A solution to the nonlinear differentisl equation describing wnsteady

fiow tousrd equally spaced drains sbove & horizontal impermeable boundary
is presented. '

The solution ic compared with field data and a nuurietl solutica.
The solution vas fowid to agree with the field dsta and the nwmerical solu-
tion vhen the drein spacing was large relstive to the depth of draine.

IRTRODUCTION

On agricultural lends underlain by impermeable boundaries of zero
slope where there is little netural subsurface drainage, equally spaced
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drains mey be installed to adequately lower the water table for crop production.
The depth and spacing of the drains are two important design factors which
control the lowering of the water table.

mrmt.m,mnpmmtim (1, 2, b, 11, 13) have been
obtained for the eolution of drainage problems involving a falling water
table. Many of the approximstions are objectionable (12) because the ascump-
tions upon vhich they are based are not realistic and henee the solutions may
not be sufficiently sccurate for design purposes. This discussion Geals with
meumuwwwmce)wmmw
tion in his Mve,imt. Such an approximation will provide informetion cn‘
depth and spacing of drains as well as water table recession rates.

As reported by Dumm (2), Glover developed & solution based upon the
heat flov equation for the problem of the falling veter table. Uiing the
Dupuit assumption, he considered equally spaced tile drains in a homogeneous
MIWMamizonmwnm. In the development of
Glover's solution an uqui_:nticn wae made which restricts the use of his
equation to cases in vhich the distance from the tile to the impermeable
boundary is large in relation to the drawdown of the water table. Experience
has indicated (2) that vhen the assumptions are satisfied, satisfactory
results may be obtained. In summarizing some of the recent studies on the
falling water table van Schilfgsarde (12) stated that "Glover's equation,
buedon'thius\nptimothnﬂmm flow, ;maratdhemw];car«
mttﬁaauvotm,mainmtmrﬁci&mmcmutobemdtm

deeign purposes.”



The approximate solution presented herein takes into account the
drawdown of the water table vhich implies that the distance from the tile to
the impermeable boundary may be small compared to the drawdown of the water

table. However, the approximate solution still involves the Dupuit assump-
tion.

Consider a gystem of equally spaced drains in a homogeneous soil
overlying an impermeable boundary of zero slope as showm in figure 1.

Figure 1. Model of equally spaced drains above an impermeasble

boundary with sccompanying boundary eand initiasl
conditions.

The equation for flow based upon the Dupuit assumption and Darcy's lav may
be written as

o=k + n) P, ()

in wvhich Q 4z the volume rate of flov in the x direction per unit length
of tile, K is the hydraulic conductivity, and the other symbols are as
defined in figure 1.
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Fig. 1. Model of equally spaced drains above an impermeable boundary with accompanying boundary

and initisl conditions.



If equation (1) is substituted into equation of comtinuity, the
differential equation describing flow toward the drain becomes

R WL VIR 4 teutn S .
g Bk B F(T;E} E'h,a‘xe - (@)

in vhich @ is DK/f, f is the specific yleld, and t is time.
The boundary and initial condiﬁons imposed upon the system are given as
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Picard's method of successive approximations (10) was suggested by
Glovaaz/ for solving the non-linear differential equetion (2) with its
accompanying conditions given by equations (3). The method of Picard is
described below as it applies to this problen.

Equation (2) becomes
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Lere a
when the non-linear terms are discarded. A first approximation, hl,is
obtained for equation (2) by solving equation (h). A second approximation,
be, is obtained such that

3/ Glover, R. E. Consultant, Agricultural Experiment Statiom,
Colorado State University, Fort Colline, Colorado; Personal Commumnication 1958.
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In the proéeas of obt;ining eacch approximation, the boundary and initial
conditions must be satisfied. Glover (2) solved equation (k) using the boun-
asiy snd ipi%isy condidions gtven l‘qmtims:'ﬁ )» with the exception that
he considered his origin of the ¢ \mteamsatthetileinsteadotu
shiown in figure 1. Por the origin &6 shown in Tigure 1, the solutien to
equation () is »

hH n-l
hl"'??' (1) 2 %e@(-m&)mrz ;9-

o= 1:’35:;"

The solution presented below is a result of carrying Picard's process
to a second approximation. The expression is made up of terms consisting

of the first epproximation, perticulsr integrals, and terms necesgsaxy to per-

mit restoretion of the initiel and boundary conditions. It may be expressed
in terms of the firet approximation as
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g (y r ) - g-(a -6) arzge s (1)

in wvhich h, is as given above, and

plm ) e [ ot

L= 1,535,550 = 1:5:5--"

The tera G , wunder the time integrel ic equal to (I + z°-) vhich in twn
u..fmm&[(t.'r),'x]m T is o dumgy variable. mm
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%/ The method used to restore the bowndary condition and the manner
in vhich the time integral was evaluated is postponed for discusgion at a
later date.



- 4in vhich h << D. Ammﬁewmtornwwmmu
aimwmw (1),

Q=KD+ né) § (10)

An epproximate solution, b, , is obtalned by substituting equation (9) into
equation (10) which vhen integrsted yields

moegesm e Do

where ¢ is the constant of integration. Using the boundary conditions
given by equation (5), the constant of integration is Towd to be (___f
After substituting the value of ¢ 1mequuqn(n)mw,
mmmcn, ha,isemeumdu

2
» H
By = =D+ ‘J);+mul+(§g-) ¥ (12)
This expression also satisfies the initial condition.

THEORETICAL RESULTS AND DISCUSSION

The solubtion of equation (7) is presented graphically in figure 2

Figure 2. Theoretical cwrves of relative water table height, h/H,,
e i . o a function of the time a for tile at
various relative distances 1_ above the impermeable

boundayy and for x = O.
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----- GLOVER'S EQUATIONS
EQUATION (7)
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Figure 2. Theoretical curves of relative water table height, h/H, ,
as a function of the time ter « t/I2 for tile at
various relative distances ﬂg above the impermeable
boundary and for x = 0. ’




for x =0 and for various velues of lo/D- Glover's sclutions are also
shown in figwre 2 for comparison vith this theory.

The reason for the epparent inconsistency between Glover's special
equation for xb/n-e.o, which places the drain on the impermeable
boundarxy, and equation (7) is that Glover's solution (2) does not satisfy
the same initial conditions ascumed herein.

mmaunmeommmmmm,mmm
water table midvay between drains does not begin to recede until 2 finite
pexriod of time has elapsed depending upon the distance from the drain to the
impermeable boundary. The range of reletive distances to the impermeable
boundary, 0 < g-?-ge.o, constitutes 100 percent of the total draminable
depth. Kirkham (6) shoved that flov into tile drains is considerably reduced
when the drain is placed on the impermeable boundary. A comparison of the
cwrves in figure 2 for the drain on the impermeable boundary, no/b-e.o,‘
and at two-thirds of the drainable depth, xalb-l.o,mommuam
vwhen the boundary is near the drain the flow is considerably reduced.

A comparison of the two approximations, equations (7) emd (12), is
shown in table 1. The agreement of the two approximstions is excellent for
0.1 < ;‘-’-5_1.0. However, for Hy/D = 2.0 , the agreement is not entirely
satisfactory.

Table 1. A comparison of theoretical solutions obtained from
equations (7) snd (1) for x = 0 and for various
values of EJD.




Table 1. A comparison of theoretical solutions cbiained from equations (7)
and (12) for x = 0 and for various values of H,/D

| Tme | Belative Position of the Vater Relative Fosition of the Water
Paremeter | Table, h/H,, from Equetion (7) Teble, h/fly, from Equation (12)
W‘-" Hy/D § 0.1 0467 1.0 2.0 0.1 087 10 i 2D
0.02 |} ous 019 0.9 0.50 1 o6 0.88 048  0.49
0.03 0.43 | 0.46 0.48 0.1 041 0.k 045  0.46
0.05 0.28 033 037 0.6 0.27 032  0.5hk  0.38
0.07 0.15 0.22 0.26 0.58 0.14 0.21 0.23 0,30
0.10 -0.01  0.07 0.21 0.25 «0402 0.06 0.0 0.9 |
0416 “085 ~0.16 -0.13  -0.00 -0.25 ~0.17 0.2  0.01
0.20 031  -0.25 0.2 ’-o-.n. «0.31 -0.26 0.22 -0.08
0.25 <0.38 033 ~0.30 -0.22 -0.39 -0.3h 031  ~0.16 |
0430 0.4 0.0 -0.38 -0.28 ~0.43 «~0.h1 038 -0.24%




humtpmhy!‘bermod (5), the general method of Kirkham
end Gaskell (7) was employed with the use of a high speed computer to solve
the boundary value problem presented herein. Isherwood solved the problem
as & twvo-dimensional system, hence his solution should be more accurate then
the one-dimensional system vhich is based upon the Dupuit sssumption. By
comparing Isherwood's solution with the approximete theoretical solutiom
presented here, it is yossible to determine the validity of equation (7)
to & reasonable degree.

Im'smmrtheuuafmwwmmsumm :
feet belov the soil swrface is reproduced in figures 3 and &, using

Figare h. A comparison ical curve end the solution
atlsh&wmd(s)f Tg and for various values
of 5

I’

dimensionless parameters. mtﬁdmmﬁmwhm
& restriction upon equation (6) and equations (7) and (12). This restric-
‘tion mmy be mede by use of the ratio of the tile spacing, L , to the

ummmwmem, d im0 Lia. It
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is ressonable to expect thet for large ratios of % that a solution to this
problem based upon the Dupuit assumption would closely approximate the two
dimensional solution, and conversely for cuall ratios of 5 such e solubion
might be in considersble error. This fact is clearly shown in figures 3 and
% in which Isherwood's solution agrees very closely with the theoretical

L L

curve for 1‘-2 25 vhile for 3< 25 there is considereble lack of agree-

ment. It appears from the data available from Isherwood's paper that the
theory of this paper ie independent of & for retios grester then 25.

A comparison of Klinge's (8) unpublished field data, and equstion (7)
is shown in figure 5. The theoretical curve appears as & solid line vhile

the date appear &s points. These data of Klinge's agree remarkable well with

Figare 5. A comparison of theoretical curve and the data of
Klinge (8) for .-i..ﬂlawc

the theoretical curve. These data vere reported for shallow draineage eystems
in which the ixpermeable boundary was 3-h feet below the swface. A number of
these comparisons vere made and similar sgreement was found.

An example of the use of the theoretical curves follows. Asoune a
macm”mwummuwamdsfmummm1
surface and an impermeeble boundary exists at 9 feet below the soil surface.
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If the position of the water table initially exists at the soll surface,
7 compute the tile spacing which will e&mel_thc water table to recede to &
depth of 3.6 feet in 3 days when the hydraulic conductivity-specific yield
retic, %, 15 2.0 ft/hr. The scaled time varisble, % , 1is read from

the theoretical curve, -gg-l.ﬂl'or -;-3--0-1, vhich is found to be

0.150. Since ¢t and « mmun,thnmin;, L, uee-wbedﬁm

the relation
“a-f = 0.150
or
» » m
(0150

in which @ is 12.0 ft%/hr. The spacing is found to be 76 ft (approximately)

and %-Ig—-as.s which is within the limite set forth using the data of

Ishervood. The theoretical predictions of the tile spacinge which can be
obtained from figure 2 will be no better than the methods used to obtain
characteristic hydraulic conductivity -~ specific yield data for the drainage
system. HMethods of muring hydraulic conductivity on & large scale are
needed. The recent work of Nelson (9) seems to be & step forward in this

The assumption that there is & constent quantity called specific
yield is indeed naive as discussed by Childs (3). The true solution of this
problem as indicated by Childs (3) "¥Will demand the study of the soil as &

w Xk



whole, both sbove and below the wvater table, as an essay in the field of
water movement in a medium whote hydraulic conductivity is & function of
moisture content.” However, it 1s hoped that the approximate solution pre- -
sented herein vill emable the drainage engimeer to more accurately design
drainage installstions and predict drainage costs.
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