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ABSTRACT 

 

 

A MULTI-SCALE ANALYSIS OF VEGETATION AND IRRIGATION HETEROGENEITY 

EFFECTS ON ECOHYDROLOGICAL FUNCTION AND ECOSYSTEM SERVICES IN A 

SEMI-ARID URBAN AREA 

 
An ever-increasing proportion of humanity resides in cities, yet the factors driving resource use 

and shaping urban sustainability remain poorly understood. In arid and semi-arid climates, water is a 

limited and costly resource, and future supplies are threatened by increases in population and climate 

change. A majority of summertime household water use in many western cities goes to irrigating 

vegetation, and this can be viewed as a significant cost or, from an ecosystem services perspective, 

“disservice”. However, urban vegetation also provides a wide variety of important provisioning and 

regulating ecosystem services. While the general value of green spaces to ecological services is widely 

recognized, the importance of specific structural and compositional characteristics on ecosystem services 

and disservices is unknown. Such information is essential for achieving ecological resiliency in the face 

of an uncertain future. 

This dissertation research focused on three broad objectives: (1) quantifying the compositional 

and structural variation in urban vegetation and characterizing consequences for water use patterns; (2) 

evaluating heterogeneity in irrigation practices and its relationship to water use by the two most common 

classes of urban vegetation, turfgrass and trees; and (3) quantifying a key ecosystem service, land surface 

temperature (LST) amelioration, in relation to vegetation composition, structure, and residential water use 

patterns. Because scale is a critical consideration in evaluating ecohydrological patterns and processes, I 

conducted my analyses at a range of spatial scales, from that of individual city parks to the city of Aurora, 

Colorado (> 200 km2).  

To develop high resolution land cover data essential for subsequent analyses, I compared the 

accuracy of different remote sensing classification approaches for mapping urban land cover (LC) and 
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structure. Specifically, I compared classification accuracy of LC maps derived from lidar and 4-band 

multispectral data using three different approaches: (1) an object-oriented segmentation (OBIA) and 

Random Forest classification approach; (2) a pixel wise classification using Random Forests; and (3) a 

traditional pixel-wise maximum likelihood classification. I mapped six classes: trees, buildings, low-

vegetation, low-impervious, bare soil, and water. Overall classification accuracy for the Random Forest 

analysis was 92.7% (Khat = 0.90), outperforming both the pixel-wise Random Forest classification (87.2% 

overall accuracy; Khat = 0.83) and maximum likelihood classification (84.7% overall accuracy; Khat = 

0.80). The lidar-derived normalized difference surface model (nDSM) had the highest variable 

importance measure in both the pixel-wise and OBIA Random Forest analyses, highlighting the value of 

lidar height information for discriminating urban land cover classes. 

To inform improved urban water conservation and planning, I evaluated spatial patterns and 

correlative relationships among physical land cover properties, socioeconomic and demographic 

characteristics, and single-family outdoor residential water use. Using the high resolution land cover maps 

and lidar-derived vertical structural data I developed, land cover composition and vertical structural 

characteristics for over 45,000 single-family detached residential parcels was analyzed. These data were 

combined with socioeconomic and demographic datasets from the 2010 US Census and local government 

agencies, and used in Random Forest regression analyses of outdoor water use from residential water 

meter records, with separate analyses conducted using parcels and census block groups as sampling units. 

To assess the relative importance of physical (e.g., land cover composition, three-dimensional structure) 

and socioeconomic variables in predicting outdoor water use, I evaluated conditional variable importance 

measures from Random Forest analyses and compared the predictive accuracy of models developed using 

subsets of explanatory variables. Random Forest models of outdoor water use developed using the subset 

of land cover variables had the highest predictive accuracy, followed by models developed using vertical 

structural variables, and lastly, the subset of socioeconomic/demographic variables. At both the parcel and 

census block group scale, I found statistically significant spatial clustering in outdoor water use, with 

neighborhood age, land cover, and vertical structure differentiating high and low water use clusters. High 
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water use clusters occurred in the oldest neighborhoods and had higher mean tree canopy cover and tree 

height than low water use clusters. 

Water use can be viewed as an ecological disservice--a cost incurred to maintain irrigated urban 

vegetation--but assessments of cost and benefit should consider a wider suite of ecosystem services. One 

such service provided by irrigated vegetation is amelioration of the urban heat island formation through 

moderation of land surface temperature (LST). Using land cover maps and lidar-derived vertical structural 

data (e.g., tree and building height), I evaluated the relative importance of land cover compositional and 

vertical structural variables in predicting LST derived from Landsat 5 TM thermal band data. After 

aggregating data using 2010 census blocks, I analyzed LST using the Random Forest machine learning 

algorithm. Three variable importance measures were used to evaluate the relative value of variables in 

predicting LST. Along with NDVI, tree height and the mean height difference between trees and 

buildings had the highest variable importance for predicting LST and were found to contribute 

significantly to model accuracy. Models incorporating vertical structural variables explained an average 

of 11.5% more variation in LST than models developed using only land cover class variables. These 

results highlight the importance of vertical structure for LST patterns. 

Finally, I evaluated water use by irrigated Poa pratensis turf and several common urban tree 

species in five city parks and recreational areas in Aurora. Two separate approaches were used to assess 

turf water use. Drainage lysimeters were installed in each study site and monitored to yield monthly and 

seasonal estimates of turf ET. Secondly, I used an infrared gas analyzer to quantify instantaneous ET from 

a small chamber sampled along a gradient of irrigation application and soil moisture availability. These 

measurements were related to qualitative measures of turf condition and quantitative analyses of digital 

photographs. To measure tree transpiration, I installed thermal dissipation sap flow sensors in study site 

trees. Irrigation application data was analyzed using a network of catch cans and interpolated to produce 

maps of application. Turf water use was highly variable within and between individual study sites. This 

was primarily due to variability in irrigation application caused by inefficiencies in sprinkler systems and 

heterogeneity introduced by localized sprinkler interception by tree trunks. Tree water use varied 
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depending on the specific water use metric in question (e.g., sap flux density, individual tree water use, 

and canopy-area normalized water use), tree species, and tree functional type. Ring-porous species had 

higher sap flux density values, but after factoring in the greater sapwood area of diffuse-porous species 

and conifers, they had whole tree and canopy-area adjusted water use on average below that of conifers or 

diffuse-porous trees. Collectively, these results highlight the variability in plant water use characteristics, 

variability that must be addressed in order to advance the broader understanding of urban water use in the 

Colorado Front Range. 
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1. INTRODUCTION 

 

 

 
The world is rapidly urbanizing, and for the first time in history, a majority of humans reside in 

cities (Clark 2003). This trend is predicted to continue (Cohen 2006), although the consequences for the 

global environment and future human well-being remain uncertain (Galea 2002). Adding greater 

resiliency to cities in the face of climate change, increasing populations, and resource scarcity is a critical 

societal challenge (Cromwell et al. 2007, Devitt and Morris 2009, Ahern 2013, Wu 2014). The 

importance of urban green spaces to the livability and sustainability of cities is broadly recognized 

(Jabareen 2006, Tzoulas et al. 2007, Pickett et al. 2011, Pickett et al. 2013). However, the identification of 

specific design and management approaches best able to provide desired ecosystem services has been 

stymied by the great compositional and structural complexity present in cities. 

For my dissertation, I examined urban vegetation and its role in influencing water use and derived 

ecological services. I focused on three broad objectives: (1) quantifying the compositional and structural 

variation in urban vegetation and evaluating consequences for water use patterns; (2) evaluating fine-scale 

and landscape-scale heterogeneity in irrigation practices and plant water use; and (3) quantifying the 

provisioning of a key ecosystem service, land surface temperature (LST) amelioration, in relation to 

vegetation composition, structure, and irrigation patterns. As a whole, the dissertation is aimed at 

improving general understanding of the importance of urban heterogeneity on basic dimensions of urban 

function and sustainability, focusing on the particular role of urban vegetation. 

Scale is a critical consideration in evaluating ecological and hydrologic patterns and processes 

(Wood et al. 1988, Levin 1992, Blöschl and Sivapalan 1995, Pickett and Cadenasso 1995). Therefore, I 

conducted my analyses at a range of spatial scales. Remote-sensing analyses were used to improve 

understanding of landscape-scale land cover and vertical structural characteristics in my study area. In 

addition, I conducted separate analyses at the field scale (102 – 103 m2). While conceived of as distinct 

analyses and not a direct up- or down-scaling of a particular response measure, approaches were meant to 
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be complementary, thereby contributing to a broader understanding of urban vegetation effects on 

ecohydrological processes. 

Some comments about my use of terminology are warranted. The main topics in this document 

fall within several distinct disciplinary domains. For example, Chapter 2, which details remote sensing 

analyses used to develop land cover data sets used elsewhere in the dissertation, falls squarely within the 

scope of a remote sensing or geography journal. In contrast, Chapter 5 focuses on plant water use and 

irrigation patterns and delves into topics traditionally pursued the fields of agronomy or ecology. Each 

chapter is written in the context of a particular schema, so some foundational knowledge and terminology 

is unavoidable. However, wherever possible, I try to avoid the use of jargon wherever a plain language 

alternative will suffice. 

In Chapter 2, I present a remote sensing analysis of urban land cover and structure, the product of 

which was used in analyses presented in subsequent chapters. Specifically, I compare several approaches 

for classifying land cover using high-resolution multispectral imagery and lidar data. Because of their 

high structural complexity and spectral heterogeneity, traditional pixel-wise techniques for classifying 

remote sensing data often perform poorly in urban settings. However, my analysis demonstrates how, by 

incorporating height information from lidar data and applying efficient machine learning algorithms in an 

object-oriented image analysis (OBIA) framework, it is possible to markedly increase classification 

accuracy. 

I use this land cover data set in chapter 3 to analyze outdoor residential water use data derived 

from water meter data provided by the city of Aurora, with the objective clarifying the influence of land 

cover composition, vertical structure, and socioeconomic characteristics on outdoor water use. This 

analysis was conducted at the scale of individual parcels, US Census Bureau census blocks, and census 

block groups. Land cover maps and lidar surface models developed in Chapter 2 were used to 

characterize parcel-level characteristics and relate these to outdoor irrigation. To evaluate the effects of 

spatial aggregation and to access socioeconomic data from the US Census Bureau and local government 

not available at the parcel scale, I aggregated parcel-level data to the census block and block-group scales. 
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At each spatial scale, I modeled outdoor water use using the Random Forest (RF) algorithm and used 

conditional variable importance metrics to evaluate the importance of different factors on model 

performance. Lastly, I used spatial statistical measures of local spatial autocorrelation to evaluate whether 

there were distinct clusters of high and low residential water use and to evaluate whether these were 

correlated with particular land cover and structural characteristics. 

In arid and semi-arid regions, water use by and applied for urban vegetation is a limited and 

expensive resource, and from an ecosystem services framework perspective, can be considered a 

“disservice”, i.e., a cost rather than a benefit is incurred (Pataki et al. 2011b). However, irrigated 

vegetation also provides beneficial services. One such service is moderation of land surface temperature 

(LST) and amelioration of the Urban Heat Island phenomenon. In chapter 4, I present presents results of 

landscape-scale analyses of land surface temperature (LST) patterns derived from Landsat thermal 

imagery in relation to patterns of urban vegetation. Specifically, I asked what land cover composition, 

vertical structural characteristics, and socioeconomic and demographic variables were most useful for 

predicting LST across my study area. I used Random Forests to evaluate the importance of different 

predictor variables on LST and GIS analyses to evaluate the spatial characteristics of LST. 

Finally, I present field–scale analyses of tree and turf plant water use and irrigation practices for 5 

urban parks and recreation areas. To evaluate spatial patterns of irrigation application, I deployed and 

monitored a network of catch cans, from which I generated application maps using spatial interpolation 

approaches in a GIS. Drainage lysimeters were used to quantify ET of Poa pratensis turf. I supplemented 

these data with survey measurements of instantaneous transpiration made using an infrared gas analyzer. 

Tree water use was measured using thermal dissipation (TDP) sapflow sensors. I found that plant water 

use was highly variable, and for turfgrass, water use patterns were strongly influenced by irrigation 

application and soil moisture availability.  
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In the pages that follow, I attempt to further understand the complex role urban vegetation plays 

in the urban environment by identifying and quantifying the key structural and functional characteristics 

of urban vegetation most important to urban ecohydrological function and related ecosystem services. 

Together, these studies provide a broad perspective on the role of urban vegetation and its management in 

the urban water balance of a semi-arid urban area, and of the importance of vegetation and anthropogenic 

subsidies of water on the provisioning of ecosystem services.  
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2. A COMPARISON OF OBJECT-ORIENTED AND PIXEL-WISE APPROACHES TO 

URBAN LAND COVER MAPPING USING LIDAR AND MULTISPECTRAL 

REMOTE SENSING DATA 

 

 

 

Introduction 

Land cover composition and spatial structure is highly variable in urban areas, with important 

consequences for ecological and hydrologic functioning (Oke 1989, McDonnell et al. 1997, Walsh et al. 

2005). Vertical structural attributes including the height and lateral spacing of trees and buildings 

influence boundary layer roughness, energy and mass transfer processes, thereby affecting microclimate 

(Oke 1989, Mitchell et al. 2008). Given its broad importance, accurate land cover data is essential. 

However, the great heterogeneity present in cities makes accurate and fine-scale land cover classification 

using remotely sensed data difficult. 

Many different land cover classification approaches have been developed. Among the key factors 

differentiating these approaches is source and general characteristics of the underlying data. Data used in 

classifications may originate from either airborne or satellite platforms, and can span a wide variety of 

data types beyond simple imagery, including radar, lidar, and hyperspectral imagery (Jensen and Cowen 

1999, Huang et al. 2008, Weng et al. 2008). The choice of data used for classification is driven by many 

factors including spatial resolution, spectral resolution (i.e., the number and spectral width of bands), cost 

of acquisition, and spatial and temporal availability of data. 

High spatial resolution images (< 1m ground surface distance), collected via either aircraft or 

space-borne platforms, are widely available in urban areas and are commonly used for land cover 

classification (Thanapura et al. 2007, Tooke et al. 2009, Myint et al. 2011). However, most high spatial 

resolution satellite products have low radiometric resolution, with 3 or perhaps 4 bands of information. 

Image fusion, whereby dissimilar types of data are combined for analysis (e.g., optical remote sensing 

data and radar), can help overcome these limitations (Lach et al. 2009, Yang et al. 2009, Malinverni et al. 

2011). Increasingly, Lidar data are being incorporated into land cover mapping, often combined with 
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multispectral imagery (Priestnall et al. 2000, Seo 2003, Zhou and Troy 2008, Goodwin et al. 2009, 

Shugart et al. 2010). The height information from lidar can improve classification accuracy as well as 

providing insights into structural characteristics lacking in data describing simple compositional class 

(Holland et al. 2008). Effective and low-cost approaches and tools are needed to fully utilize the broad 

promise of these data for understanding the urban environment. 

Remote sensing data have traditionally been classified using pixel-based classification 

approaches. These include unsupervised and supervised classification techniques utilizing hard and soft 

classifiers (Myint 2006, Doan and Foody 2007, Malinverni et al. 2011, Hansen and Loveland 2012). 

Regardless of the algorithms used, in all pixel-wise land cover mapping approaches, individual pixels are 

the units classified. In contrast, image segments—groups of contiguous pixels sharing some measure of 

spectral and spatial homogeneity—are the units classified in object-oriented image analysis (OBIA). 

OBIA utilizes not just the spectral characteristics of images, but also the spatial and contextual 

information of objects and their surroundings (Yu et al. 2006, Jobin et al. 2008, Pascual et al. 2008). 

Unlike conventional pixel-based classifiers such as minimum distance or maximum likelihood, object-

oriented classification algorithms start by grouping neighboring pixels into meaningful multi-pixel objects 

based on spectral and spatial characteristics of pixel groups. These approaches can have higher 

classification accuracies than pixel-based methods (Kressler et al. 2002, Herold et al. 2003, Al Fugara et 

al. 2009), and are increasingly favored by analysts, particularly those working in spatially and spectrally 

complex urban landscapes (Kressler et al. 2002, Lackner and Conway 2008, Voss and Sugumaran 2008). 

New and developing open-source and low cost software and analysis tools offer great promise for 

expanding analysis options, but there remains uncertainty about best classification practices, particularly 

in cities. 

With both pixel-wise and OBIA approaches, the analyst has to choose from numerous statistical 

classifiers. Examples include hard and soft (i.e., “fuzzy”) classifiers, each of which has many variants and 

different workflows depending on the specific software application used for classification. Pixel-wise 

classifications using a maximal likelihood classifier represent one of the earliest classifiers used to 
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classify remote sensing data (Campbell and Wynne 2002). While the technique is easily accessible and 

computationally efficient, its main value is as a benchmark to evaluate the efficacy of more modern 

classification approaches. 

My goal with this research was to compare the mapping accuracy of several approaches for urban 

land cover classification using lidar and multispectral imagery. Specifically, I asked: (1) how does 

classification accuracy differ between land cover products derived from object-oriented analyses and 

those derived using traditional per-pixel frameworks? (2) How do different classification algorithms 

perform? (3) What variables derived from the raw lidar and multispectral imagery are most useful 

predicting land cover class membership?  

Methods 

Study area and data sets 

My study area was Aurora, Colorado, a rapidly growing suburb with a population of 

approximately 325,000 residents in the Colorado Front Range (Figure 2-1). The pre-settlement land cover 

was shortgrass steppe, but much of this was converted to dryland and irrigated agriculture in the mid-19th 

century (West 1998). The region has had rapid population growth in recent decades, development away 

from the urban core in Denver and into Aurora.  

My classification approach consisted of several general steps: (1) data preprocessing; (2) image 

segmentation (for the object-oriented approach only); (3) image classification; and (4) error analysis. The 

final land cover classification was the product of an iterative process, and preliminary classification runs 

were used to identify deficiencies in training data sets and improve the accuracy of subsequent 

classifications. An overview of the analysis approach is presented in Figure 2-2. 

Small-footprint multiple-return lidar point cloud and intensity data were collected by Sanborn 

Map Company in April 2008 for portions of the Denver Metro region using a 1064 nm laser with a pulse 

repetition frequency of 50 kHz. Approximately 2.3 points/m2 were collected. I used the LASTools library 

of lidar processing tools (Rapid Lasso, GmB; www.rapidlasso.com) to create separate 0.5 m resolution 
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raster grids based on first returns, bare Earth, and lidar intensity point data. A normalized digital surface 

model (nDSM), which represents the height of features above the ground surface, was created by 

subtracting the bare Earth surface from the first return surface.  

Four-band (blue, green, red, near infrared) multispectral imagery were collected in April 2008 as 

part of a regional imagery and lidar data acquisition. To increase processing efficiency and reduce storage 

volume, the original 0.125 m GSD imagery was resampled using bilinear interpolation to a 0.25 m2 pixel 

size (0.5 m GSD). To reduce information redundancy, a principal components analysis (PCA) was run 

using the original four bands and the first two bands were retained for use in image segmentation and 

classification. The red and near-infrared bands were used to calculate the Normalized Difference 

Vegetation Index (NDVI) and the green and near-infrared bands were used to calculate an analogue of the 

Normalized Difference Water Index (McFeeters 1996). 

Image segmentation 

Image segmentation, the process of completely partitioning an image into non-overlapping 

segments, is a critical step in object-oriented image analysis (Schiewe 2002, Chen et al. 2009). Data 

layers used for the segmentation (Table 2-1) were composited into a single multiband raster in ArcGIS 

(ESRI; Redlands, CA, USA) and exported for use as input into the segmentation software. Batch image 

segmentation of individual tiles was conducted using the software package BerkeleyImageSeg (BIS; 

Berkeley, CA, USA; http://berkenviro.com/berkeleyimgseg/). Each of the data layers had equal weight in 

the segmentation. BIS employs a segmentation method using region merging based on object 

heterogeneity of shape and spectral values (Benz et al. 2004). The algorithm begins with initial seed 

pixels and progressively merges areas based on homogeneity criteria determined by three image 

segmentation parameters: threshold, shape rate, and compactness. The threshold value controls the 

maximum size of image segments, while the shape rate and compactness parameters are weights used to 

determine segment shape by influencing the relative importance of segment compaction and spectral 

homogeneity in the region growing process. Using batch utilities in the BIS program that allow for the 

segmentation and evaluation of large numbers of parameter combinations, I evaluated segmentation 
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performance using the d* metric, which evaluates segmentation fidelity to the boundaries of training 

segments (Clinton et al. 2010) and through qualitative assessments of over- and under-segmentation using 

a single, small (2000 x 2000 pixels) test section of my study area. The final image segmentation used a 

threshold setting of 16, a shaperate value of 0.1, and a compactness level of 0.5 (Figure 2-3). Following 

the final image segmentation, the mean and standard deviation values for each image segment was 

calculated using zonal statistics tools in ArcGIS for each of the data layers used in the segmentation. 

Attribute data were then exported to the R statistical package for classification.  

Image classification 

A training data set was developed for use in classification development and assessment by 

manually selecting and assigning class identity to 2100 image segments spanning each of my intended 

classes: low vegetation (primarily irrigated turf, but also including other vegetation types such as remnant 

unirrigated shortgrass steppe communities), trees and tall shrubs, low impervious (asphalt, concrete, and 

other impervious materials), buildings, bare ground, and water. Training segments were chosen to 

represent the broad range of characteristics present in each class and for their fidelity to the true image 

object boundaries visible in the high-resolution imagery and lidar datasets. 

I developed a classification model using the Random Forests algorithm in the statistical program 

R (Liaw and Wiener 2002). Random forests is an ensemble classifier widely used in machine learning 

applications because of its strong predictive ability and robustness to high dimensional and nonparametric 

data sets (Breiman 2001). I constructed 500 trees (mtree = 500) with a split of 2 (ntree = 2). Out of bag 

(OOB) error estimates were constructed providing an estimate of relative model performance. The 

importance of individual variables was assessed by evaluating two variable importance measures: mean 

decrease in accuracy and mean decrease in the Gini index. 

Classification accuracy assessment 

To quantify the accuracy of the resulting classification (Figure 2-4), I created a validation point 

data set by generating a spatially-balanced equal probability random sample of 500 points using the 
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ArcGIS v10.1 Geostatistical Analyst extension. For each point, I examined high-resolution imagery and 

manually assigned class identity. This validation data set was then compared to classification output from 

the Random Forest analysis and used to calculate overall accuracy, producer’s accuracy (i.e., omission 

error), user’s accuracy (i.e., commission error), and kappa coefficient (Congalton and Green 1999). 

Comparison to pixel-based analyses 

To provide a reference for evaluating the performance of the object-oriented classification, I 

conducted a pixel-based analysis of my study area using a traditional Maximum Likelihood classifier in 

ArcGIS 10.1. I used the same primary and derived raster layers used in the object-oriented analyses and 

training set polygons.  The same validation data set used to evaluate the final object-oriented Random 

Forest classification was used to calculate error assessment measures including user’s and producer’s 

accuracies, overall accuracy, the confusion matrix, and the kappa coefficient. 

Results 

Object-oriented classification 

The object-oriented Random Forest method produced an overall accuracy of 92.7% and a 

Cohen’s kappa coefficient of 0.90, indicating a strong agreement between prediction and validation data 

unlikely entirely from chance (Figure 2-4). Analysis of the confusion matrix revealed that the highest 

producer’s accuracy was for the water class (100%), followed low-impervious class (95.4%), low-

vegetation (94.9%), buildings (88.6%), trees (87.5%), and bare soil (77.1%) (Table 2-2). The tree class 

had the highest user’s accuracy (95.5%), followed by buildings (94.9%), and the low-impervious and low-

vegetation classes, each with a user’s accuracy of approximately 93%. User’s accuracies for bare soil and 

water classes were significantly lower than other classes at 81.8% and 81.0%, respectively. 

Two lidar-derived variables, mean segment nDSM and mean segment lidar intensity, had the 

highest variable importance measures in the final Random Forest classification (Figure 2-5). The specific 

ranking of the three most important multispectral image-derived variables differed depending on the 

variable importance measure used, but for both importance measures (mean decrease in accuracy and 



11 

mean decrease in Gini index), the two PCA bands and the NDWI-analogue had the highest variable 

importance. For any particular explanatory variable used in the Random Forest classification, it was the 

mean segment values rather than standard deviations that had the highest importance. This was expected 

given the nature of the segmentation process, which seeks to maximize homogeneity within the specified 

shape and compactness parameters. 

Pixel-based classifications 

My pixel-based land cover maps had lower overall classification accuracy than the object 

oriented Random Forest classification. The pixel-wise Random Forest classification had an overall 

classification accuracy of 87% and a kappa statistic (Khat) of 0.83 (Table 2-3). The low vegetation and 

building classes at the highest producer’s accuracies (90.1% and 90.5%, respectively), while the low 

vegetation and low impervious classes had the highest user's accuracies (92.9% and 91.4%). Bare ground 

had the lowest producer’s and user’s classification accuracy (74.3% and 66.7%). 

As with the object oriented analysis, the most important variables in class prediction for the pixel-

wise Random Forest classification were derived from lidar layers. The relative importance of variables 

differed depending on whether the importance measure is the decrease in accuracy or decrease in Gini 

metric. For example, 2011 NDVI was the third most important variable using the accuracy criterion, but 

was only the sixth most important variable when using the Gini criterion. The first principal components 

were of relatively low importance using both measures. 

Overall classification accuracy was lowest for the land cover map produced from the pixel-wise 

maximum likelihood classification (84.7%). The kappa statistic (Khat) of 0.80 was lower than for both the 

object-oriented Random Forest and pixel wise Random Forest classification products (0.90 and 0.83, 

respectively). Producer’s accuracies from the maximum likelihood classification ranged from 68.6% (bare 

ground) to 88.5% (trees/shrubs), while user’s accuracies ranged from 54.5% (bare ground) to 94.4% (low 

vegetation). The proportion of the assessment area comprised of each land cover class differed among 

classification approaches (Table 2-5). For example, the object-oriented Random Forest classification had 

the highest low vegetation cover (40.3%) compared to the pixel wise Random Forest and maximum 
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likelihood classification products (35.4% and 33.0%). The bare ground class was predicted with the 

lowest frequency for the object-oriented classification, while tree cover was most abundant in the 

maximum likelihood classification. 

Discussion 

Classification accuracy using both the object-oriented and pixel-wise Random Forest approaches 

exceeded the widely used minimum accuracy standard of 85% (Anderson et al. 1976), while the 

maximum likelihood classification was below this threshold. Accuracy was comparable to classifications 

performed elsewhere using similar data sets. For example, using orthoimagery and lidar data and an 

object-oriented Random Forest analysis approach, Guan et al. (2013) achieved an overall classification 

accuracy of 92.1% and 89.6% for land cover maps developed for Niagara Falls, NY and Mannheim, 

Germany, respectively. Working in Philadelphia, PA, O’Neil-Dunne et al. (2012) used lidar data and 

multispectral imagery in an object-based urban land cover analysis, producing a classification with an 

overall accuracy of 95%. As in my study, bare soil was the most problematic class in their analysis, with a 

producer’s accuracy of 57% and a user’s accuracy of 70%.  

The pixel-based maximum likelihood approach performed most poorly, with a lower Kappa 

statistic and overall accuracy. In contrast to machine learning algorithms like the Random Forest 

approach, the maximum likelihood classifier is parametric, and assumptions regarding the distribution of 

predictors are typically violated, degrading classification performance. In addition to lower quantitative 

accuracy metrics, both pixel-based classifications suffered from a significant “salt and pepper” effect not 

present in the object-oriented Random Forest classification (Figure 2-6). These effects can be partially 

ameliorated using various filtering techniques, but the aesthetic presentation of the land cover, important 

to consumers of the data, is unavoidably degraded relative to the object-oriented maps. 

My analyses clearly demonstrate that incorporating lidar data into classifications provides 

significant benefits (Schiewe 2002, Chen et al. 2009, Ke et al. 2010, O'Neil-Dunne et al. 2012, Guan et al. 

2013). The lidar-derived nDSM had the greatest variable importance measure in Random Forests analyses 

and exploratory classifications run without inclusion of lidar data had significantly lower accuracy, owing 
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in great part to increased confusion between high and low vegetated and impervious classes. My results 

clearly demonstrate the utility of nDSM data for separating classes, particularly trees and buildings. 

The primary imagery used in this analysis was the 2008 4-band data set, collected in spring prior 

to leaf emergence. The leafless phenology did not prevent accurate tree identification, since lidar data 

were effective for distinguishing this class. However, because vegetation was still emerging from 

dormancy, contrasts with bare soil class were less pronounced than they would have been after leaf 

expansion and growth. I achieved small gains in overall accuracy by introducing additional information 

on vegetation vigor via NDVI data from the summer of 2011. However, I also observed the introduction 

of different types of errors associated with differences in imagery resolution and registration. I limited 

data used in the segmentation to imagery and lidar data sets and their derivatives collected 

contemporaneously in 2008, and limited used of the 2011 data to the classification stage. 

Accuracy is a primary concern in land cover classification. However, other factors such as data 

storage and processing requirements must also be addressed. The computational efficiency of 

segmentation algorithms are affected by the number of bands, pixel size, and analysis extent. The analyst 

may choose, as I did in this analysis, to resample imagery to a slightly coarser resolution to increase 

computational efficiency and reduce storage overhead. Tiling of analyses is essential when processing 

large areas. If software and hardware resources for parallel processing of data sets are available, 

considerable efficiencies can be gained (O'Neil-Dunne et al. 2012). 

The approach I used resulted in high classification accuracy. Random Forests is robust and 

flexible, allowing the fusion of different data types and usability for both pixel-wise and object-oriented 

work flows (Watts and Lawrence 2008, Smith 2010, Rodriguez-Galiano et al. 2012, Guan et al. 2013). As 

an ensemble method, interpretation of Random Forest output is less straightforward than an approach 

such as single-tree regression (Strobl et al. 2009). However, variable importance measures do provide 

greater insights into the predictive value of different data sets than black box methods like artificial neural 

networks (Witten et al. 2011).  
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The efficacy of any specific classification approach is best viewed in the context of the aims and 

purposes of the classification, as well as the available data and resources for analysis. Results from this 

study clearly demonstrate the utility of lidar data for improving classification accuracy, but given the high 

cost of lidar acquisition and the currently limited availability of free or low-cost lidar archives, such data 

may not be available. Classifications adequate for many purposes are still possible using only optical 

imagery, but results will be less accurate. This study also illustrates the advantages of an object-oriented 

analysis approach. Commercial software packages like eCognition offer many algorithms for 

segmentation and classification, but can be prohibitively expensive. However, as with many aspects of 

technology and software development, lower cost and open-source alternatives are rapidly gaining 

functionality, so limitations will gradually disappear. 

Errors in analyses can arise from several sources. While considerable care was taken in selecting 

parameters for image segmentation, over-segmentation and under-segmentation errors cannot be 

completely avoided. Training data used to develop and refine the classification model do not necessarily 

encompass the full range of characteristics present within each class, a source of potential error in the 

process. There is also a temporal component to consider; land cover patterns change over time, and in the 

case of urbanization, changes can be dramatic. As with all aspects of the classification process, there are 

trade-offs to consider including accuracy, efficiency, and cost. 

Conclusions 

Accurate high resolution land cover data are essential to evaluate the effects of urbanization and 

to manage urban form and function to the greatest benefit. This study demonstrates the advantages of 

object-oriented analysis approaches in urban land cover analyses. The fusion of lidar and optical imagery 

allows for high classification accuracy, a challenge in structurally and spectrally complex urban 

environments. Random Forests is a powerful classification algorithm, particularly when used in an object-

based analysis framework. However, even when it is applied in a pixel-wise analysis approach, it 

outperforms traditional parametric classifiers. While pixel-wise maximum likelihood classifiers are more 

accessible than ever before, having been incorporated into the most popular commercial GIS program. 
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However, results clearly demonstrate the value of using more robust machine learning approaches. These 

are easily accessible through open-source software platforms like R and provide an easy means of 

improving classification workflows.  
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Table 2-1. Data sets used in classification. All data layers were resampled to 0.5 m GSD. 

Data layer Description 

Multispectral imagery Collected April, 2008. Blue, green, red, near-infrared bands. 

A primary data set used to generate image derivatives (e.g., 

NDVI). Original GSD 0.15 m; resampled to 0.5 m 

Normalized Difference 

Vegetation Index (NDVI) 

Derived using red and near-infrared bands: 

NDVI = (NIR - R)/(NIR + R) 

Normalized Green/NIR 

index (NGI) 

Derived using green and near-infrared bands: 

NGI = (G - NIR)/(G + NIR) 

Principal Components 

Analysis (PCA) bands 

Derived using the 4 primary multispectral bands. The first 

two PCA bands (PCA1 and PCA2) were retained for use in 

segmentation and classification 

Lidar LAS files Collected April, 2008. Raw lidar data. A primary data set 

used to generate the first return and bare ground points used 

in nDSM calculation 

Normalized Digital 

Surface Model (nDSM) 

Calculated as the difference between bare Earth and first 

return surfaces 

Lidar intensity Primary lidar data layer 

NDVI 2011 Derived from 1 m NAIP imagery. Not used in segmentation, 

only in classification  
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Table 2-2. Confusion matrix for object-oriented Random Forest classification of urban 

land cover. 

 
Ground truth 

Class Bare Bldg LowImp LowVeg Tree/shrub Water Count 
% User 

Accuracy 

Bare 27 0 2 4 0 0 33 81.8 

Bldg 0 93 3 0 2 0 98 94.9 

LowImp 3 8 230 1 3 0 245 93.9 

LowVeg 5 1 6 243 6 0 261 93.1 

Tree/shrub 0 3 0 1 84 0 88 95.5 

Water 0 0 0 7 1 34 42 81.0 

Count 35 105 241 256 96 34 767 
 % producer accuracy 77.1 88.6 95.4 94.9 87.5 100.0 

  Overall accuracy: 

92.7%             

Khat = 0.903         
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Table 2-3. Confusion matrix for pixel-wise Random Forest classification of urban land 

cover. 

 
Ground truth 

Class Bare Bldg LowImp LowVeg Tree Water Count 

% User 

accuracy 

Bare 26 0 7 6 0 0 39 66.7 

Bldg 0 95 9 4 11 0 119 79.8 

LowImp 3 4 210 1 2 6 226 92.9 

LowVeg 1 3 12 233 6 0 255 91.4 

Tree 0 3 3 9 77 0 92 83.7 

Water 5 0 0 3 0 28 36 77.8 

Count 35 105 241 256 96 34 767 
 Producer accuracy 74.3 90.5 87.1 91.0 80.2 82.4 

  Overall accuracy: 

87.2%             

Khat = 0.83 
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Table 2-4. Confusion matrix for pixel-wise maximum likelihood classification of urban land 

cover. 

 
Ground truth 

Class Bare Bldg LowImp LowVeg Tree Water Count 

% User 

accuracy 

Bare 24 0 9 10 1 0 44 54.5 

Bldg 0 89 14 4 10 1 118 75.4 

LowImp 3 6 204 1 0 5 219 93.2 

LowVeg 3 2 8 220 0 0 233 94.4 

Tree 0 8 6 18 85 0 117 72.6 

Water 5 0 0 3 0 28 36 77.8 

Count 35 105 241 256 96 34 767 
 Producer accuracy 68.6 84.8 84.6 85.9 88.5 82.4 

  Overall accuracy: 

84.7%             

Khat = 0.80 
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Table 2-5. Comparison of class abundance (% of the assessment area) for each 

classification approach. 

Class 

Random Forest 

OBIA 

Random Forest 

Pixel-wise 

Maximum 

likelihood 

Bare 0.5 4.2 3.7 

Bldg 12.6 16.8 15.6 

LowImp 32.1 28.2 25.3 

LowVeg 40.3 35.4 33.0 

Tree 13.7 14.7 21.7 

Water 0.8 0.7 0.7 
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Figure 2-1. Map of Aurora, Colorado study area. 
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Figure 2-2. Flow chart illustrating main steps in analysis (NDVI = Normalized Difference 

Vegetation Index; NDWI = Normalized Difference Water Index-analogue; nDSM = 

Normalized Digital Surface Model). 
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Figure 2-3. True color image of portion of study area (panel A); PCA band 1 (panel B); 

PCA band 2 (panel C); NGI (panel D); lidar intensity (panel E); lidar-derived nDSM 

(panel F). 
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Figure 2-4. Example of final land cover classification. Low vegetation consists primarily of 

irrigated turfgrass, but also includes other vegetation cover types such as unirrigated 

remnant shortgrass steppe communities. The low impervious class includes land cover 

materials such as asphalt and concrete.  

 

  



25 

 
Figure 2-5. Variable importance plots from Random Forest classification of image 

segments. MeanDecreaseAccuracy measures how much the inclusion of a predictor in the 

model reduces classification error, while a low Gini (i.e. higher decrease in Gini) indicates 

that a particular predictor variable plays a greater role in partitioning the data into the 

defined classes. 
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Figure 2-6. Comparison of LC maps from maximum likelihood pixel-wise classification 

(Panel A) and object-oriented Random Forest analysis (panel B). Circles illustrate 

examples of common classification errors with both the pixel-wise approaches: power lines 

and cars. Also of note is the greater “salt and pepper” effect in the pixel-wise classification. 
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3. THE INFLUENCE OF LAND COVER, VERTICAL STRUCTURE, AND 

SOCIOECONOMIC FACTORS ON OUTDOOR WATER USE IN A COLORADO 

FRONT RANGE URBAN AREA 

 

 

 

Introduction 

Water is an essential yet limited resource in most regions of the world. The costs of securing and 

delivering water to cities in arid and semi-arid regions are high and rising due to pressures such as 

drought and population increases (Hansen et al. 2002, Brookshire et al. 2004, Brown 2006). In addition, 

climate changes threaten the future of these water supplies (Barnett et al. 2008). In many cities in the 

western US, the majority of water use during the summer is for outdoor irrigation, and planners and water 

managers increasingly recognize the importance of water conservation for urban sustainability (St. Hilaire 

et al. 2008, Ferguson et al. 2013). However, patterns of residential outdoor water use are complex, and 

there is considerable uncertainty about the drivers of household irrigation practices. While the effects of 

pricing strategies and other economic factors on residential water use have been examined (Kenney et al. 

2008, Grafton et al. 2011), little is known about how the varying patterns in ecological, physical, and 

socioeconomic characteristics across cities affects outdoor irrigation use. 

Domestic water use is influenced by climate, urban design, land development history, and 

socioeconomic and demographic factors (Corbella and Pujol 2009, House-Peters and Chang 2011). The 

importance of each factor depends on the whether indoor, outdoor, or total household water use is 

evaluated and the spatial scale of analysis (Wentz and Gober 2007, Balling et al. 2008, House-Peters and 

Chang 2011). Important factors at the scale of individual parcels may include its area and the type of 

vegetation being grown, as well as socioeconomic factors such as household income (Harlan et al. 2009, 

Larson et al. 2010). At broader spatial scales (e.g., US Census tracts), factors such as the built area and 

density are significant predictors of water use (Polebitski and Palmer 2009). While residential water use 

has been correlated with a number of explanatory variables (Arbués et al. 2003, Wentz and Gober 2007, 

Polebitski and Palmer 2009) few studies have compared the relative importance of land cover 
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composition, structure, and socioeconomic/demographic characteristics on water use, all factors that will 

drastically change with urbanization in the region. 

Understanding the spatial pattern of outdoor water use, whether random, dispersed or clustered, 

has important implications for water planning and conservation. Spatial statistical techniques can provide 

an objective means of characterizing water use patterns across large areas. Distinct geographic trends 

were found for total county, municipal, and agricultural water use in Oregon, USA (Franczyk and Chang 

2009). In British Columbia, spatial statistical analyses were used to identify distinct neighborhood effects 

on residential water use (Janmaat 2013). An understanding of the spatial characteristics of water use can 

provide information critical to predicting future changes in water demand, but few studies have examined 

the spatial patterns of outdoor water use in semiarid regions. 

The relative abundance and spatial organization of land cover (LC) classes such as trees, 

turfgrass, buildings, and pavement shapes a city’s physical structure, influencing biophysical and 

ecological processes, environmental quality, and aesthetics (Smardon 1988, Dimoudi and Nikolopoulou 

2003). The fine-scale analysis of urban LC has been limited by a lack of high resolution land cover data. 

The National Land Cover Database (NLCD) derived from 30-m pixel Landsat imagery is widely available 

in the US is too course for the analysis of individual household-scale land cover. High-resolution satellite 

imagery and new classification techniques allow the analysis of land cover patterns at the scale of 

individual residential parcels and whole cities. Both scales are critical for understanding patterns and 

potential drivers of water use, but have not been undertaken in semi-arid cities. 

Vertical structural of the urban forest varies among neighborhoods of different age and those with 

distinct tree species composition. Other characteristics of landscape structure such as increases in average 

building size and density in recent decades have also occurred in many cities (Wheeler 2008). Vertical 

structure influences evapotranspiration and energy exchange rates and processes (Oke 1989), but it has 

not been incorporated into landscape-scale analyses of urban water demand because suitable data have 

been lacking. Lidar remote sensing data can be used to quantify fine-scale vertical structure across 
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landscapes (Lefsky et al. 2002, Shugart et al. 2010), and evaluate the importance of vertical structure on 

outdoor water use patterns. 

Land-use and socioeconomic/demographic factors may also influence residential water use 

(Balling and Cubaque 2009, Boone et al. 2010). For example, larger homes and those with higher 

assessed values have been reported to use more water (Harlan et al. 2009). However, an analysis of single 

family residential water consumption in an Oregon suburb found that outdoor water use was positively 

correlated with head of household education level and the size of the property’s outdoor space (House-

Peters et al. 2010). However, the relative importance of socioeconomic factors on residential outdoor 

water use versus land cover composition and vertical structure of remains poorly understood. 

Objectives 

In this study, I analyzed the influence of land cover composition, vertical structure, and 

socioeconomic/demographic variables on outdoor water use at different spatial scales. My data set of 

more than 40,000 single-family parcels provides a suitable data set for analyzing broad-scale patterns of 

outdoor water use and allowed me to ask the following questions: (1) What land cover, vertical structure, 

and socioeconomic & demographic factors best predict outdoor water use? (2) Are single-family parcels 

with similar outdoor water use clustered spatially, and if so, what are the characteristics of high and low-

use clusters? (3) How do patterns of outdoor water use vary with urban neighborhood age and the scale of 

analysis? The results of analyses provide improved context for understanding the relationships between 

urban land cover vegetation characteristics and irrigation practices, which is an important component of 

urban water use. 

Methods 

Study area 

My study area was Aurora, Colorado, a rapidly growing suburb with approximately 325,000 

residents located east of Denver in the Colorado Front Range urban corridor. The land historically was 

short grass steppe, but beginning in the mid-19th century, most areas were converted to agricultural crops 
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to support Denver and surrounding areas. Human population increased through the 20th century and has 

led to the urbanization of remnant steppe and agricultural lands. Dominant contemporary land uses 

include low to high density single and multi-family residential, retail, commercial and light industrial. 

Urban forests, irrigated lawns parks and residential areas, and unirrigated communities are the dominant 

urban vegetation types. The climate is semiarid, with the majority of precipitation occurring from April-

September, often from large convective thunderstorms (Doesken et al. 2003). The 30-year normal annual 

precipitation is 402 mm, but during 2005 and 2006, the two years examined in the study, 321 mm and 213 

mm was recorded (National Weather Service; Station ID: KDEN). Approximately 75% of Aurora’s water 

goes to residential consumers, with the remainder going to municipal, commercial, and agricultural users 

(Kenney et al. 2008).  

Outdoor water use 

I used data from individual parcel water meter records for calendar years 2005 and 2006 provided 

by Aurora Water for my analyses. Outdoor water use was quantified by subtracting mean winter 

household water use, when little to no outdoor water use occurs, from March through November monthly 

water use totals. I focused my analyses to detached, single-family parcels in Arapahoe County. Because 

total outdoor water use may be influenced by parcel area and vegetation cover I derived two additional 

response variables for my analyses. Total water used (m3) was divided by parcel area (m2) in ArcGIS to 

produce a parcel-adjusted depth of application (Iparcel; in m3 water/m2 area). I divided the total volume of 

water used by the area covered by vegetation in each parcel to produce Ivegetation. To eliminate outliers 

caused by errors in meter records or GIS datasets, I statistically normalized Iparcel and Ivegetation for 2005 and 

2006 and filtered out parcels with z scores more than 3 standard deviations from the mean as outliers 

(Balling and Cubaque 2009). The final analysis included 46,588 parcels. 

Physical, socioeconomic, and demographic variables 

I used a 0.5 m resolution land cover (LC) developed in Chapter 2 for assessing the physical 

structure of each parcel. Five LC classes were mapped: trees, buildings, low vegetation, low impervious, 
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and “other” (bare soil, water). Using parcel boundary GIS data from the Arapahoe County tax assessor 

and zonal statistics tools in ArcGIS, I calculated the proportion of parcels covered by each LC class, as 

well as several lidar-derived vertical structural variables such as tree height (Table 3-1). For census block 

groups, I calculated the mean and maximum variable value of all parcels in a given block group.  

I used 2009 appraised property values from the Arapahoe County assessor's office as an indicator 

of socioeconomic status of individual parcels. At the scale of US Census Block Groups, primary variables 

for demography such as the mean age of residents, household size, and marital status were used (2010 

Decennial Census Summary File SF 1; www.factfinder2.census.gov)(Table 3-2). To evaluate the effect of 

differences in the age of residential development on patterns of outdoor water use and different 

explanatory variables, I utilized historical land use and land cover data from the Colorado Front Range 

Comprehensive Urban Ecosystem Study (CUES) project 

[http://rockyweb.cr.usgs.gov/cues/COcuesHome.html]. These data are derived from analyses of historical 

aerial photographs and geospatial data depicting land-use for 1937, 1957, 1977, and 1997. To extend this 

analysis to the years of my water use data, I used zoning and parcel data to identify parcels built between 

1997 and 2007. 

Spatial statistical analyses 

I quantified the patterns of outdoor water use, LC composition and vertical structure, and 

socioeconomic variables using spatial statistics metrics. Using ArcGIS I calculated the Getis-Ord Gi* 

statistic, which identifies statistically significant spatial clusters of high or low values by comparing 

measured patterns to those expected by random chance (Getis and Ord 1992). A fixed inverse Euclidean 

distance threshold of 500 m was used for parcel-scale analyses, while a 1000 m threshold was used for 

block groups because of the courser spatial scale.  

I calculated the Anselin Local Moran's I statistics as a complimentary measure of local spatial 

pattern using ArcGIS. The statistics produced are a measure of local autocorrelation, with high positive z-

scores indicating that the surrounding features have similarly high or low values, and low negative z-score 

indicating spatial outliers (Anselin 1995). To examine potential land cover and vertical structure 
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correlates of high and low water use clusters, I compared explanatory land cover and socioeconomic 

variables between statistically significant (p < 0.05) clusters of high values (HH), low values (LL), as well 

as spatial outliers with high values surrounded by low values (HL), and spatial outliers where low values 

are surrounded primarily by high values (LH). 

Random Forest analyses of outdoor water use 

I used Random Forest (RF) models developed using the “randomForest” package (Liaw and 

Wiener 2002) in R (ver. 15.3)(R Core Team 2013) to analyze the relative importance of land cover 

composition and structural variables on parcel water use. Separate regression models were developed 

using Iparcel and Ivegetation as response variables. Model predictive accuracy, assessed using out-of-bag 

(OOB) error estimates  (Strobl et al. 2009) produced by the algorithm were used to compare model 

predictions for subsets of explanatory variables, such as vertical structure variables, LC composition, and 

socioeconomic/demographic variables. Each model was run using 500 trees and an mtry set to the square 

root of the number of variables (Diaz-Uriarte and Alvarez de Andres 2006, Hapfelmeier and Ulm 2013). 

I compared conditional variable importance values generated using the “cforest” algorithm in the 

R “party” package to provide an additional measure of the relative importance of land cover structure, 

vertical structure and socioeconomic factors on model prediction. Conditional variable importance 

metrics can be more robust than traditional variable importance measures (Strobl et al. 2007). While RF 

variable importance measures help identify important factors, they do not identify whether correlations 

are positive or negative. To better understand the relationship between explanatory and response 

variables, as well as the correlation structure among explanatory variables, I calculated and plotted 

Pearson partial correlation coefficients. 

Results 

Land cover, vertical structure, and socioeconomic patterns 

The most abundant LC class was low vegetation with a mean cover of 34.6%, followed by 

buildings at 26.2%, and 17.7% for trees. LC class values were significantly different between parcels of 
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different age (Figure 3-1). For example, mean tree cover was 28.6% in parcels developed prior to 1938, 

compared to 8.6% for parcels developed between 1997 and 2007. Cover of the low vegetation class was 

less variable, ranging from a low of 33.0% in parcels built between 1978 and 1998 and a maximum of in 

37.9% in parcels built between 1938 and 1958. Buildings occupied 34.3% of the youngest parcels, and 

only 23.8% of parcels in the oldest neighborhoods, reflecting a trend of a decreasing tree cover and 

increasing home sizes in the newest neighborhoods. 

Mean tree height had a similar pattern to tree cover, with the youngest neighborhoods having the 

lowest mean and maximum tree heights at 3.1 and 6.8 m, compared with 4.8 and 13.7 m for the oldest 

neighborhoods. Mean tree and building heights were spatially autocorrelated as indicated by the 

statistically significant global Moran’s I and Getis-Ord General G statistics (p < 0.0001). Maps created 

using the output from spatial autocorrelation analyses showed significant clustering of high and low 

outdoor water use areas and of physical and socioeconomic explanatory variable values (Figure 3-2, 3-3). 

For example, mean tree height in the older north-central portion of Aurora was average for the study 

areas, while clusters of low height trees occurred in the newer portions of the study area (Getis Gi* 

statistics). Appraised property values in 2009 were much higher in the newest neighborhoods with a mean 

of $213,336, compared with $104,865 for parcels built between 1938 and 1958. 

Spatial trends in parcel-scale land cover composition and vertical structure were still present 

following aggregation of parcel-scale data into census block groups. Aggregation reduced fine scale 

heterogeneity evident in parcel-scale maps, but did not eliminate broader patterns of land cover variation 

seen in the parcel data set. Block groups in the older northwest portions of the city had higher mean tree 

height, with a mean of approximately 5.3 m, versus a low of 2.7 m in block groups in the newest parts of 

the study area supporting lower tree cover.  The negative correlation between both tree canopy cover, tree 

height, and outdoor water use was the same when evaluated with either Ivegetation or Iparcel.  

Parcel outdoor water use  

Mean total outdoor water application per parcel in 2006 was 412.8 m³, which was 4% greater 

than 396.5 m³ applied in 2005. After normalizing for parcel area, mean irrigation application (Iparcel) was 
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0.56 m in 2005 and 0.58 m in 2006, while irrigation normalized by vegetated area (Ivegetation) was 1.09 m 

and 1.14 m. At the parcel scale, Ivegetation was negatively correlated with % vegetation (Pearson correlation 

= -0.62), the opposite of the correlation with % impervious cover (correlation = 0.62). I found significant 

spatial clustering of high (high Getis Gi* z scores; low p-value) and low water application parcels 

(negative Getis Gi* z scores; low p-value) in analyses of 2005 and 2006 Ivegetation (Figure 3-2).  Distinct 

clusters of high water use parcels occur in the eastern and central portions of the study area, and low 

water use in the north as indicated by both local Moran’s I and Getis Gi* analyses of Ivegetation. Similar 

spatial trends were observed with analyses of Iparcel.  

Mean outdoor water use among parcels in high water use clusters during 2005 was 1.89 m, which 

was significantly greater than the mean of 0.53 m in low use clusters (Kruskal-Wallace test, p < 0.001; 

Figure 3-3). When high use spatial clusters are broken down by neighborhood age, the youngest parcels 

built between 1998 and 2007 had the highest mean water use of 2.27 m compared with 1.70 m in parcels 

built prior to 1938 (Table 3-3).  Low water use clusters had significantly higher maximum and mean tree 

height (Kruskal Wallace, p < 0.0001), while the mean % impervious cover in high water use clusters was 

57.8%, nearly twice that of low water use clusters.  

Block group water use 

Spatial trends in water use and land cover/vertical structure across study area census blocks were 

similar to those observed at the parcel scale (Figure 3-4). Block group scale Ivegetation was positively 

correlated with vegetation class cover and tree height in 2005 and 2006 (Figure 3-5). As with the parcel 

level analysis, mean block group-scale Ivegetation was slightly lower in 2005 than 2006, at 1.07 m and 1.11 

m.  Mean parcel area-adjusted application rates (Iparcel) were 0.55 m in 2005 and 0.58 m in 2006. Global 

Moran's I for vegetated area-adjusted water use was positive and statistically significant in 2005 (Moran's 

I = 0.31; z = 5.5; p < 0.0001), and 2006 (Moran's I = 0.33; z=5.8; p < 0.0001), indicating a tendency for 

clustered rather than dispersed outdoor water use among census blocks (Figure 3-5). 
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Random Forest analyses of parcel outdoor water use 

The fully parameterized Random Forest model of parcel water use explained 58.4% of the 

variance in Ivegetation in 2005 and 54.2% in 2006. Models that used only land cover variables predicted 

most of the variance, 55.7% in 2005 and 53.8% in 2006, highlighting the strong predictive value of land 

cover, particularly %vegetation and %impervious surface. Models that used vertical structure variables 

explained 37.2% and 34.8% of variation in 2005 and 2006, suggesting that vertical structure was less 

important in predicting water use. The % impervious land area and vegetation variables had the highest 

conditional variable importance in Random Forest analyses of Ivegetation in both study years, followed by 

parcel area, % building, and % low vegetation (Figure. 3-6). The highest ranked vertical structural 

variable was mean building height. 

Random Forest analyses of block group outdoor water use 

The Random Forest model predicting block group water use from all vertical structure, land 

cover, and socioeconomic/demographic explanatory variables had high predictive accuracy of 84.6% and 

82.1% in 2005 and 2006. This was closely followed by the model including only land cover variables, 

which predicted 81.5% and 79.8% of Ivegetation in 2005 and 2006. The model comprised of only vertical 

structure variables explained 66.7% of Ivegetation for 2005, while the model with the poorest predictive 

ability used socioeconomic and demographic factors alone, which explained 43.2% of water use variance 

in 2005. 

Land cover variables were most important for predicting water use among land cover, census and 

vertical structure categories, with the three top variables being % impervious cover, % vegetation, and % 

building (Figure 3-7).  Vertical structure characteristics, particularly mean building height and mean/max 

tree height also had high conditional variable importance. Socioeconomic factors were of low importance, 

with appraised property value and mean family size with the highest conditional variable importance 

values among socioeconomic variables. Variables from the US census contributed little to model 

predictive performance (Figure 3-7).  
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Discussion 

Residential outdoor water use is highly variable across urban environments. Some homeowners 

apply more water than needed to satisfy the demands of parcel vegetation, while others apply little or no 

water. The patterns of water use I observed were not random, but exhibited distinct clustering, both at the 

parcel and block group scales. Clusters of high water use parcels had significantly lower tree and low 

vegetation cover. While aggregation of parcel data to census block groups eliminated fine-scale 

heterogeneity, the same clustering pattern was observed at the coarser spatial scale. The clustering of 

outdoor water use parcels indicates that outdoor water use is relatively similar among households in a 

neighborhood, irrespective of land cover, structure, and socioeconomic characteristics. These results add 

to an emerging consensus from studies suggesting that water use is a spatially structured phenomenon 

(Wentz and Gober 2007, Franczyk and Chang 2009, House-Peters et al. 2010).  

Analyses of land cover and structure in relation to parcel age revealed large differences in land 

cover, vertical structure, and water use among neighborhoods of different age. Total tree cover and height 

were significantly higher in older neighborhoods. This reflects the fact that most tree species get larger as 

they age, and there have been shifts in landscape design and species preferences over time towards 

smaller species of trees. Shifts in home and lot characteristics, such as an increase in building size and 

height, contribute to aesthetic and functional differences between neighborhoods of different age. 

Understanding how these variables change through time as landscapes age provides useful analyses for 

forecasting future changes in water demand. 

Urban areas are highly coupled natural and human systems, and patterns and processes particular 

to each domain can influence water demand (House-Peters and Chang 2011). A number of interacting 

socioeconomic, demographic, and physical variables are correlated with water use, and their relationships 

to each other are commonly non-linear with strong spatial dependency. The RF approach is well suited to 

addressing variables with these characteristics and has the benefit of producing importance measures 

useful for screening large numbers of variables and identifying more manageable subsets of data 

prediction (Hastie et al. 2009, Hapfelmeier and Ulm 2013). 
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The three different response measures--total water use, water application normalized by parcel 

area, and water use by vegetated area--differed in how well they related to parcel water use. Total water 

volume used is the least intuitive for understanding irrigation behavior, because the area irrigated must be 

factored in. Parcel area is calculated from a single GIS layer. However people generally restrict watering 

to vegetated areas, and parcel-area normalized application (I parcel) does not account for the proportion of 

land covered by vegetation or impervious surfaces.  

Normalizing water use by vegetated area provides the most relevant measure of water 

consumption rates, and is similar to measures used in agriculture and landscape management. For 

example, irrigation recommendations are usually provided in application units (cm) normalized to 

vegetated area. This metric is most informative for evaluating water use efficiency and estimating 

hydrologic fluxes such as groundwater discharge and evapotranspiration (St. Hilaire et al. 2008, Healy 

and Scanlon 2010). However, unlike parcel area, the calculation of vegetated area, and individual 

vegetation classes (e.g. trees, turf) requires high-resolution land cover information, which has not been 

available. The expanding constellation of satellites collecting hyperspatial (<1 m GSD) imagery and the 

increased availability of lidar enable the development of land cover classifications sufficiently precise for 

parcel scale analyses. While my use of Ivegetation was based on projected canopy area, not basal area, it was 

still a useful approach for normalizing water application. Areas where trees overhang impervious surfaces 

such as buildings or driveways are not usually purposefully watered, but the leaf area still contributes 

important ecosystem services such as rainfall interception (Berland and Manson 2013). 

In addition to increasing classification accuracy of land cover maps, lidar data allows the explicit 

analysis of vertical structure characteristics at several scales. While land cover variables generally had 

greater predictive value than vertical structural characteristics in my RF analyses, measures of vertical 

structure improved model accuracy and were more important than socioeconomic and demographic 

variables. In addition, vertical structure is important to processes such as precipitation interception, ET, 

and land surface temperature (Oke 1982, Xiao et al. 1998). 
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Urban water demand is increasing and additional water sources to supply growth are limited and 

expensive (Kenney et al. 2008). Where increasing regional populations occur and climate change effects 

are being measured, there is a particularly strong impetus for communities to promote water conservation. 

Outdoor water use comprises over half of domestic household water consumption in many regions 

(Mayer et al. 1999), therefore efforts targeted at improving irrigation efficiency are critical. This is 

especially true since irrigation practices are often only weakly correlated with the actual water needs of 

urban vegetation. 

Targeted outreach to inefficient water users has been shown to improve conservation efforts 

(Nieswiadomy 1992). My work informs conservation efforts by enabling targeted outreach in portions of 

the irrigation service area with the highest outdoor water use rates. The approach I took using local 

measures of spatial autocorrelation (Anselin Moran's I; Getis Gi*) helped identify clusters of high and 

low water use. This can facilitate more effective water conservation by concentrating outreach in clusters 

of high use that tended to be newer neighborhoods with smaller trees and lower tree cover in my study 

area.  

Household outdoor water use is a complex phenomenon, influenced by numerous demographic, 

behavioral, and social factors (Russell and Fielding 2010, Fielding et al. 2012). My results highlight the 

importance of the parcel physical structure, including vegetation area, composition, and vertical structure. 

Across an urban areas, variables describing in land cover composition and vertical structure variables may 

be particularly useful for explaining water use patterns. These are relatively easily incorporated into 

predictive models and may perform better than socioeconomic and demographic variables. Residents are 

“the fundamental local actors making landscaping decisions in front and backyards” (Cook et al. 2012); 

however, my results indicate significant neighborhood effects on residential water use, not just individual 

household factors. 

These analyses highlight the importance of tree cover and height to patterns of water use. Trees 

influence water use by reducing watering requirements of turf through shading (Feldhake et al. 1983, 

Litvak et al. 2013), and moderate urban land surface temperature (Shashua-Bar et al. 2011). Because of 
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their deeper rooting habit and laterally extensive root systems, trees also are often better able to 

seasonally maintain their water balance from natural precipitation. Cool-season turfgrasses may rapidly 

decline in condition with low soil moisture (Githinji et al. 2009), prompting a resident to water, whereas 

trees may show no obvious effects until severe water stress occurs. The study area encompasses 

neighborhoods with diverse physical and social structural characteristics. The ontogeny of cities is 

complex and strongly conditioned by local physical and historical factors. While no two cities are 

identical, the methods developed here are broadly relevant to many urban areas around the world. 
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Table 3-1. Explanatory (italicized) and response variables used in parcel-scale analyses. 

Variable Category 

Low Impervious cover  Land cover composition 
Building cover Land cover composition 
Tree cover Land cover composition 
Low vegetation cover Land cover composition 
Other cover Land cover composition 
Total vegetation cover Land cover composition 
Total Impervious cover Land cover composition 
Max vegetation height Vertical structure 
Mean vegetation height Vertical structure 
Max building height Vertical structure 
Mean building height Vertical structure 
Max tree height Vertical structure 
Mean tree height Vertical structure 
Development age Socioeconomic/demographic 
Appraised value Socioeconomic/demographic 
Parcel area Socioeconomic/demographic 
Total 05 outdoor water use Response 
Total 06 outdoor water use Response 
Parcel-adjusted 05 application (I parcel) Response 
Parcel-adjusted 06 application (I parcel) Response 
vegetation-adjusted 05 application (I 

vegetation) 
Response 

vegetation-adjusted 06 application (I 

vegetation) 
Response 
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Table 3-2. Explanatory (italicized) and response variables used in census block group-scale 

analyses. Land cover compositional and vertical structural variables represent statistical 

averages of parcels contained within individual census block groups. 

Variable Category 

Low impervious  cover Land cover composition 
building cover Land cover composition 
Tree cover Land cover composition 
Low vegetation cover Land cover composition 
Other cover Land cover composition 
Total vegetation cover Land cover composition 
Total impervious cover Land cover composition 
Maximum vegetation height Vertical structure 
Mean vegetation height Vertical structure 
Maximum building height Vertical structure 
Mean building height Vertical structure 
Maximum Tree height Vertical structure 
Mean Tree height Vertical structure 
Parcel area Socioeconomic/demographic 
Population difference 2000-2010 Socioeconomic/demographic 
2010 population density Socioeconomic/demographic 
Mean block population size Socioeconomic/demographic 
Mean block household size Socioeconomic/demographic 
Appraised value Socioeconomic/demographic 
Log appraised value Socioeconomic/demographic 
% male Socioeconomic/demographic 
% female Socioeconomic/demographic 
% household age 5-17 Socioeconomic/demographic 
% household age 18-21 Socioeconomic/demographic 
% household age 22-29 Socioeconomic/demographic 
% household age 30-39 Socioeconomic/demographic 
% household age 40-49 Socioeconomic/demographic 
% household age 50-64 Socioeconomic/demographic 
% household age 65+ Socioeconomic/demographic 
% owner occupied Socioeconomic/demographic 
% vacant Socioeconomic/demographic 
% single male Socioeconomic/demographic 
% single female Socioeconomic/demographic 
% household married with children Socioeconomic/demographic 
% household married with no children Socioeconomic/demographic 
Parcel-adjusted 05 application Response 
Parcel-adjusted 06 application Response 
Vegetation-adjusted 05 application Response 
Vegetation-adjusted 06 application Response 
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Table 3-3. Summary statistics for measures (n, median, interquartile range, and mean) of 

outdoor water application for parcels in spatial clusters of high and low water use clusters 

identified by Anselin Local Moran’s I analysis of 2005 data. 

Neighborhood 
age 

Number of parcels Median  
Ivegetation (m) 

Ivegetation (m)  
IQR 

Mean  
Ivegetation (m) 

 High Low High Low High Low High Low 
pre-1938 11 144 1.47 0.46 0.28 0.31 1.70 0.47 
1938-1958 47 2581 1.92 0.53 0.81 0.34 2.20 0.52 
1958-1978 828 7057 1.89 0.54 0.70 0.29 2.06 0.53 
1978-1998 3650 753 1.87 0.43 0.78 0.27 2.09 0.42 
1998-2007 2469 44 1.94 0.37 1.07 0.32 2.27 0.33 
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Figure 3-1. Parcel level variation in water use and land cover variables for a representative 

neighborhood spanning two developments of different age. 
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Figure 3-2. Maps of deviation in Getis-Ord Gi* scores for 2005 and 2006 for parcel-level 

outdoor water use (I vegetation). Very high or low z-scores indicate spatial clustering. 
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Figure 3-3. Box and whisker plots for vegetated cover-adjusted application (I vegetation), 

parcel area-adjusted application (I parcel), parcel-scale land cover composition and vertical 

structure variables, calculated for parcels in statistically significant clusters of high and low 

2005 outdoor water use identified using Anselin Local Moran’s I statistics (HH: high value 

in cluster of high values; LL: low value in cluster of low values). 
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Figure 3-4. Parcel-level data aggregated by 2010 Census block group (n = 155): Water use 

(I vegetation) in 2005 (panel a); mean parcel building height (panel b); mean parcel tree height 

(panel c). Scatterplots of block group-scale 2005 Iparcel (panel d) and Ivegetation (panel e) and 

mean tree height (m). Dashed lines represent from top to bottom the 75th, 50th, and 25th 

conditional quantiles. 
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Figure 3-5. Spatial pattern analysis of 2005 block group Ivegetation: Left panel: Getis-Ord Gi* 

z-scores; right panel: Anselin Moran’s I clusters (high/high; low/low) and spatial outliers 

(low/high; high/low).  
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Figure 3-6. Conditional variable importance plot of explanatory variables used in Random 

Forest regression of parcel-scale vegetated area-adjusted irrigation (Ivegetation) for 2005 (left 

panel) and 2006 (right panel). 
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Figure 3-7. Conditional variable importance plot for combined land cover composition, 

vertical structure, socioeconomic/demographic variables from Random Forest analysis of 

2005 vegetated area-adjusted census block group outdoor water use. Bars for variables 

with conditional variable importance less than 0.002 are not displayed 
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4. INFLUENCE OF LAND COVER COMPOSITION AND VERTICAL STRUCTURE 

ON LAND SURFACE TEMPERATURE IN A SEMI-ARID SUBURBAN AREA 

 

 

 

Introduction 

The majority of the world’s population now lives in cities (Crane and Kinzig 2005), and in 

many regions, rates of urban expansion are rising significantly (Alig et al. 2004, Cohen 2006). 

Dramatic changes in land cover composition and spatial structure accompany urbanization with 

important consequences for ecological and hydrologic functioning (Oke 1989, McDonnell et al. 

1997, Walsh et al. 2005). Asphalt, concrete, and buildings in the urban landscape more 

effectively store incident solar radiation than vegetation. In addition, transpiration by vegetation 

moderates temperatures through latent heat exchange (Campbell and Norman 1998), so when 

urbanization leads to the conversion of vegetation to impervious cover, increases in ambient 

temperature are commonly observed (Owen et al. 1998, Small 2006).  

This phenomenon, commonly termed the urban heat island (UHI) (Oke 1982, Arnfield 

2003), has broad consequences for human comfort and energy consumption, residential water 

use, and a range of ecohydrological processes (Guhathakurta and Gober 2007, Luber and 

McGeehin 2008, Gober et al. 2012, Halper et al. 2012, Sawka et al. 2013). The Park Cool Island 

is a related phenomenon, where irrigated areas with high vegetation cover are cooler than 

surrounding urban areas, the result of shading and latent heat exchange (Chow et al. 2011, 

Declet-Barreto et al. 2013). Land surface temperature (LST) patterns have important 

consequences for urban sustainability, particularly critical in light of projected climate changes, 

but our understanding of the landscape factors influencing LST remains weak. 
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Vegetation is an important factor shaping urban LST. The Normalized Difference 

Vegetation Index (NDVI)(Rouse et al. 1973) , a widely used proxy for vegetation abundance and 

condition, is correlated with LST (Gallo et al. 1993, Weng et al. 2004). Other measures of 

vegetation abundance such as the vegetation fraction or indices of impervious cover have also 

been evaluated (Owen et al. 1998, Yuan and Bauer 2007, Yue et al. 2007). For example, Yuan 

and Bauer (2007) applied a spectral mixture analysis of NDVI and percent impervious surface to 

evaluate LST patterns in the Minneapolis-St. Paul metropolitan area. They found a pronounced 

and seasonally-invariant relationship between LST and the percent cover of impervious surfaces, 

as well as seasonally varying correlations between LST and NDVI. Patch-based metrics of 

landscape structure have also been correlated with LST (Li et al. 2011, Zhou et al. 2011), 

demonstrating the broad importance of vegetation abundance and landscape structure on LST 

patterns. For example, Li et al. (2011) found positive correlations between mean LST and 

common landscape metrics such as percent of land use (PLAND) and edge density (ED). While 

previous analyses provide general relationships between vegetation as a whole and LST, little is 

known how different types of vegetation (e.g., forests and turfgrass) with different vertical 

structural characteristics influence urban LST. A more detailed understanding of these effects 

would provide important information for urban planners and landscape architects. 

Trees differ functionally from turfgrass lawns and other urban vegetation types in their 

effect on local and regional energy balances, carbon and water cycling, and other ecosystem 

services (Nowak and Crane 2002, Pataki et al. 2006, Pataki et al. 2011a). Maps of tree canopy 

cover can be relatively easily created by analyzing aerial or satellite imagery; however, a 

variable like tree cover poorly address the complex vertical structure created by trees that 

influences boundary layer characteristics and turbulent exchanges with the atmosphere (Oke 
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1982, Oke 1989, Kanda et al. 2006). The importance of vertical structural characteristics has not 

been widely examined because comprehensive, landscape-scale data were not available. 

Advancements in lidar remote sensing now allow explicit analyses of vertical structure (Shugart 

et al. 2010), facilitating a greater understanding of the influence of urban landscape structure on 

LST patterns. 

In this analysis, I evaluate relationships between urban land cover composition, vertical 

structure, and summer daytime LST patterns. In particular, I focus on the importance of 

physiognomic class and measures of vertical structure on LST. Specific research questions 

include the following: (1) How do patterns of land cover composition and three-dimensional 

structure vary spatially in my study area? (2) How do patterns of LST differ between urbanized 

areas and undeveloped native vegetation types? (3) What land cover compositional and vertical 

structural characteristics best predict summer daytime LST patterns?  

Study area 

I studied a 287 km2 area centered on Aurora, Colorado, a rapidly growing suburb adjacent 

to Denver in the Colorado Front Range region. The study area, which also included portions of 

Denver, Adams, and Arapahoe counties (Figure 4-1), was converted from shortgrass steppe to 

dryland and irrigated agriculture beginning in the late-19th century, and has seen rapid 

population growth and urban expansion in recent decades. The regional climate is semiarid and 

the area receives approximately 400 mm of precipitation annually, much of it in the form of 

convective summer thunderstorms. Dominant land uses include low to high density single and 

multi-family residential, retail commercial and light industrial, and parks/open space, the latter 

including small neighborhood parks and larger recreational parks and golf courses. Undeveloped 

portions of the study area that still support native shortgrass steppe communities were used as 
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reference areas in analyses of LST patterns (Figure 4-1). Dominant urban vegetation cover types 

include urban forests of varying composition and structure, irrigated lawns in park and 

residential contexts, and unirrigated native and ruderal communities. 

Methods 

Land cover analysis and structural characterization 

To evaluate land cover and structure characteristics for my study area, I analyzed a high 

resolution land cover map produced using an object-oriented image analysis (OBIA) approach. 

Specific details are presented in Chapter 2, but a brief summary of the approach follows. 

Mapping land cover involved the following steps: (1) data preprocessing; (2) image 

segmentation; (3) classification; and (4) error analysis. Lidar point cloud and intensity data from 

April, 2008 were used to generate first return, bare Earth, intensity, and normalized digital 

surface model (nDSM) rasters. Four-band (blue, green, red, near infrared) imagery was used to 

derive spectral indices such as the Normalized Difference Vegetation Index (NDVI), and 

principal components analysis rasters. Layers were combined for image segmentation using a 

region merging algorithm (Benz et al. 2004) and the mean and standard deviation of pixel values 

for each image segment was calculated and exported for training and classification. The 

RandomForest package in R (version 2.15.1) was used with a training data set to assign land 

cover classes to image segments (Breiman 2001, Liaw and Wiener 2002). A validation data set 

(n = 767 points) was used to calculate overall accuracy, producer’s accuracy (omission error), 

user’s accuracy (commission error), and kappa coefficient (Congalton and Green 1999). 

Using the resulting land cover classification, I summarized land cover patterns for the 

assessment area and produce individual masks for each land cover class. These masks were 

combined with the lidar-derived nDSM to create multiple data layers describing vertical 
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structure. For example, a tree canopy height layer was created by extracting nDSM values using 

the tree cover mask. A gradient-based approach to quantifying vertical structure variables was 

developed using focal statistics functions in ArcGIS. For key compositional and structural 

variables (e.g., tree canopy density, tree height, building height), a 3 ha circular moving window 

was used to derive continuous data layers describing mean neighborhood values. This scale was 

chosen to approximate that of city blocks. I calculated the difference in mean height between 

impervious and vegetated cover rasters to provide a general indicator of the dominant land cover 

compositional elements influencing vertical structure. 

Evaluation of LST in relation to land cover composition and structure 

I quantified patterns of LST using Landsat 5 TM scenes obtained from the US Geological 

Survey’s Global Visualization Viewer (http://glovis.usgs.gov/). Six late-spring and summer 

Landsat scenes that were cloud free for the study area extent were selected for analysis from 

2005 to 2011. Landsat 5 TM thermal band data (Band 6, 10.45-12.42 μm wavelength) are 

collected at a resolution of 120 m, but are distributed at a resampled 30 m pixel resolution, the 

resolution retained in subsequent analyses. Sensor gain and offset values published for the 

Landsat 5 TM sensors published by Chander (2009) used in the R “landsat” package were used 

to convert raw digital number (DN) values to radiometric temperature in degrees C (Goslee 

2011).  

I compared LST patterns in urbanized and undeveloped reference areas by creating 

polygons supporting shortgrass steppe communities on undeveloped portions of Buckley Air 

Force base and adjacent open-space lands (Figure 4-1). For a given Landsat scene, mean 

reference area LST values were calculated using zonal statistics in ArcGIS and subtracted from 

LST rasters to yield a series of “deviance from reference area temperature” (LSTd ref) grids. 
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Raster analysis functions in the R package “raster” were used to derive LST grids standardized to 

scene mean and standard deviation for use in regression analyses. LST patterns were also 

examined in relationship to land use characteristics using zoning data. 

Atmospheric effects can cause systematic biases in remotely-sensed temperature, limiting 

the interpretability of direct comparisons of scenes acquired at different times and under different 

atmospheric conditions (Voogt and Oke 2003). Variation in sun-sensor-surface geometry and the 

three-dimensional structure of urban areas can cause anisotropic effects, an additional source of 

bias (Voogt and Oke 1998, Lagouarde and Irvine 2008). Also, radiometric surface temperatures 

often differ from air temperatures due to factors such as advection (Voogt and Oke 2003). As a 

consequence, I was less interested in comparisons in absolute temperatures between scenes; 

rather, my focus was on relative spatial patterns exhibited within a scene.  

Using 2010 census blocks as units (n= 7490), I calculated means and standard deviations 

for land cover compositional, vertical structural, and LST rasters using zonal statistics in 

ArcGIS. I then used these data to evaluate the importance of vertical structural variables versus 

land cover compositional variables on LST using two approaches. First, I used the Random 

Forests algorithm in the R “randomForest” package (Liaw and Wiener 2002) in a regression 

context to compare the variance in LST explained using models fit to different subsets of 

explanatory variables: land cover compositional variables only, vertical structural variables only, 

and a full model combining all explanatory variables. To understand the specific influence of 

NDVI on model performance, subsets were run with and without inclusion of NDVI among 

explanatory variables. Separate RF models using 500 trees were created for the six Landsat 

scenes analyzed, with the response variable that scene’s LST values. I used the out-of-bag 

(OOB) estimate produced by the algorithm as an estimate of the error rate. 
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In addition to generally achieving high predictive accuracy compared with traditional 

regression approaches, RFs provide a way of ranking the importance of explanatory variables in 

prediction (Grömping 2009, Genuer et al. 2010), a key objective in my analysis. Using the fully 

specified model, I compared three variable importance measures. Two traditional variable 

importance measures were evaluated: %IncMSE and IncNodeImpurity. The first is calculated by 

permuting OOB data and predictor variables, averaging the difference over all trees constructed 

(500 in my case), and normalizing by the standard deviation of the differences. The 

IncNodeImpurity measure assesses the decrease in node impurity from splitting on a particular 

variable measured using residual sum of squares, averaged for all trees in the ensemble. Recent 

studies have found that these variable importance measures can sometimes be biased towards 

highly correlated variables (Strobl et al. 2007). Therefore, I also calculated conditional variable 

importance estimates using the “cforest” algorithm in the R package "party". This algorithm 

employs a conditional permutation scheme for the computation of the variable importance that 

avoids potential bias (Strobl et al. 2007, Strobl et al. 2008). In these conditional permutations, 

predictor and response variables are shuffled, and the effects on a standardized measure of model 

accuracy are assessed before and after each permutation. For predictor variables lacking a 

meaningful relationship with the response, the shuffling of its values will produce little change in 

model accuracy, while a large drop in accuracy will be observed for predictors showing strong 

associations with the response variable (Strobl et al. 2007, Strobl et al. 2008). Variable 

importance measures produced this way reflect both the individual effect of predictor variables 

and their influence as part of complex interactions, which is challenging to assess in traditional 

regression approaches (Strobl et al. 2008). 
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Results 

Land cover composition and vertical structure 

Land cover classification accuracy over all classes was 92.7%, with a Kappa coefficient of 

0.90. The highest producer’s accuracy (Congalton and Green 1999) was for the water class, 

followed by low-impervious, low-vegetation, buildings, trees, and bare soil classes (Table 4-2). 

The tree class had the highest user’s accuracy, followed by buildings, and the low-impervious 

and low-vegetation classes, each with an accuracy of approximately 93%. Water and bare soil 

classes had the lowest user’s accuracy, but together comprised <5% of the study area (Table 4-

2). 

The low vegetation class, including irrigated and unirrigated areas, covered the largest 

proportion of the assessment area at 43.8% (Table 4-2). Low impervious was the second most 

abundant class at 28.2%, followed by buildings and trees/shrubs at 12.4% and 11.9%, 

respectively. Land cover was spatially heterogeneous, varying within areas with different land 

use, zoning, and history of development. Overall, industrial and commercial areas had the 

highest cover of low impervious land at 37.3%, compared to less than 15% in parks and open 

space. Total vegetation cover (trees/shrubs and low vegetation classes) was highest in open space 

at 81.6%, and developed parks at 78.5%. While low vegetation cover was only slightly lower in 

residential areas than those zoned commercial/industrial (37.5% vs. 40.7%), residential areas had 

the highest tree cover of 16.9%, more than four times greater than commercial/industrial areas. 

Distinct trends in vertical structure occur across the study area reflecting both land-use 

characteristics and historical land development patterns. Mean tree height was greatest in the 

north western portion of the study area, where the oldest neighborhoods occur (Figure 4-3). 

Moving window-derived building height was greatest in a few locations with commercial or 
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industrial land uses and in more recently developed single-family residential areas (Figure 4-4). 

Concentrations of sites where mean tree height exceeded building height occurred in areas with 

higher forest canopy cover, primarily in the northwest portion of the study region (Figure 4-4). 

Buildings are smaller in older neighborhoods contributing to their higher height differential. 

Evaluation of LST in relation to land cover composition and structure 

The highest mean LST for the six Landsat scenes analyzed was 40.5 °C on July 10, 2008, 

and the lowest was 32.9 °C on July 18, 2005. Among individual Landsat scenes, there was 

considerable variation in LST (Table 3; Figure 4-5, 4-6). The coolest portions of all scenes were 

water bodies, with temperatures recorded over large reservoirs averaging 14.9°C cooler than 

commercial/industrial areas and 10.9°C cooler than parks. Residential areas averaged 4.0°C 

cooler than commercial/industrial areas, and both residential and commercial/industrial areas 

were cooler than reference areas by 5.2°C and 1.2°C, respectively. Spatial patterns of LSTd ref 

varied among Landsat scenes, reflecting differences in both meteorological conditions at the time 

of Landsat scene acquisition and seasonality (Table 4-3, Figure 4-7). 

Regression analyses using the RF algorithm and the full set of explanatory variables 

explained a mean of 65.0% of the variance in LST among the six Landsat scenes analyzed, 

ranging from a low of 56.4% for the 2005Jul18 scene to a high of 74.6% for the 2011Jul19 scene 

(Table 5). In contrast, the mean percent of LST variation explained by the land cover 

compositional subset of explanatory variables was 50.1%, ranging from 39.7% to 62.9%. Adding 

NDVI to the land cover compositional subset improved the mean prediction by only 5.6%. The 

mean % variance explained by the subset of vertical structural variables was 56.7%, improving 

to 61.6% through inclusion of NDVI. Compared with the model developed using the land cover 

compositional variables only, the addition of vertical structural variables and NDVI improved 
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prediction accuracy by an average of 14.9%, ranging from 11.7% to 19.2% for individual 

Landsat scenes. 

Using conditional variable importance values, the tree-building height had the highest 

mean importance among the six Landsat scenes, followed by tree height and NDVI (Table 4-6). 

The composite variables % impervious and % vegetation had higher mean importance than 

individual class abundance variables such as % buildings, although there was variability in 

relative variable importance rankings among individual Landsat scenes (Figure 4-9). The relative 

rankings of variables were most similar between the conditional and IncNodeImpurity measures. 

Using IncNodePurity, the mean height difference between trees and buildings was the highest-

ranked variable used. Four of the top six variables ranked using the IncNodePurity metric 

described some aspect of vertical structure and no single land cover class abundance measure 

ranked higher than fifth in relative importance using IncNodePurity (Figure 4-10). Averaging 

across all six dates, NDVI had the highest variable importance using the percent increase in 

mean standard error (%IncMSE ) measure (Table 4-6). The mean height difference between trees 

and buildings was the second most important variable using the %IncMSE criterion. The mean 

tree height and tree height standard deviation variables also ranked highly using %IncMSE 

(Table 6). The aggregate compositional variables % vegetation and % impervious variables were 

more important than any single-class variables using IncNodePurity but not for %IncMSE. 

Discussion 

My results highlight the complexity of urban land cover composition and the effect of 

vertical structure on census block-level LST patterns. The model incorporating vegetation 

abundance and its proxy NDVI was less effective in predicting LST patterns than models 

incorporating vertical structural attributes. Measures of vertical structure were consistently 
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important predictors of LST patterns, while land cover compositional metrics were of relatively 

low predictive value. Two structural variables were particularly important, tree height and the 

difference between mean tree height and building height, highlighting the different mechanisms 

by which vegetation structure can influence LST patterns. 

In addition to latent heat exchange processes, trees reduce heating through their effects on 

boundary layer characteristics and shading (Oke 1989). While transpiration from all vegetation 

types reduces the fraction of energy going towards sensible heat flux, unlike low vegetation 

types like turfgrass, trees also influence microclimate by shading adjacent areas. Thus, trees can 

provide cooling benefits even when plant transpiration rates are relatively low (Chow and Brazel 

2012).The high variable importance of the height difference between trees and buildings 

emphasizes this important function; the net cooling benefit from trees was greatest when they 

were taller than adjacent buildings. 

Comparisons of model accuracy among different subsets of explanatory variables reveal 

the importance of irrigation on urban LST patterns. The lower variable importance of land cover 

compositional measures like % vegetation relative to NDVI in my analyses reflects NDVI’s 

integration of both vegetation abundance and vigor. The compositional classes I used did not 

discriminate between irrigated and non-irrigated areas, information that is partially contained in 

NDVI. However, in areas with high leaf area like many urban plant communities, NDVI is 

relatively insensitive to differences in canopy structure (Gamon et al. 1995), and the importance 

of vertical structural characteristics in my regression analyses reveals the limitations of a single 

measure like NDVI in predicting urban LST patterns. 

The addition of vertical structural variables such as tree height and the difference between 

tree and building height to regression models based on land cover class abundance alone 
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improved prediction accuracy by an average of 9.3%. For every Landsat scene analyzed, 

regression models based only on the subset of vertical structural variables explained more LST 

variation than models based on land cover class abundance. When vertical structural variables 

were combined with NDVI, they outperformed the land cover class only classification by 11.5%. 

These results reveal important mechanisms governing the relationship between land cover 

composition and structure and urban thermal characteristics. 

Empirical and modeling studies broadly highlight the importance of land cover 

characteristics on urban microenvironment, suggesting ways of addressing the negative effects of 

urbanization on LST through design decisions at varying spatial scales (Shashua-Bar et al. 2010, 

Shashua-Bar et al. 2011, Vidrih and Medved 2013). Summertime extremes in LST are likely to 

increase in severity with climate change (Luber and McGeehin 2008), directly and indirectly 

affecting human health (Kovats and Hajat 2008). This research points to the particular 

importance of vertical structure on LST patterns, information that can be used to inform design 

and planning decisions. Particularly important in my analysis was the height characteristics of 

urban trees, especially in relation to adjacent buildings. Past research has demonstrated the 

benefit of shade trees on energy needed to cool individual houses (Rudie and Dewers 1984); my 

analyses demonstrate the broader benefit of urban forests on urban LST. These benefits are in 

addition to other ecosystem services like reduced storm water generation, carbon storage, and 

biodiversity (Hope et al. 2003, Byrne et al. 2008, Dobbs et al. 2011).  

Most cities in arid and semi-arid regions have limited water resources and mitigation of 

UHI effects is one of several considerations driving water use planning decisions. The benefits of 

vegetation for moderating LST are derived in part from latent heat exchange, supported by 

supplemental irrigation. From a water conservation standpoint, landscaping with low water use 
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species has sensibly been promoted, although landscapes dominated by such species may offer 

less cooling benefit (Chow and Brazel 2012). Efforts to reduce residential water consumption, 

while simultaneously maintaining a desirable thermal environment, should consider not just the 

plant water use traits, but vertical structural characteristics. 

Mean temperature in all of my urban land use types was lower than native shortgrass 

steppe, but significant spatial variability occurred in LSTdref within each land use class. This 

reflects differences in land cover composition and vertical structure as well as management 

characteristics like irrigation. For example, industrial and commercial areas had the highest mean 

LST values, but mean LST was still cooler than steppe areas because of the predominance of 

irrigated vegetation, which more than balanced the higher LST created by impervious land cover 

types. For the six dates analyzed, I did not observe the development of a strong UHI in my study 

area, although at finer spatial scales, variation in land cover composition and vertical structure 

led to areas with higher LST than undeveloped reference areas. The vigor of native grasses varies 

seasonally with precipitation, while cool-season turfgrass remains physiologically active 

throughout the summer if provided sufficient supplemental irrigation, contributing to evaporative 

cooling and the seasonal differences in spatial patterns of LSTdref evident among different 

Landsat scenes. 

Much of the research on patterns and drivers of UHI in the U.S. has been conducted in the 

desert Southwest (Baker et al. 2002, Sun et al. 2009, Buyantuyev and Wu 2010, Jenerette et al. 

2011, Chow and Brazel 2012). This work illustrates the processes influencing UHI formation, 

but differences in climate and natural vegetation limit their direct application in semi-arid 

temperate regions. Shortgrass steppe communities support higher plant biomass and leaf area 
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than desert communities (Barbour and Billings 2000) and steppe communities are capable of 

significantly greater latent heat exchange than desert plant communities. 

There are limitations to using radiometric temperatures to characterize urban LST. 

Remotely-sensed measurements generally diverge from air temperatures because of factors like 

advective transport of heat by complex wind patterns shaped by the spatial configuration and 

varied aerodynamic roughness characteristics of cities (Voogt and Oke 2003). Atmospheric 

effects can systematically bias temperature, limited their value in comparisons across time. 

Spatial anisotrophy in complex structural environments can introduce bias and are difficult to 

model. However, the broad synoptic view of entire landscapes provided by satellite imagery does 

provide useful insights for understanding the influence of land cover characteristics on LST 

patterns across cities. 

The study area supports land-use and land cover characteristics typical of many suburban 

areas, has a varied development history, and is socioeconomically and demographically diverse. 

However, it is important to recognize the broader regional context. Numerous studies have 

examined LST patterns along gradients of development ranging from simple linear transects to 

more complex character-based synthetic gradients (Hahs and McDonnell 2006, McDonnell and 

Hahs 2008, Berland and Manson 2013). In these studies, as in this study, broad conclusions are 

shaped by the choice of the spatial grain and extent of analysis. 

Conclusions 

Land cover compositional data have been effectively used in past studies to predict urban LST 

patterns. By including vertical structural information derived from lidar, I found that additional predictive 

accuracy can be obtained. Random forest regression models developed using only vertical structural 

explanatory variables outperformed those using only land cover compositional variables. In comparisons 
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of three variable importance measures, two vertical structural variables—tree height and the height 

difference between trees and buildings—consistently outranked land cover compositional variables in 

predicting census block-level LST patterns. These results highlight the important benefits from urban 

vegetation, and especially trees, in mitigating UHI formation and draw attention to the particular role of 

shading by trees in moderating urban LST.
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Table 4-1. Percent user’s and producer’s accuracy from land cover classification. Because 

of their low relative abundance, the bare soil and water LC classes were combined into a 

single “other” class in regression analyses. 

Class User’s accuracy 

(%) 

Producer’s accuracy 

(%) 

Proportion of 

 study area (%) 

Bare 81.8 77.1 2.0 

Building 94.9 88.6 12.4 

Low Impervious 93.9 95.4 28.2 

Low Vegetation 93.1 94.9 43.8 

Tree/shrub 95.5 87.5 11.9 

Water 81.0 100 1.7 
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Table 4-2. Summary LST statistics for study area. Daily instrumental mean temperature is 

from the Denver International Airport weather station (KDEN). 

Landsat scene 

acquisition date 

Mean LST 

(°C) 

Minimum 

LST 

(°C) 

Maximum 

LST 

(°C) 

Standard 

Deviation 

(°C) 

Daily 

Instrumental 

Max (°C) 

2005 Jul 18 31.9 19.4 41.6 2.6 31.7 

2008 Jul 10 40.5 22.1 57.4 3.5 36.7 

2008 Aug 11 34.6 21.2 48.9 2.7 30.6 

2010 May 29 36.8 17.2 49.0 3.2 25.6 

2010 Aug 17 34.0 20.8 47.9 3.3 31.1 

2011 Jul 19 35.4 21.6 50.1 2.8 27.2 
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Table 4-3. Summary deviation from reference LST statistics for study area. 

Landsat scene 

acquisition date 

Mean  

LST dev ref 

(°C) 

Minimum 

LST dev ref 

(°C) 

Maximum 

LST dev ref 

(°C) 

Standard 

Deviation 

(°C) 

2005 Jul 18 -3.9 -16.5 5.7 2.6 

2008 Jul 10 -1.2 -19.6 15.8 3.5 

2008 Aug 11 0.4 -13.0 14.8 2.7 

2010 May 29 -2.2 -21.8 10.0 3.2 

2010 Aug 17 -7.0 -20.2 6.9 3.3 

2011 Jul 19 -2.5 -16.2 12.2 2.8 
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Table 4-4. Percent variation explained by Random Forest regressions of LST against 

different combinations of land cover compositional and structural variables. Mean and 

standard deviation (SD) columns are for the six Landsat scene dates. 

Scene  

Date 

2005 

Jul 18 

2008 Jul 

10 

2008 

Aug 11 

2010 

May 29 

2010 

Aug 17 

2011 

Jul 19 

Mean 

(SD) 

LC 

compositional 

only 

39.7 46.5 52.7 44.2 54.6 62.9 50.1 

(8.3) 

Vertical 

structural 

only 

41.0 51.8 57.6 58.7 63.2 68.0 56.7 

(9.4) 

LC 

compositional 

+ NDVI 

48.0 53.5 56.5 48.6 61.3 66.2 55.7 

(7.2) 

Vertical 

structural + 

NDVI 

51.5 57.2 61.2 60.2 67.7 71.9 61.6 

(7.3) 

Full model 56.4 61.1 64.4 63.4 70.2 74.6 65.0 

(6.5) 
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Table 4-5. Mean, standard deviation (SD), and rank of variable importance measures for 

the six Landsat scenes analysed (n=6). Conditional: Conditional variable importance 

calculated using the “cforest” algorithm; IncNodeImpurity: increase in node impurity 

calculated using “randomForest” package; %IncMSE: percent increase in mean standard 

error calculated using “randomForest” package. See methods for description of each 

variable importance measure. 

 Conditional IncNodeImpurity %IncMSE 

 Mean (SD) Rank Mean (SD) Rank Mean (SD) Rank 

Tree-Bldg height 

diff 

0.818 (0.51) 1 2431.8 (821.3) 1 35.7 (6.0) 2 

Tree height 0.646 (0.37) 2 1337.6 (567.2) 3 27.3 (3.4) 5 

NDVI 0.481 (0.29) 3 1564.3 (484.1) 2 44.5 (10.2) 1 

% Impervious 0.312 (0.12) 4 1060.5 (422.7) 5 21.7 (4.5) 11 

% Vegetation 0.274 (0.09) 5 1076.2 (379.8) 4 26.8 (3.0) 7 

% Tree/shrub 0.200 (0.10) 6 656.7 (278.4) 6 17.1 (3.8) 14 

% Building 0.170 (0.06) 7 473.9 (127.3) 8 21.3 (4.6) 12 

% LowVegetation 0.127 (0.04) 8 467.5 (82.2) 9 27.8 (2.1) 4 

nDSM SD 0.105 (0.04) 9 538 (188.1) 7 30.1 (4.5) 3 

Prop Imp from 

LowImp 

0.101 (0.03) 10 318.9 (91.9) 15 22.1 (9.1) 9 

Prop Veg from 

LowVeg 

0.090 (0.04) 11 349.2 (108.4) 11 16.4 (2.7) 15 

Prop Veg from 

Tree 

0.088 (0.04) 12 352.5 (109.2) 10 15.5 (2.5) 16 

Prop Imp from 

Bldg 

0.082 (0.03) 13 330.1 (90.5) 14 22.6 (7.4) 8 

Tree Bldg height 

diff SD 

0.060 (0.07) 14 344.9 (121.4) 13 20 (10.3) 13 

Tree height SD 0.054 (0.03) 15 348.1 (114.8) 12 27.3 (4.2) 6 

% Other 0.045 (0.02) 16 278.9 (87.9) 16 22.1 (4.1) 10 
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Figure 4-1. Aurora-Denver study area in North Central, Colorado, USA; Bottom panel: 

Landsat 5 TM (Bands 7,4,2). Reference areas refer to unirrigated shortgrass steppe 

communities in undeveloped open space in and adjacent to Buckley Air Force base. 
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Figure 4-2. Portion of study area illustrating the land cover classification (panel A); % 

vegetation (tree/shrub or low vegetation) for 2010 census blocks (panel B).    
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Figure 4-3. Mean tree canopy cover (left panel) and mean tree height (meters; right panel) 

calculated using a 3 ha moving window. 
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Figure 4-4. Mean building height (panel); difference between mean vegetated and 

impervious canopy height (m) derived using a 3 ha moving window (right panel). Negative 

values in right panel indicate that the impervious class forms the tallest height element, 

while positive values indicate that vegetation classes (usually trees) are dominant. 
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Figure 4-5. Box and whisker plots for LST (left panel) and deviation from reference area 

temperature (right panel) on different Landsat scene acquisition dates. 
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Figure 4-6. Comparison of LST on 5/29/10 (left panel) and 8/17/2010 (right panel). 
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Figure 4-7. Deviation from reference area LST (LSTd ref) for level plot. 
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Figure 4-8. Contours of LSTd ref (°C) from undeveloped reference area for a golf course 

(left center of figures in both panels) and adjacent residential areas in southeast Aurora 

overlaid on % impervious cover raster (left panel) and 2008 NDVI (right panel). Contour 

lines represent 1o C deviation from reference area temperature in 2008Aug11 Landsat 

scene. 
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Figure 4-9. Conditional variable importance values for Random Forest analyses of LST 

and urban land cover compositional (grey bars) and vertical structural (blue bars) 

variables for individual Landsat scenes. 
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Figure 4-10. Boxplots of variable importance measures from Random Forest analysis of 

urban land cover compositional (grey bars) and vertical structural (blue bars) variables 

(n=6). 
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5. IRRIGATION HETEROGENEITY AND PLANT FUNCTIONAL TYPE EFFECTS ON 

URBAN VEGETATION WATER USE 

 

 

 

Introduction 

The establishment of a distinctive urban flora is among the most conspicuous changes 

accompanying urbanization. From a compositional perspective, the net effect of this transformation is 

typically to increase homogeneity (Pyšek et al. 2004, McKinney 2006). Turf lawns comprised of near-

monocultures of cool-season grasses (e.g., Poa pratensis) are the dominant vegetation type in most 

temperate-zone US cities (Milesi et al. 2005). While trees also contribute significant cover and diversity, 

the composition of the urban forest is typically skewed towards a relatively small number of species 

favored because of aesthetic characteristics and an ability to tolerate the stresses of the urban environment 

(Golubiewski 2006, McHale et al. 2007, Nowak and Greenfield 2010). Urbanization can promote 

compositional homogeneity, but it remains unclear how functional properties like plant water use vary in 

relation to land cover composition, structure, and management factors like irrigation. 

In arid and semi-arid climates, supplemental irrigation can support plant species with widely 

differing water use requirements (Nouri et al. 2013). While irrigated urban vegetation provides a range of 

important ecosystem services (Dobbs et al. 2011, Peters et al. 2011, Berland 2012), this is often at the cost 

of increased water use relative to unirrigated native cover types (Mcpherson 1992, Pataki et al. 2011b). 

As cities seek ways to manage limited water supplies, more attention is being given to plant water use and 

landscape irrigation practices, which accounts for the majority of typical summer household water use 

(Kenney et al. 2008, Ferguson et al. 2013). However, there remains significant uncertainty about the 

factors influencing the water use characteristics of urban plants under field conditions. 

Individually, tree and turf water use have been extensively researched (Feldhake et al. 1983, 

Vrecenak and Herrington 1984, Jiang et al. 1998, Kjelgren and Montague 1998, Wang et al. 2008, Pataki 

et al. 2011a). However, few studies have looked at water use in combined tree and turf land cover types in 

urban landscapes. In many natural settings, trees have been found to use more water than herbaceous 
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species (Zhang et al. 2001, Huxman et al. 2005), but whether this is true in urban contexts is unclear. 

Urban trees can support large canopies and are generally well-coupled with the atmosphere (Oke 1989), 

which can result in greater transpiration than herbaceous urban land covers (Devitt et al. 1995), but other 

studies have found the reverse to be true (St. Hilaire et al. 2008, Peters et al. 2011), creating uncertainty.  

A variety of important functional differences between trees and turf can affect water use. Trees 

have deeper and more laterally extensive root systems than grasses (Canadell et al. 1996, Jackson et al. 

1996, Bijoor et al. 2012). Through shading and effects on the boundary layer, trees influence light, 

temperature, and humidity under their canopies, thereby influencing water use of surrounding vegetation 

(Jo and Mcpherson 2001, Shashua-Bar et al. 2011, Litvak et al. 2013). Turf commonly extends under the 

canopy of trees, and transpiration from both canopy layers must be accounted for when estimating total 

vegetation water use. ET could be expected to be greater in such dual canopy situations because of greater 

transpiring leaf area, but through shading, tree canopies may have the net effect of reducing ET. For 

example, the addition of trees to irrigated turfgrass lawns reduced total water consumption in one 

California study (Litvak et al. 2013). In another study from Israel, analysis of lysimeter and sap flux 

measurements indicated that total ET was lower in yards supporting small shade trees compared to those 

covered by turfgrass alone (Shashua-Bar et al. 2009, Shashua-Bar et al. 2011). However, it is unclear 

whether similar effects occur with cool-season turf and urban tree species in other climatic region. 

In contrast to the general uniformity of turf, urban forests support different tree species of varying 

age, size and basic functional characteristics (Kendal et al. 2014). These can result in differences in 

average and peak transpiration rates and the particular response to environmental drivers of water use 

(Bush et al. 2008, McCarthy and Pataki 2010, Pataki et al. 2011a). Stomatal sensitivity to atmospheric 

drivers of ET varies between tree species, as well as between broader functional groups that can be 

defined by differences in plant physiology, xylem anatomy, root distribution, and phenology (Hacke and 

Sperry 2001, Bowden and Bauerle 2008, Peters et al. 2010, Chen et al. 2012, Litvak et al. 2012). For 

example, xylem anatomy, which refers to the size and frequency distribution of xylem vessels in a tree’s 

sapwood, has been correlated with various aspects of tree water transport (Sperry et al. 1988, Sperry and 
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Sullivan 1992, Tyree and Zimmermann 2002, Pataki and Oren 2003, Bovard et al. 2005). Ring-porous 

species, including many common urban trees (e.g., Celtis occidentalis, Gleditisa triacanthos, Quercus 

rubra), have large diameter xylem vessels that are efficient at transporting water, but are more vulnerable 

to drought-induced cavitation than diffuse-porous trees (e.g., Populus deltoides, Acer spp.) or trees with 

tracheid xylem anatomy (conifers)(Hacke et al. 2007, Sperry et al. 2008, Litvak et al. 2012). Urban trees 

include all of these broad functional groups, but little is known about how water use characteristics differ 

between groups in an urban context. 

Other functional characteristics like plant phenology can influence tree water use. For example, 

evergreen trees may use less water during mid-summer than deciduous trees, but have higher total annual 

transpiration because they are capable of transpiring for a longer period (Peters et al. 2010, Peters et al. 

2011). In contrast, Catovsky et al. (2002) found that broad-leaved red oak and red maple trees had two- to 

four-fold greater annual water fluxes per ground area than coniferous eastern hemlock trees. Deciduous 

birch trees had stand level ET rates 1.6 times those of coniferous hemlocks in a study in the Northeastern 

US, even though ET rates were higher in the hemlock stand during the dormant season (Daley et al. 

2007). With a few exceptions (Peters and McFadden 2010, Peters et al. 2010, Pataki et al. 2011a), 

differences between transpiration in evergreen and deciduous tree species have not been examined in 

urban areas, despite their potential importance to vegetation water use. If functional differences can be 

generalized and inferences made to landscape-scale distribution patterns, a truer accounting of 

vegetation's role in urban ecohydrological processes may be possible. 

Objectives 

This paper seeks to improve understanding of the factors influencing water use by irrigated urban 

vegetation. In particular, I contrast water use between turfgrass and tree vegetation types, evaluate 

differences in water use between tree species and functional groups, and assess the importance of fine-

scale variation in irrigation application on turfgrass water use. I ask the following questions: (1) How 

does fine-scale variation in the amount of irrigation applied affect the condition and water use by Poa 

pratensis turf? (2) Does turf water use differ significantly between full sun and tree-shaded settings? (3) 
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How do transpiration rates differ among common urban tree species and functional types and in 

comparison to turf? These analyses add to the limited pool of data on water use by urban vegetation and 

contribute to a broader understanding of the importance of variation in plant composition and 

management on a key component of the urban water balance. 

Methods 

Study area 

I conducted my analyses in Aurora, Colorado, a rapidly expanding suburb adjacent to Denver in 

the Colorado Front Range region (Figure 5-1). The population of Aurora has grown rapidly from 74,974 

residents in 1970 to 325,078 residents in 2010 (City of Aurora 2012), driving urban expansion into 

agricultural areas and native shortgrass steppe. Land use changes in the last half-century have resulted in 

neighborhoods of varying age and land cover characteristics, and an urban forest of varied composition 

and age structure. Low to high-density single and multi-family residential, retail, commercial and light 

industrial land uses predominate. In parks and residential areas, vegetation is dominated by irrigated Poa 

pratensis lawns and urban forests comprised of primarily of introduced conifers and broad-leaved 

deciduous species. Aurora has a semiarid climate, with mean annual precipitation of 402 mm, most of this 

occurring from April-September (National Weather Service; Station ID: KDEN; 1980-2010 normals). At 

the site level, I analyzed 5 city-owned parks and recreation areas: Del Mar Par (DM), Canterbury Park 

(CB), Rocky Ridge (RR), Meadow Hills (MH), and Sagebrush Park (SG) (Figure 5-1, Table 5-2). 

Weather, irrigation, and soil moisture 

Average air temperature and relative humidity were measured at study sites using a CS105 probe 

(Campbell Scientific, Logan, Utah, USA). Values were recorded every 30 minutes on a CR1000 

datalogger (Campbell Scientific) and used to calculate vapor pressure deficit. Precipitation was recorded 

using a Texas Instruments tipping-bucket rain gauge with a sensitivity of 0.254 mm, and events were 

summed to yield daily precipitation totals. Because of instrument failures and vandalism, data were 
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supplemented with meteorological data from a standard reference ET (ETo) weather station at the Aurora 

Town Hall (ATH) in central Aurora.  

To quantify spatial patterns of irrigation application access my study areas, I installed a network 

of cylindrical plastic jars (100 cm3 volume, 15.2 cm2 aperture) placed into PVC sleeves installed flush 

with the ground surface to act as catch cans. Mineral oil was added to prevent evaporation between 

measurements. On approximately a weekly basis, I measured the contents of each catch can using a 

graduated cylinder, reset the cans, and replenished them with more mineral oil. To calculate a depth of 

application, I divided the volume of water captured (cm3) by the area of the opening (cm2). These data 

were summed on a monthly and seasonal basis and interpolated using the inverse distance weighting 

(IDW) technique in the ArcGIS Spatial Analyst extension (version 10.1; ESRI, Redlands, CA).  

Changes in volumetric soil water content (θv) were measured in 2 vertical arrays per site, one 

located under tree canopy and one in an open turf setting. Each array consisted of 3 capacitance soil 

moisture sensors (EC-5; Decagon, Inc.) installed at 0.1 m, 1 m, and 2m depths (Figure 5-2). Volumetric 

water content (θv) was recorded on an hourly basis using an Em5b data logger (Decagon, Inc., Pullman, 

WA). Because soil moisture can be highly variable spatially, I also made periodic manual measurements 

of near surface θv using an EC-5 probe at the locations of lysimeters and catch cans. 

Turfgrass water use 

To measure turfgrass ET, drainage lysimeters were installed following the general design in Oad 

et al. (1997)(Figure 5-2). Two lysimeters were installed under the canopy of each tree instrumented with 

sap flow sensors, one south and one north of the trunk, and were used to represent shaded turf. To 

represent turf ET in unshaded locations, additional lysimeters were installed in open turfgrass areas 

lacking trees (Figure 5-2). On a weekly basis, I used a vacuum pump to remove water from the storage 

reservoir at the bottom of each lysimeter and measured the volume using a graduated cylinder. ET of 

grass in the lysimeters was then calculated by subtracting the collected volume of water from an estimate 

of the volume of water application (natural precipitation plus supplemental irrigation provided by 

sprinkler irrigation). Irrigation volume was calculated as the product of irrigation application depth 
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measured using catch cans that were installed flush with the ground surface adjacent to the lysimeters 

(Figure 5-2). Catch cans were filled with a small amount of mineral oil to prevent evaporation and 

measured concurrently with lysimeters.  

Visual assessments of my sites in the field and in aerial imagery revealed considerable spatial 

variation in the color and condition of turf. To evaluate potential consequences for turf water use, I 

measured water flux using a 0.95 L clear Lexan chamber attached to a portable gas exchange system (LI-

6400; LICOR, Inc., Lincoln, NE). The interior of the chamber was coated with clear Teflon tape to reduce 

sorption of water to the chamber sides. I sampled turf at 2 m increments along a transect spanning a range 

of irrigation application levels on cloudless days in mid-summer 2012 at the DM site. The gas exchange 

measurements were not adjusted for leaf area; rather, the fixed footprint of the chamber was used as the 

denominator in normalizing water vapor flux measurements on the IRGA. Thus, differences in 

measurements were a function of multiple factors inside the chamber including leaf area and plant 

condition, and were interpreted as a relative index of transpiration rather than an absolute value. At each 

plot, I measured turf height and recorded the condition of turf using a three-point qualitative scale (poor, 

fair, good) based on tiller density and color. Volumetric soil water content (θv) in the upper 10 cm of the 

soil was measured using a capacitance soil moisture sensor (EC-5; Decagon, Inc.). In addition, I collected 

radiometric temperature measurements of the turf canopy using a non-contact infrared thermometer 

(Model 60275; Centech, Inc.). Radiometric and surface temperatures can diverge because of a variety of 

environmental and equipment factors (Gardner et al. 1992); therefore, I interpreted measurements as a 

gross index of plant stress, and not as an absolute temperature. 

From a height of ~1 m, I also collected a photograph perpendicular to the ground surface using a 

Canon 8 MP digital camera. Images were collected under cloudless conditions at mid-day. Raw images 

were transformed from the Red-Green-Blue (RGB) color space model captured by the camera to the Hue-

Saturation-Brightness (HSB) model (Karcher and Richardson 2003, Ali et al. 2013) and the mean pixel 

values of each image calculated using the ImageJ software package (http://imagej.nih.gov/ij/)(Abràmoff 
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et al. 2004). Statistical properties of images were then analyzed along with Li-Cor and ancillary 

measurements of turf condition in the R statistical program. 

Tree water use 

In each study site, tree transpiration was measured in 7-10 trees using 20 mm Granier thermal 

dissipation (TDP) sap flow probes inserted radially into the outer sapwood tissue (Granier 1985, Lu et al. 

2004). Each sensor was comprised of two probes vertically spaced ~15 cm apart and connected to a 

multiplexer and CR1000 datalogger. The upper probe was heated continuously with 0.2 W of power 

provided by a solar panel and battery, while the lower probe was used for monitoring the reference 

temperature of the stem. Covers constructed of closed-cell foam and HVAC reflective foil tape were 

placed over sensors to reduce ambient thermal effects. Output from sap flux sensors was logged every 30 

s and recorded as 30-min averages for analysis. New sensors were installed whenever data were null, out 

of range, or if probes showed evidence of damage. Sap flux density for the 20 mm length of the sensor 

(Jo) was calculated using the empirical form developed by Granier (1985):  

 
𝐽𝑂 = 𝑎(

𝛥𝑇𝑀 −  𝛥𝑇

𝛥𝑇
)𝑏 

 

Where Jo is sap flux density (g m-2 s-1) in the outer 2 cm of sapwood (where the sensor was 

installed), a and b are empirical coefficients, and ΔTM and ΔT is the temperature difference between 

heated and unheated reference probes. Baseline calculations and sap flux density were calculated using 

BaseLiner (version 3.1, Hydro‐Ecology Group, Duke University). Data were processed using the original 

coefficients identified by Granier (a =0. 0119, b = 1.231) for tree species with diffuse-porous species and 

conifers. However, recent work suggests that different coefficients should be used when processing TDP 

data for ring-porous species (Steppe and Lemeur 2007, Bush et al. 2008), which includes many common 

species found in urban forests and my study sites. Since individual coefficients were not available for 

many ring porous species in my analysis, I used coefficients published by Bush et al. (2010) for the 

common urban tree Gleditsia triacanothos (a = 0.309 , b = 0.87) to calculate sap flux density for all ring-

porous species. 
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For diffuse-porous and coniferous species, sapwood depth was assessed by visually evaluating 

color and moisture content of cores extracted using an increment borer. Tree diameter, bark thickness, and 

sapwood depth measurements were then used to calculate total sapwood area (As, cm2). Because water 

transport in ring-porous species is typically restricted to the current year's vessels (Hacke and Sperry 

2001, Taneda and Sperry 2008, Bush et al. 2010), sapwood area in these species was assessed using 

measurements of the current annual growth from tree cores. Sap flux measurements were then multiplied 

by sapwood area to calculate daily whole tree transpiration (ET; kg d-1) after applying a correction based 

on Gaussian equations developed by Pataki et al. (2011a) to account for radial variation in sap flux 

density. Canopy area-adjusted transpiration (EC; kg m-2 d-1) was calculated by dividing individual tree 

transpiration by projected canopy area digitized from high resolution (0.15 m GSD) aerial imagery. 

Results 

Weather, irrigation, and soil moisture  

Temperature and vapor pressure showed a similar seasonal pattern among sites. For example, 

mean vapor pressure deficit at the DM site was highest in August, 2012 (3.03 KPa), followed by July 

(2.76 KPa) and June (2.49 KPa)(Figure 5-3). Significant precipitation was limited to mid-May and early 

July, with a dry June and August (Figure 5-4). At all sites, volumetric soil water at depths of 1 m and 2 m 

was generally invariant seasonally. However, near surface (0.1 m depth) soil moisture water contents 

were more dynamic, showing a clear signal from both natural precipitation and irrigation events (Figure 

5-4). Spatial patterns of moisture content were positively correlated with surface irrigation readings from 

catch cans. 

Catch can analyses demonstrated significant spatial variation in irrigation application rates within 

and between parks (Figure 5-5). The highest mean seasonal application was at the SG study site, with 129 

cm of application in 2011, compared to 87 cm at the CB site (Table 5-2). The ranking of water use among 

sites matched observations on the condition of vegetation in the parks, with the drier sites such as CB 

exhibiting poorer turf condition. Specific spatial patterns varied from site to site as a function of irrigation 
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design characteristics such as the size and location of sprinkler heads. Distinct areas of high and low 

application were associated with the interaction of sprinkler spray patterns and tree trunks and foliage. 

Some sites (e.g. MH) showed distinct gradients in application, while in others were more irregular (Figure 

5-5). Together, the sites demonstrate that complex, fine-scale heterogeneity in irrigation is typical. 

Turfgrass water use 

Turfgrass water use was spatially variable. The highest mean seasonal (May to October) turfgrass 

ET of 115 cm occurred at the RR site, with similar mean ET at SG and DM (114 and 112 cm, 

respectively.) The CB and MH sites had significantly lower ET of 85 and 91 cm. The effect of tree 

canopy cover on turf water use in lysimeters was inconsistent among sites (Figure 5-6). This variance 

reflects the broader heterogeneity of irrigation application and turf water use observed in the study sites. 

For example, mean May-October water use by turf in the open lysimeters at the SG, MH, and CB sites 

was greater than water use in lysimeters under tree canopies. However, when examined on a monthly 

basis, the patterns were more complex and showed evidence of change over the season (Figure 5-6).  

Turf water use from lysimeters was positively correlated with irrigation application, although the 

slope decreased at the highest application rates. ET increased linearly over low to moderate application 

rates, with the slope of the ET-application line declining at higher application rates (Figure 5-6). For 

lysimeters at lower irrigation application rates, ET accounted for all or most measured application. 

However, at intermediate to high application levels, the marginal increase in ET with additional 

application declined (Figure 5-6).  

Chamber measurements of instantaneous turfgrass transpiration diverged between plots with 

different turf condition (Figure 5-7). Turf plots rated in “good” condition had nearly twice the water flux 

rate of plots in the “fair” condition class, and four times that of plots rated as “poor”. As flux 

measurements were made relative to chamber area, these patterns reflect differences in several factors 

including physiological condition, leaf area, tiller density, and grass height. While all plots were mown on 

the same schedule, significant spatial variability in growth rates was observed during the summer. Early 

in the growing season, turf in open locations had a faster growth rate than turf under tree canopies. In 
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addition, there was relatively little variability in growth or condition evident in the areas of open-grown 

turf. However, this pattern reversed itself during the summer and the spatial heterogeneity in turf 

condition increased as soil moisture became more limiting. Spatial differences in turf condition were 

correlated with volumetric soil moisture content measurements. Plots with low soil moisture on the 

sampling date were those in either the poor or fair condition class (Figure 5-8). Measurements of canopy 

temperature using a noncontact IR thermometer demonstrated clear differences in canopy temperature 

between turf in different condition, with turf plots with lower water flux rates having higher canopy 

temperatures. Analyses of digital photos showed strong correlations between color and transpiration rates. 

The specific correlation differed depending on whether image brightness, hue, or saturation was 

considered. The image hue had the strongest correlation with transpiration (r2 = 0.77), followed by 

saturation (r2 = 0.68), and brightness (r2 = 0.59). Plots visually assigned to different turf condition classes 

were distinctly clustered together in image space, suggesting this approach may provide an effective 

means of rapidly assigning condition. 

Tree water use 

Tree composition and structural characteristics differed among sites (Figure 5-10). So too did 

water use, with differences depending on the water use metric (e.g., Js, ET, Ec) and species (Figure 5-11). 

Ring-porous species had the highest Jo values, as expected given their hydraulic architecture. For 

instance, the ring-porous species Gledistia triacanthos had mean daily summertime (June-August) Jo of 

1445 g cm-2 d-1, compared with 212 g cm-2 d-1 for the conifer Pinus ponderosa or 176 g cm-2 d-1 for the 

diffuse-porous Populus deltoides. However, because sapwood depth and sapwood area (Asw) are so much 

smaller in ring-porous species, this did not translate into consistently higher ET or EC.  

Whole tree water use (ET) rates differed among species and individual trees, but the highest ET 

rates were generally associated with the largest trees. For example, the highest seasonal mean daily ET 

(170 .7 kg d-1) was observed in a large Pinus ponderosa at the DM site, followed by a large Gleditsia 

triacanthos at the MH. The lowest mean daily ET of 18.0 kg d-1 occurred with a small Acer negundo tree 

located partially under the canopy of an adjacent tree. Mean summer daily whole tree water use (ET) 
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across all trees for the summer months was 54.3 kg d-1. Ring-porous species had a lower mean water use 

(49.9 kg d-1) than diffuse-porous species and conifers (53.8 and 57.5 kg d-1, respectively).  

While larger trees generally used more water on an individual tree (ET) basis, different patterns 

occurred when analyses were scaled to canopy area (EC). For example, mean summertime daily ET by 

Populus deltoides at the DM site was 130.7 kg d-1, twice the 65.4 kg d-1 of the conifer Pinus sylvestris. 

However, the pine used more water on a canopy area basis (Ec) because of its more compact crown (3.6 

kg m-2 d-1 versus 1.8 kg m-2 d-1). Mean daily Ec varied between species with a particular wood anatomy 

type. For instance, at the CB site, ring-porous Fraxinus pennsylvanica had a seasonal average daily Ec of 

1.1 kg m2 d-1, compared to 0.42 kg m-2 d-1 for Quercus rubra. Diffuse-porous species had the highest 

mean daily EC of 2.6 kg m-2 d-1, compared with 2.4 kg m-2 d-1 for conifers and 1.1 kg m-2 d-1 for ring-

porous species.  

Differences in water use were likely influenced by the variability among sites in tree composition 

and size. For example, 80% of the trees at the RR site were Pinus nigra, but this species was measured at 

only one other site. Ring-porous species were most abundant in my sample, comprising 43% of all trees 

sampled. Conifers accounted for 40% of trees, followed by diffuse porous deciduous species at 17%. 

Mean tree diameter and tree canopy area was highest for ring-porous species at 41.9 cm and 70.0 m2, 

followed by conifers and diffuse-porous deciduous species. Conifers had the largest mean sapwood depth 

of 11.1 cm compared to only 0.2 cm for ring porous species (Figure 5-10). Because of their large tree size 

and deep sapwood, conifers had the highest mean Asw of 724.5 cm², nearly twice that of diffuse-porous 

angiosperms and an order or magnitude greater than ring-porous species. Species composition and 

variation in the relative proportion of trees with different functional characteristics (e.g., wood anatomy) 

likely contributed to variation among sites in sap flow and total tree water use. 

Discussion 

The most common view of urbanization’s effect on vegetation emphasizes compositional 

homogeneity. However, from a functional perspective, urban vegetation is highly heterogeneous, a 

consequence of spatially variable management practices and differences in water use between species and 
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basic plant functional types. My analyses highlight the important functional differences between trees and 

turfgrass vegetation types, as well as the large differences in water use from tree to tree. When coupled 

with the high spatial variability in turfgrass water use I observed, these analyses draw attention to the 

complexity of urban vegetation and the potential consequences for water use. 

Water use by turf was associated with large variability in effective irrigation. This variability has 

important consequences for ecological and hydrologic function. In arid and semi-arid climates, vegetation 

productivity is typically constrained by low water availability (Parton et al. 1981), and supplemental 

irrigation significantly expands the range of water availability occurring on the landscape. Results also 

demonstrate that inefficiencies inherent to irrigation infrastructure and management practices create a 

spatially heterogeneous pattern of water availability, even at relatively fine spatial scales. These patterns 

are likely important drivers of variability in ecosystem functions like soil carbon accumulation 

(Golubiewski 2003) and groundwater recharge (Newcomer et al. 2014), in addition to their importance for 

vegetation water use. 

Data from lysimeters and instantaneous measurements of ET from chamber measurements 

demonstrate significant variability in turfgrass water use within and among sites. Results suggest that 

differences in irrigation application are the primary driver of this variation. Analyses of chamber 

measurements showed strong correlations between irrigation application and turf condition, which were 

in turn correlated with quantitative color characteristics extracted from digital images. These results 

support previous research indicating the promise of image analysis for quickly assessing turf condition 

and potential turf ET (Karcher and Richardson 2003, Karcher and Richardson 2005). However, there are 

important limitations that must be noted. Specific image signatures will vary widely in response to many 

factors such as fertilization, turf type, time of day, and camera equipment, drastically reducing the utility 

of comparisons among sites. The approach cannot provide quantitative estimates of actual ET. Rather, its 

value is as a rapid and easily implemented site-level index of variability in irrigation application and 

potential water use. 
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Turf water use estimates from lysimeters in my study areas fit within the broad range of 

previously published values for Poa pratensis turf. For example, Green (1991) reported P. pratensis ET 

of 1.24 cm d-1 in a Texas lysimeter study. In Colorado, Feldhake (1983) reported daily lysimeter ET 

estimates for P. pratensis of 0.58 cm d-1. This is lower than the mean daily July ET of 0.72 cm d-1 among 

my Aurora sites, but higher than the 0.49 cm d-1 rate observed at the CB site. Lysimeter estimates of 

turfgrass ET rates were greater than published estimates of native shortgrass steppe water use (Parton et 

al. 1981, Sala et al. 1992), highlighting the ecohydrological importance of a common vegetation 

conversion that occurs with urbanization in the Front Range region. 

Similar to results from my turfgrass analyses, I found significant tree-to-tree variation in 

individual water use (ET) and canopy area-adjusted transpiration (EC). I generally found higher individual 

transpiration rates in coniferous species and lower rates in ring-porous trees, but patterns varied between 

species and sites due in part to differences in size. Other researchers have also documented variability in 

water use rates between tree functional types. For example, Poyotos et al. (2005) found water use by a 

Pinus sylvestris forest was nearly twice that of a nearby oak-dominated stand. Sap flux and whole tree 

water use rates were higher in diffuse-porous species than ring-porous hardwoods in a study of the 

temporal dynamics of water storage in different species (Köcher et al. 2013), as in urban areas in Utah 

and California (Bush et al. 2008, Taneda and Sperry 2008, Litvak et al. 2012). Coniferous species used 

significantly more water in a Minneapolis study water use by of urban trees (Peters et al. 2010). Results 

from this study support the idea that functional differences among urban trees contribute to broader 

patterns of variability in vegetation water use. 

All study sites were city-owned parks or recreation areas and were professionally managed by 

city staff. The heterogeneity in irrigation I observed was not the purposeful result of management, rather, 

the result of irrigation system factors like sprinkler head type, number, and distribution. Clear spatial 

patterns in turf color and condition aligned with spray patterns from sprinkler heads and were observable 

in aerial images collected in different years. In the case of in-ground irrigation systems, these 

inefficiencies are effectively fixed for the lifetime of the irrigation system. Because water availability is a 
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critical factor limiting plant productivity, water and carbon cycling will differ between areas with 

chronically low application versus higher application rates, with potentially large effects at broad 

landscape scales (Golubiewski 2006). Similarly, areas with high irrigation rates in excess of plant 

consumptive use could be important loci for deep drainage and groundwater recharge (Lerner 2002, 

Healy and Scanlon 2010). 

As the lysimeter data demonstrate, the influence of trees on turf water use can vary. I 

hypothesized that shade from tree canopies would reduce turf water use, since tree canopies or buildings 

reduce net incoming radiation (Feldhake et al. 1983, Shashua-Bar et al. 2011, Litvak et al. 2013). 

However, chamber measurements and lysimeter data highlight the importance of water availability as a 

conditioning variable influencing the effects of shade. Partial shade can mitigate the development of turf 

water stress and the accompanying increase in stomatal regulation of water loss. While too much shade 

can be detrimental to turf condition (Feldhake 1981, Beard 1997), most parks and yards do not support 

completely closed canopies. Anecdotal observations of greater turf regrowth and height between mowing 

in areas with partial tree cover suggest there may be facilitative effects from tree canopy shading that 

should be considered in future research. 

From a functional perspective, my results run counter to the common perception that urban 

vegetation is homogenous (Polsky et al. 2014). Recognizing the differences in water use between plant 

functional types can be used to improve prediction of ET patterns among neighborhoods and cities and to 

explore effects of altered climate, land use, or vegetation composition patterns on urban water use. 

Identifying the particular contribution of different plant functional types requires information on both 

their relative fractional cover and specific water use characteristics (Peters et al. 2011), but models that 

can effectively integrate tree functional type into their predictions should be more accurate than those that 

assume homogenous functional traits. 

Low water use is a desirable trait in urban trees, but is not the only factor to consider when 

evaluating the cost/benefit of individual species. Ecosystem services like land surface temperature 

moderation, species’ habitat, and rainfall interception are directly related to tree size and productivity 
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(Dwyer et al. 1992, McCarthy et al. 2011, Xiao and McPherson 2011, Asgarzadeh et al. 2012, Inkiläinen 

et al. 2013). While I focused on relative water use, future analyses that can incorporate growth properties 

to allow assessment of water use efficiency may provide an improved basis for ranking species from an 

ecosystem services perspective. 

Conclusions 

While urbanization may increase the homogeneity of vegetation from a compositional 

perspective, my results highlight the functional heterogeneity characteristic of urban vegetation. This can 

be attributed to functional differences among species and vegetation types, as well as high spatial 

variability in irrigation. This functional heterogeneity may affect water use at broad spatial scales and 

should be used to inform landscape planning decisions in semi-arid cities facing limited water supplies. 
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Table 5-1. Abbreviations used in paper 

Abbreviation Quantity 

Ai sapwood area at depth i (cm2) 

Asw Sapwood area (cm2) 

D vapor-pressure deficit (kPa) 

EC canopy transpiration (mm d-1) 

ET tree transpiration (kg tree-1 d-1) 

I Combined irrigation and precipitation application (cm) 

Ji sap-flux density at depth i (g·cm-2·d-1) 

JO sap-flux density in the outer 2 cm of sapwood (g·cm-2·d-1) 

JS sap-flux density across the active sapwood (g·cm-2·d-1) 

θv Volumetric water content (m3 m-3) 
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Table 5-2. Tree species and biometric variables. Where n for a species is greater than 1, 

standard deviation is presented in parentheses.   

Site Species n Canopy 

area (m2) 

Sapwood 

Depth (cm) 

Asw (cm2) 

CB Celtis occidentalis 1 46.2 0.2 17.9 

 Fraxinus americana 1 24.7 0.2 11.8 

 Fraxinus pennsylvanica 4 36.1 (2.6) 0.2 (0.1) 2.7 (1.6) 

 Picea pungens 1 43.6 1.0 997.9 

 Quercus rubra 1 51.6 0.2 19.5 

DM Gleditsia triacanthos 4 102.3 (9.3) 0.3 28.3 

 Pinus ponderosa 1 57.5 14.9 113.6 

 Pinus sylvestris 2 18.0 6.8 320.0 

 Populus deltoides 1 126.8 5.5 741.8 

MH Acer negundo 2 12.2 6.4 (0.5) 281.7 (64.8) 

 Celtis occidentalis 1 51.5 0.1 11.6 

 Gleditsia triacanthos 2 101.5 (22.3) 0.2 (0.2) 35.2 (3.2) 

 Pinus nigra 1 23.7 9.9 293.9 

 Pinus sylvestris 1 33.5 1.1 445.3 

RR Picea pungens 1 5.2 8.2 271.6 

 Pinus nigra 8 34.6 (2.5) 11.7 (1.8) 811.6 (164.4) 

SG Pinus nigra 3 31.3 (2.3) 15.0 (2.3) 945.4 (27.8) 

 Quercus rubra 2 30.9 (6.3) 0.4 (0.4) 34.2 (3.6) 

 Tilia cordata 4 11.6 (2.3) 1.3 (1.0) 383.6 (81.7) 
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Table 5-3. Summary statistics for 2011 application (sprinkler irrigation plus precipitation) 

for inverse distance weighted (IDW) interpolated rasters derived from seasonal (May-Oct) 

catch can data. 

Site Mean  

(cm) 

Std Dev Median 

(cm) 

Area (m2) 

CB 87.0 16.5 83.9 4463 

DM 115.4 18.8 108.6 5929 

MH 94.7 12.0 93.6 3150 

RR 127.5 12.2 129.0 2481 

SG 128.5 14.5 126.7 4010 
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Figure 5-1. Regional and local context for study (top left). Study sites used in tree and turf 

water use analyses are indicated in by stars and are labelled as follows: CB = Canterbury 

Park, DM= Del Mar Park, MH = Meadow Hills, RR = Rocky Ridge, SG = Sagebrush. The 

remaining panels illustrate the distribution of catch cans and lysimeters in each study site. 
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Figure 5-2. Schematic of study site instrumentation and lysimeter design (panel A) used to 

estimate turf water use. Transect in DM study site (panel B), along which chamber 

transpiration measurements were made using a chamber affixed to a LiCor 6400 (C). Turf 

was visually rated as good (D), fair (E), or poor (F) based on tiller density and color and 

photographed for quantitative image analysis. Inset in panel E show Brightness band and 

histogram of image, as calculated in ImageJ. 

 

  



 100 

 

 
Figure 5-3. Seasonal variation in vapor pressure deficit (KPa) in 2011 (DM site). 
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Figure 5-4. Volumetric soil moisture content (θv) from representative soil moisture probe 

array at Del Mar Park. Deep soil moisture sensors (1m and 2 m) similarly showed little 

temporal variation relative to near surface soil moisture contents.  
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Figure 5-5. Maps of May-October application (irrigation and precipitation; cm) generated 

using inverse distance weighting interpolation of catch can data installed at Canterbury 

(CB, Panel A), Rocky Ridge (RR; panel B); Del Mar Park (DM, panel C), Sagebrush Park 

(SG; panel D), Meadow Hills (MH; Panel E). Marginal plots in panels A-E depict the mean 

irrigation value. Density plot of application for all sites (panel F). 
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Figure 5-6. Boxplots comparing 2011 seasonal estimates (May to October) of turf ET from 

lysimeters under tree canopies (white bars, “canopy”) versus those in open locations (grey 

bars, “open”) at study sites (middle panel). Turf ET plotted versus irrigation application 

measured using catch cans installed adjacent to lysimeters (bottom panel). Dashed line 

represents a 1:1 line for ET and application.  
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Figure 5-7. Relationship between instantaneous turf transpiration measured using LiCor 

6400 and turf condition class (left panel) and volumetric soil water content measured using 

a soil capacitance probe (right panel). 
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Figure 5-8. Instantaneous turfgrass transpiration plotted versus plot image brightness (top 

panel), hue (middle panel), and saturation (bottom panel) for plots rates as poor (circles), 

fair (triangles), or good (square) condition. Note that transpiration is relative to ground 

(chamber) area, not leaf area. 
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Figure 5-9. Oblique image of the DM site oriented to the North illustrating the location of 

the transect used for turf gas exchange measurements and digital image analysis. Note 

variable pattern of turf condition associated with the location of sprinkler heads (Imagery 

source: Google Earth) 
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Figure 5-10. Scatterplots, least-squares regression lines, and density plots for tree sapwood 

area, canopy area, and diameter for ring porous (R, green lines), diffuse-porous (D, red 

lines) and coniferous species (C, black lines).  
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Figure 5-11. Representative daily sap flux traces from July 2011 averaged by species for 

MH trees expressed as mass flux (ET, kg/d) and canopy area adjusted flux (Ecanopy; kg/m2 

d). Line color indicates wood anatomy type (C: coniferous, D: diffuse porous, R: ring 

porous). 
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Figure 5-12. Boxplots of mean daily individual tree water use (ET, top panel) and canopy-

area-adjusted water use (EC, bottom panel) at each study site during the summer of 2011 

(Jun-Aug) for all species combined. The high EC at the RR is due to the prevalence of 

conifers at that site. 
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6. SYNTHESIS 

 

 

 
Cities are focal points for economic growth, innovation, and employment (Cohen 2006). The 

long-term sustainability for cities is tied to how well they are designed and managed. The results of my 

analyses provide clear evidence that urban vegetation composition and structure are important 

characteristics that should be addressed by planners, water managers, and individual residents.  

I documented significant heterogeneity in land cover composition and vertical structural 

characteristics in my study area. Although spatially variable, these patterns were not random, but were 

correlated with age of development. This structural heterogeneity is not unique to Aurora, CO; it is a 

hallmark of urbanized areas across the world. This heterogeneity has important consequences for 

ecosystem services. 

At broad scales, urbanization tends to homogenize vegetation and reduce biodiversity (McKinney 

2006, Smart et al. 2006, Williams et al. 2009). However, I found that from a functional perspective, urban 

vegetation is highly complex. Spatial heterogeneity in the structure and composition or urban vegetation 

coupled with variable management practices like irrigation and fertilization, supports functionally diverse 

and sometimes novel environments (Oberndorfer et al. 2007, Lundholm and Richardson 2010, Robinson 

and Lundholm 2012, Polsky et al. 2014). 

My results highlight the inefficiencies common in landscape irrigation practices, both at fine and 

coarse spatial scales. While land cover and structure characteristics predicted some of the variability in 

water use, there was significant variation within similarly configured residential parcels. A variety of 

factors may contribute to this variation such as inefficiencies in the irrigation system design or issues with 

operations. While many homes have in-ground irrigation systems with timers, most of these systems still 

lack integration of soil moisture or rain sensors to turn sprinklers off in the event of precipitation. More 

widespread use of smart irrigation controllers, i.e., controllers capable of utilizing weather conditions, 
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current and historic evapotranspiration, or soil moisture levels to control water applications, will enable 

significant water savings (Haley et al. 2007, Bijoor et al. 2014). 

The basic profile of ecosystem services provided in tree versus turf cover types differs. For 

example, trees store more carbon above ground (McHale et al. 2007), but well-irrigated and fertilized turf 

can contribute more soil carbon over time (Golubiewski 2003). Because of their extensive leaf and 

canopy area, interception from trees can have a significant hydrologic effect (Grimmond 1989, Xiao et al. 

1998, Xiao et al. 2000, Inkiläinen et al. 2013, Livesley et al. 2013). This can be viewed negatively, in that 

water lost to ET is “consumptively used” and not available to recharge soil moisture and support plant 

growth. However, canopy evaporation can help moderate land surface temperatures through latent heat 

exchange, thereby having a positive effect on thermal comfort. In addition, interception by trees can help 

moderate storm water runoff, critical for moderating floods (Walsh et al. 2005). 

Summertime extremes in LST are likely to increase in severity with climate change (Luber and 

McGeehin 2008), with important implication for human health (Kovats and Hajat 2008). By reducing 

UHI formation, the promotion of structurally diverse vegetation communities can mitigate ozone 

production, reduce deaths from extreme heat events, and decrease energy expenditures for cooling 

buildings (JC et al. 1996, Manning 2008). These benefits are in addition to those derived from other 

ecosystem services like reduced storm water generation, carbon storage, and biodiversity (Hope et al. 

2003, Byrne et al. 2008, Dobbs et al. 2011). My results suggest ways that planning decisions, particularly 

those aimed at promoting structural complexity, can positively influence the urban environment. 

Aurora includes a diverse range of land use and land cover characteristics and is representative of 

urban-suburban areas throughout the region. However, it is important to recognize the broader regional 

context. LST patterns have been shown to vary along gradients of development (Hahs and McDonnell 

2006, McDonnell and Hahs 2008, Berland and Manson 2013). In these studies as well as my own, the 

results are influenced by the choice of spatial grain and extent of analysis. Future work should aim to 

more explicitly examined gradients in land cover compositional and vertical structural characteristics at 

additional scales, including broader regional ones, to explore the generality of correlations. 
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The establishment and maintenance of urban vegetation entails costs that should be considered 

alongside potential benefits. Most species planted in arid and semiarid urban landscapes require 

supplemental irrigation. Water to support these plants is economically expensive and is drawn from 

regional supplies also needed for direct human consumption, agriculture, and to maintain water in streams 

and rivers (Pataki et al. 2011b, Bodini et al. 2012). However, irrigated urban vegetation also provides a 

range of provisioning and regulating ecosystem services that may offset the costs incurred for irrigation. 

For example, a large deciduous shade tree may be a profligate user of water, but it provides some services 

(e.g., shading, bird habitat, etc.) to much greater effect than a small-statured xeriscape shrub. Further 

research is needed to identify these tradeoffs and to incorporate them into design and planning. 

Plant selection is a particularly important consideration for new construction, since replacement 

rates for long-lived woody species are generally slow (Roman et al. 2014). While there are examples of 

more dramatic changes to urban forest composition such as the spread of Dutch elm disease (Karnosky 

1979, Subburayalu and Sydnor 2012) or the Emerald Ash Borer (Poland and McCullough 2006), changes 

in urban forests are generally gradual. More typically, canopy cover, tree height, and canopy volume 

change slowly as trees mature. As my analyses illustrate, these changes are linked with patterns of 

historical development, providing a framework for understanding landscape-scale variation in tree cover, 

tree height, and canopy volume.  

Further analyses should more closely compare water requirements of different vegetation types 

and actual irrigation practices. There is often a large disconnect between actual irrigation practices and 

consumptive use requirements. Under low to moderate irrigation applications, urban trees may consume 

water at rates comparable to that of cool-season turf, but because of their more extensive root systems, 

trees are better able to acquire water across parcel boundaries and at greater soil depth (Gerhold and 

Johnson 2003). These differences have important implications water conservation, since the greatest 

water conservation gains are possible where actual landscape water requirements and outdoor watering 

practices are brought into alignment. Providing a since the greatest gains in efficiency are possible where 

actual landscape water requirements and outdoor watering practices are brought into alignment. 
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The values, beliefs, and norms or residents interact with property attributes such as household and 

structure size to influence watering behavior (Cook et al. 2012), but my analyses also highlight the 

importance of land cover composition, and to a lesser extent, vertical structure on outdoor irrigation 

behavior. Irrigation practices reflect the individual attitudes and social characteristics of homeowners; 

however, my results also demonstrate significant clustering of residences with high and low relative water 

use.  

Collectively, my results demonstrate the importance of physical characteristics such as the 

amount, type, and three-dimensional structure of vegetation on water use. Because these variables change 

through time as landscapes age, understanding this trajectory provides insights useful for forecasting 

future changes in water demand and the provisioning of important ecosystem services. These results 

suggest that compositional and structural variables may be useful additions to decision support systems 

aimed at improving planning and decision-making (Xie 2009). 
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