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ABSTRACT 

Remotely sensed plant canopy temperature has long been recognized as having 
potential as a tool for irrigation management. However, a number of barriers 
have prevented its routine use in practice, such as the spatial and temporal 
resolution of remote sensing platforms, limitations in computing capacity and 
algorithm accuracy, and the cost and ruggedness of sensors and related 
components that can transmit and receive data wirelessly. Recent advances in 
all of these areas have made remote sensing more feasible in providing real-time 
feedback of field conditions. This can potentially reduce management time, 
maintain crop yield and crop water productivity, and detect unusual conditions 
such as equipment malfunctions or biotic stress sooner. Center pivots equipped 
with wireless infrared thermometers (IRTs) have been found to be suitable as a 
remote sensing platform. Canopy temperature-based algorithms have 
successfully automated drip and center pivot irrigation schedules where crop 
yield, water use efficiency, seasonal water use, and irrigation amounts applied 
were comparable to irrigations scheduled manually with a field-calibrated neutron 
probe. Even without automation, these algorithms can provide timely and 
valuable information on plant and soil water status, which can improve the 
management of irrigated crops. 
 
The use of trade, firm, or corporation names in this article is for the information and convenience of the 
reader. Such use does not constitute an official endorsement or approval by the United States Department 
of Agriculture or the Agricultural Research Service of any product or service to the exclusion of others that 
may be suitable. 
 
The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the 
basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, 
parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or 
part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply 
to all programs.) Persons with disabilities who require alternative means for communication of program 
information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 
(voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 
Independence Avenue, S.W., Washington, D.C. 20250-9410, or call (800) 795-3272 (voice) or (202) 720-
6382 (TDD). USDA is an equal opportunity provider and employer. 
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INTRODUCTION 
 
Plant canopy temperature is useful as an irrigation management tool because it 
is related to the water status of the plant and soil, and it can be measured 
noninvasively by remote sensing. As plants transpire, the evaporation of water 
from liquid to vapor state consumes heat energy, which lowers the leaf 
temperature; this and the movement of water vapor away from the canopy 
removes heat and results in a cooling effect. When the plant evapotranspiration 
(ET) rate is reduced, such as by soil water depletion, the rate of heat removal is 
reduced and the canopy temperature increases. This process links canopy 
temperature with crop water stress and ET. Detection of crop water stress and 
ET enable rational irrigation timing and application amounts, which can increase 
crop water productivity, reduce leaching of water and nutrients below the root 
zone, and reduce the time required for irrigation management. Measurement of 
canopy temperature is possible using radiometers that are filtered to the thermal 
infrared (8 to 14 μm) wavelengths, making them non-contact infrared 
thermometers (IRTs). Because all surfaces emit thermal radiation, temperature 
can measure an area from a few cm2 to several km2. These characteristics can 
carry advantages over sensors that require physical contact with the plant or soil, 
which often sample an area or volume of insufficient size to be representative of 
the soil – plant – atmosphere energy and water balance. 
 
The concept of using remote sensing for farm management, including irrigation 
management, dates to the 1960s. Monteith and Szeicz (1962) and Tanner (1963) 
were the first to report plant canopy measurements using portable radiometers, 
from which evolved the basic design of modern hand-held and miniature IRTs. 
Wiegand et al. (1968) and Bartholic et al. (1972) were among the first to use 
airborne thermal scanners to differentiate crop and soil water status. The launch 
of the Landsat series of satellites beginning in 1972 led to agricultural monitoring 
applications such as commodity market forecasting, but mainly on a seasonal 
basis and at regional scales, because the spatial resolution and repeat frequency 
of satellites were inadequate for real-time and farm field-scale management 
(Moran, 1994). Phene et al. (1985) described one of the earliest applications of 
IRTs aboard a moving irrigation system. These developments prompted further 
research in agricultural remote sensing, which have been reviewed by Jackson 
(1982; 1984), Moran et al. (1997), and Gowda et al. (2008). Several technical 
barriers have impeded the widespread adoption of remote sensing for real-time 
irrigation management. These are related to remote sensing platform 
requirements, the need for wireless data transmission, sensor cost and 
ruggedness, computing capacity, and crop water stress and ET models, among 
other factors. However, many of these barriers have been mitigated in recent 
years, which may finally make remote sensing a feasible and cost-effective 
option for producers. 
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This paper provides a brief review of the use of remotely sensed plant canopy 
temperature for irrigation management. The review includes an overview of 
canopy temperature algorithms, remote sensing platforms, and some recent 
experimental results in irrigation automation at the USDA Agricultural Research 
Service Conservation and Production Research Laboratory at Bushland, Texas.  
 
OVERVIEW OF CANOPY TEMPERATURE-BASED ALGORITHMS 
 
Canopy temperature is a component of the soil-plant-atmosphere energy and 
water balance; it is the result of complex interactions with the soil and plant water 
status, crop phenology, and the crop micrometeorological climate. Because of 
this, a single measurement of canopy temperature by itself usually does not 
reveal much about plant water status. Hence algorithms have been developed 
that in various ways integrate canopy temperature with the physical environment. 
Three general types of algorithms shown to be useful in irrigation management 
are (i) water stress indices, (ii) the time – temperature threshold, and (iii) the ET-
based soil water balance. Each can provide guidance on the timing of irrigation, 
and the ET-based soil water balance can also provide guidance on the 
appropriate amount of irrigation.  
 
Water Stress Indices 
 
The word stress, in the context of plants, is a broad term used to describe some 
type of adversity that, if prolonged, can result in economic yield loss (Jackson, 
1982). Water stress then describes a condition where the supply of water in plant 
leaves inhibits photosynthesis and respiration. The shortage of water could be 
caused by abiotic stresses (i.e., resulting from soil water depletion) or biotic 
stresses (i.e., resulting from pests or disease that inhibit water flow to leaves). 
Under water stress conditions, transpiration is reduced, resulting in a greater 
amount of available energy at the canopy surface being converted to sensible 
heat compared with what would have occurred for non-water-stressed conditions. 
The result is that the temperature of the plant canopy (i.e., the ensemble of plant 
leaves) increases over the temperature that would have resulted for no shortages 
in water. 
 
Crop water stress index 
The Crop Water Stress Index (CWSI; Jackson et al., 1981; Idso et al., 1981) has 
received the most attention of any water stress index. It is derived from the 
energy balance where, for a given set of meteorological conditions, a range of 
canopy - air temperature differences exist that are bound by a lower limit (no 
water stress) and an upper limit (complete water stress where no ET is 
occurring). The measured canopy - air temperature difference should fall within 
these lower and upper limits, and is normalized as an index where a value of 
zero indicates no water stress and a value of unity indicates complete water 
stress: 
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where TC and TA are the canopy and air temperatures, respectively (°C), the 
subscripts M, LL, and UL denote measured, lower limit (no stress), and upper 
limit (complete stress), respectively, and YZ / XZ is the graphical calculation in 
Figure 1, where measured canopy temperature (TC) is at point Y. The (TC – TA)LL 
and (TC – TA)UL can be calculated using equations based on the surface energy 
balance (Jackson et al., 1981), which require concurrent measurement of 
micrometeorological variables (solar irradiance, air temperature, relative 
humidity, and wind speed) and some information on the crop (height, width, row 
spacing, row orientation). It is also possible to measure (TC – TA)LL and (TC – 
TA)UL directly over well-watered and dry crop surfaces, respectively. Although 
direct measurement can reduce potential biases compared with calculations 
(calculation biases can be caused by faulty meteorological data, assumptions 
within the model, or both), maintaining well-watered and dry surfaces is not really 
practical in day-to-day farm operations. Several simplifying approaches have 
been used to calculate (TC – TA)LL and (TC – TA)UL with some success, such as 
substituting TC in the lower limit with the wet bulb temperature, which is close to 
TC,UL, and taking TC,UL as the maximum daily air temperature plus 5°C 
(O’Shaughnessy et al., 2011a). 
 
The (TC – TA)LL has been shown to have a strong inverse linear correlation with 
vapor pressure deficit (VPD) (Figure 1). Here, VPD is related to relative humidity, 
where increases in VPD correspond to decreases in relative humidity. As VPD 
increases (i.e., air becomes drier), TC of well-watered plants decreases relative to 
TA because drier air induces a greater evaporation rate of water. Since a 
completely stressed canopy has no water available, VPD has no influence on (TC 
– TA)UL, resulting in the upper limit line being flat in Figure 1. Both (TC – TA)LL and 
(TC – TA)UL also depend on crop species, solar irradiance, and wind speed, any 
of which will impact the location of the lines and points in Figure 1. A non-water 
stressed canopy may be cooler or warmer than air depending on meteorological 
variables (mainly VPD); however, a completely water stressed canopy is 
generally warmer than the air during the daytime. 
 
The accuracy of the CWSI is impaired when VPD is small. As VPD decreases, 
the range between the (TC – TA) upper and lower temperature limits becomes 
smaller, and the distances between points X, Y, and Z in Figure 1 decrease. The 
result is that small errors in (TC – TA)M, (TC – TA)LL, and (TC – TA)UL will lead to 
increasingly larger errors in CWSI, increasing the probability of out-of-bounds 
CWSI values; i.e., less than zero and greater than one (Jones, 2004). Somewhat 
related is the influence of solar irradiance, where overcast skies also reduce the 
range of temperature limits. Both conditions are more prevalent in humid 
climates, but in arid and semiarid climates, low VPD is common in the morning 
(especially over irrigated fields) and, in the U.S. Great Plains, greater cloud cover 
occurs frequently in the afternoon during summer months. Consequently, the 
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CWSI is less responsive to plant and soil water conditions in humid locations, 
and has been found to be most responsive during clear skies and within a few 
hours of solar noon. 
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Figure 1. Crop Water Stress Index (CWSI), defined as CWSI = YZ / XZ, where 
lower and upper temperature limits are (TC – TA)LL and (TC – TA)UL, 
respectively, for a) arid and b) humid conditions (Jackson, 1982). 

 
Incomplete canopy cover, which exists during some (and perhaps all) of the 
irrigation season, can also a serious limitation of the CWSI and other canopy 
temperature based algorithms. The temperature of dry, sunlit soil can be 30 °C 
greater than green, transpiring vegetation (Kustas and Norman, 1999). 
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Therefore, TC measurements can be greatly overestimated, resulting in 
overestimates of CWSI if soil appears in the radiometer view. The temperature of 
shaded soil is also usually different from vegetation, which may also introduce 
errors in CWSI calculations. The view of vegetation can be maximized and soil 
minimized by aiming a radiometer at an angle below the horizon and 
perpendicular to crop rows (e.g., Colaizzi et al., 2003a), and the radiometer can 
be designed to have a more narrow field of view (e.g., O’Shaughnessy et al., 
2011b). However, the radiometer view still may not be completely free of soil, 
especially early in the season. 
 
Water deficit index 
The Water Deficit Index (WDI, Moran et al., 1994) is an extension of the CWSI 
that accounts for varying canopy cover and the influence of soil temperature, but 
is defined in a similar way. The WDI is represented graphically as a trapezoid, 
and WDI = YZ / XZ, analogous to the CWSI (Figure 2). The four corners 
represent (1) non water stressed canopy; (2) completely water stressed canopy; 
(3) wet bare soil; and (4) dry bare soil. Hence the top and bottom horizontal lines 
of the trapezoid represent full vegetation cover and bare soil, respectively. 
Similar to the CWSI, the surface – air difference (TS – TA) for each trapezoid 
corner can be calculated using surface energy balance equations, or can be 
measured directly if suitable surfaces are available. Note that (TC – TA) has been 
replaced with (TS – TA), which refers to a composite surface that may include 
both canopy and soil temperatures. The fraction of canopy cover that appears in 
the radiometer view (fCR) can be estimated by empirically relating fCR to a 
reflectance-based vegetation index. Concurrent to the temperature 
measurements, a vegetation index, such as the normalized difference vegetation 
index (NDVI), is calculated from measurements of reflectance, usually the red 
and near-infrared bands. The (TS – TA)LL and (TS – TA)UL (i.e., points Z and X in 
Figure 2, respectively) are then calculated by linear interpolation as 
 

      3ASCR1ASCRLLAS TTf1TTfTT     (2a) 

 
      4ASCR2ASCRULAS TTf1TTfTT     (2b) 

 
where all terms as as defined previously. WDI is calculated using equation (1) 
where (TC – TA) is replaced with (TS – TA) in each term. Colaizzi et al. (2003b) 
showed that the WDI was well-correlated to soil water depletion for a wide range 
of canopy cover and soil water profiles for cotton in Arizona. However, the WDI 
has not received as much attention as the CWSI, perhaps because it also 
requires reflectance measurements (or other suitable method) to estimate fCR, 
and may also share the limitations of the CWSI under humid or overcast 
conditions. 
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Figure 2. Water Deficit Index (WDI), defined as WDI = YZ / XZ. Point 1 is non 

water stressed full canopy, 2 is completely water stressed canopy, 3 is wet 
bare soil, and 4 is dry bare soil, and the lower and upper temperature limits 
are (TS – TA)LL and (TS – TA)UL, respectively (Moran et al., 1994). 

 
Time – Temperature Threshold 
 
The time – temperature threshold (TTT) method was developed from the 
observation that plant enzymes are most productive under a relatively narrow 
range of temperatures, termed the thermal kinetic window (Burke, 1993; Burke 
and Oliver, 1993). Although the plant canopy temperature varies with 
meteorological conditions, and may not always be within its thermal kinetic 
window, the concept of a threshold canopy temperature has proven to be useful 
in irrigation management (Wanjura et al., 1992; 1993; 1995). A system using this 
approach, termed the Biologically – Identified Optimal Temperature Interactive 
Console (BIOTIC), was issued US Patent No. 5,539,637 (Upchurch et al., 1996).  
 
In the TTT method, the accumulated time that the canopy temperature exceeds a 
threshold temperature is used as the criterion for an irrigation event (Figure 3). 
Here, the threshold temperature for corn was 28 °C, the threshold time is 240 
min, and the canopy temperature was measured over corn. On day of year 234, 
the canopy temperature exceeded the threshold temperature for longer than 240 
min. Therefore, an irrigation occurred that evening. The following day, the canopy 
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temperature also exceeded the threshold temperature, but for a duration of less 
than 240 min. Therefore, no irrigation occurred on day of year 235. The TTT 
method is advantageous over the CWSI and the WDI for its simplicity, in that it 
does not require calculation or measurement of lower and upper temperature 
limits. Furthermore, it is a time-integrating approach and appears to be more 
responsive to a wider range of meteorological conditions, such as low VPD and 
overcast skies, compared with one-time-of day water stress indices 
(O’Shaughnessy and Evett, 2010a). 
 

Figure 3. Canopy, air, and threshold temperature for corn at Bushland, TX. The 
canopy temperature exceeded the threshold temperature (28° C) for a 
duration greater than the threshold time (240 min) on day 234 but not on day 
235. Therefore, irrigation was applied automatically on the evening of day 234 
but not on day 235 (Evett et al., 2000; Peters and Evett, 2008). 

 
The TTT method requires canopy temperature data throughout the daytime. In its 
initial development and application, continuous canopy temperature 
measurements were provided by stationary IRTs that viewed drip irrigated plots 
(Wanjura et al., 1995; Evett et al., 2000; Mahan et al., 2010). Thus at first it would 
appear that the TTT method would not be amenable to an array of moving IRTs, 
such as those aboard a moving center pivot. In this case, only a single canopy 
temperature measurement every few days would be possible at a remote 
location. However, Peters and Evett (2004) showed that the diurnal canopy 
temperature for remote locations can be calculated using a scaling procedure 
based on a one-time-of-day measurement (TRMT,t) taken at a field (remote) 
location and a diurnal reference temperature (TREF) taken at a stationary location: 
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where TRMT is the calculated remote canopy temperature at any time of day, TE is 
the predawn canopy temperature (assumed to be the same throughout the entire 
field), TRMT,t is the measured remote canopy temperature at the single time of day 
t (i.e., when the center pivot carries the IRT over the remote location), TREF is the 
measured reference temperature at any time of day, and TREF,t is the reference 
temperature at the single time (t) of day. A stationary IRT at some location in the 
field provides the reference temperatures TREF (throughout the day), TREF,t (at the 
time of day t when TRMT,t is measured), and TE. During the day, TRMT and TREF will 
probably differ due spatial variability in the field, but follow a similar overall trend 
(Figure 4).  
 

 
Figure 4. Scaling diurnal canopy temperature from one-time-of-day canopy 

temperature measurement (Peters and Evett, 2004). 
 
The scaling method permits use of one-time-of-day canopy temperature 
measurements over a wide duration of the day. Peters and Evett (2004) reported 
that the mean absolute error between calculated (using equation 3) and 
measured TRMT was less than 0.5 °C if TRMT,t was measured within the period 
approximately 2 h after sunrise and 2 h before sunset, but increased to over 6° C 
within 2 h of sunrise or sunset. For example, if the day length is 14 h, up to a 10 
h window would be available to obtain remote measurements. As discussed 
later, the scaling method has expanded application of the TTT method to the 
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automation of center pivots. The scaling method can also be applied to calculate 
water stress indices over a longer portion of the day. This was recently 
developed and shown to be effective in automatically scheduling center pivot 
irrigations for grain sorghum using a time-integrated water stress index 
(O’Shaughnessy et al., 2012). 
 
ET-Based Soil Water Balance 
 
Water stress indices such as the TTT method can improve irrigation 
management by providing guidance, including automation, on the timing of 
irrigations. With the TTT method, the amount of irrigation is preset, usually at 
some multiple of the crop’s peak daily water use. The premise is that if the crop 
is water stressed, then the root zone soil will be depleted enough to accept that 
much water. Being a feedback system, the TTT algorithm will repeat such 
irrigations each day that a water stress is sensed. However, the exact amount of 
irrigation that the soil will accept depends partly on soil water depletion in the root 
zone (infiltration is also limiting). Soil water depletion is determined most directly 
by in-situ measurement of the soil water profile. Gravimetric/volumetric sampling 
and the neutron probe are the most accurate measurement methods, but these 
are cost and labor intensive, which imposes limitations in the number of locations 
and the repeat frequency of measurements. Furthermore, the neutron probe is a 
radioactive device that is subject to regulation, and cannot be operated 
unattended. Recently, wireless electromagnetic profile probes (capacitance type) 
have become available that can be operated remotely and continuously, but the 
depth of sampling is usually less than the depth of the fully developed root zone 
for most crops, and capacitance type electromagnetic devices can be impacted 
by soil temperature, soil salinity, and small-scale variations in soil water content 
and bulk electrical conductivity that affect the volume of soil being measured, 
among other factors. All of these have been shown to limit their accuracy, and 
the unit cost of a device may still preclude obtaining an adequate number of 
measurement locations in fields (Evett et al., 2012).  
 
With measurement frequency being one fundamental constraint (at least until 
recently), soil water depletion has usually been calculated between measurement 
times using a soil water balance, where ET is the primary sink. ET is most readily 
calculated by the reference ET – crop coefficient method, which does not require 
canopy temperature and hence avoids many of the barriers that have previously 
been associated with remote sensing. The reference ET – crop coefficient 
method has been used for irrigation management for several decades, and can 
be effective even when minimal soil water profile measurements are available 
(Howell et al., 1998; Colaizzi et al., 2009). Nonetheless, real-time feedback on a 
spatial basis of plant and soil water status, including ET, is desirable in order to 
prioritize irrigation schedules, detect unexpected field conditions (e.g., biotic 
stress, malfunctioning or broken sprinkler heads, misapplication of fertilizer or 
chemicals, salinity, hail or wind damage) or conditions otherwise not readily 
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captured by modeling alone (e.g., soil texture variability) (Peters and Evett, 2007; 
O’Shaughnessy et al., 2011a). 
 
ET can also be calculated by using canopy temperature directly in an energy 
balance model. In this approach, canopy temperature measurements provide the 
real-time feedback aspect. Since water stress indices are also derived from 
energy balance considerations, they are related to ET in the following general 
form: 
 

 WSI1ETET P      (4) 
 

where WSI is a water stress index (e.g., CWSI or WDI), and ETP is the potential 
ET where water is non-limiting (i.e., when WSI = 0). This shows that if the 
required ancillary information is available to calculate a WSI (i.e., incoming solar 
irradiance, air temperature, humidity, wind speed, canopy temperature, and crop 
phenology), then ET can also be calculated and applied to a soil water balance 
model (Colaizzi et al., 2003a). Recent refinements to a two-source energy 
balance model (where the energy balance of the soil and canopy sources are 
calculated separately) improved the accuracy of the calculated soil evaporation 
(E) and plant transpiration (TP) components, as well as total ET, for row crops 
with partial cover (Colaizzi et al., 2012a; 2012b). From this development, the two-
source energy balance model will be tested in scheduling irrigations for a center 
pivot equipped with wireless IRTs, as a continuation of the work described in 
O’Shaughnessy et al. (2012). In addition, separate calculation of E and TP can be 
a powerful tool in assessing management strategies aimed at reducing E losses 
and increasing water use efficiency (Evett and Tolk, 2009). 
 

REMOTE SENSING PLATFORMS 
 
Measurement of canopy temperature or other remotely sensed variable requires 
some type of platform. Remote sensing platforms generally consist of three 
types, including ground-based, aircraft, or satellite. Ground-based platforms may 
be either stationary or moving; in the case of the latter, the remote sensors may 
be hand-held or otherwise portable, or aboard moving machinery such as a 
center pivot or spray rig. Spatial scales range from a few cm2 using ground-
based or aircraft platforms, to several km using satellite platforms. In general, 
moving platforms enable the greater spatial coverage using fewer sensors 
compared with stationary ones. However, there is usually a trade-off between 
coverage and measurement frequency, where moving platforms typically obtain 
measurements at a single time-of-day but at many locations in a field, whereas a 
stationary device can obtain measurements continuously but at only one field 
location. As noted previously and explained below, combining these can routinely 
provide continuous coverage over at least some part of a field. 
 
In order for plant canopy temperature to be useful as an irrigation management 
tool, measurements must meet several criteria in terms of spatial scale, repeat 
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frequency, and data processing time. Jackson (1984) reviewed measurement 
requirements for day-to-day farm management in the context of remote sensing 
platforms, and described these as having ~5 m or less spatial scale, a repeat 
frequency of no more than 7 days, with continuous (minute to hourly) monitoring 
ideal, and data processing time (i.e., the time from measurement to meaningful 
information product) of a few minutes. In addition, measurements should contain 
adequate coverage of the area to be managed, which is usually met by aircraft 
and satellite platforms, but may not be met by ground-based platforms.  
 
Historically, each type of platform has in some way fallen short of these 
requirements. Some commercially-available satellites (e.g., QuickBird) now 
nearly meet these requirements, but measure only in the visible and near-
infrared wavelengths. Most algorithms that have been shown to be useful for 
irrigation management require measurements in the longer thermal infrared 
wavelengths. A satellite platform equipped with a thermal sensor system that 
also meets all measurement criteria for real-time irrigation management is 
technically feasible, but such a platform is not expected to become commercially 
available in the foreseeable future. As an alternative, Norman et al. (2003) and 
Anderson et al. (2004) described a thermal sharpening procedure where 
frequent, coarse resolution thermal satellite data (i.e., daily and 1-km pixels) were 
combined with less frequent, fine resolution reflectance satellite data. However, 
Agam et al. (2007) found that this procedure had limited accuracy for wet soil 
with less than full canopy cover in the Texas High Plains. Some crop consulting 
services offer aircraft imagery with sufficient spatial resolution and coverage, but 
these also usually lack the thermal band, and flights more frequent than 7 days 
can be cost prohibitive. Both satellite and aircraft platforms also carry substantial 
image processing requirements (e.g., atmospheric and geometric correction), 
which increases their cost and usually prevents the timeliness requirement of a 
few minutes from being met (Moran, 1994).  
 
Ground-based sensors (e.g., IRTs) largely circumvent the disadvantages of 
satellite and aircraft platforms, but measure a relatively small area of a few m2 or 
less. Therefore, adequate field coverage would require a relatively large number 
of sensors. The appropriate number of sensors to be deployed depends on many 
factors that are beyond the scope of this paper, but a few examples include field 
slope and soil variability, the profit margin of the crop, and the sensor cost. The 
number of sensors could be reduced if a platform that passes over the field at 
sufficient intervals was available, such as a center pivot irrigation system, which 
is the dominant irrigation method in the US Great Plains (USDA, 2008; Colaizzi 
et al., 2009). Therefore, recent efforts have focused on designing ground-based 
remote sensing systems specifically for center pivots, including algorithms 
(Peters and Evett, 2004; Colaizzi et al., 2010); wireless sensor networks 
(O’Shaughnessy and Evett, 2010b), and low-cost wireless IRTs (O’Shaughnessy 
et al., 2011b). Nonetheless, subsurface drip irrigation continues to grow 
substantially in the Texas High Plains (Bordovsky et al., 2012), which can be 
managed using stationary IRT networks (Wanjura et al., 1995; Evett et al., 2000). 
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The Smartcrop© Automated Crop Stress Monitoring System (Smartfield, Inc., 
Lubbock, Texas) is a wireless IRT system that is now commercially available, 
and has been used as a stationary system to manage drip irrigation schedules 
(Mahan et al., 2010), but could also be used to manage gravity or sprinkler 
systems. 
 

IRRIGATION AUTOMATION AT BUSHLAND, TX 
 
Canopy temperature – based algorithms have been used successfully to 
automate irrigation scheduling and provide field maps of crop water status, where 
the latter can reduce irrigation management time even if automation is not 
employed. Several canopy temperature – based automation schemes have been 
investigated and compared with manual scheduling, where the latter entails 
measurement of the soil water profile with a field-calibrated neutron probe. To be 
viable, automatic scheduling should achieve similar or better crop yield and crop 
water productivity compared with manual scheduling. The following briefly 
reviews some automatic vs. manual results at the USDA Conservation and 
Production Research Laboratory, Bushland, Texas. 
 
The TTT method has been used to automate both drip and center pivot systems 
for various crops, including corn, cotton, and soybean. Evett et al. (2000) used 
wired, stationary IRTs that measured canopy temperatures in a drip irrigated, 
four year corn and soybean rotation. For each crop, four TTT combinations were 
used, and these were compared to manually – irrigated plots where three 
irrigation rates (33%, 67% and 100% of meeting full crop ET) were used. Corn 
threshold temperatures were 28 °C and 30 °C, and threshold times were 240 and 
160 min. Soybean threshold temperatures were 27 °C and 29 °C, and threshold 
times were 256 and 171  min. The automatic irrigation decision interval was 1 d, 
and each automatic irrigation event was 10 mm (i.e., equivalent to expected peak 
daily crop ET). Manual treatments were irrigated at weekly intervals. The 
automatic treatments generally resulted in similar or greater yield, similar 
seasonal irrigation amounts applied, and similar seasonal ET compared with the 
100% manual irrigation treatment.  
 
Peters and Evett (2008) used the TTT method to schedule irrigations for two 
seasons (2004 and 2005) of soybeans irrigated with a center pivot equipped with 
low energy precision applicator (LEPA) drag socks. The IRTs used to schedule 
irrigations were wired and aboard the center pivot, and viewed the canopy ahead 
of the direction of travel to avoid viewing the area being irrigated. Diurnal canopy 
temperature data required for the TTT method were calculated with the scaling 
method (equation 3; Peters and Evett, 2004), where IRTs aboard the center pivot 
provided one-time-of-day measurements (TRMT,t in equation 3), and stationary 
IRTs provided the other required variables (TREF, TREF,t, and TE in equation 3). 
The threshold temperatures were 30 °C and 27 °C in 2004 and 2005, 
respectively, and the threshold time was 256 min in both years. Automatic and 
manual treatments included 33%, 67%, and 100% of the full irrigation rate. The 
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automatic and manual irrigation decision intervals were 2 d, and each 100% 
automatic irrigation event was 20 mm, and deficit irrigation events were 33% and 
67% of 20 mm. In 2004, yield, irrigations applied, seasonal ET, and water use 
efficiency (WUE = Yield/ET) were mostly greater for the manual compared with 
the automatic treatments, because a defect in the IRTs resulted in too large of a 
threshold temperature (30 °C instead of the desired 27 °C), resulting in the 
automatic plots being under-irrigated. In 2005, the desired 27 °C threshold 
temperature was achieved, and yield, seasonal ET, and WUE were greater 
(sometimes significantly so) in the automatic compared with the manual 
treatments.  
 
In that same experiment, Peters and Evett (2007) showed that soybean yield, 
above ground biomass, and seasonal ET were well-correlated to canopy 
temperatures. They also used a novel approach where the statistical process 
control method was applied to canopy temperatures to detect significant spatial 
and temporal variability (Figure 5). Statistical process control is commonly used 
in manufacturing to detect product defects. The variability shown was caused by 
an intentional over-application of herbicide and was not apparent by visual 
observation.  
 

Figure 5. Canopy temperature measurement locations in soybean irrigated by 
center pivot, day of year 258, 2005, Bushland, TX. Canopy temperature 
measurements were evaluated by statistical process control to detect unusual 
spatial and temporal variability. Green indicates “in control” locations, and 
yellow and red locations indicate “out of control” locations where the field was 
sprayed by herbicide in order to test the sensitivity of the statistical process 
control algorithm. The algorithm detected the damage even though it was not 
apparent by visual observation (Peters and Evett, 2007). 
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O’Shaughnessy and Evett (2010a) used the TTT method to automatically 
schedule center pivot irrigations (equipped with LEPA drag socks) for the 2007 
and 2008 cotton seasons. The experiment was similar to that of Peters and Evett 
(2008), where automatic and manual irrigation treatments were 33%, 67%, and 
100% of full irrigation. IRTs were wired in 2007 and wireless in 2008. For cotton, 
the temperature and time thresholds were 28 °C and 452 min, the irrigation 
frequency was not more than 2 d, but the irrigation decision interval was 1 d, 
where canopy temperature measurements from the previous 1 d (not 2 d) 
determined whether an irrigation event was to occur. Each 100% automatic 
irrigation event was 20 mm, and the deficit irrigation events were 33% and 67% 
of 20 mm. In both years, total irrigation applied and seasonal ET were less for 
automatic compared with manual scheduling within an irrigation rate treatment. In 
2007, lint yield and WUE were generally not significantly different for automatic 
vs. manual treatments among irrigation rates, but in 2008, lint yield and WUE 
were greater (often significantly so) for the automatic compared with the manual 
control methods among all irrigation rate treatments.  
 
Data from the O’Shaughnessy and Evett (2010a) experiment and the soybean 
data from Evett and Peters (2007; 2008) were used in calculating a slightly 
different version of the CWSI (O’Shaughnessy et al., 2011a). They set the upper 
temperature limit (TC,UL) as the maximum daily air temperature plus 5 °C, and 
used for the lower temperature limit (TC,LL) the wet bulb temperature calculated at 
TC,UL. They used canopy temperatures (TC) found by the scaling method for a 2-
hour window near solar noon. They found that the CWSI calculated in this way 
and averaged over the season had generally good correlation with midday leaf 
water potential, seasonal ET, and grain and lint yields. A few exceptions where 
correlation was poor were related to unfavorable growing conditions in 2008. This 
demonstrates the application of multiple canopy temperature algorithms, where 
the TTT was used to automate irrigations, and the CWSI was used to estimate 
midday leaf water potential, and final yield and ET. It should be noted that 
although leaf water potential was measured around midday, this was not 
necessarily the case for canopy temperature, as the temperature scaling method 
permitted measurements over a much wider span of the day to be used to 
estimate TC near solar noon. Their study also demonstrated the utility of a CWSI 
map, where differences in irrigation rates were clearly visible as the season 
progressed, and could be used to prioritize manual irrigation scheduling (Figure 
6). 
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Figure 6. Maps of CWSI for cotton at Bushland, TX, average CWSI from DOY 
198 to (a) DOY 204; (b) DOY 227; (c) DOY 236; (d) DOY 254 
(O’Shaughnessy and Evett, 2011a). Darker shading means less water stress. 

 
Algorithms based on time integration, such as the TTT method, attempt to 
account for conditions over most of the day. This likely has certain advantages 
over algorithms that relate only to instantaneous conditions, such as the 
conventional CWSI. Time integration can average short-term fluctuations in 
meteorological conditions, which would reduce the algorithm’s sensitivity to the 
time of day that measurements are obtained. O’Shaughnessy et al. (2012) 
hypothesized that a time-threshold form of the CWSI (termed CWSI-TT) could 

 
 

 
 

 
 

 
 

a) DOY 204 b) DOY 227 

c) DOY 236 d) DOY 254 
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automate irrigation scheduling and exploit the time-integrating and energy 
balance strengths of the TTT and CWSI methods, respectively. They tested this 
approach over two seasons (2009 and 2010) for grain sorghum that was irrigated 
by a center pivot equipped with LEPA drag socks and wireless IRTs. As with 
previous experiments, automatic and manual treatments were compared, but 
irrigation rates were 30%, 55%, and 80% of full crop ET. The CWSI was 
calculated at 5-minute intervals during the daytime, and the lower and upper 
temperature limits were calculated following Jackson et al. (1981). The threshold 
CWSI value was taken as 0.45, and the threshold time was 420 min. For each 5-
min interval, if CWSI > 0.45, then 5-min was added to the accumulated time. If 
accumulated time exceeded 420 min by midnight over the previous 24 h, then 
irrigation was initiated the following morning. The threshold time was determined 
by analyzing well-watered sorghum canopy temperature data acquired in 
previous years on the large weighing lysimeters at Bushland. In both years, grain 
yield and WUE were not significantly different between automatic and manually 
scheduled plots for most irrigation rates. Two exceptions were in 2009 in the 30% 
and 55% irrigation rates, where grain yields were significantly less in the 
automatic compared with the manual treatment. This was related to greater 
variability in soil water at the beginning of the season, which somewhat favored 
the manually irrigated treatment plots. Total irrigation amounts applied to the 
automatic compared with the manual treatments were less in 2009 but nearly the 
same in 2010.  
 
The ARS irrigation research team at Bushland is currently involved in a 
Cooperative Research and Development Agreement with a center pivot irrigation 
system manufacturer to transfer the technology in the successful ARS irrigation 
automation system to commercial production. 
 

SUMMARY AND CONCLUSIONS 
 
This paper reviewed the use of remotely sensed plant canopy temperature for 
irrigation management. This included an overview of canopy temperature – 
based algorithms, remote sensing platforms, some recent results in irrigation 
automation research at the USDA Agricultural Research Service Conservation 
and Production Laboratory at Bushland, Texas.  
 
Canopy temperature algorithms were categorized as water stress indices, the 
time temperature threshold method, and the ET – based soil water balance. Each 
type of algorithm can provide guidance on the timing of irrigation, and ET – 
based approaches also indicate the varying needed irrigation application 
amounts as demand varies over time.  
 
In order to be useful for day-to-day, site-specific irrigation management, canopy 
temperature data generally must have a spatial resolution of a few meters, a 
repeat frequency of no more than 7 d, and a turnaround time (i.e., the time from 
measurement to useful information product) of a few minutes. In addition, field 
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coverage must be adequate in terms of the number and spatial distribution of 
samples. Historically, neither, ground-based, aircraft, or satellite platforms have 
been able to meet these requirements. However, recent advances in wireless 
technology, computing capacity, canopy temperature data processing algorithms, 
and reductions in infrared thermometer (IRT) and related component costs, 
appear to have made feasible a ground-based system where a center pivot is 
used as the platform to transport IRTs over the field.  
 
A center pivot platform equipped with IRTs was used by the USDA at Bushland, 
TX, to automate irrigation schedules, and automatic treatments were compared 
with manual treatments where a field-calibrated neutron probe was used to 
schedule irrigations. The time temperature threshold method was evaluated for 
soybean and cotton, and a crop water stress index threshold time method was 
evaluated for grain sorghum. Previous research also evaluated the time 
temperature threshold method using stationary IRTs on drip irrigated corn and 
soybean. In most cases, the automatic treatments compared favorably with 
manual treatments in terms of crop yield, seasonal water use, water use 
efficiency, and irrigation amounts applied. This indicates that canopy 
temperature-based algorithms are a viable tool in automating irrigation 
scheduling, which can reduce management time required but achieve the same 
crop water productivity that is possible with manual scheduling.  
 
Even if automation is not chosen, canopy temperature-based algorithms were 
shown to be strongly correlated to crop yield, water use efficiency, seasonal ET, 
midday leaf water potential, irrigation rates, and herbicide damage not visible by 
eye. This can provide timely information not previously available that can also 
reduce management time, prioritize irrigation schedules, and improve crop water 
productivity. Additional research will investigate how well ET-based algorithms 
can prescribe appropriate irrigation application amounts, where ET is calculated 
using a canopy temperature driven energy balance model. 
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