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ABSTRACT 

 

 

DEMOGRAPHIC PROCESSES IN FOREST TREES IN THE ROCKY MOUNTAINS 

 

 

Forests provide numerous ecological and economic services including regulation of 

biogeochemical cycles, fiber production, watershed protection, as well as less tangible aesthetic 

and recreational benefits. Forests are being substantially altered by a range of consumptive uses 

related to expanding human population and economies. Superimposed on other anthropogenic 

impacts is global climate change. Global circulation models unambiguously reveal the role of 

greenhouse gas forcings associated with industrial processes in driving global temperature trends 

(Hanson et al. 2005). Meteorological observations indicate that global mean temperature has 

increased by approximately 0.6 C over the past century relative to a base 1951 to 1980 period, 

with record high temperatures occurring in 2010. Paleoclimatic reconstructions based on proxy 

data indicate that modern rates of warming may be unprecedented in the context of the past 1000 

years. Rates of warming are geographically heterogeneous. Temperature anomalies in the Rocky 

Mountain ecoregion, for example, are 2‒3 times higher than the global mean temperature 

increase. Some models and observational data suggest that temperature trends are elevation 

dependent with greater warming at high altitudes and with greater increases in daily minimum 

temperatures than maximum temperatures. Documented increases in minimum temperature is 

associated with earlier spring thaw events, driven by minimum temperatures that exceed 0 °C 

and a lengthening of the growing and fire seasons.  

In the Rocky Mountains, an altered climate system is projected to result in a higher 

frequency and intensity of drought events. Precipitation over the previous 100 years lacks clear 
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trends across the region as a whole, but models of snow water equivalent (SWE) indicate 

declining moisture availability since the mid-20th century. Early spring snowmelt and warming 

driven increases in rates of evapotranspiration may correlate with reduced stream flow and 

declines in effective soil moisture late in the growing season. Warming temperatures and 

reductions in moisture availability have been associated with significant increases in area burned 

by wildfire in some forest systems, particularly at high elevations where climate variability rather 

than fuel conditions is the primary driver of fire activity. Changing climate may also be 

expanding the ranges and altering the dynamics of forest insects, such as the mountain pine 

beetle (Dendroctonus ponderosae), resulting in extensive tree mortality.  

The recent widespread acceptance of climate change has highlighted the need for regional 

and species specific adaptation strategies. However, a lack of reliable projections describing the 

responses of organisms and communities to climate change has been identified as a major 

impediment to the development and implementation of climate adaptation strategies within 

federal agencies. Potential vegetation responses include migration to track preferred habitats or 

adaptation through phenotypic or genetic plasticity. Heat stress and prolonged drought have been 

associated with rapid shifts in the range limits of ponderosa pine (Pinus ponderosa) and in 

significantly elevated rates of background tree mortality for tree species and forest environments 

worldwide. Mortality events associated with physiological stress or environmental disturbances 

may accelerate changes in the distributions of long-lived tree species that might otherwise persist 

in sub-optimal environments. 

The distribution and abundance of plants are largely determined by physiological, life 

history, and ecosystem processes, and how these processes interact or respond to climate. A 

mechanistic understanding of these processes and their physiological thresholds is required to 



 iv 

accurately predict forest response to climate change. The 2007 Intergovernmental Panel on 

Climate Change working group has argued that current predictive vegetation models are limited 

by a failure to adequately quantify relationships between climate, critical life history processes, 

and disturbance regimes.  

The main objective of this research is to quantify life history processes for select tree 

species in the Rocky Mountain ecoregion. Specifically, non-linear regression models will be 

developed to quantify variation in both tree fecundity and growth as a function of climate 

variables, edaphic gradients, and competition. Comprehensive field data will be used to train 

flexible functions in a maximum likelihood framework. Competing models representing 

alternative hypotheses will be evaluated using information theory. The overarching objective of 

this project is to provide detailed quantitative life history information that may subsequently be 

used to parameterize dynamic simulation models for the prediction of forest response to 

alternative future climate scenarios. An additional component of this research involves the 

reconstruction of historical temperatures in the southern portion of the Rocky Mountain 

ecoregion using chronologies of radial growth from several high elevation tree species occurring 

in northern Colorado and southern Wyoming. Historical temperatures have been reconstructed 

for northern portions of the Rocky Mountain ecoregion. A comparable reconstruction for the 

southern portion of the region has not been developed. Global climate models predict that parts 

of the Rockies may experience future climates with no previous analogs. Historical temperature 

reconstructions based on proxy indicators will provide historical context for both modern climate 

variation and simulations of future conditions.  
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CHAPTER 1 CLIMATE DRIVERS OF SEED PRODUCTION IN PICEA ENGELMANNII 

AND RESPONSE TO WARMING TEMPERATURES IN THE SOUTHERN ROCKY 

MOUNTAINS1 

 

 

Synopsis 

Seed production by Picea engelmannii was monitored at 13 sites distributed across a 

~670 m elevation gradient for 40 years. Time series of annual seed output was investigated for 

evidence of masting behavior and trends in seed abundance over time. We used regression 

models in a likelihood framework to examine climate effects on seed production for critical 

periods in the species’ reproductive cycle. We rigorously evaluated the performance of two 

gridded climate datasets, PRISM and TopoWx, before using associated variables as predictors in 

the seed models. Seed production at these sites does not strictly conform to the classic masting 

concept. Seed abundance was highly variable over time and strongly synchronized among sites, 

but mast years could not be objectively identified due to intermediate levels of seed output. 

Model results indicate that climate conditions across multiple years cumulatively determine 

reproductive output. High seed rain is associated with elevated summer temperatures in the year 

that seeds are dispersed, low spring snowfall in the year preceding seed dispersal when buds are 

initiated, and reduced spring snowfall in a so-called priming year two years prior to seed 

dispersal. Low spring precipitation putatively increases growing season length and resource 

accumulation in seed trees. Linear models identified significant positive trends in seed output 

                                                 
1 This research was originally published in the Journal of Ecology: Buechling, A., Martin, P.H., 

Canham, C.D., Shepperd, W.D. & Battaglia, M.A. (2016) Climate drivers of seed production in 

Picea engelmannii and response to warming temperatures in the southern Rocky 

Mountains. Journal of Ecology 104, 1051-1062. 
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over time. Anomalous aridity and summer warmth in the latter half of the study period were 

highly favorable for seed production and were associated with increases in seed abundance. The 

increases in seed output observed in this study may promote population fitness of P. engelmannii 

in the face of changing climate regimes and increasing frequencies of fire and insect related tree 

mortality in the Rocky Mountains. Since this species lacks a persistent seed bank, re-colonization 

of disturbed areas or dispersal to shifting habitats depends on adequate production of seed by 

surviving trees, which, according to these analyses may be moderately enhanced by current 

climate trends. However, some evidence also indicates that increases in seed output will 

ultimately be constrained by threshold high temperatures in the seed maturation year.  

Introduction 

Historical reconstructions of climate suggest that modern rates of climate warming may 

be unprecedented in the context of the past 1000 years (Mann et al. 1999) and evidence is 

accumulating that forests are becoming increasingly vulnerable to these climate trends. 

Temperature stress and drought have been implicated in elevated rates of canopy tree mortality 

for multiple tree species worldwide (van Mantgem et al. 2009; Allen et al. 2010). Rising 

temperatures have also been associated with more frequent wildfire (Littell et al. 2009) and 

severe insect outbreaks (Raffa et al. 2008), compounding the effects of heat stress on forest 

dynamics. As an example, an extreme drought event in the American southwest during the 1950s 

caused widespread mortality and range contraction of Pinus ponderosa and Pinus edulis (Allen 

& Breshears 1998; Macalady & Bugmann 2014). The facility of trees to recolonize sites after 

disturbance or disperse seed to shifting habitats depends, in part, on their inherent reproductive 

capacity (Angert et al. 2011). Warming temperatures have been associated with depressed seed 

output in some species (Redmond et al. 2012), suggesting that climate change may affect not 
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only rates of disturbance and tree mortality, but also life history processes that determine the 

potential of an affected population to recover from disturbance. 

The phenology of flowering and seed production has been widely studied for a range of 

plant species across multiple scales, from the stand level to the level of individual flower (Fenner 

1998). Two noteworthy patterns emerge from previous studies that may have significant 

implications for seedling recruitment following disturbance and adult mortality; seed production 

is often highly variable from year to year, and individuals of a species are highly synchronized 

over space and time (Silvertown 1980; Kelly & Sork 2002). Synchronization appears to be a 

ubiquitous characteristic of the reproductive biology of plant taxa globally (Koenig & Knops 

2000), and this synchronization may encompass large geographic areas for some tree species 

(Koenig & Knops 1998; Schauber et al. 2002; Liebhold et al. 2004). Reproductive processes that 

are synchronized and additionally periodic, so that well-defined intervals separate seed crops, are 

commonly classified as masting or mast seeding processes (Janzen 1976; Kelly 1994, Herrera et 

al. 1998).  

The physiological mechanisms determining both variability and synchronization of seed 

output remain poorly understood (Piovesan & Adams 2001; Rees et al. 2002; Smaill et al. 2011; 

Koenig & Knops 2014; Pearse et al. 2014). Spatial synchronization of seed production across 

large areas suggests that climate may be an important driver of seed production via the so-called 

Moran effect (Hudson & Cattadori 1999). Indeed, high temperatures and / or drought conditions 

during the period of reproductive bud initiation have frequently been correlated with elevated 

seed output (Daubenmire 1960; Woodward et al. 1994; Houle 1999; Piovesan & Adams 2001; 

Selås et al. 2002; Schauber et al. 2002; Roland et al. 2014). Experimental treatments in nursery 

settings have also demonstrated enhanced reproductive response to drought or heat stress in 
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some species (Holmsgaard & Olsen 1966; Ross 1985). Duff & Nolan (1958) hypothesized that 

stress-induced seed production may be related to within-plant competition for finite resources. 

Specifically, environmental conditions that depress vegetative growth early in the growing 

season result in enhanced initiation and development of ovulate cone structures in late summer. 

This hypothesis is supported by observations that large seed crops are dependent on the 

successful initiation of reproductive buds and that high failure rates in the initiation of bud 

primordia are common (Forcella 1981, Harrison & Owens 1983; Owens 1995). 

An alternate hypothesis gaining empirical support involves history and antecedent 

processes. Previous studies have identified relationships between climate variation in years 

preceding reproductive bud initiation and subsequent levels of seed output (Woodward et al. 

1994; Piovesan & Adams 2001; Richardson et al. 2005; Roland et al. 2014). Climate may affect 

external resource supplies that are essential for the synthesis of reproductive tissue. For example, 

Smaill et al. (2011) identified correlations between seed abundance and climate factors in years 

preceding reproductive bud initiation that putatively increase rates of nitrogen mineralization in 

soils. 

The objective of this study is to explore long term relationships between climate and the 

reproductive biology of Picea engelmannii Parry ex Engelm. (Engelmann spruce) in subalpine 

forests of the Rocky Mountains in North America. These forests provide critical ecosystem 

services and are likely to experience rapid ecological changes due to accelerated warming rates 

relative to lower elevation regions (Pepin et al. 2015). We examined a 40-year record of seed 

abundance from a subalpine forest in central Colorado for evidence of masting behavior, trends 

in seed production over time, and potential tradeoffs between tree growth and reproductive 

effort. The reproductive cycle in P. engelmannii is a complex process that spans multiple years 
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(Owens & Blake 1985). Seeds that mature and are dispersed in a given (current) year are 

initiated in late summer of the preceding year. Non-linear regression models were constructed to 

quantify the importance of climate factors on seed production across all phases of this 

reproductive cycle. Model selection and information theory were used to evaluate two main 

hypotheses: (1) reproductive bud development is stress induced, following Duff & Nolan (1958); 

(2) seed production depends on internal plant resources, such as carbohydrate or nutrient 

reserves, acquired in years preceding seed bud initiation or seed maturation. These hypotheses 

are not strictly independent as environmental stress during the spring season of the bud initiation 

year could influence seed production through either of these pathways. 

Materials and methods 

Study Site 

The study site is located within Fraser Experimental Forest (39° 51' N, 105° 55' W) in the 

Rocky Mountains of central Colorado. Fraser is a dedicated research area managed by the United 

States Forest Service (Alexander & Watkins 1977). Thirteen 0.16 ha seed collection plots were 

established between 1968 and 1970 in closed canopy, high elevation forest (Alexander et al. 

1982). Seed plots span an elevation gradient of 670 m and are separated by horizontal distances 

ranging from 159 to 8420 m. The uppermost plot occurs near treeline at ~3500 m. Mature P. 

engelmannii and Abies lasiocarpa predominate across all sites with minor components of Pinus 

contorta var. latifolia occurring at lower elevations. Increment core samples indicate that tree 

ages range from 200 to 400 years. Climate is characterized by cold temperatures, short growing 

seasons and high snowfall. Mean annual temperature during the 40-year study period was ~1.6 

°C. Mean annual precipitation increases with elevation, ranging from 574 mm yr-1 at 2770 m to 
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752 mm yr-1 at 3230 m. Precipitation is relatively evenly distributed across seasons, but nearly 

two thirds of annual total precipitation falls as snow between the months of October and May.  

Seed collection and growth increment sampling 

Ten wire mesh seed traps (0.093 m2 in area) were randomly located within each of the 13 

plots. Trap locations have remained constant for the length of the study. Seeds were collected 

from traps once per year following snowmelt in the spring of the year after seed maturation and 

release from cones. Seed counts and viability were determined for P. engelmannii only. Heights 

and diameters of all plot trees with diameters ≥10 cm (at 1.37 m ground height) were measured 

at approximately 10 year intervals. Stand basal area (BA) in m2 per hectare was computed for 

each plot and species based on diameter measurements. Tree diameters and BA for non-

measurement years was interpolated using linear regression. 

We collected tree core samples in the summer of 2011 to determine long term variability 

in annual radial growth. Approximately 15 canopy trees were sampled in each of the 13 seed 

plots. We subjectively selected dominant canopy trees proximate to seed trap locations. A 

minimum of two cores were extracted from every sample tree from opposite sides of the stem, 

parallel to the slope contour and within 30 cm of the root crown. Cores were bonded to wooden 

core mounts, surfaced using progressively finer grades of sandpaper until tracheid cells were 

clearly visible under magnification and cross-dated using skeleton plots to ensure correct ring 

dates with annual resolution (Speer 2010). We then measured all ring widths in each core to a 

precision of 0.001 mm using a Velmex measuring system with an A40 UniSlide. Ring widths 

were tested for measurement or dating errors using COFECHA (Grissino-Mayer 2001). 

Approximately 400 cores were processed and measured. 
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Climate analyses 

We analyzed trends in climate based on standardized climate records acquired from two 

meteorological stations located at 2770 and 3230 m. These two stations were selected from 

among a complex of stations at Fraser because their associated climate records were essentially 

complete for the length of the study. We aggregated the daily time series of temperature and 

precipitation to monthly, seasonal, and annual values after first inspecting records for missing 

and extreme values. Details regarding climate data processing are described in the Appendix. 

Temporal trends in climate were examined using linear regression (McGuire et al. 2012).  

We also used available station data to evaluate and compare two gridded climate datasets, 

PRISM (Daly et al. 2008) and TopoWx (Oyler et al. 2014). Based on goodness of fit (GOF) 

measures, TopoWx temperature and PRISM precipitation data were used in all modeling 

analyses (see Appendix S1.1 in Appendix). 

Seed production analyses 

We first examined the 13 chronologies of seed data for long term trends in seed 

production and evidence of masting behavior, including periodicity, bimodality, and spatial 

synchronization among plots. We first converted raw counts of total seed per trap for 10 traps in 

each of 13 plots to estimates of annual mean seed abundance per m2 ground area in each plot. 

These density estimates of seed output were used in all analyses unless otherwise noted. We 

analyzed long term trends in seed abundance using general linear models with autocorrelation 

structures (Richardson et al. 2005). Linear methods were used to provide parsimonious fits to 

trends visually evident in scatterplots. Year and elevation were included as predictors.  

We generated descriptive statistics and histograms to characterize the distributions of 

seed density data and identify potential periodic or bimodal behavior related to masting 
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processes. Autocorrelation functions (ACF) were also computed to test for serial correlation 

related to temporal trends or negative lagged effects related to the costs of reproduction (Kelly & 

Sork 2002; Knops et al. 2007). Spatial synchrony in seed production among plots was evaluated 

using Pearson product-moment correlations and correlograms. Preliminary trend analyses 

suggested that the time series of seed abundance had significant temporal structure and therefore 

violated assumptions of a purely random processes; specifically, that observations are mutually 

independent and identically distributed (Chatfield 2004). The Augmented Dickey-Fuller test also 

revealed statistically significant correlations between the mean and variance within each series, 

indicating non-stationary processes. Temporal structure or common long term trends related to 

broad-scale contemporaneous processes such as climate warming may cause spurious 

correlations among plots and obfuscate tests of spatial synchrony (Liebhold et al. 2004). 

However, data transformations and autoregressive modeling to remove trends may inadvertently 

dampen high frequency chronology variance related to masting processes or reproductive 

variability (Bjørnstad et al. 1999), consequently removing part of the signal of interest. We, 

therefore, evaluated synchrony among plots using two alternate data sets: untransformed seed 

rain data scaled by the basal area of spruce in each plot, and detrended, white noise residuals 

from a first order autoregressive moving average (ARMA) model. Before detrending, seed 

counts from each plot were log transformed to stabilize variances (Chatfield 2004). Matrices of 

pairwise plot correlation coefficients were calculated for each data set and non-parametric spline 

correlograms with bootstrapped confidence envelopes were computed to evaluate synchrony as a 

function of distance (Bjørnstad & Falck 2001).  
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Statistical models used to determine the climate drivers of seed rain 

We constructed the following independent, non-linear regression models to investigate 

the role of climate across all phases of the reproductive cycle of P. engelmannii: (1) a maturation 

year model tested climate effects in the year that seeds mature and are dispersed; (2) a bud 

initiation model tested environmental effects during the year of reproductive bud initiation (one 

year prior to seed maturation); (3) a priming year model evaluated the importance of antecedent 

climate conditions (two years prior to seed maturation). A full model integrated the effects of 

climate across all years. Implicit in these models are tests of the two alternate hypotheses 

discussed in the introduction; specifically that environmental stress in the initiation year leads to 

tradeoffs and enhanced initiation of reproductive buds (Duff & Nolan 1958), and alternately, that 

antecedent climate conditions influence internal plant resources available for seed development.  

We tested the effects of alternate climate predictors on seed rain in each model including 

average temperature and total precipitation for annual and seasonal (spring and summer) periods. 

Seasons were defined according to 3 month intervals beginning with December of the previous 

year. A period of vegetative shoot elongation (April to June; Harrison & Owens 1983) was also 

defined to facilitate tests of Duff & Nolan’s (1958) hypothesis. We normalized or scaled 

individual climate variables by the corresponding overall mean of each site based on the 

assumption that seed production depends on relative variations in temperature and precipitation 

rather than absolute levels. This scaling procedure generates dimensionless indices of climate 

with unit means. 

To explicitly evaluate the effect of tree growth on the development of reproductive buds 

during the bud initiation year, we used an index of growth as an additional predictor variable in 

the bud initiation model. Plot specific growth indices were quantified from ring width 
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measurements. Ring widths were first standardized using traditional dendrochronological 

methods, which included a power transformation to stabilize ring width variance (Cook & Peters 

1997) and the computation of residuals from a fitted cubic spline function (50% cutoff frequency 

of 32 years) and autoregressive model to remove to remove long term size and age related trends. 

Residuals were combined into chronologies or indices of radial growth for each site using a 

biweight robust mean, which minimizes effects of extreme values (Cook & Kairiukstis 1990). 

Standardization analyses were performed in ARSTAN (Cook 1985). 

We used maximum likelihood methods in the construction of the regression models. The 

response variable for all models was mean annual seed abundance per square meter of ground 

area. BA of P. engelmannii varied significantly among plots and was included as a predictor. We 

used a mixed model design with a random plot effect. Each analysis required the estimation of 

13 site-specific intercept terms (the random effects) and the parameters for at least 3 independent 

variables or effects: 

 Seed rain = PotSeed × Temperature effect × Precipitation effect x Basal area 

Intercept terms (PotSeed) represent site-specific maximum potential seed abundance produced 

under optimum climate conditions. Multiplicative predictor variables for the effects are scalar 

terms constrained to range from 0 to 1 that reduce maximum potential seed rain. We used 

Gaussian functions to estimate both BA and climate effects: 

 Climate (or BA) effect = exp[ −0.5 × (
X−𝑋0

𝑋1
)

2
] 

where X is the observed climate variable or BA for a given period, X0 corresponds to the value of 

the independent variable at which maximum PotSeed occurs and X1 describes the variance of the 

term. Gaussian functions are flexible and can fit data distributions that are unimodal, 

monotonically increasing or monotonically decreasing.  



 11 

We used simulated annealing (Goffe et al. 1994) with 40,000 iterations to solve for 

maximum likelihood estimates of the regression coefficients. Simulated annealing is a global 

optimization algorithm that uses an iterative procedure to simultaneously search for parameter 

values that maximize the likelihood of observing the recorded seed trap counts. Model residuals 

were approximately normal, but heteroscedastic. Therefore, we used a modified normal probably 

density function (PDF) to estimate likelihood in which variance is a power function of the mean. 

The residual (ε𝑖) for the ith observation becomes 

 ε𝑖  = 𝛼 +  𝑋𝑖
𝛽 

where 𝑋𝑖 is the predicted value for the ith observation and α and β are estimated by annealing. 

Tests for temporal autocorrelation confirmed that residuals were random. Bias and R2 were used 

to quantify the GOF of alternate models. Bias represents the difference between the predicted 

response and the observed data and was quantified from the slope of the regression of observed 

on predicted seed abundance (Canham et al. 2006). Unbiased models will generate unit slopes in 

this regression. Consistent under-prediction or over-prediction will result in slopes greater or less 

than 1.0, respectively. Akaike information criterion corrected for small sample size (AICC) was 

used to select the most parsimonious models (Burnham & Anderson 2002). AICC provides a 

quantitative measure of model performance that balances model fit, as measured by log-

likelihood, and model complexity, determined by the number of parameters in the model. All 

analyses were conducted in R (Version 3.2.3, R Core Team 2013). Likelihood models were 

constructed using the likelihood package version 1.6. 

Tree growth analyses 

We further explored potential tradeoffs between growth and reproduction using cross-

correlation functions. We used the pre-whitened residuals of both radial growth and seed 
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abundance (methods previously described) in cross-correlation analyses to avoid spurious 

correlations attributed to temporal autocorrelation.  

We also examined the response of tree radial growth to critical climate conditions 

identified by seed production models as important for the initiation of reproductive buds. We 

constructed regression models, again in a maximum likelihood framework, with radial growth as 

the response. These regression models were fitted with raw ring width measurements rather than 

the pre-whitened residuals for which portions of the climate signal have potential been removed. 

We incorporated a tree size predictor based on reconstructed diameters to explicitly account for 

the effects of increasing tree size on ring width: 

 Radial growth = PotGrowth × Temperature effect × Precipitation effect × Size effect 

Regression coefficients were computed using maximum likelihood with simulated annealing per 

above. We tested alternative climate predictors including lagged effects to identify the most 

parsimonious model. We hypothesized a direct relationship between growth and climate, and 

therefore did not normalize climate predictors as with the seed models. Residuals from growth 

models were approximately normal and had no autocorrelation. 

Results 

Climate trends 

Analyses of instrumental data from Fraser indicate significant positive trends in 

temperature over the 40-year period of seed data collection (Fig. 1.1). Mean annual Tmin and 

Tmax increased by ~1.0 °C from the first half to the latter half of the study period according to 

paired t tests (p < 0.001). Instrumental data show that annual mean temperature in the last decade 

of the study period exceeded the previous 30-year mean by over 1.0 SD and that six of the 

warmest years in the 40-year record occurred between 1999 and 2008. Warming trends are 
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relatively consistent over the elevation range separating climate stations (~460 m). However, 

significant differences in temperature trends were detected across seasons (Table S1.1). 

Maximum warming occurred in spring months for all sites, when rates of temperature change 

ranged from 0.6 to 1.0 °C / decade. Rates of temperature change were lowest in winter and 

summer months. No significant trends (p = 0.1) in annual or seasonal precipitation were 

detected.  

Temporal and spatial patterns of seed production 

Regression models revealed a significant positive trend in seed production of ~ 50 seeds 

m-2 decade-1 for the 40-year study period (Table 1.1; Fig. 1.2). Elevation had a weak and non-

significant effect. Independent linear models for the first and latter two decades of the study 

period suggest that positive trends in seed production began ca. 1990, concurrent with trends 

observed in the instrumental climate data. Positive trends were driven in part by an extreme 

seeding event in 2006. Increasing tree age over the course of the study is an unlikely driver of 

observed trends in seed output since mean tree age across all plots based on core samples 

collected in 2010 was 239 years. Only a few scattered individual trees were younger than 100 

years. Forest Service stand inventory data support our age estimates (Alexander et al. 1982). In 

addition, these closed canopy stands were relatively stable over the study period as quantified by 

periodic censuses conducted by the Forest Service. Tree mortality and recruitment of 

reproductively mature trees into the canopy were relatively low.  

Descriptive statistics (Table 1.2) and histograms (not shown) indicate strongly right-

skewed distributions of seed abundance reflecting a prevalence of low seed years interrupted by 

infrequent episodes of high seed rain. Coefficients of variation (CV) ranged from 1.6 to 3.3, 

indicating high variability in seed production among years relative to other published data (Kelly 
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1994). Variability as measured by CV also increased significantly with elevation (p < 0.001), 

although mean seed abundance did not (p = 0.7). Time series data similarly reveal variable and 

irregular seed production patterns over time with notable years of intermediate seed abundance 

over the 40-year study period. In addition, evidence for bimodality was not observed in 

histograms or detected by kurtosis estimates, which were strongly positive. Although not 

definitive indicators of bimodality, large negative values of kurtosis are generally associated with 

bimodal distributions (DeCarlo 1997). ACFs (Fig. S1.1) indicate the presence of consistent, 

positive 3rd order autocorrelation across all plots (ranging from 0.01 to 0.42). ACFs also reveal 

low levels of negative 1st and 2nd order autocorrelation in seed chronologies across all plots 

(ranging from -0.22 to -0.06; Table 1.2), though most coefficients were non-significant or only 

marginally significant according to confidence limits (not shown) computed following Salas et 

al. (1980).  

An examination of the time series plot of seed production subjectively indicates strong 

synchrony among sites (Fig. 1.2). Correlation analyses were conducted to quantify the degree of 

synchrony among sites. As discussed, we compared levels of correlation for the untransformed 

seed rain data with those using white noise residuals from an autoregressive model. The resulting 

overall mean correlation between seed plots was 0.88 for untransformed data and 0.86 for model 

residuals. Nearly equivalent results could be explained by the low levels of temporal 

autocorrelation present in the original seed series, as autoregressive modeling accounted for only 

~5% of the variance in the original seed series. Spatial patterns in synchrony quantified by 

correlograms were also comparable between the transformed and untransformed seed rain data 

and illustrate that inter-plot correlation does not decay with distance within the 8-km extent of 
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the Fraser study area (Fig. 1.3). Similarly, a fitted spline function shows no significant departures 

from the overall mean synchrony level with distance (Fig. 1.3).  

Climate effects on seed rain 

The modeling framework used in this study identifies the relative importance of climate 

variation on seed rain for critical phases of the reproductive cycle. The best models generated 

predictions with low to moderate levels of bias (Table 1.3), ranging from 0.8 for a relatively poor 

fitting seed maturation model to 1.2 for the final full model. Therefore, the best full model, with 

a slope of 1.2, generally under-predicted observed seed abundance, though an examination of 

residual plots (not shown) reveals that very high seed years were consistently under-predicted 

and low or zero seed years were generally over-predicted.  

The seed maturation model indicates that climate in the year of seed dispersal has a 

comparatively weak influence on seed abundance. The best seed maturation model explained 

approximately 14% of the variance in the seed rain data. Model selection using AIC excluded the 

effect of BA of P. engelmannii from the final best model. Scatterplots suggest that BA is only 

weakly correlated with seed production during years of high seed output, when large trees and/or 

dense stands with high biomass of P. engelmannii produce disproportionately more seeds (see 

Table 1.2 for ranges in plot BA over the 40 year study period). The seed maturation model shows 

that peak seed production only occurs when average summer temperatures in the year of seed 

maturation are ~10% higher than long term means for a given site (Fig. 1.4). Summer 

temperatures only slightly colder than normal in the year of seed maturation (~5% below mean 

levels) lead to low or no seed production. Notably, summer temperatures only varied by ~20% 

above or below the overall mean of each site within the 40-year study period. 
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The best bud initiation model, which integrated temperature effects from the seed 

maturation year (Table 1.3), provided a stronger fit to the seed rain data compared with the seed 

maturation model alone; R2 increased to ~ 19% for this composite model. Precipitation during 

the period of shoot elongation had the strongest effect on seed output. Specifically, low levels of 

precipitation during the period of shoot growth in the bud initiation year were associated with 

high seed rain in the subsequent year (Fig. 1.4). Weak evidence for a temperature effect was also 

detected. Seed rain appears to be maximized when temperatures during shoot elongation are 

slightly above long-term means (~4% greater). However, shoot period temperature was highly 

correlated with corresponding precipitation (r=−0.6), and ultimately excluded from the final 

model based on AICc. The positive response to reduced spring precipitation appears, at first, to 

be consistent with Duff & Nolan’s (1958) hypothesis, previously described in the introduction, 

that early spring drought stress may depress vegetative growth thereby facilitating the enhanced 

initiation of reproductive buds in late summer. However, the tree growth explanatory variable 

used in this model shows that seed output actually increases with increasing radial increment 

(Fig. 1.4). Similarly, cross-correlation functions (Fig. 1.5) show positive associations between 

tree growth in the initiation year and subsequent seed output for most plots. Tradeoffs between 

growth and reproduction, expected under Duff & Nolan’s (1958) hypothesis, are therefore not 

evident in this dataset. Furthermore, our models of tree growth revealed, despite a weak climate 

signal in the tree rings (Table S1.2), a positive rather than negative response in radial growth to 

low precipitation during the period of shoot elongation (Fig. 1.6). Thus, radial growth and seed 

output appear to covary due to a congruent positive response to reduced precipitation in spring 

months. These results suggest that high radial growth in the bud initiation year, associated with 
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low spring precipitation, may reflect favorable conditions for carbon or nutrient gain that may 

facilitate enhanced seed development and maturation in the subsequent year.  

The best priming year model, which also integrates temperature effects from the 

maturation year (Table 1.3), indicates that climate conditions two years prior to seed maturation 

have strong effects on seed rain, explaining ~40% of the variance in the fitted data. Seed rain 

appears to be maximized when spring precipitation two years prior to seed dispersal is ~50% 

below long-term means. Again, it appears that reduced spring precipitation is associated with the 

accumulation of plant reserves that subsequently enhance seed output.  

Our best full model, which integrates the previous 3 sub-models, produced the strongest 

fit to the observational data based on AICc suggesting that conditions in all years of the 

reproductive cycle are cumulatively important for seed production, and that favorable conditions 

in any one year alone are insufficient for the production of abundant seed (Table 1.3). 

Discussion 

Reproductive dynamics 

The reproductive biology of P. engelmannii at Fraser does not strictly fit into the classical 

masting concept as defined by Kelly (1994). Seed production was highly variable across years 

and strongly synchronized among sites, but mast events could not be unambiguously identified. 

Instead of a bimodal distribution of seed abundance, seed output varied continuously over time, 

with notable, intermediate levels of seed abundance evident (Fig. 1.2). These patterns agree with 

results from Koenig & Knops (2000), who found minimal evidence for bimodality in a review of 

seed production data for a range of northern hemisphere tree species. However, we did identify 

evidence, based on ACFs, for a weak periodic structure, reflecting at least moderate increases in 

seed output over 3 year intervals. Interestingly, Woodward et al. (1994) also detected a 3-year 
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cycle in the seed output of A. lasiocarpa, a conifer that regularly co-occurs with P. engelmannii 

in subalpine forests of North America. 

Climate effects on seed rain 

A primary goal of this study was to develop parsimonious mechanistic models of seed 

production that could be used to parameterize fecundity in a simulation model such as SORTIE 

(Pacala et al. 1996). We were more interested in understanding general mechanisms using 

readily interpretable analyses rather than modeling seed production at Fraser with the highest 

degree of fidelity to the observed seed rain record. We, therefore, purposefully avoided 

constructing overly complex models that might improve model fit at the expense of model 

generality. Similarly, we minimized intensive data management, such as log-transformations, 

which are commonly applied to seed count data (Koenig & Knops 2000), that might improve 

model fit but inhibit the interpretability of model results. Nevertheless, the best models fitted 

with raw seed data achieved a reasonably strong fit, explaining ~40% of the variability in 

observed seed abundance.  

Model results do not unambiguously support the stress / tradeoff hypothesis of Duff & 

Nolan (1958). Low spring precipitation in the initiation year was found to be correlated with 

subsequent high seed rain a year later, as predicted by this hypothesis. However, evidence for 

tradeoffs between growth and reproduction, a critical element of this hypothesis, was lacking. 

Rather, diameter growth and seed production co-varied (Figs 4 and 5), due to coincident positive 

responses to low spring precipitation. In addition, average summer temperatures in the initiation 

year had no significant effect on either seed production or diameter growth. We hypothesize, 

therefore, that elevated spring precipitation, which predominantly occurs as snow at Fraser, 

reduces growing season length, impacting both diameter growth and late summer reproductive 
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bud initiation (Woodward et al. 1994). Deep, persistent snowpacks associated with high spring 

precipitation may persist well into the growing season at these elevations, maintaining low soil 

temperatures and consequently limiting plant physiological processes, even as air temperatures 

warm (Fritts 1976). Thus, evidence for drought or heat stress limiting growth processes and 

thereby facilitating the initiation and development of reproductive buds is limited.  

A basic tenet of life history theory is that internal plant resources are finite and that high 

reproductive effort reduces nutrient or carbon reserves at the expense of other processes 

(Reznick 1985). Widespread negative correlations between radial growth and reproduction in 

trees support this assumption (Koenig & Knops 1998). The lack of evidence for visible tradeoffs 

in this study is not unprecedented, however (Speer 2001; Knops et al. 2007; Żywiec & Zielonka 

2013). Our failure to identify expected tradeoffs may be attributed to within plant resource 

variability. Costs associated with reproductive bud development may be concentrated within 

branches and shoots, which we did not measure, rather than in the main stem (Hoch 2005; 

Sánchez-Humanes et al. 2011).  

More evident is the influence of priming year climate on subsequent levels of seed rain. 

Among all phases of the reproductive cycle, climate conditions two years prior to seed fall had 

the strongest effects on indices of model fit. Spring precipitation that was ~50% below mean 

levels during the priming year correlated with high seed rain two years later. In support of these 

model results, negative, albeit weak, lagged autocorrelation coefficients suggest that 

reproductive output depends on the restoration of plant resources depleted by previous 

reproductive effort. We hypothesize once again that spring snowfall and snowpack depth affect 

growing season length, thereby limiting either nutrient acquisition from soils (Smaill et al. 2011) 

or net carbon gain through photosynthesis. Notably, Hoch et al. (2013) found that seed 
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production in oak and beech was not dependent on stored carbon reserves. Similarly, Richardson 

et al. (2005) found, using model selection, that net carbon in the priming year was not an 

important predictor of seed output for beech trees in New Zealand. These findings suggest that 

nutrient reserves, rather than carbon, may be determining reproductive dynamics in some 

species. 

Model results also indicate that warm temperatures in the year of seed maturation are 

associated with high seed rain, although this is the weakest effect. The seed maturation model 

reveals that high seed rain is dependent on a relatively narrow range of concurrent average 

summer temperatures. Specifically, high seed rain is associated with summer temperatures that 

exceed long term means by between ~10 and 20%. Interestingly, summer temperatures that 

exceed this range are correlated with decreasing seed rain. It is generally assumed that growth 

processes in trees at high elevations are limited by temperature rather than precipitation (Brown 

& Shepperd 1995; Salzer & Kipfmueller 2005). Hypotheses explaining temperature limitation in 

high elevation trees include insufficient net photosynthesis or a direct thermal effect on 

meristematic activity (Hoch & Körner 2003). Elevated summer temperatures may, therefore, 

result in enhanced rates of tissue synthesis, including cone and seed development. Richardson et 

al. (2005) also found positive associations between warm temperatures, carbon availability and 

seed output in the maturation year. In contrast, Roland et al. (2014) identified negative effects 

associated with high summer temperatures on seed output in Picea glauca, which they attributed 

to the effects of drought stress on tree physiology. We may likewise be observing a negative 

moisture stress effect at this site as temperatures warm beyond a threshold level. 

There is some evidence that P. engelmannii has acclimated to local climate variation 

among sites. The congruent Gaussian response to relative summer temperature previously 
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discussed, with seed rain maximized by summer temperatures approximately 10% above local 

site means, suggests that trees at different sites may have adapted to local climate regimes. 

Recall that climate varies substantially across the almost 700 m elevation gradient; average 

annual temperature decreased by over 2C, mean annual precipitation increased by over 120 mm 

(mostly as snow), and growing season length, measured by the number of days with Tmin greater 

than 5C, declined by an average of 12 days from valley bottom to upper elevation plots. In spite 

of this relatively steep climate gradient, statistically significant differences in mean seed rain 

among sites were not observed. 

Trends in seed output 

Significant temporal trends were detected for both temperature and seed production at 

Fraser. Analyses of instrumental data revealed significant positive trends in both Tmin and Tmax, 

particularly since the mid 1990s (Fig. 1.1). Concurrently, seed abundance has increased at Fraser 

over the latter half of the study period according to fitted multiple regression models (Fig. 1.2). 

Trends in both temperature and seed production were consistent across elevations, contrasting 

the positive elevation-dependent trends in seed production identified by Richardson et al. (2005) 

for beech. Positive trends associated with P. engelmannii are attributed to increases in both 

intermediate and large seed years. Particularly high seed rain was observed in 2002, 2003 and 

2006, approximately corresponding to a period of severe drought and high temperatures across 

Colorado (Pielke et al. 2005). Climate records from Fraser indicate that 3 of the driest springs 

occurred in 2002, 2004, and 2006 and that mean summer temperatures in 2002, 2003, and 2006 

were among the highest in the 40-year study period. Thus, anomalous climate conditions that 

were favorable for seed production resulted in elevated seed abundance during the most recent 

decade of the study period.  
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A recent model that uses inter-annual temperature variation to quantify seed output for a 

range of taxa predicts that global climate change will have negligible effects on overall patterns 

of seed production (Kelly et al. 2013). Trends in seed abundance and associated climate at Fraser 

appear to contradict this prediction. Significant climate driven changes in reproductive effort 

have also been documented for other tree species (Richardson et al. 2005; Redmond et al. 2012). 

Increases in tree age or changes in stand densities are unlikely drivers of observed increases in 

seed abundance at Fraser since all plots were comprised of mature, stable, closed-canopy forests 

with mean stand ages of approximately 200 years at the start of the study in 1970. Previous 

research suggests that seed production in P. engelmannii peaks in mature trees between the ages 

of 100 and 250 years (Alexander 1974). In addition, stand basal area was excluded as a predictor 

from the most parsimonious models of seed production indicating that changes in tree size or 

possible increases in the number of reproductively mature individuals over time were not 

significant factors influencing trends in seed output.  

No system can sustain unlimited growth, and we expect that current trends in seed output 

at Fraser will be constrained by inherent physiological limits or external processes. Indeed, our 

model results identify a potential threshold temperature level in the summer of seed maturation, 

above which seed output is predicted to decline (Fig. 1.4). Temperature increases in the most 

recent decade already appear to be bumping up against this threshold, which is ~20% above long 

term mean summer temperature for a site. Constraining factors may include elevated respiration 

rates associated with higher temperatures that subsequently reduce plant carbon reserves. 

Alternatively, the compounding effects of reduced snowpack depth, earlier snowmelt and 

warmer summer temperatures may result in drought stress and an effective shortening of 

growing season length. In a related trend, late summer drought stress has been identified as a 
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potential cause for the weakening of the growth response in high elevation and northern latitude 

tree species to warming temperatures over recent decades (D'Arrigo et al. 2008). 

Changes in the reproductive biology of P. engelmannii may have a range of impacts 

affecting the composition, functioning and trajectories of change in subalpine forests of the 

Rocky Mountains. Differential responses among tree species to climate change may alter the 

availability of seed propagules for regeneration by sympatric species following disturbance and 

thus affect the composition of future forests. For example, limited evidence exists that 

reproduction in A. lasiocarpa may respond negatively to increasing temperatures, potentially due 

to a requirement for cool summer temperatures during the priming year (Woodward et al. 1994). 

Thus, reproduction in A. lasiocarpa and P. engelmannii, which commonly co-occur in this 

region, may have inverse responses to climate change. Changes in seed production may also 

effect interconnected food webs through complex, poorly understood pathways (Ostfeld et al. 

1996). Increases in seed abundance may directly benefit seed consumers, such as pine squirrels 

(Tamiasciurus hudsonicus fremonti), insects and other small mammals (Alexander 1974). 

However, feedback loops are also possible. More frequent and larger seed crops may effectively 

smooth reproductive variability and consequently compromise any evolved benefits of predator 

satiation, a postulated mechanism for the regulation of seed consumer populations that depends 

on synchronized, irregular seed output (Silvertown 1980). Long term population fitness in P. 

engelmannii may thereby be negatively impacted. On the other hand, elevated seed rain may 

enhance the resiliency of P. engelmannii populations in the face of increasing frequencies of fire 

and insect related tree mortality. Seeds from this species suffer high predation losses, germinate 

quickly under a range of conditions, and have a limited period of viability after release from 

cones (Johnson & Fryer 1996). Thus, in the absence of a persistent, viable seed bank, the 
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reproductive success of P. engelmannii may depend on the availability and dispersal of adequate 

seed from surviving cone-bearing trees, which, according to these analyses, may be moderately 

enhanced by current warming trends in climate.  

Data Accessibility 

Time series of seed abundance and tree ring width data: USDA Forest Service Research 

Data Archive doi: http://dx.doi.org/10.2737/RDS-2016-0004 (Buechling et al. 2016)  

  

http://dx.doi.org/10.2737/RDS-2016-0004
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Tables 

Table 1.1. Temporal and altitudinal effects on seed production from general linear models with 

autocorrelation structures (lag effect). 
 

Time Period Variable 
Effect Size 

(seed/m2) 

1970 – 1989 Year 0.95 

 Elevation 0.01 

 Lag Effect -0.15* 

1990 - 2010 Year 10.69* 

 Elevation 0.18 

 Lag Effect -0.13* 

1970 – 2010 Year 5.31*** 

 Elevation 0.09 

 Lag Effect -0.12** 

Significance: * p < 0.05; ** p < 0.01; *** p < 0.001 
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Table 1.2. Statistics describing the distribution of annual seed rain (seed/m2) over the 40-year study period for 13 study sites. 

Confidence intervals (CI) for the CV and the first order autocorrelation coefficient (ACF.1) were computed using bootstrap sampling. 

Sites are designated by elevation and are ordered from low to high elevation. Ranges in stand basal area (BA) for all plots were 

interpolated from Forest Service inventory data.  

 

Site 

Elevation 

(m) 

BA 

(m2/ha) 
Mean Median Max Min SD b21 CV 

CI 95% 

(CV) 
ACF.1 

CI 95% 

(ACF.1) 

2800 28.3, 34.2 132 34 1373 0 250 16.31 1.9 1.42, 2.66 -0.19 -0.40, 0.17 

2807 37.4, 38.9 73 18 1027 0 168 26.68 2.29 1.66, 3.66 -0.13 -0.39, 0.08 

2887 46.4, 54.8 34 9 232 0 56 7.26 1.63 1.29, 2.06 -0.22 -0.69, 0.14 

2908 68.2, 73.3 56 17 816 0 134 26.7 2.39 1.72, 3.72 -0.12 -0.45,  0.02 

2919 53.7, 61.6 187 61 1892 0 346 15.84 1.85 1.40, 2.57 -0.19 -0.61, 0.10 

2964 36, 41.6 92 25 1163 0 194 23.97 2.1 1.52, 3.26 -0.12 -0.45, 0.02 

2990 31.3, 35.1 129 36 1732 1 285 25.8 2.21 1.54, 3.40 -0.12 -0.45,  0.02 

3038 32.4, 40.9 68 13 719 0 153 15.02 2.26 1.63, 3.01 -0.07 -0.35,  0.13 

3054 35.4, 37.2 96 26 1267 0 213 23.7 2.21 1.62, 3.38 -0.13 -0.45, 0.01 

3138 20.1, 26.3 70 15 1097 0 180 27.15 2.56 1.88, 4.03 -0.08 -0.36   0.09 

3322 20.4, 25.7 113 18 2041 0 325 31.79 2.87 2.06, 4.79 -0.09 -0.35, 0.01 

3385 38.7, 43.6 156 19 3011 0 480 32.2 3.07 2.27, 5.21 -0.06 -0.25,  0.12 

3474 42.2, 49.6 160 16 3363 0 536 32.76 3.36 2.50, 5.51 -0.06 -0.22,  0.14 

1 kurtosis =  
(∑(𝑋𝑖−𝑋̅)4 / 𝑛)

(∑(𝑋𝑖−𝑋̅)2 / 𝑛)2  (DeCarlo 1997) 
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Table 1.3. Goodness of fit and model comparison measures for models of seed rain. Models test 

climate effects on seed output across 3 years: the seed maturation year; the bud initiation year, 

one year prior to seed maturation; and the priming year, two years prior to seed maturation. Full 

models integrate climate effects in all 3 years. Statistics are shown for the most parsimonious 

models selected by AICc (corrected for small sample size). 

 

Model Covariates n NP1 AICc R2 Bias 

Seed Maturation Tave3 summer lag0 533 17 6289.5 0.140 0.81 

Bud Initiation Tave summer lag0 533 19 6253.6 0.189 0.91 

 ppt2 shoot period lag1      

Bud Initiation+Growth Tave summer lag0 533 21 6216.9 0.191 0.88 

 ppt shoot period lag1      

 radial growth lag1      

Priming  Tave summer lag0 533 19 6160.0 0.396 1.15 

 ppt spring lag2      

Full Tave summer lag0 533 21 6114.0 0.355 1.16 

 ppt shoot period lag1      

 ppt spring lag2      
1 number of parameters 
2 precipitation 
3 average temperature 
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Figures 

 

Figure 1.1. Time series of mean annual Tmax and Tmin at high elevation (3230 m) and low 

elevation (2770 m) climate stations at Fraser. Horizontal lines represent year 1970 to 2000 means 

(normals) and highlight generally enhanced warming rates at both elevations since the mid 

1990s. These instrumental data indicate ubiquitous temperature inversions caused by cold air 

drainage, a widespread phenomenon in mountainous terrain (Nolan Doesken, Colorado State 

Climatologist, personal communication). 
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Figure 1.2. Time series of seed abundance per m2 of ground area for 13 study sites. 

Synchronicity among sites for both high, low and intermediate levels of seed production is 

evident. The slope of the fitted regression line reflects an overall positive trend in seed output 

over the course of the study (~ 50 seeds/m2/decade). 
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Figure 1.3. Correlograms computed from untransformed seed rain data illustrating spatial 

patterns of synchrony in rates of seed production. Upper figure shows all pairwise plot 

correlations plotted as a function of separating distance. The black horizontal line indicates the 

overall mean correlation (0.88). The spline correlogram in the lower plot is a continuous function 

estimating covariance as a function of distance separating seed-fall plots with corresponding 

confidence limits derived from bootstrap resampling (Bjørnstad & Falck 2001). The spline 

correlogram is centered so that the zero reference line denotes the overall mean level of 

synchrony across the study area. 
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Figure 1.4. Fraction of modeled potential seed production (solid curves) and observed seed 

abundance per square meter of ground area (open circles) as a function of the 4 main predictors 

from the most parsimonious full model of seed production. Maximum potential seed output 

occurs when predictors are at their optimum levels for seed production. Each panel 

independently identifies the fractional decrease in potential seed output caused by the associated 

effect when all other predictors are held constant. Panels are arranged from upper left to lower 

right to correspond with the strength of the corresponding sub-model, based on AICc scores. 

Climate variables were normalized by the corresponding long-term mean of each site to produce 

dimensionless indices of climate. Climate values therefore indicate departures from the 

corresponding means (1.0) of each site. For example, spring precipitation values of 1.2 indicate 

that precipitation levels were 20% above long term means. Standardized radial growth values 

derived from ring width measurements similarly have unit means (see methods in text). 
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Figure 1.5. Cross-correlation functions between standardized radial growth indices and pre-

whitened residuals of seed abundance for three periods in the reproductive cycle. Autoregressive 

models were used to generate pre-whitened residuals. Dashed lines delimit 95% confidence 

limits. 
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Figure 1.6. Fraction of maximum potential radial growth as a function of climate and tree size 

predictors from the most parsimonious likelihood model. Each panel independently identifies the 

fractional decrease in potential radial growth caused by the associated effect when other 

predictors are held constant. Climate predictors were not transformed. The upper two panels 

represent effects in the year concurrent with tree growth, while the lower two panels indicate 

effects in the year preceding ring width formation. Tree diameter was included to account for the 

effects of size and age on radial growth rates.  
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CHAPTER 2 CLIMATE AND COMPETITION EFFECTS ON TREE GROWTH IN ROCKY 

MOUNTAIN FORESTS2 

 

 

Synopsis 

Climate is widely assumed to influence physiological and demographic processes in trees, 

and hence forest composition, biomass and range limits. Growth in trees is an important barometer 

of climate change impacts on forests as growth is highly correlated with other demographic 

processes including tree mortality and fecundity. We investigated the main drivers of diameter 

growth for five common tree species occurring in the Rocky Mountains of the western United 

States using non-linear regression methods. We quantified growth at the individual tree level from 

tree core samples collected across broad environmental gradients. We estimated the effects of both 

climate variation and biotic interactions on growth processes and tested for evidence that disjunct 

populations of a species respond differentially to climate. Relationships between tree growth and 

climate varied by species and location. Growth in all species responded positively to increases in 

annual moisture up to a threshold level. Modest linear responses to temperature, both positive and 

negative, were observed at many sites. However, model results also revealed evidence for 

differentiated responses to local site conditions in all species. In severe environments in particular, 

growth responses varied non-linearly with temperature. For example, in northerly cold locations 

pronounced positive growth responses to increasing temperatures were observed. In warmer 

southerly climates, growth responses were unimodal, declining markedly above a threshold 

temperature level. Net effects from biotic interactions on diameter growth were negative for all 

                                                 
2 This research was originally published in the Journal of Ecology: Buechling A., Martin P.H. & 

Canham C.D. (2017) Climate and competition effects on tree growth in Rocky Mountain forests. 

Journal of Ecology, doi: http://dx.doi.org/10.1111/1365-2745.12782. 

http://dx.doi.org/10.1111/1365-2745.12782
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study species. Evidence for facilitative effects was not detected. For some species, competitive 

effects more strongly influenced growth performance than climate. Competitive interactions also 

modified growth responses to climate to some degree. These analyses suggest that climate change 

will have complex, species specific effects on tree growth in the Rocky Mountains due to non-

linear responses to climate, differentiated growth processes that vary by location and complex 

species interactions that impact growth and potentially modify responses to climate. Thus, robust 

model simulations of future growth responses to climate trends may need to integrate realistic 

scenarios of neighborhood effects as well as variability in tree performance attributed to 

differentiated populations. 

Introduction 

Modern trends in climate, especially rates of warming and shifting precipitation regimes, 

may be unprecedented in the past two millennia (Jones & Mann 2004). Associated 

environmental changes are expected to exceed the physiological tolerances and adaptive capacity 

of many plant taxa (Hansen et al. 2001). Radial growth in trees is an important barometer of 

climate change impacts on the performance of tree species and the dynamics of forest 

communities, as growth is highly correlated with other demographic processes including tree 

mortality (Martin et al.2010) and fecundity (Martin & Canham 2010). Demographic processes of 

birth, growth, dispersal and mortality and interspecific differences in these vital rates shape the 

relative abundance of tree species in forests (Pacala et al.1996) and determine the distribution of 

populations across landscapes. Climate driven changes in vital rates lead to local extinction and 

colonization events that aggregate across populations to shape trajectories of change in species 

ranges (Hansen et al.2001). Recent large-scale studies investigating evidence for range shifts in 

tree species, however, have revealed inconsistent and idiosyncratic responses to contemporary 
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climate trends (Zhu et al.2012), suggesting that range shifts may lag changes in the demographic 

rates that determine species migrations (Littell et al.2008). For instance, evidence has been 

detected for increased growth rates among tree taxa occurring at high elevations (Bunn et 

al.2005), which may presage range expansion in some of these areas. Such patterns indicate that 

understanding an organism’s climate niche and sensitivity to climate change requires rigorous 

empirical quantification of the demographic processes that constitute its niche, data that is 

currently lacking in predictive models of global change (McMahon et al. 2011). 

Growth processes in trees can be investigated using regression methods, as temporal 

series of radial growth record the effects of past environmental variation with annual resolution. 

Dendrochronology, a commonly used framework for analyzing tree ring series, has a long 

history in climate research for the reconstruction of past climates (Graumlich 1993; Büntgen et 

al. 2013). Related methods have been used to quantify climatic drivers of growth (Littell et 

al.2008), to infer functional responses to disturbance (Alfaro-Sánchez et al. 2016), and to 

forecast growth responses to future climate (Williams et al.2010). Traditional 

dendrochronological techniques typically involve substantial data transformations to generate 

stationary time series of ring widths. These data transformations are designed to remove 

temporal autocorrelation and to dampen ring width variance attributed to non-climatic effects, 

including tree allometry and stand dynamics, thereby enhancing a target climate signal (Blasing 

et al. 1983). Thus, regression models based on standardized chronologies of growth cannot be 

used to assess the absolute effects of climate on growth rates, nor to assess the relative strength 

of climate versus other factors on growth processes (but see Ettinger & HilleRisLambers 2013). 

However, a growing body of evidence indicates that biotic interactions, by substantially 

moderating tree growth, may influence associated responses to climate variation in important 
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ways (Kunstler et al.2011; Coomes et al.2014; Rollinson et al.2016). For example, differences in 

the competitive environments of individual trees may partially explain idiosyncratic growth 

responses to warming trends in boreal forests of Alaska (Wilmking et al.2004). Positive 

facilitative interactions between tree species experiencing physiological stress have also been 

detected (e.g. Gazol & Camarero 2016; Thurm et al. 2016). Thus, robust analyses of growth 

responses to climate may require an alternate statistical framework that can explicitly integrate 

both climate factors and biotic effects (Clark et al.2011).  

Additional factors potentially influencing growth processes include genetic variation and 

adaptation to local conditions among distant populations of plant species. Previous studies have 

revealed evidence for population-level differentiated responses to local climate for some tree 

species (Rehfeldt et al. 1999). Differentiated populations, which may develop via either genetic 

adaptation or phenotypic acclimation, have unique climate optima and tolerances, and hence 

divergent responses to changing environmental conditions. Failure to account for differentiated 

processes may obfuscate empirical relationships between plant performance and climate and 

potentially bias predictions of growth under future climates (O’Neill et al. 2008; Angert et al. 

2011). 

In this study, we investigated the main drivers of radial growth for five common tree 

species in the Rocky Mountains of the western United States using non-linear regression 

methods. We quantified growth at the individual tree level from tree core samples collected 

across large spatial scales and environmental gradients. We estimated the effects of temperature, 

precipitation and biotic interactions on growth processes. Measures of forest stand density were 

used to assess the nature and relative strength of biotic or neighborhood effects. Models were 
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formulated to explicitly test for evidence of differentiated growth responses to local climate 

regimes.  

The direct effects of climate on growth processes in individual trees have been previously 

found to be modest in some forest systems (e.g. Coomes et al. 2014; Canham & Murphy 2016). 

However, we expect that growth processes may be influenced by complex interactions between 

climate variation, neighborhood structure, and differentiated populations. Specifically, given the 

recognized importance of biotic interactions in mediating plant responses to environmental 

change (Brooker 2006), we hypothesize that neighborhood effects may strongly influence growth 

responses to climate for these species, and that in some environments differential responses to 

the presence of neighbors may alter growth hierarchies between species. We further expect that 

across the broad environmental gradients that characterize Rocky Mountain forests, disjunct 

populations of the same species vary in their responses to climate and that growth potential at a 

given location may be negatively correlated with extremes in climate. 

Materials and methods 

Study area 

We collected tree ring data from five sites distributed across a latitudinal gradient from 

the southern terminus of the Rockies in New Mexico to the Canadian border in the north (Fig. 

S2.1 in Appendix). Sites include from south to north: (1) Lincoln National Forest (LNF) in 

southern New Mexico (32.84° N, 105.7° W), (2) San Isabel National Forest (SNF) in southern 

Colorado (38.04° N, 105.11° W), (3) Roosevelt National Forest (RNF) in northern Colorado 

(40.71° N, 105.58° W), (4) Bighorn National Forest (BNF) in northern Wyoming (44.53° N, 

107.35° W) and (5) Glacier National Park (GNP) in northern Montana (48.7° N, 113.71° W). 

Forests span elevations from ~1850 to over 3600 m in southern sites and between ~1300 and 
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3050 m at northern sites. The five study sites encompass a wide range of climates. In general, 

annual temperature decreases and precipitation increases from south to north across the study 

area. Mean annual temperatures range from ~4.9°C (1.8 to 9.8°C) in southern sites to ~3.3°C 

(1.9 to 5.2°C) in the north. Average annual precipitation is ~661 mm (457 to 926 mm) in the 

south and ~923 mm (519 to 1341 mm) in the north. We selected five common tree species for 

growth sampling: Abies lasiocarpa (Hook.) Nutt. (subalpine fir), Picea engelmannii Parry ex 

Engelm. (Engelmann spruce), Pinus contorta Douglas ex Loudon (lodgepole pine), Pinus 

ponderosa Lawson & C. Lawson (ponderosa pine) and Pseudotsuga menziesii (Mirb.) Franco 

(Douglas-fir). 

Growth data 

Geospatial analyses were used to design a stratified random distribution of plot locations 

for sample data collection. Plot locations were dispersed over environmental gradients 

hypothesized to affect both climate and forest stand structure, and hence associated growth 

responses. Specifically, we used the National Elevation Dataset (1 arc-second spatial resolution) 

from the U.S. Geological Survey to produce raster datasets representing elevation, terrain aspect, 

and an index of soil moisture (Parker 1982) for the study region using spatial tools in ArcGIS 

(Version 10.3; ESRI 2011). We then generated a random distribution of plot locations across 

these surfaces for each study species, constrained by the range of a species’ distribution within 

each of the 5 study sites. We used a vegetation type raster dataset from LANDFIRE 

(http://www.landfire.gov/) to delimit the geographic range of each species.  

 Focal species were sampled at a minimum of 3 study sites. We excluded plots located in 

stands with recent tree mortality or disturbance. A single adult target tree from the dominant 

canopy layer was sampled at each plot location. Saplings (<10 cm diameter at breast height) 

http://www.landfire.gov/)
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were not sampled. Trees with obvious external damage were excluded. We collected at least 2 

increment cores per target tree at a height of 30 cm above the root crown. We collected 

additional samples (up to 4 cores per tree) if the shape of the stem was strongly asymmetric or if 

the quality of a sample core was uncertain. A mean of 2.4 cores were collected per tree in this 

study. Cores were extracted as low as possible on the stem to maximize the time depth of each 

ring width series for cross-dating purposes and to obtain age estimates as close to the 

germination year as possible. We measured the diameter of each target tree at breast height 

(DBH; 1.3 m) and the distance to and DBH of all neighboring trees within a 15 m radius of the 

target tree.  

Final sample sizes varied by species, ranging from 131 to 179 sample trees across the 

study region as a whole (Table 2.1). Sites with less than 5 sample trees were excluded from 

modeling analyses. After excluding those data, mean samples sizes within individual study sites 

ranged from 45 (38-54) for P. menziesii, 43 (39-51) for P. ponderosa, 42 (13-55) for P. 

engelmannii, 36 (22-58) for A. lasiocarpa, and 36 (13-50) for P. contorta (see Fig. S2.2). Sample 

trees covered broad environmental gradients (Appendix S2.1; Table S2.1; Fig. S2.3). Over 1,900 

tree core samples were lab processed to obtain annual measures of radial growth (RG). Cores 

were mounted, sanded until tracheid cells were clearly visible under magnification, and visually 

cross-dated using the entire series length to ensure correct ring dates (Speer 2010). We then 

measured ring widths for the most recent 20 years in each core (1992 to 2011) to a precision of 

0.001 mm using a Velmex measuring system. We limited measurements to a 20-year window for 

which we assumed that stand composition and neighborhood effects were relatively invariant, 

based on the selection of forest stands with minimal evidence of recent disturbance. Ring widths 
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were examined for measurement and dating errors using COFECHA (Grissino-Mayer 2001). 

Multiple cores from the same tree were averaged to produce a single time series of annual RG.  

Growth models 

We constructed independent regression models for each species using likelihood methods 

of parameter estimation. The response variable for all models was annual RG (mm/year). We 

used raw annual measurements of RG from individual trees to fit growth models, contrasting the 

common practice in dendrochronological studies of detrending and averaging individual time 

series of growth into composite mean indices of growth for a site. These data transformations 

effectively homogenize data variability between individual trees (Fritts 1976; Cook 1987), which 

may obfuscate temporal or spatial trends and limit inferential ability in certain applications 

(Wilmking et al. 2004; Carrer 2011). 

Time series of ring widths from trees are generally serially or temporally autocorrelated; 

meaning that data from individual years are not strictly independent. Autocorrelated data 

structures result in inflated estimates of degrees of freedom and biased underestimates of 

variance. Temporal autocorrelation may be related to a range of factors including inherent 

negative trends associated with increasing stem circumferences in aging trees, and extrinsic 

factors such as disturbance events and changes in stand structure (Fritts 1976). However, 

techniques commonly used to reduce autocorrelation, such as autoregressive modeling (Chatfield 

2004), may dampen signal variance related to climate and thus further bias associated ecological 

inferences. RG may alternately be averaged over multiple year periods to remove 

autocorrelation, but smoothing ring width variability in this way may again result in the loss of 

information regarding the target climate signal. In this study, geometric trends in the ring width 

series were modeled using a size effect, derived from tree DBH. We incorporated prior year 
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climate variables to account for potential antecedent effects that could cause a lagged effect on 

growth processes. Given our sampling design (see above), we also assumed that forest stand 

structure, neighborhood tree densities and the associated strength of biotic interactions remained 

constant within the relatively narrow 20-year window of analysis. Additionally, we argue that 

likelihood estimation is robust to issues of autocorrelation, as these methods do not rely on 

measures of degrees of freedom for hypothesis testing, parameter estimation or model 

comparison. Furthermore, the resulting residuals from all best fitting models were randomly 

distributed according to tests for autocorrelation (residual plots shown in Fig. S2.4 & S2.5). 

A fundamental assumption in dendrochronological research is that RG responses to 

climate are time invariant within a species and thus age-independent, after accounting for trends 

associated with increasing tree size and forest stand dynamics (Carrer & Urbinati 2004; Esper et 

al. 2008). However, preliminary analyses (not shown) in this study revealed possible 

relationships between tree age and growth rates. Thus, we constructed alternate models to 

explicitly test for age effects and thereby account for any age-related trends in the ring width 

series, as described below. 

A series of alternate hierarchical models were developed for each species. Full models 

estimated size, age, neighborhood and climate effects as factors in a multiplicative non-linear 

framework: 

 

RG = PRG[site] x Size x Age x Neighborhood x Temperature x 

Precipitation 

[1] 

PRG represents potential or expected RG for a hypothetical free-growing tree and was estimated 

uniquely for each study site. Tree size, age, neighborhood and climate effects are scalar 

modifiers that proportionally reduce or increase potential growth. We minimized assumptions 
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concerning the shape of the relationships between response and effect terms, so we tested 

relatively flexible functional forms, such as lognormal or Gaussian, that can fit monotonically 

increasing, decreasing, or unimodal data distributions. Both size and age effects were fit with a 

lognormal function: 

 Size or age effect = exp[ −0.5 × (
ln (

DBH or age
δ

)

𝜎
)

2

] [2] 

where 𝛿 represents the modal value of DBH or age corresponding to potential growth (PRG) and 

 describes the breadth of the function. 

An individual tree modeling approach facilitates the explicit estimation of neighborhood 

effects on growth processes. We used a distance-dependent measure of forest stand structure, an 

index of neighborhood crowding (NCI), to quantify neighborhood effects (Canham et al.2004). 

NCI was parameterized from our field data and depends on the density, species composition and 

size of neighboring trees within each 15 m radius plot: 

 NCI =  ∑ ∑ 𝜆𝑖

(DBHij)
𝛼

(distance𝑖𝑗)𝛽

𝑛

𝑗=1

𝑠

𝑖=1

 [3] 

Subscripts i and j denote the species identity of a given neighbor and the corresponding number 

of stems of that species, respectively. Thus, the magnitude of the neighborhood effect on a target 

tree varies as a direct function of the DBH of a given neighbor and inversely with the distance of 

that neighbor from a target tree. The shape of the neighborhood effect is determined by the 

exponents α and β. To constrain model complexity, we assumed that α and β were constant for 

all neighbor species. However, we did test for potential differences between neighbor species in 

their overall effect on a target tree by incorporating species specific NCI coefficients (λi) in 

Equation 3.  
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We estimated target tree responses to NCI using a flexible exponential function: 

 Neighborhood response = 𝑒±C × DBHϒ × NCI [4] 

The exponential decay parameter (C) governs the shape of the response; positive values fit 

monotonically increasing responses to NCI and reflect beneficial or facilitative interactions with 

neighbors; negative exponents track declining growth responses and reflect net negative or 

competitive effects on growth. We also allowed this function to vary with the DBH of the target 

tree to evaluate whether sensitivity to crowding depends on tree size. The exponent γ governs 

any size-dependent variation in response to neighbors. Specifically, negative values of γ indicate 

that growth in larger diameter target trees is less affected by crowding than growth in smaller 

trees. Conversely, for positive values of γ, sensitivity to crowding increases with increasing tree 

size.  

Relationships between climate and tree growth have been investigated using a wide range 

of climate metrics, varying by study, species and location. There is no a priori theory or 

consensus for selecting appropriate model form (Cook et al. 1987). Relationships between leaf 

level responses to short-term climate variation identified in the ecophysiological literature do not 

readily elucidate the most important climate drivers of average diameter growth, which depends 

on long-term climate variability integrated over a year or more. In this study, we investigated 

climate-growth relationships using annual mean temperature and annual total precipitation. This 

a priori selection mitigates widely recognized statistical issues related to the a posteriori 

selection of predictors based on goodness of fit comparisons between a multitude of possible 

permutations of temperature and precipitation that may be parameterized for any given species. 

In addition, annual climate values were highly correlated with seasonal means. Spearman 

correlations between annual mean temperature and various seasonal temperature means ranged 
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from 0.87 to 0.96. Correlations between precipitation variables were slightly lower, ranging from 

0.55 to 0.81. We did test model performance based on a limited selection of objectively defined 

seasonal climate predictors, but associated model fits were weaker for most species compared 

with annual models (see Appendix S2.2 & Table S2.2).  

Climate variables were derived from PRISM, a model that generates spatially continuous 

estimates of monthly temperature and precipitation for the United States (Daly et al.2008). We 

extracted PRISM data (30 arc-second or ~800 m resolution) for target tree locations using a 

weighted interpolation of adjacent pixel values. Annual precipitation sums and temperature 

means were derived from the extracted monthly data. Annual periods were defined according to 

a U.S. Geological Survey hydrological year that spans a 12 month period from October 1st of the 

previous year to September 30th of the current year. Precipitation effects were fit with lognormal 

functions for all species. Temperature effects were estimated using Gaussian functions:  

 Temperature effect =  exp[ −0.5 × (
(t − 𝑡𝑒𝑚𝑝. 𝑎)

𝑡𝑒𝑚𝑝. 𝑏
)

2

] [5] 

where t is observed temperature, and temp.a and temp.b describe the mode and variance of the 

function, respectively.  

We also tested for evidence of adaptation or acclimation to both temperature and 

precipitation at each study site by modifying climate functions (Gaussian for temperature and 

lognormal for precipitation) so that a unique mode and variance was estimated for each climate 

variable at each site. Differentiated climate functions quantify unique, site-specific growth 

responses to corresponding climate regimes that differ across the study region.   

Model specification and evaluation 

A series of alternate models based on Equation 1 were produced to evaluate the relative 

importance of climate and crowding effects. Simulated annealing, a global optimization 
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algorithm, was used to solve for maximum likelihood estimates of regression parameters (Goffe 

et al.1994). Model residuals were approximately normal, but heteroscedastic. Thus, we used a 

modified normal probably density function, for which variance was computed as a linear 

function of the mean, to estimate likelihood. Bias and proportion of variance explained (R2) were 

used to quantify the goodness of fit (GOF) of alternate models. Bias was quantified from the 

slope of the linear regression of observed versus predicted RG. Akaike information criterion 

corrected for small sample size (AICC) was used to select the most parsimonious models 

(Burnham & Anderson 2002). Analyses were conducted in R (Version 3.2.3; R Core Team 

2013). Likelihood models were constructed using likelihood package version 1.6. 

Results 

The most parsimonious models for all species included site, tree age, temperature, 

precipitation and neighborhood effects (Table 2.2). Age functions accounted for consistent 

negative trends in the growth data associated with increasing tree age (Fig. S2.6) and 

substantially improved the statistical fit of all models in terms of AICc. Size functions were 

excluded from final models based on parsimony (low AICc values), potentially due in part to 

modest correlations between size and age parameters for trees in this study (0.36 to 0.5 

depending on species). The explanatory power of the final full models varied among species with 

R2 values ranging from 0.37 for A. lasiocarpa to 0.74 for P. ponderosa. All models for all 

species produced unbiased predictions of RG (Table 2.2). 

Growth responses to climate were site dependent for all species. Differences in the 

amplitude of RG responses to both temperature and precipitation (Fig. S2.7) were governed by 

site-specific estimates of PRG (Eqn. 1), and may reflect differences in local edaphic conditions 

or underlying geology. For most species, the shapes of RG responses to temperature, when 
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averaged across all sites, were effectively flat, increasing linearly with very low positive slopes 

in both the year concurrent with growth and in the previous year (Fig. 2.1A & 2.1C). Only P. 

ponderosa exhibited negative non-linear trends in RG with increasing annual temperature. 

However, the strongest full models for all species also included site-differentiated temperature 

functions (Table 2.2), indicating that not only the amplitudes, but the shapes of RG responses to 

climate varied by location within the study region. In particular, at climatically extreme sites 

relative to the study region as a whole, patterns of RG diverged markedly and non-linearly (Fig. 

2.2). For example, at the most southerly and warmest study site, Lincoln NF, RG declined 

rapidly at high temperature for P. ponderosa and P. engelmannii and moderately for A. 

lasiocarpa. In contrast, A. lasiocarpa and P. contorta exhibited site-specific positive RG 

responses to temperature at Glacier, which is the most northerly site in the study region. RG 

trends at Glacier may reflect an integrated response to both temperature and precipitation, since, 

although temperature is not extreme at this site, annual precipitation sums at Glacier exceed total 

precipitation in the driest study sites by more than a factor of two, and most of this precipitation 

occurs as winter snow (Table S2.1). 

Growth responses to precipitation generally assumed Gaussian shapes. All species 

responded positively to higher levels of annual precipitation in the drier portions of their 

precipitation ranges (Fig. 2.1B & 2.1D), particularly in the year concurrent with growth. 

However, above a threshold moisture level in the growth year, RG in all species except P. 

ponderosa declined with increasing annual precipitation. Threshold levels of precipitation 

associated with maximum RG ranged from a low of ~665 mm/year for P. contorta to a high of 

~854 mm/year for P. menziesii (Fig. 2.1B). Notably, we found little evidence for differentiation 
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to local precipitation regimes, as determined by model comparison statistics (AICc). Only one 

species, P. menziesii, exhibited unique site-specific responses to precipitation (Table 2.2). 

Neighborhood effects were important for all species and retained in all best-fitting full 

models of growth based on AICc (Table 2.2). For two species, A. lasiocarpa and P. contorta, 

models that estimated neighborhood effects only (Neighborhood models in Table 2.2) provided a 

statistically stronger fit to the growth observations than models that estimated climate effects 

alone (Climate models in Table 2.2). Optimization routines fitted RG responses to NCI with 

negative exponential functions for all species, unambiguously demonstrating that RG in all 

species declined with increased levels of crowding from neighboring trees (Fig. S2.8). Negative 

responses in target tree growth varied with the size, distance to, and number of neighboring trees 

in a plot. A comparison of mixed versus equivalent neighborhood models based on AICc 

indicated that simpler models that treated all neighboring species as equivalent competitors were 

consistently stronger for all focal species (Table 2.2). Thus, RG responses were not sensitive to 

the species composition of corresponding neighborhoods. 

The five study species differed in their sensitivity to neighborhood effects. In general, the 

two most shade intolerant species, P. contorta and P. ponderosa, were the most affected by 

variation in neighborhood conditions (Fig. S2.8). Species differences depend on multiple 

interacting factors. For example, the proximity of neighboring trees had strong negative effects 

on growth processes in P. contorta and P. ponderosa (Fig. 2.3). In contrast, distance had only 

minor effects on the 3 shade tolerant species, A. lasiocarpa, P. engelmannii and P. menziesii. 

Responses to crowding for most species were directly proportional to the DBH of neighboring 

trees, as determined by α values (Eqn. 3) approximately equal to 1.0 (Table S2.3). Target tree 

size further modified these patterns; smaller diameter trees in the species A. lasiocarpa, P. 
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engelmannii and P. contorta were more sensitive to neighborhood effects than larger diameter 

trees. The converse was true for P. ponderosa and P. menziesii.  

Modest evidence was detected that varying levels of neighborhood crowding influence 

growth responses in focal species to climate variation, potentially leading to altered performance 

hierarchies among species. For example, when neighborhood crowding effects (NCI) are low, 

RG in P. engelmannii consistently surpasses growth rates in A. lasiocarpa across the full 

precipitation breadth of P. engelmannii (Fig. 2.4). In contrast, at high NCI, RG in A. lasiocarpa 

exceeds growth in P. engelmannii at both low and high limits of annual precipitation. More 

substantial growth reversals associated with changing stand densities occur between P. 

engelmannii and P. menziesii, but currently, these species overlap within only limited portions of 

the study region. 

Discussion 

Tree species in this study occupy extremely broad ecological gradients. The thermal 

niche alone spans more than 10°C in mean annual temperature for all focal species. A similarly 

wide fundamental niche has been estimated for P. contorta in British Columbia, which Rehfeldt 

(1999) postulated is an expression of a high degree of adaptability among individuals and 

populations. Given these broad distributions, we argue that comprehensive census data is 

requisite for the robust estimation of factors that shape demographic processes in these species 

and for detecting differences among populations in their responses to external controls. A lack of 

bias in the parameter estimates of our models reflects well distributed field samples that capture 

a broad range of ecological conditions. We further argue that the multiplicative modeling 

framework used in this study facilitates an understanding of the interactions between factors that 

influence growth and thereby more unequivocally elucidate the effects of individual variables. 
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Full models in our analyses, identified based on principles of parsimony, integrated current and 

antecedent climate, neighborhood effects, site factors, and age trends, and explained a relatively 

high proportion of RG variance for these species.  

Responses to climate were complex, non-linear and varied substantially between species. 

All species except P. ponderosa exhibited unimodal or threshold responses to moisture. Non-

linear relationships with precipitation have been identified in previous analyses based on 

individual tree modeling methods (Coomes et al. 2014; Rollinson et al. 2016), as well as in some 

studies using more traditional dendrochronological approaches (e.g. Miyamoto et al. 2010). 

Potential growth in our study system was thus constrained at many locations by moisture 

availability and responded positively up to a species specific threshold limit. These thresholds 

were generally exceeded in the northern parts of the study area (Glacier NP), suggesting tree 

growth could increase with increasing aridity in the northern Rockies. Pinus ponderosa typically 

occupies the warmest and driest environments in the region, which generally occur at the lowest 

elevations and at more southerly latitudes. Growth in this species responded positively to 

moisture increases without reaching a threshold limit. Similar but asymptotic responses to 

moisture have been detected in drought-tolerant Mediterranean tree species (Fernández-de-Uña 

et al. 2015).  

Growth responses to temperature in this study were generally more complex than 

responses to precipitation. Minor and approximately linear relationships with temperature were 

observed for most species when data from all sites were combined into a single growth function 

(Fig. 2.1), or when equivalent responses to climate are assumed for all populations (Fig. S2.7). 

Relatively modest thermal effects on tree growth or biomass accumulation in closed canopy 

forests have been observed in other studies (Ettinger & HilleRisLambers 2013; Coomes et al. 
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2014; Canham & Murphy 2016). However, in this study, more complex models that allowed the 

mode and breadth of the temperature function to vary depending on location revealed substantial 

site-specific differences in RG responses to temperature for all species. Thus, growth processes 

in this system appear to be tuned or differentiated to local temperature regimes through processes 

of either physiological acclimation (Cunningham & Read 2002) or evolutionary adaptation. 

Regardless of the mechanism, differentiated populations may be expected to respond in 

idiosyncratic ways to projected rates of future warming. 

The reciprocal transplant literature indicates that differentiated responses to climate and 

other environmental conditions is common in plant taxa generally (Leimu & Fischer 2008). For a 

range of tree species, common garden studies investigating growth responses in seedlings and 

saplings have documented extensive evidence for population specialization (Rehfeldt et al.1999). 

Evidence is more limited for adult trees. However, Chen et al. (2010) identified unique site 

specific growth responses in P. menziesii in western North America which they attributed to 

local adaptation. Our study shows that similar patterns of differentiation to local temperature 

occur in adult-sized trees for a wide range of species, despite the challenge of detecting 

differentiated growth processes in adult trees in mountainous environments (i.e. due to the low, 

innate growth potential and growth variability of trees at high elevations). Caution in this 

interpretation is warranted, however, as some of the locally differentiated responses to 

temperature in this study may be driven by anomalous temperature variability at extreme sites 

that is not replicated at other locations (Fig. 2.2). 

Model results revealed persistent, net negative responses in individual tree growth to 

crowding for all species across a wide range of neighborhood conditions, supporting 

fundamental ecological theories that competition between individuals is a main factor in the 
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population ecology of trees (Harper 1964). For two species, P. contorta and A. lasiocarpa, 

negative crowding effects were more important than climate. According to our analyses, these 

two high-elevation, cold-tolerant species have a comparatively low innate growth potential and 

are relatively less sensitive to climate variation compared with the other focal species in this 

study (Fig. 2.1). A lack of support for facilitative processes in this study may be attributed to the 

comprehensive scope of the sampling design. Much of the evidence for facilitation has been 

detected using experimental approaches restricted to a limited range of environments and over 

short study periods (Brooker et al. 2008, Maestre et al. 2009). Typically, facilitative processes in 

forests have been associated with periods of severe abiotic stress, such as episodic drought 

occurrence (Gazol & Camarero 2016; Thurm et al. 2016), or in strongly resource limited 

environments (Callaway 1998). In contrast, we designed our field sampling to encompass broad 

ecological gradients. Unproductive environments, such as treeline, constituted only a minority of 

all sample sites (~6 percent). Our model results, therefore, reflect a net response to neighborhood 

conditions across the full distribution of these species, over which competitive effects, on 

average, strongly outweigh any facilitative processes that may be transient or restricted to 

particular environmental conditions. Using a Bayesian model of individual tree growth, Kunstler 

et al. (2011) similarly found no evidence for facilitative effects among 16 tree species sampled 

across broad ecological gradients in France. Additionally, some authors have hypothesized that 

positive interactions between individuals may have more prominent effects on plant survival than 

on growth (Goldberg & Novoplansky 1997). 

Perhaps unexpectedly, competitive responses to crowding in all focal species did not 

depend on the species composition of the neighborhood. Ecological equivalence in terms of 

competitive effects on growth contradicts assumptions inherent in theories of competition (e.g. 
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Puettmann & Reich 1995), and results from previous studies (Canham et al. 2004; Uriarte et al. 

2004a; Coates et al.2009). A generalized response to neighboring trees may be driven by similar 

resource requirements among coexisting species (Uriarte et al. 2004b). Alternately, the lack of 

support for taxonomic differences in competitive effects may be attributed to inherent modeling 

or sampling limitations in this study. Previous analyses that have revealed species specific effects 

in adult trees have explicitly parameterized both above-ground shading effects and below-ground 

root competition (Canham et al. 2004; Coates et al. 2009). Here we merged these processes into 

a single, integrated index of neighborhood effects, which may have obfuscated differences 

between species. Previous authors have also suggested that very large sample sizes are required, 

in terms of sample trees occurring in a wide range of competitive environments, to distinguish 

differential competitive effects (Uriarte et al. 2004b; Coates et al.2009). 

Despite the equivalence of neighboring species in their competitive effects on a target 

tree, all focal species differed considerably in their sensitivity to crowding. Species specific 

responses to neighborhood crowding varied according to a range of interacting factors, including 

the size, proximity and number of trees in a neighborhood. The functional shapes of these 

responses were non-linear for all species, consistent with results from other analyses of 

neighborhood dynamics (Uriarte et al. 2004a; Canham et al. 2006; Fernández-de-Uña et al. 

2015). Competitive interactions are potentially further modified by variation in soil resources 

(Boyden et al.2005) or changes in climate (Kunstler et al.2011). The complex nature of these 

interactions precludes a consistent ranking of species according to competitive ability. 

Nevertheless, shade tolerant species (P. engelmannii, A. lasiocarpa and P. menziesii) were 

relatively less sensitive to crowding effects compared with other species (Fig. S2.8). These 

results suggest that analyses that approximate neighborhood effects with simpler indices, such as 
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stand basal area, or that use linear methods to estimate associated responses, may not fully 

describe the variability of these processes or capture differences between species in their 

sensitivity to crowding.  

The multiplicative structure of our models inherently accounts for interactions between 

climate and crowding affects, contrasting linear additive methods that estimate these effects 

independently. Competition in our models thus modifies the innate growth potential of a species 

associated with particular climate conditions. Furthermore, evidence from these analyses 

suggests that the asymmetric nature of species interactions influences growth responses to 

climate among species in individualistic ways, potentially altering growth hierarchies among 

sympatric taxa (Fig. 2.4). Competition driven altered growth hierarchies were most apparent for 

P. engelmannii and P. menziesii, whose ranges overlap predominantly at mid elevations in this 

study system. P. engelmannii is more sensitive to crowding by neighbors than P. menziesii and 

thus responds more strongly to different permutations of competition and climate conditions. 

Similar results demonstrating interactions between climate and competition were observed for 

tree species in eastern North America (Rollinson et al. 2016). Future analyses are needed to 

determine if the maximum potential growth response to climate, determined by the mode of the 

corresponding function, shifts under different levels of competition. Accounting for interactions 

between climate and competitive effects may be critical for developing unbiased predictions of 

forest response to environmental change.  

We tested both age and size effects in our models to account for associated trends in RG, 

thereby facilitating more robust estimates of climate and neighborhood effects. Traditional 

growth studies have generally used relative growth rates to account for age or size related trends 

that may potentially obscure climatic effects. Other methods based on spatially explicit, 
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individual-based modeling approaches have frequently parameterized size effects only (Kunstler 

et al. 2011; Coomes et al. 2014; Rollinson et al. 2016; Canham & Murphy 2016). Model results 

in this study indicate that growth in all species was strongly age dependent, declining 

exponentially with increasing age (Fig. S2.6A). Size effects were not significant in the most 

parsimonious full models. Mechanisms determining potential relationships between age and 

growth at the individual tree level remain unclear. Current hypotheses describe processes that 

cause progressive increases in physiological stress over time, including continuous increases in 

respiration demand in accumulating tissues and hydraulic limitations associated with increasing 

stem height (Ryan et al. 2004). Age and size may be confounded in some of these hypotheses. 

While the objective of this study was not to elucidate mechanisms driving any age related 

changes in tree growth, our analyses do indicate that age effects should be considered in similar 

analyses to control for confounding trends that are inherent in temporal series of RG 

measurements. Additionally, age related differences in tree growth responses to climate have 

been detected in some previous studies (Carrer & Urbinati 2004; Mamet & Kershaw 2013). Age 

effects, where significant, may interact with other site level effects, including locally 

differentiated growth processes, to further modify or amplify differences between disjunct 

populations in their responses to climate change. 

We argue that impacts to Rocky Mountain forests related to projected changes in future 

climate will likely be complex and context specific. The most consistent expected climate trend – 

sustained temperature increases – may have notably inconsistent impacts on the growth 

performance of species in this system due to species specific, non-linear responses to climate, 

differentiated growth processes that vary by location, and complex species interactions that 

strongly influence maximum growth potential for a given species and in some instances may 
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alter growth hierarchies between species. Future climate change will have additional and 

significant indirect effects on tree growth by influencing changes in stand structure, through 

altered disturbance regimes and rates of tree mortality, which may in turn modify competitive 

processes and subsequent responses to climate. Variation in tree size and age, which are strongly 

linked to local stand histories, may further interact with these complex processes. Thus, model 

predictions that tree growth will decline or increase uniformly in this system (e.g. Williams et al. 

2010) may be unrealistic.  

Our results support previous assertions that linear additive methods do not capture 

climate thresholds and may generate biased predictions of growth responses to climate when 

extrapolated beyond the observed range of the covariates used to calibrate a particular model 

(Loehle 2009; Gea-Izquierdo et al. 2013). We suggest that robust estimates of future impacts to 

forest trees may require the parameterization of mechanistic models that fully simulate 

vegetation dynamics by integrating non-linear demographic rates, climate variation, potential 

fertilization effects associated with atmospheric nitrogen deposition or CO2 enrichment, and 

environmental disturbance processes for multiple interacting species. 

Data Accessibility 

Annual tree growth measurements and neighborhood data available from the Dryad 

Digital Repository: http://dx.doi.org/10.5061/dryad.fv322 (Buechling et al. 2017). 

 

  

http://dx.doi.org/10.5061/dryad.fv322
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Tables 

Table 2.1. Physical and environmental attributes (mean and ranges) of sampled trees. 

 

Variable 

Species 

A. lasiocarpa P. engelmannii P. contorta P. ponderosa P. menziesii 

Acronym ABLA PIEN PICO PIPO PSME 
1 N 151 173 143 131 179 

DBH (cm) 26.2 (10.2, 69) 35.0 (13, 83.8) 24.8 (12.9, 60) 38.7 (12.8, 96) 37.7 (13.4, 90) 

Age (years) 119 (33, 321) 136 (35, 521) 129 (35, 482) 115 (24, 281) 120 (26, 366) 

Radial growth 

(mm/year) 
1.1 (0.1, 4.7) 1.4 (0.01, 6.2) 0.8 (0.05, 3.4) 1.4 (0, 11.7) 1.6 (0, 11.7) 

Elevation (m) 2412 (1324, 3386) 2520 (1300, 3618) 2385 (1315, 3245) 2311 (1327, 3004) 2260 (1310, 3367) 

Aspect (°) 180 (1, 360) 181 (1, 360) 168 (9, 360) 174 (2, 360) 179 (2, 360) 

Slope (%) 36 (10, 88) 37 (10, 88) 32 (10, 88) 41 (7, 88) 44 (8, 88) 
2 P annual (mm/year) 939 (219, 2777) 902 (220, 2777) 870 (196, 2584) 558 (168, 1030) 784 (167, 2128) 

3 T annual (°C) 2.7 (-2.7, 8) 3 (-3, 9.5) 3 (-2.8, 7.1) 7.5 (1.2, 13.6) 5.5 (-1.3, 11.3) 
4 Neighborhood density 73 (5, 253) 70 (2, 228) 88 (22, 253) 35 (0, 135) 54 (0, 256) 

1 Sample size (number of target trees) 
2 Average annual total precipitation 
3 Mean annual temperature 
4 Count of neighboring trees within 15 m of the target tree 
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Table 2.2. Model comparison statistics including delta AICc (model AICc – best model AICc) and R2 (in brackets) for models 

predicting RG for the 20-year period between 1992 and 2011. The modeling framework is hierarchical and evaluates the relative 

effects of site, size, age, climate, competition, and local differentiation to climate. Climate models estimate the effects of concurrent 

years’ temperature and precipitation on growth (1 year model), as well as the additive effects of concurrent and prior years’ 

temperature and precipitation on RG (2 year model). Neighborhood models estimate RG responses to crowding (NCI) in the absence 

of climate terms. Neighborhood models were alternately formulated to test whether crowding effects depend on the species 

composition of a neighborhood (mixed versus equal). Full models integrate climate (2 year) and neighborhood effects. Climate, 

neighborhood and full models include size, age and site effects, unless otherwise indicated. Species specific crowding indices from 

mixed neighborhood models were excluded from all full models by AICc. Full models were further modified to test for the importance 

of locally differentiated (LD) growth responses to temperature (T) and precipitation (P). 

 

Model ABLA PIEN PICO PIPO PSME 

Site 1357.2 (0.05) 2645.5 (0.08) 2286.6 (0.07) 3669.6 (0.04) 2211.1 (0.16) 

Size Site 1282.4 (0.07) 2511.7 (0.11) 2081.7 (0.13) 2889.0 (0.21) 1911.7 (0.24) 

Size Age Site 187.8 (0.33) 824.6 (0.35) 694.9 (0.41) 582.6 (0.68) 734.6 (0.41) 

Climate (1 year) 151.6 (0.36) 862.6 (0.32) 528.4 (0.45) 459.9 (0.57) 1 238.5 (0.39) 

Climate (2 year) 166.1 (0.35) 572.4 (0.39) 460.0 (0.46) 156.9 (0.73) 1 175.9 (0.39) 

Neighborhood (equal) 78.3 (0.37) 675.6 (0.40) 170.0 (0.46) 537.4 (0.62) 1 576.4 (0.43) 

Neighborhood (mixed) 195.7 (0.35) 834.1 (0.34) 665.8 (0.43) 597.2 (0.68) 1 589.3 (0.36) 

Full (equal comp) 71.7 (0.36) 70.1 (0.48) 82.8 (0.48) 2.3 (0.75) 1 43.2 (0.42) 

LD Full (T) 1 0.0 (0.37) 1 0.0 (0.48) 1 0.0 (0.50) 0.0 (0.74) 1 41.0 (0.41) 

LD Full (T & P) 1 56.4 (0.36) 1078.2 (0.44) 27.6 (0.50) 1142.3 (0.64) 1 0.0 (0.43) 

Parameters for Best Models (delta AICc = 0) 
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Model ABLA PIEN PICO PIPO PSME 

2 NP 37 32 32 25 44 

3 N 3020 3400 2860 2580 3579 

4 Bias 1.014 1.001 1.013 1.031 1.016 

1 Size effect excluded by AICc 
2 NP = number of parameters 
3 N = sample size (number of target trees * number of years) 
4 Bias = slope of observed versus predicte 
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Figures 

 

Figure 2.1. Growth responses (mm/year) by species for an average aged 30 cm diameter tree to 

concurrent and prior year mean annual temperature and annual total precipitation. Responses are 

based on parameters from the best fitting full models of growth and are averaged across sites. 

For the temperature panels, precipitation is held constant at the overall mean level for a species. 

Temperature is held constant in the precipitation panels. Competition is also held constant at the 

mean level for a species. The climate breadth of each response curve represents the observed 

climate range of each species. Species acronyms are defined in Table 2.1. 
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Figure 2.2. Site differentiated growth responses to annual temperature based on parameters from 

the best fitting full models. Response curves represent the site-specific fractional reduction in 

potential growth due to variation in temperature. The breadth of each site curve reflects the 

temperature ranges associated with field samples from that site. Sites are abbreviated as:  BNF – 

Bighorn National Forest;  GNP – Glacier National Park;  LNF – Lincoln National Forest;  RNF – 

Roosevelt National Forest; SNF – San Isabel National Forest. Site-specific mean annual 

temperatures are listed in parentheses.  
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Figure 2.3. Radial growth responses to variation in the location of neighboring trees. Response 

curves represent the fractional reduction in potential growth for a 30 cm target tree at mean 

climate for a given species. Competition effects were quantified for hypothetical tree 

neighborhoods comprised of 5 trees (30 cm DBH) located at equal distances from a target tree. 

Separation distances between the 5-tree neighborhoods and the target tree were varied from 1 to 

15 m to produce the response curves. 
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Figure 2.4. Growth responses (mm/year) by species for an average aged 30 cm diameter tree to 

concurrent year mean annual temperature and precipitation for two levels of NCI (10th and 90th 

percentile levels). Responses are from the most parsimonious full model of radial growth for 

each species. For the temperature panels, precipitation is held constant at the overall mean level 

for a species. Similarly, temperature is held constant in the precipitation panels. 
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CHAPTER 3 A TEMPERATURE HISTORY FROM HIGH ELEVATION TREE SPECIES IN 

THE SOUTHERN ROCKY MOUNTAINS OF WESTERN NORTH AMERICA3 

 

 

Synopsis 

Historical temperature reconstructions are used to quantify the inherent internal 

variability of the climate system and allocate effects associated with external factors including 

anthropogenic carbon loading of the atmosphere. Continued debate concerning the degree of 

temperature variance within particular historical intervals highlights the need for additional 

regional scale temperature reconstructions. Here we use samples of radial growth from multiple 

high elevation tree species to reconstruct past temperatures for a relatively narrow study region 

in the southern Rocky Mountains of the western United States. We augmented archived data 

records with recent field samples to capture anomalous trends in modern temperature. We 

compared model performance using alternate standardization methods. Based on a hypothesis 

that non-linear relationships between tree growth and temperature potentially underlie a 

weakening or diverging response to modern climate trends, we explicitly evaluated the 

robustness of linear models. Model results revealed evidence for differentiated growth processes 

among populations within a species. Temperature reconstructions delineated distinct warm and 

cold intervals over the previous millennium relative to the overall historical mean. Estimated 

trends are congruent with recent, hemispheric scale reconstructions, but diverge somewhat with 

regard to the amplitude of past temperature variability. 

                                                 
3 In preparation for submission to the journal Climate Change with co-author P.H. Martin: 

Buechling, A. & Martin, P.H. (In prep). A temperature history from high elevation tree species in 

the southern Rocky Mountains. Climate Change. 
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Introduction 

Anticipating the consequences of climate change requires robust estimates of future 

climate states. Paleodata critically inform the development and evaluation of both climate system 

and ecological response models (Williams & Jackson 2007). Temporal changes in climate are 

influenced by broad-scale external effects on the energy budget of the planet, driven by changes 

in solar insolation and atmospheric chemistry for example. Climate states are further 

characterized by an inherent natural variability driven by interactions between internal climate 

system components (Schurer et al. 2013). Thus, robust simulations of future climate depend on 

reliable estimates of both external forcings and this internal climate variability. The 

quantification of external forcing mechanisms from contemporary meteorological observations is 

constrained by limited temporal depth and a perturbation of the modern system by anthropogenic 

effects (Edwards et al. 2005). Thus, the refinement of climate simulation models that attempt to 

partition internal climate variability and various forcing mechanisms, and quantify corresponding 

climate system responses to those different mechanisms, depend on reliable reconstructions of 

past climate at regional and global scales (Free & Robock 1999; Hegerl et al. 2006; Schurer et 

al. 2013). These reconstructions are derived from various biotic and abiotic materials, such as ice 

cores, corals, sedimentary deposits, and tree rings that serve as proxies for corresponding climate 

conditions present during their formation (Jones et al. 2009). Spatial networks of proxy records 

are statistically composited to estimate climate parameters, particularly temperature, over large 

geographical scales. Although general trends in Holocene temperature are well established for 

the northern hemisphere, persistent discrepancies are evident between proxy reconstructions 

regarding the amplitude and timing of particular warm and cold intervals (Ljungqvist 2010; 

Marcott et al. 2013; Wilson et al. 2016). For example, estimates from proxy reconstructions for 
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the breadth of late Holocene temperature variability vary from 0.2 to 1.0 °C among studies 

(Ljungqvist 2010; Frank et al. 2010). Discrepancies in reconstructed temperatures have 

important implications for the magnitude, detection and attribution of forcing mechanisms, and 

the associated sensitivity of the climate system to continued increases in anthropogenic 

greenhouse gases (Edwards et al. 2007). The lack of congruence among studies may be partially 

attributed to inadequate geographical replication and limited temporal depth of available proxy 

records (Esper 2009). In particular, many existing reconstructions are based on calibration data 

that predate the steep warming trends that have been observed since ~1990. Associated models 

may thus under-estimate temperature conditions for historical periods with comparable mean 

climate (Wilson et al. 2007; Ljungqvist 2010). 

 Statistical analyses that attempt to reconstruct past temperatures depend strongly on 

assumptions that the processes which generated a particular proxy record are stable through time 

and that relationships between proxy formation and climate are linear (Ljungqvist et al. 2012). 

However, evidence for apparently non-stationary growth processes in trees has been identified in 

some dendroclimatic studies from different regions (e.g. Jacoby & D'Arrigo 1995; Jacoby et al. 

2000; Lloyd & Fastie 2002; Wilson & Luckman 2003). Specifically, radial growth (RG) in some 

conifer species at some high latitude sites has deviated from an expected positive linear response 

to increasing warmth in the latter half of the 20th century. Documented declines in temperature 

sensitivity and even shifts from positive to negative growth responses have been widely 

discussed in the dendroclimatic literature and are commonly referred to as divergence 

phenomena (D'Arrigo et al. 2008). Various hypotheses have been postulated to account for 

divergent growth processes, including warming related drought effects on growth that dampens 

an otherwise positive linear response to temperature (Loyd & Fastie 2002; Wilmking et al. 
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2004), changes in growing season length associated with variation in the seasonality of 

precipitation (Vaganov et al. 1999), differing responses to daily maximum and nightly minimum 

temperatures amplified by diverging temporal trends in these parameters (Wilson & Luckman 

2003; Way & Oren 2010), and anthropogenic pollution-related effects on atmospheric ozone and 

solar insolation (D'Arrigo et al. 2008). Loehle (2009) argued that observations of a divergence 

from expected growth reflects inherently non-linear RG responses to climate. Temperature 

thresholds for divergent growth responses identified in some dendroclimatic studies (D’Arrigo et 

al. 2004; Wilmking et al. 2004) support this hypothesis. Recent studies using spatially explicit, 

individual-based modeling approaches have described unimodal or asymptotic RG responses to 

climate for a range of species (Kunstler et al. 2011; Coomes et al. 2014; Canham & Murphy 

2016; Buechling et al. 2017). Those analyses used multivariate techniques to estimate RG 

responses to temperature while explicitly quantifying and controlling for the interacting effects 

of precipitation and competition; however, those studies also parameterized growth functions 

with data distributed across broad climatic gradients. Dendroclimatic studies, in contrast, are 

generally based on samples collected at subjectively selected, thermally extreme environments, 

such as high-elevation treeline, where temperature is assumed to be most limiting to growth 

(Hoch & Körner 2003) and where growth responses are hypothesized to be linear in shape (Fritts 

1976). However, if assumptions of linearity are not robust across all or even most treeline sites, 

linear models may generate biased predictions of historical temperature variation by failing to 

capture climate thresholds and other non-linear growth-climate relationships (Loehle 2009). 

 In this study, we used samples of radial growth from multiple high elevation tree species 

to reconstruct past temperature variability for a relatively small area in the southern Rocky 

Mountains of the western United States. Historical temperatures have been estimated previously 
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for northern portions of the Rocky Mountain ecoregion by Kipfmueller (2008) and Luckman and 

Wilson (2005), while a comparable reconstruction for the southern portion of the Rockies has not 

been developed to our knowledge. We used data principally from Picea engelmannii Parry ex 

Engelm. (Engelmann spruce), as previous analyses have shown a high degree of fidelity between 

RG in this species and temperature records (Brown & Shepperd 1995). We supplemented 

archived RG measurements from various locations and from different authors with recent field 

samples in an effort to extend the temporal depth of associated collections and capture modern, 

apparently anomalous warming trends. As the statistical treatment of tree growth data has been 

specifically identified as a potential source of uncertainty in climate reconstructions (Marcott et 

al. 2013), we compared model performance using alternate standardization methods. To test that 

assumptions of linearity are satisfied, we developed individual-based regression models in a 

likelihood framework to explicitly evaluate the shape of RG responses to temperature. We also 

estimated the magnitude of precipitation effects on growth, to confirm that reconstructions are 

robust to any potential modulating and confounding warming-induced drought processes that 

could bias model predictions (Loehle 2009). 

Materials and methods 

Study area 

Selected sites for both field sampling and archived ring width (RW) data were located 

within a relatively constrained region centered on the continental divide in the central to southern 

portions of the Rocky Mountains in the western United States (Fig. 3.1). Sample sites are 

distributed from Almagre Mountain in central Colorado (38.77° N, 104.98° W) to the Medicine 

Bow Range (41.5° N, 106.24° W) in southern Wyoming. All sites are proximate to high 

elevation tree line, ranging in elevation from ~3100 to 3570 m (Table 3.1). Climate is 
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comparatively uniform in terms of temperature, with annual mean temperature varying from ~-

0.8 to 1.7 °C depending on location (Table 3.1). Precipitation is more variable ranging from 

~650 to 1140 mm annually across sites. Radial growth (RG) measurements for 3 tree species 

were analyzed, including Pinus aristata Engelm. (bristlecone pine), Pinus flexilis James (limber 

pine), and Picea engelmannii Parry ex Engelm. (Engelmann spruce). 

Growth data 

Field data collection was restricted to P. engelmannii. We sampled P. engelmannii at 6 

locations with archived RW records and at another 6 locations with no known existing data. 

Archived records for an additional 15 sites for 3 species, P. engelmannii, P. aristata, and P. 

flexilis, were acquired for analysis, but were not resurveyed (Fig. 3.1 & Table 3.1). Resurvey 

sites for P. engelmannii were selected based on accessibility and the quality of the associated 

location information. Archived datasets were obtained from the International Tree Ring Data 

Bank (https://data.noaa.gov/dataset/international-tree-ring-data-bank-itrdb). 

We subjectively selected individual adult P. engelmannii trees from the dominant canopy 

layer for sampling at each target location. Trees with obvious external damage or in areas 

recently exposed to disturbance were excluded. Large diameter trees and individuals occupying 

rocky substrates near treeline were preferentially targeted. We collected 1 to 2 increment cores 

per sample tree at a height of 30 cm above the root crown. We collected additional samples (up 

to 4 cores per tree) if the shape of the stem was strongly asymmetric or if the quality of a sample 

core was uncertain. Cores were extracted as low as possible on the stem to maximize the time 

depth of each RG series for cross-dating purposes and to obtain age estimates as close to the 

germination year as possible.  
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Approximately 350 trees were sampled across 12 sites over two field seasons. Associated 

cores were mounted, sanded until tracheid cells were clearly visible under magnification, and 

visually cross-dated using the entire series length to ensure correct annual dating (Speer 2010). 

We then measured ring widths to a precision of 0.001 mm using a Velmex measuring system. 

The resulting RG series were examined for measurement and dating errors using COFECHA 

(Grissino-Mayer 2001). Multiple measurement series from the same tree were averaged to 

produce a single time series of annual growth. 

After combining field and archived RG datasets, final sample sizes across the study 

region as a whole ranged from 138 trees for P. aristata, 591 trees for P. engelmannii, and 126 

trees for P. flexilis (Table 3.2). Mean samples sizes within individual study sites ranged from 28 

(10-40) for P. aristata, 33 (16-66) for P. engelmannii, and 32 (27-40) for P. flexilis.  

The raw measurements of RG were subsequently transformed into approximately 

stationary time series using two alternate methods; regional curve standardization (RCS; Briffa et 

al. 1992; Esper et al. 2003) and normalized basal area increment (BAI). RCS is a commonly 

used statistical technique in dendroclimatology designed to remove short term trends in RG 

variance attributed to biological factors, including age, size and disturbance effects, while 

simultaneously retaining long term secular trends and spectral properties hypothesized to be 

driven by climate (Briffa et al. 1992). This method involves the computation of growth 

anomalies for each year in each series based on associated ring width deviation from an 

empirically derived biological growth function, which estimates expected growth based on 

individual tree age (Esper et al. 2002). Anomalies from the expected growth function are 

assumed to be caused by climate (Esper et al. 2003). In this study, we fit a rigid spline function 

to all age aligned RG series to estimate the regional growth function. Since we acquired archival 
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RG measurements in this study with unknown pith or origin ages, we assumed that the oldest 

measurement year recorded represents the germination date of the corresponding tree. We 

subsequently scaled actual growth by expected growth to produce a standardized index of RG for 

use in regression analyses. We also computed an alternate index of RG by transforming linear 

ring width measurements into estimates of BAI. Basal area estimates account for size or 

geometric trends inherent in linear measures of RG. We scaled basal area estimates with the 

corresponding mean BAI of each sample to normalize data among trees occupying dissimilar 

environments.  

Climate data 

Unlike in European countries, climate data collection at high elevations (>2400 m) in the 

Rocky Mountain region has been inconsistent over time and reliable continuous climate records 

prior to ~1960 are sparse in our study area (Nolan Doesken, Colorado State Climatologist, 

personal communication). Thus, we used gridded climate data from PRISM (Daly et al. 2008) to 

develop climate variables for response analyses and model fitting. PRISM is a regression model 

that generates spatially continuous estimates of daily temperature and precipitation for the United 

States at high spatial resolution (30 arcsec or ~800 m pixel size). Gridded climate data have been 

used previously to calibrate models of historical climate (e.g. Luckman & Wilson 2005).  

A prior study evaluated the performance of PRISM by comparing gridded model output 

with independent high elevation weather station data collected on an ecological gradient in the 

Fraser Experimental Forest in central Colorado (see details in Buechling et al. 2016), which 

encompasses two of our sample sites (Fool and Lexen). Goodness of fit analyses between 

PRISM and meteorological records revealed high model accuracy despite ubiquitous temperature 

inversions caused by cold air drainage that could potentially bias model predictions. Estimates of 
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mean absolute error ranged from ~0.8 to 2.0 °C depending on season, but were only ~1.0 °C for 

growing season months (Fig. S3.1 in Appendix).  

We extracted PRISM data (30 arc-second or ~800 m resolution) for sample locations 

using a weighted interpolation of adjacent pixel values. Data were aggregated into various 

permutations of seasonal means. Annual periods were defined according to a U.S. Geological 

Survey hydrological year that spans a 12 month period from October 1st of the previous year to 

September 30th of the current year. A regional composite climate series was derived by averaging 

local PRISM climate values across all sample sites. 

Growth - climate relationships 

We investigated the strength, continuity, and shape of relationships between RG and 

climate for each species using correlation analyses and regression models. Pearson correlation 

coefficients were calculated between the standardized RG indices and various permutations of 

seasonal climate to identify an optimum temperature response variable for use in predictive 

models of historical temperature. Moving window correlations were used to evaluate the 

temporal stability of growth-climate relationships. We also explicitly modeled relationships 

between temperature and RG to ensure that assumptions of linearity are valid. Specifically, we 

developed multiple regression models to estimate RG responses to climate based on alternate 

functional forms for the climate covariates, including non-linear functions. These regression 

models were constructed in a likelihood, multiplicative framework with the following covariates: 

 RG = PRG[site] x Size x Age x Temperature x Precipitation [Eqn. 1] 

We used untransformed linear measurements of RG in mm/year for individual trees as the 

response variable. PRG represents potential or expected RG for a hypothetical free-growing tree 

and was estimated uniquely for each sample site. Tree size, age, and climate effects are scalar 
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modifiers that proportionally reduce or increase potential growth. Size, age, and precipitation 

effects were fit with lognormal functions: 

  Effect = exp[ −0.5 × (
ln (

    x    
δ

)

𝜎
)

2

] [Eqn. 2] 

where x corresponds to the fitted value of size, age or precipitation, 𝛿 represents the modal value 

of the effect corresponding to maximum potential growth (PRG) and  describes the breadth of 

the function. Size effects were parameterized with tree diameter (cm) in the year of growth. 

Temperature effects were initially estimated using a Gaussian function:  

 Temperature effect =  exp[ −0.5 × (
(t − temp. a)

temp. b
)

2

] [Eqn. 3] 

where t is observed temperature, and temp.a and temp.b describe the mode and variance of the 

function, respectively. Gaussian functions have flexible shapes that can fit monotonically 

increasing, decreasing, or unimodal data distributions. However, we also tested strictly linear 

forms for the temperature effect: 

 Temperature effect =  𝑡emp. a ∗  t + temp. b  [Eqn. 4] 

In this case, temp.a and temp.b represent the slope and intercept of the function respectively. 

Previous studies have detected evidence for locally differentiated climate responses based 

on physiological acclimation or genetic adaptation among disjunct populations of the same 

species (Buechling et al. 2017). Thus we tested for evidence of adaptation or acclimation to both 

temperature and precipitation at each study site by modifying climate functions so that a unique 

mode and variance was estimated for each climate variable at each sample site. Differentiated 

climate functions quantify unique, site-specific growth responses to corresponding climate 

regimes that differ across the study region.   
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Temperature reconstruction 

Regression models were developed to predict historical temperatures based on 

relationships with RG. Following traditional methods, we used composite mean chronologies of 

growth as covariates. These mean chronologies were computed by averaging the standardized 

indices of growth for individual sample trees, previously discussed, using a biweight robust 

mean to minimize outliers. We filtered sites used in the composite chronologies by the strength 

of their response or correlation with climate. Specifically, we calculated a threshold correlation, 

based on the mean correlation among all sites between standardized growth indices and local 

site-specific temperature. Only data from sites that exceeded this threshold were used to calculate 

composite mean growth indices. 

We again constructed regression models using likelihood methods. Alternate models 

were tested based on different permutations of model covariates and standardized RG indices. A 

single composite regional chronology and associated covariate were calculated by averaging data 

from all species and sites, after screening for threshold responses to temperature. We also 

investigated the importance of locally differentiated growth processes. We used hierarchical 

cluster analyses with a complete linkage algorithm to classify and group populations with 

congruent RG responses to climate. A total of 3 distinct clusters were identified. Growth indices 

from clustered populations were averaged into distinct composite chronologies and used to 

parameterize independent model covariates. For comparative purposes, we also conducted 

principle component analyses (PCA) to quantify independent, low dimensional, uncorrelated 

predictors representing site-specific divergent RG responses. We used the first 3 principle 

component scores (PCs) from a PCA of normalized BAI, which captured over 90% of the 

variance in the original RG series, as covariates in an alternative repression model.  



 87 

Thus, full multiplicative models with a seasonal temperature response (T in °C) had the 

following form:  

 T = POT x   ∏ (RG0 + RG1)𝑖
 𝑛
 𝑖=1  [Eqn. 5] 

where POT is a potential response term (°C), RG0 and RG1 are standardized indices of growth 

for the ith cluster (or PC) for the year concurrent with the temperature prediction and one year 

lagged forward respectively, and n represents the total number of population clusters (or PCs) 

used in the model. In the case where n=1, a single composite regional mean RG index was 

computed from all screened sites. Lagged parameters were tested based on an assumption that 

prior year climate may influence current year growth (Fritts 1976). Each RG term was estimated 

using a linear function, as in Eqn. 4.  

Model specification 

We used simulated annealing with 20,000 iterations to solve for maximum likelihood 

estimates of all model parameters (Goffe et al. 1994). Bias, proportion of variance explained 

(R2), and root mean square error (RMSE) were used to quantify the goodness of fit of alternate 

likelihood models. Bias was quantified from the slope of the linear regression of observed versus 

predicted temperature. Akaike information criterion corrected for small sample size (AICC) was 

used to select the most parsimonious models (Burnham & Anderson 2002).  

All analyses were conducted in R (Version 3.2.3; R Core Team 2013). Correlation 

analyses were conducted using the package treeclim version 2.0.0. RG standardization and mean 

chronologies were built using the package dplR version 1.6.4. PCA was performed using the 

function prcomp in the stats package version 3.3.2. Likelihood models were constructed using 

the likelihood package version 1.6. 
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Results and Discussion 

Evidence for non-stationary or diverging relationships between RG and temperature, 

driven by co-varying factors or non-linear growth responses, was not strong in these datasets. 

Results from individual based models, for example, indicate that RG responses to temperature 

are linear in shape for treeline populations in this region. Specifically, the most parsimonious 

growth models for all species were based on linear temperature functions (Fig. 3.2 & Fig. S3.2; 

Table 3.3). Models using flexible Gaussian functions were consistently less robust in terms of 

AICc. Further, results from a moving 30-year correlation analysis with local site temperatures 

did not reveal an unequivocal reduction in correlation between RG and rising temperatures in 

recent decades (Fig. S3.3), which when present may reflect non-stationary processes (D'Arrigo et 

al. 2008). Rather, correlations vary substantially throughout the 20th century, the period of 

modern instrumental records, and are not synchronized between sites. We argue that these 

patterns reflect the presence of substantial non-climatic noise in the growth data for these species 

as well as a relatively limited temporal depth and insufficient sample sizes to explicitly explain 

these relationships. Furthermore, potentially non-stationary biases in the PRISM data (Fig. S3.1) 

may also influence the temporal stability of correlations (Wilson et al. 2007).  

The multiplicative framework of our models allowed relationships between RG and 

temperature to be quantified while controlling for precipitation variability (Fig. S3.2). The most 

parsimonious models for all species estimated both temperature and precipitation effects, 

indicating that these species are sensitive to both factors (Table 3.3). Models based on 

temperature alone were consistently weaker than more complex models incorporating multiple 

climate parameters (Table 3.3). The shape of the precipitation effect was essentially flat for P. 

engelmannii, Gaussian for P. aristata, and approximately linear and moderately positive for P. 
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flexilis (Fig. 3.2 & S3.2). Correlations analyses generally support these model estimates, 

indicating weak relationships between RG and both annual and growing season precipitation for 

both P. engelmannii and P. aristata (r < 0.1; Fig. S3.4) and slightly stronger correlations for P. 

flexilis (r ~ 0.2). Moderate evidence for a substantive influence of precipitation on RG for these 

populations, despite their upper treeline location, indicates that moisture effects have the 

potential to bias reconstruction models of historical temperature (Loehle 2009). Drought effects 

may be important (Wilmking et al. 2004), but high annual precipitation also has the potential to 

effect growth rates in P. aristata and P. flexilis and for some populations of P. engelmannii (Fig. 

S3.2). To maximize the fidelity of RG responses to temperature and minimize prediction bias 

associated with the confounding effects of moisture availability, all PIFL populations were 

excluded from model calibration analyses due to relatively high correlations (> overall mean for 

all species) with annual precipitation. 

Scientific and policy debates concerning global climate change have generally been 

framed in terms of trends in mean annual temperature. Similarly, general circulation models 

simulate long-term trends in climate. However, various permutations of growing season 

temperature provided stronger correlations with RG than annual climate composites in these 

datasets (Fig. S3.5), despite high mean correlations between annual and seasonal temperature 

(r~0.81). In some cases, individual monthly temperatures were more strongly correlated with RG 

than seasonal means (Fig. S3.5), but monthly variables are less representative of annual 

conditions, and aggregated growing season or annual temperatures have been more commonly 

used in previous climate reconstructions (e.g. Ljungqvist 2010; Wilson et al. 2016). We ran 

preliminary calibration models with a July temperature response, but model performance in 

terms of AICc and R2 was weaker than comparable seasonal based models (data not shown). We 
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therefore used June to August mean temperature as the target response variable in temperature 

models, and hence assume that any decoupling of annual and seasonal climate trends over time is 

minor. 

Various statistical measures were calculated to evaluate and compare the strength of 

alternate reconstruction models (Table 3.4). Model performance in this study is partly 

constrained by limitations in the temporal length of available calibration data. Gridded PRISM 

datasets span years from 1895 to 2010, but data available for model fitting are further reduced 

and limited to the maximum period of overlap between the component covariates in a given 

model. Unequal calibration sample sizes precludes a direct comparison of all models based on 

parsimony alone, as quantified by AICc. AICc values do indicate that reconstruction models that 

included both current and forward lagged standardized RG terms (2 year models) were 

consistently stronger than models that parametrized either concurrent or lagged RG covariates 

only (Table 3.4). AICc values further suggest that the two standardization methods used in this 

study, RCS and normalized BAI produce models with similar levels of parsimony.  

Evidence for differentiated growth responses to temperature among disjunct populations 

of P. engelmannii was identified by likelihood analyses (Fig. S3.2; Table 3.3). In support of 

these results, hierarchical cluster analyses revealed two distinct groups or clusters of P. 

engelmannii populations based on their unique, divergent growth responses to climate (Fig. 

S3.6). Thus, models that incorporated discrete covariates representing these site specific growth 

responses (cluster models) generated predictions with greater fidelity to the calibration data 

(higher R2 and lower RMSE) compared with models that averaged growth indices from all 

populations into single composite covariates (regional models; see Table 3.4). Further, composite 

regional models generated unbiased, but significantly autocorrelated residuals, suggesting that 



 91 

associated reconstructions did not capture long term trends in temperature variability (Wilson et 

al. 2016). In particular, the smoothed reconstruction from the regional model based on RCS 

exhibits an essentially flat long term trend (Fig. 3.3B). We argue that the process of merging 

diverging growth responses from different species and differentiated populations into composite 

covariates dampens predicted long term trends and variability in the associated reconstructions.  

Model parsimony and fit statistics indicate that the most robust reconstructions were 

generated by models with three cluster terms (Table 3.4). RMSE for these models was limited to 

~0.6°C, which is less than the standard deviation of the PRISM calibration data (~0.91°C). 

Further, corresponding model residuals were unbiased, normally distributed, and random. The fit 

of the PC model was marginally less robust compared with cluster models, which may be a 

reflection of a more constrained data fitting range (Table 3.4). Cluster reconstructions based on 

RCS and BAI were indistinguishable based on uncertainty statistics. Associated predictions for 

the calibration period were also similar (Fig. 3.4), though models based on BAI more closely 

approximate temperature trends evident in the most recent two decades of the study period (Fig. 

3.3 & 3.4). However, between ~1500 and ~1800, the RCS based model generated substantially 

warmer temperatures compared with other models. Prior to 1495, both the RCS and BAI models 

rely on data from P. aristata only and associated reconstructions converge over this interval. We 

suggest that sample sizes and age distributions within individual clusters may be insufficient for 

estimating and fitting robust regional curves for standardization purposes (Esper et al. 2016), 

leading to biased model results. Thus, all subsequent summaries and discussion are based on 

results from the three cluster BAI model. 

Reconstructed temperatures for this study area exhibit substantial variability over decadal 

time scales (Table 3.5), but also track longer term trends consistent with previous reconstructions 
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(Fig. 3.5). In particular, the pre-industrial era is characterized by a prolonged period of elevated 

temperatures in the early portions of the record, commonly denoted as a Medieval Warm Period 

(MWP; e.g. Crowley & Lowery 2000), followed by an interval of cooler mean conditions, 

generally referred to as the Little Ice Age (LIA; e.g. Free & Robock 1999). The precise timing of 

these periods in the northern hemisphere has been variously defined, depending on proxy source 

and reconstruction method (Wilson et al. 2016), with substantial spatial and geographical 

variation within local records (Christiansen & Ljungqvist 2012; Trouet et al. 2013). In general, 

warmer conditions associated with the MWP have been found to range from between ~900 and 

1300 AD across the northern hemisphere, while subsequent cooler conditions associated with the 

LIA persist in most reconstructed records until ~1850 or 1900 AD (Ljungqvist 2010). In northern 

Colorado, climate appears to have shifted from a warmer to colder state late in the 12 century 

(Fig. 3.5), which approximately agrees with other regional records from northern portions of the 

Rocky Mountains (Luckman & Wilson 2005) and from the Colorado Plateau (Salzer & 

Kipfmueller 2005), as well as with recent hemispheric scale reconstructions (Christiansen & 

Ljungqvist 2012; Wilson et al. 2016). Thus, four of the five warmest climate normals (30-year 

averages) in this record occurred prior to the end of the 12th century, while the five coldest 

normals occurred subsequently (Table 3.6). Interestingly, the second coldest 30-year period, 

1666-1695, coincides with occurrences of some of the most extensive forest fires documented for 

this region (Kipfmueller & Baker 2000; Buechling & Baker 2004; Sibold et al. 2006), although 

these large fire events are superimposed on a longer term trend of reduced biomass burning 

during the Little Ice Age period (Marlon et al. 2012; Higuera et al. 2014). Cool climate 

conditions associated with the LIA return to a warmer state in Northern Colorado beginning in 

the late 1700s (Fig. 3.5). The second warmest climate normal of the pre-industrial period is 
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estimated to have occurred between 1776 and 1815 (Table 3.6). The end of LIA conditions in 

this record predate corresponding warming trends identified in other reconstructions (Fig. 3.5), 

but are congruent with rising solar insolation between 1750 and 1850 (Eddy 1977; Fig. 3.6).   

Despite a high degree of congruence among studies concerning the general temporal 

extent of warm and cold intervals in the historical record, the amplitude of climatic variability 

associated with these periods remains uncertain (Crowley & Lowery 2000; Jones et al. 2009; 

Frank et al. 2010; Ljungqvist 2010). In this study, historical climate conditions in northern 

Colorado were characterized by substantial decadal scale variability (Table 3.5). Model results 

reveal a maximum temperature amplitude of ~0.45°C between the warmest and coldest 30-year 

intervals prior to the period of modern industrialization. Based on a 100-year moving window 

analysis, the maximum difference between the warmest and coldest century was ~0.42°C. These 

results are comparable to but somewhat lower than previous amplitude estimates derived from 

networks of proxy datasets covering the northern hemisphere (Mann et al. 2008; Ljungquist 

2010; Wilson et al. 2016), which approach ~1.0°C on a decadal scale. Although, the overall 

record of modeled temperatures for northern Colorado correlates moderately well with selected 

hemispheric scale reconstructions (Fig. 3.5), particular intervals within both the MWP and LIA 

were estimated to be less extreme in this analysis. For example, the decade centered on the year 

1700 was estimated to be substantially colder in the hemispheric reconstructions of Wilson et al. 

(2016) and Christiansen & Ljungqvist (2012), as well as in the regional model for British 

Columbia from Luckman and Wilson (2005). Although, differences between reconstructions 

may reflect local climatic variability, methodological limitations may also contribute to biased 

temperature estimates in this study. Limited samples sizes for recent years and across extreme 

temperature gradients may have constrained our ability to detect non-linear relationships 
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between RG and temperature that could potentially dampen variance estimates associated with 

extrapolated data (Loehle 2009). Additionally, a nominal warm bias in the PRISM data (Fig. 

S3.1) could affect model calibration and associated temperature estimates, particularly with 

respect to the degree of cooling during the LIA. Instrumental data uncertainty has previously 

been identified as a potential source of prediction error (Esper et al. 2016). A positive bias in the 

fitting data could also explain a more pronounced warming trend estimated for the mid to late 

19th century in this record compared with other reconstructions (Fig. 3.5). Alternately, local or 

regional model results may reflect associated climatic variability not discernable in large-scale 

hemispheric studies, which, by combining proxy datasets from multiple sources effectively 

smooth local-scale variability (Ljungqvist 2010; Wilson et al. 2016).  

Predicted mean temperatures for northern Colorado during the modern era exceed 

historical pre-industrial temperature means over the entire length of this reconstruction record 

based on a decadal-scale temporal resolution (Fig. 3.3; Table 3.5). Maximum reconstructed 

temperatures for the most recent decades in this study agree closely with predicted mean 

temperatures for the northern hemisphere from Wilson et al. (2016; Fig. 3.5), but do under-

estimate corresponding values in the PRISM record (Fig. 3.4). We argue that limited calibration 

data coverage for the most recent period beginning ~1995 (Fig. 3.3C), when temperatures in 

Colorado began increasing substantially (Rangwala & Miller 2012), constrain the ability of this 

model to reproduce extreme events. Large estimated support intervals (Fig. 3.3A) for this period 

are similarly driven by comparatively small sample sizes. Limited sample replication has been 

previously identified as a major impediment to prediction performance (Wilson et al. 2016). 

Climate trends associated with the LIA and MWP correlate only moderately strongly 

with various forcing mechanisms in this study (Fig. 3.6). For example, Pearson correlations 
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between atmospheric CO2 and temperature, when smoothed with a 50 year spline and lagged by 

50 years, were ~0.31. Pearson correlations between spline transformed temperature and solar 

irradiance series were ~0.43. Previous studies using superposed epoch analyses have identified 

significant relationships between volcanic activity and depressed temperatures (Lough & Fritts 

1987; Kipfmueller 2006). However, robust analyses investigating the influence of external 

forcing mechanisms on climate variability require the use of coupled atmosphere-ocean general 

circulation models (GCMs). For example, GCM simulations have determined that temperature 

trends during the LIA were significantly shaped by variations in solar output and volcanic 

aerosols, as well as changes in atmospheric greenhouse gas concentrations (Free & Robock 

1999; Schurer et al. 2013). Further efforts to refine historical reconstructions of temperature are 

required to more precisely quantify these forcings and thus better forecast future climate 

responses to anthropogenic CO2 emissions. 
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Tables 

 

Table 3.1. Site attributes associated records of radial growth used in temperature reconstructions, including mean elevation (Elev), 

mean aspect (Asp), 30-year (1980-2010) annual temperature (Temp) and precipitation (Prec) means (based on PRISM), and latitude 

(Lat) and longitude (Long) coordinates. A total of six archived ring width datasets were updated with additional samples collected in 

2011 and 2014. Six new sites were sampled in 2014. References are provided for archived datasets. Sites arranged by species and from 

low to high elevation within species. Species include Pinus aristata (PIAR), Picea engelmannii (PIEN), and Pinus flexilis (PIFL). 

 

Site Species 
Elev 

(m) 

Asp 

(o) 

Temp 

(oC) 

Prec 

(mm) 

Lat 

(oN) 

Long 

(oW) 
Reference 

Almagre L PIAR 3535 NA 0.99 657 38.77 104.97 LaMarche & Harlan 1968a 

Evans PIAR 3535 NA 0.26 729 39.63 105.58 LaMarche & Harlan 1968b 

Goliath PIAR 3535 NA 0.26 728 39.63 105.58 Graybill 1983b 

Almagre G PIAR 3536 NA 0.75 666 38.77 104.98 Graybill 1983a 

Windy PIAR 3570 NA 0.04 759 39.32 106.08 Graybill 1985 
3 Rocky PIEN 3099 302 0.50 922 41.472 106.24  

Cameron PIEN 3100 NA 0.58 925 40.55 105.83 Bigler & Veblen 2003 

Medicine PIEN 3150 NA 0.64 1144 41.381 106.337 Briffa & Schweingruber 1983a 
1 Sand PIEN 3170 360 -0.20 1052 41.451 106.273 Brown et al. 1999 

3 Brooklyn PIEN 3218 80 -0.05 950 41.37 106.234  

1 Jeff Lake PIEN 3296 300 -0.79 1110 41.399 106.279 Earle 1990 
1 Rainbow PIEN 3320 160 0.53 998 40.024 105.589 Kienast 1982 

1 Lexen PIEN 3370 358 1.06 683 39.89 105.935 Brown & Shepperd 1995 

Niwot Ridge PIEN 3400 NA 1.67 878 40.05 105.55 Schweingruber 1982 
3 Crags PIEN 3411 264 -0.05 663 38.868 105.094  

Milner Pass PIEN 3413 NA -0.47 973 40.42 105.8 Graybill 1987b 
3 Vasquez PIEN 3431 315 0.02 838 39.815 105.838  

3 Berthoud PIEN 3460 240 -0.51 996 39.795 105.776  

2 Fool PIEN 3474 300 1.10 704 39.863 105.862 Brown & Shepperd 1995 

Timberline PIEN 3505 NA 0.82 915 40.37 105.67 Graybill 1987e 
3 Goliath PIEN 3566 100 0.28 744 39.641 105.593  

Pike PIEN 3600 NA -0.11 694 38.876 105.068 Briffa & Schweingruber 1983b 
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Site Species 
Elev 

(m) 

Asp 

(o) 

Temp 

(oC) 

Prec 

(mm) 

Lat 

(oN) 

Long 

(oW) 
Reference 

1 Brainard PIEN 3700 340 0.52 997 40.07 105.578 Hansen-Bristow 1979 

Island PIFL 3200 NA 0.76 976 40.03 105.58 Woodhouse 1989 

Frosty PIFL 3218 NA 0.99 657 38.77 104.97 Graybill 1987a 

Niwot Ridge PIFL 3400 NA 1.67 878 40.05 105.55 Graybill 1987c 

Rainbow PIFL 3352 NA 1.38 855 40.4 105.67 Graybill 1987d 
1 Updated in 2014 
2 Updated in 2011 
3 New site sampled in 2014 
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Table 3.2. Mean site statistics for annual linear measurements of radial growth (RG) including mean Spearman correlation between 

trees (R), mean Spearman correlation with a composite chronology (Rho), first order autocorrelation coefficient (AR1), expressed 

population signal (EPS), and the oldest year with an EPS > 0.85 (EPS85). 

 

Site Species 
Period 

(years) 
1 N 

RG 

mean 

(mm) 

RG 

SD 

Series 

length 

(years) 

2 R 3 Rho AR1 4 EPS EPS85 

Almagre G PIAR 560-1983 40 0.41 0.17 576 0.35 0.56 0.80 0.86 1084 

Almagre L PIAR 1-1968 28 0.43 0.18 444 0.42 0.60 0.79 0.79 1119 

Evans PIAR 977-1968 10 0.50 0.18 464 0.60 0.52 0.73 0.63 1369 

Goliath PIAR 525-1983 31 0.35 0.16 634 0.39 0.56 0.80 0.81 1084 

Windy PIAR 1050-1985 29 0.46 0.19 491 0.33 0.56 0.79 0.82 1386 

Berthoud PIEN 1350-2013 30 0.82 0.32 365 0.41 0.65 0.86 0.93 1714 

Brainard PIEN 1137-2013 45 0.66 0.28 344 0.26 0.53 0.83 0.85 1664 

Brooklyn PIEN 1528-2008 20 0.72 0.36 342 0.36 0.64 0.82 0.74 1809 

Cameron PIEN 1552-2003 16 0.04 0.02 399 NA 0.51 0.86 0.74 NA 

Crags PIEN 1547-2013 24 0.67 0.28 330 0.32 0.64 0.83 0.86 1664 

Fool PIEN 1224-2010 57 0.64 0.25 349 0.36 0.60 0.82 0.91 1261 

Goliath PIEN 1574-2013 17 0.88 0.34 248 0.29 0.64 0.83 0.75 1814 

Jeff Lake PIEN 1421-2013 66 0.85 0.38 310 0.28 0.63 0.82 0.91 1614 

Lexen PIEN 1395-2013 54 0.63 0.26 404 0.28 0.59 0.81 0.90 1464 

Medicine Bow PIEN 1401-1983 27 1.01 0.39 276 0.45 0.64 0.82 0.92 1434 

Milner PIEN 1668-1988 23 0.79 0.33 277 0.36 0.61 0.85 0.94 1688 

Niwot PIEN 1694-1982 22 0.52 0.19 213 0.46 0.62 0.73 0.92 1733 

Pike PIEN 1530-1983 24 0.52 0.22 301 0.41 0.66 0.80 0.88 1584 
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Site Species 
Period 

(years) 
1 N 

RG 

mean 

(mm) 

RG 

SD 

Series 

length 

(years) 

2 R 3 Rho AR1 4 EPS EPS85 

Rainbow PIEN 1575-2013 19 0.69 0.34 272 0.28 0.55 0.83 0.81 1814 

Rocky PIEN 1465-2013 41 0.37 0.18 458 0.32 0.63 0.85 0.92 1514 

Sand PIEN 1197-2013 59 0.87 0.39 347 0.39 0.64 0.80 0.94 1364 

Timberline PIEN 1503-1987 23 0.48 0.21 316 0.42 0.62 0.81 0.81 1538 

Vasquez PIEN 1510-2013 24 0.71 0.33 383 0.42 0.58 0.86 0.91 1514 

Frosty PIFL 1313-1987 29 0.29 0.15 546 0.42 0.66 0.78 0.94 1338 

Island PIFL 1169-1989 40 0.36 0.21 502 0.37 0.56 0.84 0.93 1340 

Niwot PIFL 1322-1987 27 0.47 0.21 338 0.32 0.55 0.84 0.79 1588 

Rainbow PIFL 1063-1987 30 0.41 0.18 358 0.37 0.54 0.81 0.79 1288 

1 Number of sample trees 
2 Mean Spearman correlation based on a 100 year running window 
3 Mean Spearman correlation between each time series and a composite chronology built from all the other series (leave-one-out 

principle) 
4 EPS = n * R / ((n - 1) * R+ 1) where n = average number of trees for each year 
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Table 3.3. Model comparison statistics including ∆ AICc (model AICc – best model AICc) and 

R2 (in brackets) for models predicting RG for the full period (1895-2012) across all sites. The 

modeling framework is hierarchical and evaluates the relative effects of size, age, site, and 

climate. Temperature models estimated concurrent year temperature effects only. Climate 

models estimated the effects of concurrent years’ temperature and precipitation on growth (1 

year model), as well as the additive effects of concurrent and prior years’ temperature and 

precipitation on RG (2 year model). All temperature effects were fit with both Gaussian (Gau T) 

and linear (lin T) functions. All climate models include size, age and site effects. Climate models 

were further modified to test for the importance of locally differentiated (LD) growth responses 

to temperature (T) and to both temperature and precipitation (T & P) based on linear T functions. 

The strongest models (∆ AICc = 0) are indicated with bolded delta text. 

 

Model P. aristata P. engelmannii P. flexilis 

Size 3086.5 (0.00) 42516.9 (0.07) 4306.9 (0.03) 

Age 2516.5 (0.03) 29597.8 (0.21) 1913.7 (0.17) 

Size Age Site 686.4 (0.21) 1934.1 (0.41) 72.7 (0.33) 

Temperature (lin) 671.5 (0.22) 1648.7 (0.41) 38.22 (0.33) 

Climate (1 year; Gau T) 652.8 (0.22) 1587.1 (0.42) 17.7 (0.33) 

Climate (1 year; lin T) 607.4 (0.22) 1373.7 (0.42) 6.6 (0.33) 

Climate (2 year; Gau T) 580.3 (0.22) 1025.4 (0.42) 24.2 (0.33) 

Climate (2 year; lin T) 0 (0.28) 253.2 (0.42) 0 (0.34) 

LD Climate (T) 20.2 (0.28) 207.6 (0.42) 21.3 (0.34) 

LD Climate (T & P) 99.2 (0.28) 0 (0.42) 33.9 (0.34) 

1 NP 19 168 18 

2 N 7649 58241 8937 

3 Bias 1.005 1.004 1.006 

1 NP = number of parameters in best model 
2 N = sample size (number of target trees * number of years) 
3 Bias = slope of observed versus predicted RG for best model 
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Table 3.4. Model comparison statistics including AICc and variance explained in the calibration 

data (R2) for alternate regression models predicting growing season mean temperature (June-

August). Alternate explanatory variables are based on different permutations of clustered 

populations and standardized RG indices (BAI and RW). Sample size (N) indicates the number 

of years of growth data used to calibrate a model and is constrained by the maximum period of 

overlap of component growth series. Population clusters were derived from hierarchical cluster 

analyses of site-specific growth indices and were used in a multiplicative framework to predict 

temperature. Three clusters were identified: two clusters were comprised of distinct P. 

engelmannii (PIEN) populations and a third cluster was comprised of P. aristata (PIAR) only. 

The two-cluster models excluded P. aristata populations. The one-cluster or regional models 

averaged RG from all screened populations from both species into a single composite covariate. 

The principle component (PC) model integrated scores from the first 3 variables of a PCA of 

BAI as independent covariates. Two-year models integrated both concurrent and lagged years 

RG, while one-year models used concurrent year RG only (see Eqn 5). 

  

Variable 
Cluster Model 

 

Regional Model 

 

PC 

Model 

 

 4 BAI 5 RW BAI BAI BAI RW 6 PC 

No 

clusters/ 

PCs 

3 3 2 2 1 1 3 

Species 
PIEN / 

PIAR 

PIEN 

/PIAR 
PIEN PIEN 

PIAR / 

PIEN 

PIAR / 

PIEN 

PIEN / 

PIAR 

Years 2 2 2 1 2 2 2 

AICc 176.6 176.7 263.8 270.2 260.6 261.9 161.2 

R2 0.33 0.33 0.26 0.15 0.22 0.21 0.30 

RMSE 0.57 0.57 0.68 0.73 0.70 0.71 0.62 

N (years) 87 87 117 117 117 117 71 

1 Bias 1.000 1.000 1.000 1.001 1.000 1.000 0.998 

2 NP 12 12 10 6 6 6 12 
3 Box-

Ljung 
p > 0.05 p > 0.05 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p > 0.05 

1 Bias = slope of observed versus predicted RG 
2 NP = number of model parameters 
3 Ljung-Box (portmanteau) test for independence of residuals (Null hypothesis test of 

independence) 
4 Normalized basal area increment (mm2)  
5 Linear ring width (mm) standardized by the RCS method  
6 Principle component scores from a PCA of normalized BAI  
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Table 3.5. Comparison of pre-industrial (921-1850) and modern (1851-2010) estimated 

temperature variability. Bracketed values are standard deviations (z scores) from 1400-1850 

mean conditions. Amplitude of temperature variability is calculated as the difference between the 

maximum and minimum estimated temperatures for a given period (Ljungqvist 2010).  

 

Variable Annual 

 

30-Year Normal 

 

Pre-industrial Modern Pre-industrial Modern 

Mean 9.15 (0.22) 9.82 (3.31) 9.16 (0.35) 9.82 (6.09) 

SD 0.26 0.40 0.16 0.11 

Maximum 10.67 (7.23) 10.85 (8.07) 9.68 (4.89) 10.01 (7.71) 

Minimum 8.38 (-3.35) 8.96 (-0.66) 8.91 (-1.84) 9.55 (3.72) 

Amplitude 2.28 1.89 0.78 0.46 
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Table 3.6. Warmest and coldest non-overlapping 30-year periods (normals) in the pre-industrial era (921-1850). Anomalies are 

calculated as standard deviations (z scores) relative to both a 1400-1850 reference period and the most recent 30 years in the 

reconstruction (1981-2010). 

 

Warm Periods 

 

 Cold Periods 

 
Period Mean  

T (°C) 

Anomaly 

(1400-

1850) 

Anomaly 

(1981-

2010) 

 Period Mean T 

(°C) 

Anomaly 

(1400-

1850) 

Anomaly 

(1981-

2010) 

1096-1125 9.40 2.16 -1.40  1336-1365 8.95 -1.37 -2.50 

1786-1815 9.38 1.99 -1.45  1666-1695 8.98 -1.20 -2.45 

946-975 9.37 1.97 -1.49  1306-1335 8.98 -1.16 -2.43 

1156-1185 9.28 1.87 -1.71  1456-1485 8.98 -1.13 -2.43 

1036-1065 9.27 1.16 -1.73  1486-1515 8.99 -1.11 -2.42 
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Figures 

 

Figure 3.1. Distribution of sample sites in northern Colorado and southern Wyoming. Panel A 

shows the geographical distribution of sample locations against a background Digital Elevation 

Model. N values designate sample sizes (sites) for each species. Panel B shows the relative 

location of the study area within the United States. Panel C shows the distribution of sample sites 

across gradients of annual temperature and precipitation (30 year annual means).  
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Figure 3.2. Growth responses (mm/year) by species for an average aged 30 cm diameter tree to 

concurrent and prior year mean summer temperature and total summer precipitation. Responses 

are based on parameters from the best fitting full models of growth and are averaged across sites. 

For the temperature panels, precipitation is held constant at the overall mean level for a species. 

Temperature is held constant in the precipitation panels. Competition is also held constant at the 

mean level for a species. The climate breadth of each response curve represents the observed 

climate range of each species. Species acronyms are defined in Table 3.1.  
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Figure 3.3. Reconstructed mean growing season temperature from alternate regression models. 

All models have been smoothed with a 20 year spline. Panel A shows temperatures from a 

cluster model based on normalized BAI with 3 species groups (Clust BAI model). Reconstructed 

temperatures prior to 1495 are derived from an independent model based 

based exclusively on RG indices from P. aristata. Shading represents predicted temperature 

uncertainty, based on two unit support intervals which are approximately analogous to 95% 

confidence limits. Panel B shows predicted temperature deviations from the 1400-1850 mean for 

5 alternate models, including the 3-cluster model from panel A, a 3-cluster model based on ring 

widths standardized with a regional curve (Clust RCS), a model using the first 3 terms from a 

PCA of normalized BAI, a composite regional chronology based on normalized BAI (Reg BAI), 

and a composite regional chronology based on RCS. Panel C indicates corresponding sample 

sizes in terms of individual trees. Reconstructions were subset to a minimum of 10 trees.  
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Figure 3.4. Observed and predicted temperatures (°C) for the calibration period (1895-2010). 

Temperature series have been relativized to the 1895-2010 mean temperature. Panel A: 

Predictions from a 3 cluster model (3 species groups) in which radial growth was transformed 

into an index of normalized BAI. Panel B: Temperature estimates from an equivalent 3 cluster 

model based on a linear index of radial growth standardized using the RCS method.   
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Figure 3.5. Covariation between the current reconstruction for Northern Colorado and selected 

previous reconstructions of mean temperatures at both hemispheric (A & B) and regional scales 

(C & D). All reconstructions were scaled to the mean and variance of the PRISM data for the 

period 1895-2010, smoothed with a 20-year spline function, and normalized relative to a 1400-

1850 reference mean. We quantified differences between reconstructions with Pearson 

-0.5

0.0

0.5

1.0

-0.5

0.0

0.5

1.0
(A) Wilson et al. 2016 NH Summer Temp Correlation = 0.47

RMSE = 0.18 °C
1
0
0

0

1
1
0

0

1
2
0

0

1
3
0

0

1
4
0

0

1
5
0

0

1
6
0

0

1
7
0

0

1
8
0

0

1
9
0

0

2
0
0

0

-0.5

0.0

0.5

1.0

-0.5

0.0

0.5

1.0
(B) Christiansen & Ljungqvist 2012 NH Annual Temp Correlation = 0.51

RMSE = 0.19 °C

-0.5

0.0

0.5

1.0

-0.5

0.0

0.5

1.0
(C) Luckman & Wilson 2005 British Columbia Summer Max Temp Correlation = 0.38

RMSE = 0.17 °C

-0.5

0.0

0.5

1.0

-0.5

0.0

0.5

1.0
(D) Salzer & Kipfmueler 2005 Colorado Plateau Summer Temp Correlation = 0.45

RMSE = 0.2 °C

1
0

0
0

1
1

0
0

1
2

0
0

1
3

0
0

1
4

0
0

1
5

0
0

1
6

0
0

1
7

0
0

1
8

0
0

1
9

0
0

2
0

0
0

Year AD

T
e
m

p
e

ra
tu

re
 D

e
v
ia

ti
o
n
 (
°C

)
North Colorado Previous Reconstructions



 109 

correlation coefficients and RMSE. The target response variable varies between some studies: 

Christiansen & Ljungqvist (2012) estimated annual mean temperature for the Northern 

Hemisphere (NH), while Luckman & Wilson (2005) estimated maximum summer temperatures. 

The two warmest and coldest 30-year periods in this study are shaded red and blue, respectively. 

 

 

Figure 3.6. Reconstructed temperatures for northern Colorado and selected radiative forcing 

factors, including sulphate aerosols from volcanism, total solar irradiance in the upper 

atmosphere, and atmospheric carbon dioxide concentrations. Temperatures are relativized with 

respect to mean temperature for the pre-industrial period (1400-1850) and smoothed with a 20-

year spline function. Estimated annual temperatures are represented by gray vertical lines in the 

upper panel. Aerosol optical depth (AOD) is a normalized measure of the scatter and absorption 

of solar radiation by volcanic sulphate aerosols in the stratosphere (data from Crowley & 

Unterman 2013). Years of extreme aerosol loading (AOD > 2.5) are identified with blue points 

and follow known major volcanic events (e.g. Tambora in 1815). Total solar irradiance (TSI in 

W/m2) is reconstructed from cosmogenic radionuclide (10Be) measurements derived from ice 

cores (data from Steinhilber et al. 2009). TSI is represented by a 40-year running mean 

relativized to the solar minimum of 1986. Gray shading delimits intervals of low solar irradiance 

in the historical record (Eddy 1977). Atmospheric carbon dioxide concentrations (ppmv: parts 

per million by volume) were reconstructed from ice cores and smoothed with a 50-year spline 

(data from Frank et al. 2010).     
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APPENDIX 

 

 

Appendix S1.1: Comparison of PRISM and TopoWx Gridded Temperature Datasets 

We used instrumental climate records obtained from long term meteorological stations at 

Fraser to evaluate the performance of two existing gridded temperature datasets, PRISM (Daly et 

al. 2008) and TopoWx (Oyler et al. 2014). Both datasets provide continuous estimates of daily 

maximum (Tmax) and minimum temperature (Tmin) at high spatial resolution (30 arcsec or 800 

m pixel size). PRISM also provides an interpolated precipitation dataset. PRISM and TopoWx 

are both derived from elevation-based regression models trained with standardized and quality 

controlled meteorological observations. TopoWx additionally integrates remotely sensed 

estimates of the radiometric temperature of the ground surface as a covariate (Oyler et al. 2014). 

PRISM weights individual meteorological stations based on terrain features known to cause 

anomalies in the associated climate regime. See Daly et al. (2008) and Oyler et al. (2014) for full 

methods.   

Goodness of fit measures (GOF) were computed to evaluate the degree of agreement 

between aggregated annual and seasonal station data from Fraser and the corresponding 

predicted values from PRISM and TopoWx, including mean absolute error (MAE), percent bias 

(Pbias) and the proportion of variance (R2) explained by the regression model relative to the total 

variability in observations explained by the simple mean of the data (1 – sum of squares error / 

sum of squares total). R2 defined in this way is equivalent to both the Nash-Sutcliffe efficiency 

(NSE; Nash & Sutcliffe 1970) as well as the Reduction of Error (RE) statistic commonly used to 

evaluate tree ring based climate models (Fritts 1976; Cook et al. 1987). The time period of GOF 

analyses spanned years from 1980 to 2008.  
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For use in GOF analyses, we aggregated daily instrumental climate data from five 

stations at Fraser to monthly, seasonal, and annual values after first inspecting records for 

completeness and potential instrumental errors associated with extreme values. Annual 

precipitation sums were computed over a 12-month window from Oct 1st to September 31st, 

defined as a water year. We did not infill missing daily values to maintain independence of 

observations. Adopting criteria used by Daly et al. (2008), we excluded aggregated monthly or 

seasonal variables with less than 85% data completeness. Extreme temperature values that 

exceeded a threshold distance of 5 standard deviations from corresponding means were also 

excluded. Potential temporal trends in climate were examined using linear regression (McGuire 

et al. 2012). Data from the independent climate stations used for testing were highly inter-

correlated with a mean correlation coefficient of 0.98, indicating a strong common climate signal 

and minimal local temperature variation or noise that could bias evaluations of PRISM and 

TopoWx (Pielke et al. 2002). 

GOF measures indicate that PRISM and TopoWx provide generally comparable 

prediction accuracy for temperature variation at climate station locations in Fraser (Fig. S1.2). 

Values of MAE for seasonal Tmin and Tmax range from 0.81 to 2.03 °C for PRISM and from 

0.98 to 1.79 °C for TopoWx. Both models tend to slightly overestimate Tmax and underestimate 

Tmin across seasons. The warm bias for Tmax is largest in winter, and higher for PRISM than 

TopoWx. Model fit is relatively strong for Tmin across seasons for both models, despite 

ubiquitous temperature inversions caused by cold air drainage that could potentially bias climate 

model predictions at high elevations. However, both PRISM and TopoWx fail to capture an 

extreme multi-year increase in summer Tmin that occurred between 2001 and 2003 (Fig. S1.3), 

corresponding to a period of extreme drought, high temperatures, and low snowpack across 
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Colorado (Pielke et al. 2005). Model fit to seasonal Tmax is relatively poor for PRISM, with 

values of R2 ranging from -0.46 to 0.07. Negative R2 values indicate that model predictions 

provide a weaker fit to the observational data than the simple overall mean of the observations. 

GOF measures for TopoWx Tmax are variable with poor fit to fall and winter Tmax, but 

relatively strong model predictions of summer and spring Tmax.  

GOF statistics indicate that PRISM provides relatively accurate predictions of both 

annual and seasonal precipitation sums at Fraser at all elevations. MAE ranged from 16 to 46 

mm and mean R2 across all seasons was 0.5. PRISM tended to underestimate station precipitation 

with a mean negative bias across seasons of ~10%.  

In summary, TopoWx and PRISM provide arguably comparable predictions of Tmin, 

while TopoWx provides slightly more accurate predictions of Tmax. Therefore, we used 

TopoWx temperature data and PRISM precipitation data in all modeling analyses. 

Appendix S2.1: Distribution of field samples 

Our stratified random sampling design captured a broad range of tree sizes, stand 

structures, and climates (Table 2.1 & S2.1). We sampled a total of 777 target trees and processed 

a total of 1923 associated core samples. Individual species sample sizes ranging from 131 to 179 

trees (Fig. S2.1). Target tree DBH ranged from 10 to 96 cm and ages ranged from 24 to 521 

years. Neighborhood conditions varied from open forest stands with essentially free growing 

target trees, to dense neighborhoods with more than 200 trees within the 15 m search radius of 

each plot. Elevations for all samples ranged from ~1300 to over 3600 m. The average breadth 

(maximum– minimum) of mean annual temperature within sites was substantial, ranging from a 

low of 6.2°C for P. ponderosa to a high of 7.8°C for P. menziesii (Fig. S2.2). For all study sites 

combined, the breadth of mean annual temperature ranged from 9.9°C for P. contorta to 12.6°C 
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for P. menziesii. The average breadth of annual precipitation within sites was similarly large, 

ranging from 620 mm for P. ponderosa to 1040 mm for P. engelmannii. For all study sites and 

plots combined, the breadth of mean annual precipitation ranged from 863 mm for P. ponderosa 

to 2558 mm for P. engelmannii. The climate niche breadth of our samples is comparable to or 

exceeds the climate breadth captured by permanent sampling plots associated with the Forest 

Inventory and Analysis Program of the U.S. Forest Service (Fig. S2.3).   

Appendix S2.2: Growth models based on seasonal climate 

We considered seasonal climate predictors in the event that future climate forcings result 

in differential changes in temperature or precipitation among seasons or a possible decoupling of 

annual and seasonal climate. We considered alternate combinations of seasonal temperature and 

precipitation variables based on winter, spring, and summer periods. Seasonal periods were 

defined a priori according to 3 month intervals beginning with December in the year preceding 

growth. The best fitting seasonal climate predictors were selected based on model parsimony and 

likelihood (minimum AICc). The strongest seasonal temperature and precipitation predictors for 

each species were subsequently used to generate a full model of the same form as the best fitting 

full model based on annual climate. Full seasonal models thus included climate, crowding, age 

and size functions (Table S2.2).  

Seasonal climate predictors generated more parsimonious full models of growth, 

compared with annual climate variables, for only two study species, A. lasiocarpa and P. 

contorta. Rollinson et al. (2016) similarly found only modest increases in explanatory power for 

models of tree growth for species in eastern North America when using seasonal vs. annual 

climate predictors. We argue that the use of annual climate variables in empirical models provide 

unbiased, robust predictions of tree growth due to high correlations between annual climate and 
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other permutations of temperature and precipitation. Further, models developed using annual 

climate facilitate more direct model comparisons between species and among studies and may 

more readily contribute to scientific and policy debates concerning global climate change, which 

have generally been framed in terms of trends in mean annual temperature. 
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Table S1.1. Warming trends in station observations of Tmin and Tmax (°C / decade) by elevation 

and season derived from the slopes of the linear regression of temperature on year for the period 

1970 to 2008. Trends in annual temperature are calculated for the entire period as well as for 20 

year subsets. 

 

Variable 

Elevation Annual Annual Annual Winter Spring Summer Fall 

(m) (1970-

2008) 

(1970-

1989) 

(1990-

2008) 

(1970-2008) 

Tmin 2770 .56** 0.76** 0.47 0.4* 0.61** 0.61** 0.49** 

Tmin 3230 0.58** 0.03 0.86** 0.47* 0.67** 0.48** 0.61** 

Tmax 2770 0.50** 0.3 0.94** 0.43** 0.62** 0.21 0.58** 

Tmax 3230 0.62** 0.44 1.05** 0.45** 1.00** 0.34 0.52** 

Significance levels: * p < 0.05; ** p < 0.01 
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Table S1.2. Goodness of fit and model comparison measures for hierarchical models of radial 

growth. Response variable is raw ring width. Size represents the diameter of the main stem at 1.3 

m from the root crown. Shoot period represents the period of shoot extension growth (April to 

July). These models incorporate effects that occur in the year concurrent with growth and in the 

preceding or lag1 year. A null model predicts ring width from tree size in the year concurrent 

with growth (lag0). Statistics are shown for the most parsimonious models selected by AICc 

(corrected for small sample size). 

 

Model Variables 
Sample 

size 
1NP AICc R2 Bias 

Null PotGrowth 7023 17 35939 0.214 0.998 

 Size lag0      

Concurrent 

year 
PotGrowth 7023 19 35841 0.216 0.997 

 Size lag0      

 2ppt shoot period      

Lag year PotGrowth 7023 21 35839 0.222 0.984 

 Size lag0      

 3Tave summer lag1      

 ppt spring lag1      

Full PotGrowth 7023 23 35788 0.225 0.997 

 Size lag0      

 ppt shoot period      

 Tave summer lag1      

 ppt spring lag1      
1 number of parameters 
2 precipitation 
3 average temperature 
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Table S2.1. Climate summary for target species by sample site for the analysis period (1992-2011). Sites arranged from south to north. 

Species acronyms are defined in Table S3 and site acronyms are defined in the methods section. 

 

  Annual Mean Temperature (°C) Annual Total Precipitation (mm/year) 

Species Site Mean 1SD 2CV Range Mean 1SD 2CV Range 

ABLA LNF 6.1 0.9 0.15 3.9, 8 926 184.8 0.20 510, 1269 
 SNF 2.6 0.8 0.31 -0.1, 4.7 699 194.8 0.28 219, 1115 
 RNF 1.8 1.3 0.72 -1.4, 4.8 655 146.9 0.22 295, 1118 
 BNF 1.9 1.5 0.79 -2.7, 5.8 670 101.8 0.15 389, 945 
 GNP 3.4 1.4 0.41 -2.3, 6 1341 344.2 0.26 685, 2777 

PIEN LNF 6.3 1.1 0.17 3.9, 9.5 881 198.7 0.23 383, 1276 
 SNF 2.5 1.3 0.52 -1, 6.1 748 180.6 0.24 220, 1150 
 BNF 2.3 1.7 0.74 -3, 6.7 650 101.9 0.16 385, 942 
 GNP 3.6 1.3 0.36 -2.3, 6 1302 333.6 0.26 646, 2777 

PICO SNF 5.1 0.8 0.16 2.6, 7.1 606 146.2 0.24 196, 867 
 RNF 2.5 1.4 0.56 -1.4, 5.4 606 167.4 0.28 290, 1139 
 BNF 2.7 1.6 0.59 -2.8, 6.1 632 101 0.16 307, 913 
 GNP 3.1 1.4 0.45 -1.5, 6 1339 322.1 0.24 618, 2584 

PIPO LNF 9.8 1.7 0.17 5.7, 13.6 619 163.4 0.26 180, 1030 
 SNF 6.8 1.2 0.18 3.3, 9 523 140.5 0.27 168, 863 
 BNF 5.2 1.5 0.29 1.2, 9.3 519 108 0.21 267, 833 

PSME LNF 8.3 1.2 0.14 5.1, 11.3 701 172.8 0.25 254, 1216 
 SNF 6.1 1.8 0.30 0.2, 9 577 156.6 0.27 167, 1083 
 BNF 4 1.8 0.45 -1.3, 8.4 591 99.1 0.17 284, 832 
 GNP 3.8 1.2 0.32 -0.5, 6 1267 281.5 0.22 645, 2128 

1 Standard deviation 
2 Coefficient of Variation 
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Table S2.2. Model comparison statistics (AICc and R2) for the best fitting full models of RG based on annual vs. seasonal climate 

variables. Climate predictors in the seasonal models include temperature (T) and precipitation (P) for the months specified. Lag refers 

to climate in the year preceding growth. The best fitting models based on AICc are bolded. 

 

 Annual Model Seasonal  Model 

Species AICc 1Bias R2 AICc Bias R2 Climate Predictors 

ABLA 4185.1 1.01 0.36 4094.4 1.01 0.39 
T summer, P spring, 

T lag summer, P lag summer 

PIEN 5684.3 1.00 0.48 5760.8 1.01 0.45 
T summer, P spring, 

T lag summer, P lag summer 

PICO 1811.8 1.01 0.48 1748.3 1.01 0.49 
T spring, P spring, 

T lag summer, P lag summer 

PIPO 4563.1 1.03 0.75 4726.1 1.03 0.67 
T spring, P winter, 

T lag spring, P lag winter 

PSME 8179.6 1.02 0.42 8322.0 0.99 0.47 
T summer, P spring, 

T lag summer, P lag summer 
1 Bias = slope of observed versus predicted RG    
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Table S2.3. Maximum likelihood estimates, with support intervals in brackets, for model parameters from the best fitting models of 

radial growth for each focal species. PotGrowth parameters (mm/year) are site specific intercept terms representing potential radial 

growth for a free growing tree under optimum climate conditions. Size effects were excluded from final models for all species except 

P. ponderosa. Precipitation effects were differentiated by site in final models only for P. menziesii and corresponding parameters are 

listed at the end of the table. 

 

Parameter 

Species 

A. lasiocarpa P. engelmannii P. contorta P. ponderosa P. menziesii 

Acronym ABLA PIEN PICO PIPO PSME 

PotGrowth (BNF) 225.7 (218.9-230.3) 
158.8 (155.6-

162.2) 
19.1 (18.5-19.3) 1000 (970-1000) 12.1 (11.7-12.3) 

PotGrowth (GNP) 29.6 (29.3-30.2) 4.89 (4.84-4.99) 6.81 (6.67-6.95) NA 8.61 (8.44-8.81) 

PotGrowth (LNF) 21.2 (19.7-22.9) 7.83 (7.44-8.11) NA 240 (230-242) 4.71 (4.53-4.81) 

PotGrowth (RNF) 11.8 (11.4-12.2) NA 7.05 (6.98-7.32) NA NA 

PotGrowth (SNF) 15.2 (14.9-15.8) 999.9 (980-1000) 46.2 (44.9-48.6) 1000 (960-1000) 8.12 (7.88-8.28) 

age.a 0.09 (0.09-0.097) 0.79 (0.77-0.81) 0.01 (0.01-0.02) 
0.007 (0.006-

0.007) 
0.62 (0.6-0.63) 

age.b 3.1 (3.1-3.12) 2.91 (2.91-2.92) 4.02 (4.02-4.021) 3.05 (3.04-3.05) 2.954 (2.95-2.94) 

size.a NA NA NA 126.1 (122.3-138) NA 

size.b NA NA NA 2.22 (2.1-2.26) NA 

temp.a 

(BNF) 
9830.0 (6951-10000) 9956 (-100-10000) 3190 (2894-10000) 9947 (-100-15000) 227 (227-230) 

temp.a 

(GNP) 
23.7 (23.1-23.9) 7351 (6904-7645) 8.44 (8.27-8.64) NA 9997 (9687-10000) 

temp.a 

(LNF) 
-100 (-100-125) 6.8 (6.5-6.9) NA 9.12 (8.72-9.31) 7584 (556-10000) 
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Parameter 

Species 

A. lasiocarpa P. engelmannii P. contorta P. ponderosa P. menziesii 

temp.a 

(RNF) 

7234.1 (6794.1-

7595.8) 
NA 2613 (334-10000) NA NA 

temp.a 

(SNF) 
1861.0 (-100 -2786.4) 4733 (-100-10000) 9990 (9285-10000) 

14955 (-100-

15000) 
5694 (5322-6210) 

temp.b 

(BNF) 
1885.6 (0.001-2685.6) 0.001 (0.001-26.8) 961.4 (0.001-1061) 1 2.89 (2.4-3.1) 

134.7 (133.4-

134.8) 

temp.b 

(GNP) 
20.4 (20.1-20.8) 6881 (6674-7293) 2.82 (2.68-2.96) NA 9990 (9791-10000) 

temp.b 

(LNF) 
125.1 (115.1-140.9) 1.88 (1.78-2.1) NA NA 187.2 (0.001-2742) 

temp.b 

(RNF) 

6485.0 (6225.6-

6901.4) 
NA 124.4 (0.001-1025) NA NA 

temp.b 

(SNF) 
8680.0 (347.2-10000) 2.53 (0.001-23.7) 4590 (3672-4960) NA 9873 (9084-10000) 

temp.lag1.a 

(BNF) 
-100 (-100-98.6) 

-100 

(-100- -98.6) 

-28.96 (-29.6- 

-28.2) 

15000 (14850-

15000) 
3978 (-500-10000) 

temp.lag1.a 

(GNP) 
577.8 (-100-10000) 3032 (2406-3371) 

-93.5 (-100- 

1767) 
NA 9201 (7169-10000) 

temp.lag1.a 

(LNF) 

9999.0 (2122.0-

10000) 
6044 (1314-10000) NA 9477 (9094-10582) -282 (-500-1454) 

temp.lag1.a 

(RNF) 
5.1 (4.8-5.2) NA 0.84 (0.65-1.29) NA NA 

temp.lag1.a 

(SNF) 
338.0 (-100-10000) 9051 (9051-9052) -99.6 (-100-2419) 

14336 (14192-

14623) 
9999 (8219-10000) 

temp.lag1.b 

(BNF) 
44.0 (44.0-44.1) 39.5 (39.5-39.6) 22.7 (22.44-22.9) 

1 10000 (9900-

10000) 
75.2 (0.001-156.6) 

temp.lag1.b 

(GNP) 
0.001 (0.001-36.1) 6187 (5568-7850) 7329 (440-10000) NA 2568 (0.001-3311) 
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Parameter 

Species 

A. lasiocarpa P. engelmannii P. contorta P. ponderosa P. menziesii 

temp.lag1.b 

(LNF) 
871.7 (0.001-4166.6) 491.8 (0.001-2355) NA NA 4586 (1651-10000) 

temp.lag1.b 

(RNF) 
3.07 (2.9-3.3) NA 4.71 (4.47-5.4) NA NA 

temp.lag1.b 

(SNF) 
13.4 (0.001-37.8) 

2746.9 (2746-

2747) 
6293 (314-10000) NA 2978 (0.001-3629) 

prec.a 7.06 (0-10000) 
868.8 (851.4-

888.6) 
97123 (0-100000) 2092 (2071-2155) NA 

prec.b 39289 (393-100000) 0.65 (0.63-0.69) 
31970 (320-

100000) 
1.33 (1.31-1.35) NA 

prec.lag1.a 77687 (0-100000) 
14821 (13783-

15843) 

36296 (362-

100000) 
83567 (0-100000) NA 

prec.lag1.b 0.1 (0-100000) 2.3 (2.26-2.35) 
58231 (582-

100000) 
0.1 (0.1-100000) NA 

Alpha (α) 1.23 (1.21-1.26) 1.03 (1.01-1.05) 0.96 (0.95-0.98) 0.37 (0.31-0.4) 0.00001 (0-0.046) 

Beta (β) 0.0 (0-0.02) 0.06 (0.04-0.08) 0.77 (0.76-0.79) 0.91 (0.85-0.93) 0.017 (0-0.052) 

C 107.1 (102.4-111.7) 9.52 (9.23-9.81) 37.2 (35.9-37.9) 7.47 (7.12-8.26) 0.23 (0.21-0.26) 

Gamma (γ) --1.25 (-1.28-1.22) 
-0.32 (-0.33- 

-0.31) 

-0.36 (-0.37- 

-0.34) 
0.05 (0.04-0.08) 0.0066 (0-0.042) 

int 0.0 (0.0-0.01) 0.097 (0.085-0.11) 0 (0-0.013) 0.2 (0.18-0.21) 0 (0-0.02) 

Sigma (σ) 0.44 (0.43-0.45) 0.35 (0.347-0.36) 0.43 (0.426-0.44) 0.34 (0.32-0.35) 0.55 (0.53-0.56) 
2 prec.a 

(BNF) 
NA NA NA NA 

686.6 (672.9-

720.2) 
2 prec.a 

(GNP) 
NA NA NA NA 981.5 (952.1-1031) 

2 prec.a 

(LNF) 
NA NA NA NA 1666 (1549-1922) 

2 prec.a NA NA NA NA 1232 (1195-1292) 
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Parameter 

Species 

A. lasiocarpa P. engelmannii P. contorta P. ponderosa P. menziesii 

(SNF) 
2 prec.b 

(BNF) 
NA NA NA NA 0.32 (0.280.34) 

2 prec.b 

(GNP) 
NA NA NA NA 0.39 (0.36-0.45) 

2 prec.b 

(LNF) 
NA NA NA NA 1.08 (0.92-1.16) 

2 prec.b 

(SNF) 
NA NA NA NA 1.1 (0.92-1.16) 

2 prec.lag1.a 

(BNF) 
NA NA NA NA 688 (667-735) 

2 prec.lag1.a 

(GNP) 
NA NA NA NA 

55759 (0.001-

100000) 
2 prec.lag1.a 

(LNF) 
NA NA NA NA 

64566 (0.001-

100000) 
2 prec.lag1.a 

(SNF) 
NA NA NA NA 

92109 (0.001-

100000) 
2 prec.lag1.b 

(BNF) 
NA NA NA NA 0.43 (0.37-0.47) 

2 prec.lag1.b 

(GNP) 
NA NA NA NA 

77494 (775-

100000) 
2 prec.lag1.b 

(LNF) 
NA NA NA NA 

92727 (927-

100000) 
2 prec.lag1.b 

(SNF) 
NA NA NA NA 0.001 (0.001-4.59) 

1 Variance of function not differentiated in best model for Pinus ponderosa  
2 Differentiated parameters for precipitation effects only significant for P. menziesii 
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Figure S1.1. Autocorrelation function for each seed plot, designated by elevation, showing 

degree of serial correlation (y axis) for 3 lag years based on the untransformed time series of 

seed counts. Dashed 95% confidence intervals were computed following Salas et al. (1980): CI = 

 
−1 ± 1.96√𝑁−𝐾−1

𝑁−𝐾
 , where N is sample size and K is lag. 
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Figure S1.2. GOF statistics, including mean absolute error (MAE), R2 of the regression of 

observed vs. predicted temperature, and percent bias (Pbias), comparing PRISM and TopoWx 

estimates of seasonal Tmax and Tmin at Fraser climate stations. 
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Figure S1.3. Time series of PRISM and TopoWx estimates of annual Tmin and Tmax for summer 

and winter. Station data are represented by grey dashed lines and model estimates by black solid 

lines.  
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Figure S2.1. (A) Location of the 5 study sites and all sample trees within the Rocky Mountain 

ecoregion of the western Unites States. (B) Location of the Rocky Mountain ecoregion within 

the United States. (C) Distribution of all sample trees by species across gradients of total annual 

precipitation and mean annual temperature averaged over the 20-year study period (tree sample 

sizes in brackets). 
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Figure S2.2. Distribution of sample trees across gradients of mean annual temperature and total 

annual precipitation by species and sample site (sample sizes for each species and site in 

brackets). Annual climate data were averaged over the 20-year period of the study for this figure. 

Sites with less than 5 sample trees for a given species were excluded from modeling analyses. 
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Figure S2.3. Comparisons of the climate niche breadth associated with target trees in this study 

and Forest Inventory and Analysis (FIA) plots from the U.S. Forest Service located on the east 

slope of the Rocky Mountains (from Martin & Canham in prep). Growth responses to annual 

climate parameters in the year concurrent with growth are plotted as smooth curves representing 

the fraction of potential radial growth for 30 cm DBH, free growing trees from all study sites 

combined. The length of each curve defines the observed climate breadth of the corresponding 

field data. FIA point data represent the fraction of total biomass of a given species at a particular 

plot location and delimit the associated realized climate niche of each species in the Rocky 

Mountain ecoregion. 
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Figure S2.4. Regression residuals (observed – predicted radial growth) from full models plotted 

as a function of annual mean temperature and annual total precipitation. 
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Figure S2.5. Regression residuals (observed – predicted radial growth) for full models plotted as 

a function of competition effects. 
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Figure S2.6. Fraction of maximum potential radial growth as a function of age (panel A) and 

stem diameter (panel B) for a free growing tree in its optimum climate. Size effects were only 

significant for PIPO in the final full models of growth that included age and locally differentiated 

responses to climate.  
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Figure S2.7. Radial growth responses by study site to concurrent annual temperature and 

precipitation for a 30 cm tree. These responses are based on models that include age and 

crowding effects, but do not account for locally differentiated responses to site specific climates. 

Hence, the amplitude of each response curve varies by site, but not their shape. Crowding effects 

are held constant at the overall mean level for a species. The grey color scale corresponds to a 

gradient of mean annual temperature or precipitation for a species across sites (darker shades 

representing higher site climate means). The length of each site curve defines the observed 

climate breadth of the corresponding field data for that site. 
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Figure S2.8. Fraction of maximum potential radial growth as a function of neighborhood 

crowding based on the best fitting full model for a 30 cm tree under optimum climate conditions.  
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Figure S3.1. Time series of spatially explicit gridded PRISM data and independent instrumental 

climate records collected by the U.S. Forest Service at Fraser Experimental Forest in central 

Colorado. Instrumental data were collected from 5 weather stations distributed on an elevation 

gradient from 2770 to 3230 m. Daily minimum and maximum data were screened for anomalous 

values and aggregated to produce seasonal means (3 month intervals beginning with December 

of the prior year). 
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Figure S3.2. Radial growth responses by study site to concurrent summer temperature and 

precipitation for a 30 cm tree based on parameters from the best fitting models (see Table 3.3).  

Dissimilar slopes and shapes for the response curves for P. engelmannii reflect differentiated 

climate functions for this species (variable mode and variance depending on location). The grey 

color scale corresponds to a gradient of mean annual temperature or precipitation for a species 

across sites (darker shades representing higher site climate means). Species acronyms defined as: 

PIAR: P. aristata; PIEN: P. engelmannii; and PIFL: P. flexilis. 
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Figure S3.3. Moving window correlation between composite site indices of normalized BAI and 

site-specific mean summer temperatures. A window length of 30 years was progressively 

advanced by one year. Years on the abscissa represent start years for each 30 year window. 

Three species were analyzed including Pinus aristata (PIAR) in the upper row, Picea 

engelmannii (PIEN) in the middle three rows, and Pinus flexilis (PIFL) in the bottom row.  
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Figure S3.4. Linear correlations between site-specific mean normalized basal area increment 

(BAI) and mean regional precipitation for a range of time periods for 3 species. Regional 

precipitation indices were obtained by summing site-specific precipitation values across all sites. 

Months range from May of the year prior to growth (yr-1) to September of the year concurrent 

with growth (yr0). Seasonal windows were tested for the year concurrent with growth only. 

Water year precipitation represents total precipitation across months from October of the prior 

year to September of the concurrent year. Boxplots delimit medians, 25th and 75th percentiles, 

and extreme site values.  
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Figure S3.5. Linear correlations on inter-annual time scales between site-specific mean 

normalized basal area increment (BAI) and regional mean temperature for 3 species. Regional 

temperature indices were obtained by averaging site-specific temperatures across all sites. 

Monthly correlations range from May of the year prior to growth (yr-1) to September of the year 

concurrent with growth (yr0). Seasonal windows were tested for the year concurrent with growth 

only. Water year temperature represents mean temperature across months from October of the 

year preceding growth to September of the concurrent year. Calendar year temperature ranges 

from January to December of the year concurrent with growth. Boxplots delimit medians, 25th 

and 75th percentiles. 
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Figure S3.6. Hierarchical cluster analysis of all P. engelmannii and P. aristata populations based 

on normalized BAI. Cluster 1 is comprised of exclusively of P. aristata populations. Clusters 2 

and 3 are comprised of P. engelmannii populations only. 
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