Engineering Solances

UCL 21 78

Branch Library

HELIOSTAT FIELD-ARRAY WIND-TUNNEL TEST

by J. E. Cermak¹ J. A. Peterka² Ahsan Kareem³

for

McDonnell Douglas Astronautics Company 5301 Bolsa Avenue Huntington Beach, California 92647

Fluid Mechanics and Wind Engineering Program Fluid Dynamics and Diffusion Laboratory Department of Civil Engineering Colorado State University Fort Collins, Colorado 80523

July 1978

¹Professor-in-Charge, Fluid Mechanics and Wind Engineering Program ²Associate Professor ³Research Associate

CER78-79JEC-JAP-AK2

ACKNOWLEDGMENTS

TAT

50

CG CER-78/79-2

> Support for this investigation was provided by McDonnell-Douglas Astronautics Corporation. Construction of the heliostat models was done by the personnel of the Engineering Research Center Machine Shop. Mr. Jerry Kiely was responsible for overall data collection, Mr. Max Petago supervised pressure data acquisition, Mr. James Garrison prepared the motion pictures of flow visualization and Mr. Joseph Tinucci assisted in the report preparation.

> > LIBRARIES COLORADO STATE UNIVERSITY Fort Cellins, Colorado 80528

TABLE OF CONTENTS

Section		Page
	ACKNOWLEDGMENTS	ii
	LIST OF FIGURES	iv
	LIST OF TABLES	v
	LIST OF SYMBOLS	vi
I	INTRODUCTION	1
II	THE MODELS	3
III	TEST PROCEDURES	6
IV	INSTRUMENTATION AND DATA ACQUISITION	8
	Forces and Moments	8 8 10 10
V	TEST RESULTS	11 11 13 14
	REFERENCES	16
	FIGURES	17
	TABLES	34

LIST OF FIGURES

7]	igure		Page
	1	Meteorological wind tunnel	18
	2	Photographs of single heliostat model and typical cluster configuration in the wind tunnel	19.
	3а-е	Cluster configurations	20
	4	Definition of angle α and force balance assembly	25
	5a-b	Heliostat test model dimensions	26
	6a-c	Pressure tap locations	28
	7	Definition of angle β and coordinate system for force and moment coefficients	. 31
	8	Wind tunnel velocity and turbulence profile for wind flow approaching model configurations	. 32
	9	Plot of force and moment coefficient reduction with varying fence distance	33

LIST OF TABLES

<u>Fable</u>		Page
1	Heliostat field-array wind tunnel study test runs	34
2	Motion picture scene guide	37
3	Force and moment coefficients	38
4	Pressure coefficients	44

LIST OF SYMBOLS

 $A_{ref} = constant area, 0.852 ft^2 model$

 C_{F_x}, C_{F_y} = nondimensional force coefficients in x and y directions, respectively

 $C_{m_z}, C_{m_x}, C_{m_y} = nondimensional moment coefficients about the base z, x, y axes, respectively$

 $C_{mh_x}, C_{mh_y} =$ nondimensional moment coefficients about hinge x and y axes, respectively

 C_{mu}, C_{mu} = nondimensional moment coefficient about upper point x and y axes, respectively

$$C_{p_{mean}} = mean \text{ pressure coefficient } \frac{(P-P_{\infty})_{mean}}{\binom{1}{2} \rho U_{p}^{2}}$$

D = characteristic length (structure height, width, etc.)

F = force along chosen axis

 F_x, F_y = measured force along x and y axes, respectively

H = fence height, 0.8 ft model

L_{ref} = reference length, 0.968 ft model

M = moment about chosen axis

 M_{x}, M_{y}, M_{y} = measured moment about z, x, and y axes, respectively

 M_{h_x}, M_{h_y} = measured hinge moment about x and y axes, respectively

 M_{u_x}, M_{u_y} = measured upper-point moment about x and y axes, x y respectively

P = instantaneous fluctuating pressure at tap

 $P_{mean} = (P-P_{\infty})_{mean}$, mean pressure at tap location

 $\mathrm{P}_{\mathrm{\infty}}$ = instantaneous static pressure in wind tunnel above model

U = local mean velocity

 U_p = reference mean velocity at 1.20 feet model

- U_m = reference free stream mean velocity at 4.12 feet model.
- x,y = mutually perpendicular horizontal coordinates

 - z = vertical coordinate
 - a = tilt angle of heliostat reflector plates
 - β = incident wind direction
 - v = kinematic viscosity of air
 - ρ = density of air

$$\frac{\text{UD}}{\text{W}}$$
 = Reynolds number

 $\frac{\rho U_R^2}{2}$ = reference dynamic pressure

INTRODUCTION

The purpose of this study is to investigate the characteristics of the wind loads produced by airflow patterns in and around certain configurations of heliostat clusters. Although the last decade has seen the emergence of a better understanding of wind loading on structures, the complexity of the interrelationships between the wind velocity field and heliostats in a cluster makes the use of analytical techniques for determining wind loading difficult, if not impossible. Fortunately, techniques have been developed for the small-scale modeling of wind loading on structures in boundary-layer wind tunnels and the subsequent prediction of full-scale wind loading.

The primary consideration in modeling wind forces on structures in a wind tunnel is that the wind characteristics in the tunnel simulate natural boundary-layer winds at the actual site. In general, this requires that the vertical distribution of mean velocity and turbulence in the wind tunnel boundary layer match those at the site and that the Reynolds numbers of the model and the prototype be equal. In addition, the small-scale structure must be geometrically similar to its prototype. A detailed discussion of these requirements and their implementation in the wind tunnel environment can be found in references 1, 2, and 3.

The construction of a 1:22 scale model of the prototype structure and its immediate surroundings (in this case, a flat, open area), submerged in a turbulent boundary layer of the meteorological wind tunnel shown in Figure 1, satisfies all the above criteria except that of equal Reynolds numbers. In the Reynolds number $\frac{UD}{\nu}$, ν is the same for both the tunnel and the full-scale structure. Because of this, the wind tunnel air speed, v, would have to be 22 times the full-scale value if the model and prototype Reynolds numbers are to be equal. Testing at such high wind speeds is not possible. However, for Reynolds numbers larger than 2 x 10⁴, there is no significant change in the values of aerodynamic coefficients as the Reynolds number increases. Since typical Reynolds number values are $10^7 - 10^8$ for full-scale flow and $10^5 - 10^6$ for wind tunnel flow, acceptable flow similarity is achieved without equality of the Reynolds numbers.

THE MODELS

The full-scale structure to be modeled is a field array of heliostat mirrors. Clusters from the field array were chosen so that representative wind flow patterns within typical arrays could be simulated. There were five basic cluster configurations--two compact clusters designated as configurations 1 and 2, and three extended clusters designated as configurations Linear A, Linear B and Linear C. In addition, some of the cluster configurations were modified by placing a fence upwind of the models (see Figure 2 for photographs of a single model and a typical configuration in the wind tunnel; refer to Figure 3 for the cluster configurations).

Configuration 1 was a hexagon-shaped cluster with six heliostat models surrounding an instrumented model in their center. When configuration 1 was run with the fence upstream of the cluster, the instrumented model was moved to the position closest to the fence. Configuration 2 was a diamond-shaped cluster with eight heliostat models surrounding a central instrumented model. This configuration was not run with the fence upstream (see Figures 3a and 3b for these configurations).

The first of the extended clusters, configuration Linear A, consisted of eleven heliostat models upstream of the twelfth instrumented model. This configuration was not run with the fence modification. Configuration Linear B was somewhat similar to configuration Linear A (see Figure 3c) and was run with two fence modifications. The first modification placed the fence parallel to the leading two heliostat models in the cluster, with the instrumented model in the third position. The second modification placed the fence at a 45° angle with respect to

the first modification, with one leading heliostat model removed (see Figure 3d). Configuration Linear C was the only cluster tested solely with the fence in place parallel to the two leading heliostats. Eight heliostat models were placed upstream of the instrumented model in this configuration (see Figure 3e).

The incident wind direction was designated as β for this test with $\beta = 0$ fixed along the long axis of each configuration (see Figure 3). For those configurations tested with the fence, the fence was placed at four different distances from a line drawn through the two leading heliostats of the cluster. These distances were 1H, 1.5H, 2H and 2.5H, where H was the height of the fence. The variable X was used to designate the distance of the fence from the cluster. The fence itself was constructed of sheet metal perforated with uniformly spaced 3/8 in. diameter holes, to simulate a fence with a model height of 0.8 feet and approximately 33 percent porosity.

The model heliostats were constructed of plexiglass to a scale of 1:22. The two reflector plates of the models were separated by a gap which could be partially or completely closed by a plexiglass insert. The reflector plates could also be tilted about their common centerline, with the tilt angle being designated as α and measured in degrees of declination from the horizontal plane (i.e., $\alpha = 90^{\circ}$ indicated the plates were perpendicular to the floor, $\alpha = 180^{\circ}$ indicated stowed position; see Figure 4).

One model was specially constructed to be used with a force balance for the measurement of forces and moments, and another was instrumented with 42 pressure taps for the measurement of wind pressures. Details of the model which was mounted on the force balance are shown in Figure 5.

The heliostats used in the arrays surrounding this model were slightly simplified at the hinge. The pressure tap locations on the model used for pressure measurements are given in Figure 6. The support column for this heliostat was increased in diameter and the hinge details were simplified to accommodate the pressure tubes.

The approach azimuth β was defined with respect to each heliostat as well as with respect to each array configuration. The angle β was defined as an angle in the horizontal plane as shown in Figure 7. The coordinate system used for the force and moment measurements is given in Figures 4 and 7.

TEST PROCEDURES

The study was performed in the meteorological wind tunnel of the Fluid Dynamics and Diffusion Laboratory at Colorado State University. The tunnel is a closed-circuit facility with a test section 1.8 meters (6 ft) square and 26.8 meters (88 ft) long. It is driven by a 400 hp variable-pitch propeller and can maintain velocities varying continuously from 0.61 meters per second to 36.6 meters per second (2 ft per second to 120 ft per second) (see Figure 1).

The heliostat field-array wind tunnel test was divided into six sections, as given in Table 1. In the first section, a single heliostat mounted on a balance to measure forces and moments, with an angle of tilt of $\alpha = 30^{\circ}$, was rotated through five wind directions. The second phase, runs 6-40, was the tilt angle study, in which the tilt angle of the heliostat panels was varied. A single heliostat model was rotated through five wind directions for each of seven tilt angles to obtain the forces and moments acting on the model. The third part of the test, runs 41-50 and 141-150, measured the effect of closing the slot between the heliostat reflector panels. An insert was placed between the panels, first to close the top half of the slot and then to close both the top and bottom halves. Forces and moments were measured for the single heliostat model at five wind directions for each of two tilt angles.

The next section of the test was the cluster study, runs 51-94. With each heliostat model in the cluster set to the same tilt angle, configurations 1, 2 and Linear A were tested for four values of α and four wind directions per tilt angle. The instrumented model in each configuration was then used to obtain forces and moments. The fifth part, runs 95-108A, measured the distribution of mean pressures on the

instrumented model in each cluster. Six values of β were tested for a single heliostat model and for configurations 1 and 2, while three wind directions were tested for configuration Linear A.

The final section of the field-array test, runs 110-137, measured the effects of an upwind fence on the heliostat models. Configurations 1, Linear B and Linear C were tested for two wind directions and four distances from the cluster for each direction. Configuration Linear B was also run at a second fence orientation. The instrumented model in each configuration was used to obtain forces and moments on the model.

7

1. Lee + 1. 1997

INSTRUMENTATION AND DATA ACQUISITION

Forces and Moments

Forces and moments on the instrumented model were measured using an Inca six-component strain-gauge balance, in an x, y, z coordinate system fixed to the model according to Figures 4 and 7. Three forces and two moments were measured on the model. Each strain-gauge bridge of the balance was monitored by a Honeywell Accudata 118 Gauge Control/ Amplifier unit which supplied excitation of the bridge and amplified the bridge output. These units are characterized by a very stable excitation voltage and amplifier gain. Each channel signal was further reduced on line by digital integrating voltmeters for mean values and processed on the Colorado State University Control Data Corporation 6400 computer system.

Calibration of the balance was performed in a test rig in which known forces and moments could be applied to the balance. A calibration matrix was then developed for reducing the mean output of the strain gauges. The load and strain relationship was strictly linear for the range of loads applied in these tests. In addition, the force balance and electronic system are supported by their manufactured specifications to be accurate to within 0.1 percent of full-scale. This would indicate a possible error of 2.5 percent in the force and moment measurements.

Pressures

Mean fluctuating pressures were obtained at each of the 42 pressure taps on the surface of the instrumented model. Forty-two pieces of 1/32 in. I.D. plastic tubing were used to connect the pressure taps to an 80 tap pressure switch mounted below and beside the tunnel floor. The switch was designed and fabricated by the Fluid Dynamics and

Diffusion Laboratory. Each of the measurement ports was directed in turn by the switch to one of the four pressure transducers mounted close to the switch. The switch was operated manually and locked into place by a built-in mechanical indexing feature. Four of the unused pressure ports were connected to a common tube leading outside the tunnel. This arrangement allowed for in-place calibration of the transducers and, by connecting the tube to a pitot tube mounted inside the wind tunnel, automatic monitoring of the tunnel speed.

The pressure transducers used were Statham Model PM 283TC differential strain-gauge transducers with a 0.15 psid range. These were selected because of their stability, their linearity in the required working range, and because their resonant frequency of approximately 2000 cycles per second allows resonance effects on the measured pressures to be ignored. Reference pressures were obtained by connecting the reference sides of the four transducers to a pitot tube mounted inside the tunnel. Since the pitot tube was mounted in the wind flow above the heliostat models, the transducer measured the instantaneous pressure difference between the surface of the instrumented model and the static pressure in the free stream above the models.

Each pressure transducer contains an electrical bridge which was monitored by a Honeywell Accudata 118 Gauge Control/Amplifier unit to provide excitation and amplify the bridge output. The output was then sent via analog lines specially designed to minimize distortion to a Preston Model GMAD-4 Analogy-to-Digital Converter. The A/D converter data was then fed to a Hewlett-Packard System 1000 minicomputer where it was processed and analyzed under program control.

All four transducers were recorded simultaneously for 16 seconds at 250 samples per second. The 16-second time period was chosen as the result of an experiment to determine the length of record necessary to obtain stable mean pressures. Experience with a large number of pressure taps has shown that the overall accuracy for a 16-second sampling period is three percent of the dynamic pressure of the approach wind at the edge of the boundary layer for the mean pressure coefficient.

Velocity Profiles

Mean velocity and turbulence profiles were measured in the wind tunnel for the wind flow approaching the cluster configurations. These were obtained with a Thermosystems Model 1050 constant temperature anemometer with a 0.001 inch diameter platinum film sensing element 0.02 inches long attached to a vertical traverse. These profiles are given in Figure 8.

Flow Visualization

To visually determine the airflow patterns around and within the heliostat configurations, titanium tetrachloride smoke was released in the tunnel near the models. A 484 foot, 18-scene motion picture was made of various configurations, tilt angle and wind direction combinations. A listing of the contents of the film is given in Table 2.

TEST RESULTS

Forces and Moments

The forces and moments measured on the heliostat model are expressed, respectively, in terms of the nondimensional coefficients C_F , C_m , C_{mh} and C_{mu} . They are defined as follows:

force coefficient along the x-axis

$$C_{F_{x}} = \frac{\frac{F_{x}}{\left(\frac{\rho U_{R}^{2}}{2}\right)}}{\left(\frac{A_{ref}}{2}\right)}$$

force coefficient along the y-axis

moment coefficient about the z-axis

$$C_{m_{z}} = \frac{M_{z}}{\left(\frac{\rho U_{R}^{2}}{2}\right)(A_{ref})(L_{ref})},$$

moment coefficient about the x-axis at the base of the model (see Figure 4)

$$C_{m_{x}} = \frac{M_{x}}{\left(\frac{\rho U_{R}^{2}}{2}\right)(A_{ref})(L_{ref})}$$

moment coefficient about the y-axis at the base of the model (see Figure 4)

$$C_{m_{y}} = \frac{\frac{M_{y}}{(\rho U_{R}^{2})}}{\left(\frac{\rho U_{R}^{2}}{2}\right)(A_{ref})(L_{ref})},$$

moment coefficient about the x-axis at the hinge (see Figure 4)

moment coefficient about the y-axis at the hinge (see Figure 4)

moment coefficient about the x-axis at the upper point (see Figure 4)

$$C_{mu_{x}} = \frac{M_{u_{x}}}{\left(\frac{\rho U_{R}^{2}}{2}\right)(A_{ref})(L_{ref})}$$

moment coefficient about the y-axis at the upper point (see Figure 4)

$$C_{mu_y} = \frac{\frac{M_{u_y}}{y}}{\left(\frac{\rho U_R^2}{2}\right)(A_{ref})(L_{ref})}$$

where

 U_R = reference free stream mean velocity at 1.2 feet model,

 ρ_* = density of air,

$$A_{(rof)}$$
 = reference area (0.852 ft² model),

$$L_{(rof)}$$
 = reference length (0.968 ft model),

 F_x, F_y, F_z = measured force along axis,

 M_{z}, M_{x}, M_{y} = measured moment about axis

 $M_{h_{i}}$ = measured hinge moment about axis, and

,M = measured upper-point moment about axis.

The upper-point moments are calculated for a point on the upper surface of the heliostat reflector plates 6.72 in. from the tunnel floor for the model. The hinge moments are calculated at the heliostat hinge, 6,066 in. from the tunnel floor for the model. And the remaining moments are calculated at the base of the heliostat

The force and moment coefficients are given in Table 3.

Pressures

The mean pressures on the instrumented heliostat model are given in terms of the nondimensional pressure coefficient $C_{p_{mean}}$. (No P_{mean} attempt was made to obtain peak pressure coefficients because the small size of the plastic tubing--1/32 in. I.D.--necessary for the model prohibited adequate frequency response.) This mean pressure coefficient relates the mean pressure difference between the model surface and the ambient static pressure measured at each tap on the heliostat model to the mean dynamic pressure in the wind tunnel approach flow. The tunnel mean pressure is measured by a pitot tube suspended in an undisturbed flow area upstream of the models (49.5 in. from the floor for the model). The coefficients were related to the dynamic pressure at 1.20 ft $(1/2 \rho U_{p}^{2})$ using the velocity profile of Figure 8.

The mean pressure coefficient is defined as follows:

 $C_{p_{mean}}^{\dagger} = \frac{(p - p_{\infty})_{mean}}{\left(\frac{\rho U_R^2}{2}\right)}$

where

p = instantaneous fluctuating pressure at tap,

 p_{∞} = instantaneous static pressure in wind tunnel above model, $\frac{\rho U_R^2}{2}$ = dynamic pressure above model at 1.2 ft model.

This coefficient indicates that the mean pressure difference $(p-p_{\infty})_{mean}$ at a given point on the model is some fraction greater or less than the dynamic mean pressure in the tunnel.

The mean pressure coefficients are given in Table 4.

Conclusions

Measurements of force and moment coefficients were taken with the fence in four different positions. Table 3 gives a comparison of data for all configurations with and without the fence. An examination specifically of runs 118, 120, 122, 124 and 126 for configuration Linear B indicates (see Figure 9) that the coefficients $C_{m_{\chi}}$ and $C_{m_{\chi}}$ undergo a substantial reduction with fence protection. Similar conclusions may be drawn by comparing runs 128, 130, 132, 134 and 136 for configuration Linear C (as also shown in Figure 9).

In configurations 1 and 2, the instrumented model was located in the center of a surrounding cluster of seven and nine heliostats, respectively. Table 3 gives a comparison of data for both configurations with varying tilt and wind angles. Runs 59, 60, 61 and 62 indicate that all coefficients were substantially reduced from the case where no heliostats surrounded the model (run 16). They also show that wind direction $\beta = 0^{\circ}$ is not necessarily the direction that causes the highest loading coefficients; C_{m_X} was maximum for a wind of $\beta = 45^{\circ}$ from the x-axis and C_{m_Y} was maximum for $\beta = 180^{\circ}$ from the x-axis.

A comparison of runs 16, 128 and 130 shows an influence of upwind heliostats and a fence addition. Run 16 is a single, unprotected, unfenced, and instrumented heliostat. Run 128 has the instrumented model downstream of eight heliostats, and run 130 is the same as run 128 with the addition of an upstream fence. The data show that the upwind heliostats alone offer no protection in a configuration where channeling between heliostats can be significant. Run 130, however, shows that significant reductions in the wind load are achieved by the addition of a fence at the upwind extent of the linear array.

REFERENCES

- Cermak, J. E., "Aerodynamics of Buildings," Annual Review of Fluid Mechanics, Vol. 8, 1976.
- 2. Cermak, J. E., "Laboratory Simulation of the Atmospheric Boundary Layer," AIAA J1., Vol. 9, September 1971.
- Cermak, J. E., "Applications of Fluid Mechanics to Wind Engineering," A Freeman Scholar Lecture, ASME J1. of Fluids Engineering, Vol. 97, No. 1, March 1975.

FIGURES

METEOROLOGICAL WIND TUNNEL (Completed in 1963) FLUID DYNAMICS & DIFFUSION LABORATORY COLORADO STATE UNIVERSITY

Figure 1. Meteorological wind tunnel.

Figure 2. Photographs of single heliostat model and typical cluster configuration in the wind tunnel.

Cluster No. I

Figure 3a, Cluster configurations.

-

Figure 3c. Cluster configurations.

.

Figure 3e. Cluster configurations.

and a secondary

Figure 4. Definition of angle α and force balance assembly.

Figure 5a. Heliostat test model dimensions.

Heliostat (Not to Scale) Figure 5b. Heliostat test model dimensions.

Figure 6a. Pressure tap locations..

• Taps on Back Side, or on Support Spar

Figure 6b. Pressure tap locations.

. .

O Taps

Figure 6c. Pressure tap locations.

\$

1 16

The Dense of

Figure 7. Definition of angle β and coordinate system for force and moment coefficients.

Table 1.	Heliostat	Field-Array	Wind	Tunnel	Study
	Test Runs				

.

C C :

Slot
Open

Number	ration	a°	β°	3101
35	Single	90	180	Open
36	Single	170	0	Open
37	Single	170	45	Open
38	Single	170	90	Open
39	Single	170	135	Open
40	Single	170	180	Open

.....

Tilt	Angle	Study

33

34

Single

Single

90

90

90

135

Open

Open

Run	Configu-	Tilt	Wind	Slot	Slot Stu	idy			
Number	ration	<u>α</u> °	ß°		Run Number	Configu- ation	Tilt a°	Wind ß°	Slot
7	Single	-10	45	Open	41	Single	45	0	Top half
8	Single	-10	90	Open	42	Single	45	45	closed Top half
9	Single	-10	135	Open	43	Single	45	90	Top half
10	Single	-10	180	Open	44	Single	45	135	Top half
11	Single	10	0	Open	45	Single	45	180	Top half
12	Single	10	45	Open	46	Single	45	0	Both halves
13	Single	10	90	Open	47	Single	45	45	Both halves
14	Single	10	135	Open	48	Single	45	90	Both halves
15	Single	10	180	Open	49"	Single	45	135	Both halves
16	Single	30	0	Open	50	Single	45	180	Both halves
17	Single	30	45	Open	141	Single	30	0	Top half closed
18	Single	30	90	Open	142	Single	30	45	Top half closed
19	Single	30	135	Open	143	Single	30	90	Top half closed
20	Single	30	180	Open	144	Single	30	135	Top half closed
21	Single	45	0	Open	145	Single	30	180	Top half closed
22	Single	45	45	Open	-146	Single	30	0	Both halve: closed
23	Single	45	90	0p en	147	Single	30	45	Both halves closed
24	Single	45	135	Open	148	Single	30	90	Both halve closed
25	Single	45	180	Open	149	Single	30	135	Both halve closed
26	Single	60	0	Open	150	Single	30	180	Both halve closed
27	Single	60	45	Open					
28	Single	60	90	Open					
29	Single	60	135	Open					
50	Single	60	180	Open					
51	Single	90	0	Open	1.1				
32	Single	90	45	Open					

Table 1. Heliostat Field-Array Wind Tunnel Study Test Runs

Run	Configu-	Tilt	Wind	Slot	Run	Configu-	Tilt	Wind	Slot
umber	ration	a	ß		Number	ration	α°	ß°	
1	1	-10	0	Open	91	omitted			
2	1	-10	45	Open	92	Linear A	90	0	Open
3	1	-10	90	Open	93	Linear A	90	8	Open
4	1	-10	180	Open	94	omitted			
5	1	10	0	Open					
6	1	10	45	Open	Pressure	Distribution	Study		
7	1	10	90	Open	Run	Configu-	Tilt	Wind	Slot
58	1	10	180	Open	Number	ration	۵	ß	
9	1	30	0	Open	95	1	30	0	Open
0	1	30	45	Open	96	1	30	45	Open
1	1	30	90	Open	96A	1	30	-45	Open
2	1	30	180	Open	97	1	30	90	Open
3	1	90	0	Open	97A	1	30	-90	. Open
4	1	90	45	Open	98	1	30	180	Open
		90	90	Open	99	2	30	0	Open
4		00	180	Open	100	2	30	45	Open
-	1	. 90	180	Open	100A	2	30	-45	Open
	2	-10	0	Open	101	2	30	90	Open
8	2	-10	45	Open	101A	2	30	-90	Open
59	2	-10	90	Open	102	2	30	180	Open
0	2	-10	180	Open -	103	Single	30	0	Omen
71	2	10	0	Open	104	Single	30	45	Omen
2	2 ·	10	45	Open	104	Cinala		45	open
73	2	10	90	Open	1044	Single	30	-45	Open
4	2	10	180	Open	105	Single	30	90	Open
'5	2	30	0	Open	105A	Single	30	-90	Open
6	2	30	45	Open	106	Single	30	180	Open
7	2	30	90	Open	107	Linear A	30	0	Open
8	2	30	180	Open	108	Linear A	30	8	Open
'9	2	90	0	Open	108A	Linear A	30	-8	Open
0	2 .	90	45	Open					
1	2	90	90	Open					
12	2	90	180	Omen					
13	Linear A	-10	0	Open					
4	Linear A	-10	0	Open					
-	omitted	-10	0	open	1. 194				
	omitted								
0	Linear A	10	0	Open					10-1 K
7	Linear A	10 .	8	Open			4		
8	omitted	- Andrew					1.		
9	Linear A	30	0	Open					
0	Linear A	30	8	0					

. 9\$₆ -

Table 1. Heliostat Field-Array Wind Tunnel Study Test Runs

Fence Study

Run Number	Configu- ation	Tilt 4°	Wind ß°	Slot	Fence Orientation	Fence Distance ¹	Run Number	Configu- ration	Tilt α°	Wind B [°]	Slot	Fence Orientation	Fence Distance
110	1	30	0	Open	0	111	127	Lincar B	30	30	Open	0	2.5H
111	1	30	30	Open	0	1H	127A	Linear B	30	30	Open	45	2.5H
112	1	30	0	Open	0	1.5H	128	Linear C	30	0	Open	No Fence	No Fence
113	1	30	30	Open	0	1.5H	129	Linear C	30	30	Open	No Fence	No Fence
114	1	30	0	Open	0	2H	130	Linear C	30	0	Open	0	1H
115	1	30	30	Open	0	2H	131	Linear C	30	30	Open	0	1H
116	1	30	0	Open	0	2.5H	132	Linear C	30	0	Open	0	1.5H
117	1	30	30	Open	0	2.5H	133	Linear C	30	30	Open	0	1.5H
117A ²	1	30	30	Open	0	2.5H							
118	Linear B	30	0	Open	No Fence	No Fence	134	Linear C	30	0	Open	0	2H
119	Linear B	30	30	Open	No Fence	No Fence	135	Linear C	30	30	Open	0	2H
120	Linear B	30	0	Open	0	1H	136	Linear C	30	0	Open	0	2.5H
120A	Linear B	30	0	Open	45	1H	137	Linear C	30	30	Open	0	2.58
121	Linear B	30	30	Open	0	1H					-1		
121A	Linear B	30	30	Open	45	1H							
122	Linear B	30	0	Open	0	1.5H		1 _H	= fence m	odel heig	ht = 0.8	ft.	
122A	Linear B	30	0	Open	45	1.5H		² Cc	nfigurati	on 117A h	as the in	strumental	
123	Linear B	30	30	Open	0	1.5H		he	eliostat i	n the cen	ter of th	e cluster.	
123A	Linear B	30	30	Open	45	1.5H							
124	Linear	30	0	Open	0	2H							
124A	Linear B	30	0	Open	45	2H							
125	Linear B	30	30	Open	0	2H							
125A	Linear B	30	30	Open	45	2H							
126	Linear B	30	0	Open	0	2 58							
120	binear b	50		open		2.31							
126A	Linear B	30	0	Open	45	2.5H							

Scene	Configuration	Tilt α°	Wind β°	Run Number
1	Single	10	0	6
2	Single	30	0	16
3	Single	90	0	31
4	Single	90	45	32
5	Single	90	90	33
6	1	-10	0	51
7	1	30	0	59
8	1	90	0	63
9	1	90	45	64
10	1	90	90	65
11	2	-10	0	67
12	2	30	0	75
13	2	90	0	79
14	2	90	45	80
15	2	90	90	81
16	Linear A	-10	0	83
17	Linear A	30	0	89
18	Linear A	90	0	92

Table 2. . Motion Picture Scene Guide

1

Model wind velocity: 10 fps Movie Length: 484 ft. Movie speed: 24 frames per second Running time: 13 min. 20 sec.

\$

Table 3. Force and Moment Coefficients

Velocity Study Configuration: Single

Run Number	Tilt a°	Wind ß°	Slot	° _F x	с _{ғу}	с _т	C _m y	°m _x	C _{mh} y	^C mh _x	C _{mu} y	C _{mu} x
1	30	0	Open	-1.129	.033	002	595	.022	.000	.004	.064	.002
2	30	45	Open	-1.068	.017	091	583	043	019	052	.041	053
3	30	90	Open	.031	.091	.045	.009	.088	008	.040	010	.035
4	30	135	Open	.796	.161	.103	.485	.158	.064	.073	.019	.063
5	30	180	Open	1.504	070	.003	.661	013	.104	.024	.045	.028

Slot Study

Configuration: Single

Run Number	Tilt a°	Wind B°	Slot	°Fx	с _{Fу}	°m _z	°my	°m _x	с _{mh} у	c _{mh.x}	с _{тиу}	°mu _x
41	45	0	Top Half	856	.019	.000	446	.006	.005	005	.053	006
42	45	45	Top Half Closed	839	.035	079	422	069	.020	087	.067	089
43	45	90	Top Half Closed	.019	.137	.032	003	.093	013	.021	015	.013
44	45	135	Top Half Closed	.676	.174	.074	.467	.170	.109	.077	.071	.068
45	45	180	Top Half Closed	.852	002	.006	.602	002	.152	001	.104	001
46.	45	0	Both Halves Closed	935	016	000	466	.002	.027	.010	.080	.011
47	45	45	Both Halves Closed	885	.009	086	441	076	.025	080	.075	081
48	45	90	Both Halves Closed	.029	.133	.038	.007	.104	008	.034	010	.026
49	45	135	Both Halves Closed	.724	.172	.071	.470	.176	.087	.085	.047	.075
50	45	180	Both Halves Closed	.948	024	.005	.640	005	.139	.008	.086	.009
141	30	0	Top Half Closed	642	011	.003	267	.007	.071	.013	.107	.013
142	30	45	Top Half Closed	544	.040	036	224	037	.062	058	.093	060
143	30	90	Top Half Closed	.013	.122	.025	.002	.127	005	.062	006	.055
144	30	135	Top Half Closed	.523	.156	.064	.458	.224	.180	.141	.151	.132
145	30	180	Top Half Closed	.623	042	.004	.516	004	.186	.018	.151	.021
146	30	0	Both Halves Closed	706	.010	.001	266	.002	.105	004	.145	005
147	30	45	Both Halves Closed	535	.066	041	224	046	.058	080	.088	083
148	30	90	Both Halves Closed	.002	.128	.027	.011	.131	.010	.063	.010	.055
149	30	135	Both Halves	.564	.152	.071	.480	.237	.181	.156	.149	.147
150	30	180	Both Halves Closed	.735	025	.002	.576	010	.187	.003	.145	.005

39

Tilt Angle Study Configuration: Single

Run Number	Tilt a°	Wind ß°	Slot	°F _X	C _{Fy}	C _{mz}	C _{my}	C _{mx}	C _{mhy}	c _{mhx}	C _{muy}	C _{mu} x
6	-10	0	Open	153	.025	.003	189	004	107	017	098	018
7	-10	45	Open	118	.177	004	126	.148	063	.054	057	.044
8	-10	90	Open	.006	.149	016	002	.116	005	.038	006	.029
9	-10	135	Open	.114	.150	021	.025	.062	035	017	041	025
10	-10	180	Open	.152	.010	.002	026	010	054	014	062	015
11	10	0	Open	128	.020	.001	046	003	.022	013	.029	015
12	10	45	Open	102	.150	.014	042	.073	.012	006	.017	015
13	10	90	Open	.008	.129	.005	004	.115	008	.047	009	.039
14	10	135	Open	.139	.155	008	.128	.146	.054	.063	.047	.055
15	10	180	Open	.146	.012	.001	.195	007	.117	014	.108	014
16	30	0	Open	626	.004	.003	214	.001	.115	001	.150	001
17	30	45	Open	538	.031	032	219	049	.064	065	.094	067
18	30	90	Open	.014	.114	.024	.007	.111	000	.051	001	.044
19	30	135	Open	.176	.151	.045	.085	.182	008	.102	018	.093
20	30	180	Open	.619	020	.004	.524	009	. 196	.002	.161	.003
21 .	45	0	Open	892	.017	001	449	.006	.021	004	.071	005
22	45	45	Open	783	.034	066	410	064	.003	081	.047	083
23	45	90	Open	.036	.123	.035	001	.101	020	.036	022	.029
24	45	135	Open	.625	.210	.067	.404	.183	.073	.071	.038	.059
25	45	180	Open	.866	008	.004	.574	006	.117	002	.068	002
26	60	0	Open	-1.115	004	000	588	.006	.000	.008	.063	.008
27	60	45	Open	-1.085	026	091	584	057	012	043	.049	041
28	60	90	Open	.029	.118	.046	.007	.090	008	.028	010	.021
29	60	135	Open	.748	.200	.100	.479	.166	.084	.060	.042	.049
30	60	180	Open	1.046	023	.000	.667	006	.114	.006	.055	.007
31	90	0	Open	-1.318	.022	.001	741	.007	046	005	.028	006
32	90	45	Open	-1.155	.019	083	657	.003	047	006	.018	007
33	90	.90	Open	.011	.126	.047	000	.056	006	010	007	018
34	90	135	Open	.883	.204	.110	.502	.103	.036	004	014	016
35	90	180	Open	1.190	007.	005	.706	.000	.078	.004	.011	.004
36	170	0	Open	137	006	000	131	.000	058	.003	050	.003
37	170	45	Open	109	.112	.016	109	.082	051	.023	045	.016
38	170	90	Open	012	.122	.009	007	.033	001	030	000	037
39	170	135	Open	.088	.155	006	.016	.023	030	058	035	067
40	170	180	Open	.115	019	.002	006	001	066	.009	072	.011

Cluster Study Configuration: 1

Run Number	Tilt °	Wind ß°	Slot	C _F X	C _{Fy}	C _{mz}	с _{ту}	C _m x	c _{mh} y	^C mh x	C _{muy}	C _{mu} x
51	-10	0	Open	129	011	.001	116	.003	048	.009	040	.009
52	-10	45	Open	118	.120	.000	136	.154	073	.090	067	.083
53	-10	90	Open	.006	.096	016	003	.138	006	.087	007	.081
54	-10	180	Open	.096	021	.002	.042	.001	008	.013	014	.014
55	10	0	Open	081	.025	000	047	002	004	015	.001	017
56	10	45	Open	097	.165	.014	023	.091	.028	.004	.034	006
57	10	90	Open	.017	.145	.004	.006	.130	003	.053	004	.045
58	10	180	Open	.127	006	.001	.115	005	.047	002	.040	002
59	30	0	Open	389	.015	003	109	.008	.095	000	.117	001
60	30	45	Open	484	.041	021	174	007	.080	029	.108	031
61	30	90	Open	003	.133	.026	.009	.125	.010	.054	.010	.047
62	30	180	Open	. 459	045	.008	.452	011	.208	.013	.182	.015
63	90	0	Open	892	.039	000	507	.018	036	002	.014	005
64	90	45	Open	-1.164	001	062	657	.001	042	.002	.023	.002
65	90	90	Open	021	.116	.045	014	.065	003	.003	002	003
66 .	90	180	Open	.769	020	.004	.437	009	.031	.002	012	.003

Cluster Study

Configuration:	2
	-

Run Number	Tilt α°	Wind ß°	Slot	¢ _{Fx}	с _{Fу}	C _{mz}	°C _{my}	°m _x	c _{mhy}	C _{mh} x	C _{muy}	c _{mux}
67	-10	0	Open	153	.011	.001	167	.007	086	.001	077	.001
68	-10 .	45	Open	094	.135	004	077	.155	027	.083	021	.075
69	-10	90	Open	.035	.089	010	004	.085	022	.037	023	.032
70	-10	180	Open	.207	014	.002	.007	006	101	.001	112	.002
71	10	0	Open	126	.013	.004	032	.008	.034	.001	.041	.000
72	10	45	Open	087	.136	.009	052	.046	006	026	001	034
73	10	90	Open	.043	.103	.004	001	.088	023	.034	026	.028
74	10	180	Open	.133	.000	.003	.227	007	.155	007	.147	007
75	30	0	Open	446	.005	.007	155	.011	.079	.008	.104	.008
76	30	45	Open	446	.070	036	223	049	.012	085	.037	089
77	30	90	Open	.016	.075	.014	.005	.084	004	.045	005	.040
78	30	180	Open	.457	018	.003	.369	.001	.127	.011	.101	.012
79	90 :	0	Open	738	003	002	413	.003	024	.004	.018	.005
80	90	45	Open	-1.153	019	118 -	668	.003	060	.013	* .005	.014
81	90	90	Open	0.025	.082	.025	026	.053	013	.010	011	.005
82	90	* 180	Open	.766	013	.004	.434	.000	.030	.007	013	.008

Table 3. Force and Moment Coefficients

Cluster Study

Configuration: Linear A

S.C.

Run Number	Tilt a°	Wind ß°	Slot	°F _X	C _{Fy}	C _{mz} .	C _{my}	°m _x	C _{mhy}	c _{mh} x	C _{muy}	C _{mu} x
83	-10	0	Open	128	048	.001	159	.008	090	.033	083	.035
84	-10	8.	Open	152	.016	.001	167	.022	086	.014	077	.013
85	Omitte	ed										
86	10	0	Open	090	074	.002	029	.009	.018	.048	.023	.052
87	10	8	Open	132	.028	.008	034	.031	.035	.016	.042	.015
88	Omitte	ed										
89	30	0	Open	290	071	.004	079	.014	.073	.051	.089	.055
90	30	8	Open	361	003	.004	148	.003	.042	.005	.062	.005
91	Omitte	ed										
92	90	0	Open	751	061	.006	422	.014	025	.046	.017	.049
93	90	8	Open	638	014	.015	374	.008	037	.016	001	.016
94	Omitte	ed	-									

Fence Study

Configuration: 1 with Fence

Run No.	Tilt α°	Wind ß°	Slot	Fence 1 Distance ¹	с _{ғх}	с _F у	°mz	с _{ту}	с _т х	C _{mh} y	C _{mh} x	с _{тиу}	C _{mu} x
110	30	0	Open	1H	036	.002	000	007	002	.012	003	.014	003
111	30	30	Open	1H	039	004	.001	008	.000	.012	.002	.015	.002
112	30	0	Open	1.5H	036	010	.002	006	008	013	003	.015	002
113	30	30	Open	1.5H	025	002	.001	007	000	006	.001	007	.001
114	30	0	Open	2H	023	017	.003	.002	009	.014	.000	.015	.001
115	30	30	Open	2H	017	021	.001	007	001	.002	.010	.003	.011
116	30	0	Open	2.5H	.001	011	.002	005	004	006	.002	006	.002
117	30	30	Open	2.5H	001	015	.002	007	.000	006	.008	006	.009
117A ²	30	30	Open	2.5H	004	006	000	002	002	.001	.002	.001	.002

 1 H = fence model height = 0.8 ft.

 2 Configuration 117A has the instrumented heliostat in the center of the cluster.

Table 3. Force and Momentum Coefficients

32

Configuration:	Linear	В	with	fence	at	0°

Run No.	Tilt a°	Wind ß°	Slot	Fence Distance	C _{FX}	C _{Fy}	C _{mz}	C _{my}	C _{mx}	C _{mh} y	c _{mhx}	C _{muy}	C _{mux}
118	30	0	Open	No fence	735	.022	.004	255	.015	.131	.003	.172	.002
119	30	30	Open	No fence	416	.027	.016	135	.043	.083	.028	.107	.027
120	30	0	Open	1H	013	027	.002	.000	.006	.007	.020	.008	.022
121	30	30	Open	1H	021	006	.002	002	.001	.009	.004	.011	.005
122	30	0	Open	1.5H	.011	004	.002	005	.001	011	.003	012	.003
123	30	30	Open	1.5H	010	.002	.001	003	001	.002	003	.003	003
124	30	0	Open	2H	026	004	.001	011	005	.003	003	.004	003
125	30	30	Open	2H	046	006	.001	002	006	.022	003	.025	003
126	30	0	Open	2.5H	.004	009	.001	015	002	017	.003	017	.003
127	30	30	Open	2.5H	029	.004	.001	008	007	.007	009	.009	010

 1 H = fence model height = 0.8 ft.

Fence Study

Configuration: Linear B with Fence at 45°

Run No.	Tilt a°	Wind B°	Slot	Fence 1 Distance	CFX	C _{Fy}	C _{mz}	с _{ту}	C _m x	C _{mhy}	c _{mh x}	C _{muy}	C _{mu} x
120A	30	0	Open	1H	114	.012	007	051	021	.009	028	.015	028
121A	30	30	Open	1H	146	. 119	.006	104	.031	027	032	019	039
122A	30	0	Open	1.5H	191	001	014	084	035	.016	034	.027	034
123A	30	30	Open	1.5H	147	.117	.001	107	.008	029	053	021	060
124A	30	0	Open	2H	296	.006	030	123	067	.033	070	.049	070
125A	30	30	Open	2H	177	.109	006	127	010	033	067	023	074
126A	30	0	Open	2.5H	339	021	034	140	076	.039	064	.058	063
127A	30	30	Open	2.5H	202	.091	010	128	018	021	065	010	071

 $\overline{{}^{1}_{H}}$ = fence model height = 0.8 ft.

Run No.	Tilt a°	Wind ß°	Slot	Fence 1 Distance	CFX	C _{Fy}	C _{mz}	C _{my}	C _{mx}	C _{mh} y	C _{mh} x	C _{muy}	C _{mu} x
128	30	0	Open	No Fence	797	.009	.004	301	.014	.118	.009	.162	. 009
129	30	30	Open	No Fence	469	.013	.010	140	.020	.106	.013	.133	.012
130	30	0	Open	1H	315	.004	.000	114	.007	.051	.005	.069	.004
131	30	30	Open	1H	297	.010	.007	114	.012	.043	.007	.059	.006
132	30	0	Open	1.5H	317	.008	.001	118	.010	.049	.006	.066	.006
133	30	30	Open	1.5H	274	.008	.007	104	.009	.040	.005	.055	.005
134	30	0	Open	2H	312	.000	.002	121	.008	.043	.008	.061	.008
135	30	30	Open	2H	270	.012	.007	105	.009	.038	.003	.056	.002
136	30	0	Open	2.5H	308	002	.002	124	.007	.038	.008	.055	.008
137	30	30	Open	2.5H	289	.020	.007	112	.009	.040	002	.057	003
138	Omitt	ed					1. 1. 1.						
139	Omitt	ed		1-1-11-3	*	1							

Fence Study Configuration: Linear C

140 Omitted

44

			1103501	ie ocuuy			
Run 9	5	β = (0°	Run 9	16	β = 4	15°
Confi	guration 1	α = 3	30°	Confi	guration 1	$\alpha = 3$	so°
Тар	C _p mean	Тар	C p _{mean}	Тар	C _{pmean}	Тар	C _{pmean}
1	134	22	658	1	.017	22	661
2	127	23	720	2	.174	23	699
3	105	24	552	3	.068	24	354
4	130	25	680	4	.020	25	939
5	202	26	.363	5	105	26	862
6	153	27	809	6	083	27	964
7	.172	28	500	7	.501	28	.730
8	018	29	669	8	.233	29	948
9	.045	30	703	9	.185	30	-1.178
10	.286	31	995	10	.279	31	.056
11	.290	32	.101	11	056	32	573
12	080	33	760	12	086	33	-1.138
13	-1.390	34	881	13	-1.308	34	-1.217
14	666	35	718	14	793	35	-1.154
15	763	36	774	15	988	36	-1.200
16	638	37	465	16	703	37	856
17	203	38	820	17	410	38	706
18	945	39	857	18	823	39	643
19	314	40	651	19	358	40	713
•20	701	41	613	20	472	41	255
21 *	277	42	370	21	562	42	496

1

Ser Maria

Run	96A	β =	- 45°	Run 9	7	β =	90°
Conf	iguration 1	$\alpha = 30^{\circ}$		Confi	Configuration 1		30°
Тар	C pmean	Тар	C _{pmean}	Тар	C pmean	Тар	Cpmean
1	077	22	573	1	149	22	527
2	.105	23	435	2	137	23	.771
3	.264	24	395	3	108	24	.672
4	.155	25	960	4	102	25	490
5	.022	26	.453	5	114	26	502
6	.377	27	522	6	140	27	502
7	.217	28	-1.082	7	183	28	344
8	.229	29	-1.046	8	139	29	569
9	.413	30	-1.095	9	102	30	.570
10	.499	31	-1.282	10	113	31	.334
11	.694	32	-1.254	11	121	32	-1.062
12	.482	33	.236	12	136	33	959
13	656	34	-1.095	13	.597	34	756
14	518	35	-1.130	14	.757	35	596
15	843	36	-1.143	15	619	36	088
16	814	37	793	16	509	37	.168
17	041	38	665	17	200	38	332
18	893	39	-1.235	18	187	39	127
19	517	40	-1.356	19	273	40	286
20	662	41	372	20	238	41	.838
21	455	42	229	21	511	42	413

Run 9	97 A	β =	-90°	Run 9	98	β =	180°
Conf	iguration 1	α = .	30°	Confi	guration 1	α =	30°
Тар	C pmean	Тар	C P _{mean}	Тар	C p _{mean}	Тар	C p _{mean}
1	111	22	203	1	-1.325	22	.856
2	108	23	250	2	608	23	-1.117
3	094	24	365	3	236	24	.185
4	104	25	327	4	783	25	175
5	445	26	590	5	-1.576	26	273
6	500	27	.537	6	-1.074	27	309
7	054	28	517	7	098	28	315
8	095	29	486	8	387	29	.656
9	073	30	506	9	279	30	408
10	088	31	735	10	266	31	384
11	562	32	843	11	547	32	393
12	492	33	578	12	905	33	368
13	341	34	.429	13	284	34	499
14	241	35	670	14	401	35	.624
15	463	36	644	15	.039	36	093
16	381	37	269	16	170	37	000
17	014	38	517	17	382	38	139
18	.360	39	471	18	.043	39	.014
19	.045	40	.634	19	. 383	40	463
20	051	41	260	20	.615	41	036
21	224	42	010	21	.300	42	.171

Run	99	β =	0°	Run 1	00	β = 4	5°
Conf	iguration 2	$\alpha = 30^{\circ}$		Confi	guration 2	$\alpha = 30^{\circ}$	
Тар	Cpmean	Тар	C _{pmean}	Тар	C _{pmean}	Тар	C _{pmean}
1	047	22	630	1	.150	22	851
2	.122	23	622	2	.090	23	898
3	.149	. 24	434	3	008	24	852
4	.077	25	762	4	.022	25	964
5	062	26	.457	5	086	26	-1.204
6	.012	27	804	6	178	27	976
7	.423	28	597	7	.268	28	.681
8	.223	29	734	8	015	29	961
9	.244	30	804	9	025	30	-1.047
10	.372	31	709	10	.021	31	.194
11	.085	32	140	11	216	32	325
12	.019	33	803	12	188	33	939
13	-1.178	34	699	13	210	34	-1.016
14	716	35	590	14	881	35	956
15	882	36	651	15	-1.067	36	-1.052
16	894	37	805	16	769	37	010
17	686	38	970	17	462	38	832
18	-1.194	39	914	18	983	39	394
19	460	40	941	19	584	40	665
20	618	41	494	20	844	41	874
21	424	42	326	21	754	42	658

Run 3	100A	β =	-45°	Run 1	01	β = 9	90°	
Conf	iguration 2	$\alpha = 30^{\circ}$		Confi	guration 2	$\alpha = 30^{\circ}$		
Тар	C _{pmean}	Тар	C _{pmean}	Тар	C Pmean	Тар	C pmean	
1	155	22	600	1	150	22	454	
2	.051	23	374	2	158	23	.454	
3	.314	24	287	3	089	24	.471	
4	.252	25	-1.059	4	106	25	366	
5	.281	26	183	5	108	26	393	
6	.549	27	.156	6	134	27	365	
7	.032	28	-1.009	7	134	28	274	
8	.185	29	-1.063	8	143	29	454	
9	.295	30	-1.064	9	098	30	.355	
10	.304	31	981	10	115	31	.144	
11	.613	32	-1.143	11	104	32	684	
12	.607	33	.389	12	126	33	632	
13	781	34	976	13	.491	34	428	
14	503	35	954	14	.426	35	361	
15	803	36	-1.001	15	483	36	108	
16	848	37	748	16	419	37	.119	
17	.314	38	070	17	104	38	276	
18	925	39	-1.130	18	165	39	117	
19	628	40	-1.305	19	172	40	239	
20	732	41	329	20	164	41	.598	
21	554	42	284	21	384	42	266	

Run 1	101 A	β =	-90°	Run 1	02	β =	180°
Conf	iguration 2	α =	30°	Confi	guration 2	α =	30°
Тар	C _{pmean}	Тар	C _{pmean}	Тар	C P _{mean}	Тар	C p _{mean}
1	087	22	201	1	-1.027	22	.626
2	091	23	187	2	659	23	178
3	067	24	295	3	427	24	.204
4	080	25	203	4	754	25	084
5	267	26	490	5	-1.114	26	233
6	188	27	.366	6	595	27	221
7	037	28	425	7	224	28	247
8	062	29	412	8	445	29	.595
9	100	30	415	9	251	30	351
10	103	31	518	10	254	31	323
11	355	32	637	11	262	32	320
12	186	33	442	12	442	33	330
13	283	34	.333	13	.006	34	416
14	212	35	446	14	193	35	.435
15	347	36	414	15	.104	36	.009
16	293	37	176	16	.152	37	.113
17	002	38	367	17	097	38	.078
18	.226	39	304	18	.067	39	.225
19	.179	40	.449	19	.465	40	203
20	.036	41	234	20	.484	41	163
21	241	42	. 0'33	21	.412	42	.415

 $\beta = 0^{\circ}$

Run 103

Conf	iguration S	Single a :	= 30°	Confi	Configuration Single $\alpha = 30^{\circ}$			
Тар	C Pmean	Тар	C _{pmean}	Тар	C _{pmean}	Тар	·C _{pmean}	
1	.004	22	811	1	.056	22	883	
2	.258	23	-1.016	2	.208	23	916	
3	.286	24	657	3	.108	24	832	
4	.186	25	842	4	.045	25	915	
5	044	26	.551	5	112	26	876	
6	.164	27	876	6	075	27	905	
7	.617	28	653	7	.554	28	.586	
8	.403	29	858	8	.234	29	967	
9	.502	30	879	9	.196	30	-1.159	
10	.696	31	944	10	.304	31	.125	
11	.423	32	012	11	010	32	313	
12	.239	33	-1.195	12	059	33	928	
13	-1.533	34	985	13	-1.068	34	986	
14	-1.033	35	788	14	939	35	895	
15	-1.054	a 36	865	15	-1.279	36	938	
16	-1.098	37	-1.055	16	457	37	508	
17	763	38	-1.220	17	389	38	808	
18	-1.404	39	-1.218	18	985	39	608	
19	622	. 40	-1.370	19	496	40	721	
20	794	41	892	20	799	41	884	
21	538	42	401	21	.759	42	669	

Run 104

 $\beta = 45^{\circ}$

Run 105

 $\beta = 90^{\circ}$

 $\beta = -45^{\circ}$

Conf	iguration Sim	ngle a	= 30 [°]	Confi	Configuration Single $\alpha = 30^{\circ}$			
Тар	C _{pmean}	Тар	C _{pmean}	Тар	C P _{mean}	Тар	C Pmean	
1	151	22	604	1	136	22	537	
2	.065	23	369	2	130	23	.771	
3	.268	24	276	3	085	24	.667	
4	.196	25	971	. 4	096	25	502	
5	.240	26	.201	5	124	26	507	
6	.483	27	207	6	143	27	490	
7	.183	28	991	7	150	28	307	
8	.227	29	992	8	120	29	573	
9	.370	30	-1.014	9	107	30	.542	
10	.439	31	954	10	117	31	.245	
11	.616	32	-1.096	11	109	32	-1.024	
12	.535	33	.413	12	134	33	946	
13	666	34	994	13	.597	34	707	
14	484	35	924 .	14	.731	35	521	
15	825	36	968	15	606	36	077	
16	826	37	692	16	520	37	.154	
17	.085	38	061	17	195	38	342	
18	908	39	-1.154	18	197	39	118	
19	564	40	-1.141	19	259	40	293	
20	772	41	316	20	239	41	.830	

- .273

' 21

- .511

42

- .379

42

21

- .526

52

œ .

Run 104 A

Run 105A

 $\beta = -90^{\circ}$

Run 106

$\beta = 180^{\circ}$

Configuration Single $\alpha = 30^{\circ}$

Configuration Single $\alpha = 30^{\circ}$

Тар	C _{pmean}	Тар	C p _{mean}	Тар	C _{pmean}	Тар	C Pmean
1	112	22	215	1	-1.176	22	.923
2	108	23	246	2	-1.087	23	161
3	089	24	410	3	682	24	.516
4	100	25	295	4	-1.251	25	090
5	560	26	618	5	-1.184	26	264
6	610	27	.580	6	-1.032	27	227
7	037	28	542	7	372	28	264
8	085	29	506	8	797	29	.639
9	099	30	523	9	442	30	379
10	103	31	773	10	354	31	410
11	659	32	902	11	488	32	436
12	598	33.	728	12	841	33	436
13	344	34	.634	13	011	34	598
14	264	35	729	14	308	35	.708
15	435	36	725	15	.135	36	.067
16	381	37	259	16	.221	37	.192
17	.005	38	538	17	242	38	.177
18	.366	39	428	18	.156	39	.370
19	.189	40	.684	19	.733	40	374
20	.002	41	281	20	.670	41	070
21	274	42	008	21	.623	42	.591

Run 107

 $\beta = 0^{\circ}$

Run 108

Configuration Linear A $\alpha = 30^{\circ}$

Configuration Linear A $\alpha = 30^{\circ}$

Тар	C _{pmean}	Тар	C _{pmean}	Тар	C _{pmean}	Тар	C _{pmean}
1	070	22	445	1	016	22	636
2	.011	23	493	2	.075	23	684
3	.036	24	346	3	.111	24	495
4	013	25	530	4	.066	25	813
5	134	26	.289	5	070	26	.334
6	.047	27	538	6	006	27	902
7	.254	28	309	7	.206	28	492
8	.090	29	516	8	.141	29	738
9	.133	30	543	9	.182	30	857
10	.261	31	575	10	.258	31	657
11	.127	32	.025	11	.132	32	718
12	.000	33	628	12	.023	33	692
13	773	34	580	13	581	34	792
14	446	35	468	. 14	545	35	614
15	574	36	591	15	826	36	700
16	488	37	525	16	480	37	657
17	362	38	656	17	428	38	729
18	774	39	669	18	863	39	664
19	247	40	580	19	331	40	701
20	435	41	457	20	542	41	586
21	237	41	217	21	338	42	380

Run	108 A	β	=	-8°
				700

Configuration	Linear	A	Of	= -	50	
---------------	--------	---	----	-----	----	--

Тар	Cpmean	Тар	C _{pmean}
1	097	22	442
2	053	23	441
3	029	24	257
4	080	25	595
5	193	26	.395
6	076	27	699
7	.179	28	505
8	.024	29	566
9	.076	30	612
10	.185	31	614
11	.148	32	020
12	022	33	506
13	-1.005	34	696
14	503	35	566
15	707	36	569
16	648	37	487
17	427	38	581
18	921	39	610
19	340	40	34:
20	504	41	36
21	293	42	20