks.

We define On as the overhead power consumption of compute node n. Let APC(i, NTk,
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PSi,k(τ )) be the average power consumed by core k in a node of typeNTk when executing

tasks of type i in P-state PSi,k(τ ) during epoch τ . The power consumption of node n

during epoch τ , PNn(τ ), is

(29) PNn(τ ) = On +
NCNn
∑

k=1

I
∑

i=1

APC(i,NTk, PSi,k(τ )) ·DFi,k(τ ).

The power consumed by a CRAC unit, PCRd,c(τ ), is a function of the heat removed at

that CRAC unit and the Coefficient of Performance (CoP) of the CRAC unit [74], calculated

using Eq. 5 of [4].

4.3.2.4. Renewable Energy Model. Solar energy Esolar
d

and wind energy Ewind
d

(both

kWh) are calculated for each data center d as an average per epoch τ (Eqs. 30 and 31 are

from [89]). Asolar
d

is the total active area of all solar panels, and Awind
d

is the total swept

rotor area of all wind turbines. The solar-to-electricity and wind-to-electricity conversion

efficiency are given by α and β, respectively. Lastly, sd(τ ) is the average solar irradiance,

vd(t) is the wind speed, and ρd(τ ) is the air density, as averaged for data center d during

epoch τ . The total renewable energy, Rd(τ ), available at data center d during epoch τ

is the sum of the wind and solar energy available at that time. We use these models with

historical data to predict the renewable power available at each data center, given by

(30) Esolar
d

(τ ) = α ·Asolar
d

· sd(τ ) · T
e,

(31) Ewind
d

(τ ) = β ·
1

2
·Awind

d
· ρd(τ ) · vd(τ )

3 · T e,
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Figure 4.1. Data center in hot aisle/cold aisle configuration [4].

(32) Rd(τ ) = Esolar
d

(τ ) + Ewind
d

(τ ).

4.3.2.5. Thermal Model. Using the notion of thermal influence indices [75] that were

derived using computational fluid dynamics simulations, we can calculate the steady-state

temperatures at compute nodes and CRAC units in each data center. Because we assume the

same physical layout for each of the data centers (Fig. 4.1), we derive these thermal influence

indices for one data center, and assume they are the same for all other data centers.

The outlet temperature of each compute node is a function of the inlet temperature,

the power consumed, and the air flow rate of the node. The inlet temperature of each

compute node is a function of the outlet temperatures of each CRAC unit and the outlet

temperatures of all compute nodes [4]. Lastly, for all nodes the inlet temperature of each

node is constrained to be less than or equal to the red line temperature (maximum allowable

node temperature).
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4.3.2.6. System Electricity Cost. The electricity price at data center d during epoch τ

is defined as Eprice
d (τ ). Let Effd be the approximation of power overhead in data center

d due to the inefficiencies of power supply units and uninterruptable power supplies. The

total electricity cost for data center d during epoch τ , PCd(τ ), is defined as

PCd(τ ) = Eprice
d (τ ) ·

[(

NCRd
∑

c=1

PCRd,c(τ ) +

NNd
∑

n=1

PNn(τ )

)

· Effd −Rd(τ )

]

.

(33)

4.3.2.7. Node Activation/Deactivation Cost. At each data center, the number of nodes of

each node type that are in use changes frequently between epochs. Inactive nodes are placed

in a sleep state, but entering and exiting this sleep state takes a non-negligible amount of

time. Each node that is active is considered to be active for the entire epoch, which requires

that any node transitioning to/from a sleep state do so during the epoch following/prior the

current epoch, respectively.

For each data center d, let N start
d,j

(τ ) be the number of nodes of type j that are inactive

during epoch τ and active during epoch τ +1, and let N stop
d,j (τ ) be the number of nodes of

type j that are active during epoch τ − 1 and inactive during epoch τ . Let P S
j
, PD

j
, and

P Sleep
j be the average static power, average peak dynamic power, and average sleep power

for node type j, respectively, with the average CPU utilization of node type j defined as

φE
j
. Let the coefficient to approximate CRAC unit power at data center d be CUPd. We

assume each data center contains the same number of nodes, however each data center is

heterogeneous in the sense that the number of nodes belonging to each node type among

data centers varies. Let Jd be the set of node types in data center d. Let T S be the time
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required for a node to transition to/from a sleep state. Recall that T e is the duration of an

epoch. The node assignment cost ACd for data center d during epoch τ is calculated as

ACd(τ ) =
∑

j∈Jd

Eprice
d (τ ) · Effd ·

(

1 +
1

CUPd

)

·
T S

T e

·
(

φE
j
PD

j
+ P S

j
− P Sleep

j

)

·
(

N start
d,j

(τ ) +N stop
d,j (τ )

)

.

(34)

4.3.2.8. Co-Location Interference Model. Tasks competing for shared memory in multi-

core processors can cause severe performance degradation, especially when competing tasks

are memory-intensive [51]. The memory-intensity of a task refers to the ratio of last-level

cache misses to the total number of instructions executed [52]. We adapt a linear regression

model from [52] that uses a set of features (i.e., inputs) based on the current applications

assigned to a multicore processor to predict the execution time of a target application i on

core k. These features are Ai,k, the number of applications co-located on that multicore

processor, Bi,k, the base execution time, Ci,k, the clock frequency, Dk, the average memory

intensity of all applications on that multicore processor, and Ei,k, the memory intensity of

application i on core k.

In a linear model, the output is a linear combination of all features and their calculated

coefficients. We classify the task types into memory-intensity classes on each of the node

types, and calculate the coefficients for each memory-intensity class using the linear regres-

sion model. If we denote u, v, w, x, and y as the linear model coefficients for feature

symbols A, B, C, D, and E, respectively, plus the constant term z, the equation for co-

located execution time of a task type i of memory-intensity classm on core k (CETi,k(τ ))

is
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CETi,k(τ ) = um,k ·Ai,k + vm,k ·Bi,k + wm,k · Ci,k

+xm,k ·Dk + ym,k · Ei,k + zm,k .

(35)

The execution rate is the reciprocal of the execution time. Therefore the co-located

execution rate for task type i on core k, CERcore
i,k

(τ ), is 1/CETi,k(τ ). The total execution

rate for task type i in epoch τ is therefore given by

(36) CERi(τ ) =
D
∑

d=1

NCd
∑

k=1

CERcore
i,k

(τ ).

To allocate tasks to cores when considering co-location interference, some of our tech-

niques use knowledge of CERcore
i,k

to judge actual execution rates more accurately than

techniques that do not consider co-location interference. When considering co-location the

execution rate constraint becomes

(37)

NCd
∑

k=1

CERcore
i,k

(τ ) ≥ ERDC
d,i

(τ ), ∀i ∈ I, ∀d ∈ D.

4.4. Heuristic Descriptions

4.4.1. Problem Statement. The GDRM allocates the incoming workload to specific

nodes within each data center. The GLD problem is NP-hard [1], and therefore we propose

three heuristics for GDRM (FDLD-TAO, FDLD-CL, and GALD-CL), with each having

different levels of detail of the system available to it. The system as a whole is under-

subscribed, i.e., all tasks must be completed without dropping. The objective of a GDRM

is to minimize monetary electricity cost of the geo-distributed system (the sum of Eq. 33

across all data centers) while ensuring the workload is completed (Eqs. 26 and 37).

4.4.2. Force Directed Load Distribution Heuristics. Force-directed load distribution

(FDLD) is a variation of force-directed scheduling [90]. We adapt the FDLD proposed in [1],
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designated FDLD-SO, to our rate-based allocation environment, and propose two new FDLD

heuristics (FDLD-TAO and FDLD-CL) that each possess different amounts of co-location

interference information to solve this problem.

In FDLD-SO, to account for co-location interference performance degradation and let

the FDLD technique meet the execution rate constraint at a given data center (Eq. 37),

we give the technique simple over-provisioning (FDLD-SO) to compensate for performance

degradation due to co-location. This technique over-provisions all task types equally by scal-

ing estimated task execution rates by the factor φC . The FDLD-TAO technique improves

upon FDLD-SO by using task aware over-provisioning to estimate co-location effects for

each task type by a factor specific to each task type i, φC
i
. For both FDLD-SO and FDLD-

TAO, the degree of over-provisioning (φC and φC
i
, respectively) is determined empirically.

Lastly, the FDLD-CL heuristic uses the co-location models given in Sec. 4.3.2.8 to account

for co-location effects when calculating task execution rates. All versions of FDLD consider

a system implementation where the computing time of each core in a node is evenly divided

among its assigned tasks.

The fundamental operation of all FDLD variants is described in Algorithm 4. To gener-

ate the initial solution, every node in every data center in every epoch is assigned to execute

all task types (step 1). Each iteration of the FDLD removes one instance of one task type

from a single node, selecting the task to remove that would result in the lowest total system

force, F S (steps 3-20). F S is the sum of the execution rate forces (FER(τ )) and cost forces

(FC(τ )) across all epochs.

The execution rate force FER is the ratio of task execution rate (calculated during steps

6-11) to task arrival rate. Task execution rate is a function of the P-state of the node the

task is executing on, but the FDLD is not designed to make DVFS decisions to set the
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execution rates of task types, and therefore an average execution rate must be determined

for all task types using the average node utilization factor φE
j

for each node type j. Let

ERj,i (PMAX) and ERj,i (P0) be the execution rates of task type i running on a single

core of a node of type j in the highest numbered P-state and lowest numbered P-state,

respectively. Therefore, the equivalent single core execution rate Rj,i of task type i on node

type j is

(38) Rj,i = ERj,i (PMAX) + [ERj,i (P0) − ERj,i (PMAX)]φE
j
.

Let Nd,j be the number of nodes of type j in data center d. Let Wd,j,m(τ ) be the set

of instances of task type i placed on node m of node type j in data center d during epoch

τ . Let Qd,j,i(τ ) be the equivalent number of nodes of type j running task type i in data

center d during epoch τ , given by

(39) Qd,j,i(τ ) =

Nd,j
∑

m=1



















1

|Wd,j,m(τ)|
if i ∈ Wd,j,m(τ )

0 else

LetKj be the number of cores in a node of type j. The average estimated execution rate

ERE
j,i
(τ ) of task type i on machine type j during epoch τ , when using either the FDLD-SO

or FDLD-TAO versions, is given by

(40) ERE
j,i
(τ ) =

D
∑

d=1

∑

j∈Jd

Kj ·Rj,i · F ·Qd,j,i(τ )

subject to the constraint

(41) ERE
j,i
(τ ) ≥ ARi(τ ) ∀i ∈ I.
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Algorithm 4 Pseudo-code for FDLD heuristics

1. allocate an instance of each task type to every node in every data center in every epoch
2. while
3. for each node with tasks still allocated to it
4. for each task type on the node
5. temporarily remove task type from node
6. if FDLD-CL
7. estimate execution rates using Eq. 36 (CERi)
8. else if FDLD-TAO
9. estimate execution rates using Eq. 40 and φC

i

10. else if FDLD-SO
11. calculate execution rates using Eq. 40 and φC

12. estimate power costs using Eq. 43
13. calculate FS from FER and FC

14. if execution rate constraints are not violated (Eq. 37 for FDLD-CL, Eq. 41 FDLD-SO & FDLD-TAO)
15. add to set of possible task removal operations
16. restore task type to node
17. if set of possible task removal operations is empty
18. break
19. else
20. choose and implement the task type removal operation that would result in the lowest FS

21. end while
22. calculate final execution rates (CERi(τ), ∀i∈I, ∀τ ∈Nτ )
23. calculate final cost from sum of power costs and allocation costs (PCd(τ) and ACd(τ), ∀d∈D, ∀τ ∈Nτ )

To compensate for performance degradation due to co-location effects, node over-provisioning

is accomplished by the factor F . F is replaced by either φC or φC
i

in Eq. 40 when using

either FDLD-SO or FLDB-TAO, respectively.

The execution rate force FER is calculated using

(42) FER(τ ) =
∑

i∈I

e

(

Z
ARi(τ)

−1
)

− 1.

When considering the FDLD-CL heuristic, the term Z is replaced by CERi(τ ), and is

replaced by ERE
j,i
(τ ) when using either FDLD-SO or FDLD-TAO. Observe that FER(τ )

decreases to zero as the ratio of Z to ARi(τ ) decreases to one.
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Recall that Rd(τ ) is the renewable power available at data center d during epoch τ . For

all FDLD variants, let PCE
d
(τ ) be the estimated power cost at data center d during epoch

τ , calculated as

PCE
d
(τ ) = Eprice

d (τ ) ·





∑

j∈Jd

Nd,j
∑

m=1

PE
d,j,m

·

(

1 +
1

CUPd

)

· Effd −Rd(τ )





(43)

where

(44) PE
d,j,m

=



















P Sleep
j if |Wd,j,m| = 0

φjPD
j

+ P S
j

else

.

Let Cactual
d

(τ ) be sum of power (PCE
d
(τ )) and allocation (ACd(τ )) costs incurred at

data center d during epoch τ . Let Cmax
d

(τ ) be the maximum real power cost possible at

data center d, calculated using

(45) Cmax
d

(τ ) = Eprice
d (τ ) ·

∑

j∈Jd

Nd,j ·
[

φjPD
j

+ P S
j

]

.

The cost force FC can then be calculated with

(46) FC(τ ) =
D
∑

d=1

e

(

Cactual
d

(τ)

Cmax
d

(τ)

)

− 1.

Observe that the value of FC goes to zero as the ratio of Cactual
d

(τ ) to Cmax
d

(τ ) decreases

to zero.
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Let N τ be the total number of epochs being considered. The total system force across

all epochs, F S, is calculated as

(47) F S =
Nτ
∑

τ=1

FER(τ ) + FC(τ ).

4.4.3. Genetic Algorithm Heuristic. We also designed a third heuristic; a genetic

algorithm load distribution with full co-location awareness (GALD-CL). The GALD-CL

heuristic (Algorithm 5) has two parts: a genetic algorithm based GDRM and a greedy

heuristic serving as the fitness function of the genetic algorithm. The GALD-CL assigns

fractions of the global task arrival rate to each of the data centers in the simulation (step 3),

with the arrival rates of each task type i at each data center d acting as the genes of

the chromosomes. Using the task arrival rates assigned to each data center by the genetic

algorithm at the geo-distributed level, the local greedy heuristic assigns tasks types to execute

on specific nodes (steps 5-15). If the greedy heuristic finds that the task arrival rate assigned

to a data center exceeds the capacity of that data center (step 16), the global arrival rates

are adjusted slightly and the chromosome is evaluated once again (steps 5-15), with further

adjustments made to the global allocations within the chromosome until a valid solution can

be reached. The greedy heuristic has full knowledge of the entire system model, including

the co-location models and task-node power models, allowing it to make better placement

decisions.

The GALD-CL heuristic addresses two potential shortcomings of the FDLD variants.

First, the nature of the FDLD variants prevents them from making of DVFS decisions. The

greedy heuristic in the GALD-CL approach chooses the most efficient P-state for each task

type on each node type [4]. Second, the FDLD variants are susceptible to becoming trapped
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Algorithm 5 Pseudo-code for GALD-CL heuristic

1. create an initial population of chromosomes
2. while within time limit do
3. perform selection, crossover and mutation to create new chromosomes
4. for each new chromosome, evaluate:
5. for each data center
6. find most efficient P-state for all task type/node type pairs
7. sort all task type/node type pairs by efficiency
8. while power constraint not violated do
9. choose first task type/node type pair
10. assign 100% desired fraction of time for selected task type to a single core from selected node type
11. remove core from future consideration
12. if no cores within selected node type available
13. remove task type/node type pair from use
14. set CRAC outlet temperatures to hottest temperatures such that thermal constraints are met
15. end while
16. if solution is invalid
17. modify chromosome, return to step 5
18. trim population (with elitism)
19. end while
20. take final allocation from the best chromosome
21. calculate final execution rates (CERi(τ), ∀i∈I, ∀τ ∈Nτ )
22. calculate final cost from sum of power costs and allocation costs (PCd(τ) and ACd(τ), ∀d∈D, ∀τ ∈Nτ )

in local minima. The genetic algorithm portion of the GALD-CL approach intrinsically

enables escape from local minima, allowing a more complete search of the solution space.

4.5. Simulation Results

4.5.1. Experimental Setup. Experiments were conducted for groups of four, eight,

and sixteen data centers. The site locations for data centers were selected so that each

group would have a fairly even east coast to west coast distribution to better exploit TOU

pricing and renewable power. Each data center consists of 4,320 nodes arranged in four

aisles, and is heterogeneous within itself, having nodes from either two or three of the node

types given in Table 4.1, with most locations having three nodes types and per-node core

counts that range from 4-12 cores depending on the mix of node types.

The electricity prices used during experiments were taken directly from Pacific Gas and

Electric (PG&E) Schedule E-19 [91]. Each data center had an installed renewable power
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generating capacity equivalent to 20% of the maximum power consumption of the location

during the month with the highest generated power for that location. Renewable power

data was obtained from [92], where each location uses either wind power, solar power, or a

combination of the two.

Sleep power for all nodes is calculated as a fixed percentage of static power for each node

type, assumed to be 16% based on a recent study of node power states [93]. The average

node utilization factor used during FDLD allocations, φE, is set as 0.75. The coefficient to

approximate CRAC unit power at data center d (CUPd) was determined empirically by

simulating workloads of multiple levels at each data center location, and its value ranged

between 1.43 and 2.08 for the different configurations. The time of each epoch τ was set

to be one hour. The time required to transition a node to or from a sleep state, T S, was

assumed to be five minutes.

The GALD-CL heuristic was limited to a run time of one hour for each epoch it was

solving for, to mimic the representative time of each epoch. The FDLD heuristics for four,

eight, and sixteen locations completed on average in one, four, and thirteen minutes per

epoch simulated, respectively.

Each of five task types is representative of a different benchmark from the PARSEC

benchmark suite. Task execution times and co-located performance data were obtained

from running the benchmark applications on the nodes listed in Table 4.1 [52]. Synthetic

task arrival rates were constructed that follow a sinusoidal pattern, peaking during business

hours and declining during the evening and until the next morning.

4.5.2. Monetary Cost Comparison of Heuristics. Our first set of experiments

compared the cost associated with using the four heuristics described in Section V. These

experiments used a data center group consisting of four locations and estimated costs over
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Table 4.1. Node Processor Types Used in Experiments

Intel processor # cores L3 cache frequency range

Xeon E3-1225v3 4 8MB 0.8 - 3.20 GHz
Xeon E5649 6 12MB 1.60 - 2.53 GHz
Xeon E5-2697v2 12 30MB 1.20 - 2.70 GHz

a 24-hour period (Fig. 4.2). It can be observed that the FDLD-CL technique, using the

co-location models, performs the best of the FDLD variants for provisioning the minimum

number of nodes necessary to meet execution rate requirements. The FDLD-SO technique

performed the worst, severely over-provisioning nodes. The GALD-CL heuristic outper-

formed all other approaches. While not performing as well as well as the GALD-CL, the

FDLD variants do have the advantage of reaching a solution more quickly, which may be

beneficial in some cases.

Figure 4.2. System costs across twenty four epoch period for each heuristic,
four locations.

4.5.3. Workload Type Analysis. The experiment in Section 4.5.2 used a workload

that was a mix of memory-intensive and CPU-intensive tasks types. Fig. 4.3 shows experi-

ments for the FDLD-CL and GALD-CL heuristics for a group of four data centers where two

additional workload types have been added: one where all of the tasks are highly memory-

intensive (using data from canneal, cg, ua, sp, and lu benchmarks), and one where the tasks

are highly CPU-intensive (using data from fluidanimate, blackscholes, bodytrack, ep, and
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swaptions benchmarks). The composition of data center workloads can vary greatly and can

impact the resource requirements, and these experiments show that the techniques presented

in this work will perform well for a variety of workload types.

Figure 4.3. System costs across twenty four epoch period for different work-
load types, for a group of four locations. FDLD-CL shown as solid line, and
GALD-CL shown as dashed line.

4.5.4. Scalability Analysis. Additional experiments were conducted using groups of

eight and sixteen separate data centers. For each of the data center group sizes, the average

performance improvement of each technique over the FDLD-SO method is given in Table

4.2. It should be noted that as the number of data centers in the group grows larger, the

time for the FDLD variants to reach a solution increases, and the number of GALD-CL

generations that can take place within the time limit decreases. As previously mentioned,

the increase in the runtime of the FDLD heuristics was very manageable as the number of

data centers in the group increased.

Table 4.2.Monetary cost reduction compared to FDLD-SO [1]

Heuristic 4 data centers 8 data centers 16 data centers

FDLD-TAO 5.2% 4.6% 5.7%
FDLD-CL 14.2% 15.7% 18.8%
GALD-CL 39.7% 39.2% 36.8%
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4.6. Conclusion

We proposed three workload allocation heuristics for workload allocation across geograph-

ically distributed data centers. In this work, we explored adding different levels of knowledge

of the system, particularly co-location interference, to geographical workload distribution al-

gorithms. We demonstrated that including additional information about the co-location

interference in the decision process of the heuristics resulted in a lower energy cost by reduc-

ing or eliminating node over-provisioning while still meeting all required workload execution

rates. Our FDLD-CL and GALD-CL heuristics resulted on average in 10% and 37%, respec-

tively, lower total cost than the prior work (represented by the FDLD-SO heuristic) [1]. In

systems where the workload profile changes rapidly and therefore requires short epochs (a few

minutes), we recommend FDLD-CL. When the workload profile is not changing rapidly and

workload distribution decisions are given more time (an hour), GALD-CL is a more suitable

technique. Possible directions for future studies in this area are presented in Chapter 6.
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CHAPTER 5

Online Resource Management in Thermal and

Energy Constrained Heterogeneous High

Performance Computing Systems§

5.1. Introduction

It was reported by the Natural Resources Defense Council that U.S. data centers con-

sumed an estimated 91 billion kilowatt-hours of electricity in 2013, with an estimated $9

billion annual cost that is expected to grow to $13 billion by 2020 [94]. In addition, the

push to exascale is largely prohibited by electricity consumption. For example, the highest-

performing supercomputer according to the Top500 list is the Tianhe-2 system that at 33.86

petaFLOPS has a peak power consumption of 17,808 kW, which would cost approximately

$17 million per year in electricity using the average cost of electricity in commercial sectors

in the U.S. [3, 7]. Extrapolating this system to exascale results in an energy cost of $500

million per year, or approximately $1.37 million per day for one high-performance computing

system (HPC). The high cost of energy for data centers today (and projected to be higher

in the future), combined with the prohibitive cost of energy for an exascale system, makes

energy-aware management of HPC systems of paramount importance.

The cooling infrastructures in HPC systems consume a significant portion of overall en-

ergy, and as such managing resources in a thermal-aware manner is an extremely important

§This research is currently under review. The other co-authors of this work are: Sudeep Pasricha,
Anthony A. Maciejewski, H. J. Siegel, and Patrick J. Burns. This research was supported by NSF grants
CCF-1302693 and CCF-1252500. This research used the CSU ISTeC Cray System supported by NSF Grant
CNS-0923386. We thank Hewlett Packard for donating servers for this work.
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aspect of energy-efficient HPC system operation. Because it can be difficult to predict tem-

peratures in an HPC facility due to complicated air flow patterns, it is typical to just provide

more cooling than necessary to ensure that compute nodes do not overheat and reliability

is maintained even under worst-case scenarios. But such an approach comes with a higher-

than-necessary cost of energy consumption by the cooling infrastructure. One simple solution

to reduce the cooling energy cost is to increase the temperature of the facility by raising the

thermostat temperature of the computer room air conditioning (CRAC) units to a reason-

able temperature under normal conditions (i.e., an average workload), and then relying on

compute nodes to throttle themselves to lower processing speeds using dynamic voltage and

frequency scaling (DVFS) if the workload becomes high and temperature sensors detect

overheating. This approach, however, causes unexpected decreases in performance due to

throttling that can result in missed task deadlines.

Using thermal models to predict temperatures at different locations within the HPC fa-

cility can allow for proactive resource management techniques to understand the thermal

implications of allocating tasks to different cores around the facility. Knowing such ther-

mal information offers the benefit of being able to turn up the CRAC units’ thermostat

temperatures and allocate tasks to cores in such a manner that the facility can be run at

a hotter temperature without triggering the throttling mechanisms. The challenge is that

temperature prediction requires complicated airflow models to be calculated for every map-

ping decision or CRAC thermostat setting. This can be a time-consuming process, especially

when performing a full computational fluid dynamics (CFD) simulation or when using ther-

mal models that use heat flow estimations based on results from CFD simulations, e.g.,

[95, 96]. In a dynamic online resource management environment, allocation decisions need

to be made quickly to start task execution as soon as possible.
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The goal of our online resource management framework proposed in this paper is to as-

sign dynamically arriving tasks to execute on cores such that the collective reward earned

from completing those tasks by their deadline is maximized over a period of time (e.g., a

day), within an allowable energy budget allotted over that period of time. We assume there

is control over (a) task-to-core mappings, (b) DVFS in cores to allow for performance state

(P-state) changes, (c) CRAC thermostat settings, and (d) the perforated floor vent openings

where cold supply air from the CRAC enters the HPC facility. We propose a novel resource

management framework that uses a database of offline generated solutions, called templates,

to assist an online resource manager in making thermal-aware decisions in real-time. The

offline solutions provide: (a) an allowable set of cores that the online resource manager can

use for task-to-core mapping decisions, (b) CRAC thermostat settings, and (c) which floor

vents to close, partially open, or fully open. During runtime, our resource management

framework uses a proposed online greedy mapping heuristic to assign dynamically arriving

tasks to cores and set core P-states. The allowable core set provided by the offline solution

assists the online mapping heuristic by limiting the number of cores that can have tasks

mapped to them (and thus the search space) based on the current state of the data center.

In summary, we make the following novel contributions:

• An offline thermal and power-aware optimization formulation for generating tem-

plates that considers holistic control of a heterogeneous HPC system and its cooling

system. To the best of our knowledge, this is the first work to consider floor vent

opening decisions in HPC facility resource management.

• An online resource management framework that intelligently chooses templates

based on the current state of the data center to assist our proposed greedy map-

ping heuristic in assigning dynamically arriving tasks to cores and P-states. The
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templates aid the online resource manager in making fast power and thermal-aware

mapping decisions with the goal of maximizing reward earned within an energy

budget constraint.

• Analysis and comparison of our offline-assisted online resource management scheme

under different workload environments and energy budget values with three online

mapping schemes and two thermal management strategies from prior work.

The rest of the paper is organized as follows. In Section 5.2, we explain our models

for compute nodes, workload, CRAC units, and thermal models. The problem statement

is defined in Section 5.3. Section 5.4 details our proposed offline-assisted online resource

management framework, and Section 5.5 describes the techniques with which we compare

our framework. Our simulation setup and results are in Sections 5.6 and 5.7. We discuss

related work in Section 5.8. In Section 5.9, we conclude and discuss ideas for future work.

5.2. System Model

5.2.1. Overview. We study a heterogeneous HPC facility that is configured in a hot

aisle/cold aisle manner (Fig. 5.1), such as the data center at Colorado State University or

Hewlett Packard’s data center research facility in Fort Collins [97]. As demonstrated in

Fig. 5.1, air is supplied from the CRAC units to a cold aisle through perforated floor tiles

that face the inlets of the compute nodes. The compute nodes consume power and expel

hot air through the opposite end to a hot aisle. The CRAC units draw the hot air from the

hot aisles to then cool it. We assume the perforated floor tiles can be in the closed, partially

open, or fully open positions.

5.2.2. Compute Nodes. The computing system is composed of a total of N compute

nodes, where compute nodes can be one of NT heterogeneous compute node types. The
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Figure 5.1. Data center aisle configuration.

compute node type of compute node j is denoted NTj , where nodes within the same type

are identical, meaning they contain the same number of cores and have the same performance

and power characteristics. The cores within a node are homogeneous, and we assume the

cores can be individually configured to different P-states that offer a tradeoff between power

consumption and performance [12]. We denoteNC as the total number of cores in the HPC

system, NCj as the number of cores within compute node j, and CTk as the node type to

which core k belongs.

5.2.3. Workload. The workload consists of dynamically arriving tasks that can be one

of T task types. A task type i is defined by its deadline relative to its arrival time (Di)

and the reward earned for completing tasks of that type by the deadline (Ri). The reward

earned is representative of a priority level given to different task types, where tasks with

high reward may be more important to the system to complete or a user has paid more to

get their job a higher priority. We denote the task type of a task i as TTi.
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Because the system is heterogeneous, tasks of the same type can have different execution

times when executed on different node types. The execution times also vary across different

P-states. We assume that we know the estimated time to compute (ETC) of any task type

i on a core k of node type j in P-state PSi,k, denoted ETCi,j,PSi,k
. In an actual system,

this can be approximated using historical, experimental, or analytical techniques [30–32].

5.2.4. Power and Energy Models.

5.2.4.1. Compute Node Power. We consider the idle power consumption of a compute

node (e.g., from main memory, disks, fans) in addition to the non-idle power consumption

when the CPU cores are active. We assume that CPU cores are able to change P-states over

time, and that the time associated with switching P-states is negligible in comparison to the

execution time of tasks. The power consumed by cores is a function of the task-type being

executed and the P-state in which the core is executing the task. Let P idle
j

be the idle power

consumption of compute node j, let APCi,j,PSi,k
be the average power consumed by a core

k in a node of type j executing tasks of type i in P-state PSi,k. We use these variables to

calculate total energy consumption in Section 5.2.4.3.

5.2.4.2. CRAC Unit Power. The power consumed at a CRAC unit is a function of the

heat removed at that CRAC unit in addition to the Coefficient of Performance (CoP) of the

CRAC unit [74]. LetNCR be the total number of CRAC units in the HPC facility, TCin
i
(t)

be the inlet temperature of CRAC unit i at time t, TCout
i

(t) be the outlet temperature of

CRAC unit i at time t, ρ be the density of air, C be the specific heat capacity of air, and

AFCi be the air flow rate of CRAC unit i. The power consumed by CRAC unit i at time

t, PCRAC
i

(t), is calculated as [95]

(48) PCRAC
i

(t) =
ρ · C ·AFCi · (TCin

i
(t) − TCout

i
(t))

CoP (TCout
i (t))

.

102



5.2.4.3. Total Energy Consumption. The energy consumption of a core is the sum of

energy consumed for all tasks that are executed on the core over the desired time interval tp.

The estimated energy consumed by a core k of type CTk when executing a task of type i in

P-state PSi,k, is EECi,CTk,PSi,k
, which is the product of the execution time and average

power consumption,

(49) EECi,CTk,PSi,k
= ETCi,CTk,PSi,k

·APCi,CTk,PSi,k
.

As is typical in a highly utilized environment, we assume compute nodes cannot be

deactivated (i.e., shut down). Therefore, we assume the idle power of a compute node is

constant throughout the day and the idle energy consumed by a compute node j over a

period of tp, E
idle
j

, is

(50) Eidle
j

=

∫ tp

0

P idle
j

dt = P idle
j

· tp.

The energy consumed by a CRAC unit i is the integral of its power consumption over tp

time. That is, the CRAC energy consumed by CRAC unit i, ECRAC
i

, is

(51) ECRAC
i

=

∫ tp

0

PCRAC
i

dt.
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The total energy consumed by the compute and cooling systems, Etotal, is the sum of core

energy, idle node energy, and cooling energy. If ET
tp
k represents the set of executed tasks on

core k over tp time, then we calculate Etotal as

Etotal =
NC
∑

k=1

∑

i∈ET
tp
k

EECi,CTk,PSi,k

+
N
∑

j=1

Eidle
j

+
NCR
∑

z=1

ECRAC
z

.

(52)

5.2.5. Transient Thermal Model. We assume the HPC facility has temperature

sensors located at the inlets and outlets of the compute nodes. However, for simulation

purposes, we use a transient model for data center thermal prediction [95] to act as sensor

output values that track temperatures through time.

The transient thermal model is focused around a collection of temporal contribution

curves (ci,j(t)) and weighting factors wi,j . The ci,j(t) curves intuitively represent how long

it takes for node (or CRAC) j to experience a temperature change generated by node (or

CRAC) i. For example, if node i is assigned a heavy workload and generates a large amount

of heat, node j located across the facility may not experience that heat from node i until

minutes later, as defined by the ci,j(t) curve. The wi,j factors represent how much of the

heat generated by node i is realized at node j. Using these values, in addition to outlet

temperatures (T out
i

) of all nodes in the facility, we can calculate the inlet temperature of any

node j at time t, T in
j

(t), as [95]

(53) T in
j
(t) =

N+NCR
∑

i=1

wi,j ·

∫ 0

−∞

ci,j(τ )T
out
i

(t+ τ )dτ.
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The ci,j(t) curves and wi,j factors are calculated using CFD simulations following the

method in [95].

We can calculate the instantaneous power of node j at a time t, PNj(t), by summing

the idle power of the node j with the APC values of all cores within node j that are exe-

cuting tasks at time t. The power consumed by a compute node is dissipated as heat, and

the outlet temperature at compute node j at time t is a function of the inlet temperature,

the power consumed, and the air flow rate of the node AFNj , calculated as [96]

(54) T out
j

(t) = T in
j

(t) +
PNj(t)

(ρ · C ·AFNj)
.

The outlet temperature of a CRAC unit is assumed to be the value to which the CRAC

thermostat is set.

If a thermal violation occurs at the outlet of a compute node (i.e., a node exceeds

threshold temperature T threshold), all cores within that node are throttled to their highest-

numbered (lowest power) P-state until cores have finished executing their current tasks.

5.2.6. Steady-state Thermal Model. For our offline template generation, we as-

sume an HPC facility in the steady-state. Therefore, we use a steady-state thermal model to

determine inlet and outlet temperatures of all compute nodes in the HPC facility. Steady-

state temperatures are calculated in a similar manner as transient temperatures, except

without the temporal contribution (ci,j(t)) curves. Let T
out and Tin be the vectors of out-

let and inlet temperatures of CRAC units and compute nodes. Also, let W be the matrix

of wi,j values that represent the percentage of heat transferred from CRAC unit or node i

to CRAC unit or node j. We can then calculate steady-state temperatures by solving the

linear combination [96]

(55) Tin = WTout.
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5.3. Problem Statement

The objective of our resource manager is to maximize the reward earned over a period

of time tp (e.g., a day) for completing tasks by their individual deadlines. If the set of tasks

that have completed execution by their deadline by time tp is TCDtp , then the goal is to

maximize reward earned by the system over that period, Rsystem(tp), calculated as

(56) Rsystem(tp) =
∑

i∈TCDtp

RTTi
.

The system is constrained by both energy consumption and node outlet temperatures.

Over the tp period of time, the total energy consumption of the facility is not to exceed

an energy budget of γ. Reward ceases to be gained when the total energy consumption of

the facility over time period tp exceeds the energy budget, i.e., when Etotal ≥ γ. This is

because in our model, we assume that the facility will discontinue operation until the next

period of time. We examine the use of several different energy budget values in the results

we present in Section 5.7.

Compute node threshold temperatures are soft constraints that are handled by the

throttling mechanism described in Section 5.2.5. If a compute node j is overheating (i.e.,

T out
j

> T threshold) then all cores within that node are throttled to their highest numbered

P-state until all cores have finished executing their current tasks. We examine how throt-

tling can affect the reward earned by the system (e.g., by causing tasks to miss deadlines)

in Section 5.7.

5.4. Proposed Resource Manager

5.4.1. Overview. A block diagram of our offline-assisted online thermal and energy

aware resource manager is shown in Fig. 5.2. We chose an offline-assisted approach to our
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online resource manager to assist in making fast decisions. Also, this type of offline-assisted

online management concept has been shown to be effective in the past (e.g., [81]).

Dynamically arriving tasks enter the system, and at a mapping event the resource man-

ager has to decide the following: (1) which cores within the HPC system to execute those

tasks, and (2) the P-states that those selected cores are configured to when executing the

assigned tasks. At a thermal management event, the resource manager decides (3) CRAC

thermostat settings, and (4) which floor vents to close, partially open, or fully open. When

the resource manager uses templates to assist in resource allocation, the template database

provides the CRAC thermostat settings, floor vent openings, and an allowable core vector

(ACV ), as indicated by the dashed lines connecting the resource manager with the template

database in the figure. The mapping event interval time (denoted tmap) is set to 60 seconds,

and the thermal management event interval time (denoted tthermal) is set to 300 seconds in

this study.

Template generation is performed offline to create a number of templates in a database

that each reflect a steady-state solution for different dynamic states of the HPC facility. We

offline runtime

data center

vector

Figure 5.2. Block diagram of the resource management framework. Note
that the specific data center shown is for illustrative purposes only, and our
framework can be applied to any data center configuration.
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first present the parameters used to define the state of the HPC facility, and then formulate

a steady-state optimization problem to maximize an average service rate of the HPC facility

subject to power and thermal constraints. We generate a number of templates that vary in

three parameters (inputs): (a) newly arrived workload arrival rate, (b) number of cores al-

ready executing tasks in each of the quadrants of the HPC facility, and (c) power constraint.

The quadrants of the data center we study are shown in Fig. 5.2. During runtime, our

proposed framework chooses a template based on values of those parameters to obtain the

values to set the CRAC thermostats, the floor vent opening combinations, and the ACV .

Because there are an infinite number of possibilities for these parameters (resulting in an

infinite number of templates required to capture every possible combination of these param-

eters), we discretize these parameters into a reasonable set of values and round actual values

to the closest discretized value when selecting the appropriate template. The resolutions we

discretize these values to are given in Section 5.6.4.

5.4.2. Template Input Parameter Definitions. Parameter 1: The first parame-

ter, newly arrived workload arrival rate, is calculated as the sum of all arrival rates of the T

task types over a considered interval (either the mapping event interval or thermal manage-

ment interval), weighted by their execution times. We denote this parameter λweighted
arriving (t).

First, if we denote NCT total
j

as the total number of cores that are of node type j, then the

average execution time for a task type i across all NT node types in the middle P-state for

cores within that node type (Pmid
j

), ETCavg
i , is

(57) ETCavg
i =

NT
∑

j=1

(NCT total
j

· ETCi,j,Pmid
j

)

NT
∑

j=1

NCT total
j

.
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The middle P-state is the P-state halfway between the highest-power and lowest-power P-

state, and is used in these offline estimations to represent an “average” P-state value. The

online mapping heuristics actually select P-states that cores are in when executing various

tasks.

The average execution time across all T task types, ETCavg, is then calculated as

(58) ETCavg =

T
∑

i=1

ETCavg
i

T
.

We normalize these values with the average execution time across all T task types using

(59) ETCnormalized
i

=
ETCavg

i

ETCavg
.

If λi(t) is the arrival rate for tasks of type i over a given time interval t, our newly

arrived workload arrival rate parameter (λweighted
arriving (t)) is the sum of weighted arrival rates

over all T task types. Intuitively, λweighted
arriving (t) is an average amount of “work” arriving to

the system that is represented as one parameter. We calculate λweighted
arriving by averaging the

arrival rates of all task types in the system, weighted by their execution times (as a greater

execution time implies more work to be done). λweighted
arriving (t) is calculated as

(60) λweighted
arriving (t) =

T
∑

i=1

ETCnormalized
i

· λi(t).
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Parameter 2 : The number of cores already executing tasks in quadrant q, NCexecuting
q

,

is the number of cores that are currently executing tasks assigned to them by the dynamic re-

source manager in a quadrant q from prior mapping events (for a visual example of quadrants,

please see Fig. 5.2). We use the λweighted
arriving (t) and NC

executing
q

parameters as estimations of

the current state of the HPC facility when the dynamic scheduler is choosing a template.

Parameter 3 : The last parameter, the power constraint (denoted Pconst), is the allotted

power the system can use in the steady-state optimization problem.

Because the number of templates to be generated is exponential with the number of in-

put parameters, we limit the total number of parameters in this work to six (λweighted
arriving (t),

NCexecuting
1 , NCexecuting

2 , NCexecuting
3 , NCexecuting

4 , and Pconst). However, the same

concepts could be used for a larger number of input parameters (e.g., a finer discretization of

a facility than quadrants, or parameters that give exactly which cores are executing tasks).

5.4.3. Offline Template Generation. The template generation technique tries to

find an allocation that matches the service rate of the system with the estimated weighted

arrival rate λweighted
arriving (t) summed with an estimation of the work that already exists in the

system (λweighted
existing (t)) at a given mapping event or thermal management event. The average

execution rate for a core in node j across all T task types, ERavg
j , is

(61) ERavg
j =

T
∑

i=1

(
1

ETCi,NTj ,P
mid
j

)

T
.

Therefore, ifNCallowable
j

represents the number of cores in node j allowed to execute tasks,

the service rate of an allocation in this steady-state environment, µallocation, is

(62) µallocation =
N
∑

j=1

NCallowable
j

· ERavg
j .
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Because we formulate this steady-state optimization problem as a non-linear program, we

wish to avoid integer decision variables (NCallowable
j

) that create a complex mixed-integer

non-linear program, so we introduce a continuous “utilization” decision variable Uj that

represents the utilization of node j, and later round this to an integer-valued number of

cores, i.e., ⌈Uj ·NCj⌉ = NCallowable
j

. Therefore, we calculate the service rate of a given

allocation when using a continuous variable, µcontinuous
allocation

, as

(63) µcontinuous
allocation

=
N
∑

j=1

Uj ·NCj · ER
avg
j .

We assume the steady-state optimization problem uses an “average” workload, and be-

cause power consumption of compute nodes is a function of the task types assigned to cores

on that node, we take an average of that power across all task types. That is, we assume

the core power consumption of a core in node j, P core
j

, in our steady-state formulation is

(64) P core
j

=

T
∑

i=1

APCi,NTj ,P
mid
j

T
.

Therefore, the estimation for total power consumption of the HPC facility in the steady-state,

P facility
total , is

(65) P facility
total =

N
∑

j=1

(P idle
j

+ Uj ·NCj · P
core
j

) +
NCR
∑

z=1

PCRAC
z

.

Because the template generator is not given information regarding exactly which cores are

executing tasks by the online resource manager, the assumption is made that the existing

work within a quadrant (represented by NCexecuting
q

) is evenly divided among all nodes

within that quadrant. That is, if NCtotal
q

is the total number of cores in quadrant q, then
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each node j in quadrant q has a Uj value of at least Uq =
NC

executing
q

NCtotal
q

, i.e., Uq represents

the fraction of total cores allocated in quadrant q that were already assigned tasks to execute.

IfNN q is the number of nodes in quadrant q, then the estimated amount of work that exists

in the system (λweighted
existing (t)), is calculated as

(66) λweighted
existing (t) =

4
∑

q=1

NNq
∑

j=1

Uq ·NCj · ER
avg
j .

The decision variables for the steady-state optimization problem are the utilizations

of compute nodes, Uj , and the CRAC thermostat temperatures, TCout
i

. The following

equation shows the optimization problem for the steady-state offline optimization problem:

(67) maximize
µallocation

P facility
total

subject to

(1) µallocation ≤ λweighted
arriving (t) + λweighted

existing (t)

(2) Uq ≤ Uj ≤ 1, ∀j ∈ q, ∀q

(3) P total
facility

≤ Pconst

(4) T out
j

≤ T threshold, ∀j

The objective is to maximize the amount of work performed per unit power, where the

decision variable Uj affects both µallocation and P facility
total , and decision variable TCout

i

affects P facility
total as the thermostat temperature of the CRAC units contributes to the power

consumption of the facility. Constraint 1 guarantees that the allocated service rate does not

exceed the amount of work to be done (newly arriving and existing). Constraint 2 guarantees

that the utilization of each node (representative of the number of cores that are allowed to

be active in that node) is greater than that already assigned to that node (represented by
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Uq), and less than 1.0 (as a node cannot have more cores allowed to have tasks assigned to

it than the total number of cores that exist in that node). Constraint 3 guarantees the power

constraint. Constraint 4 guarantees the thermal constraints (a node’s outlet temperature

cannot exceed T threshold). The optimization for this problem formulation is performed using

KNITRO software [98], a non-linear programming solver, to obtain theUj and TC
out
i

values.

Rounding is then performed (using a ceiling function) to obtain discrete NCallowable
j

values

from the continuous Uj values.

Floor vent openings for each of the quadrants are not considered a decision variable in the

presented optimization problem, as they are integer variables (either closed, partially open,

or fully open), and accurately relaxing these to continuous variables is out of the scope of

this paper. Thus, when generating the actual templates, we perform the above optimization

when considering distinct thermal models for all possible floor vent opening combinations

(closed, partially open, or fully open) in all quadrants. That is, we have coefficients for a

steady-state thermal model (see Section 5.2.6) calculated for all vent opening combinations,

assuming all vents in a given quadrant are opened to the same degree. We perform the

template optimization for each of the floor vent opening combinations and record the best

one to store in the template database.

The template optimization problem is not formulated to provide the online resource

manager with an exact optimal solution for a given workload, but rather provide the online

resource manager an energy-efficient estimation of where it should place tasks in the facility

(the NCallowable
j

values), and what the CRAC thermostat settings (TCout
i

) and floor vent

configurations should be set to if tasks were allocated based on those NCallowable
j

values.

5.4.4. Online Mapping Heuristic. The greedy online mapping heuristic assigns dy-

namically arriving tasks to cores, and also determines the P-states that cores are configured
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to when executing those tasks. The heuristic is invoked at the beginning of every mapping

event. At the start of a mapping event, our greedy deadline-aware heuristic (Alg. 6) drops

all tasks in the unmapped batch that would not be able to make their deadlines even when

executed on their fastest node type in the fastest P-state (line 1). Next, the ACV is ob-

tained. The ACV is a vector composed of the NCallowable
j

values, where element j of the

ACV is the number of cores in node j that are allowed to have tasks mapped to them. If

using templates to assist in resource allocation, the ACV is obtained from the template

in the template database that most-closely represents the parameters given in Section 5.4.2

(line 2). When not using templates (i.e., using a comparison thermal management technique

from Section 5.5), the ACV consists of all cores within the HPC facility (line 3). From the

ACV , a subset of cores called idle allowable cores is obtained, which is a set of cores not

currently executing tasks in the ACV (line 4). That is, the idle allowable cores in a node j

is the number of cores within that node that are both allowed to have tasks mapped to them

and are currently not executing any tasks. The idle allowable cores in a node j are found

as follows: if a node j has less cores that are currently executing tasks than what the value

of ACVj is, then the difference between those values is how many more cores within node

j are idle allowable cores, and are allowed to have tasks mapped to them. For example, if

the value of ACVj is 2 and there is currently only one core in node j currently executing

a task, one more core in node j is allowed to execute a task. That core is randomly chosen

from the idle cores in node j and added to the idle allowable core set.

The unmapped batch of tasks is then sorted in descending order by their reward earned

if completed by their deadline (line 5). The algorithm then iteratively assigns tasks to the

core (from the set of idle allowable cores) and P-state combinations that result in the lowest

energy while still meeting the deadline until there are no tasks left to map, or until there are
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no idle allowable cores to map tasks (lines 6-10). If n is the number of idle allowable cores

at a mapping event, and m is the number of tasks in the unmapped batch at a mapping

event, then the complexity of the heuristic is approximately O(n2 +mlogm) if m > n,

or O(mn) if n > m.

Algorithm 6 Pseudo-code for our greedy deadline-aware heuristic

1. drop tasks that cannot meet deadline
2. if using templates then obtain ACV from template database
3. else set ACV to all cores in system
4. obtain idle allowable core set
5. sort unmapped batch of tasks in descending order by reward
6. while unmapped batch is not empty and idle allowable core set is not empty
7. select first task in unmapped batch
8. find core/P-state combination from set of idle allowable cores that gives lowest
energy and meets deadline
9. assign task to that core and P-state
10. remove task from unmapped batch and remove core from idle allowable core set
11. end while

5.4.5. Summary of Our Offline-assisted Online Resource Management Frame-

work. Referring back to Fig. 5.2, our framework assigns dynamically arriving tasks to cores

within the HPC facility, selects the core P-states, CRAC thermostat settings, and floor vent

openings. Task-to-core assignments and P-state configuration settings are performed online

using the greedy online mapping heuristic presented in Section 5.4.4. At a thermal manage-

ment event, the CRAC thermostat settings and floor vent opening decisions are found by

using the appropriate template stored in a database that relates to the current estimation

of the state of the HPC facility and workload. At a mapping event, templates can assist

dynamic mapping heuristics by providing an allowable core vector (ACV ) to map tasks to

for the current state of the facility. The appropriate template is selected based on three

parameters: (a) newly arrived workload, (b) current core allocation in each quadrant, and
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(c) a power constraint calculated by dividing the energy budget remaining in our considered

period of time tp (e.g., a day) by the amount of time remaining.

5.5. Comparison Techniques

5.5.1. Overcooling and Throttling Thermal

Management Strategies. The thermal management techniques presented in this section

provide the CRAC thermostat temperatures (TCout(i, t)). It is common in HPC facilities

to simply overcool the HPC facility, by setting the CRAC thermostat temperatures to a low

enough temperature so that compute nodes do not overheat (i.e., node outlet temperatures

do not exceed T threshold) even under high-heat scenarios caused by fully-utilized compute

nodes. The overcool strategy simply sets the CRAC thermostat to a low constant tempera-

ture (22◦C). Another method is to run the HPC facility at a higher temperature, and allow

throttling to manage overheating nodes (as explained in Section 5.2.5). The throttling strat-

egy sets the CRAC thermostat to a relatively high constant temperature (28◦C). We assume

that when using the overcool or throttling approaches, the ACV (cores that are allowed to

have tasks actually mapped to them) is composed of all cores in the system. The floor vents

are set to the fully-opened configuration for both overcool and throttling strategies.

5.5.2. Online Mapping Heuristics.

5.5.2.1. Consolidation. At the beginning of a mapping event, the consolidation technique

assigns unmapped tasks in an arbitrary order to a core within the system that is not currently

executing any task. Ties (where multiple cores are not executing any tasks) are solved by

assigning the task to the first core in the list of all cores in the HPC system (NC). In this

work, cores are ordered in the list starting with all cores in quadrant 1 (from left-to-right by

rack in Fig. 5.2, and from top node to bottom node in each rack), then quadrant 2, etc. Cores
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are configured to execute tasks in P-state P0, which represents the highest performance and

highest power P-state. This technique results in spatial consolidation of tasks, similar in

concept to virtual machine consolidation (e.g., [93, 91]).

5.5.2.2. Load Balancing by Node. At the beginning of a mapping event, the load balancing

by node (LBBN ) technique assigns unmapped tasks in an arbitrary order to the node in the

system that is currently executing the least number of tasks. For example, a node with zero

cores currently executing tasks is always preferred over a node with one core already executing

a task. Similarly, a node with one core currently executing a task is always preferred to a

node with two cores currently executing tasks. When a node is chosen for assignment, a

random core within that node is assigned to execute the task. Ties (where multiple nodes

have the same least number of cores executing tasks) are solved by assigning the task to the

first node in the list of allN nodes. When a task is assigned to a core, the core is configured

to execute the task in P-state P0, which represents the highest performance and highest

power P-state. This technique is very similar to the FIRSTAVAILABLE scheduler from

Moab workload manager, where nodes are allocated to jobs in the order they are presented

to the resource manager [99].

5.5.2.3. Load Balancing by Rack. At the beginning of a mapping event, the load balancing

by rack (LBBR) technique assigns unmapped tasks in an arbitrary order to the rack (as

defined as a vertical cabinet containing multiple nodes, e.g., represented by a black square

in Fig. 5.2) that is currently executing the least number of tasks. For example, a rack with

zero cores currently executing tasks is always preferred over a rack with one core currently

executing a task. Similarly, a rack with one core currently executing a task is always preferred

to a rack with two cores currently executing tasks. When a rack is chosen for assignment,

a random core within a random node within the selected rack is assigned to execute the
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task. Ties (where multiple racks have the same least number of cores executing tasks) are

solved by assigning the task to the first rack in the list of all racks. When a task is assigned

to a core, the core is configured to execute the task in P-state P0, which represents the

highest performance and highest power P-state. This technique results in a uniform spatial

distribution of tasks throughout the facility, similar in concept to the UniformWorkload [74]

and Uniform Task [100] techniques.

5.6. Simulation Setup

5.6.1. Overview. In our simulations, we consider a heterogeneous platform composed

of one CRAC unit, 30 server racks with 36 compute nodes per rack (a total of 1,080 compute

nodes), as shown in Fig. 5.2. Each node is one of three node types (see Table 5.1). Power

characteristics of our different node-types were obtained from power measurements of three

server class machines when executing different PARSEC benchmarks [101] in all P-states,

and the workload characteristics were also obtained from executing the benchmarks on the

node-types listed in Table 5.1. The threshold temperature for compute nodes was set to 33◦C,

which is on the high end of ASHRAE’s data center guidelines for allowable temperatures

[50].

Table 5.1. Node types used in simulations

node type
Lenovo TS140 HP Z600 HP Z820

total # of nodes 270 540 270
# of cores in node 4 6 12
# of P-states 16 9 16
air flow rate (m3/s) 0.0284 0.0519 0.0566

5.6.2. Workload. We study three different workload arrival patterns (see Fig. 5.3).

Fig. 5.3 (a) shows a constant task arrival rate of λconst, and Fig. 5.3 (b) shows a bursty
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arrival pattern, with intervals of a λhigh task arrival rate followed by intervals of λlow task

arrival rate. Fig. 5.3 (c) shows a sinusoidal arrival pattern, with higher task arrival rates

during daytime and smaller during nighttime. For the arrival rate patterns of Fig. 5.3 (a)

and (b), tasks arrive to the system according to a Poisson process with rate λconst, λhigh,

or λlow, with λconst set to 6.0, λhigh set to 9.0, and λlow set to 3.0 tasks per second. The

task arrivals for the sinusoidal pattern are from the MetaCentrum2 workload trace obtained

from the Parallel Workload Archive [92]. The task type of a task is randomly chosen based

on a uniform distribution.

The execution time and power characteristics for different task-types are from the PAR-

SEC benchmark suite, and cor-responding ETC and APC matrix entries for each benchmark

on each node type in each P-state are obtained by measuring the execution times and av-

erage power consumption of those benchmarks on each of the machines and P-states from

Table 5.1. The following benchmarks were used: canneal, cg, ua, sp, lu, fluidanimate,

blackscholes, bodytrack, ep, and swaptions. These benchmarks were chosen to enable a di-

verse portfolio of consumer and scientific applications on which to evaluate our framework.

The deadlines for tasks of a given type were set to the average execution time for that task

type across all node types in the Pmid P-state (see Equation 57). The reward values earned

for completing tasks of a given type by their individual deadlines are linearly proportional

to their execution times (i.e., tasks with longer execution times have higher reward values).

Figure 5.3. Workload arrival patterns with (a) constant, (b) bursty, and (c)
sinusoidal patterns.
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5.6.3. CRAC Units. The CoP for a CRAC unit is a function of its outlet temperature,

τ , given by CoP (τ ) = 0.0068τ 2+0.0008τ +0.458 [74]. The air flow rate of each CRAC

unit is set to 26.1 m3/s, which is the air flow rate of a CRAC unit with capacity to cool

approximately 350 kW [77].

5.6.4. Template Generation. We generated a range of templates for the parameters

listed in Section 5.4.2 for our templates technique. For the newly arrived workload parameter

(λweighted
arriving (t)), we used the values [2.2, 6.6, 11.0, 15.4, 19.8], as these values evenly divide the

range of [0,22], and 22 is approximately the maximum service rate capability for the system

in Table 5.1. The number of cores in quadrant 1 currently executing tasks (NCexecuting
1 ) is

discretized using the values [180, 540, 900] that splits the 1,080 total number of cores in that

quadrant. Similarly, the number of cores executing tasks in quadrants 2 and 3 (NCexecuting
2

and NCexecuting
3 ) are discretized using the values [200, 605, 1010, 1415], and the number of

cores executing tasks in quadrant 4 (NCexecuting
q

) is discretized into [180, 540, 900, 1260,

1620, 1980, 2340, 2700, 3060]. Last, the power constraint parameter (Pconst) is discretized

into [150, 170, 190, 210, 230] kilowatts.

5.7. Results

In this section we present results, discussion, and analysis of our proposed offline-assisted

online resource management framework that uses templates and our greedy deadline-aware

online mapping heuristic, and compare it with the consolidation, LBBN, and LBBR mapping

heuristics that use either overcooling or throttling thermal management approaches. The bar

graphs showing results for bursty and constant arrival rate patterns discussed in the rest of

this section represent the averages of 12 trials, with each trial varying in the actual arrival

times of tasks (as a Poisson process is random) as well as the task types of arriving tasks
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(another random process). The error bars are the 95% confidence intervals around the mean

of those 12 trials.

The first results (Fig. 5.4) compare the consolidation, LBBN, LBBR, and greedy mapping

techniques in combination with the overcooling, throttling thermal management techniques,

as well as the greedy technique with the templates thermal management technique that rep-

resents our offline-assisted online resource management framework. Fig. 5.4, (a), (c), and

(e), show the reward earned by the different techniques for the (a) constant workload arrival

pattern, (c) bursty workload arrival pattern, and (e) sinusoidal workload arrival pattern.

Similarly, Fig. 5.4 (b), (d), and (f) show the energy consumption of those techniques for the

constant, bursty, and sinusoidal arrival rate patterns, respectively. These results are com-

pared across a wide range of different daily energy budget values from 8000 MJ to 16000 MJ

that represent a range from a highly constrained system to a less constrained system. For

instance, consolidation using the overcooling thermal management technique is only able

to process tasks for approximately half of the day when given an energy budget of only

8000 MJ. The system uses approximately 22000 MJ per day when all cores in the facility

are executing the highest-powered task in P-state P0, and the cooling system is set in the

overcooling management scheme. However, for energy budgets above 16000 MJ, results were

observed to be the same as the results for 16000 MJ for the techniques and arrival rates

simulated in this study.

We can observe in Fig. 5.4 (a) and (c) that our proposed greedy heuristic in combination

with templates provides a significant benefit in reward earned at lower energy budget levels

(less than 14000 MJ). At such low energy budget levels, the system is not able to remain

activated for the entire day, regardless of the mapping heuristic or thermal management

technique chosen, i.e., all available energy in the budget is consumed before the day ends
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Figure 5.4. Compares reward earned by techniques for the (a) constant, (c)
bursty, and (e) sinusoidal workload arrival patterns. Similarly, (b), (d), and
(f) display energy consumed by those workload arrival patterns. All results
in this figure are shown for the four runtime mapping techniques (consolida-
tion, LBBN, LBBR, and greedy), and three thermal management strategies
(overcooling, throttling, templates).
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and the facility is essentially deactivated, not allowing any more tasks to complete. However,

the greedy online mapping heuristic is able to exploit DVFS to save some energy, and when

using templates is able to reduce cooling energy consumed (compared to overcooling), and

therefore is able to complete more tasks by their deadline than the other techniques.

We can also analyze some other interesting trends in Fig. 5.4 (a) and (c) by examining

other techniques. First, we can observe that when using the consolidation online map-

ping technique, the overcooling thermal management technique significantly outperforms

the throttling thermal management technique. However, when using LBBN and LBBR,

the throttling technique earns significantly more reward than overcooling technique. This is

because consolidation maps most tasks spatially close to each other (i.e., in the same quad-

rant), whereas LBBN and LBBR spatially distribute the tasks in the facility. This means

that when using the throttling thermal management technique (i.e., operating the facility at

a hotter temperature and relying on the throttling mechanisms to prevent overheating), the

consolidation technique packs all tasks in a corner of the facility and causes hotspots in that

area, invoking the throttling mechanisms almost constantly and causing a large number of

missed deadlines. The throttling technique works well for LBBN and LBBR because tasks

are more spatially distributed, therefore causing fewer hotspots (and thus not invoking the

throttling mechanisms), while still being able to operate the facility at a hotter temperature

and save on cooling energy to use more of the energy budget for computing. The overcooling

thermal management technique performs better for the consolidation technique than LBBN

or LBBR because the nodes that the consolidation technique consolidates the workload on

(primarily those in quadrant 1 in Fig. 5.2) happen to also, in general, consume less energy

than the other nodes. We leave the study of optimal server placement within the facility as

future work.
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Another interesting observation is that, when given a large amount of energy budget

(e.g., 16000 MJ), Fig. 5.4 (a) and (c) show that using the greedy online mapping technique

in combination with the overcooling thermal management technique still slightly outper-

forms the comparison heuristics that use overcooling, even though those techniques assign

all tasks in P-state P0 and the system has a large enough energy budget to finish the whole

day. This is because the comparison techniques do not exploit any form of heterogeneity.

Thus, even when executing a task in P0, a task may still miss its deadline when executed

on a low-performance node if the task had to wait in the unmapped queue for awhile until

a mapping event was triggered. One last observation from Fig. 5.4 (a) is that the throttling

thermal management technique performs very poorly when paired with the greedy online

mapping technique. This is because the greedy mapping technique assigns tasks to execute

in the lowest-energy P-state that still hits the deadline. As a result, if any throttling occurs

from overheating, tasks will very likely miss their deadlines.

Fig. 5.4 (e) displays the comparison of reward earned by techniques across several en-

ergy budget levels when using the sinusoidal arrival rate pattern. It is important to recall

that this experiment used the real trace from the MetaCentrum2 system from the Parallel

Workload Archive [92], and even though the computing systems are similar in size, the trace

has a significantly lower arrival rate for tasks compared to the constant and bursty arrival

rate patterns that were generated. As such, much less reward can be earned (as evidenced

by the y-axis of Fig. 5.4 (e) in the magnitude of thousands compared to Fig. 5.4 (a) and (c)

that shows reward in millions). Therefore, given enough energy, all tasks can easily complete

by their deadlines, as shown by the reward earned by all techniques when given an energy

budget of at least 14000 MJ. Also, the throttling technique outperforms the overcooling tech-

nique for all mapping heuristics, and this is because even though the facility is at a higher
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temperature for the throttling approach (28◦C), the small number of tasks being executed

using this workload trace does not cause the compute nodes to generate much heat and

trigger the throttling mechanisms.

We examine the energy consumption of the facility when using the different techniques

for the constant workload arrival rate pattern in Fig. 5.4 (b), the bursty pattern in (d),

and the sinusoidal pattern in (f). At energy budgets of only 8,000 MJ and 10,000 MJ, all

techniques use all of the available energy budget before the day ends. However we can see

in Fig. 5.4 (a) and (c) that our greedy online mapping heuristic in combination with the

templates thermal management technique makes the best use of the limited amount of en-

ergy and earns significantly greater reward than the others. When using the overcooling

thermal management approach, the facility requires nearly 16000 MJ of energy to last the

entire day without deactivating due to exceeding the energy budget. We can also observe

in Fig. 5.4 (b), (d), and (f) that when using our offline-assisted online mapping framework

(i.e., the greedy mapping technique in combination with the templates thermal management

approach), energy can be saved compared to the overcooling technique when given a larger

energy budget (e.g., 16,000 MJ). The templates technique uses slightly more energy than

throttling at higher energy budget levels, but the reward earned using the throttling tech-

nique is approximately half that of when using the templates technique.

We further analyze the different thermal management techniques by comparing the total

instantaneous power consumption over time in Fig. 5.5 using the bursty arrival rate pattern.

For this simulation, we set the energy budget to 12,000 MJ. The first observation is that the

power consumption increases and decreases to match the arrival rate of tasks. The reason

is two-fold: (a) more tasks are being executed during high arrival rate periods and therefore

more compute power is consumed, and (b) the increase in compute power causes the facility
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to increase in temperature (including the inlet temperature of the CRAC unit), causing the

CRAC units to consume more power as well (see Eqn. 48).

As expected, when using the overcooling technique, the power consumption is much

higher than the other thermal management techniques. Consequently, the facility exhausts

its allotted energy budget before the day ends (at about 71,000 seconds, or 19.5 hours).

Comparing the throttling and templates techniques, we can see the templates technique ac-

tually consumes slightly less power at most times throughout the day. Thus, when using the

templates technique, the system is able to continue executing tasks throughout the entire

day whereas when using the throttling technique, the energy budget is exhausted early, i.e.,

at approximately 23.5 hours. The reason is that the templates technique limits the allowable

core vector (ACV ) to which tasks can be mapped and sets a near-ideal CRAC temperature

to sufficiently cool the nodes housing those cores. This does, however, result in slightly more

tasks being dropped (line 1 of Alg. 6) from the system during periods of high arrival rates

when using the templates technique compared to the others as there are more tasks in the

unmapped batch than idle allowable cores to assign tasks (line 6 of Alg. 6). However, there

is still a significant benefit to being able to set a near-ideal CRAC thermostat temperature

for an ACV when using the templates technique, as cooling energy can be saved compared

to overcooling (resulting in more energy available for computing), without triggering the

throttling mechanisms, as what occurs when using the throttling technique. The significance

of these benefits was quantified in Fig. 5.4 (b).

5.8. Related Work

Thermal management of HPC systems and data centers is an important and active re-

search topic. The first explorations into studying thermal management in HPC facilities
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Figure 5.5. Using the bursty workload arrival pattern, we compare total
power consumption of the three thermal management techniques when using
the greedy runtime mapping heuristic over the course of a day. The energy
budget was set to 12,000 MJ.

focused on modeling temperatures and heat. Moore et al. [74] introduced the notion of

heat recirculation among compute nodes and proposed a technique that reduces heat re-

circulation and cooling costs. Due to the inefficiency of using CFD simulations to conduct

thermal evaluations, Tang et al. [96] proposed an abstract heat flow model that determines

coefficients arranged into a matrix that denote percentage of heat that is transferred from

any node in the system to all other nodes in the system. Therefore, by knowing the power

consumption, fan speed, density of air, and specific heat of air (and thus heat output) of

each of the compute nodes, it was possible to calculate node temperatures in the steady-state

without performing a full CFD simulation. Later, a transient thermal model was proposed

by Jonas et al. [95] that also gives temporal information, that is, how the temperatures

evolve throughout time rather than assuming steady-state. Our work is different from these
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prior works as it focuses on resource management rather than modeling, and proposes run-

time resource management rather than steady-state as in [74].

Several thermal-aware works have been published that focus on reducing cooling power or

energy [102, 103, 100, 61]. In [102], CFD data was studied to find that an effective thermal-

aware technique to reduce cooling power is to migrate workload from the node with the

highest inlet air temperature. The research of [103] minimized cooling energy by identifying

“better cooled” areas of the data center and consolidating more virtual machines (VMs)

in those areas and allowing other unused servers to be deactivated. In [100], offline re-

source management techniques, specifically a genetic algorithm and quadratic programming

approach, were proposed to minimize cooling energy. Cooling costs were reduced by mini-

mizing hotspots and total heat generated in [61]. Managing resources to directly minimize

cooling power and energy is important, however it is also important to consider performance

in HPC and data center environments. Our work studies the problem of maximizing reward

earned within a daily energy budget for both computing and cooling systems. As such, we

consider the performance of the HPC system as an important objective in our framework in

addition to cooling energy. We differentiate further from [61] by considering heterogeneous

compute nodes and floor vent opening control.

Performance is also considered as a design objective in some thermal-aware works [56,

62, 68, 1, 104]. The research in [56] considers both performance optimization under a power

constraint and power optimization under a performance constraint in a steady-state offline

framework. Trade-offs between energy cost savings and workload delay can be exploited

using the Stochastic Cost Minimization Algorithm technique proposed in [62]. Application

performance, energy consumption, and thermal imbalance were simultaneously optimized
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for a heterogeneous HPC system in [68], using fuzzy-based priorities for multi-objective op-

timization. CoolBudget [1] proposed an algorithm to maximize “fair speedup,” a metric that

combines instructions-per-second (throughput) with fairness, within a power constraint and

temperature thresholds for nodes. The research in [104] studied power management in an

internet data center to minimize power of both compute and cooling systems while meeting

quality of service (QoS) constraints on latency for servicing web requests. We differenti-

ate from [56] by considering a runtime resource management framework rather than offline

steady-state. The research in [62] does not consider heterogeneity, DVFS, heat recircula-

tion, floor vent opening control, or CRAC unit control as we do in our work. DVFS, heat

recirculation, floor vent opening control, and CRAC unit control is not considered in [68].

Our work considers floor vent opening control as well as tasks with different priority levels

(reward) and deadlines rather than throughput optimization as in [1]. The problem studied

in [104] is different than our work, by minimizing power of both computing and cooling sys-

tems under latency constraints in an internet data center environment. We also differ from

[104] by considering floor vent opening control and a node power model that is dependent

on the type of workload being executed.

5.9. Conclusions

We studied the problem of maximizing the reward collected for completing tasks by their

deadlines subject to a daily energy budget and thermal constraints for heterogeneous high-

performance computing systems. We proposed an offline-assisted runtime resource manage-

ment framework to solve this problem, where a number of templates are generated offline and

stored in a database to assist the runtime resource manager make thermal-aware decisions

based on the incoming workload and state of the HPC facility. We compared our frame-

work with three comparison techniques that use either an overcooling approach to thermal
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management, or operating the facility at a higher temperature and relying on throttling for

thermal management.

The primary contribution of this research was our offline-assisted runtime resource man-

agement framework, that included the greedy runtime mapping heuristic and the offline

optimization method for generating templates. We also performed analysis and comparison

of our framework with three schemes for runtime mapping, and overcooling and throttling

approaches for thermal management. We showed how our framework can greatly increase

the reward earned within a daily energy budget compared to the other techniques by intelli-

gently providing enough cooling to avoid triggering the throttling mechanisms, but operating

the facility hot enough to also save on cooling energy, allowing more of the energy budget

to be spent on computing. Possible directions for future studies in this area are presented

in Chapter 6.
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CHAPTER 6

Summary of Thesis

The goal of this thesis was to address challenges (e.g., the prohibitively high cost of energy

consumption in large HPC systems) and examine trade-offs in performance, power dissipa-

tion, and energy consumption for high-performance computing systems and the facilities in

which they operate. Such challenges in these domains inhibit the progression of today’s HPC

systems to exascale levels, and providing solutions to such problems are of utmost importance

to continue providing scientific researchers and consumers of cloud computing services with

the compute speed necessary to solve challenging problems and experience highly-efficient

computing. A combination of innovative ideas and solutions from numerous disciplines, such

as computer architecture, thermodynamics, software tool development, reliability, security,

and resource management will be required to overcome the hurdles to building an exascale

system. In this thesis, we proposed solutions in the resource management domain that are

robust, thermal-aware, power-aware, and energy-aware, and would be of great use to the

HPC field as researchers push towards exascale computing.

In Chapter 2 we studied trade-offs between performance and energy in an offline re-

source management scenario, and proposed heuristic-based resource management solutions

for a heterogeneous HPC system that considers performance as the objective and energy

consumption as the constraint, and vice versa. An important aspect of this study was the

assumption that applications had varying execution times (e.g., due to cache misses or data

dependent execution times), a realistic and important consideration. Therefore, execution

times of applications were modeled using probability distributions instead of scalar values,
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and the resource management solutions we proposed used information from these probability

distributions to make intelligent decisions.

We continued to study trade-offs between performance and power consumption in Chap-

ter 3, except in a rate-based environment where power dissipation (instead of energy con-

sumption) was examined due to its rate-based nature (power can be measured in joules per

second). Two important additions were considered in this work: (a) co-location interference

that causes performance degradation among multiple applications executed simultaneously

on cores that share resources, and (b) the impact that the cooling system has on the HPC

facility’s power consumption. We assumed the resource manager had control of the thermo-

stat temperatures of the air conditioning units to assist in making thermal-aware decisions.

The proposed resource management solutions considered the thermal relationship among the

compute system and cooling system to optimize performance of the system when limited in

the amount of power that can be consumed by the facility.

We extended the rate-based resource management work to a geo-distributed scale in

Chapter 4, and proposed methods that minimize monetary energy cost. The resource man-

agement techniques that we proposed exploited time-of-use pricing and the assumption that

renewable energy sources were located at different data centers to intelligently distribute

workload to data centers that currently had inexpensive electricity pricing or an abundance

of renewable energy to reduce costs.

Finally, the research in Chapter 5 moved from rate-based to runtime (online) resource

management. Making intelligent thermal-aware resource management decisions to reduce

the energy consumption of the cooling system can require complex thermal models that take

a significant amount of time to compute. This can be prohibitive in online decision making
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to ensure that newly-arrived tasks begin execution as soon as possible to avoid missing dead-

lines. Therefore, we proposed a novel offline-assisted online resource management framework

that uses a database of offline-generated solutions to help make thermal-aware decisions.
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CHAPTER 7

Future Work

In Chapter 2, we designed four energy-aware heuristics for assigning bags-of-tasks to a

heterogeneous computing system in a robust manner. This study revealed great potential for

our Tabu Search and genetic algorithm with local search (GALS) heuristics when combined

with a dynamic penalty function for managing compute resources in an energy-aware man-

ner for deadline-constrained and energy-constrained systems. For future work in this area,

it would be interesting to consider workloads that consist of mostly compute-intensive or

mostly memory-intensive tasks, which may require different techniques in addition to DVFS

(such as consolidation) to reduce energy consumption. Introducing tasks of varying mem-

ory intensities would not only affect power consumption, but also co-location interference

effects. It would be interesting to study these effects in a bag-of-tasks type of environment,

and designing models and resource allocation techniques that account for these effects would

be a necessity.

Chapter 3 studies maximizing reward earned for completing tasks by their deadlines in a

power and thermal constrained environment. We introduce a reward rate performance mea-

sure that incorporates co-location interference. We design novel heuristics to maximizing

that performance measure, while also ensuring the system remains within imposed power

and thermal constraints. These heuristics include a non-linear programming (NLP) tech-

nique that considers co-location interference, a greedy technique that assigns task types to

their most power-efficient node type and P-state, and a genetic algorithm enhanced with

local search. For future work, it would be interesting to account for uncertainties in task

execution times that can vary due to changes in the data inputs or network load, and design
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co-location and thermal-aware resource management techniques that are robust against such

uncertainties to more closely match real-world problems. Also, classifying unknown tasks

into task types as they arrive would be an interesting addition to this work.

Chapter 4 proposed three heuristics for workload allocation across geographically dis-

tributed data centers. We explored adding different levels of knowledge of the system,

particularly co-location interference, to geographical workload distribution algorithms. We

also demonstrated that including additional information about the co-location interference

in the decision process of the heuristics resulted in a lower energy cost by reducing or elimi-

nating node over-provisioning while still meeting all required workload execution rates. For

future work in this area, it would be interesting to study the co-location, thermal, and energy

aware geo-distributed load distribution problem in a runtime dynamic environment rather

than rate-based over epoch time intervals. Also, considering energy storage (e.g., batteries,

thermal energy storage) at individual data centers would be interesting and create difficult

workload allocation decisions due to the relationships between time-of-use pricing, renewable

energy, and energy storage.

In Chapter 5, we studied the problem of maximizing the reward collected for complet-

ing tasks by their deadlines subject to a daily energy budget and thermal constraints for

heterogeneous high-performance computing systems. We proposed an offline-assisted run-

time resource management framework to solve this problem, where a number of templates

are generated offline and stored in a database to assist the runtime resource manager make

thermal-aware decisions based on the incoming workload and state of the HPC facility. We

have a few directions that would be interesting to pursue relating to this research. First,

performing further analyses of our framework by performing a sensitivity study on the dis-

cretization resolutions of our templates, examining different mapping event and thermal
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management interval times, and performing scalability analyses by also examining a larger

HPC facility with more compute nodes and CRAC units. Second, the different placements

of the heterogeneous nodes within the facility can impact temperatures and therefore have

different cooling requirements. Performing sensitivity analyses of different node placements,

and optimizing node placements, are interesting directions for this research. Finally, we

wish to examine and model uncertainties in the system, and then design robust resource

management techniques that mitigate the impact of those uncertainties.

There are many challenges and research opportunities in the goal of building an exas-

cale computing system. High energy consumption is one challenge that we have examined.

However, other aspects such as reliability, resiliency, new programming models, communica-

tion technologies, and hardware architectures are all critically important research topics that

have challenges that become exacerbated at large scales. New intelligent methods for check

pointing applications and recovering from faults are increasingly important with the rapid

number of failures that occur in exascale-sized HPC systems. Enhanced tools for parallel

programming will be required to enable users to take advantage of a complex exascale sys-

tem. New advances in both on-chip communications and hardware design will be required

to obtain the performance and energy consumption levels needed for exascale computing.

Because cooling systems and thermal issues are of great interest, examining the trade-offs

between energy consumption, temperature, and reliability at large scales would be extremely

interesting and valuable. Typically, higher temperatures result in less-reliable systems or can

even shorten the lifespans of the computer hardware. However, providing enough cooling to

maintain low operating temperatures consumes a significant amount of energy and therefore

causes high operating expenditures. As HPC systems continue to grow, more power will be
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dissipated from compute nodes and reliability will diminish. It would extremely interesting

to study such trade-offs and design new technologies that solve such challenges.
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APPENDIX A

Power and Performance Data Collection and

Calculations For Node Types from SPECPower

In this appendix that is supplementary to Chapter 2, we show how our system param-

eters were obtained from SPECpower ssj2008 as well as details regarding P-state frequencies

and voltages and workload generation. The small simulation platform uses 25 different

servers, and the large simulation platform consists of ten copies of each of the 25 servers

from the small simulation platform for a total of 250 nodes. The parameters we obtain from

SPEC for our evaluations is shown in Table A.1. The number of cores per node (ni) is

based on the type of CPU used in each node, giving a total of 458 and 4,580 total cores

Table A.1. Data From SPECpower

CPU Type Total Cores
(ni)

Idle Power (Watts) Memory
DIMMs

Hard Drives Add-on
Cards

Node 1 Opteron 6278 64 176 32 2 HDD 2
Node 2 Xeon E3-1260L 4 17.8 2 1 SSD 0
Node 3 Opteron 6238 24 89.8 8 1 HDD 1
Node 4 Xeon E5645 12 63.1 4 1 HDD 0
Node 5 Xeon E7-4870 40 423 16 1 SSD 3
Node 6 Xeon E5-2470 8 52.7 2 1 SSD 1
Node 7 Xeon X3470 4 46.5 2 1 SSD 0
Node 8 Xeon E5-2660 16 56.5 4 1 SSD 1
Node 9 Xeon E3-1265L 4 18.9 2 1 SSD 0
Node 10 Xeon E3-1280 4 24.2 2 1 HDD 0
Node 11 Xeon X5675 12 55.6 4 1 SSD 0
Node 12 Opteron 6276 32 68.9 8 1 SSD 1
Node 13 Xeon X5675 12 125 6 1 SSD 0
Node 14 Xeon X3470 4 35.4 2 1 HDD 0
Node 15 Xeon E5-2660 64 331 8 1 SSD 1
Node 16 Xeon E7330 16 418 16 2 HDD 3
Node 17 Xeon X5670 24 101 6 1 SSD 0
Node 18 Xeon E3110 2 75.2 4 2 HDD 2
Node 19 Xeon E5-2440 12 55.1 4 1 SSD 1
Node 20 Xeon E5-2470 16 47.9 6 1 SSD 1
Node 21 Xeon E5-2660 16 59.5 6 1 SSD 2
Node 22 Xeon E3-1265L 4 15.7 2 1 SSD 0
Node 23 Xeon E5-2660 16 54 6 1 HDD 0
Node 24 Xeon E5-4640 32 92.7 12 1 SSD 1
Node 25 Xeon E5-2470 16 80.6 4 1 SSD 1
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to schedule for the small and large simulation sizes, respectively. We calculate the power

overhead from components (Oi) by summing the power used by the memory, hard drives,

and add-on cards [105]. We assume the Idle Power (see Table A.1) of a node consists of

the power used by components and the static power of the cores, thus P stat
i

is calculated by

subtracting component overhead power (Oi) from the Idle Power.

The total number of P-states for CPU cores in a node (PSi), as well as the frequencies

and voltages of the P-states (fπ and V ddjπ) were obtained from CPU manufacturer docu-

ments, experiments from the literature [106, 33, 107], and technical presentations [108, 109].

We used a uniform random variable to assign task types to tasks. The mean and vari-

ance values of the task execution times for each P-state in each node (µ(tx
ij
, PS(tx

ij
)) and

var(tx
ij
, PS(tx

ij
)), respectively) were generated using the Coefficient of Variation (CoV)

method from [110] and a scaling procedure. First, the mean values for all execution times on

all nodes with cores in P-state P0 were generated using the CoV method, and then the values

were scaled for other P-states depending on the task type of a task and the clock frequency.

We assume tasks of type TT0 are memory intensive, and their mean execution times scale at

a ratio of 25% of the frequency (e.g., halving the frequency results in only a 25% increase in

execution time). Tasks of type TT15 are compute-intensive, and their execution times scale

at a ratio of 100% of the frequency (e.g., halving the frequency results in a 100% increase in

execution time). The execution times of task types TT1 to TT14 scale at ratios of 30% to

95% of the clock frequency. The variance values were generated in a similar fashion, using

the CoV method and the same scaling procedure.
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APPENDIX B

Global and Local Search in Tabu Search for

Robust Energy-aware Resource Management

In this appendix that is supplementary to Chapter 2, we examine the trade-offs be-

tween long-hops and short-hops in Tabu Search by experimenting with different termination

criteria for local search that resulted in different numbers of long-hops versus short-hops over

six hours of heuristic execution time for the MO-EC problem on the small simulation size

(Figure B.1). We varied our local search termination criteria to stop short-hops and perform

long-hops after 100, 200, 500, 1,000, and 1,500 consecutive short-hops with less than 0.1%

improvement in makespan-robustness (as shown on x-axis of Figure B.1). This resulted in

an average of 118, 38, 6, 2, and 1 long-hop(s) for the different criteria, respectively, as shown

in red text in Figure B.1. We observed the best results when performing approximately six

long-hops, showing a mixture of short-hops and long-hops is best in our environment, and

thus we perform long-hops when 500 consecutive short-hops fail to improve the solution by

0.1%.
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Figure B.1. Comparison of short-hop termination criteria for MO-EC using
the small simulation size (25 nodes, 458 total cores, and 10,000 tasks) over
six hours of heuristic execution time. The system deadline was set to 15,500
seconds, the energy budget was set to 58 MJ, and energy-robustness constraint
was set to 90%. The red numbers indicate number of long-hops performed.

155



APPENDIX C

Limiting the Search Space Technique for Robust

Energy-aware Resource Management

In this appendix that is supplementary to Chapter 2, we describe our “limiting the

search space” technique, then explain how a feasible initial population is generated for the

GA and GALS heuristics. The “limiting the search space” technique simply rejects infeasible

solutions [43]. This method requires that the individuals of the initial population are feasible

in the GA and GALS, or that the initial solution is feasible in Tabu Search. Modifications

to any solution must result in a feasible solution as well, or else the offspring are eliminated

in the GA and GALS, or the solution resulting from a local search move is reverted to its

previous (feasible) state in Tabu Search. This constrained optimization technique uses the

same definitions to distinguish “better” solutions as the “superiority of feasible solutions”

technique. To generate solutions that meet the makespan-robustness constraint (for EO-MC)

in the GA and GALS, we start with all tasks placed in an unmapped batch, and considering

the tasks in an arbitrary order, we find for each task the node that minimizes the expected

execution time of the task in P-state 0. Within that node, the task is mapped to the

core with maximum makespan-robustness if the assignment does not violate the constraint.

If the constraint will be violated, the task is placed back into the unmapped set. Once

all tasks have been attempted to be mapped to their minimum expected execution time

node, all tasks left in the unmapped set are tried in the same fashion on the node that is

second-best at minimizing expected execution time. This process is repeated until all tasks

have been mapped. Our technique for generating solutions that meet the energy-robustness

constraint (for MO-EC) is similar to that above, except by assigning tasks to cores and
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P-states that minimize expected energy instead of expected execution time, and making

sure assignments result in nonzero makespan-robustness. For the platform sizes and task

execution time distributions we considered in this study, our technique resulted in feasible

initial populations.
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APPENDIX D

Table of Notations for

Robust Energy-aware Resource Management

Table D.1. Table of Notations

Notation Description

c Weighting constant for penalized objective function

Ci Load capacitance of a core in node i

coremaxM Core that has the greatest probability of finishing its assigned workload by the deadline

coreminM Core that has the least probability of finishing its assigned workload by the deadline

δ System deadline

∆ Energy budget

dφ Distance from feasibility for MO-EC

dΨ Distance from feasibility for EO-MC

η Energy-robustness constraint for MO-EC

Fi Maximum expected finishing time among cores in node i

Fij Expected finishing time of core j in node i

fjπ Frequency of core j in P-state π

γ Variance of energy required to complete the workload

Γ Makespan-robustness constraint for EO-MC

EO-MC The maximizing energy-robustness with a makespan-robustness constraint problem

Mean
dyn
ijπ Expected dynamic energy spent by core j of node i in P-state π

Meanstat
ijπ Expected static energy spent by core j of node i in P-state π

MO-EC The maximizing makespan-robustness with an energy-robustness constraint problem

µ(txij, π) Mean execution time of task txij in P-state π

N Number of heterogeneous nodes

N (Fij, σ
2
ij) Completion time distribution of core j in compute node i

ni Number of homogeneous cores in node i

Oi Overhead power used by additional components in node i

φ Energy-robustness of a resource allocation

P
dyn
ijπ Dynamic power of a core j on node i operating in P-state π

P stat
i Static power consumption of a core within node i

PSi Number of P-states available in node i

Ψ Makespan-robustness of a resource allocation

ψφ Penalized objective function for EO-MC

ψΨ Penalized objective function for MO-EC

rank( t, i) Rank of task t on node i

σ2
ij Variance of completion time distribution of core j in node i

σ2
i Variance of core with maximum expected finishing time in node i

T Number of tasks in the bag-of-tasks

Tij Tasks in T that have been assigned to core j in node i

txij Task from set Tij where 1 ≤ x ≤ |Tij|
var(txij, π) Variance of execution time of task txij in P-state π

V ar
dyn
ijπ Variance of dynamic energy spent by core j of node i in P-state π

V arstat
ijπ Variance of static energy spent by core j of node i in P-state π

V ddjπ Supply voltage of core j in P-state π

ζ Expected energy required to complete the workload
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APPENDIX E

NLP Formulation for

Rate-Based Resource Management

In this appendix that is supplementary to Chapter 3, we show the formulation for the

non-linear programming technique [56]. The decision variables are: the desired fraction

of time tasks of each type are executing on each core (DF (i, k)), the outlet temperature

of each CRAC unit (TCout
i

), and the P-state of each core k when running a task type i

(PS(i, k)). The following equation shows the assignment problem for our NLP that uses

CRR as the objective function:

(68) maximize CRR

subject to

(1)
T
∑

i=1

DF (i, k) ≤ 1, k = 1, ..., NC

(2)
NC
∑

k=1

CER(i, k) ≤ λi, i = 1, ..., T

(3)
NN
∑

j=1

PN(j) +
NCR
∑

i=1

PC(i) ≤ φ

(4) T in
j

≤ T redline, j = 1, ..., NN

The objective function is the total reward rate (actual reward after considering interference

effects). The first constraint guarantees that the total fraction of time a core k spends exe-

cuting tasks does not exceed 100%. Constraint 2 guarantees that the sum of execution rates

of a task type over all cores does not exceed the arrival rate of that task type. Constraint
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3 guarantees the power constraint. Finally, Constraint 4 ensures that the red-line tempera-

tures of nodes are not violated.

This problem is a mixed-integer non-linear program (MINLP) for the following two rea-

sons. First, the above problem contains integer decision variables, because the P-state

decision variables are integers, and therefore the problem is mixed-integer. Second, the

CoP function used to calculate CRAC power in Equation 5 is non-linear (see Sections 3.3.4

and 3.5.3). Because the power of a CRAC unit i is non-linear with respect to the decision

variable TCout
i

, Constraint 3 a non-linear constraint. We relax this problem to be solvable

in a reasonable amount of time by following the steps outlined in Section 3.4.1.
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APPENDIX F

Simulation Parameters for

Rate-Based Resource Management

In this appendix that is supplementary to Chapter 3, we summarize our simulation pa-

rameters and provide error estimates of the thermal and co-location models. Table F.1 gives

the idle power consumption measurements of each of the compute node types. Tables F.2

- F.7 give the coefficients of the co-located execution time model (Equation 21). Table F.10

gives the power consumption of the cores in different node types when executing the different

PARSEC benchmarks in the highest power P-state, and Table F.11 gives the power consump-

tion of the cores in different node types when executing the different PARSEC benchmarks

in the lowest power P-state. Table F.8 gives the measured execution times of the PARSEC

benchmarks on the three node types in the highest power P-state, and Table F.9 gives the

measured execution times of the PARSEC benchmarks on the three node types in the high-

est power P-state. The memory intensity thresholds (number of last-level cache misses to

number of instructions executed for that application) to classify task types into Class I was

between 1 and 0.01, Class II was between 0.01 and 0.001, Class III was between 0.001 and

0.00001, and Class IV was less than 0.00001.

Training and testing data for the co-location interference model were collected across

the PARSEC benchmarks on the servers we considered in this work [52]. The mean percent

error in the testing set when using the linear co-location interference model with the features

we listed was found to be approximately 6%. That is, the mean percent error between the

actual execution times of the benchmarks when under co-location interference effects, and

the execution times predicted by the model was 6%.
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Table F.1. Idle power consumption (watts) of each node type

CPU Type idle power (W)

Node Type 1 Xeon E3-1225v3 30.0

Node Type 2 Xeon E5649 142.4

Node Type 3 Xeon E5-2697v2 156.0

Table F.2. u(m, k) Co-
efficients

Class
I

Class II Class
III

Class IV

Node Type 1 23.4 17.7 56.7 26.3

Node Type 2 21.0 7.7 8.1 8.1

Node Type 3 5.3 6.2 2.6 2.0

Table F.3. v(m, k) Co-
efficients

Class
I

Class
II

Class
III

Class
IV

Node Type 1 1.2 1.0 0.9 0.9

Node Type 2 1.2 1.4 1.0 0.2

Node Type 3 0.9 0.7 1.1 1.3

Table F.4. w(m, k) Co-
efficients

Class
I

Class
II

Class
III

Class
IV

Node Type 1 21.0 -1.6 -76.3 -66.3

Node Type 2 43.9 -9.3 27.4 -241.2

Node Type 3 0.9 0.7 1.1 1.3

Table F.5. x(m, k) Co-
efficients

Class
I

Class
II

Class
III

Class
IV

Node Type 1 725 1,191 -625 1,702

Node Type 2 1,083 875 1,795 1,917

Node Type 3 300 1043 273 350

Table F.6. y(m, k) Co-
efficients

Class

I

Class II Class

III

Class IV

Node Type 1 39 -3,054,443 149,591 -38,176,035

Node Type 2 51 -21,936,224 5,230 -182,980,864

Node Type 3 13,733 -102,387 -39,953 1

Table F.7. z(m, k) Co-
efficients

Class

I

Class

II

Class

III

Class

IV

Node Type 1 -121 25,871 257 490

Node Type 2 -184 120 -75 1,331

Node Type 3 -192 447 -76 206

Likewise, the error of the thermal model we used was calculated [75]. The average abso-

lute error between their model and CFD simulations was found to lie within the 0.1-0.4◦C

range, while the maximum absolute error was found to lie in the 0.4-2.8◦C range.
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Table F.8. Execution times (seconds) of PARSEC benchmarks on our lab
servers at highest frequency P-state

CPU Type canneal cg ua sp lu fluidanimateblackscholes bodytrack ep swaptions

Node Type 1 Xeon E3-1225v3 148 110 211 214 276 359 236 178 273 297

Node Type 2 Xeon E5649 195 132 316 343 368 559 315 297 397 485

Node Type 3 Xeon E5-2697v2 178 146 171 328 229 365 222 184 328 277

Table F.9. Execution times (seconds) of PARSEC benchmarks on our lab
servers at lowest frequency P-state

CPU Type canneal cg ua sp lu fluidanimateblackscholes bodytrack ep swaptions

Node Type 1 Xeon E3-1225v3 345 333 687 752 942 1,403 717 657 1,117 1,234

Node Type 2 Xeon E5649 250 195 474 561 624 977 492 452 715 873

Node Type 3 Xeon E5-2697v2 385 280 457 742 636 1,005 525 507 742 797

Table F.10. Power consumption (watts) of a core when executing PARSEC
benchmarks on our lab servers at highest frequency P-state

CPU Type canneal cg ua sp lu fluidanimateblackscholes bodytrack ep swaptions

Node Type 1 Xeon E3-1225v3 5.6 7.1 7.1 6.5 5.1 8.6 7.1 3.9 7.9 8.5

Node Type 2 Xeon E5649 6.5 7.9 10.1 9.3 11.6 9.9 7.7 10.6 9.0 9.6

Node Type 3 Xeon E5-2697v2 4.3 6.7 3.3 6.7 9.5 6.0 8.8 3.3 5.3 3.3

Table F.11. Power consumption (watts) of a core when executing PARSEC
benchmarks on our lab servers at lowest frequency P-state

CPU Type canneal cg ua sp lu fluidanimateblackscholes bodytrack ep swaptions

Node Type 1 Xeon E3-1225v3 1.2 1.7 1.9 2.0 2.1 1.2 0.9 1.4 0.9 0.8

Node Type 2 Xeon E5649 4.0 5.5 5.0 6.4 6.5 4.9 4.0 5.5 4.1 4.5

Node Type 3 Xeon E5-2697v2 2.3 3.4 1.0 4.4 5.5 2.4 4.8 1.0 1.4 1.1
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