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ABSTRACT OF DISSERTATION 

HEIFER PREGNANCY GENETIC PREDICTION AND 

SIMULATION MODELING TECHNIQUES 

The Colorado Beef Cattle Production Model (CBCPM) was rewritten with an object 

oriented design and used to simulate heifer pregnancy data with varying levels of age at 

puberty (AAP), probability of conception (PCON), and length of breeding season. Five 

percent of the heifers were simulated infertile due to non-genetic causes. Simulated data were 

used to estimate heritability of heifer pregnancy and to obtain EBV using threshold models. 

The EBV were tested for accuracy of prediction of the simulated genetic fertility traits. 

Object oriented methods used illustrated the ability of these techniques and tools, such 

as Unified Modeling Language, at organizing complex processes in ways to reduce errors and 

code maintenance effort, and to facilitate collaboration among developers. Adoption of these 

tools will be critical to the advancement of systems models. 

Heritability of heifer pregnancy from 20,000 heifers with very early puberty in the first 

25 d of the breeding season was .139, .107, and .143 for mean PCON of 60, 70, and 80 %, 

respectively, close to the . 10 input heritability of PCON. The higher estimates may be due to 

a few heifers having two opportunities to breed. With very late puberty and 80 % mean 

PCON in a 25 d breeding season the heritability estimate of AAP was .337, lower than the 
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simulated .40 heritability. The estimate was lower because there was not 100 % conception, 

some heifers were infertile, and puberty was observed as a threshold trait. 

Heritability estimates of heifer pregnancy generally decreased as breeding season 

length increased, likely due to an increasing percent of open infertile heifers. The ability of the 

variance component estimation software to converge on an estimate decreased as the number 

of open, fertile heifers decreased. The most difficulty was with high PCON, early puberty, and 

long breeding seasons; only one out of 100 estimates converged at 340 d AAP, 80 % PCON, 

and 120 d breeding season. 

Calculated accuracy for heifer pregnancy EBV for the sires of the heifers using 

prediction error variances from a linear model, with the binary pregnancy observations treated 

as continuous data, overestimated accuracy of the EBV with respect to the simulated traits 

in all cases. Calculated accuracy was insensitive to changes in frequency of heifer pregnancy 

observations. 

Accuracy calculated as the simple correlation of the EBV with each simulated fertility 

trait for the sires of the heifers was highest in most cases at the shortest breeding season. The 

correlation with AAP was essentially zero for early puberty, and strongest (-.775) at late 

puberty. As breeding season length increased the AAP correlation declined toward zero. The 

accuracy for PCON was less sensitive to changes in AAP and breeding season length, ranging 

from .146 to .753; the strongest correlations were with early puberty and low PCON. 

Carlton R. Comstock 
Department of Animal Sciences 
Colorado State University 
Fort Collins, CO 80523 
Spring, 2009 
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Chapter 1 

Introduction 

Beef cattle production depends on the ability of animals to reproduce. As the first step 

in the production process, reproduction rate sets the limits for production and for further 

management decisions. This dependency has lead researchers (Wilham, 1973; Melton, 1995) 

to conclude that within typical production systems, the relative economic importance of 

reproduction is several times greater than that of production. 

Current beef cattle production practices require a heifer to first calve at 2 y of age and 

to calve at the same time each subsequent year. This requires females to breed within a limited 

amount of time at a fixed time of year. They are able to meet these requirements under ideal 

conditions, but ideal conditions for reproduction are typically not the most profitable. Ideal 

conditions consume management and feed resources, both of which come at a cost. In 

addition to low feed costs, the producer has other objectives which may conflict with ideal 

conditions for reproduction, such as maximizing sale weight. The ability to genetically 

improve reproductive performance potentially allows the producer to lower costs while 

maintaining the same level of output. 

Until recently, few genetic predictions for reproductive traits have been available to 

producers. Lacking a genetic prediction, they have primarily used culling of open females as 

a way to control genetic potential for reproduction. However, selection on phenotype can 

have very low accuracy, and pregnancy is sex-limited, making accuracy of bull selection even 

lower. An exception is scrotal circumference of yearling bulls, which has been shown to be 
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genetically correlated to age at puberty of heifers and moderately heritable (Martin et al., 

1992; Morris et al., 2000). 

In an effort to increase accuracy of selection, several female traits have been studied 

as indicators of fertility (e.g. age at puberty, days to calving). In general, these traits have 

been considered to be lowly heritable. This is in part because reproduction is influenced by 

many additional management and environmental factors, and because reproductive potential 

is expressed as a binary observation (pregnant or not pregnant). Low heritability estimates 

also result from traits that are analyzed as a composite of several underlying factors and 

because linear statistical models have been used for traits expressed categorically. In other 

cases, the required data are unavailable (e.g., a list of all heifers exposed to breeding). 

Recently more detailed record keeping by breed associations and development of threshold 

models have allowed development of genetic predictions for traits such as Stayability and 

Heifer Pregnancy. 

In addition to predicting genetic potential for reproduction, cattle producers must be 

aware of the effects of management decisions on reproduction. These effects are difficult to 

observe and quantify, especially their long-term implications on breeding decisions. One way 

to help researchers and producers determine optimal genetic and management decisions is to 

develop computer simulation models of beef production. A comprehensive systems model is 

ideal because there are so many factors that interact with reproduction. 

Several models of beef cattle production systems exist. However, current models have 

limited abilities to model beef cattle reproduction, and models with greater detail on 

reproduction are generally not systems models. I found only one systems model using a 21 -d 
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estrous cycle (Azzam et. al, 1990), as opposed to daily probability of conception models, in 

the literature. Most models work empirically, and many use an average animal instead of 

individual animals with variability. The ability to model individual animal variation is helpful 

and provides a better picture of the risk involved in genetic and management decisions. 

In addition, current models of beef cattle systems are primitive with respect to the 

software engineering techniques used to implement them. All beef cattle simulation models 

I have found in the literature were written in Fortran. As best I can determine, only one of the 

models (Tess and Kolstad, 2000a) used data types more advanced than the intrinsic Fortran 

77 data types. None of the models was implemented using object oriented techniques or 

languages. 

The current state of beef cattle simulation modeling is not a reflection of available 

computer power (e.g. processing speed or storage space), and it is likely not limited by 

knowledge of animal science. Rather, I believe it has been limited by the ability of the 

individuals developing models to manage systems of this complexity. To date the complexity 

has been handled by having a few people dedicated to developing and maintaining a particular 

model, but with the result that the model becomes so complex that other researchers can not 

easily make modifications for their own purposes. Instead, they start from scratch and develop 

a model they understand and trust based on their familiarity with it. This limits the availability 

of modeling as a research tool for those without the resources to immerse themselves in the 

code. It also limits the complexity of the models because the developers seldom have 

expertise at all levels. 

Given the potential of a systems model to be used as a research tool for improving 
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reproduction, my first objective was to develop a mechanistic, individual based model of 

female beef cattle reproduction. The model was designed to be implemented within a 

comprehensive beef cattle production simulation model. My intent was to develop this model 

in a manner that would illustrate the advantages of modern programming techniques and 

languages. 

My second objective was to determine the effect of varying the levels of inherent 

fertility and varying management (by altering the length of the breeding season) on genetic 

predictions for heifer pregnancy. In particular, I wished to 1) determine if important genotype 

by environment interactions exist for genetic predictions of heifer pregnancy with respect to 

inherent fertility, simulated as varying levels of age at puberty and probability of conception, 

and 2) characterize the accuracy of heifer pregnancy genetic predictions with respect to the 

frequency of pregnancies as controlled by breeding season length and influenced by inherent 

fertility. 

Both Chapters 2 and 3 discuss the development of the reproduction model, but from 

different perspectives. Chapter 2 details the biological components considered for the model, 

and is intended for users of the model. Chapter 3 explains the use of object oriented design 

and programming to implement the model, and is intended for use by model developers. 

Chapter 4 follows the two development chapters with application of the model to generating 

and analyzing data for study of genetic predictions of heifer pregnancy. I hope Chapter 3 will 

be helpful for modelers not necessarily interested in reproduction. Chapter 2 is more useful 

for interpreting the results of Chapter 4. 
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Chapter 2 

Design of The Reproduction Simulation Model 

Introduction 

Existing models of beef cattle production span the spectrum of systems complexity. 

They range from models of one component of a single animal's physiology to models that 

include hundreds of individual animals in a herd over many years. While it is possible to gain 

insight from a model of a specific phase of beef cattle production or a specific biological 

system, it is more revealing to model the whole production system. By modeling the animal 

biology, management, and other environmental factors, it is possible to observe interactions 

that might not be expressed when modeling just a few components of the system. 

Animal scientists have been using computers to model beef cattle production systems 

since at least the mid 1970's, and as computer abilities have increased, so has the complexity 

of the models. Beef cattle modeling has reflected limitations in computer capability; tracking 

individuals in large herds across multiple years consumes computer memory and requires high 

speed processors. 

My objective was to develop a reproduction module to be used within a 

comprehensive beef cattle systems model. This module was intended to be as mechanistic as 

possible, with individual based stochastic and genetic components, and to have management 

flexibility. 
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Literature Review 

The TAMU Model and its Descendants. One of the more widely used systems model 

was developed at Texas A&M University (TAMU), and is known as the TAMU or Texas 

model. Described by Sanders and Cartwright (1979a,b), the model was designed to allow 

components, such as growth, body condition, and fertility, to interact and to use equations 

that were biologically interpretable. Like nearly any model, the TAMU model was influenced 

by previous models. A major difference in design was that previous models took performance 

level as an input to the simulation, while the TAMU model simulated performance levels 

based on biological inputs in the context of environment inputs (Sanders and Cartwright, 

1979a). 

The TAMU model was designed to simulate classes of animals, with animals being 

grouped by age and with cows further separated by month of lactation and (or) pregnancy. 

The number of animals in each class was determined by user input and by setting management 

rules which affected each class size dynamically as the simulation ran. For example, a 

management rule to cull all cows at 10 y of age could cause an increase in the number of 

younger breeding animals necessary to maintain an input target breeding herd size. Simulating 

classes of animals as opposed to individual animals was necessary due to the limited amount 

of computing power available at the time. 

The TAMU model worked on a 30 d time step, as opposed to simulating each day; 

this was another method of reducing computing requirements. At each time step a class was 

modeled as a single average animal, and then the results were multiplied by the number of 

animals in the class to determine the performance of the whole class. Within a time step a 
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simulated animal consumed nutrients and expended them for growth as lean and fat gain (loss) 

resulting in weight gain or loss, and for milk production if lactating. 

The model had several genetic components, including size, milk production, 

maturation rate, and lactational persistency. Sanders and Cartwright (1979a,b) used input 

variables they called genetic potentials to parameterize biological types within the model. 

They defined genetic potential as the maximum performance of an animal in an unlimiting 

environment. In other words, given ideal conditions the animal had the potential to produce 

at that level. However, ideal conditions do not occur, and this was modeled by modifying 

genetic potentials with a number of correction factors. 

The model was not designed to study breeding and selection within and between 

genotypes; all classes of animals within a given simulation run had the same genotype. 

Conception of calves did not include mid-parent mean (parents were all the same), Mendelian 

sampling, inbreeding depression, or heterosis. Sanders and Cartwright (1979a) clearly 

intended the potentials in their model to reflect the animals' genetics. However, since the 

inheritance of individual animal's potentials were not mechanistically simulated it was not 

necessary to go beyond their level of description. Since then, Bourdon (unpublished) has 

expanded and formalized the concept of genetic potentials. To avoid confusion with 

Bourdon's genetic potentials I am going to refer to the TAMU genetic potentials simply as 

potentials. 

Sanders and Cartwright (1979a) mentioned how fertility of heifers and cows was in 

part a function of their reproduction potential. However, their description of how 

reproduction was modeled does not specifically identify any parameter as being a 
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reproduction potential. Smith (1979) noted that any of the reproduction parameters could be 

used to specify breed differences, which might be interpreted as being a potential. Referring 

back to the description of potentials being a maximum level of performance in an unlimited 

environment, it is likely Sanders and Cartwright (1979a,b) intended the genetic components 

of fertility to be the maximum probability of beginning to cycle and the maximum probability 

of conception. With this interpretation, puberty was modeled as a non-genetic modification 

to the maximum probability of beginning to cycle. 

To reach puberty in the TAMU model, a heifer class had to first reach a certain degree 

of maturity, determined by a heifer body weight at puberty that was input by the user. This 

weight was adjusted for condition, daily weight gain, and maturity. Puberty was also 

controlled by degree of maturity; puberty occurred when a heifer's weight adjusted for body 

condition was between 40% and 60% of mature weight. Heifers not yet reaching 40% of 

mature weight had delayed puberty, while animals reaching 60% of mature weight were 

assumed to have reached puberty. This range could be adjusted by changing coefficients 

within the model. 

The fraction of animals in a class in estrous was calculated each time step for each 

class of females greater than 9 mo old. The fraction of animals that exhibited estrus was the 

sum of the fraction of animals cycling the previous time step that were still cycling and the 

fraction of animals that (re)started cycling that time step. Previously cycling animals could 

stop cycling due to factors based on condition and daily weight gain. Animals previously not 

cycling could start cycling due to factors based on condition, daily weight gain, maturity, and 

time since calving for animals that had calved within 3 mo. Smith (1979) indicated that the 
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TAMU model included lactation as an additional factor that could delay the start of estrous 

cycling. 

The fraction of cycling animals in a class that conceived was a function of body 

condition, daily weight gain and time since calving for animals that had calved within 3 mo. 

Animals only conceived during the breeding season. There was no variation in gestation 

length and no dystocia was explicitly simulated, although the effects of dystocia were assumed 

to be captured in the existing coefficients. The literature contains no discussion of breeding 

season lengths that were not multiples of 30 d. 

The TAMU model had been applied to several studies by various researchers by the 

time it was described in the 1979 papers. Notter modified the TAMU model (Notter, 1977), 

and used the model to study effects of different levels of milk production on biological and 

economic efficiency (Notter et al., 1979). They found that by varying milk production 

potentials and cow size the model generated interactions with fertility, even though the model 

was not explicitly programmed to do that. The ability of interactions that are not explicitly 

programmed to arise is a strength of mechanistic systems models, and is one of the main 

reasons for constructing this type of model. 

A series of papers (Kahn and Speeding, 1983,1984;KahnandLehrer, 1984) describe 

a model based on the TAMU model, developed by Kahn (1982). The TAMU model was 

modified to get more realistic results while studying small herds. Stochastic events were 

introduced for conception, mortality, and calf sex. This model simulated individual animals, 

as opposed to the classes of animals in the original TAMU model. A variable time step was 

implemented, ranging from 1 to 30 d in length. Although they determined the 30 d was 
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suitable for their study (Kahn and Speeding, 1983), one of their arguments for using a 1 d 

time step was that most research is reported in terms of changes per day. Presumably they felt 

the units used for both parameterization and results would be more intuitive on a 1 d time 

step. 

The additions of randomness and individual animals allowed more realistic simulation 

of instability in small herds by allowing risk to be modeled. They were able to model 

individual animals primarily because they were simulating very small herd sizes (e.g. 30 

animals). At that time, larger herds would have been very time consuming with respect to 

computer power. 

They made several changes to the TAMU model's reproduction simulation (Kahn and 

Lehrer, 1984) because their validation of the original TAMU equations against experimental 

data showed some discrepancies. To address this, they added factors to account for suckling, 

sterility, and advanced age. They also decreased the effect of weight loss on conception in a 

postpartum cow based on validation against experimental data. 

The Colorado Beef Cattle Production Model. Another model, the Colorado Beef 

Cattle Production Model (CBCPM), also arose from modifications to the TAMU model 

(Bourdon, 1983; Bourdon and Brinks, 1987a,b,c). The CBCPM model included some of the 

modifications of Notter (1977), but not the modifications of Kahn; it initially was completely 

deterministic and simulated classes of animals (Bourdon and Brinks, 1987a). Several 

modifications were made with respect to fertility. Calving difficulty was simulated as a 

function of calf birth weight and dam size in heifer dams, and calf weight in cows. Herd size 

was limited by a linear program based on predicted forage availability. Genetic traits were 
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added, including potentials for starting estrous cycles, probability of conception given cycling, 

and age at puberty. 

Bourdon's CBCPM was further modified in subsequent studies (Bourdon, 1992; 

Baker etal., 1992;Schafer, 1991;Enns, 1995; Doyle, 2000). The CBCPM became individual 

based, and individual animal variation was added, along with variable time steps, additional 

stochastic processes, a forage model (Baker et al, 1992), and the FLIPSIM economic model. 

A climate simulator was also added to provide input to both the forage model and the animal 

portion of CBCPM. 

Mechanistic Genetics with Potentials. The concept of simulating an animal' s potential 

performance for a trait, from the TAMU model, was extended into a more formal genetic 

model. The version of CBCPM used as the starting point for my study was the final version 

from Enns (1995), in which an animal has a potential for each of 18 traits. 

Potentials were defined as the maximum level of performance attainable in a non-

limiting environment (Bourdon, 1992). For a given trait in CBCPM the potential has two 

genetic components - a breeding potential (BP) and a non-additive potential (NAV). The BP 

is similar to a breeding value in that it represents the additive direct genetic effects for the trait 

in question, but it also contains a mean (uBP). The NAV models any heterosis effects from 

breed combinations and also the variance from non-additive gene combinations. 

In CBCPM a trait's potential (PO) is calculated as 

POfemale = BP + NAV + Ep + (Et), and 

POmale - (BP + NAV) * SexAdjustment + Et, 

where Ep is the permanent environment effects, Et is the temporary environment effects, and 
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the Sex Adjustment parameter for males multiplicatively scales the PO for differences due to 

sex. The components of PO are distributed as 

BP~MVN(uBP,IBP), 

N A V - M V N G W E Q C P ) , 

E, ~ MVN(0, ZEt), and 

Ep~MVN(0,IEp), 

where EBP is the additive direct genetic (co)variance and EGCP is the non-additive gene 

combination potential (GCP) (co)variance among the eighteen simulated genetic traits. The 

terms uBP and |aNAV are means for the breeding potential and nonadditive potential, 

respectively, used to parameterize breed differences. Error (co)variance matrices for Et and 

Ep are SEt and ZEp, respectively. These four matrices are symmetrical, and any covariance may 

be zero but all variances must be nonzero to allow a Cholesky decomposition to be calculated. 

It is important to understand that Et and Ep do not account for all of the non genetic variation 

in a trait in CBCPM, and that the equation above for PO is only the parameterized input for 

a given trait. There are additional simulated effects in the model (e.g. age of dam) that may 

add variation. 

Bourdon has further developed the concept of potentials in an unpublished paper 

entitled Genetic Potentials: Theory and Development. In it he defines genetic potentials and 

their relationship to conventional genetic values (e.g. breeding value) in a more general 

treatment but has references to CBCPM throughout. In CBCPM a potential is the maximum 

performance possible in a non-limiting environment, while Bourdon's genetic potential is 

maximum performance possible given the animal's genotype. The key difference is that a 
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CBCPM potential includes environmental deviations, while Bourdon's genetic potential does 

not. The net result is environmental deviations for a genetic potential as defined by Bourdon 

can not further increase performance in the trait, and therefore they require special, non-

normal distributions. 

Modeling Probability Potentials. Several traits in CBCPM are modeled as 

probabilities, including the probabilities of cycling, conception given cycling, and dystocia. 

Potentials for traits expressed as a probability are calculated as 

PO = BP + (NAV + (Ep) + Et) x (1 - BP) 

in an attempt to bound the potential between 0 and 1, and to make it difficult to approach 

either zero or one. I say "attempts" because it fails, resulting in a normal distribution with 

both tails extending beyond the probability parameter space. Potentials for probability traits 

out of the parameter space are modified by truncation, changing negative values to zero and 

values greater than 1.0 to 1.0. Care must be taken when parameterizing the model with a 

mean BP near one or the other end of the distribution as the formula above will result in 

simulated PO variances much lower than would be expected by summing the input variance 

parameters. 

Data files are used to allow the user to parameterize CBCPM prior to a simulation. 

At run time the model reads these files and builds foundation herds and initializes the 

environment (pasture) before starting the daily simulation. A foundation herd is specified by 

describing the cows in one of the input files. Since the foundation cows can be of multiple 

breed types, each breed type is described as a foundation group. In other words, a foundation 

herd is composed of one or more foundation groups, with a foundation group for each breed 
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type. CBCPM allows the user to define 10 breed types in terms of mean genetic potentials. 

A foundation group allows the user to define either "purebred" or cross-bred foundation cows 

as combinations of the initial 10 breed types by specifying the foundation cow's sire and dam 

breed types. A foundation group also allows the user to parameterize the age distribution in 

terms of number of foundation cows to generate per age category. All foundation cows are 

assumed to be pregnant, so it is necessary to define the sire of the fetus. 

Potentials for foundation animals in CBCPM are simulated from input additive direct 

genetic, temporary environment, and permanent environment (co)variances, and non additive 

genetic (co)variances. An animal's potential is the sum of these effects (with a sex adjustment 

for males on some traits). A foundation cow's breeding potential is the input mean breeding 

potential plus an appropriate random multivariate normal deviation to represent Mendelian 

sampling from an unknown sire and dam. 

The CBCPM does not rely on equilibrium age distributions of cows (Bourdon, 1992), 

unlike earlier versions of TAMU (Notter, 1979). Although the user inputs an initial age 

distribution for the foundation cows, the age distribution of cows during a simulation run 

interacts with other parameters in the model, such as culling policies and fertility rates. This 

is an advantage of modeling individual animals, in that it allows the effects of management 

changes to be observed over the time it takes to reach a new equilibrium. Earlier models that 

used classes of average animals were more suited to studying animals in equilibrium both with 

respect to biological (e.g. breed composition) and management parameters of the model. 

Equilibrium in a herd of beef cattle is a theoretical concept useful for simplifying the world. 

There are many cases where changes in a simulation held at "equilibrium" would yield 
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different results if applied to a simulation that did not assume or force equilibrium. This is 

particularly important with respect to cow age distributions as it affects the composition of 

the product sold and the number of replacements required to maintain a target herd size. 

Often the time period from a change in management or biotype until equilibrium is 

approached can be of more interest and importance from a risk standpoint than the 

performance once equilibrium has been reached. 

Simulation of Fertility in CBCPM. The CBCPM has potentials for three traits directly 

related to a female's ability to conceive. These are age at puberty, probability of beginning 

cycling, and probability of conception given cycling. Additional traits with potentials related 

to reproduction are gestation length and maternal and direct dystocia. Puberty is reached 

when a heifer's effective age, based on a maturity index, is greater or equal to her potential 

age at puberty. The maturity index is based on her actual weight relative to her individual 

growth curve weight at its inflection point, which is assumed to be the point she reaches 

puberty. Once she reaches puberty she is considered a virgin mature cow for reproductive 

purposes. However, she does not automatically begin cycling. The model allows an animal's 

actual weight to deviate from its growth curve weight based on prior nutrition, so it is 

possible for a heifer to reach her puberty weight prior to, at, or after the inflection point of 

her parameterized growth curve. 

A mature cow has a potential for the probability that she will begin cycling. This 

potential is modified by correction factors for her body condition and daily weight gain. For 

cows that have previously calved it is also modified for time since calving, her current 

lactation status, and whether she experienced dystocia or not. To determine if she actually 
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begins cycling her adjusted potential is compared to a value drawn from a random uniform 

distribution ranging from zero to one. Only if the value is less than the value of her adjusted 

potential will she begin cycling. Cows that are cycling can stop cycling, even if they just 

began. A probability for this is calculated from their body condition and daily weight gain, and 

is compared to a random number obtained as above. 

Conception is possible for mature, cycling cows on days within a breeding season. 

There is a potential for conception given cycling which is modified for body condition, daily 

weight gain, and time since calving. Virgin heifers' conception is also decreased; heifers are 

considered to be virgin until they have their first calf. There is no simulated abortion, so the 

probability of conception given cycling could also be called the probability of calving given 

cycling. In the case of artificial insemination there are adjustments to simulate the skill of the 

inseminator. This adjusted probability of conception is compared to a random number 

obtained as above. 

The USDA ARS developed a model (Jenkins and Williams, 1998) for use as a 

decision support aid by commercial beef cattle producers. Previous systems models had been 

developed by researchers primarily as a research tool, and relied on the user modifying both 

data files and program source code to model different scenarios, requiring a high degree of 

understanding of both beef cattle production and computer programming. The ARS 

researchers started with CBCPM, added a Microsoft Windows™ graphical user interface, and 

modified the growth equations. This new model was named the Decision Evaluator for the 

Cattle Industry (DECI). The DECI model has been parameterized and used in many 

environments and for many genotypes. While its interface is a huge step beyond the text file 
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interface of CBCPM, the DECI model has serious limitations. On one hand it is still too 

complicated for most producers to use properly, and on the other it has been simplified to the 

point that it is not possible to model many types of systems from the graphical interface. 

To summarize, the DECI/CBCPM models are the most comprehensive and flexible 

systems models of beef production at this time. The CBCPM is highly flexible and modifiable. 

However, the user interface for CBCPM is archaic, and the DECI interface limits access to 

a subset of the CBCPM abilities. 

Other Systems Models. 

Kentucky BEEF Model. The Kentucky BEEF model (Loewer et al., 1978) combined 

crops with pastured livestock while tracking economic variables. It was a deterministic model 

with a i d time step. Animals were modeled in one of twelve classes based on age, sex, and 

reproductive status. Interaction between grazing intensity and nutrients available to the animal 

was modeled. Reproduction was vaguely described; puberty required reaching a minimum age 

and weight, and postpartum interval was described as a time lag for lactating females between 

calving and being available for breeding. Female conception was a function of bull serving 

capacity and the female's plane of nutrition, with females losing weight having lower 

conception rates. No dystocia or calf survival was modeled, and there was no simulation of 

genetics. 

Johnson andNotter Genetics ofReproduction Model. Johnson andNotter (1987a,b,c) 

built a model of beef production, based on a model by Willham and Thompson (1970), to 

study the genetics of reproduction. This model included stochastic elements and was 

individual animal based. It assumed a 21 -d estrous cycle, but did not use a daily timestep; it 
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appears to have been an event-based model rather than a time step based model, but this is 

not clear from the paper. They simulated additive genetic, temporary environment, and 

permanent environment parameters for single service conception rate on an underlying, 

continuous scale, as opposed to the phenotypic binomial scale. The binomial phenotypes were 

determined by truncating the underlying distribution based on the mean frequency of single 

service conception desired in the simulated population. In their simulation they truncated at 

-.53a and considered the animals above that point in the distribution to have conceived, which 

corresponds to a 70% single service conception rate. 

They also simulated a postpartum interval with additive genetic and permanent 

environment effects with normal distributions, but temporary environment with a gamma 

distribution to right-skew the phenotypic distribution. This raises a question of whether this 

skewed distribution would be necessary in a systems model where other simulated biological 

components might interact with the postpartum interval to produced a skewed phenotypic 

distribution. In addition, they simulated randomly infertile cows due to non-genetic causes by 

selecting the lowest 5% of the permanent environmental distribution to be barren. 

Nebraska Reproduction Management Model. Azzam et al. (1990) modeled 

reproduction with the objectives of evaluating economic efficiency of different lengths and 

times of breeding season and retaining open cows for the next breeding season. Females were 

simulated in one of three classes; heifers, first parity cows, or mature cows. Within a class 

animals were simulated individually with a one day time step for the length of the breeding 

season. The simulation was essentially a series of single year simulations because individual 

animals were not tracked from year to year. However, calving date distribution within age 
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class was used to calculate calving date distribution for the next older age class the following 

year. Age structure of the breeding herd was determined prior to the simulation using Monte 

Carlo simulation (Azzam et al., 1990). 

Heifers were assumed to have reached puberty prior to the start of the breeding 

season, except for 3% assumed to be non fertile due to failure to cycle. A heifer's birth date 

was drawn from a normal distribution of its theoretical dam's gestation length for a female 

calf, based off the start date of that dam's breeding season. Age at puberty was drawn from 

a normal distribution with 365 d mean and 25 d sd, which was added to Julian birth date while 

ignoring years. Estrous cycle length was drawn from a normal distribution with 21 d mean 

and 1 d sd. The date of first estrus within the breeding season was calculated by adding as 

many estrous cycle lengths to the puberty date as necessary. 

For the older two age classes, postpartum interval was modeled with a 65 d mean and 

18 d sd, with an additional 10 d following a first parity, and 14 d following dystocia. The date 

of first estrus within the breeding season was calculated by adding as many estrous cycle 

lengths as necessary to the date of the first cycle following calving. First service conception 

was decreased by 30 % for cows that were less than 60 d postpartum. 

North Carolina Deterministic Systems Model. Lamb et al. (1992) used a deterministic 

model of cow-calf production to study breed combinations. Genetic effects were simulated 

as breed means and heterosis for Fl crossbreds, and cows were simulated by age class, as 

opposed to individuals. Animal growth was determined using a Brody (1945) curve, 

Wt = A (1 - be"kt), 

where t is time in days, Wt is weight at day of age t, A predicts mature weight, b is indirectly 
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a y-axis intercept (birth weight) parameter, and k is a curve shape (daily growth rate) 

parameter. Lamb et al. (1992a) parameterized for Angus with the values 542, 0.946, and 

0.0023 for parameters A, b and k, respectively. The primary reproductive trait was pregnancy 

rate, modeled by breed and age class, with parameters from the U.S. Meat Animal Research 

Center Germ Plasm Evaluation Program. Pregnancy rate ranged from a low of 68.2 % for 

Charolais heifers to a high of 97.1 % for mature Limousin cows. Pregnancy rate was reduced 

by 15 % for cows that experienced dystocia. There was no discussion of either puberty or 

postpartum anestrous. In their model pregnancy rate, calving difficulty, and milk yield 

described 76.6 % of biological efficiency, and pregnancy rate and average calf weaning weight 

described 82 % of economic efficiency. 

Taylor andNaazie Efficiency Models. Naazieetal. (1997,1999) used a deterministic 

model based on the model of Taylor et al. (1985) to study feed conversion efficiency of beef 

production. Animals were simulated as classes, as opposed to individuals, with class based 

on sex and breeding status of animals within the class. Reproduction was simulated as a 

potential number of calvings per dam and a reproductive rate that was the proportion of 

calves surviving to weaning per cow exposed to breeding. The lower limit of potential number 

of calvings was dependant on the reproductive rate in order to maintain sufficient numbers 

of replacement females. Taylor et al. (1985) referred to genetic differences and variables in 

the model, but these appear to have been simulated as input means, with no mechanistic 

simulation of genetics. Taylor et al. (1985) varied reproductive rate from 0.75 to 1.0, and also 

varied sex ratio, while Naazie et al. (1999) held reproductive rate at .8 while varying average 

age at culling, and then varied reproductive rate from 0.5 to 1.0. 
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Hirooka Breeding Objective Model. Hirooka et al. (1998a) developed a bio-economic 

deterministic simulation model for development of breeding objectives based on beef cattle 

production in Japan. It operated on a 1 d time step, modeling classes of animals. Inputs were 

described as being one of either animal traits, or nutritional, management, or economic 

variables. Animal traits were assumed to be partly controlled by genetics, although this was 

an issue of interpretation as opposed to model implementation as genetics were not explicitly 

simulated. 

Females were classed by their reproductive parity. Puberty was addressed only as a 

management variable, influencing the time from heifer selection until breeding. Postpartum 

interval was also a management variable; this could be partly justified by considering 

management of prepartum nutrition. Conception was a function of an animal trait for single 

service conception rate and a management variable for an estrus detection rate (artificial 

insemination was assumed for all breeding). The single service conception rate was held quite 

low (0.5), in part to simulate artificial insemination, but also suggesting it accounted for many 

effects not modeled (e.g. extended postpartum interval, and interactions with lactation and 

nutrition). 

Dystocia was determined per Bourdon and Brinks (1987a), and animals experiencing 

dystocia had a. 15 lower probability of conceiving in the subsequent breeding season. While 

dystocia was not listed as an animal trait, it modified the single service conception rate. The 

.15 reduced probability of conception was applied proportionately. They also modeled 

gestation length and calf survival as animal traits. 

They mentioned that other researchers had indicated reproduction should be modeled 
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stochastically but that the same researchers questioned the underlying biological reasons for 

reproduction traits having certain (non-normal) distributions. Observed reproduction traits 

will have non-normal distributions due to the typical management imposed on cattle. For 

example, a single calving season of limited length is a typical management goal. Heifers that 

reach puberty early and cows with a short anestrous period will not be bred until the breeding 

season begins, resulting in a skewed distribution. I suspect in some instances the need for a 

non-normal distribution for the underlying biology can be caused by not modeling all 

components and interactions of a system. 

Hirooka et al. (1998b) also cited the complexity and cost of execution of the model 

as reasons for developing a deterministic model, and suggested that adding stochastic 

elements may not always improve benefits from modeling. While they may be correct that 

some stochastic processes could be modeled deterministically for clarity without loss of 

predictive ability, I feel they missed one of the main advantages of using individual based 

models. Stochastic processes used in these models allow the modeler to address risk. 

Individual based models are seldom constructed to predict the fate of a specific individual in 

an environment, but rather to model the interactions of individuals within a population. This 

is of importance in limiting environments, because the most fit individuals may not be 

intuitively obvious prior to the simulation. 

I also have trouble accepting that cost of execution was a limitation issue for the types 

of questions Hirooka et al. (1998b) were using their model to answer. However, they would 

have a valid point when considering the use of simulation models as the objective function of 

a search for optimal decisions based on a techniques such as genetic algorithms. For example, 
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Meszaros (1999) used genetic algorithms to find optimal indexes with a non-linear profit 

model. A single search requires evaluating the model thousands of times, so cost of execution 

could become an issue with a complex mechanistic model. 

Montana Beef Systems Model. Tess and Kolstad (2000a,b) developed an individual 

animal beef cow simulation model to model response of diverse genetics in diverse 

environments while capturing economic data. A simulated herd remains in equilibrium with 

respect to size and age structure over the simulated time, and the simulation has a discrete 1 

d time step. All animals in a group have the same genetic make-up but are individually 

simulated and tracked through their life span. They also called their genetic input parameters 

genetic potentials. However, they defined a genetic potential as the maximum level of 

performance obtainable when sufficient nutrients were consumed. This is similar to the 

TAMU and CBCPM potentials, but is limited to nutrition effects, as opposed to all other 

environmental and genetic effects. 

Their model development focused on animal growth, as suggested by their definition 

of genetic potential, and the genetic parameters were primarily to simulate breed differences. 

Since there is no individual genetic variation, it is not possible to study the unintended 

consequences of management decisions such as correlated response to selection. It also can 

not model changes in herd structure that result from management decisions. 

Age at puberty in their model is a function of weight and age with respect to the 

animal's growth potential. This was done to correspond with field data that shows younger 

ages at puberty correspond to heavier weights. The model simulates a 21 -d estrous cycle with 

no variation in cycle length. Conception is determined from a binomial distribution with an 
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input mean probability of conception. Pubertal estrus has 21% lower probability of 

conception, and cows that had calving difficulty have their probability of conception reduced 

by 10%. Both these reductions are applied additively, as opposed to multiplicatively. 

A heifer's estrous cycle can stop due to low body condition (fatness less than 10 % 

of empty body weight), and can restart once fat is above 12 % empty body weight. 

Postpartum interval is a genetic effect, adjusted for body condition and rate of weight gain. 

It is modeled as 4 d longer for 2-yr-old dams and 1 d longer for older dams with dystocia. 

Dystocia is a random, non-genetic variable, but it incorporates dam lean weight with calf birth 

weight, which do have genetic components. 

Rao Sheep Reproduction Genetics Model. Rao (1997) developed a model to study 

genetics of sheep reproduction. While not a beef cattle simulation model, this model is of 

particular interest because reproductive traits expressed categorically were simulated as 

having an underlying normal distribution. Litter size phenotypes, for example, were simulated 

by generating an underlying breeding value and adding underlying random normal deviations 

for permanent and temporary environment. The underlying "phenotype" was the sum of these 

effects, and was converted to observed categories by applying thresholds to the distribution. 

Non-Systems Models of Reproduction. Pleasants (1997) built a stochastic model of 

reproduction to search for optimal calving date distributions as related to profit from selling 

a weaned calf at a fixed date. The premise was that calving prior to some date carried an 

increased cost, while calving later than that date was associated with reduced profits due to 

selling younger (lighter) calves. It was modeled with normal probability distributions of prior 

calving date, postpartum interval, length of estrous cycle, conception, and gestation length. 

24 



This question seems ideal for a systems model, as there are many factors one has to 

assume Pleasants appropriately accounted for in the increased cost of an earlier calving date. 

Factors such as the cow regaining body condition following weaning and prior to calving to 

reduce postpartum interval, feed costs, and management costs are all lumped into one number 

without explanation or variation. Pleasants suggested this sort of simulation is faster and 

easier to show the importance of how different variables operate. He later shows one of the 

down sides of this approach when mentioning parameters of one simulation were chosen to 

avoid complex regression equations. It is possible to maintain simplicity in a systems model 

by only varying the parameters of interest. If nothing else, it makes the assumptions chosen 

more clear. As discussed previously, the question of speed is largely a non-issue with systems 

models and current computer hardware speed. 

Model Deficiencies. While there are likely many simplistic probability-based models 

of estrus synchronization, this review did not discover any systems models that incorporated 

estrus synchronization. I have been told of stand-alone hormonal models of reproduction, but 

none of that work was found in the literature. A mechanistic hormonal model of reproduction 

implemented as a module of a comprehensive systems model would be very useful for 

studying estrous induction and synchronization protocols. 

Nearly all models in the literature focused on female reproduction and ignored male 

reproduction. The effects of bull serving capacity, behavior, and fertility were, I assume, 

absorbed into the female's probability of conception. The ability to simulate effects of 

different cow to bull ratios could be useful for both economic and genetic studies. Separating 

male and female fertility is potentially useful for studying artificial insemination. 
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Few models seriously addressed the genetics of reproduction. Tess and Kolstad 

(2000a) modeled breed mean parameters, but had no individual variation, making it 

impossible to use their model to estimate variance components for a fertility trait. The 

CBCPM models the genetics of age at puberty, probability of conception, gestation length, 

and dystocia, but it does not simulate an estrous cycle or postpartum interval mechanistically. 

In summary, early models were based on empirical, deterministic equations, often with 

little resemblance to the underlying biology. Over time the models have evolved to include 

stochastic components, including genetic components, and researchers have refined 

components, making them more mechanistic. Early models typically simulated an average 

animal within some defined age and production category, primarily due to computation 

constraints. Beef cattle simulations have evolved to be individual based models, with each 

animal modeled throughout its life, and the time step of the models has decreased from 

seasons to months to days as computing power has increased. 

Materials and Methods 

I wrote a reproduction module that worked within the larger CBCPM model, making 

use of its simulation of biological, environmental, and management effects to provide input 

to the reproduction module. As described previously CBCPM had an existing reproduction 

module with genetic parameters for age at puberty, probability of cycling, probability of 

conception given cycling, gestation length, and dystocia, and many additional environmental 

effects. 

The CBCPM is written in Fortran, and while it was possible to write my reproduction 
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module in Fortran, I chose Java instead. A professional programmer had developed an object 

oriented design for CBCPM (Nagel, mimeograph), with a few fragments of Java code written 

to illustrate the design. I implemented much of his object oriented design to provide a 

framework for the reproduction module to work within. 

This decision to start a new version of CBCPM had its trade-offs. My Java version 

of CBCPM was only a partial implementation, due to time constraints. The most notable 

omission was lack of simulation of realistic growth and nutrition; animal growth was 

determined from a Brody (1945) curve with the same parameters for every animal. There was 

no simulation of climatic effects, no grazing, and no culling or selection simulated. 

On the other hand, the Fortran version has many design elements aimed at 

optimization of execution, not optimization of development effort, dating back to its 

development on much slower computer processors. As mentioned, efforts to convert it to an 

object model were under way, and any reproduction module written in Fortran would soon 

have been abandoned. 

My primary effort was to construct a model which would allow conducting genetic 

analyses of heifer pregnancy data (Chapter 4). The Java version of CBCPM is able to create 

a foundation herd from input files with appropriate simulation of the genetic traits, multiple 

sire groups, breeding groups, and mating groups, and can do so with multiple herds in one 

simulation run. I built the model anticipating that I and others will continue to develop and 

refine it beyond the capabilities of the current Fortran CBCPM. Both the following text and 

the model include references to things not yet implemented, but which should be included in 

a more complete version. These design elements had no effect on the data generated for 
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Chapter 4, but will be important to a more complete model. 

Non-Reproduction Changes to CBCPM. 

Multiple Pastures and Locations. The Java CBCPM is designed similar to the Fortran 

version with respect to what is simulated and the high level view of how the simulation 

functions. From the high level view it is still a timestep model, the sequence of events within 

atimestep is the same, it simulates essentially the same genetic traits in the same mechanistic 

way, and input parameter files have the same format. Changes to this part of the design were 

primarily additions or restructuring for easier maintenance. In the Java CBCPM a simulation 

occurs for a given ranch over a number of years. The ranch can have one or more herds, and 

a herd can be in one or more pastures. Pastures can have different climate, forage, and soils 

to allow for different locations. In contrast, the Fortran version allowed a single pasture at 

one location. 

Pedigree. I added a pedigree manager to allow output from the simulation to be used 

in genetic analyses. When a Java method requests a new animal from the pedigree manager 

it supplies the identification numbers for the sire and dam if they exist, or a code for unknown 

parent in the case of a foundation animal. The method returns a new, unique animal 

identification number and adds that animal, with its sire and dam, to the pedigree. At the end 

of the simulation, the pedigree, consisting of each individual's unique identification number 

and that of their sire and dam, is written to a file. The pedigree records written to file 

represent unknown sire and/or dam, in the case of foundation animals, with a period for a 

placeholder. 

Both CBCPM versions are time-step models, although the Java CBCPM was designed 
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with thought toward migrating to an event-based model or some hybrid of the two. The Java 

CBCPM has a fixed, one day time-step. Input parameter files are essentially the same, and I 

managed them with an ASCII text file editor. The model's output is written to ASCII text 

files for use in subsequent analyses external to CBCPM. 

Simulation of Continuous Traits. The Java CBCPM simulates potentials for eighteen 

genetic traits (Table 2.1). The potentials contain a genetic component as described in the 

literature review of CBCPM. The reproduction traits are different than the Fortran CBCPM, 

but all other traits are the same. The input parameters for potentials are an additive direct 

genetic covariance matrix, temporary and permanent environment matrices, and breed mean 

potentials. Each of these three types of matrices has eighteen rows and columns, 

corresponding to the eighteen simulated traits. Each is symmetric, with variances on the 

diagonal and covariances on the off diagonals. The input values are stored in ASCII data files, 

and are read into the matrices at the start of a simulation. These variances and covariances 

do not change during a simulation. 

Different breeds, or biotypes, of animals are simulated by setting input means of the 

potentials, as in the Fortran CBCPM. Each breed definition has a vector of eighteen means 

which correspond to the eighteen genetic traits simulated. 

The Java CBCPM models phenotypic potentials the same as the CBCPM potentials 

(PO), defined previously. However, the methods to calculate the NAV were not implemented, 

so NAV was set to zero for all animals' traits. The simulations for this dissertation did not 

involve cross breeding, so this was not a limitation. The Java methods 
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Table 2.1. Traits simulated as potentials in the Java CBCPM and their classification with 
respect to simulation method and use in simulation of fertility. 

Trait Probability Repeated Fertility Trait 

Birth weight 

Yearling weight 

Mature weight 

Milk 

Age at puberty 

Postpartum interval 

Probability of pregnancy 

given cycling 

Dystocia, direct 

Dystocia, maternal 

Gestation length 

Mature empty body fat 

Appetite 

Unsoundness 

Probability of survival 

Maintenance 

Intramuscular fat 

Fat-free composition 

Yield grade 

N 

N 

N 

N 

N 

N 

Y 

N 

N 

N 

N 

N 

N 

Y 

N 

N 

N 

N 

N 

N 

N 

Y 

N 

Y 

Y 

N 

Y 

N 

N 

N 

N 

N 

N 

N 

N 

N 

Y 

Y 

Y 

Y 

Y 

Y 

were designed to include the NAV, and later implementation will require minor modifications 

and construction of the input data files. 
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The BPj is calculated as 

BPi = .5x(BPs + BPd) + <|>i, 

where BPS (or BPd) is the additive direct genetic effect of the sire (or dam) of animal /', and 

h is Mendelian sampling for animal direct genetic effects. Unlike breeding values, which have 

an arbitrary base, breeding potentials include a trait mean and a breed mean. For simplicity, 

these two means are parameterized as a single input (their sum) in both versions of CBCPM. 

For a foundation animal its BPS (or BPd) equals the input breed mean for the corresponding 

sire group (or foundation dam group) plus <|>. All other animals' BP are calculated as above, 

so they also contain some function of the input means. Mendelian sampling is simulated using 

a normal distribution with mean zero and variance equal to genetic variance unexplained by 

parents' genetic effects. Inbreeding is not accounted for in this model, although the method 

developed by Meuwissen and Luo (1992) as described by Lee and Pollak (1997) was 

considered. Although the simulated effect of inbreeding was not needed for the models tested 

in this dissertation, it can often be useful, and should be added to the Java model. 

Mendelian sampling is calculated as 

§i= Lisxig x r ] g x l 

where §v is an 18 x 1 vector of Mendelian sampling deviations corresponding to the eighteen 

simulated genetic traits, L is the lower triangular matrix from the Cholesky decomposition of 

a genetic covariance matrix (i.e. LL' equals an appropriate genetic covariance matrix) and r 

is a random number vector from a standard normal distribution. The L matrix is obtained from 

the input genetic covariance matrix for each of the simulated genetic traits using a Java 

Cholesky decomposition method obtained from the Internet (Verrill, 1996). The vector R is 
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obtained using Java's Random class, which supplies the method synchronized public double 

nextGaussianO to obtain pseudo random deviates from a standard normal distribution. Each 

simulation is started with an integer parameter to use as a seed to the constructor method for 

a new Java Random object. One Random object is used to generate all random numbers 

within a simulation. A different input seed for each simulation can be obtained from published 

tables of random numbers. 

Environmental deviations are calculated in a similar way; a vector of temporary 

environment deviations for animal / (Eti) is calculated as 

^t i ~~ *^-18xl8 X ri8xl5 

where K is the lower triangular matrix from the Cholesky decomposition of the input 

temporary environment covariance matrix (i.e. KK' equals the temporary environment 

covariance matrix), and r is a vector obtained as described above, with random values 

different from those used to calculate <(>,. A vector of permanent environment deviations is 

calculated as 

kpi = -M8xl8 X ri8xl> 

where J is the lower triangular matrix from the Cholesky decomposition of the input 

permanent environment covariance matrix (i.e. JJ' equals the permanent environment 

covariance matrix) and r is as described above, with random values different from those used 

to calculate ^ and Eti. Permanent environmental variance must be non-zero for all traits in 

the input matrix so the Cholesky decomposition can be performed, but the method which 

calculates PO for a given trait only uses the permanent environment deviation if the trait is 

a repeated trait. Each of the Cholesky decompositions (i.e. L, K, and J) are obtained once 
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per simulation run, whereas the r vectors are resampled for each new deviate vector (i.e. <!>„ 

Eti, or E j) to be calculated. In other words, when a new animal is created it requires three 

different r vectors for calculating the three deviate vectors, ̂ , Eti, and Epi, and the subsequent 

animal created will use three new, different r vectors. 

Foundation animals are simulated first, with the full input genetic variance since their 

unknown parents can account for no reduction in Mendelian sampling. The parental breeding 

potential for foundation animals is the input breeding potential for the appropriate sire group 

and foundation group. All other animals' Mendelian sampling are calculated using half the 

additive direct genetic (co)variance, as their parents' breeding potentials (BPS and BPd) 

account for the other half of the genetic variance. 

The Java CBCPM has a parameter for the number of times to run the simulation with 

the same set of parameters. The model reruns using the initial foundation sires, but all dams 

are regenerated as new, unique animals. Using the same foundation sires allows the multiple 

runs to be connected through the pedigree when analyzing the model outputs. This was 

desirable for increasing the number of offspring per sire. Multiple runs may be necessary due 

to memory constraints on the computer used to simulate the data. The random seed is set 

once, before starting the first run, and each rerun uses the next available random number 

following the last random number of the previous run. 

Simulation of Categorical Traits. The Fortran CBCPM simulates potentials expressed 

as a probability with an approximation, as described in the literature review. This method 

allows some phenotypes to be out of the parameter space of a probability, requiring the 

approximated distribution to be truncated at zero and one. It also allows additive 
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environmental deviations to yield results out of the parameter space, also requiring truncation 

of the distribution. 

I changed the model so that potentials for all traits were simulated as having a normal 

distribution of phenotypes. Probability traits were assumed to have a normal distribution on 

an underlying scale. Producing a normally distributed value to represent a probability is 

desirable because we can simulate its genetic and environmental deviations the same as all 

other traits. This is analogous to the assumption that threshold traits have an underlying 

normal distribution (Falconer, 1989), so I will refer to the normally distributed value as an 

underlying value on a corresponding underlying x-axis. When the simulation requires the use 

of a potential in probability units, the underlying value can be converted to a probability by 

calculating the area under the normal distribution between negative infinity and the underlying 

value. I obtained a Java class, Statistics.java (Liew, 1996), from a search on the Internet for 

Java classes that did numerical integration. The class Statistics.java contains the method 

public static double standardNormal (int N, double x), which returns the probability 

associated with the area under the standard normal curve from negative infinity up to the 

input value x (i.e. P(X<x)). The method also requires the number of trapezoids to use in the 

numerical integration, N, which I set to 20 for all calls to the method. I discovered that the 

method public static double standardNormal (int N, double x) only works in the range 

within 4 sd of the mean. I modified the method to convert any input less than -4 sd to -4, and 

any greater than 4 to 4. Therefore, all probabilities derived from this method have a slight bias 

to them. 

The genetic and environmental variances for traits expressed as probabilities were 
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parameterized so they summed to one. Since the simulated mean of all genetic and 

environmental deviations equaled zero, the sum of these deviations had a standard normal 

distribution. The mean breeding value of foundation animals was parameterized in units of 

probability, as opposed to an underlying value, to make parameterization easier for the user 

to relate to. The model converted the input mean from a probability to its underlying value, 

and added the deviations, resulting in phenotypes distributed N~(input mean,l). Animals 

simulated as progeny of existing animals were simulated as parental mean breeding potential 

plus genetic and environmental deviations calculated as above. 

To convert the input mean probability to an underlying value I wrote a Java method 

doublefindUnderlying(doubleprobability) that did twenty iterations of a binary search for 

an x-axis value, x, of a standard normal distribution such that the probability of a random 

value from the standard normal being less than or equal to the value x (i.e. P(X<=x)) equaled 

the input probability. The probability was calculated from the value x using the Java method 

for numerical integration of the standard normal described above. 

In addition, I wrote methods which allowed environmental deviations, in units of 

probability, to be added to or multiplied with the genetic potential. For example, Tess and 

Kolstad (2000a) decreased the probability of conception on the pubertal estrus by 21 %, 

which they did by subtraction from the input probability. I wrote a Java method which 

converted the underlying genetic potential to a probability by numerical integration, added the 

probability deviation (e.g. -.21), and converted the result back to an underlying value as 

described above. I wrote a similar Java method to allow a multiplicative deviation; the 

underlying genetic potential was converted to a probability, and the product of that 
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probability and the deviation was converted back to an underlying value. A multiplicative 

deviation can be used in cases where the size of the effect is proportional to the magnitude 

of the value being adjusted. 

Reproduction Sub-Module Organization. I developed the reproduction module as 

four submodels to describe the different phases a beef female passes and then cycles through. 

These are birth through puberty followed by heifer estrous cycles. Then females are either 

anestrous (including pregnancy and postpartum interval) or in cow estrous cycles. This design 

allows a level of abstraction in the main time step routines. For instance, the main driver 

methods can call a Java method named is_cycling() without being concerned if the animal is 

prepubertal, postpartum anestrous, estrous, or gestating. This is discussed in greater detail 

in Chapter 3. 

Management was separated from biology throughout the obj ect oriented design of the 

Java CBCPM. A given animal is described in two different Java classes; one class describes 

characteristics of how it is managed, such as its service sire group, while another contains all 

biological data. This part of the design is also covered in greater detail in the next chapter. 

Modeling Puberty. 

Hormonal Changes Near Puberty. Puberty can be defined as the first time at which 

a heifer can conceive by natural service (i.e. exhibits estrus) and maintain a full-term 

pregnancy. The ability of a heifer to display estrus, conceive, and maintain a full-term 

pregnancy is a complex interaction of the central nervous system, hypothalmus, pituitary, 

ovaries, and uterus. The individual components of the reproduction system each are capable 

of functioning prior to puberty given (exogenous) stimulation, but do not initially function as 
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a whole due to interactions of the components (Kinder et al., 1995). In particular, the limiting 

step appears to be the regulation of LH pulse frequency. Prior to puberty the LH pulse rate 

is 1-4 per d, while at puberty it is 1 per h. Detailed, well-written descriptions of the 

reproduction axis prior to and at puberty can be found in the review papers of Schillo et al. 

(1992) and Kinder et al. (1995). 

To summarize Kinder et al. (1995), the prepuberty low LH pulse frequency is due to 

inhibition of GnRH release from the tonic center of the hypothalmus controlled by a negative 

feedback response to estradiol. As puberty approaches, the negative feedback effect of 

estradiol diminishes. Decreased negative feedback on GnRH release allows more GnRH to 

reach the anterior pituitary, triggering more frequent LH pulses. The increased frequency of 

LH release results in more estradiol by increasing follicular development. These effects 

cascade, and eventually ovarian follicles release enough estradiol to trigger behaviourial estrus 

and a preovulatory surge of gonadotrophins, and puberty has been reached. The cause of the 

decreased sensitivity of the negative feedback of estradiol is not well understood. 

Associations have been found with several variables, but the physiological steps that lead to 

this critical step toward puberty are still not clear (Kinder et al., 1995, Hall et al., 1995). 

Given that the onset of puberty is not well understood at the hormonal level, it is 

necessary to find other measures of puberty to base a mechanistic model on. Hall et al. (1995) 

hypothesized that the onset of puberty could be predicted as some function of body 

composition, metabolites, and (or) metabolic hormones. They defined puberty as estrus 

followed by formation of a CL and serum progesterone exceeding 1 ng/mL, and used an 

androgenized steer to assist their twice-daily estrus detection. Their study used two different 
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growth rate heifer biotypes which were fed two diet levels, resulting in a two by two factorial 

design. Live animal composition and metabolic status were assessed every 56 d from 7 mo 

age until puberty. At puberty 32 heifers were slaughtered and physical and chemical 

composition analyses of their whole empty bodies were done. In their various analyses they 

measured blood urea nitrogen, IGF-I, glucose, insulin, body weight, hip height, heart girth, 

body condition score, longissimus muscle area, and backfat thickness. 

They did not detect a biotype effect on age at puberty, but diet affected the age at 

puberty, with those on a higher plane of nutrition reaching puberty 43 d before the other 

heifers. Plane of nutrition also altered the body composition in the slaughtered heifers. They 

cite work of Frisch (1976) which proposed a critical body composition that must be reached 

prior to puberty. However, they concluded the observed wide range of percentage of body 

fat did not support the hypothesis of a critical body fat level. In addition, they concluded that 

rate of fat deposition does not necessarily reduce age at puberty, and that "body composition 

has little direct physiological or biological relationship to the onset of estrous cycles." They 

also looked for metabolic signals, but found nothing to support a metabolic signal hypothesis, 

and found metabolic status did not predict puberty. They rejected the hypothesis of similar 

body composition, and also the hypothesis of similar concentrations of metabolic hormones 

and metabolites. They did not rule out metabolic and hormone status, but concluded the 

signals have not yet been identified. 

Nonpubertal Estrus. This leaves mechanistic modelers of puberty with little to build 

on, which is why most simulations of puberty simply have heifer age as the primary 

component in determining when puberty was reached. Even here, further caution needs to be 
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added. Most research data on age at puberty has been obtained by visual observation of 

puberty. However, observing estrus alone is not accurate due in part to the occurrence of 

nonpubertal estrus. Nonpubertal estrus (NPE) is when a heifer exhibits social behavior 

consistent with estrus, but is unable to either conceive or to maintain pregnancy due to a lack 

of maturity. The heifers studied by Nelsen et al. (1985) that exhibited NPE averaged 89 d 

between first NPE and puberty. The incidence of NPE has been reported at 16.6, 25.5, and 

62.8 percent (Nelsen etal., 1985;Byerleyetal., 1987; Rutter and Randal, 1986, respectively), 

leading Bellows and Short (1994) to suggest it is a common occurrence. 

In addition to problems with NPE, accurate detection of the pubertal estrus by 

observation can be difficult. Use of aids to assist detecting behavior associated with estrus can 

reduce the number of heifers in estrus that the researchers do not observe, and protocol for 

research data collection such as requiring presence of a CL and a minimum level of serum 

progesterone will limit the number of false estrus that could occur by using additional aids. 

Genetic Effects on Puberty. 

Age at Puberty. Genotype is one of the better predictors of when puberty will occur. 

Puberty genetics are typically discussed with respect to age of the heifer because it is a 

convenient scale for observation of puberty and because it is the scale that allows assessments 

of management implications on puberty (e.g. age at start of breeding season), so the trait is 

often referred to as age at puberty (AAP). Heifers of dairy breeds tend to have earlier AAP 

than beef heifers, and beef heifers with higher milk production tend to have earlier AAP than 

beef heifers with lower milk production (Martin et al., 1992). Beef heifers with earlier AAP 

had higher milk production within-breed (Laster et al., 1979). 
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There have been several studies of the heritability of AAP; the review paper by Martin 

et al. (1992) cited nine studies, with an average heritability of .40. The review papers by 

Koots et al. (1994) and Rust and Groeneveld (2001) report age at first calving, which is likely 

a different trait as it incorporates additional variance from ability to conceive and gestation 

length. There is also the possibility of fixed length breeding seasons effectively truncating the 

data space. Splan et al. (1998) reported heritability of AAP from USDA-MARC data to be 

0.46. Arije and Wiltbank (1971) reported AAP phenotypic sd in two different populations of 

Hereford heifers as 26.7 and 35.8 d. 

The bulk of research data is reported in terms of age at puberty, but it has been found 

age only describes part of the variation. There is likely an underlying scale of reproductive 

maturity, with puberty occurring prior to full maturity (Byerley et al., 1987). 

Weight at Puberty. A heifer's weight is also useful for predicting AAP. Some studies 

suggest there may be a minimum weight for puberty to occur (Arije and Wiltbank, 1971; 

Short and Bellows, 1971). Weight at puberty accounts for prepuberty nutrition with respect 

to gain, but does not necessarily account for the balance of nutrients and other factors which 

might effect the timing of puberty (Greer et al., 1983). The timing of weight gain has been 

suggested as being important but with conflicting results. Clanton et al. (1983) concluded the 

timing of growth between weaning and breeding was not important, as long as an adequate 

amount of growth occurred. Greer et al. (1983) concluded that weight does not cause 

puberty; they determined weight at puberty to be the result of nutrition. Martin et al. (1992) 

noted that breeds with larger mature size are apt to be older and heavier at puberty. 

I found nothing in the literature that suggested a heifer could sense or determine its 

40 



own weight. It is more likely that weight and onset of puberty are correlated responses to 

maturation, as opposed to weight causing puberty. 

Environmental Effects on Puberty. 

Season of Birth. Season of birth has been shown to have an influence on AAP (Arije 

and Wiltbank, 1971; Schillo et al., 1983). Heifers born in the fall and exposed to spring 

conditions after 6 months of age reach puberty younger than heifers born in the spring (Schillo 

et al., 1992). The season effect in some studies may be confounded with increasing plane of 

nutrition due to spring grass, but Tortonese and Inskeep (1992) showed treatment of 

prepubertal heifers with melatonin resulted in decreased age at puberty independent of 

differences in nutrition and growth. The way season affects puberty is not well understood, 

but is thought to influence the LH pulse frequency. In terms of natural selection there may be 

an advantage for being born in the spring or summer (Reksen et al., 1999), and the ability for 

fall-born calves to reach puberty younger may be a correcting mechanism as it would allow 

them to breed and therefore calve earlier. 

Modeling effects which decrease age at puberty require recognition of the difference 

in age at puberty potential from most other genetic traits in CBCPM. The definition of a 

CBCPM potential is maximum performance in a non-limiting environment, which corresponds 

to a numerical maximum for most traits. With puberty, maximum performance is very early 

puberty, and earlier AAP is a numerical minimum. The definition says an individual' s puberty 

cannot occur prior to the genetic potential, so the effect of limiting conditions are modeled 

by adding days to puberty. For example, a heifer born in the spring would have an adjustment 

added to its potential AAP to reflect the environmental effect of spring-born heifers being 
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older at puberty. This is the same as fall-born heifers being younger at puberty, but one cannot 

model the potential properly by reducing the AAP. 

There is likely a decrease in any seasonal effect for animals raised closer to the 

equator. Certainly the effect of season is dependant on the hemisphere, and all the research 

cited above was done in the northern hemisphere. A model of seasonal effects may well 

require modeling the impact of season with respect to latitude. With all that said, I did not 

implement a seasonal effect on AAP, although I believe it should eventually be added to the 

model. 

Social cues. Social cues may have an effect on AAP, but experimental results have 

been inconsistent, possibly due to interactions with other effects (Kinder et al., 1994), and 

possibly also due to error in observing puberty, such as NPE. In an experiment repeated over 

4 years prepubertal heifers were either exposed or not exposed to bulls (Kinder et al., 1994). 

Bull exposure started when heifers were 350 d of age, and puberty was assessed by 

concentration of progesterone in serum samples obtained twice weekly from 12 to 16 mo age. 

In three of the four years more heifers exposed to the bull reached puberty at 13,14,15, and 

16 mo age (P<.05). In a second experiment they tested the hypothesis that bull exposure's 

effect on age at puberty interacted with plane of nutrition. Heifers were fed for 1.6 or 1.3 lb/d 

gain and were either exposed or not exposed to a mature bull. Actual growth rates were 

higher than the targeted rates. In results pooled from 2 yr, heifers fed for higher growth and 

exposed to a bull reached puberty 73 d earlier than heifers fed for moderate growth and not 

exposed to a bull. Heifers fed for moderate growth and not exposed to a bull reached puberty 

23 d later than heifers fed for moderate growth and exposed to a bull, and 23 d later than 
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heifers fed for high growth and not exposed to a bull. The reason for this design was to test 

if the lack of a bull exposure effect in the work by Roberson et al. (1987) was due to the 

relatively high growth rate observed in that study's heifers. While they detected an interaction 

of growth rate and bull exposure with age at puberty, the experiment by Kinder et al. (1994) 

resulted in heifers with high plane of nutrition and bull exposure having the greatest effect on 

age at puberty. I did not implement bull exposure as an effect on age at puberty. 

Puberty Simulation. I modeled puberty as a genetic trait using potentials, the same as 

in the Fortran CBCPM, based on the trait AAP. It was modeled as a non-repeated trait, so 

the AAP potential was the sum of the breeding potential, non-additive value, and temporary 

environment deviations. I set the AAP genetic and environmental variances to 360 and 540 

d squared, respectively, to model a 30 d phenotypic sd and a .40 heritability. 

The AAP potential is one of the cases where maximum performance in an optimum 

environment corresponds to a minimum value, so it should not be possible to reach puberty 

prior to the AAP potential. This has implications for how environmental deviations are 

simulated; the environmental effects should not decrease AAP below the genetic AAP 

potential. 

Simulated heifers as old or older than their AAP potential are next checked for 

adequate body condition; heifers are required to have at least 13 % empty body fat 

(approximately BCS 3.7) to start cycling. The Java CBCPM model currently does not 

simulate changes in body fat, and weight is strictly a function of age, but the code was 

included for use when the growth model is updated. Because nutrient utilization was not 

simulated, percent empty body fat (EBF) is held constant at 16 % (approximately body 
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condition score 5.0), which is assumed to be non-limiting for all conditions. 

Heifers as old or older than their potential for AAP and in adequate body condition 

are also required to be more than a minimum weight. This weight is determined from the 

Brody growth curve parameters and simulated AAP, as Tess and Kolstad (2000a) did. I did 

this in a Java method named heavyEnoughQ, as follows, 

private boolean heavyEnough() 
{ 

// Decrease puberty weight once past puberty age 
// Allows younger&heavier puberty weights 

double aapPotential = 
thisCow.GetBreedingPotential{TraitList.ageAtPuberty); 

pubertyWeightAdjust = ( thisCow.getAge() - aapPotential ) * 
( 1.4 * thisCow.growthModel.getAWT() / 525. ) ; 

if( thisCow.getWeight() >= pubertywt - pubertyWeightAdjust ) 
return true ; 

else 
return false ; 

} 

where aapPotential is the heifer's potential AAP, and thisCow.getAgeQ returns the heifer's 

age in days. The variable puberty Weight, initialized in another method, is taken from the 

Brody growth curve at the time of her aapPotential; it is the weight she would be at her 

potential for AAP given nutrition that had not limited her growth prior to that. The net result 

is she reaches puberty when she is AAP days old if she is at or above her growth curve weight 

and not less than 13 % empty body fat. If her growth was restricted prior to the AAP date 

puberty, she reaches puberty later (older) than AAP, when her actual weight exceeds the 

minimum puberty weight and she has at least 13 % empty body fat. The minimum puberty 

weight is a decreasing limit over time, modeling the observation of older heifers reaching 
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puberty lighter than similar heifers. The method getAWT() returns the asymptotic mature 

weight parameter for the Brody curve (A, or AWT). Including A as a term puts this equation 

into units of degree of maturity as measured by age and weight. The constant 525 represents 

the A value used by Tess and Kolstad (personal communication) when modeling Herefords, 

and will need to be refined when the growth model is updated. 

This does not differentiate between preweaning and post weaning gain, while some 

studies have shown each to be related to age at puberty. The requirement of 13 % body fat 

does place some limit on diet, as does her weight. Although they were not implemented in the 

model, the places to include effects of season, rate of gain, and bull presence were marked 

with comments in the code. 

Modeling Conception. 

Threshold Trait Phenotype Simulation. The Fortran CBCPM simulates the phenotype 

of threshold traits, such as a female's probability of conception, by converting the phenotypic 

potential for the trait into an observed categorical trait (e.g. pregnant or not) by sampling 

from a uniform distribution between zero and one. If the sampled value is less than or equal 

to the phenotypic potential for probability of conception then the animal is categorized as 

having conceived. If not, she remains open until bred again, when a new random sample is 

drawn. 

As described previously, the Java CBCPM models potentials for threshold traits on 

the underlying scale. To convert the values from the underling scale to the observed scale it 

is necessary to place a threshold on the underlying scale. I placed the binomial threshold at 

zero; in the case of conception, all animals with a phenotypic potential greater than zero will 
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conceive. Because conception is modeled as a repeated genetic trait (Table 2.1), the 

temporary environment deviation of the potential is resampled each time the animal is tested 

for conception. The model is structured so that animals are only tested for conception if they 

are within a breeding season and if they are in estrus. Conception is modeled as a probability. 

There is a zero probability of conceiving on any day other than a day of estrus within a 

breeding season. Also, heifers and cows that conceive are pregnant, as neither embryonic 

mortality nor abortion are simulated. The simulated trait is therefore the probability of 

pregnancy given estrus within a breeding season. The model is structured so that embryonic 

mortality and abortion can be added without modifying any other logic. If this is done, the 

trait will become the probability of conception given estrus within a breeding season, and the 

input probability parameters will likely need to be increased to offset the decrease in 

pregnancies following conception. 

I also structured the model to allow a female to be bred by AI even if she were not in 

estrus, but she would have a zero probability of conception. This was done to account for 

mass mating following a synchronization protocol; it is primarily a book keeping feature to 

track semen usage. 

Estrous Cycle Simulation. The Fortran CBCPM has a variable time step and includes 

code to modify the probabilities for the length of the timestep. Rather than simulating a 21 

d estrous cycle, the Fortran CBCPM probability of conception given cycling is weighted for 

the length of the time step using the equation 

PCONL = 1 - (1 - PCON)step/30, 

where step is the length of the time step in days, PC ON, is the probability of conception in 
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a time step of length step, and PCON'xs the probability of conception in a 30 d time step. The 

probability of beginning to cycle is adjusted for the length of the time step in the same way. 

In the Java CBCPMI modeled a 21 d estrous cycle with no variance to cycle length. 

When a female starts cycling the first day is estrus (d 21 of her simulated estrous cycle). This 

is different than Tess and Kolstad (2000a), who set the day of the estrous cycle to a random 

day drawn from a uniform distribution of the 21 days of the cycle. The result was they added, 

on average, 10.5 d to their AAP input parameter since it took heifers that many additional 

days on average to reach their first estrus. 

In the Java CBCPM, females that do not conceive have their day-of-estrous counter 

incremented each simulated day (time step) unless the animal stops cycling (e.g. pregnant or 

anestrous). This is done each day until d 21 of her estrous cycle passes and the counter is 

reset to day one. Again, d 21 is the day of estrus, and since the model works on a full day 

time step, estrus essentially takes place the entire day (24 h). In Chapter 3 I discuss event-

based models as an alternative to the daily time step; an event-based model would allow both 

the onset and the length of estrus to be simulated at any time interval, but such event-based 

modeling was not implemented in this study. 

Heifer Conception Simulation. I modeled heifer estrus in a separate Java class than 

estrus of primi- and multiparous cows. Heifer estrus and conception are unaffected by 

dystocia, lactation, suckling, and the presence of their calf. On the other hand, heifers have 

been shown to be less than fully reproductively mature at puberty, with greater conception 

on subsequent estrous cycles (Byerley et al., 1987). These differences were enough to warrant 

separate Java classes for heifer and cow conception. 
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Pubertal Estrus. Byerley et al. (1987) showed that heifers in their study had pregnancy 

rates of 57 and 78 % at puberty and third estrus, respectively. Animals determined to exhibit 

NPE were removed from the study, and the above percentages are of the remaining animals. 

Based on this, Tess and Kolstad (2000a) adjusted conception rate of heifers at pubertal estrus 

by lowering the probability of conception by .21. 

The Fortran CBCPM does not modify pubertal estrus probability of conception, but 

does decrease the probability of conception potentials for all heifers. In the Java CBCPM, I 

lowered probability of conception for the pubertal and second estrus using multiplicative 

adjustment factors. In contrast, Tess and Kolstad (2000a) applied their adjustment with 

subtraction. Their model did not include individual animal variation for conception rate, but 

the Java CBCPM does, and I felt the adjustment should scale with the magnitude of 

conception rate. 

It was necessary to use a multiplicative factor of .268, as opposed to .21, to model 

the lower fertility on pubertal estrus from the 78 % conception observed on third estrus by 

Byerley et al. (1987). In other words, when mature conception rate (CR) is 78 %, my 

multiplicative adjustment, CR * (1 - .268), is equivalent to the additive adjustment for first 

estrous cycle, CR - .21, as used by Tess and Kolstad (2000a). Similarly, I decreased the 

probability of conception in the second estrous cycle by a factor of 0.128. This factor applied 

to Byerley et al.'s (1987) observed mature conception rate (78 %) models second estrus 

conception rate at 68 %, corresponding to an additive adjustment of 10 % decrease in 

conception. 

In the Java CBCPM the probability of conception is stored as an unobserved 
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underlying value, as described previously in this chapter. An appropriate deviation for the 

underlying scale is obtained by converting the underlying probability of conception to the 

observed probability scale, multiplying it by 1.0 - .268 in the case of pubertal estrus, and 

converting this value back to the underlying scale. The underlying deviation can be obtained 

by subtracting the underlying probability of conception from this value. 

Permanent Infertility. I modeled permanent infertility by placing a threshold on the 

permanent environment potential's distribution, as did Notter (1977). Females with a value 

to the left of that threshold can never conceive, regardless of their phenotypic potential. 

Nutritional Anestrous. Once a heifer starts cycling, it is possible for her to stop if her 

body condition decreases too much (Bossis et al., 1999; Rhodes et al., 1996). Bossis et al. 

(1999) placed cycling beef heifers on a restricted diet. The heifers stopped ovulating 32 ± 3 

wk from the start of the restricted feeding, as determined by transrectal ultrasonography. The 

heifers lost .38 kg/d and 22% of their initial body weight during the period of restricted diet, 

and had a 3.8 BCS at the time ovulation stopped. In another study beef heifers on a restricted 

diet stopped ovulating after 23 wk of restricted feeding and had lost 19% of their body weight 

(Rhodes et al., 1996). Using the approximation where BCS = (EBF - .02)/.03 (Bourdon, 

1992), a 3.8 BCS is about 13.4 % EBF. 

I simulated heifers becoming anestrous once their EBF went below 12 %, and estrous 

cycles resuming once it increased to at least 14 %. This is intermediate to the levels used by 

Tess and Kolstad (2000a); they stopped estrous at EBF less than 10 % and resumed estrous 

at greater than 13 % EBF. Short et al. (1990) noted that BCS 4 was generally sufficient to 

support estrous cycles. It is worth repeating the caveat by Tess and Kolstad (2000a) that body 
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condition is likely not the cause of anestrous, but is the best indicator currently available. 

Cow Conception Simulation. I did not model the remaining components of fertility 

as thoroughly as puberty because they were not necessary for my study of puberty in Chapter 

4.1 have structured the Java code for simple insertion of some effects not implemented, and 

have commented the code where I would place the modifications. 

Cow conception was modeled similarly to heifer conception. Both cow and heifer 

conception are based on the one genetic trait, PCON. I simulated cow PCON in a separate 

Java object due to the modifying effects on PCON different from the effects that modify heifer 

PCON. I distinguished a cow from a heifer based at least one pregnancy; since abortions are 

not simulated this is the same as requiring at least one calving to be considered a cow. 

Following calving the cow has a period of anestrous, described below in the 

"Modeling Postpartum Anestrous" section. Many studies on the modifiers of fertility do not 

separate the postpartum interval of anestrous (PPI) from conception rate, so it is difficult to 

interpret the effects with respect to either PPI or conception. 

Cow conception has been shown to be modified by time since calving, dystocia, age 

(or parity), weight gain after calving, and BCS at calving. Like heifers, once cows begin 

cycling it is possible for them to become anestrous again due to nutritional stress. In one trial, 

beef cows on a restricted diet stopped ovulating after 26 wk of the diet and lost 24% of their 

body weight, with a 36% decrease in BCS (Rhodes et al., 1996). I used the same BCS levels 

to trigger anestrous and resumption of estrous as with heifer conception. I also decreased 

probability of conception on the first two estrous cycles, in part to account for the occurrence 

of short, infertile estrous cycles, as discussed below, but did not simulate shorter cycle 
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lengths. I used the same multiplicative factors as for heifers. 

Dystocia. I did not implement the simulation of dystocia in the Java CBCPM because 

it was not essential to my study of heifer pregnancy. It is a genetic trait in the Fortran 

CBCPM and should eventually be included as one in this version. I included direct and 

maternal dystocia in the covariance matrices used to simulate phenotypic potentials, but I did 

not parameterize them and did not model dystocia effects on other traits. 

Modeling Gestation Length. Gestation length has been shown to be a heritable trait 

(Wheat and Riggs, 1958; Burris and Blunn, 1952; Andersen and Plum, 1965;Burfeningetal., 

1978; Azzam and Neilsen, 1987). I modeled gestation length as a genetic trait because the 

variation in its length could be important in some environments and management systems. I 

modeled it as a trait of the calf, as opposed to a repeated trait of the dam. Gestation length 

data collected from Holsteins by Jafar et al. (1950) had a 4.8 d sd, while Burris and Blunn 

(1952) reported gestation lengths for Angus, Hereford, and Shorthorn as having 7.1, 5.6, and 

6.0 d sd, respectively. Azzam et al. (1990) modeled a 6 d sd with a 284.4 mean for a mature 

cow carrying a male calf. They adjusted the mean for parity and sex of the calf. The review 

paper by Andersen and Plum (1965) pooled estimates of gestation length for Angus and 

Hereford were 279.5 and 286.2 d, respectively. 

Modeling Postpartum Infertility. Postpartum infertility can be defined as the time 

from calving until behavioral estrus is exhibited and a pregnancy can be maintained. It is 

useful to distinguish postpartum anestrus from infertility, because short, infertile estrous 

cycles can occur before the time at which pregnancy can be maintained (Short et al., 1990). 

The method used to observe postpartum anestrus will impact how the results are interpreted 
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when parameterizing the model. Methods which use a combination of observation of behavior 

and blood assay of progesterone (Zalesky, 1984; Custer, 1990) may be the minimum to detect 

the resumption of estrous cycles accurately. Additional measures include serial transrectal 

palpation (or ultrasound) of follicles on the ovary, and use of actual calving dates. The 

definition of the trait PPI may vary from study to study depending on how the end of the 

interval is measured. 

I did not explicitly model short estrous cycles, but it is something to consider 

changing. Although the cow will not become pregnant she will potentially consume a portion 

of the bull's attention or semen from AI. I did decrease the conception on the first two 

estrous periods following the PPI, which could be interpreted as a portion of the cows 

experiencing short cycles. 

The PPI begins at calving, with the uterus undergoing a phase of involution, taking 

from 20 d (Short et al., 1990) to 33 d (Custer et al., 1990). During this time it is not possible 

for sperm to be moved past the uterus, so even if estrus and ovulation were to occur the cow 

would be infertile (Short et al., 1990). The time of uterine involution has been shown to be 

insensitive to effects of bull exposure and sex of suckling calf. While it is the first phase of 

postpartum infertility, it is not considered to be the limiting phase (Short et al., 1990). 

Once sperm can navigate through the uterus and the uterus can support a pregnancy 

there can still be infertility due to short estrous cycles and anestrous. During anestrous the 

limiting factor appears to be low LH pulse frequencies, but the signals which result in 

resumption of estrus are not well understood. There are waves of follicular growth on the 

ovaries, but the follicles regress before ovulation (Jolly et al., 1995). The factors which cause 
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the regression of the dominant follicle may change from conditions of slight under- nutrition 

as compared to conditions of more severe under-nutrition, but the net result is still follicle 

regression (Jolly et al., 1995). Periods of short estrous cycles are caused by the uterus 

prematurely initiating regression of the CL (Short et al., 1990). 

In their review, Short et al. (1990) listed suckling and nutrition as main effects on PPI 

and season, breed, age or parity, dystocia, and bull presence as minor effects on PPI. Short 

et al. (1972) observed PPI in suckled, nonsuckled, and nonsuckled mastectomized cows to 

be 65,25, and 21 d, respectively. Lamb et al. (1999) determined the suckling effect in Angus 

X Hereford cows to be due to the calf s presence, as opposed to the removal of milk (Table 

2.2). In a subsequent study they showed no difference between machine milking 2X versus 

5X per day, but a significant decrease of 11.6 d in PPI. Wetterman et al. (1978) showed 

longer PPI for dams suckled by two calves than dams suckled by one calf. Custer et al. (1990) 

observed a 16.7 and 16.4 d reduction in PPI without suckling in two trials. They also reported 

a 15 d longer PPI in primiparous dams suckled by female calves, but cited conflicting studies. 

The Fortran CBCPM simulates postpartum anestrous using a genetic potential for the 

probability of beginning to cycle. I modeled postpartum anestrous as a genetic trait with a 

potential which is the minimum amount of time before estrous can resume. It is a repeated 

trait, so Et is resampled at each calving. Because the PPI potential is a case where maximum 

performance corresponds to a minimum numerical value I decided to add, rather than 

subtract, time to the PPI to adjust for environmental effects. 
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Table 2.2. Effect of calf presence and milk removal from the cow on the cow's postpartum 
interval length (Lamb et al., 1999). 

Cow milked by 

Calf Presence 

No 

No 

Yes 

Yes 

Yes 

Yes 

Calf 

No 

No 

No 

No 

2X daily 

Yes 

Machine 

No 

2X daily 

No 

2X daily 

No 

No 

I used an additive adjustment for BCS (ADJBCS), 

ADJBCS= -20.8 + 1.8631 / EBF15, 

which is essentially the same as Tess and Kolstad (2000a). They did not include a suckling 

effect, but the Fortran CBCPM did. I included a suckling effect to better model PPI in cows 

that lose a calf, and to potentially allow management techniques such as 48-h calf removal to 

be simulated. Cows that were suckled had 20 d added to their PPI. I also added 20 d to a 

cow's PPI if there was no bull exposure. The biology behind these effects is certainly more 

complex than these simple additive factors. I suspect they should be modified for time since 

calving, BCS, and plane of nutrition since calving. 

Tess and Kolstad (2000a) allowed PPI to be reduced up to 7 d if the cow's 4-wk 

rolling average weight gain was positive. I modified their equation to allow cows with 

negative gains to have longer PPI (Randel, 1990; Short et al., 1990). Cows losing 0.454 kg 

Time to first 

estrus (d) 

14.1 ±3.1 

13.0 ± 3.1 

14.2 ±3.1 

17.2±3.1 

33.9 ±3.3 

34.7 ±3.1 
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or more per day rolling average have 19.2 d added to their PPI. The length of time added to 

the PPI is decreased linearly as the average weight gain increases, reaching zero additional 

days at approximately 0.26 kg daily gain, and kept at zero for greater gains. At zero gain 

there are 7 d added to the PPI. Again, additive non-negative adjustments avoid decreasing the 

PPI below the phenotypic potential. 

Finally, all cows have at least a 20 d PPI. While it may be possible for a few cows to 

resume cycling prior to that, it is unlikely they are fertile, due to the period of uterine 

involution. This truncation point is arbitrary, but in most scenarios this will not be the limiting 

factor. Dystocia has been shown to have a significant effect on PPI, but since I did not model 

dystocia I did not modify PPI for its effect. 

When parameterizing the mean PPI it is necessary to remember that a cow with BCS 

6, gaining no weight, suckling a calf, and without a bull present will have an additional 47 d 

of PPI from the adjustments described above. The maximum adjustment is 83 d for a cow 

BCS 4, losing weight, suckling a calf, without a bull present, and the minimum adjustment is 

0 d for a cow BCS 6, gaining weight, not suckling a calf, with a bull present. 

Modeling Male Effects on Conception. The Fortran CBCPM does not simulate bull 

fertility, although inspection of the source code shows an AI technician effect on fertility was 

introduced in later versions. All bulls could breed any number of cows on a given day and 

were 100 % fertile. I designed the Java CBCPM to allow for simulation of male fertility. I 

designed the mating to allow for bull competition and to account for the number of cows a 

bull could breed in a single day. Within a breeding pasture the number of cows in estrus are 

counted. Then the bulls are assigned a percentage of the matings. In the future this percent 
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can reflect bull social interactions. Next the bulls are assigned to mate specific individual 

cows. Before mating the bull's fertility for the day can be adjusted to reflect recent breeding 

use and the number of cows he is allocated to this day. Once his fertility is set the cow is 

essentially given a dose of semen with a specified fertility. The semen fertility is multiplied by 

the cow's probability of conception to arrive at the final probability of conception. 

Validation. Meaningful validation of this model against the literature was difficult 

because the model was not fully functional. The lack of a growth model with individual animal 

variability reduced the output of the reproduction model to a function of the input 

reproduction parameters and the management imposed. While this model did not allow 

realistic simulations, it did provide the data necessary to study simulated genetic reproduction 

parameters in different management environments independent of interactions with other 

components in the system. Since essentially no biological or environmental modifications to 

the potentials were simulated, the primary validation was for proper simulation of the genetic 

traits. I wrote the components of potentials for the simulated genetic traits AAP and PCON 

(i.e. BP, Et, and Ep) for each animal in a simulation run to a file. 

The final validation data came from the model as described in Chapter 4. Of note, this 

includes modifications to allow foundation animals to have the same parents and the ability 

to run consecutive simulations that reuse sires. The ability to reuse sires allowed data sets for 

consecutive simulation runs to have genetic connections. This was necessary to increase the 

number of heifer pregnancy observations, as available computer memory was limited. 

I calculated the mean and variance of each component and the simple correlation of 

each component with the other components for both traits, with the assumption that since 
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they were simulated independently the correlation should be zero. 

Results and Discussion 

The code was tested as it was written, but not with a formal method. Object oriented 

design techniques, discussed in Chapter 3, helped avoid and identify errors in the code. 

Runtime errors were treated as fatal, as the model currently is not intended for interactive use. 

Toward the end of this study I learned of programming techniques called extreme 

programming. I discuss this in more detail in Chapter 3, but one of the intriguing aspects is 

the reliance on writing test code as the model is developed, even before the modeling code 

is written. I believe there is great potential in this practice. In particular, it would mesh well 

with suggestions from Bourdon (personal communication) to develop a database of test cases 

for validation of any change to the model. Given that a goal is an open source model to be 

improved by researchers not necessarily intimate with the entire model, testing will be 

extremely important. I believe this holds great potential and can be pursued in the framework 

of extreme programming. 

Verification of Simulation of Genetics. The observed mean components of the two 

genetic traits of interest, AAP and PCON, were considered close enough to the input 

parameters, with the exception of PCON Et (Table 2.3). The PCON Et was simulated to be 

zero, but the observed value of 0.504 suggested bias. Analysis of the sires, simulated with the 

same input parameters, do not show the bias (Table 2.4). The bias in the heifers was a 

byproduct of the way the model resamples Et until the female conceives. It is more likely she 

will conceive with a large, positive Et than with a negative value, particularly when her BP 
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and Ep have a relatively low value. This is supported by the non zero negative correlation 

between heifers' PCON BP and Et (Table 2.5). In addition, the mean Et for the 1,000 sires 

in the same simulation was -0.004, and the correlation between sires' PCON components BP 

and Et was 0.003 and both were considered reasonably close to zero. Sire E, is never 

resampled, so the near zero correlation supports the conclusion that the BP components were 

simulated independently, as intended. 

Table 2.3. Input and observed means and variances for the components of AAP and PCON 
from 40,000 simulated heifers. 

Trait 

AAP 

PCON 

Component 

BP 

Ep 

Et 

BP 

Ep 

Et 

Input 
Mean 

390 

0 

0 

0.2531 

0 

0 

Observed 
Mean 

390.2 

0.000 

0.013 

0.261 

-0.001 

0.504 

Input 
Variance 

360 

0.0001 

540 

.15 

.10 

.75 

Observed 
Variance 

335.6 

0.0001 

538.3 

0.153 

0.1001 

0.462 

corresponds to a 60 % conception rate. 
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Table 2.4. Input and observed means and variances for the components of AAP and PCON 
from 1,000 simulated sires. 

Trait 

AAP 

PCON 

Component 

BP 

Ep 

Et 

BP 

Ep 

Et 

Input 
Mean 

390 

0 

0 

0.2531 

0 

0 

Observed 
Mean 

389.9 

0.0001 

-1.492 

0.251 

0.006 

-0.004 

Input 
Variance 

360 

0.0001 

540 

.15 

.10 

.75 

Observed 
Variance 

323.4 

0.0001 

535.5 

0.152 

0.103 

0.749 

corresponds to a 60 % conception rate. 

Table 2.5. Observed simple correlations among simulated components of AAP and PCON 
from 40,000 heifers (above the diagonal) and 1,000 sires (below the diagonal). 

Trait 

AAP 

PCON 

Component 

BP 

E P 

E, 

BP 

EP 

Et 

Aee at Pubertv (AAP) 

BP 

0.016 

-0.002 

-0.038 

EP 

-0.005 

0.0748 

Et 

0.002 

-0.004 

Probability of Conception 
fPCON) 

BP Ep Et 

-0.009 

-0.003 -0.212 

-0.000 -0.055 

0.003 0.018 

I plotted the distribution of phenotypic potential for the heifer PCON (Fig. 2.1), 

expecting a slight skew due to the resampling of Et. If resampling of E, had not occurred the 

figure should appear normal with mean at 0.253, which corresponds to 60 % conception 

given that the threshold was modeled at zero. However, the figure shows a dramatic shift of 
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heifers whose phenotype were initially less than zero to a positive phenotype. Again, a heifer 

with a positive phenotype would become pregnant during the breeding season and then Et 

would not be resampled. The heifers remaining with a negative phenotype are primarily ones 

modeled as infertile. Since infertility was based on Ep, which was simulated independent of 

E t, they appear to be normally distributed. The idea that this is due to resampling Et is further 

supported by Figure 2.2, where the distribution of heifers' phenotype minus their Et effect (i.e. 

BP + Ep) are plotted. This curve appears normal with mean close to the desired 0.253. 

The observed variances were also reasonably close to the input variances. The input 

value for AAP Ep was non zero to allow the Cholesky decomposition to be performed. The 

observed variance for PCON Et is likely reduced due to the same reason the mean is non zero. 

The variance of Et of the 1,000 sires from the same simulation was 0.749, supporting the 

conclusion that Et was simulated correctly and the heifer Et variance was reduced due to the 

resampling. 

The correlations between the components were close to zero (Table 2.5) as expected, 

with the exception of the heifers' PCON Et correlations described above. Heifers in the 

simulation run reached puberty at 390.8 d on average, with a phenotypic variance of 875.3. 

There were 1,982 (4.96 %) heifers simulated as sterile, close to the threshold, which was set 

at 5%. There were an additional 1,129 (2.82 %) heifers that did not conceive during the 120-

d breeding season. 
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Figure 2.1 Distribution of simulated probability of conception (PCON) phenotypic potentials 
(BV + Et + Ep) output at the end of a simulation run. 

OiJUU 

3000 

2500 

2000 

1500 

1000 

500 

n 

i i i i 

\ 

1 
! 

1 
I 
l 

/ 

/ 

1 1 -—r' l 

1 1 

"\ 

\ 

\ 
\ 

\ 

\ 

\ 
1 

\ 

1 '----L 

" 

" 

" 

" 

" 

-

-4 -1 0 1 
PCON BV (underlying scale) 

Figure 2.2 Distribution of simulated probability of conception (PCON) phenotypic potentials 
minus temporary environment effect (BV + Ep) output at the end of a simulation run. 
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To test the simulation of pregnancy I counted only heifers who reached puberty more 

than 62 d prior to the start of the breeding season to avoid the effects of reduced PCON on 

the pubertal and second estrus. There were 14,632 heifers that reached puberty more than 62 

d prior to the start of the breeding season. Of these, 13,922 were fertile, while the remainder 

were simulated to be infertile. If infertility had not been simulated, the expected pregnancy 

rate would be the simulated mean PCON, which was 60 %. The observed pregnancy rate of 

all heifers that met the above criteria and conceived on their first estrus in the breeding season 

was 59.9 % (Table 2.6). Of the heifers that met the above criteria and were also fertile, 63.0 

% became pregnant on their first estrus in the breeding season. Because infertility was based 

on the lowest 5 % of Ep potentials, there would be a tendency for infertile heifers to have a 

low phenotypic PCON potential. Mean PCON phenotypic potentials for fertile and infertile 

heifers were 0.48 and -0.43, respectively. Fertile heifers were more likely to conceive than the 

input parameter for conception might suggest, and their observed 63.0 % conception in the 

first estrus supports this. 

Table 2.6. Cumulative pregnancy rate of heifers that reached puberty at least two estrous 
cycles prior to the start of the breeding season, with a simulated 60 % mean conception rate. 

Estrous cycle in 
breeding season 

First 

Second 

Third 

Pregnant 
heifers (n) 

8,767 

11,481 

12,590 

Percent of 
heifers that 

were pregnant 

59.9 

78.5 

86.0 

Percent of 
fertile heifers 

that were 
pregnant 

63.0 

82.5 

90.4 

Expected 
percent 

pregnant if all 
were fertile 

60.0 

84.0 

93.6 
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If all heifers in the simulation were fertile then the third and last column of Table 2.6 

should be the same. However, the observed pregnancy rate (third column) for second and 

third estrous cycles was less than the expected pregnancy rate (last column). This was because 

as time progressed, measured by estrous cycle, an increasing percent of the heifers remaining 

open were infertile. It is also less because only Et is being resampled, and Et only accounts for 

75 % of the variation in the PCON phenotypic potential. This is more clearly shown in the 

percent of fertile heifers that became pregnant (Table 2.6), again compared to the expected 

pregnancy rate in the last column. It is one difference between simulating using a threshold 

as opposed to the method of the Fortran CBCPM. 

The fertile heifers that met the above criteria yet remained open after three 

opportunities to breed had an average PCON phenotypic potential of-0.88 on the underlying 

scale. These heifers could eventually conceive if given enough opportunities to have a 

favorable Et. 

I also tested the reduction in conception for the pubertal and second estrus. With an 

input mean PCON of 60 % and the reductions described previously, the expected conception 

for the pubertal and second estrus were 43.9 and 52.3 %, respectively. There were 4,189 

heifers that reached puberty in the first 21 d of the breeding season, and 1,866 (44.5 %) 

conceived. Similarly, 8,691 heifers had their second estrus in the first 21 d of the breeding 

season and 4,594 (52.9 %) conceived. 

Discussion. Evolution has led to a reproductive system that protects the female from 

jeopardizing her ability to replace herself. Not only does she need a properly functioning 

reproductive system, she also needs to be able to deliver and nourish the calf while 
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maintaining reproductive viability herself. It takes a minimum of one female born to replace 

her, which implies raising at least two calves to maturity assuming equal sex ratios and no 

death loss. Obviously the average number of necessary calves would be greater than two in 

the wild. In managed populations, where profitability is the measure of fitness, a line's 

survival requires up to five calves (Snelling, 1994). 

Puberty. A heifer's survival would be jeopardized by allowing conception when she 

was structurally too small to deliver or too young to eat enough to maintain herself, feed a 

calf, and rebreed. It appears her survival is safeguarded by ensuring the reproduction system 

is functionally capable prior to its earliest use, but is disabled until the supporting systems 

signal that they are ready. Small wonder then, that the control of the onset of puberty is 

complex. 

Weight and age only explain a portion of the variation in AAP, and it is likely not a 

cause and effect relationship. Care should be taken when using this simulation of AAP with 

an alternative growth model. It should be checked against field data for reasonableness. In 

particular, the key equation in the heavyEnough() method should be checked against field 

data when a different growth model and nutrient partitioning and prioritization are 

implemented. 

There are advantages to early AAP, but disadvantages when AAP is too early (e.g. 

bred preweaning), suggesting there is an optimal AAP. There are several factors for a 

producer to consider when trying to determine optimal AAP. The main constraints are the 

desired age at calving and the use of a restricted length-breeding season. A review paper by 

Morris (1980) concluded that calving as a two-year-old has been repeatedly shown to 
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increase lifetime productivity as compared to calving at older ages. Many heifers in the U.S. 

are managed to calve as two-year-olds. Short et al. (1994) suggest that the cost to calve at 

two years age for Bos indicus breeds under some management and feed costs can increase 

beyond the return from greater production. 

Rebreeding. Postpartum anestrous likely protects the cow from getting pregnant too 

early. The suckling effect protects the cow, as the calf will likely survive regardless of its 

dam's pregnancy status. While it maybe modified by other factors, such as BCS, loss of a calf 

appears to be a major signal to resume estrous cycles. Likewise, the arrival of a bull signals 

the cow to resume estrous cycles. 

Johnson and Notter (1987a) simulated PPI as a genetic trait, using normal 

distributions to simulate the additive direct genetic and permanent environment deviations. 

They used a Pearson III gamma distribution to extend the right tail of the temporary 

environment deviations. This was done in part to simulate the first 25 to 30 d postpartum as 

infertile. They refer to work by Short et al. (1972) as the cow being unable to initiate estrous 

during this period. More recent work (Short et al., 1990) suggests the cow is infertile due to 

uterine involution but that involution does not cause anestrous. Once a suitable growth model 

and nutrient partitioning are added to the model it will be interesting to compare the simulated 

phenotypic PPI distribution to the non-normal distribution Johnson and Notter (1987a) 

expected. I expect that as the model accounts for the major environmental effects, by 

simulating them mechanistically, the remaining temporary environmental deviations can be 

simulated with a normal distribution. 

A restricted-length breeding season is a management tool to lower cost, increase 
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management intensity, and reduce effort. Year-round breeding results in having cows and 

calves in all stages of production at any one point in time. Breeding seasons as short as 82 d 

will result in calving extending into the breeding season (Short et al., 1990). While longer 

seasons can spread peak workloads, they can make management more difficult. It becomes 

more difficult to monitor production with a long or an undefined breeding season, and it may 

require some operations, such as castration, to be performed more than once a year, resulting 

in decreased efficiency. One of the stronger arguments for restricted length breeding seasons 

is meeting the nutritional requirements of the lactating cow with the least expensive feed. This 

implies matching lactation to the growing season; traditionally this has done by matching peak 

lactation stress to peak forage availability. 

I feel a mechanistic model of reproduction at the hormone level should be the ultimate 

goal. Such a model will be valuable for exploring alternative estrous induction and 

synchronization protocols, as well as normal reproductive function. It might also be useful for 

designing research trials to increase the understanding of signals which trigger puberty and 

the resumption of cycling following calving. Prototypes of such a model might be explored 

using agent based modeling methods. However, many details are not well understood, and 

such a model incorporated into a systems model would add considerably to the difficulty of 

parameterization and validation. 

The use of probabilities is convenient and intuitive, particularly for outcome traits such 

as heifer pregnancy and stayability. However, probabilities as a model input are not revealing. 

The use of probabilities in the model input suggest a lack of understanding of the biology by 

the modeler and potentially the literature. There are cases where knowing and modeling the 
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biological details would have little to no impact on the ability to use the model to answer 

questions, where the model would suffer little from the use of a probability. For example, 

modeling the process of conception given ovulation and the presence of fertile sperm can be 

left to probability for the majority of production scenarios. 

Summary 

A new version of the CBCPM model was written in Java. This model was 

designed with the long-term goal of being the start of a comprehensive, mechanistic 

systems model of beef production, and it was implemented with the short-term goal of 

generating data to use to better understand the relationship between AAP and PCON with 

heifer pregnancy EPD. As a result, many components necessary for realistic simulation of 

a beef system are not yet implemented, and even some of the reproduction components are 

"roughed-in", but are not fully developed (e.g. postpartum interval and dystocia). 

Additional work will be required to have a fully functioning reproduction model. 

However, this model does simulate AAP, PCON, and the management of breeding 

seasons. 

Heifer puberty data collection is expensive. Studies of management effects on 

puberty may gain power by using related animals and analyzing the results with a mixed 

model that removes variation due to additive direct genetic effects while fitting the effects 

of interest. We know age at puberty is heritable and therefor has genetic variance. 
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Chapter 3 

Rationale and Design for an Objected Oriented Simulation Model 

Introduction 

Systems modeling requires translating biological and management research results into 

computer instructions that simulate the real conditions. The modeler interprets the literature, 

designs and builds the model, designs comparative experiments, parameterizes the model, and 

analyzes the results. Useful models are difficult to design and build because interesting 

questions are often the result of interactions within and between biological systems and the 

management placed upon them. Building a model of a component of the system is 

comparatively easy, but does not allow the modeler to discover interactions, during 

development or execution, with other components of the system. 

It has been more than 20 years since the TAMU model papers were published, and 

beef cattle systems models have progressed in many ways since then. The CBCPM, for 

example, models the interaction of forage growth with grazing, animals are individually 

modeled, and eighteen genetic traits are mechanistically modeled. Despite this, I feel 

simulation models of beef cattle systems are not living up to their potential; I see evidence of 

this in the things that beef systems models are not used for. 

Simulation models could be useful educational tools in that they are a fast, cheap way 

to explore management alternatives. Both students and producers could benefit from the 

experience of parameterizing a model and then reasoning through the biology to understand 

the results. Producers could use systems models for more than education; the models could 
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be used to explore the impact and risk of changes in the existing production system. 

Researchers could also use models to test experimental designs. 

Part of the reason for the limited use of existing models is the difficulty in 

parameterizing them. The CBCPM obtains its parameter from ASCII text files, and does not 

provide a tool for editing them, although the DECI model partially overcame this. Modeling 

some types of scenarios with CBCPM requires modifying code and recompiling. 

Parameterization can be made easier through use of different user interfaces depending upon 

the task. Databases of default parameters for typical production systems and interfaces to 

these databases, such as geographical information systems, could make the process easier, 

particularly for educational purposes. 

I believe the real bottleneck in developing more complex models is in managing 

complexity, particularly in implementing and maintaining the design in software. Modelers use 

a variety of tools to implement their models, including computers, operating systems, 

programming languages, compilers, debuggers, and editors. Initially the computer hardware 

was the primary limitation, but the tools are evolving faster than modelers are adapting, and 

faster than modelers are making use of them. 

Early Systems Modeling Tools. 

Hardware, Operating Systems, and Networks. In the era before personal computers 

and high speed networks, a large percent of the developer's time was spent waiting for results 

following a modification of the code. Errors as simple as improper indentation of code could 

consume a large amount of time, especially if the job was batch submitted. The development 

team was often no more than a few collaborators; access to computer resources limited the 
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number of developers as much as anything else. For instance, the latest version of a model 

was likely stored on punch cards in a box in someone's office. Computers were not multiuser 

and were largely not interactive. Changes were made to the code by modifying individual 

punch cards, and then the cards were loaded into the computer for execution (often involving 

a walk across campus to a shared card reader). 

Software Development Tools. Programming languages and compilers originally were 

developed with thought toward efficient use of the computer resources during runtime. 

Fortran was one of the first third-generation languages and was the language of choice for 

scientific computing. Fortran 77, the language most beef cattle models were written in, has 

many limitations compared to more modern languages. For example, variable names were 

limited to six characters in length, most likely to make efficient use of punch cards and 

random access memory (RAM) as the program was compiled, but this resulted in code that 

was difficult to read. Educators recommended programming practices which might be viewed 

as risky today, such as using a particular common block for multiple purposes within a 

program to reduce RAM requirements (Ageloff and Mojena, 1981). The design of the most 

current Fortran version of CBCPM still reflects the era of vector computing in its heavy 

reliance on arrays. 

Programmers were faced with limited resources that often required creative solutions 

for sake of speed and access to RAM, but which resulted in code that was difficult to debug 

and maintain. As early as 1975 it was observed that up to half the cost of data processing 

went toward program maintenance and modification (Yourdon, 1975). As managers and 

educators became aware of this, more emphasis was placed on improving the structure of 
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programs to control the maintenance costs. 

The programmer was given tools in Fortran 77 to help create better code, most 

notably the ability to write code in modules. Modules can improve a programmer's efficiency 

by allowing code to be reused, both within one program and also in different programs. This 

is efficient with respect to initial development time but also with respect to debugging time. 

A well designed module can be debugged and then (re)used with little further debugging 

effort and with increasing confidence. The more of these proven modules there are in a 

program the fewer places there are left to check for bugs. Modules also provide the advantage 

of breaking the program into discrete chunks, which ideally are specialized to a single type 

of task. These modules could be stored in separate files or card decks, making larger 

applications more manageable. 

Still, programs were built largely with the limitations of the tools in mind, and the 

design process reflected the procedural languages used to implement them. Top-down design 

and flow charts emphasized the sequence of events, and the real world was modeled within 

that context. The hardware limitations also had a strong effect on how systems were modeled 

(e.g. average animals). Compilers were able to detect and report syntax errors, but there was 

little direct help within the languages for the programmer to avoid logic errors. In fact, the 

C language took things backward in this respect, as its compilers gave the programmer nearly 

unlimited direct access to memory, and the programmer was assumed to understand the 

consequences and side effects of each statement. 

Documentation of applications was encouraged but typically neglected. Flow charts 

were drilled into students, but I never observed anyone using them to the degree we were 
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taught. Code was supposed to be "self documenting", but usually it was obscure, often even 

to the programmer who wrote it, given a little time. 

Improvement of Development Tools. Development tools have continually improved. 

Personal computers, while initially too slow for simulations, were used as terminals, 

increasing the availability to mainframes. As networking on campuses began it was possible 

to modify code from the comfort of one's own building. Punch cards were replaced by 

electronic storage, and on-line editors became available. A model could be stored in a central 

on-line site with more than one modeler having access to it at a time. The speed of mainframe 

computers increased, which allowed more complicated models and more testing runs. Still, 

there was time to analyze data while waiting for results from the latest modification or 

simulation, and the computer hardware was still a limiting factor in the advancement of 

models. 

At some point in the late 1980's or early 1990's this balance began to change. 

Computers became faster and the tools to modify the programs became much better. 

Computers became more interactive, on line storage capacity increased, cost of computer 

cycles decreased, and terminals made them more accessible. With better networks it was 

possible for teams to work on a single program, each modifying and testing. These advances 

eventually had the combined effect of removing computer hardware as the limiting factor for 

most beef cattle systems models. 

Current Systems Modeling Tools. 

Hardware, Operating Systems, and Networks. Tools available to modelers now have 

seen huge improvements since the TAMU model papers were first published, and new tools 
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have been added. Computer power has increased rapidly while at the same time the computers 

have become smaller, cheaper, and pervasively accessible. Moore (1965) observed that the 

amount of information which could be stored in a given area of integrated circuit doubled 

every year. The rate of progress has slowed to a doubling every 18 months since about 1980, 

where it holds steady even now. This rate has become known as Moore's Law. Modern 

desktop computer processors can do in a morning what would have taken a 1980s era 

computer a month or more. The size of RAM has increased, as have long-term storage 

devices such as hard disks. Early models were limited to using an average animal; Kahn and 

Spedding (1983) were able to use an individual based model only because they simulated 40-

head herds. In contrast, the study done in Chapter 4 used thousands of animals in each 

simulation run, and the computers used for that analysis have since been replaced with much 

faster computers that also have more disk and RAM storage. 

Today's operating systems are interactive, multi-user, multi-tasking, and allow the 

programmer to address huge amounts of storage. Networks have become an integral part of 

a computer system and the distinction of access to multiple computers on a network versus 

access to a single computer that happens to have networked components is blurring. 

Networks allow disk drives to be shared, and some computers' primary function is to manage 

storage area. Central processing units have been connected in clusters or grids on high speed 

networks with the help of languages such as LAM/MPI and PVM, and extension of these 

techniques across the Internet is happening. Few animal science modelers are taking 

advantage of these huge leaps in computer power, although optimization techniques which 

use a simulation model as the search engine (Meszaros, 1999; Bourdon, 1998) clearly will be 
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able to exploit these systems. 

Software Development Tools. Programming languages and software development 

environments have also improved greatly, making it easier for the programmer to handle 

larger projects and easier for the programmer to write good code. As noted previously, 

simulation models of beef cattle production have historically been written in Fortran, due in 

part to it being the primary programming language when modeling started. It appears that 

those early researchers in turn trained their graduate students in Fortran, most likely because 

there was a base of existing code to work with, but also because the researchers were familiar 

and comfortable with it. Even as recently as 2000, PhD students were investing substantial 

programming efforts into models written in Fortran 77 (Doyle, 2000). 

This is not to say Fortran is not up to the task of building complex models, but most 

existing models are based in early versions of Fortran which lack modern programming tools 

such as data structures, dynamic memory allocation, and object classes. Analysis of source 

code for the model by Tess and Kolstad (personal communication) showed their use of 

Fortran 90 was a timid step; while they did use data structures, they implemented the model 

with only five subroutines and a few functions, and did not make use of dynamic memory 

allocation. I have not found any beef system simulation models written in C or Pascal. 

Integrated development environments (IDE) have become available on most 

platforms, allowing the programmer to code, compile, run, and debug from within the same 

environment. Artificial limitations, such as six character variable names on instructions 

beginning after a certain number of blank spaces are less prevalent. Point-and-click interfaces 

and editors which provide completion of names as they are typed encourage the programmer 
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to use longer, more descriptive names. Editors make use of color to help the programmer 

identify statements and variables. While debuggers have been available for quite some time, 

the IDE environments make using them a seamless tool for analyzing the code during 

execution and for tracking errors. 

System design has come a long way from flowcharts, and programming languages 

have gone through a major change. Rather than separate, non-integrated steps from design 

to coding to debugging, the use of object oriented design and languages is becoming more 

common. The strengths of object oriented design is the focus of the rest of this chapter, but 

first I'll digress to ensure Fortran modelers are on the same footing. 

Dynamic Memory Allocation and Data Structures. Modelers using the earlier versions 

of Fortran did not have use of two powerful programming tools - programmer defined data 

structures and dynamic memory allocation. It is a bit surreal to me to feel it is necessary to 

describe data structures and dynamic memory allocation to modelers in 2003 since I first used 

them in PASCAL programs in 1984. However, it is apparent from the literature that most 

beef simulation modelers have not made use of these tools and may not appreciate what they 

offer to modeling. 

Data structures allow the programmer to create new data types from aggregations of 

variables using the intrinsic data types (e.g. REAL, CHAR, FLOAT) and using other data 

types defined by the programmer through the use of data structures. As a new data type it is 

then possible to define a variable to describe an instance of this data type or even an array 

whose elements are each an instance of this new data type. This is primarily an organizational 

construct. It reduces the programmer's work and is a higher level of conceptualization. For 
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example, a programmer-defined data structure called COW might be an aggregation of 

variables for weight, birth date, sex, sire, and dam. The programmer could create an array of 

COW elements, with each COW element in the array having its own set of the variables. 

While an array of new programmer-defined data types is intriguing, their real power comes 

from the understanding and use of dynamic memory allocation. 

Dynamic memory allocation is a programming tool which allows the amount of RAM 

needed for execution of the program to be determined at the time of program execution rather 

than time of compilation. For example, CBCPM lacks dynamic memory allocation and 

requires the programmer to determine maximum herd size prior to compiling the program. 

To increase herd size beyond that limit, the code must be recompiled. This is similar to buying 

a word processor that can write up to 100 pages, and to get 101 pages requires the user to 

obtain a different version of the word processor from the developer. While the developer and 

user of a simulation model are often the same person, lack of dynamic memory allocation 

creates an artificial constraint during the design process and possibly later when modeling. 

Versions of Fortran 90 are capable of using dynamic memory allocation. Tess and Kolstad 

(2000a) used Fortran 90 but did not make use of dynamic memory allocation capabilities 

(personal communication). 

To illustrate the power of defining new datatypes combined with the use of dynamic 

memory allocation I'll return to the example of a COW datatype which includes variables for 

weight, birth date, sex, sire, and dam. When defined as an array, a given animal's sire (dam) 

variable would contain an index to the sire's (dam's) COW element within the array. If the 

array were implemented in the C language and named animals, then animal i's sire's birth 
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date might be accessed as 

animals| animals[i].sire].birth_date. 

Alternatively, with dynamic memory allocation, the COW elements could be organized in an 

ancestors tree. The variable for sire (dam) could be defined to "point" to the location of the 

sire's (dam's) element in RAM, allowing navigation from a given animal to all its immediate 

ancestors without use of array indexes. Again in C, the birth date of a sire of an animal I'll 

access with a variable called animal is 

animal.sire->birth_date, 

which is simpler and more intuitive, and the paternal grandsire's birth date would be 

animal.sire->sire->birth_date. 

Writing that in one step with an array would result in code very difficult to debug and 

maintain. Subgroups of COW elements can be organized essentially the same as with 

CBCPM's control vectors. By allowing one user defined data element to "point" to the 

location of another data element in RAM complex organizational structures can be created. 

In addition to allowing access to COW elements based on their location in RAM with 

pointers is also possible to dynamically create (and destroy) COW elements. A Fortran 77 

array implementation requires knowing the maximum herd size at compile time, but an 

implementation using dynamic memory allocation would not have that artificial limitation. 

Instead, COW elements would be created as needed and destroyed when no longer necessary. 

Once an element is destroyed its RAM is released for reuse, perhaps by a later generation of 

animals in the simulation. 

Dynamic memory allocation comes at the price of increasing the potential for 
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programming errors. In the C language a typical programming error is to over-index an array. 

That is, to access a memory location past the end of the memory dynamically allocated for 

the array. The results are unpredictable and often cause side effects which are difficult to trace 

back to the root cause. 

State of the Art. The CBCPM was the most complex systems based model I found 

in the literature. While DECI was a step forward in usability with its graphical user interface, 

the user had access to only a subset of CBCPM's capabilities. It was one of the few individual 

based models I found, and it was the only model that attempted to mechanistically model 

genetics for all traits of importance to cattle production. 

However, it was evident that the core of the CBCPM model aged as efforts were 

shifted from the system design to refinement of components. Modifications were made by 

commenting out previous programmers' implementations and adding new ones. Keeping the 

original code was helpful, but it added to the amount of information the programmer had to 

sift through. It is likely some of the saved code would no longer function as intentioned 

because assumptions made when it was written potentially changed over time. The code 

remained as Fortran 77, and although excellent use of modules was made, the limitations of 

the language remained. In short, CBCPM was the most complete systems model but was 

becoming unmanageable due to its complexity, largely due to the limitations of Fortran 77. 

The Need for Change. It is expensive to retool a complex simulation model, and a 

researcher cannot afford to spend much time chasing the latest fads in software development. 

Time spent on keeping up to date with advances in software engineering is time not spent on 

research and the money it generates. At some point, however, the cost of stopping the model 
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refinements and doing a complete rewrite outweigh the costs of continuing with the status 

quo. 

More complicated models were being envisioned years ago, such as sire selection by 

simulation (Bourdon, 1998). None of the existing beef simulation models allow for selection 

on EPD, let alone on EPD calculated from the ongoing simulation. This is a tractable problem 

and would be interesting to use to investigate correlated response to selection. While many 

forms of correlated response may not be modeled and therefore would not appear, some less 

obvious forms may arise from the model. 

Bourdon (personal communication) has suggested that productivity could be increased 

by creating a model core which could be reused by researchers rather than the current practice 

of creating models of subsystems. If a researcher's work resulted in an improved module of 

the model, it could replace the existing module. The potential is for experts in the various 

fields to modify and upgrade the model while using it for their own research. The individual 

cost is low and the group's benefit is high. 

Graduate students are one of the tools available to an academic modeler, and they, 

too, are changing. My computer-phobic wife wrote Fortran as an animal science 

undergraduate, but I would challenge you today to find animal science undergraduate students 

with Fortran experience. Today's students come trained on point and click environments, and 

are likely more intimidated by UNIX environments, editors, makefiles, and cryptic compiler 

messages than were students who had experienced command-line DOS. 

As a final observation on how far behind beef systems modelers are, none make use 

of the Internet. Even DECI, which had a brief web page description, was not available 
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through the Internet. Advances in networking and in programming languages now allow 

computers on a network to function as a large, multi-processor computer, all executing parts 

of the same application. These computers, known as clusters or grids, provide huge, untapped 

resources, making computer speed a non-issue for most simulation applications. In addition 

to the points I have argued above, I believe the main reason there has been stagnation in beef 

modeling efforts is due to the complexity of the models. Management of the complexity of 

the systems has become the limiting factor; models have reached the point where it takes 

immersion in a development effort to understand the system and what side effects to expect 

from any changes to the code. 

As computers become faster the complexity of what we ask of them increases. 

Programmers (and modelers) have a finite capacity for complexity, but advances in software 

development tools have allowed the problems of greater complexity to be addressed. This can 

be seen in changes from machine language to assembler, to third generation languages (e.g. 

Fortran), and as I will argue, to object oriented techniques. Computers have become faster 

and runtime has become cheaper than development and maintenance time. Computer 

languages have been able to make use of the cheaper runtime to make it easier for the 

programmer to write better code. Fast, cheap computers have allowed the emphasis on design 

to shift from fast, memory efficient programs to programs that are more reliable and cheaper 

to maintain. 

Advantages of Object Oriented Design 

I believe a major step in advancing beef simulation modeling is to make the transition 

to object oriented design and programming. Object oriented techniques were devised to 
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increase the probability that the software developed will do what the user intends, have fewer 

bugs, gracefully handle inconsistencies, and be less expensive to develop and maintain. It is 

not necessary to use object oriented design to produce a robust application, and object 

oriented design is not a silver bullet or guarantee of success. It is simply a set of tools to 

develop more robust applications. However, these tools are withstanding the test of time, and 

deserve a second look by beef cattle simulation modelers. 

Why Programs are Difficult and Expensive to Develop. A computer programmer's 

job is to write instructions that will allow a computer to simulate some real-world system at 

some acceptable level of detail and accuracy. While simple to describe, this process is rife 

with potential for failure. First, the programmer is often not an expert in the domain of the 

real-world system being modeled. Those who are expert often have difficulties explaining the 

system, so the programmer's conceptual model may not agree with the expert's conceptual 

model (let alone with the real system), but the difference may be difficult to recognize or 

articulate for either the programmer or domain expert. Instructions given to the computer 

will likely produce results, but not necessarily correct results based on the programmer's 

conceptual model, the expert's conceptual model, or the real world. 

A domain expert often refines the conceptual model, requiring changes to be made to 

the set of computer instructions. Unless the original programmer is still available to make 

these changes, another programmer has to learn the domain expert's conceptual model, the 

previous programmer's conceptual model, and how that conceptual model was implemented. 

As models become more complex the number of domains, domain experts, and programmers 

involved in the project increase, increasing the potential for misinterpretations and errors. 
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Programming Tools to Reduce Development and Maintenance Time. In modern 

software development the major cost of program development is spent on its construction and 

maintenance of code, and not on the actual running of it. With that in mind, trade-offs have 

been proposed which allow for cheaper development and maintenance at a cost to runtime 

performance. The increasing speed of processors has allowed the runtime cost to be 

increased, and technologies such as optimizing compilers and late linking have made the 

increased cost more bearable. 

As discussed previously, modularity is a software design technique which can be used 

to improve a program. Ageloff and Mojena (1981), referring to Fortran 77, wrote that 

"subprogramming capability is a sophisticated refinement of the language that... promotes 

programs that are easier to code, debug, and maintain." Fortran supports modularity with 

subroutines and functions. Although CBCPM makes use of functions to act as containers for 

different tasks, their use is limited. Functions allow details of the code to be hidden and can 

make expressions more readable. Functions allow repetitive tasks to be written once in a 

generic fashion, reducing programming errors by allowing for one place to debug. 

Modules allow code to be organized and compartmentalized by its purpose. They 

allow a level of abstraction, which can be used to make the code more readable; the details 

are available but are not in the way of the larger picture. Modules also allow code to be 

reused within a program, which saves programming time, primarily by reducing the need to 

debug a time-proven module. 

A proven module can be used to decrease programming errors and decrease 

development time through reuse in any number of subsequent programs. This was a large part 
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of the success of the Animal Breeder's Tool Kit (ABTK) (Golden et al., 1992). Not only were 

the modules useful in the initial development of the toolkit, they were also available to rapidly 

develop future tools, such as tkblup, ds6, and dscat. As an aside, the ABTK illustrates an 

interesting point, which is that object oriented techniques do not require use of an object 

oriented programming language for implementation. A corollary is that an object oriented 

language can be used to produce a working program that does not take advantage of the 

language's object capabilities. 

Advances in computer networks, especially since the early 1990's, have made 

collaboration among researchers at different physical locations easier. It is helpful for each 

programmer to have access to the code and make changes, while maintaining source control. 

Programmers can "check out" modules from a central library, modify them and then replace 

the original with the modified version. Initially this occurred by checking the modified module 

back into the central library, recompiling all dependant code and linking the objects into an 

executable program. With the advent of high speed networks it has become possible to delay 

the linking until run time. 

Object Oriented Design. Object oriented design and programming has evolved as a 

way to capitalize on the individual various strategies that have evolved to increase 

programmer productivity and decrease bugs. Object oriented design goes beyond simply 

gathering the individual strategies together; rather it approaches software engineering from 

a very different perspective, resulting in a model greater than the sum of its parts. 

Gosling and McGilton (1996) describe object oriented (00) techniques as "a 

collection of analysis, design, and programming methodologies that focuses design on 
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modelling the characteristics and behavior of objects in the real world." The emphasis on 

modeling is their own, and it is interesting how closely their description fits the goals of those 

modeling beef cattle systems. I suspect this description is more foreign to a programmer 

accustomed to developing business applications than it is to a systems modeler. 

What are objects? Objects in the real world of beef production include things like 

cattle, pastures, feedlots, and feedstuffs. Each object in the real world has its own state and 

behavior, and the computer objects we create to model them also each have their own state 

and behavior. A particular cow's state might include its weight, body condition, pregnancy 

status, and genotype, while examples of its behavior include feed consumption, growth rate, 

and ability to conceive. 

In the following sections I explain the organization of the new Java CBCPM and 

introduce some key object oriented design and programming concepts. In addition, I illustrate 

the use of the Unified Modelling Language as a communication tool. These topics are 

interwoven. I have prefaced section headings for the new model, object oriented techniques, 

and the Unified Modeling Language, with J-CBCPM, 0 0 , or UML, respectively, to indicate 

the main emphasis of the section 

00: Classes. The state of an object is represented in instance variables, and the 

behavior of an object is modeled by instructions, called methods. Methods can describe 

changes in behavior by changing instance variables and therefore the state of the object. 

Objects from the real world are modeled in software by writing a class. A class is not an 

object, it is a blueprint of an object, and is used each time a new object is created. For 

example, an individual cow could be modeled by creating a cow object from a cow class, and 
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her sister could be modeled by creating a new, different cow object from the same cow class. 

Each cow object is an instance of the cow class, which is why the state of a particular object 

is said to be represented in its instance variables. 

While an object may appear to be a fancy name for a Fortran subroutine with local 

variables (or C function and data structures) it really is quite different. Picture each cow 

object with its own instance variables and methods. At the highest level we are modeling a 

cow, and in keeping with that we have designed a cow object to describe the state and 

behavior of a cow. In Fortran we might create a subroutine to describe the behavior of a cow 

and then create arrays of variables to describe some number of cows, but we do not mentally 

model each Fortran cow as having its own copy of the code and just the data that describes 

a single, specific cow. In Fortran the design emphasis is on the code, with the data serving a 

supporting role, while in object oriented design, by articulating the difference between state 

and behavior, both the methods and instance variables are there to support the object. 

OO: Encapsulation. Similarly, an object is like a data structure but is much more than 

a data structure. Like a data structure, a specific cow object contains the data that describes 

its state. However, the object typically contains methods which control the access to the data. 

It is possible, and usually advantageous, to not allow direct access to an object's instance 

variables from outside the object. Instead, the instance variables are queried and changed 

through methods. Gosling and McGilton (1996) describe the methods as a protective layer 

around the data. As a programmer trained in the world of limited computer resources (RAM, 

in particular), this appeared quite wasteful to me. However, the point is that we are no longer 

in the world of limiting computer resources, and the purpose of this protective layer is to do 
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everything possible to ensure data integrity. 

Let's go back to the cow object and assume it has a weight instance variable. By 

restricting access to the variable through methods it is possible to allow a cow object to be 

responsible for the range of values the variable can store. A setWeight() method might limit 

allowable weights to fall between zero and one thousand kg. Contrast this to a weight variable 

in the Fortran CBCPM which is likely to be globally visible to most subroutines. A 

programmer could write code which calculated the daily weight gain for a cow and add that 

gain to the weight variable. In that example it is the programmer's responsibility to test and 

ensure the weight gain results in a valid value before adding it to the current weight. In an 

object it becomes the cow object's responsibility to ensure its weight is valid. Someone 

testing or debugging the Fortran code would need to examine the value being placed in the 

variable at every location in the code where it is potentially accessed or changed. With an 

object that enforces access through methods there is only one place to check, which is right 

in the object itself. 

Clearly the cow object is created by the programmer, so it again falls back on the 

programmer to ensure the data is tested. However, OOD allows us to think in terms of it 

being the cow object's responsibility. It is a mental model which makes the responsibility clear 

and increases the probability of better code. 

A related key point of OOD is that the cow class may well have been written by 

someone not part of local development team; the class may have been obtained through a 

network such as the Internet. Accessibility of objects through networks is a key part of some 

implementations of OOD, most notably the Java language. Again, the mental model of it being 
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the object's responsibility to ensure the integrity of its state is quite helpful. 

Getting back to the role of methods in an object, they perform another important 

function by hiding an object's internal workings from the outside world. For example, an 

object that tracks a cow's estrous cycles might have initially been developed to use a fixed 21 

d cycle. However, a modeler could later modify it to be a variable length cycle with genetic 

and environment effects. By requiring the cycling status to be accessed through a method it 

greatly reduces the likelihood that the change will affect code elsewhere in the model. 

To summarize, a key feature of OOD is encapsulation (Gosling and McGilton, 1996), 

which is the ability and encouragement to hide the internal workings of the object from the 

outside. The integrity of an object's state can be maintained by placing that responsibility on 

methods within the object. Encapsulation also allows an object to have defined behavior while 

hiding the implementation of that behavior, which allows it to be modified without causing 

an impact on client objects. 

To continue with Gosling and McGilton's (1996) characteristics of an object oriented 

language, it should also support inheritance and polymorphism. These are best understood 

with an example, which I will do while explaining the design and implementation of the Java 

version of CBCPM. 

J-CBCPM's Object Oriented Design 

Rick Bourdon recognized the need to restructure the Fortran version of CBCPM, and 

subsequently hired a professional programmer to develop an object oriented design of 

CBCPM while keeping the capabilities of the existing CBCPM, with an eye toward future 

uses. The programmer's design objectives were: 1) centrally located model that could be 
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accessed and run over the Internet to allow source control, access to specific model versions 

developed by users, and to provide usage statistics; 2) ability to change modules without 

changing and recompiling source code; and 3) design in an object oriented language for more 

intuitive programming (Nagel, mimeograph). He designed it with the Java language 

specifically in mind because it fills these requirements and because Java is platform 

independent, it comes with a large array of user interface classes, and several IDE are 

available. 

Unified Modeling Language. I am going to begin the design description of the Java 

CBCPM using the Unified Modeling Language (UML) (Booch et al., 1999) because it is 

independent of the programming language and appears to have become the standard language 

for communicating object oriented designs. Nagel's design did not use UML, and I first 

became aware of UML halfway through my implementation of the design. A search for obj ect 

oriented modeling languages on the Internet lead me to UML, and then I purchased UML 

Distilled (Fowler and Scott, 2000). I highly recommend this book as a starting place - within 

a week of reading it my code writing productivity increased substantially, largely from having 

built a class model of Nagel's design. 

The Design Process. Design does not start at the keyboard or even with a specific 

programming language in mind. Formal design processes, such as the Rational Unified 

Process (Jacobsen et al., 1999), have been created to avoid common mistakes made at this 

phase of development. A design typically begins with the designer interviewing the domain 

experts. The designer must model the system in a way that allows him to be certain he grasps 

what is being asked of him, and to identify issues the domain experts are not raising. In the 
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case of beef cattle simulation models this step may be blurred because the domain experts are 

often the ones doing the design, although it was not the case with the Java CBCPM. 

The UML is not a single tool, but many, and each tool can be used with varying levels 

of supporting detail and from different viewpoints. Its purpose is for communication and the 

level of detail should allow the intent of a design to be clear. The balance is between 

ambiguity from too little detail and lack of clarity from too much detail. I doubt there is a 

single best way to use UML to design an application and my own experience is too limited 

to draw heavily on. Fowler and Scott (2000) address the design process at length, and 

describe how they tend to use the various UML tools as their designs progress. 

I approached the Java coding with the intent of converting the minimal amount of the 

Fortran CBCPM necessary to support the reproduction simulation for Chapter 4 while 

remaining true to Nagel's design. I began by building the skeletons of the classes, followed 

by the methods to read the parameter files, working from the design and from Fortran 

CBCPM code and parameter files. My testing and debugging relied primarily on writing data 

to ASCII files and examining them with a text editor. Somewhere in the midst of creating 

foundation cows from the foundation herd parameters I learned of UML. At that point I 

stopped coding and built a UML class diagram from Nagel' s design and then corrected some 

of my classes to conform to what he intended before continuing with new code. 

I approached error handling by viewing the model as a non-interactive process, and 

decided to make most errors be fatal with an accompanying message to aid debugging. This 

was likely a short sighted approach because the classes may eventually be used in a more 

interactive way. For example, Bourdon (personal communication) has suggested a 
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parameterization interface which has background threads testing the validity of the parameters 

when applied to the model. Java is quite strong in this area, providing the programmer tools 

for detecting an error or inconsistency and allowing the user options in recovering and 

continuing onward. 

J-CBCPM Implementation. 

UML: Class Diagrams. The original CBCPM was designed with one large pasture, 

large enough that pasture feed was not a constraint on herd size, and cattle were grouped in 

herds, with all herds in the same pasture (Fig. 3.1a). The rectangles in Figure 3.1 represent 

objects, and the line between them describes their relationship. The diagram at this point is 

primarily a communication tool between the domain expert and the programmer/designer, and 

does not need detailed implementation notations. Therefore, these are conceptual objects, as 

opposed to classes or instance objects. In Figure la, the relationship between Herds and 

Pastures in the Fortran implementation is enumerated to show that one or more herds 

(signified by 1 ..*) can be in one pasture, but that a given herd is in only one pasture. Figure 

3.1b illustrates that in the Java implementation one herd can be in one or more pastures and 

one pasture can contain one or more herds by the symbol 1..* on both sides of the 

relationship. 
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P a s t u r e P a s t u r e 

Figures 3. la and 3. lb. Unified modeling language class diagrams of the relationship between 

herd and pasture in the Fortran and Java models, respectively. 

J-CBCPM: Herds, Pastures, and Ranch. Figure 3.2 shows a more in-depth view of 

the object oriented design of CBCPM. While both Herd and Pasture are in the design there 

are several new features. This model says a simulation has a Ranch, which in turn has one 

or more Herds, and each Herd has many Cows, which are in Pastures. Both a Ranch and a 

Pasture are described in part by their Location, which includes the Climate, Soil, and Forage 

resources. 

The Ranch object is new to the Java CBCPM. It was added to allow multiple Pastures 

in addition to multiple Herds. The Ranch is in part described by its soils, climate, and 

growing forage resources. Most pastures on a ranch are likely to have the same climate, but 

the forages and(or) soils may vary. Climate was separated out of the Location class so it 
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would be possible to simulate pastures in different climates (e.g. a western ranch on the plains 

with high mountain summer pastures). 

Rather than describe the location within the Pasture and within the Ranch class, the 

Location is a separate class. Since the Ranch and Pasture classes each describe a Location, 

it makes sense to make Location a class so it can be used by both Ranch and Pasture. A 

change to what describes a Location is made in only one place (within the Location class), 

minimizing the amount of code that needs to be maintained and reducing code fragmentation 

and the potential for errors. Before examining the relationship of Location with Pasture and 

Ranch I'll explain the Location class. 

The Location class in Figure 3.2 has Climate, Soil, and Forage classes connected to 

it. The connection between Location and Climate has a diamond on the Location end of the 

line, which implies that a Location object is composed, in part, of a Climate object. Since the 

diamond is filled, it means a specific Climate instance is associated with a specific Location 

instance. 

OO: Inheritance. Returning to the relationship of Location with Pasture and Ranch 

in Figure 3.2, Pasture is connected to Location with a relationship line which has an open 

triangular arrow on the Location end of the line. This is the UML way to designate 

inheritance, one of Gosling and McGilton's (1996) required features of an object oriented 

language. In this case, a Pasture is said to inherit the behavior and state of Location. A 

Pasture object does not contain a Location object; the Location becomes an integral part of 

Pasture, as if Pasture was described with all the Location methods and instance variables 

within the Pasture class. 
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Pasture 

+Acres: Real 

-Aspect: Real 

1 

+• IdNumber: Integer 

Climate Soil 

1 I 
Forage 

£ 
Location 

+Latitude: Real 

+Description: String 

"V: 
Ranch 

+Name: String 

+Number of herds: Integer 

7 
Herd 

+Size: Integer 

Figure 3.2. Unified modeling language class diagram of how cattle on a simulated ranch are 
grouped in herds and located in pastures. 

If we created an instance of the Pasture class and called that object northPasture, it's 

latitude (in Java) would be referred to as northPasture.latitude. By designing the Pasture to 

inherit the state and behavior of Location all the characteristics of Location become an 

integral part of Pasture. Contrast this to the relationship between Location and Soil. Location 

would contain a variable called soils although by convention it is not included in the UML 

class for Location because it is implied. If the Soil class contained a variable for pH, a 

Location object called plains might address the pH with the statement plains.soil.pH. In this 
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case the contents of the Soil class, including pH, is not an integral part of Location. Location 

does not inherit Soil, but rather Location is comprised, in part, of a distinct Soil object. 

In addition to Pasture, Ranch also inherits the Location class, illustrating why 

Location was separated from Pasture. Inheritance allows both Pasture and Ranch to use 

location parameters as if they were an integral part of the class but the Location is in a module 

(class) of its own which allows changes to location to be made in a single place in the source 

code. One of the mental shifts from traditional procedural programming to object oriented 

design is to be on the lookout for opportunities to generalize classes. 

To continue with the explanation of the Java CBCPM design, the Ranch class is 

potentially associated with more than one Herd. The filled diamond on the relationship line 

between Ranch and Herd says that a given Herd belongs to one specific Ranch and to delete 

the Ranch implies the Herd is also deleted. 

A Herd has one or more Cows, and an individual Cow belongs to one specific herd. 

Again, deleting the Herd implies deleting the Cows in the Herd. A Cow is in one Pasture, and 

a Pasture can have many Cows or no Cows, but also note a Pasture is not an attribute of any 

specific Cow, as indicated by the open diamond on the relationship line, so a Pasture object 

can be shared by any number of Cow objects. The text accompanying the design I started with 

indicated that each Pasture was to be initially created with a copy of the Ranch's Location 

state, but that these could then be modified with values to describe a Pasture in a different 

Location 

The CBCPM obtains its input parameters from ASCII text files at the start of each 

simulation. There are parameter files for defining herds, foundation cows within a herd, sires 
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of foundation cows and sires of future generations, and breeding rules. There are also 

parameter files to describe the simulated genetic traits, including genetic, temporary 

environment, and permanent environment covariance matrices. 

The design I started with did not address how the starting parameters of the 

simulation would be handled. I decided to create a Resources class accessible from the Ranch 

class (Fig. 3.3). The Resources class stores the parameters which are read in from ASCII files 

at the start of a simulation. It is composed of a number of supporting classes for the various 

types of starting parameters. 

The design also did not indicate how time would be tracked and managed within the 

simulation, although it did include the definition of how dates would be stored. I created a 

class which acted as the simulation clock (Fig. 3.3). It is possible to set a calendar date 

(month, day, and year) as the start date of the simulation. Dates in the simulation input 

parameter files can then be an offset number of days from the start, the Julian day of the year, 

or in month, day, and year format. I implemented the model with the intention that the time 

step was a single day. However, it will be possible to further refine the time by changing to 

a mixture of time step and event-based model in the future. 

I added a Pedigree class (Fig. 3.3) to the design. The pedigree class maintains a unique 

identifier for each animal in the simulation, along with that animal's sire and dam identifiers. 

I needed the pedigree to conduct genetic evaluation of the output. It also will make it easier 

to develop breeding schemes based on relationships (e.g. inbreeding minimization in a closed 

herd). 
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SimClock 

-Start day: 

-Today: 

Pedigree 
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PedigreeRecord 

-Id: Integer 

-Sire: Integer 

-Dam: Integer 

£ 
RanchResources 

Genetic Covariance 

Sire Params 

Foundation Params 

Herd Params 

Breeding Params 

Figure 3.3. Supporting classes added to the J-CBCPM design for input parameters, 
simulation time, and pedigree management. 

UML: Sequence Diagrams. I decided to design the model so that subsequent 

simulations could be run with the exact same individual sires but with different individual 

cows. This was a modification of the design to increase the number of offspring per sire to 

increase the accuracy of predictions for the Chapter 4 analyses. The design is illustrated in 

a UML sequence diagram in Figure 3.4. To start the simulation a new Simulation object is 

created. This object creates a new Ranch object, which in turn creates a Pedigree object. At 

that point the control returns to the Simulation object, but the dashed lines, called lifelines, 
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below the Ranch and Pedigree objects (Fig. 3.4) indicate they still exist in memory. The 

Simulation object survives and is active, analogous to being on an instruction stack, the whole 

simulation, as indicated by the vertical box lifeline beneath it. The Ranch object survives the 

whole simulation, but at times is inactive, as indicated by the vertical dashed lifeline in place 

of the box. 

Initialization of the ranch begins, with control returning to the Ranch object. Based 

on a parameter file the appropriate number of new individual Sire objects are created. 

In Figure 3.4 the idea that the creation of a sire can be repeated is indicated by the 

asterisk on the line between the Ranch lifeline box and the Sire object. I have not described 

the reading of the parameters to avoid cluttering the sequence diagram. The creation of the 

sires is followed by reading parameter files into the RanchResources object. 

Once the parameters have been read, control returns to the Simulation object, which 

begins iterations (again signified by an asterisk) of simulations. In each iteration the Ranch 

object creates new Herds and each Herd creates its Foundation Herd as described in the 

parameters from the RanchResources. A single multi-year simulation is run and the results are 

written to file. Next, each Herd destroys its associated FoundationHerd, indicated by the X 

and termination of the FoundationHerd lifeline. The Ranch object then destroys that Herd 

(and therefore all the individual cows and their offspring created in that simulation) in order 

to reuse the RAM it occupied. These steps are repeated for all Herds. Once the Herds are 

destroyed control returns to the Simulation object and the next iteration of multi-year 

simulations is begun. At the end of the iterations the pedigree is written to a file and the 

application terminates. 
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Figure 3.4. Unified modeling language sequence diagram overview of J-CBCPM. 
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Note that the Ranch, RanchResources, Pedigree, and all the Sire objects are not 

destroyed at the end of an iteration. This sequence diagram allows the idea that they are used 

by each multi-year simulation to be illustrated, and that new foundation herds and herds are 

created for each multi-year simulation. 

A UML sequence diagram illustrates a complex process. You will find many well 

written applications have numerous, relatively small classes, and that tracing the program flow 

from class to class soon becomes overwhelming. A sequence diagram is a useful UML tool 

for coping with this complexity. 

J-CBCPM: Driver. In the Fortran CBCPM, the subroutine named driver contained 

the sequence of events which occurred each time step (Table 3.1). The Java CBCPM 

functions in much the same way but with some notable exceptions. The Fortran CBCPM 

simulated "super" bulls, capable of breeding any number of cows day after day. The Java 

reproduction design was changed to allow male fertility to be simulated. I designed it so the 

number of cows in estrus can be determined before beginning to assign bulls to cows (in a 

multi-sire pasture case), and before determining conception. Since the design allows cows 

from different herds to be in the same pasture it is necessary to count cows in estrus in each 

herd in the case of a natural service bull in a pasture with other bulls. Therefore it was not 

possible to simulate a whole days' events for one herd at a time. Instead, I made lists of all 

cows in each pasture so that all animals in a given pasture were processed for breeding at 

once, regardless of which herd they were in. 

A similar case occurred from having multiple pastures and allowing them to contain 

animals from different herds, complicating the forage utilization. If animals were simulated 
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each day in sequence of the herd they were in, animals in herds simulated first could 

potentially consume all the available forage within a pasture, leaving none for other animals 

in the same pasture simply because their herd was processed later. 

Table 3.1 Fortran CBCPM driver subroutine steps (Bourdon, 1992). 
*Read input data 
*Generate foundation herds 
Timestep loop 

Group loop (cows before calves) 
Nutrition loop 

Determine nutrient requirements by individual animal 
Determine intake limits 
Determine ration, including forage 

Divide nutrients among physiological functions 
Remove and grow forage (SPUR) 

* Breed 
* Determine fertility 
* Conceive fetuses 

Determine death loss 
* Grow animals 

Calve 
Graft calves 
Castrate 
Cull from the breeding herd 

* Determine replacements 
* Dispose of non-breeders 

Import animals 
* Summarize results 
* Output results 
* Update variables 

Clean out rows for animals that are gone 

An * indicates I implemented the subroutine in the Java CBCPM 

00: Java Interfaces. I used the Java interface Enumeration to construct these lists 

of all animals within a pasture. A Java interface is essentially a template for a class, specifying 

how the class should be constructed with respect to instance variables and methods. It is not 
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possible to create an object directly from an interface. Instead, a class is created by 

implementing one or more interfaces. Interfaces are used to enforce consistency among all 

classes which implement a given interface. 

For example, the Java Enumeration interface says a class which implements it must 

have a method defined as boolean hasMoreElements(); and another defined as Object 

nextElement();. Any class that implements this interface must have these two methods, and 

the return value from these methods must match the definition in the interface. An 

Enumeration is used to allow access to a series of elements. As a minimum, it is possible to 

test for elements remaining in the series and to obtain the next element if one does exist. Since 

all objects in Java inherit from the Object class, the method nextElement() can return any 

type of object. How a series is constructed and accessed is not important and therefore hidden 

from the method which uses a class that implements Enumeration. In my example, I simply 

wanted all Cows in a pasture, but do not care what order they are accessed and do not care 

if they came from a linked list, stack, Vector, etc. 

One example of where the Java CBCPM design could be strengthened by defining an 

interface is the growth model. The interface would say, in effect, that future developers must 

at least provide a certain subset of methods. This would allow other objects to expect those 

methods, regardless of which growth model used. It would enhance the consistency among 

different versions of the model by defining a consistent naming convention. 

J-CBCPM: Management Groups. 

00: Generalization. The Java CBCPM design relies heavily on generalization. In 

particular, the management groups (i.e. Foundation, Sire, Import, and Transfer groups) from 
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the Fortran CBCPM were found to have common components. In addition, the groups were 

described by similar information used to describe an individual animal. For example, the 

parameters used to create a group of foundation cows include variables such as day of 

gestation, last calving date, breed composition, and genetic potentials. The class Bovine (Fig. 

3.5) was created to describe both a type of animal and to describe an individual animal. The 

Bovine class inherits from the Sex class, which contains methods used in multiple parts of the 

design. The management groups each require a group size and parental breed combinations, 

so the Bovine Group class holds these state variables. A composition connection is shown 

from Breed Composition class to both the Bovine Group and Bovine class, since the parental 

breed compositions are needed to describe the group while the individual's breed composition 

exists in Bovine. The Bovine Group class inherits Bovine (and therefore Sex). Each of the 

different types of management groups inherit from the Bovine Group class. 

The Java CBCPM was intentionally designed to separate management of the herd 

from the biology of the animal. Part of the rationale was to construct classes describing the 

biology of the cattle which could be incorporated in other models. It would also be possible 

to construct a model from these classes which focused more on the management than the 

biology. An example of this would be a version to eat grass for SPUR simulations with much 

of the bovine biology removed for sake of simplicity and speed. 
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Figure 3.5. Unified modeling language class diagram to illustrate the use of generalization 
in the J-CBCPM design. 

A separate class, CowManager (Fig. 3.6), was created to manage information 

describing the management of a particular animal. It includes the pasture the animal is in, its 

breeding season and mating group, its identification number, and variables used within the 

simulation to signal change of status, such as becoming a replacement, being culled, dying, 

sold, etc. This is in contrast to the Bovine class, which describes and manages all the biology 

of the animal, including feed consumption, growth, and reproduction. In Figure 3.6, a Herd 

is made up of many individual animals, each of which is described by its own instance of 

both a CowManager and a Bovine class. 
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J-CBCPM: Fertility. 

OO: Polymorphism. The core of the Java CBCPM reproduction simulation is a 

method which updates the cow's estrous state as shown in the code below. In this code 

fragment the object's state can change in one of three ways: the cow begins to cycle; the cow 

stops cycling; or the cow's 21-day cycle is advanced a day. 

if( isAnestrous()) { 
if( cyclingStarts()) 

setCycling(); 

} 
else 

if( isCycling()) 
if( cyclingStops()) 

setAnestrous(); 
else 

advanceCycleQ; 

Later in the same time step, a cow in a breeding season is checked for estrus and 

conception, and her estrous state can potentially change accordingly. To properly model 

changes in a cow's reproductive state the methods must reflect the cow's current state, 

maturity, and nutritional state. A UML tool to allow a designer and the domain experts to 

communicate complex changes in state such as these is the state diagram. 

UML: State Diagram. In Figure 3.7, a UML state diagram, the model for the 

reproduction class begins the state procession with a new-born heifer, starting at the top with 

the black filled dot. A heifer's reproduction state is first a time of maturing, waiting for 

puberty. Once puberty is reached she begins to cycle, as indicated by the line from the 

maturing state to the cycling state. Lines between states are called transitions (Fowler and 
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Scott, 2000), and can be labeled with a guard statement. The conditions of a guard statement 

(e.g.. [puberty reached]) must be met before the transition may occur. Processes that occur 

on a class are either actions or activities. Actions are quick, uninterrupted processes during 

the state transition, while activities may be longer, interruptible processes. If she is bred (an 

action) and conceived (another guard statement) her state becomes pregnant and the fetus is 

created and begins to grow (an activity). However, if she is bred and does not conceive her 

state remains cycling. 

-Size: Integer 

Cow Manager 

-Pasture: Cow Manager 

-Breeding Group: Breeding Group 

-Fate: Integer 

-Replacement: 

-Transfer: 

-Cow Biology: Bovine 

Bovine 

-Condition: Real 

-Age: Integer 

-Gestation day: Integer 

-Day after calving: Integer 

-Breed: (Breed Composition) 

-Fetus: Bovine 

-Traits: {Trait Suite} 

Figure 3.6. Cattle management characteristics managed in a separate class from biological 
characteristics. 
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Alternatively, if her body condition changes and drops below a BCS of 4.0, then her 

state changes to not-cycling. The only state change allowed from not-cycling is back to 

cycling, and then only once the guard statement is satisfied with her nutritional status. 

When a cow object's reproduction state changes from cycling to gestating it stays 

there until the calf s gestation length is reached and then she moves to recovering. The 

recovering state in this diagram is the entire postpartum interval. In the Java CBCPM there 

is a genetic trait for postpartum interval which is an absolute minimum length of days in the 

recovery state. The actual number of days can exceed the genetic interval due to temporary 

environment, dystocia, suckling, and nutritional stress. Once fully recovered from calving, the 

cow's state returns to cycling. I have not shown the states for animals as they are selected, 

not selected, culled, and sold because I did not view them as being reproductive states, but 

those states could be added to this model to show the exit point(s). 

An alternative state diagram is shown in Figure 3.8. Its primary advantage is to 

highlight the anestrous and estrous states through use of superstates, but I've also separated 

the heifer states from those of a cow that has calved at least once. I did this because my 

primary interest in implementing the Java CBCPM was to model reproduction, and I felt 

including all the state changes described above in a single class would create a lengthy, 

confusing collection of methods. Instead, I created four subclasses of the reproduction class, 

grouping the reproduction states as shown by the solid bold lines in Figure 3.9. The 

subclasses for these groups of states are named Prepuberty, Open Heifer, Pregnant Cow, and 

Open Cow, as illustrated in Figure 3.7. 
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Figure 3.7. Unified modeling language state diagram J-CBCPM reproduction states. 

107 



00: Polymorphism. Figure 3.10, a class diagram, represents the subclasses as 

generalizations of the reproduction class. Object oriented languages allow subclasses to be 

used to allow the superclass (i.e. Repro) to assume different forms, and is therefore referred 

to as polymorphism, another of Gosling and McGilton's required features of an object 

oriented language. Justifying the advantage of polymorphism requires some explanation and 

a little mind-bending for a traditional procedural programmer. 

Working from Figure 3.10, start with a Bovine obj ect representing a prepuberty heifer. 

This Bovine object will have a variable of type Repro, called reproduction, to represent the 

relationship between the Bovine and Repro classes (Fig. 3.6). 

This heifer Bovine object's reproduction variable can be initialized by a Java statement like 

reproduction = new Prepuberty() ;, 

which has the effect of associating the variable with an object created from the Prepuberty 

subclass. This means a Java Bovine object named cow could execute the code in the 

oldEnough() method with a statement like 

if( cow.reproduction.oldEnough() ) 

to test for puberty. However, a runtime error would be generated for 

cow.reproduction.underlyingConception(); 

because the Prepuberty subclass does not contain the underlyingConception() method. This 

illustrates a limitation of subclasses in Figure 3.10; now to illustrate the strength. 
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Figure 3.8. Alternative state diagram for reproduction with super states for anestrous and 
estrous. 
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Maturing heifer Prepuberty 

Non-cycling heiferr< OpenHeifer 

Pregnant PregnantCow 

Recovering 

psfon-cycling cow 

OpenC ow 

Figure 3.9. State diagram of division of reproduction states into four classes, Prepuberty, 
OpenHeifer, PregnantCow, and OpenCow, as indicated by the bold horizontal 
lines. 
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The super class Repro contains a method cyclingStarts(), as does each of the 

subclasses. The statement 

cow.reproduction.cyclingStarts(); 

in the example of the pre-pubertal heifer will execute the version of the cyclingStarts() method 

described within the Prepuberty subclass. However, once the following statement is issued, 

then the subsequent reference to cyclingStarts() executes the method described in the Open 

Heifer subclass. 

Cow.reproduction = new OpenHeifer(); 
cow.reproduction.cyclingStarts() ; 

In the Java CBCPM the Prepuberty version of cyclingStarts() tests for puberty, while 

the Open Heifer version of cyclingStarts only tests for adequate nutritional status. This allows 

the generic reproduction code fragment (shown previously) to be used regardless of which 

subclass is being used to model the animal's state. The cyclingStarts() method in 

PregnantCow currently returns a boolean false (although it could be modified to simulate an 

abortion), and in OpenCow the cyclingStarts() method models postpartum interval and 

adequate nutritional status. 

Note that the superclass Repro also has a cyclingStarts() method, but that it is not 

executed by the previous statements. The copy of the method in the subclass is said to have 

overridden the method in the superclass, making the subclass version the default method. 

Different forms of this method exist (hence the name polymorphism), and the form which is 

accessed depends on which subclass is currently being used. 

It is possible to define the version of cyclingStarts() in the superclass such that any 
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subclass that inherits Repro as a superclass must also implement a version of cyclingStarts(). 

This is helpful when another developer will be using the superclass with their own 

implementation of a subclass. For instance, a developer upgrading CBCPM could be required 

to implement the cyclingStarts() method in any classes that were subclasses of Repro. 

Not all methods in a superclass need be implemented in a subclass. The generic code 

fragment above is a good example. It is in the updateReproState() method of the Repro class. 

This method is available to all subclasses, as I described earlier when explaining inheritance. 

To summarize polymorphism, it allows generic code to be written which accesses 

different forms of a method depending on the subclass. The use of a superclass allows the 

designer the option to force subclasses to implement some methods and it allows some 

methods which are not polymorphic to be written just once. This is all also true for subclass 

and superclass instance variables. This ability to require implementation of methods is similar 

to a Java interface. 

My use of subclasses to model changing states (Fig. 3.9 and 3.10) of a female's 

reproductive status adds some complexity to the code. As a Bovine object's state changes 

from a maturing heifer to a cycling heifer the reproduction variable in the Bovine object has 

to be changed from using a Prepuberty object to using an OpenHeifer object. This is 

implemented by a method in each subclass called getNewReproductionState(), called 

immediately after updateReproState(). Each subclass's version of the method contains the 

guard statements (Fig. 3.8) to test the updated state to determine if a different subclass is now 

appropriate. If a new subclass is needed the method returns an object of the needed subclass, 

and if not, it returns itself. 
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An additional complication can be seen from Figure 3.10; the navigation between 

Bovine and Repro is bi-directional. When the Prepuberty subclass determines that puberty has 

been reached and returns an OpenHeifer object, that OpenHeifer object needs a state variable 

set to allow it to navigate back to the Bovine object it is associated with. 

Despite this, I feel the trade-off in increased clarity of the subclass methods is 

worthwhile. A modeler wishing to examine or modify the logic behind a heifer reaching 

puberty needs only to look at the Prepuberty class. Only code related to puberty is in that 

class, whereas if the design used a single reproduction class it would also include postpartum 

interval (e.g. dystocia, suckling, presence of a bull, etc.). 

I chose to keep all state variables associated with reproduction in the Bovine class, 

not in the Repro class. This made it easier to change between the reproduction subclasses 

because it was not necessary to copy the state data from the old subclass to the new, but there 

are additional reasons for this design, including visibility and ease of later significant 

modifications to reproduction and growth modules, or submodels, of the CBCPM model. 

With respect to visibility, reproduction could have been modeled with a collection of 

methods within the Bovine class, eliminating any visibility concerns, as all state variables 

within the class would have automatically been visible. However, this would have created a 

large, complex class, so I split the reproduction methods into a set of subclasses. Modeling 

nutrient uptake and use will likewise require a collection of method, and I anticipate them also 

in a class separate from Bovine for the same reasons. My reproduction simulation requires 

information about body condition and plane of nutrition, and nutrient uptake is in part a 

function of reproductive status (e.g. pregnant cows have increased dry matter intake). 
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Accessing state variables in a "Growth Model" class from a reproduction subclass (Fig. 3.11) 

involves navigating back through the Bovine class and out to the Growth Model class, likely 

through use of a method stored in the Bovine class. Storing the reproduction state variables 

in Bovine makes for easier access from the nutrition class, and storing nutrition and body 

composition state variables in Bovine will ease their access from the reproduction methods. 

With respect to the ease of updating the submodels of CBCPM, particularly 

reproduction and growth, I felt storing the state variables in Bovine made it more clear to 

developers of alternative submodels what minimal subset of state variables they needed to 

maintain to ensure compatibility. In hindsight, I believe the use of Java interfaces will be of 

greater value in conveying this message. 

00: Java Interfaces Revisited. An interface allows a layer of communication between 

developers of the Java code. For example, its definition can be provided by one group of 

developers to another to describe how the first group's classes will be expecting to be able 

to communicate with the second group's classes. Implementation details beyond what are 

specified in an interface can be left up to each group of developers. 

This would allow the core design of CBCPM to specify a growth model interface. 

How growth was modeled would be immaterial to the rest of CBCPM as long as the 

requirements of the interface were met. In theory, an alternative growth model which 

implemented the interface could simply replace the existing one without any other changes 

to the code. In practice it rarely is that simple, because the requirements in the simulation are 

often two-way, and the interface only defines one side of the relationship. For example, my 

implementation of a reproduction module requires access to the weight gain. A reproduction 
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interface would describe what information the reproduction model would make available to 

the rest of CBCPM, but would not describe what the rest of CBCPM was responsible for 

supplying to the reproduction model. 

The relationship between classes where one classes relies on another to supply a 

specific service is called a dependency. There are benefits to reducing dependencies. Changes 

to a class without dependencies can be done with confidence that there will not be side effects 

elsewhere in the application. Java allows instance variables and methods within a class to be 

declared as public, private, ox protected. A private member of a class can only be accessed 

from within the class, so it would only have dependencies within the class. A public member 

can be accessed from any other class, and a protected member can only be accessed from 

classes in the same package, as described below. 

OO: Packages. One way to manage dependencies is to group classes which are related 

in some way together into packages. A package is simply a collection of classes, and an 

application can be created using classes from any number of packages. The use of packages 

allows clearer articulation of the dependencies between packages. In Java, for example, a 

class which resides in one class must explicitly import a class which resides in another 

package. By importing only necessary classes it becomes easier to check for potential side 

effects, as the number of places to check has been reduced. In addition, only public members 

of a package can be accessed from another package, further reducing and articulating where 

dependencies may exist. The protected members can be accessed by classes within the 

package, but not from classes in other packages. 

It is possible to indicate dependencies on a class diagram using a dashed line as the 
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connector between classes. It is also possible to use the class diagram concept, using 

packages instead of classes, to communicate dependencies between packages. 

00: Dynamic Binding. I have made reference several times to the possibility of 

segments of the model being replaced by either updated versions or different versions. Java 

is different from traditional languages like Fortran and C or C++ in that it is interpreted at 

runtime, as opposed to precompiled. Memories of the speed difference between interpreted 

and compiled BASIC came to mind when I learned this. However, improvements in 

interpreters, and more importantly increases in processor speeds, have made runtime speed 

nearly as fast as compiled code. For most applications the difference would not even be 

noticed. 

Being interpreted allows Java to use the most recent classes at runtime without having 

to go through a compile and link process. This is a benefit with distributed users, as it is not 

necessary to continually provide updated versions of the executable program. 

Another Java advantage is that the classes do not need to all reside at the same 

physical location, as they can be accessed at runtime through the Internet. Developers can 

easily share classes, and applications given to the users can be updated without having to 

redistribute the code. 

00: Refactoring. As changes are made to code there is a tendency for the 

organization and clarity of the code to degrade. Refactoring is a relatively new process used 

to rewrite the internal structure of the code. The process is to make small, incremental 

changes to the code without changing its functionality (Fowler and Scott, 2000). The key is 

to have a method of testing to ensure the functionality has not changed, both in the class(es) 
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being refactored or through side effects in dependent classes. A change is made, and then all 

the tests are run to ensure the system has not changed. The ease of comprehensive testing is 

essential to successful refactoring, and I believe to successful applications. 

Examples of places the J-CBCPM could benefit from refactoring are adding interfaces, 

as suggested above, and renaming classes (e.g. CowManager is also used for males) and 

variables. Refactoring can also include changes like adding a layer of generalization or 

splitting a large class into smaller classes. I have noticed some IDE now offer support for 

refactoring, but I have no experience using them. 

I am intrigued by some of the ideas articulated in the process called extreme 

programming (Beck, 1999) for their potential to minimize programming bugs and maintain 

simplicity in design and code. Extreme programming involves all stages of development, 

including the planning, design, coding, and testing of an application. I find the idea of 

intensive automated testing of all components of the application most interesting. The basic 

idea is to create the testing code while, or before, creating the production code. Every new 

piece of production code and all modifications must pass all tests to be accepted. Tools such 

as JUnit have been developed to automate the testing. One benefit of the extensive testing is 

there is less fear of refactoring code as needed - if adequate tests were written as the initial 

code was written then bugs introduced by refactoring should be detected. 

Extreme programming was developed for corporate application development; it is 

meant to increase communication among a large team of programmers developing complex 

applications for a group of clients. Some aspects of extreme programming may be over-kill 

for a simulation model, like code being written by pairs of programmers at a single terminal. 
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Summary 

Mechanistic systems models allow the study of interactions among components of the 

system and allow ideas to be tested in a range of environments. However, as these models 

become more detailed they become increasingly complex and difficult to manage. The field 

of computer science has provided tools for managing complexity, including object oriented 

design and languages. There are also languages like UML for communicating among 

developers and with clients. There are more UML tools than I have described here, most 

notably "use case" models. These tools (i.e. computer hardware, 0 0 design, UML, and 

programming languages) have evolved rapidly, and many of the assumptions with respect to 

computers and software engineering that animal scientists were trained in are now obsolete. 

Systems models in animal science have not lived up to their potential. In some fields 

of study models are being used to predict phenomenon, and research is then carried out to 

validate the prediction. Modeling can highlight where knowledge of a subject area is lacking. 

One test of the progress of beef modeling may be the time when research funding is 

contingent on suggestive modeling results. 
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Chapter 4 

Analysis of simulated heifer pregnancy data 

Introduction 

It is important to a beef producer for economic and management reasons to have 

heifers that conceive at 15 to 18 mo age. Heifers that are managed to calve before the mature 

cow herd can be observed more closely for calving difficulty and they will have a longer 

postpartum period to recover from calving. Dystocia occurs most frequently in heifers, 

making the longer postpartum period desirable. The additional time is also beneficial because 

heifers are still growing while raising a calf. The heifer will have more difficulty returning to 

adequate body condition at the start of the breeding season than an older cow would. 

Lesmeister et al. (1973) demonstrated that heifers that calved early had a greater average 

annual production than heifers that conceived later in the breeding season. In addition, a 

producer can compensate for the likelihood of a heifer weaning a lighter calf by allowing for 

the calf to be older at weaning, resulting in a more uniform calf crop. 

However, there will be heifers that do not conceive during the breeding season. These 

heifers are usually culled as a way to select for fertility and to avoid her maintenance cost 

while waiting for next year's breeding season. Knowing some heifers will likely not conceive, 

producers select and breed more heifers than they need as replacements. While some 

producers are able to sell bred heifers, an extra heifer is more often a liability due to the cost 

of development; the cost of developing a heifer can approach twice the annual cow cost. 
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Another consideration is that matings to produce replacement heifers reduces the number of 

cows available to mate in terminal systems. 

In herds where heifer conception is very high, it may be optimal for reasons of 

economics and/or management to manage for lower heifer conception rates. Single service 

conception rarely, if ever, reaches 100 %, with rates near 70 % more typical. Allowing heifers 

repeated chances at breeding increases the overall pregnancy rate but also extends the 

breeding and calving season. An extended calving season results in greater diversity in cow 

and calf management and calf weight at sale time. There are a diminishing number of 

additional animals that become pregnant as the breeding season extends. At some point, the 

cost of additional management needed for cows and calves at different stages of production 

cancels out the return from getting additional animals bred by further extending the breeding 

season. Having all heifers conceive in a breeding season is likely an indicator of too long a 

breeding season or too many resources being spent on heifer development. 

A heifer's ability to become pregnant is influenced by many factors including the 

ability to start cycling before or during the breeding season, conceive, and maintain the 

pregnancy. As discussed in the Chapter 2, puberty is influenced by age and weight, with 

genetic differences between and within breeds. A number of genetic predictions for fertility 

traits have been produced. Recently, threshold model techniques have been applied to 

observations of pregnancy to produce an EPD for heifer pregnancy. The ability to become 

pregnant is likely the outcome of several underlying traits, particularly puberty and ability to 

conceive. These traits are difficult and expensive to measure accurately. Simulation is a 

relatively easy first step in exploring the effect of different levels of the underlying traits on 
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the heifer pregnancy EPD. 

My objective was to determine the effect of genetic potential for fertility traits and 

management-constrained length of the breeding season on genetic predictions for HP. 

Specifically, I wanted to determine if important genotype by environment interactions 

(management differences) might influence genetic predictions of HP with respect to fertility, 

modeled as age at puberty and probability of conception. Second, I wanted to determine the 

influence of pregnancy rate, as controlled by breeding season length and influenced by 

fertility, on accuracy of subsequent genetic evaluation. 

Literature Review 

Threshold Trait Theory. Traits such as heifer conception or pregnancy are called 

categorical traits, as the phenotypes are observed in categories (e.g. success or failure). One 

genetic theory to explain ordered categorical traits is that while we observe a trait as having 

discrete categories, there is an underlying, unobserved continuum of effects, both genetic and 

environmental, that cause the phenotype observed (Falconer, 1989). On that underlying 

continuum there is a threshold between each category, and the observed category indicates 

where the individual animal's phenotype is with respect to the threshold(s). A binary trait, 

such as heifer pregnancy, has one threshold; animals whose sum of underlying effects exceeds 

this threshold are able to become pregnant, while the others remain open. 

Linear Models. Prior to the availability of alternative statistical models, categorical 

traits were analyzed using linear models by assigning a numerical value to each category and 

analyzing the recoded data as if it were continuous data. In the example of heifer pregnancy, 
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it is possible to assign a value of one to pregnant heifers and a value of zero to open heifers, 

and analyze that data with a linear model. A heritability estimate obtained from analysis of 

categorical data with a linear model is referred to as a heritability on the observed scale (h2
0). 

Threshold models make use of the assumption that the underlying effects have a 

normal distribution, and since this distribution is unobserved, the unit of measure used is the 

standard deviation. Lush et al., (1948), showed that the heritability on the underlying scale 

(h2
u) for a binary trait can be obtained from h2

0 by 

2 h 2
0 p ( l - p ) 

hu = -2 

z 

where p is the probability of observation in the first category (e.g. not pregnant) and z is the 

height of the standard normal density function at the threshold corresponding to p. As the 

observed mean genotype approaches either end of the probability scale the environmental 

variance becomes nearly linearly associated with the population mean (Dempster and Lerner, 

1950). Therefore, this transformation is necessary to properly compare h2
0 estimates obtained 

from populations with different probabilities of observation in the first category (Koots et al., 

1994). 

A number of alternative methods to recode categories into numerical values have been 

studied (Kaiser, 1996). Still, while it is possible to obtain variance component estimates and 

calculate EPD for categorical traits using linear models, many disadvantages remain. Gianola 

(1980) listed seven problems: 1) scores are arbitrarily assigned to response categories; 2) 

mixed model solutions do not incorporate the restrictions in the estimation space that the sum 
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of response probabilities must total one across categories; 3) the variance in the observed 

scale is not constant and depends on the genotypic value of the candidates for selection; 4) 

the additive genetic variance in the observed scale depends on the mean incidence of the 

character in the subpopulations considered in the model; 5) nonadditive genetic variation is 

present in the observed scale; 6) linear relationships fail outside a restricted range of data; and 

7) ranking optimality of best linear predictors is lacking when the conditional expectation of 

the predictand given the data is not linear. Studies suggest that categorical trait analyses using 

linear models are at best the same as using nonlinear models, but that nonlinear models can 

provide better results than linear ones (Snelling, 1994). 

Non-Linear Models. Procedures for maximum a posteriori (MAP) probit threshold 

models were developed independently by Foulley and Gianola (1984) and Harville and Mee 

(1984). Start with the model 

y = Xp +Zu + e 

where 

ACTI o" 
o i 

and y is a vector of subclass observations on the underlying scale. X and Z are known 

incidence matrices relating subclasses to fixed and random effects, p and u are vectors of 

fixed and random effects, respectively, of length p and q, respectively. A is the matrix of 

additive relationships among animals in the analysis, I is an identity matrix, and a2
a is the 

var 
u 
e 
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known additive genetic variance on the underlying scale. The residual variance on the 

underlying scale is one. Estimates of p and u can be obtained with nonlinear mixed model 

equations using Newton-Raphson (Foulley and Gianola, 1984) or Fischer scoring (Kaiser, 

1996) iterative methods. 

Variance component estimation. Genetic variance can be estimated with marginal 

maximum likelihood (MML) (Harville and Mee, 1984; Hoeschele et al., 1987), and was used 

to analyze stayability (Snelling, 1994). 

Reverter et al. (1994) developed a method of variance component estimation which 

they called Method R. It is based on the covariance between more accurate and less accurate 

predictions equaling the variance of the less accurate predictions, so in an unbiased analysis 

the regression of more accurate predictions on less accurate predictions equals one. They 

made use of this property by using the whole data set to be analyzed to represent the more 

accurate predictions, and a subsample of the whole data set to represent less accurate 

predictions. In a single trait analysis, the regression 

u'pA~lup 

of more accurate (u'w) predictions on less accurate predictions (u'p) is used to search for a 

heritability which yields a regression of one, indicating an unbiased analysis. Repeated 

estimations of heritability from the whole data set using different subsamples can describe the 

distribution of the variance components (Mallinkrodt, 1996). 
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Snelling et al. (1995) used Method-R with predictions on the underlying scale from 

MAP analyses to estimate heritability of stayability; applying Method R to MAP predictions 

has been called MAP-R. They estimated heritability multiple times from the same whole data 

set using different subsamples and reported the average heritability estimate. 

Reverter et al. (1994) extended Method-R to multiple trait, multiple-component linear 

models. Kaiser (1996) further extended it and MAP-R to provide predictions from multiple 

trait, multiple-component models where one or more of the traits is analyzed with a nonlinear 

(MAP) model. He implemented this in software starting from the ABTK tool ds6, developed 

by Golden (unpublished), which was initially capable of multiple-component, multiple trait 

Method-R. Kaiser's addition to the ABTK was called dscat. 

Traits used to select on puberty. 

Scrotal circumference. As discussed in Chapter 2, timing of puberty is an important 

reproduction trait but is difficult to measure. As a result, most efforts have been in the area 

of finding correlated traits which can be measured easily and inexpensively. Scrotal 

circumference has been shown to be genetically correlated to puberty (Coulter and Foote, 

1979; Bourdon and Brinks, 1986; Lunstra, 1988; Morris et al., 2000). It has the advantage 

of being easy and inexpensive to measure. It has the disadvantage of being sex limited and 

requires measurement of intact bulls at approximately a year of age. Since only a few bulls are 

needed as replacements and because the USDA meat grading system discourages production 

of bulls for slaughter, most males are castrated at or before weaning. Males left intact have 

not been randomly selected, so it is difficult to obtain measurements from all males, and bulls 

kept as replacements are not randomly selected. 
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There is additional evidence to question the use of scrotal circumference EPD. Evans 

et al. (1999) analyzed scrotal circumference and heifer pregnancy. Calculations of genetic 

correlation were close to zero. Analysis using genetic group techniques showed a non-linear 

relationship between heifer pregnancy and scrotal circumference. 

Reproductive Tract Score. Another heifer fertility trait which has been investigated 

is reproductive tract score (RTS) (Andersen et al., 1990). Yearling heifers' ovaries and uterus 

are palpated trans-rectally and a score from 1 to 5 is assigned to rank development of the 

reproductive tract. While not strictly a measure of timing of puberty, RTS has been shown 

to be associated with the ability of a heifer to conceive and has been shown to be heritable 

(Andersen et al., 1990). However, a 1994 National Animal Health Monitoring System study 

showed use of RTS by 1.2 % of producers surveyed; they did not include a RTS question in 

more recent surveys. 

Heifer Conception. Heifer conception can be reported as a single-service conception 

rate or conception rate following a certain length breeding season. Heritability estimates of 

conception rate are often based on palpation or pregnancy data, and are more similar to the 

heifer pregnancy EPD than they are to the PCON trait. 

In addition, the statistical model used to analyze conception data can also effect the 

results. Early estimates came from linear models, often paternal half sib models. When animal 

models became more widespread they were used, but typically still as a linear model. The 

resulting heritability was at times transformed to the theoretical underlying scale, but the 

categorical data were analyzed on the observed scale. The use of the linear models likely 

contributed to the low heritability estimates (Evans et al., 1999; Doyle et al., 2000). Recent 
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estimates using models developed for analyzing categorical data have yielded higher 

heritability estimates. 

There are few reports of the heritability of conception rate because it is difficult to 

measure. Legates (1954) concluded services per conception in dairy cattle to be largely non 

genetic. Dearborn (1971) reported conception heritabilities of 0.06, 0.085, and 0.04 for 

Guernseys, Holsteins, and mixed dairy cows, respectively. Koots et al. (1994) reported 

conception rate direct genetic effect of cows and heifers as 0.28 and 0.05, respectively. These 

were weighted means, with 19 cow studies and 7 heifer studies. Also, this was conception 

rate at the end of the breeding season expressed as percent calved, as opposed to conception 

rate at a given point in time, independent of breeding season length. 

The easiest and least expensive way to measure a heifer's ability to conceive is by 

visually observing the results - the production of a calf. This is crude, at best, since we can 

only categorize the ability to produce a calf as yes or no - contrast this to our ability to rank 

calves by their weaning weight across a continuum. In fact, a given heifer's successful 

pregnancy by itself tells essentially nothing about her genetic potential. However, by using 

numerous observations of the performance of sires' daughters' reproduction we can begin to 

separate the sires based on their genetic potential. 

Snelling et al. (1996) estimated heritability for heifer pregnancy for Line 1 Herefords 

and for a population of linecross Hereford cattle that were randomly mated and selected from 

1976 until 1988. Yearling and two-year-old pregnancies were analyzed as different traits. In 

addition, they analyzed the data using both a linear model and a nonlinear marginal maximum 

likelihood (Hoeschele et al., 1987) procedure. Their data and results (Table 4.1) show the 
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linear model method yielded estimates much lower than the nonlinear model method. 

Attempting a selection program based on the linear heritability estimates would be 

discouraging, while the nonlinear heritability estimates suggest substantial progress could be 

made. 

Evans (1996) analyzed 986 heifer pregnancy records from Herefords bred to calve as 

two yr olds. Heifer pregnancy was observed by rectal palpation 120 d after the start of the 

breeding season. Breeding season length was targeted to 63 d but varied from year to year. 

Only heifers given the opportunity to breed were given an observation; observations were 

binary coded for either success or failure. The data were from 11 y on a single ranch. The 

average pregnancy rate across years was 78 %. 

Table 4.1. Data description and heritability estimates of pregnancy for two Hereford 
populations obtained with linear and nonlinear models (Snelling et al., 1996). 

Linecross Herefords Line 1 Herefords 

Records % pregnant Records % pregnant 

Yearling pregnancy 679 86.3 765 79.9 

2-year-old pregnancy 504 79.8 600 77.3 

Heritability estimates 

Nonlinear Linear Nonlinear Linear 

Yearling pregnancy .21 <.001 .30 .02 

2-year-old pregnancy .17 <.001 .49 .006 

Heritability of heifer pregnancy in these data was reported as. 14 (Evans et al., 1999). 

Heifers from 2 y old dams were 10 % less likely to conceive in the breeding season. Heifers 
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born earlier were more likely to conceive; every 20 d increase in age resulted in a 10 % 

increase in conception. 

Doyle (2000) analyzed heifer pregnancy in Angus, using 1,299 records of heifer 

pregnancy collected across nine consecutive years. Heifers were synchronized and bred by AI, 

and were then exposed to a clean-up bull, although the breeding season length was not 

indicated. Pregnancy was observed at approximately 120 d following the start of the breeding 

season by rectal palpation, with an average 89.2 % pregnant. Heritability estimates were 

obtained using MAP-R. Fixed effects included age of dam, a contemporary group that 

included birth year and cleanup sire, and a covariate of age. They reported average and 

median h2 estimates of .21 and .20, respectively. The fixed effect for age of dam was 

significant, with heifers from younger dams less likely to become pregnant than heifers from 

mature dams. The age covariate was not significant; this may be in part due to early puberty. 

They reported that reproductive tract scores taken one month prior to breeding indicated that 

most heifers were or would be cycling by the start of the breeding season, which suggests that 

puberty was not a limiting factor in conception. 

Golden et al. (2000) developed a heifer pregnancy EPD for the Red Angus 

Association of America. Heifer pregnancy was observed for all heifers bred to calve as two-

year-olds with a breeding season less than 90 d in length. They used 10,310 records of 

pregnancy status, with an 83 % overall pregnancy rate, to estimate heritability and obtain 

heifer pregnancy EPD. From these data they estimated heritability to be 0.27. The genetic 

trend from the analysis showed a 3 % decrease in heifer pregnancy from 1989 through 1998, 

with the decrease happening at a relatively even pace over this time. They hypothesized that 
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the decrease was due to unfavorable correlated response to selection for increased yearling 

weight. 

Materials and Methods 

Overview. The simulation model described in Chapter 2 was used to generate 

heifer pregnancy data for three levels of age at puberty and 3 levels of probability of 

conception, yielding nine different data sets. The simulation model was parameterized for 

a 120 d breeding season. The model output results of the breeding season in terms of 

heifer identification number and the Julian day of the year if she conceived, or heifer 

identification number and a zero if she remained open at the end of the breeding season. 

Each of the nine data sets were further divided in retrospect by truncating the breeding 

season length at 25, 45, 60, and 90 d, resulting in five breeding seasons (including the 

original 120 d season), for a total of 45 data sets. These data sets were individually 

analyzed to obtain heifer pregnancy variance components, EPD, and the EPD accuracies. 

Simulation Model. The data were generated using the object oriented version of 

CBCPM, with the changes as described in Chapter 2. The conversion of CBCPM from 

Fortran to Java was not complete, with components of the model not available for use in 

this simulation. Most notably, the model lacked any variation in nutrition and growth; each 

animal's weight was a deterministic function of its age through use of a Brody (1949) 

growth curve. 

The scenarios simulated were not realistic in that the reproduction components 

lacked input from environmental effects. This was an advantage, in a way, in that it was 
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possible to construct theoretical scenarios lacking noise and complexity that would be 

present in the full model. Although the model may seem over simplified, had many of these 

effects been simulated I would have subsequently attempted to remove their effect in the 

variance component and EPD analyses. 

Non-Reproduction Simulation Parameters. Parameters of interest but not directly 

related to fertility were growth rate, age of heifer and age of dam, and the structure of the 

foundation herd. Daily growth was determined with a Brody (1949) curve, with 

parameters A, b, and k fixed at 454.0, 0.93, and 0.003, respectively, for all animals. There 

was no variation in parameters, and growth was strictly a function of age. Similarly, there 

was no variation in body condition, with all animals assumed to be in good condition (6.0 

BCS). 

Heifer age was a significant fixed effect in data analyzed by Evans et al. (1999), 

with a 10 % increase in probability of conception for every 20 d increase in age. Heifer 

age at the start of the breeding season in a beef cattle herd is a function of many factors 

including the current breeding season's start date and the start date of the breeding season 

the heifers were conceived in. In addition, it is possible that some heifers had heifer dams 

who were bred earlier than older dams. The distribution of calving dates is also a function 

of gestation length, dam and sire fertility, and breeding season length. 

There are several ways to account for these effects. Azzam et al. (1990) used 

Monte Carlo simulation to find an appropriate dam age (parity) structure before starting a 

simulation. An alternative is to run the simulation model additional years and then discard 
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results of the initial "burn-in" years. This allows the distributions to form based on the 

input biological and management parameters rather than assumed distributions. 

I chose to have all heifers be born on the same day largely for the sake of clarity. If 

I had simulated an age distribution I would have then tried to remove its effect by fitting 

age in the variance component and BLUP analyses, as have previous analyses of heifer 

pregnancy data (Evans et al., 1999; Snelling et al., 1996; Golden et al., 2000). There is the 

potential for confounding age with fertility, as more fertile dams will conceive earlier and 

therefore have older heifers. This potential confounding is unavoidable in field data, but 

easily avoided in simulation, and may provide better understanding of the degree of bias in 

field data. 

A secondary reason for not fitting an age distribution was selecting the appropriate 

breeding season length for the season these heifers were conceived. This was a problem 

because the simulated data were used to form heifer pregnancy observations for five 

different breeding season lengths (described below). Basing a heifer birth date distribution 

on any one of the five breeding season lengths would have been arbitrary. It would have 

been possible to run individual simulations for each breeding season length, but one of the 

objectives was related to truncating field data to the ideal breeding season length. 

The heifers used to obtain heifer pregnancy observations were simulated as fetuses 

of foundation cows on day one (January 1st) of the simulation. To obtain heifers that were 

all the same age as described above, all foundation cows were assumed to have conceived 

on the same day and all foundation cows had a 285 d gestation. Their fetuses were 204 d 

old on day one of the simulation, so the heifers were born on day 82. 
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Starting date of the breeding season was day 140, and it was assumed fixed across 

years, including the year these heifers were conceived. Given the above assumptions of 

fetus age, this implies the foundation cows conceived these heifers on the 22 day of the 

breeding season. The date the heifers were conceived effects their age at the start of their 

breeding season. The heifers were bred the following year to calve at 2 y age, so all heifers 

were 423 d old at the start of their breeding season. 

Foundation cows in the Fortran version of CBCPM were the cow herd that existed 

before simulating the first day. These cows were unrelated, with unknown sire and dam, 

and their breeding potentials were simulated with full genetic variation accordingly. All 

foundation cows carry a fetus; presumably open cows were previously culled. Preliminary 

variance component analyses indicated lack of power (heritability estimates did not 

converage), likely due to some form of confounding of the data. In an attempt to increase 

the power of the data, the foundation cows were simulated with known sire and dam. The 

sire was drawn at random from the sire group described above. The dam of a foundation 

cow was simulated as a cow with unknown sire and dam, as above, but she was assumed 

dead, and was not simulated on a daily basis once the herd was built. She was added to the 

pedigree, but no other information about her was stored once she had been used to create 

foundation cows. These dams of foundation cows were used to each create three half-sib 

foundation cows (foundation cows with common dam but potentially different sires). 

Using dams of foundation cows allowed genetic ties between heifers. One trade-off of 

allowing foundation cows to be related was some heifers were potentially inbred. 
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Foundation cows were all simulated as 2 y old. Snelling et al. (1996) and Evans et 

al. (1999) reported age of dam fixed effects on heifer pregnancy to be significant, while 

Doyle et al. (2000) reported inconsistent age of dam fixed effect solutions. In this study no 

age of dam effects were simulated either directly or indirectly due to the limited 

capabilities of the model. All foundation cows carried a heifer fetus to make the simulation 

more efficient at producing heifer pregnancy observations. 

Foundation sires were initially simulated as unrelated, with unknown sire and dam, 

and their breeding potentials were simulated with full additive direct genetic variation 

accordingly. However, I was still experiencing difficulty in getting the parameter 

estimation models to converge, so I modified the foundation sires in J-CBCPM similarly 

to the foundation cows. A set of 500 foundation sires was created by first creating one sire 

of a foundation sire and then five foundation sires were created as his offspring, and then 

repeating with a new sire of a foundation sire until all 500 were created. The sires of 

foundation sires were added to the pedigree, but their genetic potentials were not saved. 

This allowed foundation sires to be related, increasing the power of the pedigree. Sires of 

the foundation sires were created using a separate but identical sire group in the parameter 

file. 

In each simulation run there was one herd comprised of two sire groups (sires of 

foundation sires, and foundation sires) and one foundation cow group. My Java version of 

CBCPM allowed consecutive simulations using the same sires but different cows. This 

was necessary to simulate large data sets of related animals. Simulations with a foundation 

herd of more than 3,000 animals would run out of available memory on the computer used 
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before running the necessary two years to obtain the heifer pregnancy observations. The 

code was modified to rerun simulations by removing all animals except sires, call Java's 

SystenugcQ method to force release of memory, and then rebuild the foundation cow herd 

as described above. This allowed any number of heifers to be simulated, and keeping the 

same sires allowed the heifers to be related across reruns. There were no climatic 

parameters or other parameters that were variable across reruns, so all heifers could be 

treated as contemporaries in the subsequent analyses. 

Heifer observations were only used from the first generation of heifers to avoid 

effects of natural selection caused by low fertility cows not producing a heifer for 

subsequent generations. All heifers from the foundation cows were selected for breeding. 

Heifer pregnancy observations were parameterized/simulated as heifer calvings. 

The number of sires was varied in preliminary runs to obtain good convergence of 

variance components. The data used for this study had 500 sires of heifers, and 100 sires 

of sires and dams. The dams of heifers were mated by randomly drawing one of the 500 

sires of heifers, using a uniform distribution. On average, each sire had 40 heifers in the 

analysis. 

Reproduction Parameters. Two fertility traits, AAP and PCON, were simulated as 

heritable traits, with input parameters for additive direct genetic variance, permanent 

environment variance, temporary environment variance, and foundation sire and dam 

group mean breeding potential for each trait. Within a simulation run the sire and the dam 

input mean breeding potentials were the same. The traits were simulated with zero 

covariance between traits in the additive direct genetic, permanent environment, and 

137 



temporary environment covariance matrices. The variances were held constant across all 

simulations, in keeping with the theory of genetic potentials (Bourdon, unpublished). 

Arije and Wiltbank (1971) estimated AAP phenotypic variation in Angus and 

Hereford heifers to range from 31 to 50 d sd. Literature estimates of AAP heritability 

range from .4 to .8 (Martin et al., 1992). I used a phenotypic 30 d sd and a 0.40 

heritability to arrive at the variance components in Table 4.2. Permanent environment 

variance was essentially zero, but it had to be none-zero to allow the Cholesky 

decomposition to be calculated 

Table 4.2. Genetic parameters of simulation model. 

Additive direct genetic variance 
Permanent environment variance 
Temporary environment 
variance 
Mean 

Age at puberty 

360 d2 

0.00001 d2 

540 d2 

340, 390, and 440 d 

Probability of conception 
given cvcling 

.10 

.15 

.75 

.60, .70, and .80 

The population mean AAP was set at three different levels (Table 4.2) to simulate 

early, medium and late age at puberty with respect to the start of the breeding season, 

which corresponded with the heifers being 423 d old. I selected the mean for early age at 

puberty, 340 d age, so that most heifers would have cycled at least twice before the start 

of the breeding season. Recall from Chapter 2 that the simulation decreases conception on 

the first two estrous cycles following puberty. Due to the limited environmental effects 

simulated these heifers could be representative of heifers with even earlier age at puberty. 

They could be thought of as British breeds, such as Angus. 
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Many of the medium age at puberty animals had started cycling but were effected 

by reduced conception at the start of the breeding season. They were perhaps 

representative of continental breeds. Fewer than half the late age at puberty animals had 

started cycling at the start of the breeding season. These animals could be thought of as 

Bos indicus breeds. 

Literature estimates for probability of conception given cycling parameters were 

more difficult to find. Few experiments have directly measured this trait; conception 

studies are generally for multiple estrous cycles and puberty status may not be well known. 

Larsen et al. (1990) concluded "There is little evidence to suggest that a cow of one 

genotype, returning to estrus before the onset of the breeding season, with normally 

involuted uterus, bred by a fertile bull on a subsequent estrus will have a higher probability 

of conceiving than a cow of a different genotype given the same conditions." 

The review paper by Koots et al. (1994) calculated a weighted mean heritability of 

direct conception rate of cows to be .28 based on 19 studies, and heritability of direct 

conception rate of heifers to be 0.05 based on 7 studies. This was conception rate for the 

entire breeding season, not just a single estrous cycle, converted from h2
0 to h2

u. These 

studies suggest there are heritable effects on the ability to conceive. Heritability estimates 

of the trait Stayability further support this. The trait conception rate is difficult to use to 

parameterize the model since it may be confounded with the length of the breeding season. 

I implemented general, permanent infertility uncorrelated to genetic effects using a 

threshold level for permanent environment such that the lowest 5 % of the distribution 

were infertile (Johnson and Notter, 1987a). Subsequently, I had to increase the PCON 
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mean breeding potentials to reflect the decrease that the model was accounting for. This 

was in line with the theory of genetic potentials (Bourdon, 1998); as the simulation 

accounts (mechanistically) for additional effects, the breeding potential increases. 

Data Generation. I simulated data for 20,000 heifers for a single breeding season 

by rerunning the simulation 10 times with the same sires as described above. Each 

simulation output a data file of animal identification number, breeding potential, and 

temporary and permanent environmental variance for each of the two traits. In addition, 

the Julian day of year conceived was output for pregnant heifers, while open heifers had a 

zero in that field as a placeholder. Actual age at first estrous was also output in case it was 

different from the AAP potential due to low body weight. The pedigree, consisting of 

identification numbers for each animal, its sire, and dam, was written to a separate file, 

with unknown sire and(or) dam represented with a period as a placeholder. 

I simulated heifers for each of the nine combinations of the mean AAP and PCON 

parameters (Table 4.2) with a 120 d breeding season. Then I created four additional 

breeding season data sets for each of the nine combinations by truncation of the data at 25, 

45, 60, and 90 d from the start of the breeding season. Heifers that conceived within a 

(truncated) breeding season were considered successes for that breeding season, while 

heifers not pregnant at the end of a breeding season were considered failures for that 

breeding season, even if they later conceived before the end of the 120 d season. The 

heifer pregnancy data was given a binary coding, with zero for open and one for pregnant. 

This resulted in 45 data sets to be analyzed. 
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Analysis of Simulated Data. I estimated heifer pregnancy variance components 

for each of the 45 data sets and then calculated EPD and their accuracies for each data set 

using the variance components from its corresponding variance component analysis. 

Variance components were obtained by applying a Method R(Reverter et al., 1994) 

approach using a maximum a posteriori probit (MAP) threshold model (Foulley and 

Gianola, 1984; Harville and Mee, 1984; Snelling et al., 1995), using the dscat software 

developed by Kaiser (1996). This software performs Method R by taking random 50 % 

sub-sample of the data. The MAP model fit for all heifer pregnancy variance component 

analyses was 

Y = Xp + Zu + e, 

where 

A<7a 0 

0 I<7e 

The vector Y are subclass "psuedo-observations" on the underlying scale. X and Z are 

known incidence matrices relating subclasses to fixed and random effects. Vector p are 

fixed effect levels, vector u are random effect levels, and vector e are residual error. The 

additive direct genetic variance, a2
a, was dispersed by Wright's numerator relationship 

matrix, A. The residual error variance, a2
e, was dispersed by an identity matrix, I. The 

software constrained the residual error variance to be 1 (Kaiser, 1996), in accordance with 

a probit model. 

var 
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No fixed effects had been simulated but the dscat software required at least one to 

be fit. I created a fixed effect column in the data file and assigned each heifer one of three 

possible levels; the levels were assigned in repeating sequence down the list of heifers. The 

heifers had been created and written to the file in random order, except with respect to 

their maternal grand dam, so the assignment of the fixed effect level was essentially 

random. 

I obtained 50 Method R estimates of heritability for each of the 45 data sets, and 

selected the median of estimates within the parameter space. Kaiser (1996) reported a 

mode as being a better estimator than the mean, but later work by Mahibir (2003) suggests 

the mode is a better statistic. A different random seed, obtained sequentially from a table 

of random numbers (Steel and Torrie, 1980), was used to start each set of 50 estimates. 

The dscat software used the seed to set a random number generator which was then used 

to obtain the 50 % subsamples. 

There were a number of convergence criteria to consider when using Method R 

and a threshold model to obtain a point-estimate of heritability. Iteration within a given 

Fisher Scoring round was considered converged when change was less than l x l 0"9. 

Sequential Fisher scoring rounds were considered converged when the changed between 

rounds was less than 1 x 10"4 and at least 25 rounds of scoring were done. These were all 

hard-coded in dscat and were not changed for this study. 

An input parameter to the dscat software was the R statistic convergence, which I 

set to 1 x 10"6. The R statistic for a given Method R round had to be within this distance 

from 1.0 for that heritability estimate to be considered converged. 
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Finally, the number of heritability estimates necessary for a reliable point estimate 

can be selected by increasing the number of estimates until a suitable standard error is 

reached. Preliminary trials indicated that 50 samples yielded a standard error less than 

0.005, so I targeted 50 samples as my convergence criteria for the heritability point 

estimate. 

The variance components obtained were used to produce BLUP breeding values 

for the data set they were estimated from, using the same statistical model and software. 

The dscat software (Kaiser, 1996) performed BLUP using the input variance components 

on the whole data set, and it output EBV on the underlying scale. 

One of the objectives was to characterize the accuracy of heifer pregnancy EBV 

for predicting the simulated component traits of fertility. Since the simulated AAP and 

PCON BP were true values, I calculated a simple correlation of heifer pregnancy EBV 

with AAP and with PCON as measures of accuracy. I also calculated accuracies of the 

heifer pregnancy EBV by creating a reduced animal model coefficient matrix and then 

estimating the prediction error variance using the tinv tool from the ABTK (Golden et al., 

1992). This tool calculates exact prediction error variances from a coefficient matrix. 

Prediction error variance (PEV() for animal / was converted to accuracy (rs) for that 

animal by 

V c r a 

where o2
a is the additive direct genetic variance. Inbreeding was minimal in these data sets 

and was not accounted for in calculation of accuracy from PEV. 
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Results and Discussion 

Data generated. The percent of heifers pregnant in each of the 45 data sets (Table 

4.3) is a function of the simulated mean PCON and AAP, and the breeding season length. 

As discussed in Chapter 2, it is also affected by the sterile heifers (Table 4.4), the 

resampling of temporary environmental variance in the simulation each estrus, and 

decreased fertility on the pubertal and second estrus. Most heifers in the 340 d AAP data 

sets reached puberty two estrous cycles before the start of the breeding season, as 62, 71, 

and 80 % of the heifers with simulated PCON of 60, 70, and 80 %, respectively, became 

pregnant within the 25 d breeding season. Half the heifers reached puberty at least 70 d 

before the start of the breeding season, and approximately 88 % reached puberty 42 d 

before the start of the breeding season (Fig. 4.1). The curves for cumulative count of 

heifers reaching puberty in Figures 4.1, 4.2, and 4.3 are from the data sets for 340, 390, 

and 440 d AAP, respectively, at 60 % PCON. I initially plotted the cumulative puberty 

data from data sets for 70 and 80 % PCON and found essentially no difference from 60 % 

PCON, as expected, so for simplification I did not include them in the figures. Figures 4.1, 

4.2, and 4.3 do each include curves for cumulative pregnancy at 60, 70, and 80 % PCON 

because they are predictably different. 

The percent of heifers pregnant in simulations with puberty later than 340 d 

showed a decrease in conception in the 25 d breeding season, below the simulated PCON 

level (Table 4.3). Figure 4.2 shows that while most heifers in the 390 d AAP had begun 

cycling by the start of the breeding season, fewer than half were in their third estrus. Since 
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the pubertal and second estrus were modeled with reduced conception, the reduced 

conception in Table 4.3 is expected. The reduced pregnancy rate at 25 d was even greater 

in the 440 d AAP datasets (Table 4.3). By definition, fewer than half of these heifers had 

reached puberty at the start of the breeding season because it started when they were 420 

dold. 
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Table 4.3. Percent of heifers pregnant at different levels of simulated age at puberty (AAP) 
and probability of conception (PCON) by breeding season length. 

Breeding season 
length (d) 

Simulated mean 60 % PCON 

Simulated mean age at puberty (AAP) 

340 d 390 d 440 d 

25 

45 

60 

90 

120 

Heifers pregnant (%)-

62.0 57.7 

78.8 76.5 

84.5 83.1 

90.1 89.4 

92.4 92.1 

30.1 

52.1 

65.1 

81.7 

88.7 

Simulated mean 70 % PCON 

Simulated mean age at puberty (AAP) 
Breeding season 

length (d) 

25 

45 

60 

90 

120 

340 d 

71.4 

85.5 

89.6 

92.8 

93.9 

390 d 

-Heifers pregi lant (%)-— 

66.0 

83.0 

88.1 

92.5 

93.9 

440 d 

36.7 

59.8 

73.0 

87.4 

92.2 

Breeding season 
length (d) 3 4 0 d 

Simulated mean 80 % PCON 

Simulated mean age at puberty (AAP) 

390 d 440 d 

25 

45 

60 

90 

120 

Heifers pregnant (%) 

80.0 76.3 

90.9 89.0 

93.0 92.2 

94.7 94.4 

95.1 94.9 

43.0 

66.4 

78.9 

91.1 

94.0 
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Figure 4.1 .Cumulative number of heifers reaching puberty in the 340 d AAP and 60 % 
PCON data, and cumulative number of heifers conceiving within the breeding 
season in the 60, 70, and 80 % PCON data sets with 340 d AAP. 
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PCON 60 % 
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Figure 4.2.Cumulative number of heifers reaching puberty in the 390 d AAP and 60 % 
PCON data, and cumulative number of heifers conceiving within the breeding 
season in the 60, 70, and 80 % PCON data sets with 390 d AAP. 
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Figure 4.3. Cumulative number of heifers reaching puberty in the 440 d AAP and 60 % 
PCON data, and cumulative number of heifers conceiving within the breeding 
season in the 60, 70, and 80 % PCON data sets with 440 d AAP. 
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Table 4.4 Number and percent of heifers, within each of the nine simulated data sets of 
20,000 heifers, that were simulated to be sterile. 

AAP (d) 

340 

390 

440 

60 -

n 

985 

1008 

1019 

% 

4.9 

5.0 

5.1 

proN (%\ 

70 —-

n 

1019 

1003 

1010 

% 

5.1 

5.0 

5.1 

80 --

n 

928 

966 

985 

% 

4.6 

4.8 

4.9 

pubertal and second estrus have reduced conception the reduced conception in Table 4.3 

is expected. The reduced pregnancy rate at 25 d was even greater in the 440 d AAP 

datasets (Table 4.3). By definition, fewer than half of these heifers had reached puberty at 

the start of the breeding season because it started when they were 420 d old. 

As the breeding seasons increase in length, the cumulative pregnancy curves (Figs. 

4.1, 4.2, 4.3) increase at a decreasing rate because there were fewer remaining heifers and 

the remaining heifers were less fertile. This decreased rate was more pronounced at earlier 

AAP (Fig 4.1) because with later AAP (Fig 4.3) the AAP delayed conception more than 

PCON. However, by 120 d all cumulative pregnancy curves are converging to the 

asymptote. This is less than 100 % pregnancy, due to the simulated infertility. 

Analysis of Simulated Data. 

Variance Component Estimation. I had difficulties with getting dscat to estimate 

heritability, particularly in cases where a high percentage of heifers were pregnant. In 

Tables 4.6, 4.7, and 4.8 the second column indicates the number of converged samples out 
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of the total number of samples attempted. Preliminary attempts had even fewer converged 

estimates within the parameter space, which lead to the modifications allowing foundation 

cows and sires to be related. This modification to the model did result in more samples 

converging, but not all. An alternative would have been to run the simulation for a number 

of years to build more generations to the pedigree and possibly increase the overall degree 

of relatedness among the heifers with observations. 

Table 4.5. Number of heifers, within each of the nine simulated data sets of 20,000 heifers, 
with a non-zero inbreeding coefficient (F) and average heifer inbreeding coefficient 
including non-inbred animals. 

PCON(%) 

60 70 80 

Non-zero Average Non-zero Average F Non-zero Average 
AAP (d) FJn) F FJn) FJn) F 

340 175 0.0008 207 0.0010 198 0.0010 

390 202 0.0009 208 0.0010 198 0.0011 

440 191 0.0009 212 0.0011 207 0.0011 

However, that would have added the complexity of natural selection to the interpretation 

of the results, as only heifers fertile enough to breed would have had daughters with 

observations. It also would have added heifer age as a variable. 

An alternative explanation is that the convergence method within dscat is not 

capable of handling samples with very little variation. Kaiser (1996) added an acceleration 

term to speed convergence which may contribute to oscillation or divergence. 

At one extreme, with AAP, PCON, and breeding season length at 340 d, 80 %, 

and 120 d, respectively, only one estimate out of 100 attempts produced an answer within 
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the parameter space (Table 4.6). In one of the remaining 99 cases the software was unable 

to converge on a solution, and in the other 98 cases the estimate of genetic variance was 

negative. Doyle et al. (2000) analyzed Angus field data for fertility and concluded 

estimates of heifer pregnancy outside the parameter space indicated the model was 

inappropriate for the data in those cases. In addition, they were hesitant to conclude that 

rebreeding was heritable because half their samples yielded estimates outside the 

parameter space. 

In this study's most extreme case (described above) only 57 (0.285 %) of the 

fertile heifers remained open, in addition to the 928 heifers open due to simulated 

infertility. In this case it is probably more appropriate to conclude these data have too little 

power to estimate the heritability, as opposed to saying the model is inappropriate. Since I 

know how the data were simulated, particularly the lack of other simulated effects, I feel it 

is appropriate to interpret the heritability estimates despite the number of samples that 

either went out of the parameter space or did not converge. 

The frequencies of observations should not affect the ability of the threshold model 

to estimate heritability. However, it is possible that too many sires have no variation 

among their daughters' performance. 
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Table 4.6. Heritability estimates of heifer pregnancy using 20,000 heifer pregnancy 
observations from data with simulated mean 340 d AAP at three levels of PCON. 

Heritability Estimates 

25 

45 

60 

90 

120 

49(50) 

49(49) 

50 (50) 

18(50) 

9(50) 

25 

45 

60 

90 

120 

24(50) 

44 (50) 

25(50) 

8(50) 

13 (50) 

25 

45 

60 

90 

120 

25(50) 

13 (50) 

9(100) 

7(100) 

1(100) 

0.086 

0.125 

0.108 

0.106 

0.053 

0.184 

0.250 

0.219 

0.240 

0.151 

Breeding Converged 
season samples (total 
length (d) samples) (n) Mode Mean Variance Minimum Maximum 

Simulated 60 % PCON 

0.139 0.139 0.0003 

0.172 0.180 0.0003 

0.156 0.159 0.0007 

0.127 0.140 0.0001 

0.060 0.070 0.0024 

Simulated 70 % PCON 

0.107 0.106 0.0003 

0.125 0.126 0.0002 

0.125 0.113 0.0005 

0.049 0.050 0.0002 

0.063 0.070 0.0024 

Simulated 80 % PCON 

0.143 0.147 0.0008 

0.118 0.132 0.0017 

0.086 0.084 0.0010 

0.083 0.088 0.0023 

0.106 na na 

0.078 

0.094 

0.063 

0.031 

0.011 

0.145 

0.182 

0.156 

0.067 

0.159 

0.105 

0.078 

0.037 

0.038 

na 

0.212 

0.226 

0.123 

0.155 

na 
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Table 4.7. Heritability estimates of heifer pregnancy using 20,000 heifer pregnancy 

observations from data with simulated mean 390 d AAP at three levels of PCON. 

Heritability 

Breeding Converged 
season samples (total 
length (d) samples) (n) Mode Mean Variance Minimum Maximum 

Simulated 60 % pregnancy 

.169 0.175 0.0023 

.195 0.222 0.0016 

.164 0.170 0.0007 

0.119 0.120 0.0010 

0.091 0.096 0.0015 

Simulated 70 % pregnancy 

25 

45 

60 

90 

120 

21(50) 

39(50) 

50 (50) 

22 (50) 

13(50) 

0.117 

0.147 

0.125 

0.068 

0.061 

0.292 

0.322 

0.239 

0.200 

0.205 

25 

45 

60 

90 

120 

25 

45 

60 

90 

120 

47 (50) 

29 (50) 

24 (49) 

3(50) 

4(100) 

44 (50) 

39(50) 

20(50) 

6(50) 

4(50) 

0.124 

0.113 

0.088 

0.042 

0.047 

0.124 

0.116 

0.086 

0.040 

0.071 

0.0005 

0.0006 

0.0003 

0.0004 

0.0003 

Simulated 80 % pregnancy 

0.125 

0.125 

0.076 

0.049 

0.046 

0.129 

0.121 

0.079 

0.052 

0.045 

0.0003 

0.0008 

0.0004 

0.0001 

0.0009 

0.070 

0.076 

0.047 

0.020 

0.026 

0.092 

0.054 

0.050 

0.041 

0.004 

0.188 

0.168 

0.119 

0.058 

0.153 

0.171 

0.211 

0.138 

0.064 

0.074 
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Table 4.8. Heritability estimates of heifer pregnancy using 20,000 heifer pregnancy 
observations from data with simulated mean 440 d AAP at three levels of PCON. 

Heritability 

25 

45 

60 

90 

120 

50 (50) 

50 (50) 

50(50) 

50 (50) 

50(50) 

25 

45 

60 

90 

120 

42 (50) 

34 (50) 

42 (50) 

13(50) 

10(50) 

25 

45 

60 

90 

120 

32 (50) 

50(50) 

49 (50) 

23(61) 

19(50) 

0.180 

0.188 

0.180 

0.127 

0.102 

0.391 

0.375 

0.328 

0.279 

0.250 

Breeding Converged 
season samples (total 
length (d) samples) (n) Mode Mean Variance Minimum Maximum 

Simulated 60 % pregnancy 

0.277 0.276 0.0016 

0.266 0.265 0.0013 

0.250 0.244 0.0011 

0.188 0.188 0.0009 

0.165 0.167 0.0008 

Simulated 70 % pregnancy 

0.284 0.298 0.0020 

0.343 0.342 0.0019 

0.262 0.270 0.0031 

0.167 0.175 0.0016 

0.059 0.100 0.0040 

Simulated 80 % pregnancy 

0.337 0.333 0.0022 

0.330 0.329 0.0017 

0.242 0.247 0.0019 

0.095 0.104 0.0005 

0.053 0.054 0.0006 

0.238 

0.260 

0.149 

0.126 

0.043 

0.416 

0.424 

0.399 

0.260 

0.236 

0.229 

0.252 

0.172 

0.076 

0.010 

0.459 

0.431 

0.357 

0.146 

0.103 
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In theory it is possible to calculate the expectation of the heritability of AAP from 

these simulated data at a given day in the breeding season. In practice it is complicated 

because of the simulated infertility and because as the season progresses there are repeated 

opportunities to breed. I'll start with a simplified case with no infertility and only one 

opportunity to breed (i.e. a 21 d breeding season). The probability of heifer conception ( 

P(c)) is a function of the probability a heifer reached puberty at a given age (P(p)) and 

her probability of conception given puberty( P(c|p)). Using Bayes' theorem, 

P(p[c)*P(c) 
P ( c l p ) = ^ ^ 

where P(p|c) is the probability of puberty given conception. Since a heifer must, by 

definition, reach puberty in order to conceive, that term is set to 1.0, and the equation 

simplifies to 

P(c)= P (p )*P(c | p ) . 

A heifer's P(c) at a given time is equivalent to pregnancy in this model, as no embryonic 

loss or abortions were simulated. The probability density function for both P(p) and P(c|p) 

were simulated with a normal distribution and variance of 1.0, and both traits were 

simulated as genetic potentials, with no simulated correlations between the traits. 

When thinking about the distribution of heifer pregnancy being a joint distribution 

of AAP and PCON it may be helpful to first consider the extremes of the two 

distributions. If all animals have reached puberty before the breeding season starts then the 

distribution of heifer pregnancy in the first 21 d of the breeding season should be identical 
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to the simulated distribution of PCON and estimated heritability of heifer pregnancy 

should equal input heritability of PCON. If none of the heifers have reached puberty by the 

end of the first 21 d of the breeding season then the distribution will be a point with a 

corresponding zero probability of pregnancy. Similarly, if PCON is one, then heifer 

pregnancy at a given time becomes similar to a measure of AAP, and estimated heritability 

of heifer pregnancy should be close to input heritability of AAP. It is slightly different 

because the observation of heifer pregnancy has converted the (underlying) continuous 

AAP trait to a binary threshold trait. Finally, when PCON equals zero or when no heifers 

have reached puberty it is less informative, as there is no heifer pregnancy variance to 

analyze. To summarize, when there is variation in heifer pregnancy the estimated 

heritability is expected to be AAP heritability when PCON equals one and PCON 

heritability when all animals have reached puberty by the start of the breeding season. 

Determining the expectation of the heritability of heifer pregnancy for values of 

PCON and AAP between these extremes is more complex. The joint distribution can be 

written as 

VpregW = J9preg|puberty(t) 9puberty(a) ^a 

where 9preg(t) is the probability of pregnancy at time t, 9puberty(a) is the probability of 

puberty at or before time a, and 9preg|pUberty(t) is the probability of pregnancy at time t given 

puberty has already been reached. The expected variance of pregnancy observations, 

E[a2
preg], depends on the expectation of the probability of pregnancy at time t, u.preg, as 

seen in 

E[ t f 2
p r e g] = I ( t - H ^ g )2*9preg|puberty(t) * 9puberty(a) d .d , . 

1 5 6 



The u.preg is calculated as 

IVeg = E [ i r e g ( t ) ] = I t*<j>preg|puberty(t) * <l>puberty(a) (1,(1,. 

Returning to the analysis of my simulated data, the case when AAP and breeding 

season length were 340 and 25 d, respectively, was as close to one extreme as I simulated. 

If all animals were cycling and fertile and had one chance to conceive then the heritability 

would be expected to be 0.10 given the input parameters. My estimates were 0.139, 

0.107, and 0.143 for 60, 70, and 80 % PCON, respectively. Two of these are higher than 

expected. It is not clear what role the repeated opportunity to breed for some animals and 

the infertility played. 

I did not simulate the other extreme, with 100 % PCON and late AAP; the 

expected heritability would be 0.40 in that case. The closest to this extreme was the 440 d 

AAP and 80 % PCON data set. It yielded the second highest heritability estimate (0.337). 

The expectation supports the result of increasing heritability with later AAP given the 

input parameters, but it is not possible to do a conclusive test with these data. 

Correlation of Breeding Values and the EBV Accuracy. To study the relationship 

between the heifer pregnancy EBV and the two simulated fertility traits I calculated the 

correlation between the EBV and each trait for all data sets, using the 500 sires of heifers. 

I plotted these correlations and also plotted the average accuracy (r^ of the EBV for these 

500 sires (Figs. 4.4 through 4.12). Since the simulated BP are true values, the correlations 

are essentially the accuracy of prediction of AAP and PCON, while the additional 

accuracy, r„ is the accuracy of the heifer pregnancy EBV. 
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Breeding season length (d) 

Figure 4.4. Accuracy of heifer pregnancy (HP) EBV, and correlation of HP EBV with age 
at puberty breeding potential (AAP BP) and with probability of conception 
breeding potential (PCON BP) for simulated 340 d AAP and 60 % PCON. 

1 i 1 1 1 1 1 1 1 1 1 1 
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HP EBV accuracy 
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20 30 40 50 60 70 80 90 100 110 120 
Breeding season length (d) 

Figure 4.5. Accuracy of heifer pregnancy (HP) EBV, and correlation of HP EBV with age 
at puberty breeding potential (AAP BP) and with probability of conception 
breeding potential (PCON BP) for simulated 340 d AAP and 70 % PCON. 
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Figure 4.6. Accuracy of heifer pregnancy (HP) EBV, and correlation of HP EBV with age 
at puberty breeding potential (AAP BP) and with probability of conception 
breeding potential (PCON BP) for simulated 340 d AAP and 80 % PCON. 
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Figure 4.7. Accuracy of heifer pregnancy (HP) EBV, and correlation of HP EBV with age 
at puberty breeding potential (AAP BP) and with probability of conception 
breeding potential (PCON BP) for simulated 390 d AAP and 60 % PCON. 
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Figure 4.8. Accuracy of heifer pregnancy (HP) EBV, and correlation of HP EBV with age 
at puberty breeding potential (AAP BP) and with probability of conception 
breeding potential (PCON BP) for simulated 390 d AAP and 70 % PCON. 
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Figure 4.9. Accuracy of heifer pregnancy (HP) EBV, and correlation of HP EBV with age 
at puberty breeding potential (AAP BP) and with probability of conception 
breeding potential (PCON BP) for simulated 390 d AAP and 80 % PCON. 
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Figure 4.10. Accuracy of heifer pregnancy (HP) EBV, and correlation of HP EBV with 
age at puberty breeding potential (AAP BP) and with probability of conception 
breeding potential (PCON BP) for simulated 440 d AAP and 60 % PCON. 
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Figure 4.11. Accuracy of heifer pregnancy (HP) EBV, and correlation of HP EBV with 
age at puberty breeding potential (AAP BP) and with probability of conception 
breeding potential (PCON BP) for simulated 440 d AAP and 70 % PCON. 
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Figure 4.12. Accuracy of heifer pregnancy (HP) EBV, and correlation of HP EBV with 
age at puberty breeding potential (AAP BP) and with probability of conception 
breeding potential (PCON BP) for simulated 440 d AAP and 80 % PCON. 

162 



In the data sets with 340 d mean AAP (Figs 4.4, 4.5, and 4.6) there was essentially 

no correlation between the heifer pregnancy EBV and the AAP BP. Since essentially all 

heifers had reached puberty prior to the start of the breeding season there was no way for 

the EBV to detect differences in sire's AAP BP. The correlation with PCON, however, 

showed a clear, consistent trend in these data. The shortest breeding season provided the 

best measure of PCON BP, and the relationship deteriorated steadily as the breeding 

season length increased. It remained the strongest with low PCON (Fig 4.4), and became 

essentially zero with high PCON and 120 d breeding season (Fig 4.6). In Figure 4.4 it 

appears that a heifer pregnancy EBV from these data would still provide reasonable ability 

to select for PCON BP with a 120 d breeding season. 

The calculated accuracy of the EBV, on the other hand, was quite insensitive to 

these changes. This was likely in part because it was calculated with a linear model, not a 

threshold model. This method has been standard procedure at Colorado State University 

Center for Genetic Evaluation of Livestock (CSU-CGEL) for threshold traits. This 

method was not able to account for the changes in frequency of observations in a binary 

threshold trait in these data. In theory, the calculated accuracy of the EBV would decline 

as the frequency of one class of observations (e.g. pregnant) moved from 50 % toward 

100 %. However, the linear model simply accounted for the amount of available 

observations, which remained the same, and also the heritability, which changed slightly in 

these data. This would provided a false sense of the correlation between the EBV and the 

true value for the trait; although I do not have a true value for heifer pregnancy, I know 

from the simplicity of the simulation that there are not likely to be any additional, 
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unforeseen effects. The best illustration of the problem is Fig. 4.6 at 120 d into the 

breeding season, where the EBV accuracy remained unchanged but the EBV correlations 

with the simulated values was essentially zero. 

Continuing on to the correlations in 390 d mean AAP, the trend in PCON 

remained the same but there was also a trend in AAP (Figs 4.7, 4.8, and 4.9). The EBV 

from short breeding seasons had a negative correlation with AAP BP, and as the season 

length increased the correlation moved toward zero. The negative correlation implies that 

animals with higher heifer pregnancy EBV had earlier AAP BP. The EBV in these data 

would allow favorable selection simultaneously in AAP and PCON in short breeding 

seasons. As breeding season length increased the power of this relationship decreased. The 

120 d breeding seasons would allow essentially no selection pressure on AAP. 

In the last set of Figures (4.10, 4.11, and 4.12), for 440 d AAP, the trend for AAP 

was similar and more pronounced than with 390 d AAP. The EBV from short breeding 

seasons provided an accurate measure of AAP BP, as indicated by the relative strength of 

the correlation. Again, as the breeding season lengthened, this relationship deteriorated 

steadily toward zero. The correlation of the EBV with PCON BP had a reverse 

relationship with low PCON (Fig 4.10), although it was not a large difference from the 

start of the breeding season to the end. It appears that AAP was initially the dominating 

factor in determining which heifers became pregnant, and as the season lengthened it was 

less so. The PCON BP was a moderate factor at 60 and 70 % PCON, and less so at 80 % 

PCON. 
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In these data I would recommend using EBV from the 25 d truncated breeding 

season, except in the 440 d AAP, where I would use the 45 d truncated breeding season. 

The 440 d AAP data have less than 50 % pregnancy in the 25 d breeding season and so 

would likely benefit by increasing the length to 45 d. Real life recommendations, 

however, are not quite so clear cut. Heifers will be different ages, have different age dams, 

have variation in gestation length, and experience a number of other genetic and 

environmental effects that add to the problem. Still, I am inclined to believe that using data 

from shorter breeding seasons in field data would add to the true accuracy of the EBV. 

Summary 

Indications of GxE, GxGxE, or heterogeneity in these simulated data would 

suggest to look for it in field data, while absence of it here would suggest if it is observed 

in field data it is either an artifact of the data structure or it is due to other causes. Clearly 

in this study the heritability changed significantly depending on the simulated levels of 

AAP and PCON. It also decreased as breeding season length increased, although the 

reliability of estimates where few samples converged in the parameter space was 

questionable. 

In addition, the strength of the correlation between the simulated traits and the HP 

EBV tended to decrease toward zero as breeding season length increased. In these data a 

HP EBV based on a 120 d breeding season would provide little value in improving heifer 

pregnancy, while one from a 25 d breeding season would provide the most. 
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In practice, the effect of selection using a HP EPD will depend largely on the 

genetic potential for puberty, and on the genetic potential for probability of conception. It 

will also depend on the environment dictated by management, particularly the length of the 

breeding season. There are a number of additional effects which will likely need to be 

accounted for in a heifer pregnancy analysis but which were not simulated in this study. 

Calculating EBV accuracy for a threshold trait using a linear model coefficient 

matrix was a poor measure of true accuracy, as evidenced in Figures 4.4 through 4.12 in 

long breeding seasons. 
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