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Abstract

Towards Automatic Compilation for Energy Efficient Iterative Stencil

Computations

Today, energy has become a critical concern in all aspects of computing. In this thesis,

we address the energy efficiency of an important class of programs called “Stencil Compu-

tations”, which occur frequently in a wide variety of scientific applications. We target the

compute intensive stencil computations, and seek to automatically produce codes that mini-

mize energy consumption. Two main energy consumption contributors are addressed in our

work – dynamic memory energy and static energy – which are proportional to the number of

off-chip memory accesses and execution time separately. We first target the dynamic energy

consumption, and propose an energy-efficient tiling and parallelization strategy called Flat-

tened Multi-Pass Parallelization (FMPP), it seeks to minimize the total number of off-chip

memory accesses without sacrificing execution time. Our strategy uses two-level tiling, which

first partitions the iteration space into “passes”, and then tiles the passes and executes the

passes in a “non-synchronized” or overlapped fashion. Producing such codes are beyond

the capability of current tiled code generators, because the schedules used are polynomi-

als, thus are more general than multidimensional schedules. We present a parametric tiled

code generation algorithm for FMPP strategy for the programs with parallelogram shaped

iteration space. Then, we seek to reduce the static energy consumption by further improv-

ing the performance of generated code. We found that existing production compilers fail to
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vectorize the parametric tiled code efficiently, which is critical to the compiled program’s per-

formance. We propose a compilation method for parametrically tiled stencil computations

that systematically vectorizes the loops with short vector intrinsics. Our method targets the

non-boundary full tiles, trades register loads of register reorganization operations, enables

vector register reuse within and across vectorized computations, and incorporates temporary

buffering and memory padding to align memory accesses.

We developed a semi-automatic code generation framework to support our memory effi-

cient strategy and compilation method for vectorization. Our framework allows a number of

optimization choices to be configured (e.g., the trade-off of data reorganization instructions

and the number of aligned loads, tiling and parallelization strategy etc). We evaluate our

strategy on several modern Intel architectures with a set of stencil benchmarks. Our ex-

perimental results shown that our energy efficient tiling and parallelization strategy is able

to significantly reduce the dynamic memory energy consumption on different platforms, by

about a 74% (resp. 75% and 67%) reduction on an 8-core Xeon E5-2650 v2 (resp. 6-core

Xeon E5-2620 v2 and 6-core Xeon E5-2620 v3). This leads to a reduction in the total en-

ergy consumption of the program by 2% to 14%. Our vectorized code also shows significant

performance improvement over existing compilers. We get an average of 34% performance

improvement for Jacobi 1D on all the platforms, and up to 40% performance improvement

for some 2D stencils. With the savings in both static energy and dynamic memory energy,

we are able to reduce the total energy consumption by 20% in average for 2D stencils on the

Xeon E5-2620 v3 platform.

The tuning space for our experiment is fairly large (including both optimization choices

and tile sizes), and exhaustively searching the whole space is extremely time-consuming.
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In our work, we also take the first step for building an autotuner for our framework. We

propose to use Artificial Neural Networks to assist the tuning process, and present a study

of performance tuning with the assistance of neural networks. Our results show that the use

of an Artificial Neural Network has a great potential to accurately predict the performance,

and can help reduce the search space significantly.
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CHAPTER 1

Introduction

Stencil Computations constitute an important class of programs in scientific applica-

tions, such as environment modeling applications that involve Partial Differential Equation

(PDE) solvers [88], computational electromagnetic applications using the Finite Difference

Time Domain (FDTD) method [96], and computations based on neighboring pixels and

multimedia/image-processing applications [36]. The importance of stencils has been noted

by a number of researchers, and indicated by the recent surge of research projects and

publications on this topic, ranging from optimization methods for implementing such com-

putations on a range of target architectures [76, 46, 35], to Domain Specific Languages

(DSLs) and compilation systems [97, 17, 40] for stencils. Naive implementations of many

iterative stencils turn out to be several memory-bound. Tiling/Blocking is an important

optimization technique that is used to improve data locality. Many authors have worked

on applying tiling efficiently to stencil computations, and one successful technique is called

time tiling [106, 12, 110, 108, 78, 31, 95, 4]. With time tiling, the whole computation space

of a stencil, including the time loop, can be tiled and executed in a wavefront fashion. In

this work, we target the compute intensive iterative stencil computations. We assume, like

most of the work in the literature, that compute intensive iterative stencil computations

are compute bound after time tiling. Due to the complexity of tiled code, automatic code

generation for efficient tiled codes has been an active research topic for a long time.

When tile sizes are fixed, tiling can be described as a linear transformation, and can be

handled perfectly by an existing technique called polyhedral code generation technique [6, 12].
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There are two main disadvantages of fixed tile size polyhedral code generators. Many au-

thors [91, 42, 20, 64] have pointed out that tile sizes have a large impact on the performance,

and the optimal tile size depends on various aspects of the software and hardware, some

of which are not known when the code is generated. As a result, the performance of code

can be unpredictable. Second, even if these parameters were known early on, the process of

tuning the tile sizes requires re-generation of the code for each candidate tile size, leading

to a significant increase in the time for tuning. Therefore there is a growing need to delay

the choice of tile sizes—possibly even until run-time. Parametrically tiled code generation

addresses this need [5, 50, 37, 38] by allowing tile sizes to be parameters, that can be specified

when the code is executed. It is also possible to adapt the code so that tile sizes are changed

dynamically during the execution of a long running program [98]. However, when tile sizes

are parametric, tiling becomes a non-linear transformation, which introduces challenges to

the code generation problem. Although techniques [85, 51, 50, 37, 38, 5] have been devel-

oped to address the parametric tiled code generation problem, generating high performed

parametric tiled codes still remains a challenge.

Despite the great achievements that have been made on the optimization and code gen-

eration techniques for stencil computations, past research mainly focused on performance

(i.e., execution time). Nowadays, high performance computing (HPC) community is moving

toward the era of exascale systems, and one of the key challenges raised is the power wall [8]

problem. Therefore, energy efficiency becomes a critical concern during the hardware and

software designs. Furthermore, widespread utilization of high performance computing (HPC)

systems results in a dramatic increase in energy consumption [54, 66], which leads to costly

energy bill, and also raises the operating temperature, hurting the reliability and stability
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of the machines. In this work, we address the parallelization and automatic compilation of

stencil computations for energy efficiency.

Energy optimization for stencil computations needs careful consideration. Assuming that

the application and its data set fit in main memory, the energy consumed consists of CPU

energy and main memory system energy [45], and each of these can be further divided into

static energy and dynamic energy. The static energy takes a significant fraction of the total

energy consumption (see Figure 1.1), and since it is proportional to the execution time, the

energy-optimal strategy usually also tends to finish the computation as soon as possible. As

we stated before, the stencil computations that we target for become compute bound after

time tiling. Therefore, after performance optimization, there is only limited “energy slack”

to optimize for static energy, and any “optimization” that causes even a small slowdown is

likely to lose its overall energy savings. Our goal is to automatically capture as much of this

as possible—to reduce the energy consumption of tuned stencil computations. We target two

main components of the energy consumption: dynamic memory energy and static energy,

and seek to automatically produce codes that minimize the energy consumed by these two

parts.

For static energy, the only way to reduce this part is to improve performance. In ad-

dition to time tiling, efficient utilization of available vector units is also one of the keys to

improve performance on modern multi-core processors. Vector units, also called Single In-

struction Multiple Data (SIMD) units, are used to exploit instruction level parallelism. They

are now supported and keep improving on all major general purpose processors [75, 57, 22].

Programming models in the form of in-line assembly or intrinsic functions embedded in high-

level language are introduced for explicit vector programming. Explicit vector programming
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Figure 1.1. Normalized energy breakdown for stencil benchmarks on Intel
Xeon E5-2620 v2, Intel Xeon E5-2650 v2 and Intel Xeon E5-2620 v3, based on
a simple linear regression model (details are described in Section 5.5). Note
that the dynamic memory energy consumption is only a small portion of the
total energy consumption (purple).

requires a large amount of effort from the programmer side, which is time-consuming and

error-prone. Therefore, an attractive alternative solution is to automatically generate SIMD

codes. Over the past decades, automatic vectorization has received intensive attention in

the research community. Techniques have been developed to automatically extract or gen-

erate the vectorized code [3, 56, 58]. Challenges that have been addressed are memory

alignment [25], data reorganization overhead [115], interleaved data [71], irregular memory

access [52, 16] etc. General production compilers like GCC [70] and ICC [11, 10] now suc-

cessfully implement many of the vectorization techniques. The code produced by existing

tiled code generator relies on the automatic vectorizers provided by production compilers.

However, standard vectorizers fail to effectively vectorize parametrically tiled codes because

of the complex structure of the code. In particular, the loop bounds involve complicated

expressions involving max/min operations, and parameters that are not known at compile
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time. Our work seeks to further improve the performance by automatically producing codes

with efficient vectorization strategies.

Another important component of energy consumption is dynamic energy. The dynamic

energy consists primarily of the energy consumed by (on-chip and off-chip) memory accesses,

and by arithmetic operations. After performance optimization, the number of computations

cannot be reduced, but the energy consumed per cache access is much smaller than that by

an off-chip memory access. Therefore, we seek to reduce energy consumption by reducing the

off-chip memory accesses, i.e., further improving the cache hit rate. Figure 1.1 indicates that

the dynamic memory energy consumption (purple) only takes up a small portion (3% to 20%)

of the total energy. In this work, we seek to save this energy expenditure and furthermore,

to do it “for free,” i.e., with an automatic code generator. Our dynamic memory energy

optimization strategy uses multi-level tiling associated with multi-pass execution [68], a

technique that was originally introduced in the context of systolic arrays. We adapt this

strategy to address the last level cache misses on general multi-core processors.

Most program optimizations introduce trade-offs in some aspects while gaining improve-

ment in other aspects. The trade-offs can be very different on different platform for different

applications. However, modeling the interactions between the software and hardware, and

compressing them into a single analytical model is a challenge. Moreover, the hardware

architectures today are becoming more and more complicated, which makes them even more

difficult to model. Furthermore, tile sizes are important program parameters, which have

large impact on performance. Although, many analytical models [34, 18, 14, 42, 30, 64] have

been built to assist the tile size selection problem, none of them has been proven to be ef-

fective across platforms and kernels. In this thesis, we address the tile size and optimization
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strategy selection problem using Artificial Neural Networks (ANN). Our approach is based

on an exhaustive search of the tuning parameter space using the neural networks trained

performance model.

We develop a code generation framework that targets producing energy efficient codes

for compute intensive stencil computations. Our contributions are as follows:

• an energy efficient tiling and parallelization strategy—flattened multi-pass paral-

lelization (FMPP), focusing on reducing the number of off-chip memory accesses

without sacrificing speed;

• a code generation algorithm for FMPP that supports parametric tile sizes for pro-

grams with hyper-parallelepiped shaped iteration space. It implements polynomial

schedules instead of multi-dimensional schedules, which extends the state of the art

in parallel code generation;

• an automatic compilation method for generating efficient vectorized parametrically

tiled codes that trades register loads of register reorganization operations, and max-

imizes the register reuse;

• a semi-automatic code generation framework that supports the vectorization strat-

egy and alignment optimizations in a configurable way;

• a micro-benchmark based evaluation method to obtain a ceiling on the achievable

machine performance for stencils;

• an autotuning method for performance with the assistance of Artificial Neural Net-

work (ANN) that targets for selection of both code generation parameters (e.g.,

register block size, temporary buffering) and tile size parameters.
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1.1. Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 describes our target architecture

model, definition for stencil computations and some necessary background for loop tiling.

Chapter 3 discusses the related existing work about tiling and code generation for stencil

computations. Chapter 4 presents our energy efficient tiling and parallelization strategy–

FMPP. Chapter 5 shows the code generation algorithm for our FMPP strategy and the

corresponding formula derivation. In Chapter 6, we describe our compilation method for

vectorized code generation and the vectorization strategies supported. Chapter 7 gives an

overview of our code generation framework. In Chapter 8, we present our autotuning ap-

proach that chooses the code generation parameters and tile sizes for performance with the

assistance of ANN. Finally, we present our conclusion and possible future work in Chapter 9.
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CHAPTER 2

Background

In this chapter, we describe our target architecture and the definition of iterative stencil

computations. We also present the terminologies and examples used in the rest of this

dissertation.

2.1. Architecture Model

The architecture we focus on is a modern multi-core processor with a memory hierarchy,

and with Single Instruction Multiple Data (SIMD) units supported.

2.1.1. Memory Hierarchy. Figure 2.1 describes the general memory hierarchy, con-

sisting of registers, caches, followed by the off-chip main memory and hard disk. From the

register level to the hard disk level, the cost decreases and the capacity increases, but the

latency also increases. The cache level consists of several levels of N-way associative caches.

For an N -way associative cache, the whole cache is divided into sets, each set can hold N

distinct cache lines, and one cache line is mapped to one set. On modern multi-core archi-

tecture, the inner levels of cache are private to each core, and the Last Level Cache (LLC)

is shared among all the cores.

When some data is needed for a computation, a data request is issued to the memory

hierarchy in a top-down manner. If the data is already in L1 cache, it will be transferred

to the register (upper level memory), otherwise, a data request is going to be issued to L2

cache. The same process is repeated until the data is found at a certain level of memory.
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Figure 2.1. The memory hierarchy of modern computer system.

A failed request of read or write at a certain level of cache causes a cache miss, and a failed

request of read/write to the LLC leads to a LLC miss and an off-chip memory access. In the

rest of this paper, we will use off-chip memory access and LLC miss interchangeably. Cache

misses are classified into three categories [41]: compulsory, capacity, and conflict misses.

Compulsory miss. A compulsory miss occurs on the first access to a memory location,

since at the very beginning of execution, no data is in the cache. Such misses are also called

cold misses, and are in general unavoidable.

Capacity miss. A capacity miss occurs when the total amount of memory used by a

program is larger than the cache capacity. In this situation, the cache is not large enough

to hold all the data that is needed, Therefore, some data has to be evicted from the cache,

and a subsequent request to this data will cause a miss. Capacity miss is the main focus of

techniques that address data locality issue, and it is also the main focus of our work.

Conflict miss. A conflict miss occurs for an N -way associative cache when the program

frequently accesses more than N distinct cache lines that are mapped into the same set.

When the conflict misses are caused due to the memory references to the same variable, it

is called self-interference misses. Otherwise, if conflict misses are caused due to the
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memory references to multiple variable, it is called cross-interference misses. Normally,

conflict misses can be minimized using existing techniques [18, 14, 42, 64].

2.1.2. SIMD Units. Single Instruction, Multiple Data (SIMD) or vector units are a

powerful feature of modern multi-core processors. The SIMD units are used to exploit

instruction level parallelism, and present opportunities to attain very high performance.

Modern CPU supports special instructions to utilize the SIMD units, which performs oper-

ations on 1D arrays of same size, called vectors, instead of scalar variables. The number

of elements contained in a vector is called vector length. The vector lengths supported on

modern architectures are usually pretty short (e.g., 4 or 8). Figure 2.2a shows the regular

addition operation with scalar variables. With SIMD instructions, the add operations can

be performed on a vector of elements simultaneously as shown in Figure 2.2b.

r3 

r2 r1 

+ 

add r1, r2, r3

(a)

+ + + + 

V1 V2 

V3 

vector length 

vadd V1, V2, V3

(b)

Figure 2.2. (a) Adding two scalar variables r1 and r2 , and the final result
is saved in r3 . (b) Adding two vectors V1 and V2 to V3 . The vector length
is 4 in this example.

Almost all processors today have such “short SIMD” instructions, such as Intel Streaming

SIMD Extensions (SSE, SSE2, SSE3, SSE4.1, SSE4.2), Intel Advanced Vector Extension

(AVX, AVX2, AVX-512), AMD 3DNow!, Mortoroa AltiVec Extensions and SUN VIS. These
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SIMD instructions support a rich set of operations for data reorganization in vector registers.

Efficient utilization of the SIMD units with proper instructions is one of the key techniques

for exploiting high performance on modern architectures.

2.2. Iterative Stencil Computations

A stencil computation is a computation that repeatedly updates each point in a d-

dimensional data grid with size (N1 × N2 × . . . Nd) over T time steps. The d-dimensional

data grid and the time dimension comprise a (d + 1)-dimensional iteration space. In our

work, we target for stencils with large values along all the dimensions, which leads to fairly

large iteration spaces.

In a stencil computation, at a time step t, the computation for each point is defined as

a function of its neighboring points at previous time steps and possibly current time step.

When the computation of each point only depends on neighboring points at the previous

time steps, we call it a Jacobi style stencil. Otherwise, the neighboring points used for the

computation include points at the current time step, and such stencils are called Gauss-

Seidel style stencils. A stencil computation is called an n-point stencil computation

if each point is defined as a function of n neighboring points from the current and previous

time steps. The order of a stencil computation is defined as the distance of the furthest

grid point in the neighboring points. In the rest of this document, we use the classical Jacobi

1D and Jacobi 2D as illustrative examples to explain the main ideas.

Jacobi 1D (J1D) Example. J1D is a first-order 3-point stencil computation that

repeatedly updates a 1-dimensional data space with size N over T time iterations, and the

computation of each point depends on three neighboring points from the previous time step.
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The detailed computation is described in Equation 1.

Bt,i =












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




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









Ai, t = 0

Bt−1,i, 0 < t ≤ T and (i = 0 or i = N)

0.3333× (Bt−1,i−1 +Bt−1,i +Bt−1,i+1) , 0 < t ≤ T and 0 < i < N

(1)

In J1D, updating point i at time step t requires three values from the previous time

step: (i − 1), i and (i + 1). Then we say iteration (t, i) depends on iteration (t − 1, i),

(t−1, i−1), and (t−1, i+1). Figure 2.3a describes the iteration space and dependencies for

J1D. The corresponding C loop is shown in Figure 2.3b, and the code presented accesses a

2-dimensional array for simplicity of explanation. In general, Jacobi 1D can be implemented

with two 1-dimensional arrays with pointer swapping. Also, the boundary copy statements

(S2 and S3) can be optimized away with proper implementation.

t 

i 

(a)

// initialization

for(i=0; i < N; i++)

S1: B[0][i] = A[i];

for(t = 1; t < T; t++) {

//copy for boundary values

S2: B[t][0] = B[t -1][0];

S3: B[t][N-1] = B[t-1][N-1];

for(i = 1; i < N-1; i++) {

S4: B[t][i] = 0.3333*(B[t-1][i

-1] + B[t-1][i] + B[t-1][i+1]);

}

}

(b)

Figure 2.3. (a) The iteration space and for loop for the J1D example, where
each dot represents one computation iteration. Arrows in the figure show
dependencies, whose source is a consumer and destination is a producer.(b)
The C loop structure for the J1D example (The code accesses a 2-dimensional
array for simplicity of explanation. In general, Jacobi 1D can be implemented
with two 1-dimensional arrays with pointer swapping. Also, the boundary
copy statements can be optimized away with proper implementation).
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Jacobi 2D (J2D). This is a first-order 5-point stencil computation repeatedly updating

a 2-dimensional data space with size N×M over T time steps. The computation is described

below.

Bt,i,j =























































Ai,j, t = 0

Bt−1,i,j, 0 < t ≤ T and (i = 0 or i = N or j = 0 or j = M)

0.2× (Bt−1,i−1,j +Bt−1,i+1,j +Bt−1,i,j +Bt−1,i,j−1

+Bt−1,i,j+1), 0 < t ≤ T and 0 < i < N and 0 < j < M

(2)

In J2D, updating point (i, j) at time step t requires five values from the previous time

step: (i− 1, j), (i+ 1, j), (i, j), (i, j − 1), and (i, j + 1). Therefore, iteration (t, i, j) depends

on iteration (t− 1, i− 1, j), (t− 1, i+ 1, j), (t− 1, i, j), (t, i, j − 1), and (t, i, j + 1).

2.3. Tiling for Stencil Computations

For stencil computations, an important program optimization technique is called tiling

or blocking, which is used to improve data locality and parallelization granularity. We define

the data footprint of a work unit as the distinct memory location touched in the work

unit. Let us take the J1D (shown in Figure 2.3a) as an example, for which the computation

is executed in lexicographical order and the data space is much larger than the LLC capacity.

During time step t, every point in the data space is touched, which means the data footprint

of time step t exceeds the LLC. Therefore, a large amount of capacity misses will occur when

moving to time step (t+1). Tiling addresses the capacity misses. It blocks the computation

space and ensures the data footprint of each tile fits into certain level of cache. Conflict

misses can also be minimized by proper choice of the tile sizes (blocksizes) [18, 14, 64].
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Figure 2.4. Tiling for the J1D example. Arrows in the figure show depen-
dencies, whose source is a consumer and destination is a producer. (a) Tiling
on the original iteration space, which is illegal due to the cross dependence
between tiles. (b) Rectangular tiling for J1D after time skewing.

However, due to the dependencies between the successive time steps, normal rectangular

blocking cannot be applied across the time dimension, because a cross dependence will be

created between tiles as shown in Figure 2.4a. A technique called time skewing can be used

to enable tiling across the time dimension [108].

2.3.1. Time Skewing and Wavefront Parallelization. Time skewing skews the

data space with respect to the time dimension to make all the dependencies fall into the

first quadrant, and then rectangular tiling can be applied to tile the whole iteration space.

Figure 2.4b illustrates this for the J1D example, where the computation of i at time step t

dependents on values produced at i − 2, i − 1 and i from the previous time step after time

skewing. The rectangular tiles are further separated into two types: full tile and partial tile.

A full tile is a rectangular tile such that every point within the tile actually represents a

computation that happens in the application. On the other hand, a partial tile has some

points in the rectangular space that do not represent any computation. After time skewing

and rectangular tiling, the tiles that are along the same diagonal can be executed in the
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same time, and this is the standard wavefront parallelization for stencil computations. All

tiles that can be executed at the same time step comprise a wavefront. Figure 2.5 describes

this parallelization of the tiles of the J1D example. We see that with only 3 processors, there

are not enough independent tiles to use all the available resources in the first 4 wavefronts.

This is called the pipeline fill stage. Similarity, the last 4 wavefronts comprise the pipeline

flush stage.

pipeline flush 

pipeline fill 

steady state 

3 processors 

i

t

Figure 2.5. Standard wavefront parallelization for J1D after time skewing.
Each blue box represents one tile, and the orange lines are the wavefronts.

Similar to J1D, time skewing has to be applied to enable rectangular tiling for J2D.

After time skewing, the computation of (i, j) at time step t depends on the value produced

at (i− 2, j− 1), (i, j− 1), (i− 1, j− 1), (i− 1, j− 2), (i− 1, j) at time step t− 1. Therefore,

after time skewing, iteration (t, i, j) depends on iteration (t− 1, i− 2, j − 1), (t− 1, i, j − 1),

(t− 1, j − 1, j − 2) and (t− 1, i− 1, j).

2.3.2. Multi-level Tiling. Multi-level tiling, also called Hierarchical Tiling, tiles the

iteration space hierarchically. Muli-level tiling is usually applied to address two issues: 1)

data reuse of the hierarchical memory structure, where multi-level tiling can be applied
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to address the capacity misses at different level of caches; 2) hierarchical organization for

the target machines. One typical example for the second point is clusters with distributed

memory model, where we can first tile the iteration space for mapping the computations to

nodes of the cluster, and then further tile the iterations on each node to improve the data

locality on each node. In this thesis, we utilize the multi-level tiling to address the data reuse

issue. However, efficient mutli-level tiling on a single multi-core processor requires careful

consideration, and will be illustrated later.

t 

i 

Figure 2.6. Two level tiling for Jacobi 1D. The iteration space is first tiled
with 3× 3 tiles (blue boxes), then each tile is further tiled with 2× 2 tiles (red
boxes).

A n-level tiling hierarchically tiles the iteration space n times. Figure 2.6 gives an

example of two-level tiling using the Jacobi 1D example. The whole iteration space is first

tiled with 3× 3 tiles, and then each tile is further tiled with 2× 2 tiles.

2.4. Polyhedral Model

The polyhedral model [79, 82, 26–28] is a mathematical formalism for analyzing, and

transforming an important class of compute- and data-intensive programs, or program frag-

ments, called Affine Control Loops (ACL). The polyhedral model has also been proved to be
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very useful in automatic parallelization [29, 7, 6, 77]. Our target program – stencil compu-

tation – fits the polyhedral model perfectly, and therefore is represented and analyzed using

the polyhedral model in this work. Furthermore, the computation dependencies occur in

stencil computations also demonstrate a very nice pattern, which are called Uniform Depen-

dencies. In the rest of this section, we will describe the definition for ACL programs, uniform

dependencies, and some polyhedral terminologies that are used in the rest of description.

An ACL satisfies the following properties: (i) it only consists of (sequences of, possibly

arbitrarily) nested loops, (ii) the statements in the loop are assignment statements, possibly

with conditions; (iii) the loop lower (respectively, upper) bounds are the maxima (respec-

tively, mimima) of a finite number of affine functions of outer loop indices and program

parameters, and (iv) the conditions involved and array accesses are affine functions of outer

loop indices and program parameters.

Iteration Vector. An iteration vector is used to represent an instance of a statement.

It is defined as a d-dimensional vector ~i = (i0, i1, . . . , id−1), where d is the number of loops

surrounding the statement, and ik is the loop index of the kth loop (i0 being the outermost).

Domain. Each computation statement in a program is surrounded by loops with affine

bounds. The domain of a statement describes the iteration space in which the statement is

defined. For a given statement that is surrounded by a d-dimensional loop nest, whose lower

and upper bounds are (lb0, lb1, . . . , lbd−1) and (ub0, ub1, . . . , ubd−1), and the iteration vector

is ~i = (i0, i1, . . . , id−1). The domain of the statement is represented as

D = {(i0, i1, . . . , id−1) | lbk ≤ ik ≤ ubk, 0 ≤ k < d}
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Dependence. A statement instance 〈S1,~i〉 is said to have a ((flow) dependence)

on instance 〈S2,~j〉, written as 〈S1,~i〉 → 〈S2,~j〉 if the value produced by 〈S2,~j〉 is used by

〈S1,~i〉. A shorthand for the dependence is written as (~i → ~j), which is called Dependence

function.

Uniform Dependence. A dependence is a uniform dependence if the dependence

function is in the form of (~i →~i−~c), where ~c is a constant vector and it is called dependence

vector.

Let us take the Jacobi 1D shown in Figure 2.3b as an illustration example. The domain

for statement S1 is {i |0 ≤ i < N}, the domain for statement S2 and S3 is {t |1 ≤ t < T},

and the domain for the main computations statement S4 is {t, i |1 ≤ t < T, 1 ≤ i < N − 1}.

The iteration vector for statement S1 is (i), and the iteration vector for statement S4 is

(t, i). Each statement instance 〈S4, (t, i)〉 in domain {t, i |1 ≤ t < T, 2 ≤ i < N−2} depends

on 〈S4, (t− 1, i− 1)〉, 〈S4, (t− 1, i)〉 and 〈S4, (t− 1, i+ 1)〉. The dependence functions are

(t, i → t− 1, i− 1), (t, i → t− 1, i) and (t, i → t− 1, i+ 1) respectively. These dependencies

are all uniform dependencies with dependence vector (1, 1), (1, 0), (1,−1) respectively.
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CHAPTER 3

Related Work

Stencil computations, as an important class of programs, have received a considerable

amount of research attention during the past decades. In this section, we discuss the existing

work of tiling optimizations and code generation techniques for stencil computations. Then

we also discuss about how our work compares with existing work.

3.1. Tiling Optimization

Many authors have worked on optimizing stencil computations using tiling on both shared

memory and distributed memory or hybrid platforms. The tiling optimization techniques for

stencil computations can be classified into four categorizations: tiling optimizations within a

single time step, cache aware tiling optimizations across multiple time steps, cache oblivious

tiling optimizations across multiple time steps and multi-level tiling.

Within a single iteration, simple rectangular blocking can be directly applied on the data

space for the Jacobi style stencil computations [86, 24, 76]. However, the amount of data

reuse is very limited within a single time step, and it is important to exploit data reuse

across multiple time steps.

Cache oblivious tiling is one technique that exploits data reuse across time steps. It

starts with the original iteration space and recursively divides it into small tiles with trape-

zoidal surfaces [78, 31] or parallelotopes [94], and stops the recursion when the base tile is

reached. The size for the base tile is decided without knowing the hardware details (usually

based on some heuristic). Cache oblivious technique is an attractive technique and easy
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to implement. However, selecting tile size without knowing hardware detail is intuitively

not optimal. Datta et al. [20] show in their work that the cache oblivious techniques suffer

a performance degradation due to the sub-optimal compiler code generation and tile size

selection. Yotov et. al [112] also pointed out that the recursive code style of cache oblivious

tiling may prohibit the efficient exploration of processor pipelines and hardware prefetcher.

Later, we also experimentally show the performance problem of the codes produced by a

current cache oblivious code generator.

The tiling techniques that are most related to our work are the cache aware tiling and

multi-level tiling, and are discussed below.

3.1.1. Cache Aware Tiling Across Multiple Time Steps. Time skewing [110,

108] is one of the most important approaches that exploit data locality across multiple time

steps. It looks at the dependencies in the whole iteration domain and skews it with respect to

the time dimension. Then all the dependencies fall into the first quadrant, and rectangular

tiling can be applied to tile the whole iteration space. The same effect of time skewing can

also be achieved by hyperplane tiling [44, 12, 4]. Instead of skewing the computation space

to make rectangular tiling legal, they are trying to find a legal hyperplane to cut the whole

computation space. Due to dependencies between tiles, most authors [108, 12] subsequently

parallelize the tiled programs with the classic 45 degree wavefront parallelization.

While the time skewing technique enables the data reuse across the time steps, it also

introduces inter-tile dependencies, and parallelization is enabled along the 45 degree diagonal,

which introduces the pipeline fill-flush overhead that is described in section 2.3.1. Wonnacott

and Strout [107] present a theoretic exploration of the impact on the scalability of various

loop tiling strategies. Their result indicates that the pipelined parallelization strategy runs
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into scalability issue on platforms with high degree of parallelism for programs whose data

set size grows linearly with the degree of parallelism.

In order to eliminate the pipeline overhead and improve the scalability, techniques like

overlapped tiling [89, 23, 83, 55] and split tiling [109, 55] are developed. In overlapped

tiling, each tile is enlarged to include the points that are needed for the computation in

that tile. Split tiling partitions each tile into subtiles: one only includes computations

that are independent of other tiles and others with points that depend on other tiles, and

possibly others with points that other tiles need. During the execution, the independent

subtiles can be started at the same time to explore concurrent start. Many authors also

explore concurrent start based on different tile shapes, such as diamond tiling [74, 95, 4], and

hexagonal tiling [35]. Orozco et al. [74] demonstrated the effectiveness of diamond tiling with

a 1D and an 2D FDTD examples. Strzodka presents a technique called cache accurate time

skewing (CATS) [95] for stencil computations, which explores the concurrent start through

diamond shaped tiles. CATS is based on the reduction of higher dimensional problem into

lower dimensional, non-hierarchical problem. In CATS, a subset of the dimensions are tied

to form large tiles, and a sequential wavefront traversal is performed inside the tiles and the

concurrent parallelization is explored among the diamond tiles.

3.1.2. Multi-level Tiling. Multi-level tiling is used to address data reuse at differ-

ent levels of the memory hierarchy, for which further tiling is applied on the tiled space.

Lakshminarayanan et al. [84] describe a multi-level tiling work on a 2D Gauss-Seidel stencil

computations. They first tile the space for parallelism and further tile each tile into small

tiles for data locality. They exploit two tiling choices for the outer level tile – tile the data
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space or tile the whole iteration space, and they also develop an execution time model for

both strategy to guide the choice of the tile sizes.

Multi-level tiling is also used to explore multiple levels of parallelization. Dursun et al. [24]

enables both the distributed memory parallelization and shared memory parallelization on

a hybrid machine through two levels of tiling. Multi-level wavefront parallelization as a

standard strategy has also been explored by many authors [12, 50, 5]. Shrestha et al. [90]

point out the pipeline filling-flush overhead introduced by wavefront parallelization overhead

at the inner level, which is also an overhead we will face later. They proposed a multi-level

hyperplane tiling technique that explores concurrent start at the inner levels.

Malas et al. [61] proposed a multi-level tiling strategy to address the data reuse among

threads on modern multi-core architectures. Their technique first applies the diamond tiling

technique presented by Strzodka [95], and then applies the classic wavefront time tiling

within each diamond prism. The available threads are first grouped into groups, and then

assigned to different diamond prisms. The size of the diamond is chosen to be fit into the

LLC, and the data reuse is enabled for the threads that are assigned to the same diamond

prism. Their experimental results on a 10-core Intel Xeon processor show that the maximum

data reuse can be achieved when all the available threads are assigned to the same diamond

tile. However, a slow-down has to be paid for this, which is probably due to the wavefront

overhead that is payed within each diamond prism, which is also pointed out by Shrestha et

al. [90].

3.1.3. Energy Efficient Stencil Computations. Due to the growing importance

of energy, some energy optimization work has also been done specifically for stencil compu-

tations or tiling technique. Kandemir et al. [48, 47] realize that the tile size that gives the

22



best performance is not necessarily be the one that gives the best energy behavior. They

experimentally evaluated the impact of different tile sizes on the energy behavior. They

conclude that it is better to experiment with different tile sizes and pick up a suitable one

for energy purposes. Tiwari et al. [100] explore the optimization space for stencil computa-

tions by tuning both the one level tiling parameters and the CPU clock frequency. Their

experimental results confirm the popular belief that optimizing for performance often leads

to better system-wide energy consumption. However, there is also about 5.8% of energy

savings with about 4.1% slow-down with lowering the clock frequency. Although some “en-

ergy reduction” can be achieved with exploration of tile size parameters, it is not always

guaranteed. Also, experimenting with CPU clock frequency is out of the scope of this work.

Garcia et al. [33] pointed out the importance of the dynamic memory energy consumption.

They build an analytical energy model for the dynamic memory access, and choose the tile

size and traversing order that minimizes the dynamic memory energy consumption. However,

there is no guarantee that there is analytical solution for their model. Furthermore, the side

effect to the performance is not considered in their work. The wavefront diamond blocking

work proposed by Malas et al. [61, 60] addressed the data reuse among threads, which also

helps to reduce the dynamic energy consumption. Their experimental results showed that

they are able to save up to 6% dynamic memory energy consumption. However, there is also

about 8% performance loss, and this may defeat the overall energy saving.

3.2. Tile Size Selection

It is well-known that the choice of suitable tile size has significant performance impact for

the tiled codes. The past work for solving the tile size selection problem can be classified into

two categories: 1) Static analytical model based approach, which analyzes the interaction of
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between the input kernel and hardware architectures and build analytical models to pick up

the best tile size; 2) Prediction based approach, which relies on machine learning models to

predict the solution space for searching.

A significant amount of effort has been put in to developing analytical models to guide the

selection of tile sizes. Ghosh et al. [34] developed a Cache Miss Equation (CME) framework

for quantifying the number of cache misses, and presented a tile size selection algorithm based

on their CME framework that targets for eliminating the self-interference misses and capacity

misses. Coleman and Mckinley [18] and Cahme and Moon [14] proposed tile size selection

algorithms that take both self-interference and cross-interference misses into account. Hsu

and Kremer [42] and Rivera and Tseng [87] point out that the interference misses can be

reduced by array padding, and select a tile size that minimizes cache misses after the array

padding optimization. However, these techniques usually only focus on a certain level of

memory hierarchy. Nicholas Mitchell et al. [67] pointed out that level-specific cost function

usually leads to sub-optimal choices, and a cost function that considers multiple levels of

the memory hierarchy leads to better performance. Fraguela et al. [30] and Metha et al. [64]

developed tile size selection algorithms based on the behavior of the whole memory hierarchy.

The approach proposed by Metha et al. [64] also takes the interaction between tiling and

SIMD units into account.

Despite the great achievement on the analytical model based approaches, none of them

has proved to be effective across different kernels and different platforms. Designing ana-

lytical models that can accurately predict the performance is a complicated task, because

many aspects from both the software side (i.e., arithmetic intensity, data reuse within and

across tiles and problem size) and hardware side (i.e., memory hierarchy, available resources,
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SIMD unit and prefetching) have to be taken into account. Existing analytical models fail

to compress the interaction of all these aspects into a single model. Nowadays, the hardware

architectures are becoming more and more complicated, which makes the modeling task even

more difficult.

Another popular approach is to use Artificial Neural Networks (ANNs) to automatically

learn the tile size selection model based on different input features. Rahman et al. [81]

collects the execution time for different tile sizes for a given kernel, and trains the ANN to

predict the performance for the kernel. The input to the ANN is tile sizes, and the output is

the execution time. Yuki et al. [114] targets for 3 dimensional loop programs (i.e., 2D data

space) with square tiles, and uses the ANN to predict the best performance for kernels with a

given architecture-compiler combination. They extract six input program features according

to the memory references, and formulate the tile size selection model as a continuous function

to predict the optimal tile sizes. Mialik [62] trained ANNs with dynamic program features

(i.e., L1 load misses, L2 load misses etc), instead of static program features. All these work

demonstrate fairly accurate predicted result, but all limited to a given architecture-compiler

combination and kernels with 2D data space.

Luo et al. [59] developed a Fast Stencil Autotuning Framework (FAST) for predicting the

optimal solution space for different kernels on different platforms. The optimal solution space

predicted includes both tile sizes and optimizations should be applied (i.e., loop unrolling,

register blocking etc.). In their approach, an instance of kernel-platform combination is

represented with a set of hardware and software features. Based on the observation that two

instances of kernel-platform combination with the most similar features have a large overlap

in their optimal solution space, they return the optimal solution space for the kernel-platform
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combination instance with the most similar feature in the initialized database. The similarity

function of the two given sets of features is learned with a polynomial regression.

Our observations indicate that the tile size selection problem is not only related to the

hardware architecture and kernel parameters, but also strongly coupled with the style/struc-

ture of code that is generated. Therefore, the tile size selection problem cannot be separated

from the code generation, and separate tile size selection models have to be developed/learned

for different code generation frameworks. Furthermore, it is much more efficient to have a

self-learned model use machine learning techniques with code structure independent features,

rather than hand-crafting a model for each code generator.

3.3. Tiled Code Generation

Writing tiled codes is time consuming and error-prone, especially for parallel codes. Au-

tomatic code generation is an attractive solution since it requires little programmer effort.

3.3.1. Tiled Code Generation Based on Polyhedral Techniques. Polyhedral

compilation is one of the successful techniques for tiled code generation. Regarding to

how tile sizes are represented in the generated code, existing polyhedral technique based

code generators can be separated into two categories: fixed-size tile code generators and

parametric tiled code generators.

When tile sizes are fixed, tiling can be described as a linear transformation, and purely

polyhedral code generators — like ClooG [6], ISCC [103] and Omega+ [72] — are adequate.

Based on existing polyhedral code generators, Bondhugula et al. [12] developed an automatic

parallelizer that chooses tiling hyperplanes that minimize the communications between tiles

and parallelizes the tiled program using classic 45 degree wavefront parallelization. The

legality condition for the hyperplanes is a generalization of the classic condition proposed
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by Irigoin and Triolet [44] to imperfectly nested loops. Later, Bandishti et al. [4] extended

the hyperplane tiling technique to find legal tiling hyperplanes that enables concurrent start,

which leads to fully oblique (colloquially called ”diamond”) tiles.

Fixed size tiled code generation for different tile shapes has also been explored in other

work. Grosser et al. [35] developed a hybrid hexagonal/classic tiled code generator for GPUs,

for which hexagonal tiling is applied on the face constructed by the time dimension and one

of the data dimensions and classic time tiling is applied on the other dimensions. Although

the technique was developed for GPUs, it can also be generalized to CPUs. Trapezoid tiling

is utilized in cache oblivious code generators like Pochoir [97].

Despite the great success of the fixed-size tiled code generators, there is a strong desire

to delay the selection of tile size until launch time, and therefore parametric tiling is needed.

However, parametric tiling is a non-linear transformation, which goes outside the scope of

polyhedral model. This raises interesting challenges for the code generation problem. One

simple solution to the parametric tiled code generation is to apply rectangular tiling to

the bounding box of the parametric domain, and add guards for each point in a tile to

check whether it belongs to the original iteration space [111]. However, this method ends

up enumerating many empty tiles when the bounding box is much larger compared with

the original iteration space. Therefore, many authors have explored parametric tiled code

generation without enumerating empty tiles [85, 51, 50, 37, 38, 5].

PrimeTile [37], DynTile [38], PTile [5] and DTiler [50] are the most representative para-

metric tiled code generators developed recently. PrimeTile [37] is a sequential tiled code

generator. It identifies the largest sub-rectangular iteration space from the original iteration

space dynamically, and applies rectangular tiling on the sub-rectangular iteration space to
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avoid enumerating empty tiles. However, parallelization is essential to utilize the modern

parallel architectures.

DynTile [38], DTiler [50] and PTile [5] are parametric tiled code generators that support

wavefront parallelization. In these tools, the origin of the space ~0 is usually assumed to

be a legal tile origin, and a polyhedral set called outset [85] that contains the origin of all

the non-empty tiles is constructed. A set of loops called tiled loops are generated to visit

the tiles within the outset. The tiled loops generated either enumerates the first iteration

point (called tile origin) in each tile or the coordinates of the tiles in the tiled space. An-

other set of loops called point loops are generated to visit each point for a given tile origin.

DynTile generates tiled loops that enumerate the tile coordinates, and supports wavefront

parallelization through a run-time scheduling approach. In DTiler and PTile, the tiled loops

enumerate the tile origins, and wavefront parallelization is supported by computing the 45

degree wavefront schedule statically.

Muti-level tiling is supported in most of the fixed size tiled code generators and parametric

tiled code generators [12, 50, 37, 38, 5] with regular shapes, and the 45 degree wavefront

parallelization at each level. Shrestha et. al [90] extended the hyperplane technique used by

Pluto [12, 4] to support concurrent start at the inner level.

The tile shape used in the above parametric tiled code generators is regular rectangular

shape. Generating parametric tiled codes for other shapes like hexagonal or trapezoid shapes

is known to be hard. Recently, Bertolacci et al. [9] presented an approach for producing

parameterized diamond tiling with restrict to hyper-rectangular iteration spaces. However,

the work is only done for one-level tiling.
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3.3.2. Auto-tuning Frameworks and Domain Specific Compilers. During the

past decades, many auto-tuning framework and domain specific compilers are developed

for stencil computations. Kamil et al. [46] and Datta et al. [21] developed an auto-tuning

framework for stencil computations that targets for different parallel platforms, including

multi-core CPUs and GPUs. However, their framework only applies tiling within the same

time step.

Pochoir [97] is a domain specific compiler developed for stencil computations, it takes

a specified stencil computation, and generates tiled code with cache oblivious tiling. PA-

TUS [17] is also a domain specific compiler for stencil computations, it takes a specification

of stencil computation and parallelization strategy, then does code generation based on the

specifications and the architecture characterization. However, both Pochoir and PATUS are

restricted to Jacobi style stencils.

3.3.3. Vectorization. Due to the increasing prevalence of the SIMD architectures,

there has been a spike of interest over the last decade on compiler techniques for automatically

extracting SIMD parallelism and generating SIMD code. Two main categories of techniques

have been explored: loop-based vectorizaton and the unroll-and-pack approach. The work

we are looking at falls into the first category.

For loop-level vectorization, many authors vectorize the innermost loop with unit-stride or

zero-stride memory access [3, 25]. Eichenberger et al. [25] proposed a method for vectorizing

the loop with misaligned stride-one memory reference. Later, Nuzman et al. [71] extend

loop-based vectorization to handle computations with power-of-two strides. Recently, work

has also sought to address vectorization for arbitrary stride accesses [52, 16]. Techniques like
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data alignment adjustment and polyhedral transformations [102, 53] are also developed to

increase the chance for vectorization.

For stencil computations, most of the loop-based vectorzation techniques fail to find an

efficient parallelization strategy, because of the alignment conflict and reuse coming from

multiple data streams. Especially for the tiled programs, only subsets of the data streams

are operated, which causes most of the general alignment analysis to fail. Henertty et al. [39]

address the alignment conflict issue for stencil computation by performing a non-linear data

layout transformation. However, this work is not done in the context of tiling. They point out

in their later work [40] that tiling on the transformed data layout imposes extra constraints

on the legality of tiling, and proposed a technique to find legal tiling strategy based on

formulation of a set of linear inequalities. This work is done for fixed-size tiling, because the

nice linear property does not hold for parametric tiling.

The work presented by Kong et al. [53] is the only work we know of that addresses

the vectorization problem for parametric tiling. Their method also targets vectoring the

full tiles after applying parametric tiling techniques [5]. Since every tile separately still fits

in polyhedral model (albeit with a few additional parameters), they first apply polyhedral

analysis and transformations to tiles to make the innermost loop vectorizable. Then, extra

time skewing and statement re-timing techniques are applied to minimize misaligned stores

and loads—under the assumption that the first memory reference within a tile is aligned.

Finally, SIMD code is generated to produce the so called prevect code, which further relies on

a back-end compiler like SPIRAL to translate it to the final code with SIMD instructions.

Optimizations like common sub-expression elimination, strength reduction, and replacing

unaligned loads with aligned loads using data reorganization operation are also integrated in
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their work. The final experimental results on a Sandy Bridge machine show that significant

performance improvement are achieved compared with the code generated from PTile [5] for

2D stencils, but a performance loss is exhibited for 3D cases. The alignment assumption

made in their work is very optimistic, and generally does not hold for parametrically tiled

iteration spaces. Also, different trade-offs are also introduced in the techniques, for example,

the increased overhead of the pipeline fill-flush due to the extra time skewing, and the data

reorganization overhead for replacing misaligned loads, but these trade-offs are not open for

exploration in their framework.

3.4. Our Contributions

In our work, we target the energy optimization problem for compute intensive stencil

computations for a single multi-core processor. Our goal is to develop a parametric tiled

code generation framework for generating energy efficient code for stencil computations.

For the compute intensive stencil computations that we target, exploiting multi-level

parallelization and maximum parallelism (concurrent start) on a single multi-core processor

is not necessary. Due to the large value along all the dimensions and small number of

resources available on a single multi-core processor (i.e., 4, 6, 8, 16, 32), there are generally

enough independent tiles to exploit the available parallelism [101]. Let us take the J1D

described in Equation 1 as an illustration example. Assume the tile size along the time

dimension is tt , the tile size along the data dimension is ti, and there are P processors

available on the platform. Then the total number of wavefronts can be approximated as

T
tt
+ N

ti
, and the number of wavefronts for the pipeline fill-flush is 2(P − 1). Therefore, the

steady state consists of T
tt
+ N

ti
− 2(P − 1) wavefronts. When T

tt
≫ P and N

ti
≫ P , the
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steady state dominates the whole execution, and the pipeline fill-flush overhead can almost

be ignored. This is usually true for the stencils that we target.

Our energy efficient strategy is based on the classic time skewing and wavefront par-

allelization technique, combined with the multi-level tiling technique to explore data reuse

among threads through the LLC. The work presented by Malas [61, 60] is the one that is

the closest to our work. However, instead of exploring the trade-offs between the concur-

rent start and data reuse among threads, we seek to minimize the energy consumption by

maximizing the data reuse among all the threads and still retain the high performance.

Moreover, we address the parametric tiled code generation support for our energy efficient

parallelization strategy. As we will see later, our energy efficient parallelization strategy exe-

cutes the tiles using a polynomial schedule, which is beyond the capability of the existing code

generators. Polynomial scheduling was tackled by Achtziger and Zimmermann [1, 2], who

also showed that they could provide better asymptotic execution times (under unbounded

processor assumptions). However, the problem of exploiting such schedules remains open

because of the code generation problem. In this research, we take the first step towards the

code generation for polynomial schedules, and develop a code generation algorithm for one

specific type of polynomial schedule for hyper-parallelepiped shaped iteration spaces.

Also, unlike most of the existing code generators that rely on the auto-vectorizers pro-

vided by production compiler (i.e., gcc, icc) to vectorize the generated code. We seek to

automatically producing codes with explicit vectorization instructions that can better uti-

lize the available SIMD (vector) units.
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CHAPTER 4

Energy Efficient Tiling and Parallelization

We now present our energy-efficient tiling and parallelization strategy, as well as a quan-

titative analysis and justification of the reduction in off-chip memory accesses. First we

describe the memory behavior of the standard wavefront parallelization, and show how exe-

cution in multiple passes (MPP) can reduce the off-chip memory accesses, but also note how

it may lead to a potential slowdown due to the pipeline fill-flush overhead between every

successive passes. Next we describe the intuition behind the method to regain this slow-

down called flattened multi-pass parallelization (FMPP). We use the Jacobi 1D (described

in Equation 1) as a running example to illustrate our approach and its memory behavior.

Although the main ideas are simple, the challenge arises in retaining performance, and in

automating the code generation.

4.1. Memory Behavior for Standard Wavefront Parallelization

In this section, we quantify the off-chip memory accesses for the standard wavefront

parallelization of J1D based on a simple analytical model.

The standard wavefront parallelization for J1D is described in Figure 2.5. We assume,

the memory accesses within a tile can all be made on-chip with proper choice of tile sizes.

Also, the off-chip memory accesses only happen at the boundary of each tile, where accesses

to the values produced by other tiles are made. Now, if the tile size is y along dimension i

and x along dimension t, then the total number of tiles Ntile is approximately T
x
× N+x−1

y
.

When N ≫ x, Ntile ≈
T
x
× N

y
. From the dependencies show in Figure 2.4b, we can see that
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one tile requires two columns of values from the left tile, one row from the bottom tile and

a single value from the “south-west” tile (we ignore this latter one). Also, the left tile and

bottom tile that it depends on are all executed in the previous wavefront. As a result, the

data produced at the right and top boundaries of each tile of a wavefront has to be saved for

the computation of next wavefront. When the data footprint of a wavefront is too large to fit

into the last level cache, capacity misses will occur when memory accesses are made from the

next wavefront. In the worst situation, every access made from the next wavefront can be

a cache miss and lead to an off-chip memory access. Furthermore, the stencil computations

that we are target for have large values along all dimensions, which are dominated by the

steady state. Therefore, we assume that the boundary accesses made by every tile is a cache

miss under the worst situation. The number of off-chip accesses of a tile is (2x+y), then the

total number of off-chip memory accesses Vstd of the program is Ntile × (2x+ y) = TN(2x+y)
xy

.

Note that since xy

2x+y
is maximized when 2x = y, and this choice of the tile aspect ratio

minimizes Vstd to 2TN
y

. This is further minimized by making y as large as possible, subject

to the capacity constraints of the caches (private) on each core and the degree of parallelism.

4.2. Memory Efficient Tiling and Parallelization

As we described in the previous section, there can be no data locality for between the

successive wavefronts when the data footprint of a wavefront is much larger than the LLC

capacity for the standard wavefront parallelization. Therefore, The key idea of our energy

efficient Multi-Pass Parallelization (MPP) is to improve the data locality between successive

wavefronts.

4.2.1. Multi-Pass Parallelization (MPP) for Jacobi 1D. To achieve reuse be-

tween successive wavefronts, we first partition the iteration space into passes (this can be
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Figure 4.1. The tiled iteration space and multi-pass parallelization for J1D.
Each small rectangle represents one tile, and each tile depends on its left tile,
bottom tile and lower left tile. The whole tiled iteration space is separated into
two passes (blue and red). Each orange dashed line represents one wavefront.

viewed as a special “outer” level of tiling) and then further tile each pass into tiles. The stan-

dard wavefront parallelization is applied to each pass, and passes are executed sequentially

one after another. The pass size has to be chosen carefully, so that values produced by each

wavefront in one pass fit in the LLC. Also note that the values needed from the previous pass

will still be misses. This way, we optimize data reuse within one pass. Figure 4.1 illustrates

multi-pass parallelization for the J1D example.

Let the pass height be H, and the tile sizes for the tiles within a pass be x′ and y′ (the

optimal tile sizes for MPP may be different from the optimal ones for the standard wavefront

parallelization). Since H is chosen so that there are no cache misses within one pass, the

cache misses only occur between passes. Since the computation in one pass requires the last

row from the previous pass, the volume, Vmulti, of off-chip data transfer for J1D with MPP can

be estimated as the product of the number of passes and the row size, Vmulti =
T
H
×N = TN

H
.

Comparing with Vstd = 2TN
y

for the standard wavefront parallelization, and noting that

usually H ≫ y, we expect the multi-pass parallelization to yield significant savings.
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4.2.2. Higher Dimensional MPP. MPP can be generalized to higher dimensions.

For a d-dimensional stencil (i.e., with d + 1 dimensions in total), we first tile the outer d

dimensions into passes, and then, for each pass, perform an inner level tiling on all the

dimensions.

Let us analyze memory behavior for the higher dimensional case. As in J1D, when the

data space is “large enough”, every inter-tile access will cause a cache miss in the standard

wavefront parallelization, but in MPP, only those inter-tile accesses that cross a pass boundary

will cause cache misses.

Consider a 3D program with a regular T × N × M iteration space, and assume that

rectangular tiling can be applied without time skewing (this is an approximation to get

asymptotic bounds). If the tile size for the standard wavefront parallelization is t × x × y,

then the total number of tiles is Ntile =
T
t
×N

x
×M

y
. Assume that one tile requires a faces from

its left tile and b faces from the bottom tile and c faces from its front tile, and let Vtile represent

the number of off-chip memory accesses of one tile. Then Vtile = a×t×y+b×x×y+c×t×x.

The total number of off-chip memory accesses for the whole program with standard

wavefront parallelization is

(3) Vstd = Vtile ×Ntile =
TNM(aty + bxy + ctx)

txy
.

If the pass sizes for the outer two dimensions are Ht and Hx, then the total number of

passes Npass for the whole iteration space is
T

Ht

×
N

Hx

. Each pass requires a faces of values
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from its left pass, b faces from its bottom passes, and no pass is in front of a pass. Therefore,

(4)

Vmulti = Npass × (a×M ×Ht + b×M ×Hx)

=
TN(aMHt + bMHx)

HtHx

.

Then, our multi-pass parallelization can achieve better memory performance under the

situation when M(aty+bxy+ctx)
txy

>
(aMHt+bMHx)

HtHx
, and our experimental results show that this

is usually achievable. Of course, our analysis is approximate, and only considers capacity

misses. In practice many factors affect memory behavior, such as data access order, conflict

misses etc. Our main goal was to motivate the MPP strategy in a simple quantitative way,

and building a precise model for cache misses is out of the scope of this work.

4.3. Flattened Multi-Pass Parallelization (FMPP)

Recall that for our goal of energy-efficiency, it is critical to retain all speed optimizations

of the original code, otherwise we risk losing more than the savings we gain from the off-

chip accesses. In the standard parallelization of MPP, the computation in one pass starts

after the previous pass is complete. As illustrated in Figure 4.2(a) this introduces idle time

between passes due to pipeline flush-fill. This situation will also happen in the standard

wavefront parallelization, but only once during the whole computation, whereas it happens

for each pass for MPP. This effect will be exacerbated for higher dimensional cases. Indeed,

our preliminary experiments showed that the MPP strategy as described above was up to

20% slower than the standard wavefront parallelization, for programs with higher dimen-

sions. The overhead can be eliminated if we remove the “gap” between two successive passes

by overlapping them as shown in Figure 4.2(b). We call this the flattened multi-pass par-

allelization strategy (FMPP). In this way, the fill-flush overhead will be incurred only once
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during the whole computation. Although this transformation is intuitively very simple, it

raises significant challenges for code generation. We developed a code generation algorithm

to support such overlapped execution order by integrating a specific polynomial schedule,

and details are presented in Chapter 5.

time

sp
ac
e

(a)

time

sp
ac
e

(b)

Figure 4.2. The space-time diagram of the (a) standard, and (b) flattened
multi-pass strategy for J1D. The horizontal axis represents the wavefront time
step. Note that in the standard scheme, the time stamp is a multi-dimensional
vector, and in the flattened strategy it is a quadratic function of the tile coor-
dinates, pass number and row size.

Also, note that there may be a limit on how much overlap is allowed, since the inter-pass

dependencies (shown in Figure 4.2 as orange edges) must be satisfied. We ensure the legality

of our code through constraints on tile sizes. As we will describe in Chapter 5, the wavefront

time step for a tile depends on the tile size, and we can control the tile size so that the

wavefront time step for the first tile in a pass starts after the tile it depends on (usually the

first tile in the last row of the previous pass) from the previous wavefront.
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CHAPTER 5

Code Generation for FMPP

We developed a parametric tiled code generation algorithm for our FMPP strategy de-

scribed in Chapter 4 based on existing parametric tiled code generation techniques – D-

Tiling [50]. Currently, our method is limited to d-dimensional hyper-parallelepiped shaped

iteration spaces, whose bound expressions involve only the outermost loop index and param-

eters.

In this chapter, we first explain the limitations of the state of the art, and the challenges

raised in the code generation for our FMPP strategy. Then, we present our detailed code

generation algorithm for FMPP. For the simplicity of explanation, we first show how to

generate sequential code for a 2D parallelogram iteration space with no tiling within each

pass, and then generalize it to include tiling within each pass. Finally, we generalize it to

higher dimensions, and wavefront parallelization.

5.1. Code Generation Challenges

Consider a standard cubic iteration space, D = {i, j, k | 0 ≤ (i, j, k) < N}. If we

want the k dimension to be executed sequentially, while in each 〈i, j〉 plane, we want to

parallelize using the t = i+ j wavefronts. The natural multidimensional schedule for this is

(i, j, k → k, i + j). The “space-time diagram” of resulting program is shown in Fig 5.1(a)

as a sequence of rhombuses. Consistent with lexicographic order, the earliest point in any

rhombus comes after the last point in the previous rhombus. The multidimensional schedules

are supported by existing code generators. However, now we wold like to avoid the “pipeline
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Figure 5.1. The “space-time diagram” of traversing domain {i, j, k | 0 ≤
(i, j, k) < N} with a 2-D schedule (i, j, k → k, i + j)” (top) is a sequence
of rhombuses where one cannot start before the previous is completely done,
leading to idle times between the rhombuses. The space-time diagram without
the inefficiencies (bottom) may be desirable. However, it corresponds to a
polynomial schedule (i, j, k → Nk+i+j). Current polyhedral code generators
cannot produce code with this behavior.

fill-flush overhead” as shown in the space-time diagram in Fig 5.1 (b), and it corresponds

to a polynomial schedule t = Nk + i + j, not a multidimensional linear one. Handling the

polynomial schedule raises interesting challenges.

First, note that the corresponding transformation for polynomial schedule is a nonlinear

transformation, Zd → Z, that maps a d-dimensional point in the original space to a single

integer in the new outer loop. From this, we need to deduce the original index point (actu-

ally, the original pass and tile coordinates). By restricting to hyper-parallelepiped shaped

domains, we will show how to obtain simple functions to deduce these inverse mappings as

closed form functions involving the tile size parameters.

Second, dealing with tile loops raises additional complications. For example, for hyper-

parallelepiped shaped iteration spaces, although the number of iterations of any loop is
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independent of the values of surrounding loops, the same assertion cannot be made about

the loops that visit the tile origins. Furthermore, as we shall see later, we also need to

determine the number of tile origins visited in the very first instance of the innermost loop

in any given pass, and ensure that this is independent of the specific pass.

Third, a pass is simply a tiling of the outer d−1 loops, leaving the innermost one untiled.

Although the original loop nest is fully permutable, the multi-pass strategy introduces inter-

pass dependencies that are not lexicographically positive, and this means that the untiled

dimension is no longer permutable with the others, and it must be made the outermost loop

traversing the tiles over the flattened space.

Finally, note that there may be a limit on how much overlap is allowed, since the inter-

pass dependencies must be satisfied. We ensure the legality of our code through constraints

on the tile sizes.

The code for the standard MPP strategy (as shown in Figure 4.1) can be generated with

a simple extension to the existing multi-level parametric tiled code generation techniques.

Figure 5.2 describes the loop structure for J1D example with the standard MPP strategy.

The outermost loop iterates over the passes, followed by a time loop that enumerates the

wavefront time steps for a given pass. Then, the tile loops enumerate tiles for a wavefront and

finally a set of point loops are attached to scan each point within a given tile. The implicit

synchronization that happens at the end of tt loop introduces the overhead as described in

Figure 4.2(a). In order to eliminate this overhead, we need to generate code that supports

our FMPP strategy.

Despite the challenges raised for supporting the polynomial schedule for our FMPP strat-

egy, the final loop structure for FMPP still remains conceptually simple. The loop nest
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// Outermost pass loop: iterates over the passes

for(pt =LB
pass
t ; pt <=UB

pass
t ; pt+=Pt)

//time loop:enumerates the wavefront time steps within each pass

for(time=start(pt); time <=end(pt); time ++)

//Tile loops: enumerate the tiles within each wavefront

#pragma omp parallel

for(tt=LBtile
t (pt, time); tt <=UBtile

t (pt, time); tt+=St)

for(ti=LBtile
i (pt, time, tt); ti <=UBtile

i (pt, time, tt); ti+=Si)

// Point loops: scan the points within a tile

for(t =LBt(tt, ti); t<=UBt(tt, ti); t++)

for(i=LBi(tt, ti); t<=UBi(tt, ti); i++)

Body(t, i);

Figure 5.2. The loop nest for the standard MPP strategy for J1D. The loop
bounds are functions of the outer loop index values and problem parameters.
For example, LBtile

t (pt, time) represents the lower bound for the tile loop along
t dimension for the pass pt at time step time.

should have an outermost loop iterating over the wavefronts for the flattened space, followed

by tile loops that enumerate the tiles that can be executed within a wavefront, and then

point loops should be attached to scan the points in a visited tile. Due the non-uniform

dependencies along the aligned dimension (dependencies between passes), this dimension is

made the outer dimension while enumerating tiles. Figure 5.3 shows the loop structure for

the J1D example with FMPP strategy: note that the tile loop ti is now an outer loop of the

tiled loops instead of as an inner loop in Figure 5.2, which iterates over the tiles that are

flattened along the innermost dimension.

//Time loop: iterates over the wavefront steps

for(time=start; time <=end; time ++)

//Tile loops: enumerate the tiles within each wavefront

#pragma omp parallel

for(ti=LBtile
i (time); ti <=UBtile

t (time); ti+=Si)

for(tt=LBtile
t (time, ti); tt <=UBtile

t (time, ti); tt+=St)

// Point Loops: scan points within a tile

for(t=LBt(tt, ti); t<=UBt(tt, ti); t++)

for(i =LBi(tt, ti); t<=UBi(tt, ti); i++)

Body(t, i);

Figure 5.3. The loop nest for the FMPP strategy for J1D.
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5.2. Code Generation for Sequential FMP with 2D Iteration Space

We now describe the sequential FMP code generation algorithm for a 2D parallelogram

iteration space. We first show how to generate sequential code for a 2D parallelogram

iteration space with no tiling within each pass, and then generalize it to include tiling within

each pass.

i

t

(0, 0)

(2, 2)

(4, 4)

(6, 0) (12, 0)

Figure 5.4. Flattened iteration space for a parallelogram iteration space.
The blue box is the first pass for both the original iteration space and flattened
space. The red dashed box is the second pass in the original iteration space,
and the red solid box is the second in the flattened space. Same for the orange
boxes.

5.2.1. Multiple Passes Without Tiling. Figure 5.4 describes the original multi-

pass space and the flattened space for a parallelogram iteration space, and tiling is not

applied for each pass. The code we seek to generate is a two dimensional loop nest that

enumerates all the iteration points in the flattened space, with the outer one visiting all the

points along the flattened data dimension i.

5.2.1.1. Generating The Outer Loop. As shown in Figure 5.4, the shape of each pass

remains a parallelogram when no tiling is applied within passes, therefore, the number of

iteration points in the first row is the same for all the passes, and is the period of a pass

after the passes are laid out one after another, denoted by Nperiod. Let npass be the number
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of passes. Then, Nfmp, the total number of iteration points along the laid out dimension in

the flattened space is the product of the two, plus pipeline fill-flush, which we count as part

of the last pass (Nlast). Then,

Nfmp = Nperiod(npass − 1) +Nlast

For the example in Figure 5.4, Nperiod = 6, npass = 3, Nlast = 7, Nfmp = 18. In general,

these values can be determined with purely syntactic manipulation of the bounds expressions

of the original loops. Figure 5.5(a) describes the loop nest for the non-flattened multi-pass

space for a 2D parallelogram iteration space, where loop p iterates over the passes, and

loop t and i iterates over the points within each pass. In the flattened space, the passes

will be linearized along the i dimension. When the loop nest is fully permutable, we can

even change the enumeration order for the points in each pass, and this is always true for

a tilable program. Figure 5.5(b) shows a permuted loop nest that is equivalent to the one

in Figure 5.5(a), but the points inside each pass are enumerated along the i dimension first.

Since the p loop in Figure 5.5(a) iterates over the origins of each pass, npass is the number

of iteration points in loop p. Also, the loop i in Figure 5.5(a) iterates over the points along

dimension i for a given t iteration, then Nperiod is equivalent to the number of iteration

points in the i loop within the first iteration of t loop. Similarly, the number of points along

dimension i enumerated in the last pass is the number of iteration points for the i loop within

the last pass iteration, and the corresponding loop nest is the i loop in Figure 5.5(b). For

a given loop l, with lower bound lb, upper bound ub and stride s, the number of iteration

points in loop l is iters =
⌈

ub−lb+1
s

⌉

, and the last iteration point in loop l is (iters−1)×s+ lb.
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for(p=0;p<=T;p+=h)

for(t=p;t<=min(p+h-1,T);t++)

for(i=t; i<=t+M; i++)

Body(t,i);

(a)

for(p=0;p<=T;p+=h)

for(i=p;i<=min(p+h-1,T)+M;i++)

for(t=max(p,i-M);t<=min(i,p+h-1,T);t++)

Body(t,i);

(b)

Figure 5.5. The loop nests for the multi-pass iteration space with the orig-
inal iteration order (a) and permuted order(b) before flattening. The number
of iteration points in each row is M and there are T iterations along the t

dimension. h is the pass height.

After Nfmp is computed, the outermost loop of the flattened space can be constructed as a

loop that iterates from 0 to Nfmp with stride 1.

5.2.1.2. Generating The Inner Loop. The inner loop for the flattened space enumerates

the corresponding points for a visited point along the linearized dimension in the flattened

space. Note that the t loop in Figure 5.5(b) visits the points along t dimension for a given

i iteration in the original space, which is exactly the information we need. However, in

order to use this information, we need to convert the visited i in the flattened space back to

the i values in the original space. For now, let us ignore the points in a pass that overlap

with the next pass. Let the ti-th point along the i dimension in the flattened space be

the n-th iteration along dimension i within the m-th pass. Then ti = mNperiod + n, and

0 ≤ m < npass, 0 ≤ n < Nperiod. Furthermore, given ti and Nperiod, the m and n can be

computed as follows.

n = ti mod Nperiod, m =

⌊

ti

Nperiod

⌋
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Then the corresponding pass origin 〈p, i〉 in the original space is the m-th iteration value

of the p loop and the n-th iteration value of the i loop in Fig 5.5(b) separately. The j-

th iteration point for a given loop l with stride sis t × s + lb. After the i value in the

original multi-pass space is computed, the loop t in Figure 5.5(b) can be attached to visit

the corresponding points along t.

5.2.1.3. Handling The Overlapped Part. We handle the overlapped part between passes

by checking whether there are points from the current pass and also the previous pass for

a visited point along the linearized dimension. Then, the points that are ignored at the

current pass will be visited as the points in the previous pass during the execution of next

pass. The previous pass information can be deduced easily from the current pass information,

for example, the pass number is m− 1, and the iteration number along i is n+Nperiod. Our

algorithm generates all those expressions by syntactic manipulations of bound expressions

in the loop AST, and the resulting code is shown in Figure 5.6.

n_pass=ceild(T,h);

t=0; p=t; N_period=M+t-t;

p=(n_pass -1)*h; N_last=min(p+h-1,T)+M-p;

N_fmp=(n_pass -1)*N_period+N_last;

for(ti=0; ti <N_fmp; ti++){

p=(ti/N_period)*h; i=(ti%N_period)+p;

if((0<=p<=T) and (p<=i<=min(p+h-1,T)+M))

for(t=max(p,i-M);t<=min(i,p+h-1,T);t++)

Body(t,i);

p=(ti/N_period -1)*h;

i=ti%N_period+N_period+p;

if((0<=p<=T) and (p<=i<=min(p+h-1,T)+M))

for(t=max(p,i-M);t<=min(i,p+h-1,T);t++)

Body(t,i);

}

Figure 5.6. The final sequential FMP code for the parallelogram with no
second level tiling.Function ceild(a, b) returns

⌈

a
b

⌉

.
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5.2.2. Sequential FMP with Tiling within Each Pass. When tiling is applied to

each pass, instead of generating loops that visit each point within the flattened pass, we need

to generate tiled loops that visit the tile origins in the flattened pass and point loops that

visit each point within a tile. Our parametric tiled code generation algorithm is based on an

existing parametric tiled generation technique — DTiler [50]. In the following description,

we first provide a brief recap of DTiler algorithm, and then describe our extension to DTiler

for generating parametric tiled code with our FMPP strategy.

5.2.2.1. Recap of DTiler. DTiler takes a d-dimensional loop nest, then generates two loop

nests separately—the d-dimensional tile loops and the d-dimensional point loops. The tile

loops are generated by modifying the upper and lower bound expressions of the input loop

nest so that they visit a parametrically expanded set of points called the outset [85, 51] —a

superset of the iteration space guaranteed to contain all the origins of non-empty tiles, and

keeping tile size as a symbolic parameter used as the loop stride. The outset of the iteration

space can be constructed by updating the lower and upper bound for each dimension using

the shift down and shift up function. For the kind of iteration spaces that we are handling,

the lower/upper bounds of a dimension t are an affine functions that involves the outer loop

indexes and the program parameters, which can be represented as

lbt =
∑

ci>0

cizi +
∑

cj<0

cjzj +
∑

bh

bhph + c

where ci, cj are the coefficients for the outer loop index, bh is the coefficient for the pro-

gram parameter. The shift down function updates the lower bound with the following
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computation:

(5) shift down(lbt) = lbt + (
∑

cj<0

cj(sj − 1)) + (st − 1)

where si is the tile size used for the corresponding dimension. The shift up function updates

the upper bound using Equation 6.

(6) shift up(ubt) = ubt + (
∑

ci>0

ci(si − 1))

After the outset is constructed, the lower bounds of the tiled loops is shifted to align with

the first tile origin within the outset. DTiler assumes ~0 is a legal tile origin, and computes

the shifted lower bound using Equation 7.

(7)

⌈

lbi

si

⌉

si

where lbi is the lower bound of loop i and si is the stride (tile size) for loop i.

5.2.2.2. Tiling within Passes. Note that one important fact that we have used for gener-

ating code in Figure 5.6 is that Nperiod is the same for all passes. However, this may not be

true when the iteration space is tiled. Figure 5.8 describes the tiled iteration space with ~0 as

a legal tile origin (an assumption made by most existing tiled code generators) for a parallel-

ogram iteration space whose first iteration point is (2, 2). As shown in Figure 5.8, although

the number of iteration points are the same for each row in each pass, the number of tiles

in the first row are different for the first pass and second pass. To resolve this, we align the

first tile origin to the first iteration point of the space being tiled, instead of assuming that

~0 is a tile origin. As described before, when the tile origin is ~0, lower bounds of the tiled
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loops can be shifted to align with the first tile origin within the outset using Equation 7.

Now, if vi is a legal tile origin along i, we can first shift the whole iteration along dimension

i by −vi to make 0 a legal tile origin along dimension i, then compute the shift in the same

way as DTiler and finally shift the whole iteration space back, and the computation is the

following:

(8)

⌈

lbi − vi

si

⌉

si + vi

Now, we will show the mathematical proof for the equivalence of Nperiod. Consider the

2D nested loop shown in Figure 5.7 (a), it describes a general 2D parallelogram iteration

space, whose first iteration point is (a, k × a + b), and k is the tangent value for the angle

of the parallelogram (k is fixed for a given parallelogram). The whole iteration space has

to be first tiled into passes, and the pass loop can be obtained by two steps: 1) construct

the outset of the iteration space; 2) align the pass origin to the first iteration point in the

iteration space.

For the 2D parallelogram space, only the outer t dimension has to be tiled into passes,

so we only need to update the lower and upper bound for the dimension t using Equation 5

and Equation 6. Moreover, dimension t is the outermost dimension in the original loop,

whose lower/upper bounds do not involve any outer loop index, and therefore, the bounds

for dimension t remain the same for the outset. Now, we align the lower bound of loop t

to the first iteration point in the iteration space, which is (a, k × a + b). Since the offset

along dimension t is a, the lower bound for the pass loop is
⌈

a+1−st−a
st

⌉

st + a, which can be

simplified to a, and the result is shown in Figure 5.7 (b). Then the first iteration point for

each pass is (p, k×p+ b), and a similar process can be applied to generate the tiled loops for

49



each pass, the final loop nest is shown in Figure 5.7 (c). The Nperiod for the tiled iteration

space is the number of iteration points in the ti loop, which is the following:

(9)

Nperiod =

⌈

ubti − lbti

si

⌉

=

⌈

k(tt− p) + k(st − 1) +N − b

si
−

⌈

k(tt− p) + 1− si

si

⌉⌉

Since N , st, si, and k are either a program parameter or a constant value for a given

program, the only term that may involve the pass index value is k(tt − p). Since the first

iteration value of tt is p, k(tt−p) = 0. Then Nperiod is independent of the pass value. Similar

to the flattened iteration space without second level tiling, the value for npass is
⌈

T−a+1
h

⌉

,

and the tiles in the last row can be figured out from the permuted loop. After converting

the tile visited along the i dimension back to the tile origin in the original iteration spaces,

the corresponding tiles that have to be enumerated can all be obtained from the permuted

loop nest.

Now, we show how to construct the loops. We call DTiler with the first iteration point

in the space for tile as a legal tile origin instead of ~0 extended DTiler. In order to get the

loops for the two level tiling, we first apply the extended DTiler on the outer dimension to

generate one tiled loop called pass loop and one point loop. Then the untiled inner dimension

is attached inside the point loop to create a loop nest that iterates over the points in a pass.

Since each pass is a polyhedron, we extract the polyhedral domain out of the created loop

nest, and generate the permuted loop nest by calling CLooG [6] with the permuted domain.

Finally, extended DTiler is applied on both original loop nest and the permuted loop nest

that iterate over the points in a pass.
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for(t=a; t<=T; t++)

for(i=k*t+b; i<=k*t+M; i++)

Body(t,i);

(a)

for(p=a; p<=T; p += h)

for(t=p; t<=min(p+h-1,T); t++)

for(i=k*t+b; i<=k*t+M; i++)

Body(t,i);

(b)

for(p=a; p<=T; p+=h)

for(tt=p; tt <=min(p+h-1,T); tt+=st)

for(ti=ceild(k*t+b+1-si -(k*p+b),si)+(k*p+b);ti <=k*(tt+st -1)+M;ti+=si)

for(t=tt;t<=min(tt+st -1,p+h-1,T);t++)

for(i=max(ti ,k*t+b);i<=min(ti+si -1,k*t+M;i++)

Body(t,i);

(c)

Figure 5.7. (a) The original loop nest (b) Loop nest after the first level
tiling. (c) Loop nest after the second level tiling. h is the pass size, st and
si are the tile size for the small tiles along t and i dimension. T and M are
problem size parameters.

i

t

(2, 2)

(a) i

t

(2, 2)

(b)

Figure 5.8. Tiled space for a parallelogram iteration space with the legal tile
origin ~0 (a) and the first iteration point (b). The first iteration point is (2, 2).
Each blue box represents one tile, and each red box is a small tile within a
pass.

After obtaining the tiled loops, we can construct the tile loops that enumerate the tiles

in the flattened space using the idea we described before when no tiling is applied within

passes. Then, the point loops that iterate over the points inside each pass is needed. The
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point loops are generated in the same way as DTiler, where we take the original loop nest,

and combine its original lower and upper bounds with the bounds of the tiles at all levels.

For a loop at dimension i, its lower bound is replaced with max(lbi, ti), and the upper bound

is replaced with min(ubi, ti + si − 1), where ti is the tiled loop index for the corresponding

dimension at the current tiling level, and si is the corresponding tile size. Figure 5.9 shows

the final loop structure generated for the sequential FMP for a 2D parallelogram iteration

space. Compare with the loop structure we described in Figure 5.3, the tile loops that visits

the tiles within an outer loop iteration is now separated into two parts, one part visits the

tiles come from current pass, and the other part visits the tiles from the previous pass.

Corresponding guard test is performed to make sure the parts that are visited exists.

5.3. Sequential FMP for Higher Dimensional Iteration Space

Now that we have explained the basic ideas for the “easy-to-visualize” cases, we develop

a number of extensions: first to higher dimensions, leading to the complete algorithm for

sequential code. Next, we extend to standard wavefront parallelization of each pass.

We also note that although the development here deals with perfectly nested loops, most

practical programs contain imperfectly nested loops. In our code generation algorithm,

imperfectly nest loops are handled in the same way as DTiler. First, a preprocessing is used

to create embedded imperfectly nested loops, for which each statement is surrounded by

the same number of loops and the iteration spaces for the statements are disjoint. Then a

perfectly nested loop with guards is derived from the embedded imperfectly nested loops.

Then our code generation algorithm is applied on the perfectly nested loops to generate tiled

loops. Because this follows directly from the earlier results, we do not describe it in detail

here.
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n_pass =...; N_period =...;

N_last =...; N_fmp =...;

for(ti = 0;ti <N_fmp;ti++){

cur_pass =ti/N_period; p=...;

cur_i = ti%N_period; ti=...;

/* check for current pass */

if((lb_p <=p<=ub_p) and (lb_ti <=ti <= ub_ti))

for(tt=lb_tt; tt <= ub_tt; tt+=st)

// point loops

for(t=max(tt ,max(p,lb_t);t<=min(tt+st -1,p+h-1,ub_t);t++){

for(i=max(ti ,lb_i);i<=min(ti+si -1,ub_i);i++)

Body(t,i);

/* check for the previous pass*/

cur_pass=cur_pass -1; p=...;

cur_i=cur_i+N_period; ti=...;

if((a<=p<=T) and (lb_ti <=ti <= ub_ti))

for(tt=lb_tt; tt <= ub_tt; tt+=st)

//point loops

for(t=max(tt ,max(p,lb_t));t<=min(tt+st -1,p+h-1,ub_t);t++)

for(i=max(ti ,lb_i);i<=min(ti+si -1; ub_i);i++)

Body(t,i);

}

Figure 5.9. The loop structure for parallelogram iteration space with FMP:
lb p and ub p are lower and upper bounds for the pass loop, lb ti, ub ti,
lb tt and ub tt are lower and upper bounds for loop ti and tt, and lb i, ub i,
lb t and ub t are lower and upper bounds for the original i and t loop.

5.3.1. Sequential FMP for Higher Dimensions. Above, we described a code gen-

eration algorithm for the 2D cases, and we now generalize it to higher dimensions. The

main idea for handling the higher dimensional cases remains the same: if the number of tiles

visited along the innermost dimension in the first row for each pass is the same, then the

total number of tiles that have to be visited along the innermost dimension for the flattened

space is Nfmp = (npass − 1)Nperiod + Nlast. Then for each tile visited along the innermost

dimension in the flattened space, it is transformed back to the original tiled iteration space,

and the corresponding tiled loops and point loops can be obtained from the permuted loop

nest.
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First, let us check if Nperiod is still the same for higher dimensional cases. Due to the

regularity of the iteration spaces that we are handling, the inner most loop is always a loop

that is skewed with respect to the outermost dimension, which has the same form as the inner

loop in Figure 5.7 (a). Assume that the value along the outermost dimension for the first

iteration point in a pass is bp, then the corresponding offset along the innermost dimension

would be k×bp+b, and the lower bound for the innermost tiled loop is
⌈

k×tt+b+1−si−(k×bp+b)
si

⌉

×

si + (k × bp+ b), and the upper bound for the innermost tiled loop is k × (tt+ st − 1) +M ,

where tt is the loop indices for the outermost dimension, st is the tile size for the outermost

dimension within a pass, and si is the tile size along the innermost dimension within a pass.

With analysis similar to that for Equation 9, we can show that Nperiod is independent of the

passes.

The main problem raised in the higher dimensional cases is how to compute npass and

transform each visited tile iteration along the innermost dimension back to the original

iteration space. Because more than one dimension is tiled into passes in the high dimensional

cases, npass is not just the number of iterations in the outermost pass loop, and the pass

number obtained from
ti

Nperiod

is just the pass number in the unrolled space.

Now, let us see how to handle the passes in higher dimensions. Each pass here can be

given a multi-dimensional pass number (n1, n2, . . . , nd−1), where nl is the pass number for

the passes along the l-th dimension, and d is the total number of dimensions. If the number

of iterations along dimension l are the same for all the (n1, . . . , nl−1), represented by npassl ,

then the total number of passes is the product Πd−1
l=1 npassl . Furthermore, pass number k in

the unrolled space for (n1, n2, . . . , nd−1) is k = n1

d−1
∏

i=2

npassi + n2

d−1
∏

i=3

npassi + · · ·+ nd−1, where
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0 ≤ ni < npassi . Given k and npassl we compute nl for each l as follows.

nl =
k − (n1

∏d−1
i=2 npassi + · · ·+ nl−1

∏d−1
i=l npassi)

∏d−1
i=l+1 npassi

In order to use the above formulas, the number of passes along dimension l has to

be the same for all (n1, . . . , nl−1). We achieve this with the same idea as how we obtain

the same number of tiles in the first row. First, we only tile the outermost dimension into

passes, which creates a set of hyper-slabs. Because of the assumption of hyperparallelepipedic

iteration spaces, each hyper-slab will be a shift of the first hyper-slab, except for the last

one, which is bounded by the original iteration space, and may be smaller. We pad this

so that all hyper-slabs are identical (this causes us to redundantly visit some empty tiles,

but can be avoided by choosing the right tile sizes). Because of the additional assumption

that iteration space bounds are functions of only the outermost dimension, the remaining

inner pass dimensions can be handled all at once, with the offset vector coming from the first

iteration point of the hyper-slab. Then all the techniques we described above can be used. In

Algorithm 1, we described the complete code generation algorithm for the sequential FMP

strategy.

5.4. Wavefront Parallelization for FMP Strategy

After the tiled iteration space is flattened, the wavefront parallelization strategy is applied

to parallelize the computations. For a tile whose tile coordinate is (n1, n2, . . . , nd) in the

flattened space, it is executed at time stamp w =
d
∑

k=1

nk. With the sequential FMP code

generated, n1 is the index value of the outermost loop ti, and nk can be computed using

tk − vk

sk
, where tk is the tile origin value at the k-th dimension, vk is the offset at the k-th
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Algorithm 1 Code generation algorithm for the sequential FMP strategy.

Input: Tiled loop nest L and L
′

for the original iteration space and the permuted space,
and the point loop nest Lpoint. The number of dimensions for the original iteration space

is d, the loop depth for both L and L
′

is 2d−1, the first d−1 loops are the same for both
L and L

′

, which are tiled loops for passes (represented by Lpass), the following d loops
are tiled loops for each pass (represented by Ltiled and L

′

tiled separately for the original
iteration space and permuted space). For a given loop l, the lower bound is lbl, the upper
bound is ubl, the stride is sl and the loop index is tl.

Output: Loop Nest for FMP.
1: for each loop l in Lpass and l is the ith loop in Lpass do

2: print npassi = ⌈ubl−lbl+1
sl

⌉;
3: end for
4: print n pass =

∏d−1
i=1 npassi

5: for each loop l in (Lpass and the outer d− 1 loops of Ltiled) do
6: print tl = lbl;
7: end for
8: Let loop l be the dth loop in Ltiled

9: print N period = ⌈ubl−lbl+1
sl

⌉;
10: for each loop l in Lpass do

11: print tl = (⌈ubl−lbl+1
sl

⌉ − 1)× sl + lbl
12: end for
13: Let loop l be the first loop in L

′

tiled

14: print N last = ⌈ubl−lbl+1
sl

⌉

15: print N fmp = N period× (n pass− 1) + N last;
16: print loop(ti, 0, N fmp - 1, 1)

dimension for the corresponding pass, and sk is the tile size for the k-th dimension. In

general, the time stamp, w, is

(10) w = ti+
d−1
∑

k=1

(tk − vk)

sk

Our code generation algorithm for the wavefront parallelization is a direct extension to

DTiler, the outer d − 1 tiled loops are kept and the last tile index is computed using the

schedule in Equation 10. If hk is the pass size along dimension k, the number of tiles along

the innermost flattened direction is Nfmp, and the maximum number of tiles along dimension
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Algorithm 1 (Continued) Code generation algorithm for the sequential FMP strategy.

17: print pass num = ti

N period
;

18: print cur t = ti%N period;
19: print res = pass num

20: print div = n pass

21: for i from 1 to d− 1 do
22: print div = div

npassi
;

23: print passi =
res

div

24: print res = res%div

25: Let loop l be the ith loop in Lpass

26: print tl = lbl + passi × sl;
27: end for
28: Loop l is the first loop in L

′

tiled

29: print tl = ubl + cur t× sl ;
30: Loop lpi is the ith loop in Lpass, and loop lt is the first loop of L tiled

′

31: print a guard with condition that , for all i in range 1 to (d− 1), lblpi ≤ tlpi ≤ ublpi &&
lblt ≤ tlt ≤ ublt

32: Attach the inner (d− 1) loops of the L
′

tiled within the guard, and attach Lpoint inside the
tiled loop

33: print pass num = pass num− 1;
34: print cur t = N period + cur t;
35: REPEAT Line 19-32

k, for k = 1 . . . (d − 1) is
⌈

hk

sk

⌉

. Therefore, the total number of wavefronts is bounded by

Nfmp +
d−1
∑

k=1

⌈

hk

sk

⌉

.

However, if we simply keep the outer d − 1 loops from the sequential FMP code, per-

formance overhead will be introduced due to the large amount of empty wavefronts visited.

Remember that the outermost loop in the sequential FMP code visits all the tile coordinates

along the linearized dimension, whereas not all the tile coordinates along this dimension need

to be visited. Note that at a given time step w, ti = w −

d−1
∑

k=1

nk. Since 0 ≤ nk <
⌈

hk

sk

⌉

, then

w−

d−1
∑

k=1

⌈

hk

sk

⌉

< ti ≤ w. Therefore, for the first tile loop within the wavefront time loop, we

combine the original lower bound of the loop with

(

w −
d−1
∑

k=1

⌈

hk

sk

⌉

)

and the original upper
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bound with w in the same way as the point loops. The code generation algorithm for FMPP

is described in Algorithm 2.

Algorithm 2 Code generation algorithm for the wavefront parallelization for the flattened
multi-pass strategy.

Input: The nested loops L for sequential flattened multi-pass strategy. The first d loops
define the scanning order of the tile origins, and the inner d loops are point loops that
enumerate the points in a tile. For a loop Lk in the first d loops, the iterator name is tk,
the lower bound is lbk and the upper bound is ubk.

Output: Nested loops for the wavefront parallelization.
1: print nWave = nCols + h1

s1
+ h2

s2
+ ...+ hd−1

sd−1

;

2: print loop(time, 0, nWave, 1);
3: print all the loops from L1 up till Ld−1, and keep all the statements and guards;
4: for each (d− 1)th loop do

5: print td−1 = (time− (col + t1−lb1
s1

+ t2−lb2
s2

+ ...+ td−2−lbd−2

sd−2

))× sd−1 + lbd−1;

6: print a guard with condition ((lbd−1 ≤ td−1) ∧ (td−1 ≤ ubd−1))
7: print the body of Ld

8: end for

5.5. Experimental Evaluation

We evaluated our parallelization strategy using a set of stencil benchmarks. We first

describe our experimental setup, then show the comparison between the standard wavefront

parallelization and our FMPP strategy, and also evaluate the energy consumption of both

strategies based on a linear regression energy model.

5.5.1. Experimental Setup. Our experiments are performed on three platforms: one

with an 8-core Intel Xeon E5-2650 v2 with DRAM from Samsung, one with a 6-core Intel

Xeon E5-2620 v2 with DRAM from Hynix Semiconductor, and the other is a 6-core intel

Xeon E5-2620 v3 with DRAM from HP. The hardware characteristics of the three platforms

are given in Table 5.1.

All platforms are running Linux operating systems. All the programs are compiled using

icc 16.0.2 with the optimization flags -03, -funroll-loops, -xHost and -ipo. As an
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Table 5.1. Hardware specifications for Intel Xeon E5 2650 v2, Xeon E5-
2620 v2 and Xeon E5-2620 v3.

Processor E5 2650 v2 E5-2620 v2 E5-2620 v3
Architecture Ivy Bridge Ivy Bridge Haswell
Clock speed 2.6 GHz 2.1 GHz 2.4 GHz
Core number 8 6 6
LLC Capacity 20 MB 15 MB 15 MB
associativity of LLC 20-way 20-way 20-way
Machine Peak 166.4 GF/s 100.8 GF/s 115.2 GF/s

estimation of the off-chip memory accesses, the number of LLC misses is measured through

PAPI 3.5 [99]. Table 5.2 gives descriptions about the main characteristics of each benchmark.

Our benchmark suite includes stencil computations with different number of data dimensions,

stencil orders, neighborhoods, number of floating point operations per iteration and also

different numbers of variables involved. In Table 5.3, we give the problem size for each

benchmark on each platform. The problem size is chosen to be large enough that the data

footprint of one wavefront exceeds the LLC capacity.

Table 5.2. Benchmark Details. Data D is the number of dimensions of a data
grid, another time dimension is needed. NP stands for neighboring points, it
means the number of neighboring points needed for the computation of each
point. NV represents the number of variables that have to be computed during
the computation. FPI is floating point operations per iteration.

Benchmark Data D Order NP NV FPI
Jacobi 2D (J2D) 2 first 5 1 5
Heat 2D (H2D) 2 first 5 1 9
FDTD 2D (F2D) 2 first 5 3 11
Wave 2D (W2D) 2 third 13 1 13
Heat 3D (H3D) 3 first 7 1 15

The best tile size is selected by running an exhaustive search on all the tile sizes that fit

into twice of the L2 cache. For our FMPP strategy, the exhaustive search is performed on

all the legal tile sizes that fit into the L2 cache, and the pass size is also restricted that the

values needed by each wavefront in the pass fit into LLC.
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Table 5.3. Problem size used for each benchmark on each platform.

E5-2650 v2 E5-2620 v2 E5-2620 v3

T Data size T Data size T Data size

Jacobi 2D 8000 10000×4000 8000 8000×3000 8000 8000×4000
Heat 2D 8000 10000×3000 10000 8000×3000 9000 8000×4000
Wave 2D 6000 7000×4000 10000 8000×3000 9000 8000×4000
FDTD 2D 5000 6000×3000 5000 6000×3000 5000 6000×3000
Heat 3D 500 400×500×600 500 400×400×600 500 400×400×600
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Figure 5.10. Performance comparison for standard wavefront parallelization
from our FMPP code generator with DTiler, Pluto and Pochoir. There is no
performance for Pochoir for FDTD because Pochoir requires the neighboring
points are all from the previous time step.

5.5.2. Performance Efficiency Of Generated Code. In this subsection, we demon-

strate the efficiency of the codes generated by our FMPP code generator. We compare the

performance of the standard wavefront parallelization codes generated by our code generator

with the codes generated from DTiler [50], Pluto [12]. DTiler is a parametric tiled code gen-

erator, and Pluto is a fix sized code generator. We also compare the performance with the
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code generated by Pochoir [97], a fixed size code generator that implements a very different

tiling and parallelization strategy called cache obvious tiling [78, 31, 32].

Figure 6.14 shows the performance achieved by the code generated from all the code

generators for the benchmarks. We first see that all four code generators produce highly

optimized codes with similar performance, provided we tune each one to choose the best tile

size (except Pochoir, which is auto-tuned). We also see that the performance of the best

parametric tiled code (generated by DTiler) is comparable to the best fixed size tiled code

(generated by Pluto), often it is better, especially on higher-order and higher-dimensional

cases. Similarly DTiler generated code performs better than that produced by Pochoir on

all 2D cases. The performance of code generated by our FMPP strategy is nearly the same

as that of DTiler, with a small (within 5%) loss of of performance.

On Jacobi 2D, the performance achieved by our FMPP code generator is actually better

than DTiler on Xeon E5-2620 v3. Compared to other benchmarks, Jacobi 2D has the fewest

floating point operations per iteration, and the Haswell architecture (i.e., Xeon E5-2620 v3)

has a significantly improved on-chip memory bandwidth. Therefore, one possible reason for

the improved performance is that Jacobi 2D on Haswell is still bound by the off-chip memory

access, and some extra performance benefit is gained by reducing off-chip memory accesses.

5.5.3. Energy Efficiency Of Our FMPP. We evaluate the energy consumption of

our benchmark on the three platforms based on a simple linear regression energy model.

5.5.3.1. Energy Model Overview. The energy consumed by an application consists of

CPU energy and off-chip memory system energy, each of which can be separated into static
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and dynamic components.

(11) E = Estatic
cpu + Edynamic

cpu + Estatic
mem + Edynamic

mem

where E represents the total energy consumption of the given application, Estatic
cpu and Edynamic

cpu

are the static and dynamic energy consumed by CPU, Estatic
mem and Edynamic

mem are the static and

dynamic energy consumed by the off-chip memory system.

We model the CPU energy and memory system energy separately. For the memory

system energy, the static energy consumed can be computed as P static
mem Texec, where P static

mem is

the static power of the memory system, and Texec is the total execution time. The dynamic

energy consumed by the memory system is proportional to the total number of memory

access Nacc. Let eacc be the energy consumed per memory access, then Edynamic
mem = eaccNacc.

Then the energy consumed by the off-chip memory system Emem can be estimated as follows:

Emem = P static
mem Texec + eaccNacc

The value of P static
mem and eacc are derived using the DRAM power calculator [65] provided

by Micron Technology, Inc. The three platforms used in our experiment have very different

internal micro-architectures for DRAM, as indicated from the parameter values derived.

For the CPU energy consumption, we derive a simple energy model using linear regression.

The static CPU energy consumption is the static CPU power multiplied by the execution

time. Cong et al. [19] observe that dynamic CPU energy consumption is proportional to

the number of completed instructions and cache accesses at each level. Since most of the

instructions contained in uniform dependence programs are floating point operations (mostly

translated to double precision vector instructions) and branch instructions, we further divide
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the completed instructions into the floating point instructions and branch instructions. In

order to derive the linear regression model, we collected hundreds of training data points

using a subset of the benchmarks with different problem sizes and tile sizes. Then we collected

another hundreds of data points from the other benchmarks to validate the derived model.

The linear regression model is shown in Equation 12.

(12)

Ecpu = β0 + β1 ×DPVec + β2 × Branch + β3 × L1Acc

+ β4 × L2Acc + β5 × L3Acc + β6 × Texec

where the variables are the dynamic instruction/event counts of double precision vector

operations, branch instructions, Access to caches at levels 1, 3 and 3, respectively, and

these are measured using PAPI [99]. We computed the energy information by accessing the

Running Average Power Limit (RAPL) sensors (the execution time of the program has to be

controlled, so that the RAPL counter does not overflow). Then we build our linear regression

model by using the statistical package R [80]. Figure 5.11 shows the validation result of the

energy model. The Root Mean Square Error (RMSE) for all the validated points is only

around 0.3%, this is probably due to the narrow class of benchmarks that we are using.

Building an energy model that handles general programs is beyond our scope.

5.5.3.2. Results. Figures 5.12 show the energy consumption for all the benchmarks on

the two platforms, normalized to the total energy consumed by the program with standard

wavefront parallelization. On the average, dynamic memory energy consumption is about

14% of the total energy on the platform with Xeon E5-2650 v2, about 8.3% of the total

energy consumption on the Xeon E5-2620 v2 based machine, and about 6.9% on the Xeon

E5-2620 v3 based platform. Our FMPP is able to save a significant part of the dynamic
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Figure 5.11. Validation result of our linear regression model for CPU energy.

memory energy consumption (red part): about 74% of dynamic memory energy consumption

on the Xeon E5-2650 v2, 75% of the dynamic memory energy consumption on Xeon E5-2620

v2, and 67% on Xeon E5-2620 v3 based machine.
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Figure 5.12. Normalized energy consumption for the standard wavefront
parallelization (Wave) and our flattened multi-pass parallelization strategy
(FMPP) on Xeon E5-2620 v2, Xeon E5-2650 v2 and Xeon E5-2620 v3.

In terms of savings of the total energy consumption, we got an average of 8% of total

energy consumption saving on the Xeon E5-2650 v2 based machine, 3.1% on the Xeon E5-

2620 v2 based machine, and 4.6% on the Xeon E5-2620 v3 based machine. We even got

up to 14% of energy savings on the platform with Xeon E5-2650 v2 for Heat 2D. Also, due
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to the improved execution time on Xeon E5-2620 v3 for J2D, about 11% energy saving is

achieved for J2D.

5.6. Conclusion

In this Chapter, we presented an energy-efficient parallelization strategy for dense stencil

like programs, on which polyhedral analysis can be used and tiling can be applied. Energy

optimization for tuned compute bound codes have very little “energy slack,” and we tar-

geted the main contributor—the dynamic memory energy consumption—by minimizing the

number of off-chip memory transfers. On all three experimental platforms we were able to

reduce this significantly—by over 65%.

We developed a parametric tiled code generation algorithm for our parallelization strat-

egy, for which the key challenge was to incorporate schedules that are polynomial, rather

than the standard multidimensional ones used in most code generators. This is the first code

generator that implements polynomial schedules for parametric tile sizes.

Our experimental results showed that the generated code has performance comparable

with, often better than, existing code generators. We achieve, on the average, overall energy

savings of 7.9% on the Xeon E5-2650 v2, 3.4% the Xeon E5-2620 v2, and 4.6% on the Xeon

E5-2620 v3. In the best case, we saved 14% of the energy on the Xeon E5-2650 v2.

Our work confirms that optimizing energy leads to good performance, but the converse

is not necessarily true. Although our work is based on the rectangular tiling and wavefront

parallelization, our method is in general independent of the tile shape or parallelization strat-

egy that are chosen. Our main idea is dividing the iteration space into small passes, so that

the data reuse within the whole pass is possible. Within a pass, any existing tiling technique

and parallelization strategy for the tiled iteration space can be adapted. The key challenges
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here are how to schedule the computation so that no performance sacrifice will occur, and

automatically generate the codes. Our strategy can also be used in many other programming

models and architectures—distributed memory codes in MPI, hybrid MPI/OpenMP, accel-

erators like GPUs, and even FPGAs. It is also interesting and challenging to use different

tile shapes within our multi-pass strategy.

66



CHAPTER 6

Performance Optimization with Efficient

Vectorization

In Chapter 4 and Chapter 5, we presented our energy-efficient strategy that addresses

the dynamic energy consumption and its code generation algorithm. In this chapter, we

address another important energy contributor – static energy consumption.

As described in Chapter 1, static energy is proportional to execution time, the only way

to improve the static energy is to improve the execution time. However, for the compute in-

tensive stencil computations tackled in our work, they become compute bound after tiling. In

other words, the execution time is mainly bounded by the number of computation. Although

we are not targeting for reducing the number of computations in this work, it does not mean

that the computation time can not be improved. For modern multi-core architectures, one

key to obtain high performance is to make efficient use of the SIMD (vector) units.

Existing tiled code generators generate vectorization friendly code (i.e., make innermost

loop vectorizable), and then rely on the automatic vectorization of existing sophisticated

commercial compilers (i.e., gcc, icc). However, the vectorization strategy extract from the

existing compiler may not be the most efficient strategy for stencil computations. Especially

for parametric tiled codes, standard automatic vectorizers fail to efficiently vectorize the

code because of the complex structure of the code. In particular, the loop bounds involve

complicated expressions involving max/min operations, and parameters that are not known

at compile time.
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In this chapter, we present a compilation method for generating efficient parametrically

tiled SIMD code for stencils, while retaining a simple code structure. We first introduce

the basic SIMD operations provided on modern multi-core architectures. Then we give an

overview of the vectorization strategy that is supported in our work, followed by the details

of code generation.

6.1. SIMD Operations

These SIMD instructions supported on modern processors provide a rich set of operations

for data organization in vector registers. The main operations that are used in our work are

the following:

vload(addr(i)). This operation loads a vector from a stride-1 memory reference addr(i).

vstore(addr(i), src). This operation stores the data in vector register src to a stride-1

memory reference addr(i).

vshift(Vi, Vi+v, l). This operation constructs vector register vi+l with two given registers

Vi and Vi+v, where Vi is a register that contains data that is aligned with the ith element in

the data stream with stride-1 memory reference, 1 ≤ l < v, and v is the number of elements

in a vector register. Fig 6.1 shows how the vshift operation is achieved with the Intel AVX

instructions for double data type. The length of the vector provided by AVX is 256 bits,

which is four double elements. Therefore AVX for double data is also called 4-way AVX.

Similarly, AVX for single is called 8-way AVX. A more detailed description about the vshift

operation with different Intel instruction set can be found in [53].

vshift1(Vi, Vi+2). This operation takes two vectors Vi and Vi+2, and constructs the

vector Vi+1.
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V2 

V3 

V4 

V2 = _mm256_permute2f128_pd(V0, V4, 0x21); 
V1 = _mm256_shuffle_pd(V0, V2, 0x5); 

V3 = _mm256_shuffle_pd(V2, V4, 0x5); 

Figure 6.1. Achieving the shift operation of with shift distance 1, 2 and 3
with the Intel AVX instructions for double data precision.

The data in memory are organized in cache lines (a cache line size is usually a multiple of

vector length), and when a memory load/store is issued, the cache lines that contain the data

will be fetched/written. Therefore, when a vector happens to cross a cache line boundary,

loads/stores will cause a memory access to two successive cache lines. However, if the vector

is only contained in one cache line, then only one cache line will be touched. We call the

load/store of a vector that is aligned with the cache line boundary an aligned load/store.

Otherwise, it is called a load/store. Aligning loads and stores with the cache line boundaries

is a critical optimization on platforms with strict alignment constraints. In general, it is very

difficult to align all loads and stores for parametric tiled stencil computations, since every

tile only operates on a small subset of the global data space, especially for higher dimensional

data and with skewing.

A loop (dimension) is vectorizable if the following conditions are satisfied:

• there is no loop carried dependence along the loop,

• all array references visited in the loop order have stride 1.
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t

Figure 6.2. A 4×14 full tile for the J1D example. The filled dots represents
the computations in the tile, and the non-filled dots represents the data coming
from other tiles that are required for the computations.

Stencil computation is a perfect candidate for vectorization. For the Jacobi style stencil

computations, the loop that visits the innermost data dimension are always vectorizable.

For the Gauss-Seidel style stencil computation, existing work [102, 53] can be used to find

an affine program transformation to make the innermost loop vectorizable. Here, we focus

on how to vectorize the loop after it is made vectorizable with proper pre-processing.

6.2. Our SIMD Compilation Method Overview

We now give an overview of our vectorization strategy. It builds on existing parametric

tiled code generation techniques [85, 5, 50]. We target the full tiles—which can be separated

out using known techniques—and seek a vectorization strategy that reduces the number of

unnecessary memory operations, data reorganization instructions and improves the reuse of

vector registers, while still keeping the program structure as simple as possible.

In Fig 6.2, we give an example of a 4 × 14 full tile for the J1D example, where the

innermost loop iterating over the data dimension i is a vectorizable loop. Although a fixed

size tile is shown for illustration, the sizes are parametric in the actually generated code. In

the rest of paper, we also assume, for clarity of explanation, that the length of a vector is 4,

which means one vector register contains 4 elements.
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For the J1D example, computing one vector V requires three vectors from the previ-

ous time step, as shown in Fig 6.3a. The corresponding assembly code generated by Intel

icc 16.0.2 is shown in Fig 6.3b, where three memory operations are involved in the com-

putation of one vector. However, these three vectors V0, V1, V2 have overlapped data values.

For example, the last three elements in V0 are actually the first three elements of V1. Fig 6.4

shows another strategy that avoids the loads with repeated data. Instead of loading all

the registers required for the computation, we can load two vectors with contiguous non-

overlapped data, which are V0 and V4 separately. Next, we construct register V1 and V2 using

the register data reorganization operations like vshift . Furthermore, V4 can be directly fed

into the computation for the next vector V ′, and only one more vector is required to be

loaded for the computation of V ′. Therefore, this strategy only requires one vector register

load and two vshift operations for each vector computation, in the steady state. The stan-

dard auto-vectorization strategy requires three memory operations. We can also peel out

the initial load required for the very first vector out to make the operations uniform for all

the vector computations within the vectorized loop.

V

V0 V1 V2

(a)

vmovupd -8(%r13,%r14,8), %xmm2

vaddpd (%r13,%r14,8), %xmm2, %xmm3

vaddpd 8(%r13,%r14,8), %xmm3, %xmm4

vmulpd %xmm1, %xmm4, %xmm5

(b)

Figure 6.3. (a) Vectors required for one vector computation. (b) Assembly
codes generated for one vector computation for the parametric tiled codes.
vmov instruction moves data to a vector register, and the two vadd operation
has one operands involves a memory address.
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V V
′

V0 V4

V1 = vshift(V0, V4, 1) V2 = vshift(V0, V4, 2)

Figure 6.4. Vectorization without repeated data loads.

register V0, V4;

V0 = vload (..);

for(i = lb; i < ub; i += 4) {

// remaining loads

V4 = vload (..);

// vectorized computation

V = compute(V0, V4);

vstore(V, ..);

// register copy

V0 = V4;

}

(a)

register V0, V4;

V0 = vload (..);

for(i = lb; i < ub; i += 8) {

/* first iteration */

// remaining loads

V4 = vload (..);

// vectorized computation

V = compute(V0 , V4);

vstore(V, ..);

/* second iteration */

// remaining loads

V0 = vload (..);

// vectorized computation

V’ = compute(V4 , V0);

vstore(V’, ..)

}

(b)

Figure 6.5. (a) The vectorized loop for Figure 6.4 when only one vector is
computed within the loop body. (b) The vectorized loop with an unroll factor
of two. In other words, two vectors are computed within the loop body.

Figure 6.5a gives an example about the vectorized innermost loop for Figure 6.4, where

function compute takes two registers as inputs and produces the final answer. Note that a

register copy has to be performed at the end of loop to save the register that can be reused

for the next iteration. However, under some situations, this register copy can also be saved.

In Figure 6.5b, we show the vectorized innermost loop when it is unrolled twice. As we can

see, the register V 4 is directly fed as input to the computation for the second iteration. Also,
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since the values in register V 0 are not useful anymore after moving to the second iteration,

we can reuse V 0 to store new values, and the new values are reused for the next iteration.

Note that no register copy is required in the code shown in Figure 6.5b. When no register

copy is required for saving the loaded values from an array, we say the loads for the array

can be implemented in a perfectly rotated manner. The main idea of our vectorization

strategy is to load non-overlapped vector and construct the intermediate registers when it is

necessary. Clearly the cost for this is the additional instructions to build the needed vectors,

and indirectly, the register pressure that this may introduce. Before we describe the details

of our vectorization algorithm, we formalize some of the patterns of stencil accesses.

We characterize the data stream that is touched by a dependence using the depen-

dence vector of the dependence, but with the innermost vectorized dimension removed. For

example, the dependence vectors for the J1D example are (1, 2), (1, 1) and (1, 0), and after

projecting out the innermost dimension, the value along the outer dimension is 1, for all

three dependences. Therefore, only one data stream is read by the computation. For the

J2D example described in Equation 2, the dependence vectors after time skewing for one

computation are (1, 2, 1), (1, 0, 1), (1, 1, 1), (1, 1, 2) and (1, 1, 0). After projecting out the

vectorized dimension we get (1, 2), (1, 0), (1, 1), (1, 1) and (1, 1), and there are thus three

distinct data streams touched for one computation.

The relative distance of the data touched in the data stream by a dependence is defined

as the negation of the value of the innermost (vectorized) dimension of dependence vector.

For example the relative distance touched by the three dependence in J1D is −2, −1 and 0

respectively. With the knowledge of the relative distances in a data stream for a computation,

we know the relative data range that is covered for the computation in the data stream, which

73



is defined as the range from the minimum of the relative distances to the maximum of the

relative distances. For example, the relative data range covered for the J1D example is

[−2, 0]. For the J2D example, the relative data range covered in the data stream (1, 1) is

[−2, 0], but [1, 1] for both data stream (1, 2) and (1, 0). We simply add the vector length to

this get the relative data ranges for an entire vector computation.

Property 6.2.1. For a variable with only uniform dependencies, if K vectors of con-

tinuous data in a data stream are needed for one vector computation, then the last K − 1

vectors in the stream can be reused for the next computation.

Proof. Assume that the relative data range for the data stream is [a, b], and the vector

length is v. Then the relative data range covered by one vector computation is [a, b+v]. For

a vector computation that is aligned with the ith element, the required data in the stream

is from i + a to i + b + v, and the number of vector loads K is ⌈v+b−a
v

⌉, and each vector

starts with element i + a + v × k in the data stream, where 0 ≤ k ≤ K. For the next

vector computation, it will be aligned with the (i + v)th element. Due to uniformity of the

dependencies, the same data range pattern will carry over, and the data has to be loaded

from the same data stream, starting from i+ v + a, which is aligned with the second vector

loaded in the previous vector computation. �

Property 6.2.2. The vector loads for a data stream can be implemented in a perfect reg-

ister rotation manner if the vectorizable loop is unrolled at least K vector times. Otherwise,

register copies are needed.

Proof. As described in Theorem 6.2.1, there is only one vector difference between two

continuous vector computations. This means that vector registers can only shifted by one
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vector once. Therefore, at least K vector iterations will be needed to rotate back to the first

register. �

Properties 6.2.1 and 6.2.2 can both be applied for stencil computations, since the de-

pendence involved in stencil computations are all uniform dependences. According to Prop-

erty 6.2.1, only one more extra load is required from a data stream when we move from one

vector computation to the next vector computation. Then we can peel off the first K − 1

loads in the very first vector computation, and keep the code uniform for all the vector

computations within the vectorized loop body.

In order to exploit vector register reuse along the outer dimensions, we support register

blocking for the data dimensions and the register block size along the vectorized dimension

is required to be a multiple of vector length. We further block the register block along the

vectorized dimension with the vector length, and each sub-register block is called a Register

Vector Block (RVB), which is our analysis unit. Let us take J2D as an example, the innermost

j dimension is the vectorizable dimension for J2D. Fig 6.6 shows the data required (filled

dots) for the computation of one vector (non-filled dots). Figure 6.6b describes a register

block with size 4× 12 and the RVBs within the register block (successively as red, blue and

black circles).

We consider a tiled d-dimensional stencil computation with ts0× ts1× . . .× tsd tiles, and

rs0 × rs1 × . . . × rsd register blocks, where tsi is the tile size for the ith dimension and rsi

is the register block size for the ith data dimension. The register block size has to be fixed

during code generation time, but tile sizes are parametric. The code structure generated for

a full tile is shown in Figure 6.7, where the last register copy code block is not needed when

perfect rotation (Property 6.2.2) holds.
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(a)

(b)

Figure 6.6. (a) Data required (filled dots) from time step t−1 for the computation
of one vector (non-filled dots) at time step t. The time dimension comes out of
paper, and is omitted in the figure. (b) A register block with size 4 × 12, and the
red dots, blue dots, and black dots represent one RVB separately. The filled black
dots describe the data required for the RVB represented with red dots.

Our vectorization algorithm consists of four steps, and are described as follows:

• Compute relative ranges of the data to be loaded for one RVB.

• Construct peeled loads: the first K − 1 loads for each data stream are peeled off

before the vectorized loop.

• Construct the vectorized loop body for the rsd−1

v
RVBs.

• Check whether perfect register rotation is applicable, otherwise, generate register

copies to align the registers.

The second and last steps are not complicated, so we describe how we compute the data

range for one RVB and how we construct the vectorized loop body.

Note that, in order for the code described in Fig 6.7 to produce correct answers, the tile

size along the i dimension tsi must be a multiple of the corresponding register block size
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register V0, V1, ...; // register for loads

for(t = tt; t < tt + st; t++) {

for(i0=ti0; i<ti0 + ts0; i0+= rs0){

for(i1=ti1; i<ti1 + ts1; i1+= rs1){

. . . . // other data dimension loops

for(id−2=tid−2; i<tid−2+tsd−2; id−2+=rsd−2){

peeled_loads ();

for(id−1=tid−1; i<tid−1+tsd−1; id−1+=rsd−1){

/* Code block for first RVB */

remaining_loads(RVB0);

compute_body(RVB0);

/* Code block for second RVB */

remaining_loads(RVB1);

compute_body(RVB01);

. . . . // other code blocks

/* Code block for n = rsd−1

v
th RVB */

remaining_loads(RVBn−1);

compute_body(RVBn−1);

/*NOT Needed when perfect rotation can be applied */

register_copy ();

}

}

}

}

}

Figure 6.7. Code structure for the vectorized full tiles with tile size tsi along
the ith dimension, and register block size rsi along the ith data dimension.

along this dimension. Otherwise, the values at the boundary will be redundantly updated by

different tiles. In section 6.3.3, we will describe how temporary buffering can help to ensure

the correctness for any tile sizes.

Moreover, aligning loads and stores with cache line boundaries is an important opti-

mization with a big impact on performance for machines with strong alignment constraints.

When the first reference in a tile is aligned with the cache line boundary, existing techniques

can be utilized to align all the loads and stores. However, with parametric tile sizes, the
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first reference within a tile changes with the tile sizes, and the alignment assumption usually

does not hold. In section 6.3.3 we will also show how the load and store alignment can be

achieved easily with temporary buffering.

6.3. Code Generation for Our Vectorization Strategy

In this section, we describe how we compute the data range that has to be loaded for

each UVB, and how the vectorized loop body is constructed during code generation. Also,

we illustrate how temporary buffering can be utilized to ensure the correctness of arbitrary

tile sizes and guarantee the alignment of loads and stores.

6.3.1. Data Range Computation. In section 6.2, we described how to compute the

relative data range for a data stream. Here, we will describe how to compute the relative

data range required for the whole RVB that is relative to the first computation point of the

register block.

The way we compute the data range for one RVB is straightforward. For a RVB, we

extract all the data streams that are touched in the whole RVB, and then compute the

relative data range in each data stream. In order to do this, we enumerate all the dependences

in the first RVB with respect to the first point in the register block. In the J2D example, the

first point in a register block is (t, i, j), and it depends on (t− 1, i− 2, j− 1), (t− 1, i, j− 1),

(t− 1, i− 1, j − 1), (t− 1, i− 1, j − 2) and (t− 1, i− 1, j). The next point in the RVB along

the i dimension is (t, i+1, j), which depends on points (t−1, i−1, j−1), (t−1, i+1, j−1),

(t − 1, i, j − 1), (t − 1, i, j − 2) and (t − 1, i, j), and the corresponding dependence vectors

are (1, 1, 1), (1,−1, 1), (1, 0, 1) and (1, 0, 2). Similarly, we can extract dependence vectors for

the rest points in the RVB. Then the data streams touched in one RVB and the data range

covered in each data stream can be computed using the previous description. According

78



to Property 6.2.1, when we move from one RVB to the next RVB along the vectorized

dimension, we just need to shift the data range in each stream with the vector length.

6.3.2. Loop Body Construction. After the loads are constructed, we need to con-

struct the vectorized loop body. As described in Fig 6.7, the unrolled vectorized loop body

consists of n unrolled code blocks, where n is the number of RVBs within a register block.

Each code block also includes two parts: the loads for the additional vectors needed, and

the vectorized computation itself. The vectorized computation is a direct SIMD instruction

translation from the original computation, so the key problem here is how to construct all

the registers needed for the computation with the loaded registers.

In order to solve this problem, we first construct a register dependence graph with all

the registers needed in the computations and the loaded registers. A register Va depends

on register Vb and Vc if Va can be constructed with Vb and Vc with a vector register data

reorganization operation like vshift . When there are multiple candidates for construction

of Va, we pick up the one with the least latency. The loaded registers do not depend on

any other registers. After the register dependence graph is constructed, a topological sort

is performed to decided the order of the register construction. For the J1D example shown

in Fig 6.4, the loaded registers are V0 and V4, and the other needed registers are V1 and V2.

Register V1 can be constructed either using vshift(V0, V4, 1) or vshift1 (V0, V2). The latency

for vshift1 is usually shorter than the vshift , therefore there is an edge from V1 to V0 and V2.

Fig 6.8 shows the register dependence graph for the computation of one UVB of J1D, and

Fig 6.9, shows the vectorized code for the full tiles in the J1D example.
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V0 V4

V2V1

Figure 6.8. Register dependence graph for one UVB of J1D.

register V0, V4;

for(t = tt; t < tt + st; t++) {

// peeled loads

V0 = vload(&B(t, ti));

for(i = ti; i < ti + si; i += 8) {

/* Code block for first UVB */

V4 = vload(&B(t, i+4)); // remaining loads

// vectorized computation

compute_body(t, i, B, V0 , V4);

/* Code block for second UVB */

// remaining loads , using rotated register

V0 = vload(&B(t, i+8));

// vectorized computation

compute_body(t, i+4, B, V4 , V0);

}

}

void compute_body(int t, int i, double **B, register V0 , register V4) {

// construct needed registers

register V2 = vshift(V0, V4, 2);

register V1 = vshift1(V0, V2);

// vectorized computation

register out = vmul(vadd(vadd(V0,V1),V2), v(0.33333 ) );

// write back

vstore( &B(t,i),out);

}

Figure 6.9. Code structure for the vectorized full tile for J1D. The data
dimension i is unrolled by 2 vectors. Variable B is the data space that J1D
operates on. It is a two dimensional array but with only two rows accessed
modulo-2.

6.3.3. Temporary Buffering. We described our vectorization strategy and the algo-

rithm to generate the vectorized code. However, there are still two problems that remain:

1) ensuring the correctness for arbitrary tile sizes, 2) aligning loads and stores.
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The common technique to ensure correctness for arbitrary tile sizes is by peeling out the

initial and final few iterations to make sure that the rest of the loop iterates over a multiple

of the register block size. The peeled iterations are executed in scalar mode. However, this

complicates the code structure, which may prohibit some compiler optimizations. There is

also extensive work on aligning loads and stores [25, 39, 53], most of which shifts the loads to

align with a cache boundary, and then reorganizes the data with vector operations like vshift

used in this paper. However, this does not work when the memory is allocated dynamically.

Especially, in the parametric tiled code, every tile only operates on a small subset of the

whole data space, and the relative address of first reference in a tile is not known until

run-time.

We resolve both problems in a simple way by allocating and using a temporary buffer.

Furthermore, this also retains the simplicity of the code structure. The main idea is straight

forward: allocate perfectly cache-aligned temporary buffers (memory) to hold the data re-

quired by the tile, and have the tile code access these buffers rather than arrays of the original

code. For every full tile, we allocate n buffers whose size matches the data accessed by the

tile, where n is one more than the dependence in the time dimension. This storage mapping

is known to be a schedule-independent memory allocation for stencil computations [93]. For

our J1D example, n = 2, because the furthest dependence along the time dimension is 1.

Also the data space (along i dimension) touched by the tile shown in Fig 6.2 is 14 + 2 = 16,

where 14 is the tile size along the time dimension, and two additional values are required

from a neighboring tile. Therefore, for the J1D example with tile size ti along the data

dimension, two one dimensional array with size ti + 2 are allocated. Similarly, for the J2D

example with tile sizes ti×tj along the two data dimensions, two 2-dimensional arrays of size
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(ti + 2)× (tj + 2) are allocated. This array could be allocated as either a multi-dimensional

array, or as a linearized (1-D) data structure. On the machines we experimented with, the

one-dimensional linearized allocation performed better.

V

V0 V4

V1 = vshift(V0, V4, 2) V2 = vshift(V1, V4, 1)

Figure 6.10. Memory padding for the temporary buffer for J1D. The blue
dots represent padded extra memory, the non-filled dots are the memory used
for the halo region.

With temporary buffering, the computations within a tile read and update temporary

buffers instead of the original data space. Only the data that is consumed by a tile in the

next wavefront, or output data are written back to the global memory. Data that is reused

between successive tiles is repeatedly updated directly in the temporary buffers. The scheme

works even if the tile sizes are not multiples of the register block size. However, we have

to be careful to avoid memory references to non-allocated memory, because the buffer is

allocated according to the tile sizes. One way to solve this is to use loop peeling, but this

complicates the code structure, introduces conditional codes with parametric sizes, and also

executes some computations in a scalar mode. Our solution is to pad the temporary buffers

to make its size correspond to the next larger tile size that is a multiple of the register block

size. For example, if the unroll factor for J2D is 4 × 8 along the i and j data dimensions

(note that the j dimension is the vectorizable dimension, and the innermost unroll factor is

2 vectors long), the buffer size with padding is (
⌈

ti
4

⌉

× 4 + 2) × (
⌈

tj

8

⌉

× 8 + 2). The loop

and its body remains unchanged. This approach results in some dummy computations, but

82



no peeling or checking is required, no computation is done in scalar manner, and the code

structure remains simple.

We now show how the temporary buffers allow us to align all the loads and stores. Let

us return to the vectorized J1D in Fig 6.4, and assume that all the operations are performed

on the temporary buffer. Let the starting address of each buffer be aligned with the cache

line boundary (this can be done with special malloc calls) and let each cache line be 8 data

elements, then the load of vector V0 and V4 are aligned with the cache line boundary, as are

all the contiguous vectors that are loaded. However, the store of V is not aligned with the

cache line boundary, and the next vector V
′

actually crosses the cache line boundary. As

we can see, if the buffer allocation is aligned with the beginning of the loads, all the loads

will be aligned, but all stores will be misaligned. In order to align the stores too, we pad

extra memory in front each buffer to make the first store align with the beginning of a cache

line. Now, all the stores are aligned with the cache line boundary, but the loads may become

misaligned depending on the amount extra memory padded in-front. Like most previous

work on aligning loads, we shift the first load in each data stream to align with the closet

cache line boundary, and then construct the registers with data reorganization operations.

Our previous properties for register reuse and rotation still hold with these shifted loads,

since it does not break the uniform property of the dependence, which is equivalent to adding

one more dummy dependence that is aligned with the boundary of the cache line.

With memory padding and load shifting, we are able to guarantee the alignment of all the

loads and stores. However, this also comes with a trade-off of some extra data reorganization

overhead. If we look at the last row of data stream that is required for the computation

of a RVB for the J2D example in Fig 6.6b. Without shifting for alignment, only one load
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is enough, but with shifting, data reorganization is needed to construct the register that is

needed. If we look at the second row of data stream, data reorganization is required even

without shifting due to the reuse of the data. Now, with shifting, the first reference in the

data stream will also have to be constructed. However, when every point in the relative

data range of the data stream is used in the computation, there must be one reference in the

range that will become aligned after shifting. Therefore, the number of data reorganization

operations still remains the same, and this is usually true for stencil computation. In order

to explore this trade-off, we separate the data streams into reusable and non-reusable data

streams according to Property 6.2.1. If the number of vectors K required in a data stream

for one computation is equal to 1, the data stream is called a non-reusable data stream,

otherwise it is a reusable data stream. For a reusable data stream, we still do the shifting to

align all the loads in the data stream, but the original misaligned loads are still performed

for a non-reusable data stream, and we call this mostly aligned strategy. In order to support

the exploration of the trade-offs here, both strategies (all aligned and mostly aligned) are

supported in our framework.

Fig 6.10 describes the memory padding for the buffers and also the vectorization strategy

with shifted loads for the J1D example. As shown in Fig 6.10, there are extra memory (blue

dots) padded in front for the alignment of loads and stores, and there are also extra memory

(blue dots) padded at the end to ensure the memory size is a multiple of the register block

size.The (pseudo) code for the J1D example with padded memory and shifted vector loads

is shown in Fig 6.11.
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allocate_padded_buffer(buffer_0);

allocate_padded_buffer(buffer_1);

init_buffer(buffer_0);

register V0, V4;

for(t = tt; t < tt + st; t++) {

update_halo(buffer_0);

// peeled loads , shifted to align with the cache line boundary

V0 = vload(& buffer_0(ti -2));

for(i = ti; i < ti + si; i += 8) {

/* Code block for first UVB */

V4 = vload(& buffer_0(i+2)); // remaining loads

// vectorized computation

compute_body(t, i, V0 , V4);

/* Code block for second UVB */

V0 = vload(& buffer_0(i+6)); // remaining loads , using rotated

register

compute_body(t, i+4, V4 , V0); // vectorized computation

}

write_halo_back(buffer_1);

swap(buffer_0 , buffer_1);

}

free_buffer(buffer_0);

free_buffer(buffer_1);

Figure 6.11. code structure for the vectorized full tile for J1D. The i-
dimension unroll factor is 8.

6.4. Micro-benchmark for Achievable Stencil Ceiling

There are many situations that effect the performance of the parallelized stencil com-

putations. These include the pipeline fill-flush overhead for wavefront parallelization, load

imbalance, communications between wavefronts etc. Unfortunately, these effects are hard to

model analytically. Approaches like roofline model [13, 105, 73, 92] are developed to provide

upper bounds on the achievable performance for a given kernel. These approaches make very

ideal assumption such as unbounded register file size, and the upper bound derived are usu-

ally far away from the actual achievable performance. In order to get a better understanding

about the achievable performance for stencil computation, we develop micro-benchmarks to

measure the achievable performance with simulation of reasonable ideal situations.
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Our benchmarks are designed to simulate the steady state of wavefront parallelization,

for which the following properties are satisfied:

• The tiles executed are all full tiles;

• Every thread executes the same number of tiles of same size within each wavefront.

• SIMD optimization, loop unrolling and register reuse are all applied.

Benchmarks with the above properties have no tile level pipeline fill-flush overhead and

are perfectly load-balanced. Also, the full tile kernel executed is developed based on each

stencil kernel, which contains exactly the same computations as the stencil kernel that is

simulated. We developed two sets of micro benchmarks for each stencil kernel used —

one with no communications (MicroBench NC) between wavefronts and another set with a

controlled amount of communications (MicroBench WC) between the successive wavefronts.

The implementation for the micro-benchmarks with no communication is straightfor-

ward, where every thread executes a series of independent full tiles of the same size, and

synchronizes at the end of each wavefront. The final results of each tile are accumulated into

a single scalar value to prevent the compiler from optimizing it away as dead code (espe-

cially since aggressive optimization flags are usually required to achieve good performance).

For the micro-benchmarks with communications, every thread still executes a series of in-

dependent full tiles within each wavefront, but the results produced in one wavefront have

to be saved as inputs to the next wavefront. This output-input communication is achieved

through a shared global buffer, each thread operating on a thread-specific, private portion

of the buffer at a time. In order to observe and quantify thread-data affinity, we introduce a

parameter called thread data distance, dis, which specifies that thread i reads data written

by thread ((i + dis) mod P), where P is the total number of threads used. Combined with
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the environment variable KMP AFFINITY for icc (a different variable is used when gcc is

used — GOMP CPU AFFINITY ) —which specifies the thread-to-core affinity—we can

indirectly control the data-to-core affinity. When 0 is specified for parameter dis, a thread

fetches the data from the previous wavefront that is written by itself, which is the most ideal

thread-data affinity.

With the micro-benchmarks with no communication, we get an optimistic ceiling on an

ideal execution environment. This is in general not achievable for the whole stencil program.

The micro-benchmark with communication provides a more realistic ceiling that is closer to

the whole stencil program, and also gives us a quantitative idea of how much each stencil is

affected by communication, pipeline fill-flush and load imbalance.

6.5. Experimental Evaluation

In order to demonstrate the efficiency of our generated vectorized codes, we experiment

with a set of stencil benchmarks on three modern Intel architectures. In addition to carefully

exploring the effect of each aspect of our strategy, we also compare the performance of our

generated code with the code produced from three state-to-art code generators, namely

DTiler [50, 85], which is our baseline implementation, and Pochoir [12] and Pluto [97].

6.5.1. Experimental Setup. We conduct experiments on a set of three modern Intel

CPUs, and the hardware characteristics of the three platforms are given in Table 6.1. All

platforms have three levels of cache, with L1 and L2 being private, and the last level cache

(LLC) shared among all the cores. Hyper-threading is also supported on all architectures.

All platforms are running Linux, and programs are compiled using icc 16.0.2 with the

optimization flags -03, -funroll-loops, -xHost and -ipo.
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Table 6.1. Hardware specifications of Intel Xeon E3-1230, E5-2620 v2 and
E5-262 v3.

Processor E3-1230 E5-2620 v2 E5-2620 v3
Architecture Sandy Bridge Ivy Bridge Haswell
Clock speed 3.2 GHz 2.1 GHz 2.4 GHz
Core number 4 6 6
LLC Capacity 8 MB 15 MB 15 MB
Machine Peak 102.4 Gflops/sec 100.8 Gflops/sec 115.2 Gflops/sec

Table 6.2. Benchmark Details. Data D is the number of dimensions of data
grid, another time dimension is needed for computation. NP stands for neigh-
boring points, it means the number of neighboring points needed for the com-
putation of a point. FPI is floating point operations per iteration.

Benchmark Data D Order NP FPI
Jacobi 1D (J1D) 1 first 3 3
Jacobi 2D (J2D) 2 first 5 5
Heat 2D (H2D) 2 first 5 10
Wave 2D (W2D) 2 third 13 13
Blur 2D (B2D) 2 second 25 31
Heat 3D (H3D) 3 first 7 15
Jacobi 3D (J3D) 3 first 27 30

Table 6.3. Problem size used for each benchmark on each platform.

Sandy Bridge Ivy Bridge Haswell

T Data size T Data size T Data size

Jacobi 1D 120000 1000000 160000 1500000 160000 1500000
Jacobi 2D 1000 6000×6000 4000 5000×5000 1000 7000×8000
Heat 2D 1000 5000×6000 1000 6000×6000 1000 8000×8000
Wave 2D 1000 4000×4000 2000 3000×3000 2000 4000×4000
Blur 2D 800 4000×4000 1000 3000×4000 1000 5000×5000
Heat 3D 300 300×400×400 200 400×400×500 300 400×400×500
Jacobi 3D 200 300×300×400 100 400×400×400 300 400×400×400

Our benchmark suite includes stencil kernels with different number of data dimensions,

stencil orders, neighboring points, and number of operations per iteration. Details are in

Table 6.2. Also, in Table 6.3, we give the problem size used for each benchmark on each
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platform. The problem size is chosen such that the data grid size is much larger than the

LLC capacity, and the time step is large enough to make the application compute intensive.

6.5.2. Vectorization Efficiency. Here, we demonstrate the efficiency of our gener-

ated vectorized code. Figure 6.12 gives the design space of our vectorizer. When temporary

buffering and vectorization are both not applied to the tiled code, our code generator ba-

sically produces the same code as DTiler, and thus the DTiler performance is used as the

baseline in our experiments. We can also choose to only apply vectorization to the tiled codes

(SIMD NOBF). For this version of code, the loads/stores within a tile are not guaranteed

to be aligned, and the tile size has to be a multiple of register block size in order to ensure

the correctness. DTiler BF represents the non-vectorized code with temporary buffering.

When both temporary buffering and vectorization are applied to the tiled codes, there are

two choices for the vectorization strategy. We can either choose the “all aligned” strategy

to align all the loads/stores within a tile, or choose the “mostly aligned” strategy to disable

the alignment for the data streams with no reuse between successive iterations. The prelim-

inary results of our experiments showed that the “mostly aligned” strategy is better than

“all aligned” strategy on all three platforms. Therefore, we only report the “mostly aligned”

strategy in our experiments (SIMD BF-Aligned). We generate the four versions of code —

DTiler, SIMD NOBF, DTiler BF, SIMD BF-Aligned — and discuss their performance in

this section.

In order to obtain the best performance, an exhaustive search is performed for all the tile

sizes whose data footprint is less than twice the L2 cache size. Our experience shows that

the best tile sizes are almost always in this range. We also explored different register block

sizes for our vectorized code. For the J1D example, we explored register block sizes up to
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Figure 6.12. The design space of our vectorizer.

10 along the data dimension. For 2D (resp. 3D) cases, it we explored sizes up to 6 (resp. 4)

along each data dimension. In Figure 6.13, we show the best performance in Gflops/sec of

the three versions of code, normalized to the best performance achieved by DTiler.
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We first look at the performance achieved with only vectorization (SIMD NOBF). On

both SandyBridge and IvyBridge platform, an average of 35% improvement is achieved for

the 1D and 2D stencils. About 13.5% performance improvement is achieved on the Haswell

platform for the 1D and 2D stencils. Haswell is one of the most recent Intel platform,

which has a significantly improved on-chip memory bandwidth, and trading off the memory

operations for data reorganization operations is not as beneficial as other platforms. For

3D stencils, we are not able to achieve significant performance improvement on all three

platforms – about 2% on SandyBridge and 6.5% on IvyBridge, and on Haswell we are even

observing small performance degeneration for the Jacobi 3D example. We hypothesize that

the reason is the register pressure once we start to increase the register block size, larger

number of live values need to be maintained in registers.

Next, we see what happens if we start adding the temporary buffering. As mentioned

in section 6.3.3, extra communications are introduced at the boundary for each tile when

temporary buffering is applied. However, this overhead is not very significant for compute

intensive stencils. As indicated from the results of DTiler BF, the performance lost is in

general less than 10% on all the platforms (except for H3D, which is about 30%). For the

Jacobi 1D example, we are even gaining performance improvement by accessing a small array

that usually fits in the L1 cache. After vectorization is applied, we are able to compensate

this loss for all the cases, and even gaining much better performance compare with DTiler.

However, for most cases, the overall performance gain for vectorization with temporary

buffering is not better than that without temporary buffering. There might be two reasons

for this: 1) with proper choice of tile sizes, most of the loads and stores can already be

aligned; 2) on modern Intel architectures, the load/store alignment issue is not so severe.

91



6.5.3. Performance Comparison with Existing Tools. We compare the best per-

formance achieved by our generated SIMD code with two fixed size tiled code generators:

Pochoir [97], and Pluto [12]. Pluto supports both standard wavefront parallelization and

parallelization with concurrent start. We use the codes with standard wavefront paral-

lelization that are generated from Pluto, because concurrent start is not necessary (indeed,

its overall performance is marginally lower than standard wavefront parallelization) for the

compute intensive stencils handled in our work. Pochoir implements a completely different

strategy called cache oblivious tiling [78, 31]. The codes generated from Pluto are “prevec-

torized,” in the sense that vectorization pragmas are attached for auto-vectorization of icc.

Pochoir generated code uses pointer accesses for arrays, which also improves the chances

for auto-vectorization. Therefore, for the codes generated by existing code generators, auto-

vectorization from icc is enabled by default.

We also did an exhaustive search with Pluto to explore the best performance, but the

tile size is fixed for the codes generated by Pochoir. Figure 6.14 shows the performance,

normalized to that of DTiler. The performance achieved by our code generator is better

than existing code generator. If the same efficiency issue of automatic vectorization also

occurs in the codes generated by existing code generator, our vectorization code generation

technique may also help to improve the performance of the generated code.

6.5.4. Performance Comparison with Micro-Benchmarks. Now, we compare

the best performance achieved by our generated SIMD codes with the best achievable per-

formance or “pseudo ceilings” suggested by the micro-benchmarks. The thread data distance

parameter for the micro-benchmarks with communications is set to 0 for the experiments,
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Figure 6.14. Performance comparison of our SIMD code generator generated
codes with the codes generated by existing compilers. The performance is
normalized to the best performance achieved by DTiler.

which simulates the best communication situation. For J1D, the amount of communication

is negligible, so we did not run the micro-benchmark with communication,.

Figure 6.15 shows that on Haswell for all benchmarks except Wave 2D, we achieve per-

formance within 10% of the micro-benchmark with communication. Wave 2D is a 3rd-order

stencil, and needs a larger skewing factor before tiling. This may cause a larger overhead

from pipeline fill-flush and load imbalance. We saw similar results on Ivy Bridge. On Sandy

Bridge, we are also getting close to the micro-benchmarks with communication. On all

the platforms, the J1D performance nearly matches that of the communication free micro-

benchmarks.

93



 0

 10

 20

 30

 40

 50

 60

 70

J1D J2D H2D W2D B2D H3D J3D

G
fl

o
p

s/
se

c

Xeon E3-1230

SIMD Best

MicroBench WC

MicroBench NC

 0

 10

 20

 30

 40

 50

 60

J1D J2D H2D W2D B2D H3D J3D

G
fl

o
p

s/
se

c

Xeon E5-2620 v2

SIMD Best

MicroBench WC

MicroBench NC

 0

 20

 40

 60

 80

 100

J1D J2D H2D W2D B2D H3D J3D

G
fl

o
p

s/
se

c
Xeon E5-2620 v3

SIMD Best

MicroBench WC

MicroBench NC

Figure 6.15. Performance comparison of our SIMD code generator generated
codes with the codes generated by existing compilers. The performance is also
normalized to the best performance achieved by DTiler

Now, if we compare the performance of the micro-benchmarks with communication (Mi-

croBench WC) and the communication free micro-benchmarks, the overhead for the high-

order stencil computations on all the platforms is within 10%. However, the overhead of the

communication for the J2D and Heat 2D are pretty high on the platforms, which is due to

the relatively small amount of computations that is not enough for overlapping the commu-

nications. We are observing some phenomena that we cannot currently explain, where the

overhead of Heat 3D on Sandy Bridge is much higher than on Haswell, but the other way

around for J3D.

6.6. Conclusion

In this chapter, we presented an SIMD compilation method for stencil computations

after parametric tiling. Our vectorizer applies vectorization to rectangular non-boundary
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full tiles, and targets reducing the number of unnecessary loads and maximize the vector

register reuse. Temporary buffering and padding techniques are integrated to guarantee the

alignment of loads and stores within a tile, and also the correctness for arbitrary tile sizes

with arbitrary register block size.

We perform experiments on a set of stencil benchmarks on Intel Sandy Bridge, Ivy

Bridge and Haswell machines. Our experimental results demonstrate significant performance

improvement compare with relying on the vectorizers of product compilers – average 35% for

the 1D and 2D stencils on the SandyBridge and IvyBridge platforms, about 13.5% for the

1D and 2D stencils on the Haswell platform. Comparing with the performance achieved by

the code produced by existing tools, we are also able to achieve comparable, or even better

performance for all the test cases.

We also developed sets of micro-benchmarks for providing more reasonable ceilings than

the ones derived from existing analytical approaches. Our experimental results indicate that

the best performance achieved by our generate code is approaching close to the measured

performance of the micro-benchmarks, around 10% performance margin for many cases.

Although the vectorization strategy generated by our code generator can significantly

improve the performance for 1D and 2D stencils, it does not show similar effect for the 3D

stencils. For 3D stencils, the performance gain is very low or no improvement for some

cases. There are many phenomena occur in 3D stencils whose reason remains unknown, and

performance optimization for 3D stencils is still an open research problem.
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CHAPTER 7

Semi-automatic Code Generation Framework

In Chapter 4, we introduced our energy efficient strategy – FMPP – that targets reducing

the dynamic memory energy by seeking to reduce off-chime memory accesses, without sac-

rificing execution time. In Chapter 6, we showed that the performance can be significantly

improved through better utilization of vector resources which reduces the static energy con-

sumption. We develop a semi-automatic code generator to support these optimizations in a

configurable way. In this chapter, we give an overview of our code generation framework, and

also evaluate the overall energy saving with both memory and vectorization optimization on

one of the most recent Intel architectures.

7.1. Overview of Our Code Generation Framework

We integrated the FMPP and vectorization technique into our polyhedral program trans-

formation and code generation system, AlphaZ [113]. The structure of our framework is

shown in Figure 7.2. Due to the fast evolution of existing architectures, automatic choice

of optimization strategies is a challenge and remains as an open research problem. Many

existing tools [113, 15] are developed in a semi-automatic way, where the optimization strate-

gies are left as configuration parameters, and we also adapt this strategy. Our compilation

framework takes a program representation and a configuration file called Target Mapping as

inputs, and generates the corresponding C+OpenMP+AVX code. Currently, our code gen-

erator only supports the generation of Intel AVX instructions (which is supported on most
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modern architectures), but it would be easy to extend it to support other SIMD instructions

like SSE.

affine jacobi_1d {TSTEPS ,N | TSTEPS > 2 && N > 5}

input

output

double B {t,i|0<=i<N && t== TSTEPS };

local

double temp_B {t,i|0<=i<N && 0<=t<TSTEPS };

let

temp_B[t,i] = case

{|t == 0} : [i]*[i-1];

{|t > 0 && 1<=i<N-1} : (temp_B[t-1,i-1] + temp_B[t-1,i] +

temp_B[t-1,i+1]) *0.33333;

{|t > 0 && 0==i } || {|t > 0 && i==N-1 } : temp_B[t-1,i];

esac;

B[t,i] = temp_B[t-1,i];

.

Figure 7.1. Alpha representation for Jacobi 1D example.

The input program to our code generation framework is written in a language called

Alpha [104], which is used to represent the programs that fit in polyhedral model. Stencil

computations fit well in polyhedral model, and Figure 7.1 illustrates the input for Jacobi

1D. The target mapping specifies the following components:

• polyhedral program transformations (i.e., skewing), represented as affine functions;

• memory mappings that are used to specify the memory storage locations for the

values produced by each statement;

• apply our vectorization strategy or not;

• apply temporary buffering or not;

• if temporary buffering is applied, whether to use mostly aligned or all aligned strat-

egy;

• register block size.
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Figure 7.2. semi-automatic code generation framework.

Code generation is the most important component in our framework, and the code gener-

ation flow is described in Figure 7.3. The code generator first applies the specified polyhedral

transformation as a preprocessing, then generates two sets of loops: original loops and the

optimized loops. The original loops corresponds to the input polyhedral program after trans-

formation, and are generated using existing polyhedral code generation technique [6]. The

optimized loops represent the point loops for the full tiles with vectorized computation state-

ments, and are generated with techniques described in Chapter 6. Finally, a FMPP code

generator takes these two sets of loops, and produces the final desired code with techniques

described in chapter 5. The point loops of the separated full tile are substituted with the

optimized loops.

Polyhedral 

Code Generator 

Polyhedral 

Representation 

C + OpenMP

+AVX 

Preprocessing 

Multi-pass 

Code Generator 

Original loops 
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Figure 7.3. Flow graph for the code generation step.
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7.2. Experimental Evaluation for Overall Energy Savings

Our code generation framework is now able to produce FMPP codes with vectorization.

In this section, we evaluate the overall energy improvement of the vectorized FMPP compares

with the original code generated for standard wavefront parallelization. Our experiments

are performed on the Haswell architecture and all the benchmarks used in section 6.5. The

problem size is adjusted so that the data footprint in one wavefront is much larger than the

LLC capacity.

In Figure 7.4, we show the over all energy efficiency of the codes produced by our code

generation framework. Compared with the original codes produced with standard wavefront

parallelization, we are able to reduce both the static energy consumption and dynamic energy

consumption for most test cases. Over 20% total energy saving is achieved for the Jacobi 2D,

Heat 2D and Wave 2D, and about 15% energy reduction for Blur 2D. For the 3D stencils,

we are not able to achieve significant improvement, only about 5% for Heat 3D, and almost

no gain for Jacobi 3D.

7.3. Conclusion

We developed a code generation framework that supports both our energy-efficient tiling

and parallelization strategy and the compilation method for vectorization. Our framework

is developed as a semi-automatic tool, which allows many optimizations to be applied in an

optional way, and this helps exploration of trade-offs of different optimizations.

With both improvement in dynamic memory energy consumption and static energy, we

are able to reduce the overall energy consumption significantly. Our experimental results on

one of the most recent Intel architecture show that over 20% of overall energy improvement

can be achieved for most 2D test cases. For the Heat 3D, we are able to reduce the overall
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Figure 7.4. Energy efficiency of the codes produced from our code generation
framework

energy consumption by 10%, but almost no energy saving is achieved for the Jacobi 3D

benchmark.

One important problem raised here is the time spent for searching the tuning space –

which usually takes weeks to finish one set of experiments. Since our code generation frame-

work allows many optimizations to be applied in an optional way, this significantly increased

the dimension of the tuning space. Therefore, it is very important for our code generation

framework to have an autotuning approach that can help reduce the searching space. In the

next chapter, we take the first step of building an autotuner for our framework.
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CHAPTER 8

Artificial Neural Network Assisted Autotuning

for Performance

Performance tuning with exhaustive search is a very time-consuming step, which can

take up to weeks or months to finish. The performance tuning problem is also severe for our

code generation framework. One example is that the experiments in section 6.5 took over

two weeks to finish. This is clearly unacceptable in a production setting. Therefore, it is

important to develop techniques to help tune the performance quickly.

Existing performance tuning techniques are separated into two categories: analytical

model based approaches and prediction-based approaches. During the past decades, many

analytical models [18, 14, 42, 30, 64] have been developed to assist the tile size selection

problem. However, abstracting the interaction between kernels and hardware architectures

into a single analytical model is always a challenge. Especially with the increased complexity

of today’s hardware architecture, developing analytical model to guide the performance

tuning across kernels and platforms becomes almost impossible. This is the position taken

by a large community of researchers that has promoted iterative compilation and auto-

tuning. One of the most successful techniques is utilizing machine learning techniques to

assist the choice of available performance tuning parameters. In this chapter, we describe

our use of Artificial Neural Networks to assist the choice of tile sizes and the optimizations

supported in our framework. Currently, this study is only performed for performance tuning
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with optimizations described in Chapter 6, but it can be generated to support the tuning

for energy.

8.1. Our Approach

Artificial Neural Network (ANN) is a supervised learning method, which takes pairs of

inputs and desired outputs, and learns some function that minimizes the error between the

function outputs and the desired outputs. Our goal is to utilize ANN to help find the tile

sizes and optimizations that yield optimal or near optimal performance. There are two ways

to achieve this: 1) train the ANN to predict the desired tile sizes and optimizations; 2)

train the ANN to predict the performance with tile sizes and optimizations as part of the

inputs, and then search the solution space using the trained model to find the one that gives

the best performance. As the first step, we use the second approach to achieve our goal.

We observe that the solution with the best predicted performance usually does not give the

actual optimal or near optimal performance. However, the optimal/near optimal solution

usually occurs in the top K predicted solutions, and K is generally a small number (around

30 based on our observation). Therefore, we return an optimal solution space that contains

the top K solutions in our approach, instead of just one solution.

In this section, we first describe the inputs and configurations for the ANN, and then

give an overview of our approach.

8.1.1. Input Features. In order for the neural network trained model to identify the

platform, kernels, and optimizations applied, we extract four types of features as inputs

to the neural network . The four types of features are hardware features, kernel features,

program input features and optimization features.
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The hardware features extracted are summarized in Table 8.1, and we also describe how

the value for each hardware feature is obtained in the description column. Table 8.2 gives the

program features extracted for identifying the kernels. For the computations that happen

within each iteration, only addition, subtraction and multiplication are extracted in the

features in our work. This is because most of the kernels we handle only have these three

types of operations, but it can be extended to include other operation types.

Table 8.1. Hardware features extracted for identifying the platform.

Feature name description

Number of cores architecture specification
Clock frequency architecture specification
L1/L2/L3 cache size architecture specification
L1/L2/L3 cache memory bandwidth Intel optimization reference manual [43]
Off-chip memory bandwidth measured by STREAM benchmark [63]

Table 8.2. Program Features for characterizing the kernels.

Feature name description

space order longest dependence length along the space dimensions
time order longest dependence length along the time dimension
number of points number of neighboring points
number of adds number of addition operations in each iteration
number of subs number of subtraction operations in each iteration
number of multiplies number of multiplication operations in each iteration

Table 8.3 summarizes the kernel input feature and the optimization features. The kernel

input feature is the input problem size to the kernel, since the performance optimization for

stencils is related to the problem size. The optimization feature includes parameters that

can be used for performance tuning.

8.1.2. Neural Network Configuration. We use a fully connected, multi-layer,

feed-forward neural network [69], and the neural network is trained with the scaled con-

jugate gradient method [49], and targets minimizing the mean square error. The input
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Table 8.3. Input and optimization features.

Kernel Input Feature

feature name description
Problem size 2D: 3 values, 3D: 4 values

Optimization Feature

feature name description
register block size 2D: 2 values, 3D: 3 values.
temporary buffering apply temporary buffering or not (0/1).
tile size 2D: 3 values, 3D: 4 values
hyper-threading run the program with hyper-threading or not (0/1)

parameters to the input layer of the neural network consist of all the features described in

Table 8.1, Table 8.2 and Table 8.3. The output of the neural network is the performance

(measured in Gflops/sec since this allows us to normalize the execution time for a range in

input problem sizes). Note that the number of elements for the input feature and optimiza-

tion feature is different for 2D and 3D stencils. It is possible to train the 2D stencils and

3D stencils together by treating 2D stencils as a special case of 3D stencils whose outermost

dimension’s size is 1. Here, we choose to train the 2D stencils and 3D stencils separately.

Two most important parameters for a multi-layer neural network are the number of

hidden layers and the number of units in each layer. The previous work [114, 81, 62] on

neural network assisted autotuning uses either one or two hidden layers, and at least 20

units per layer. We tried several configurations of neural network with one or two layers,

and number of units from 20 to 50 within each layer. We found that a two-layer neural

network with 50 units within each layer gives the best prediction accuracy, and this is used

as our final neural network configuration.

8.1.3. Overview of our approach. After the neural network is trained for predicting

the performance, we can use it to find the optimal solution space. Figure 8.1 shows the flow
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of our autotuning approach. For a given kernel with certain input size and a platform,

we first generate the solution space by enumeration of all the possible combinations of the

values of the optimization features. Then, we use the trained neural network to predict the

performance for each solution in the solution space. Finally, an output filter is used to select

the optimal solution space that contains the top K solutions.

Architecture Features 

Kernel Input Features 

Optimization 

Solution Space 

Generator 

Trained ANN Output Filter  
Kernel Features inputs outputs Optimal Solution  

          Space 

Figure 8.1. The flow graph of our autotuning approach.

8.2. Experimental Validation

In this section, we validate our approach for predicting the optimal solution space with

a set of kernel-platform combinations.

8.2.1. Experimental Setup. We target the three Intel platforms used in Section 6.5

– SandyBridge, IvyBridge and Haswell. The data collected in Section 6.5 for all the 2D

and 3D kernels are used to initialize the database for training. Since there are only two 3D

kernels used in Section 6.5, we added one more 3D kernel to increase the database size for

3D stencils. The 3D kernel added is Wave 3D (W3D), a 14-point stencil with second order

along both time and space dimension, and with 16 computations per iteration. About 300K

data points are collected for the 2D/3D stencils, and the neural network is trained for 2000

iterations. The training time for the 2D / 3D stencils took about 5 hours, which although

pretty time-consuming, needs to be performed only once.

8.2.2. Performance Prediction. We separate the database into two sets: training

data set and testing data set. The training data set randomly picks up 80% data form the
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database, and the rest are used as testing data. Figure 8.2 shows the error trace (square root

mean) during the training process for the 2D and 3D stencils. As shown in Figure 8.2, the

error for both 2D and 3D stencils drops off very quickly and flattens after 1000 iterations.
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(b) Error trace for 3D stencils.

Figure 8.2. Error trace for the square root mean during the training process.

Figure 8.3 is the scatter plot for the performance prediction result for the 2D stencils.

After training for 2000 iterations, the root mean square percentage error (RMSPE) is about

8.6% for the training data set, and about 8.8% for the testing data set. The performance

prediction result for 3D stencils is shown in Figure 8.4. The RMSPE for the training data

set is only 4.8%, and 4.9% for the testing data set.

8.2.3. Optimal Solution Space Prediction. Above, we showed that the trained

ANN can predict the performance pretty accurately, whereas our final goal is to predict the

optimal solution space for any platform-kernel combination. We pick up nine kernel-platform

combinations, and use a different problem size from the ones already in the database (usually

different along one or two dimensions). The value K for the optimal solution space size is

set to 30 in our experiments (this is chosen based on observations).

We run all the 30 optimization configurations in the predicted optimal solution space,

and choose the one with the best performance. Then, we normalize the best performance to
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Figure 8.3. The performance prediction result for both training data set and
testing data set for 2D stencils.

Figure 8.4. The performance prediction result for both training data set and
testing data set for 3D stencils.

the actual optimal performance, and the result is shown in Figure 8.5. The actual optimal

performance is obtained by exhaustive search. As we can see in Figure 8.5, eight out of nine

test cases achieve performance within 10% of the actual optimal performance. The achieved
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performance of Wave 3D on Haswell is about 20% off the actual optimal performance. We

notice that the amount of 3D data used for training on Haswell is relatively smaller compare

to other platform, and more data might help improving the accuracy of predicting the optimal

solution space.
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Figure 8.5. Normalized best performance among the predicted optimal so-
lution space to the actual best performance.

Although the optimal solution space in our experiment contains 30 configurations for

the optimization feature, the actual number of code instances that have to be generated is

much smaller. As described in Table 8.3, the register block size and temporary buffering

optimization need to be decided for code generation, but others like tile sizes are not needed

for code generation, because we are generating parametric tiled codes. Therefore, the number

of different combinations of register block size and temporary buffering is the number of code

instances that have to be generated. Table 8.4 summaries the number of code instances that

have to be generated for the predicted optimal solution space. The number of code instances

is pretty low for all the cases, and therefore reduces the code generation and compilation

time comparing with using fixed-size tiling.
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Table 8.4. The number of code instances that occur in the predicted optimal
solution space.

kernel-platform number of code instances
J2D-Sandy 6
H2D-Sandy 1
W2D-Sandy 1
J2D-Haswell 2
H2D-Haswell 1
B2D-Ivy 4
H3D-Sandy 6
W3D-Sandy 1
W3D-Haswell 4

8.3. Conclusion

In this chapter, we take the first step towards building an autotuner for our code gen-

eration framework. We proposed an autotuning approach based on an exhaustive search of

the tuning space with a performance model that is trained using ANN. Our experimental

results showed that the ANN trained performance model can predict the performance pretty

accurately. The optimal solution space predicted with the assistant of the trained model is

able to capture the near optimal/optimal solution for most test cases. We also would like to

thank Professor Chuck Anderson for the help of getting results using his implementation of

ANN.

Although our autotuning approach is able to predict the optimal solution space with

optimal/near optimal solution for most test cases, it still takes up to 30 solutions to predict

the optimal/near optimal solution. Since the points in the solution space that we are inter-

ested in are the points that give optimal/near optimal performance, it might be better to

initialize the database with these points, so that the model can be trained to fit the points

give optimal/near optimal performance better. And this may help improving the accuracy

109



of the optimal solution space prediction. Also, our final goal is to develop an autotuner for

energy consumption, but in this work we only targeted for performance.
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CHAPTER 9

Conclusion and Future Work

9.1. Conclusion

Previous work on stencil computations mainly focuses on performance optimizations.

With the growing importance of energy, saving energy at the application level has become a

popular research topic. In this work, we target the compute intensive stencil computations,

and seek to automatically produce codes that minimize the energy consumption.

We proposed an energy-efficient tiling and parallelization strategy that seeks to reducing

the dynamic memory energy consumption by minimizing the number of off-chip memory

transfer, but without sacrificing performance. Experimental results on all the platforms

show that we can significantly reduce the dynamic memory energy consumption – by over

65% on all platforms. We also target the main energy consumption contributor — static

energy consumption — by further improving the performance of the generated codes. We

presented a compilation method for vectorization that automatically produce vectorized

code that can make efficient use of the available vector units. The vectorization strategies

supported in our vectorizer seek to improve performance by trading memory operations

with data reorganization operations, and also maximizing the register reuse. Comparing

with relying on the automatic vectorizers provided by exiting commercial compilers, our

vectorized code can significantly improve the performance for 2D stencils – about 35% on the

SandyBridge and IvyBridge platform, and 13.5% on the Haswell platform. With reduction

in both dynamic energy and static energy, we are able to get over 20% total energy savings
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for most 2D cases on the Haswell Platform. Our results also confirm that optimizing energy

leads to good performance, but the converse is not necessarily true.

We developed a semi-automatic code generation framework to support our energy-efficient

strategy and compilation method for vectorization. In our framework, many optimizations

can be applied in an optional way, which is useful in helping the exploration of trade-offs of

different optimizations. For example, we can specify whether to apply temporary buffering

or not. Although our experimental results showed that applying temporary buffering is not

beneficial for performance for many case on our test platforms, there are still situations that

it helps (Jacobi 2D on IvyBridge). The trade-offs of these optimizations depend on both

software and hardware features, which are hard to model. Therefore, it is useful to have a

semi-automatic code generator to support different optimizations in a configurable way.

In addition to the above, we also proposed an autotuning approach to assist the choice

of optimization strategies and tile sizes for performance. Our approach predicts the optimal

solution space based on a performance model that is trained using an Artificial Neural

Network. The tuning space of our code generation framework is very large, and performing

exhaustive search over the whole space is extremely time-consuming. With our autotuning

approach, we are able to significantly reduce the search space for optimal/near optimal

solution, and therefore, improve the practical impact of our framework.

9.2. Future Work

There are several directions in future research raised in this work:

• adapting our energy efficient strategy and vectorization strategy for other tiling

and parallelization strategy. Our work is based on the classic time skewing and

wavefront parallelization. However, many authors have pointed out that for stencil
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computations with very small number of time iterations (1 to 8), other techniques

that can be used explore concurrent start are more beneficial, such as diamond

tiling, trapezoid tiling and etc. Adapting our energy efficient idea and vectorization

to those techniques may raise different challenges.

• applying our energy efficient strategy on other platforms. We have shown that our

strategy is beneficial on modern multi-core CPUs, and it will be interesting to see

how our strategy work on other platforms like GPU and FPGA.

• optimizations for 3D cases. As shown in our result, as well as the past research,

optimizations for 3D cases still remains as a challenge. Many optimization strategies,

that work great for 1D and 2D cases, do not show significant improvement once they

are applied to 3D cases, and sometime may even hurt the performance.

• machine learning assisted autotuning for energy efficiency. In this work, our machine

learning assisted autotuning is only for performance, and it can be extended for

energy prediction.
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