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Abstract

Parallel and distributed systems may operate in an envi-
ronment that undergoes unpredictable changes causing cer-
tain system performance features to degrade. Such systems
need robustness to guarantee limited degradation despite
fluctuations in the behavior of its component parts or en-
vironment. This research investigates the robustness of an
allocation of resources to tasks in parallel and distributed
systems. The main contributions of this paper are (1) a
mathematical description of a metric for the robustness of
a resource allocation with respect to desired system perfor-
mance features against perturbations in system and envi-
ronmental conditions, and (2) a procedure for deriving a
robustness metric for an arbitrary system. For illustration,
this procedure is employed to derive robustness metrics for
two example distributed systems. Such a metric can help
researchers evaluate a given resource allocation for robust-
ness against uncertainties in specified perturbation param-
eters.

1. Introduction

Parallel and distributed systems may operate in an en-
vironment where certain system performance features de-
grade due to unpredictable circumstances, such as sudden
machine failures, higher than expected system load, or in-
accuracies in the estimation of system parameters (e.g.,
[4, 5, 8, 10, 12, 13, 19, 17, 16, 18, 20, 22, 24]). An important
question then arises: given a system design, what extent
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of departure from the assumed circumstances will cause a
performance feature to be unacceptably degraded? That
is, how robust is the system? Before answering this ques-
tion one needs to clearly define robustness. Robustness has
been defined in different ways by different researchers. Ac-
cording to [18], robustness is the degree to which a system
can function correctly in the presence of inputs different
from those assumed. In a more general sense, [13] states
that a robust system continues to operate correctly across a
wide range of operational conditions. Robustness, accord-
ing to [8] and [17], guarantees the maintenance of certain
desired system characteristics despite fluctuations in the be-
havior of its component parts or its environment. The con-
cept of robustness, as used in this research, is similar to
that in [8] and [17]. Like [17], this work emphasizes that
robustness should be defined for a given set of system fea-
tures, with a given set of perturbations applied to the sys-
tem. This research investigates the robustness of resource
allocation in parallel and distributed systems, and accord-
ingly customizes the definition of robustness.

Parallel and distributed computing is the coordinated use
of different types of machines, networks, and interfaces to
meet the requirements of widely varying application mix-
tures and to maximize the system performance or cost-
effectiveness. An important research problem is how to de-
termine a mapping (matching of applications to resources
and ordering their execution (e.g., [7,21,25])) so as to max-
imize robustness of desired system features against inaccu-
racies in estimated system parameters and changes in the
environment. This research addresses the design of a ro-
bustness metric for mappings.

A mapping is defined to be robust with respect to spec-
ified system performance features against perturbations in
specified system parameters if degradation in these features
is limited when the perturbations occur. For example, if
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a mapping has been declared to be robust with respect to
satisfying a throughput requirement against perturbations
in the system load, then the system, configured under that
mapping, should continue to operate without a throughput
violation when the system load increases. The immediate
question is: what is the degree of robustness? That is, for
the example given above, how much can the system load in-
crease before a throughput violation occurs? This research
addresses this question, and others related to it, by formu-
lating the mathematical description of a metric that eval-
uates the robustness of a mapping with respect to certain
system performance features against perturbations in sys-
tem components and environmental conditions. In addition,
this work outlines a four-step procedure for deriving a ro-
bustness metric for an arbitrary system. For illustration,
the four-step procedure is employed to derive robustness
metrics for two example distributed systems. The robust-
ness metric and the four-step procedure for its derivation
are the main contributions of this paper. Although mea-
sures of robustness have been studied in the literature (e.g.,
[5, 10,9, 18,19, 15, 20,22]), those measures were developed
for specific systems (see [1] for a discussion of the related
work). Unlike those efforts, this paper presents a general
mathematical formulation of a robustness metric that could
be applied to a variety of parallel and distributed systems by
following the four-step derivation procedure.

The rest of the paper is organized as follows. Section
2 describes the four-step derivation procedure mentioned
above. It also defines a generalized robustness metric.
Derivations of this metric for two example parallel and dis-
tributed systems are given in Section 3. Section 4 presents
some experiments that highlight the usefulness of the ro-
bustness metric. Section 5 concludes the paper. A glossary
of the notation used in this paper is given in Table 1.

Table 1. Glossary of notation.
Φ the set of all performance features
φi the i-th element in Φ〈
βmin

i , βmax
i

〉
a tuple that gives the bounds of the tol-
erable variation in φi

Π the set of all perturbation parameters
πj the j-th element in Π
nπj

the number of elements in πj

µ a mapping
rµ(φi, πj) the robustness radius of mapping µ

with respect to φi against πj

ρµ(Φ, πj) the robustness of mapping µ with re-
spect to set Φ against πj

A the set of applications
M the set of machines

2. Generalized Robustness Metric

The key contribution of the work presented here is the
design of a general mathematical methodology for deriv-
ing the range of uncertainty in system parameters within
which a desired level of quality of service (QoS) can be
guaranteed. Central to achieving this goal is the develop-
ment of a general, mathematically precise, definition of ro-
bustness that can be applied in a wide variety of scenarios,
for a wide variety of application-specific measures of per-
formance, and a wide variety of system parameters, whose
behavior is uncertain, but whose values will affect system
performance. This paper presents a general four-step pro-
cedure for deriving such a robustness metric for any de-
sired computing environment. The procedure is referred
to in this paper as the FePIA procedure, where the abbre-
viation stands for identifying the performance features, the
perturbation parameters, the impact of perturbation parame-
ters on performance features, and the analysis to determine
the robustness. Specific examples illustrating the applica-
tion of the FePIA procedure to sample systems are given in
the next section.

Each step of the FePIA procedure is now described.

1) Describe quantitatively the requirement that makes the
system robust. Based on this robustness requirement, deter-
mine the system performance features that should be limited
in variation to ensure that the robustness requirement is met.
For example, the robustness requirement could be that the
makespan1 of the mapping should not increase more than
30% beyond its predicted value, where the predicted value
is the value expected in the absence of uncertainty. In that
case, the system performance features that should be lim-
ited in variation are the finishing times for all machines in
the system. Mathematically, let Φ be the set of such sys-
tem features. For each element φi ∈ Φ, quantitatively

describe the tolerable variation in φi. Let
〈
βmin

i , βmax
i

〉
be a tuple that gives the bounds of the tolerable variation
in the system feature φi. For the makespan example, φi

is the time the i-th machine finishes its assigned applica-
tions, and its corresponding

〈
βmin

i , βmax
i

〉
tuple could be

〈0, 1.3 × (predicted makespan value)〉.

2) Determine the system and environment perturbation pa-
rameters against which the robustness of the system fea-
tures described in item 1 is sought. These are called the
perturbation parameters (these are similar to hazards in [5]).
For the makespan example above, the resource allocation
(and its associated predicted makespan) was based on the
estimated application execution times. It is desired that

1Makespan of a set of applications is the completion time for the entire
set.
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the makespan be robust (stay within 130% of its estimated
value) with respect to uncertainties in these estimated exe-
cution times. Mathematically, let Π be the set of such sys-
tem and environment parameters. It is assumed that the ele-
ments of Π are vectors. Let πj be the j-th element of Π. For
the makespan example, πj could be the vector composed of
the actual application execution times, i.e., the i-th element
of πj is the actual execution time of the i-th application on
the machine it was assigned.

3) Identify the impact of the perturbation parameters in item
2 on the system performance features in item 1. For the
makespan example, the sum of the actual execution times
for all of the applications assigned a given machine is the
time when that machine completes its applications. Math-
ematically, for every φi ∈ Φ, determine the relationship
φi = fij(πj), if any, that relates φi to πj . In this expres-
sion, fij is a function that maps πj to φi. For the makespan
example, φi is the finishing time for machine mi, and fij

would be the sum of execution times for applications as-
signed to machine mi. Note that this expression assumes
that each πj ∈ Π affects a given φi independently. The
case where multiple perturbation parameters can affect a
given φi simultaneously is discussed in [1]. The rest of this
discussion will be developed assuming only one element in
Π.

4) The last step is to determine the smallest collective vari-
ation in the values of perturbation parameters identified in
step 2 that will cause any of the performance features identi-
fied in step 1 to violate the robustness requirement. Mathe-
matically, for every φi ∈ Φ, determine the boundary values
of πj , i.e., the values satisfying the boundary relationships
fij(πj) = βmin

i and fij(πj) = βmax
i . (If πj is a discrete

variable then the boundary values correspond to the clos-
est values that bracket each boundary relationship.) These
relationships separate the region of robust operation from
that of non-robust operation. Find the smallest perturba-
tion in πj that causes any φi ∈ Φ to exceed the bounds〈
βmin

i , βmax
i

〉
imposed on it by the robustness requirement.

Specifically, let πorig
j be the value of πj at which the sys-

tem is originally assumed to operate. However, due to inac-
curacies in the estimated parameters and/or changes in the
environment, the value of the variable πj might differ from
its assumed value. This change in πj can occur in differ-
ent “directions” depending on the relative differences in its
individual components. Assuming that no information is
available about the relative differences, all values of πj are
possible. Figure 1 illustrates this concept for a single fea-
ture, φi, and a 2-element perturbation vector πj ∈ R2. The
curve shown in Figure 1 plots the set of boundary points
{πj|| fij(πj) = βmax

i } for a mapping µ. For this figure,
the set of boundary points

{
πj|| fij(πj) = βmin

i

}
is given

by the points on the πj1-axis and πj2-axis.
The region enclosed by the axes and the curve gives the

values of πj for which the system is robust with respect
to φi. For a vector x = [x1 x2 · · · xn]T, let ‖x‖2 be the
�2-norm (Euclidean norm) of the vector, and be defined by√

n∑
r=1

x2
r . The point on the curve marked as π�

j (φi) has the

feature that the Euclidean distance from πorig
j to π�

j (φi),
‖π�

j (φi) − πorig
j ‖2, is the smallest over all such distances

from πorig
j to a point on the curve. An important interpreta-

tion of π�
j (φi) is that the value ‖π�

j (φi)−πorig
j ‖2 gives the

largest Euclidean distance that the variable πj can change
in any direction from the assumed value of πorig

j without the
performance feature φi exceeding the tolerable variation.
Let the distance ‖π�

j (φi)−πorig
j ‖2 be called the robustness

radius, rµ(φi, πj), of φi against πj . Mathematically,

rµ(φi, πj) = min
πj : (fij(πj)=βmax

i )∨
(fij(πj)=βmin

i )

‖πj − πorig
j ‖2. (1)

This work defines rµ(φi, πj) to be the robustness metric for
the robustness of mapping µ with respect to performance
feature φi against the perturbation parameter πj .

λ
init

orig

ππ

ππ

(φi)

j

j
rµ(φi,   j)ππ

j| fij(  j) =ππ{ππ βmax}i

*

2

πj1

πj2

Figure 1. The possible directions of in-
crease of the perturbation parameter πj ,
and the direction of the smallest in-
crease. The curve plots the set of points,{
πj|| fij(πj) = βmax

i

}
. The set of boundary

points,
{
πj|| fij(πj) = βmin

i

}
is given by the

points on the πj1-axis and πj2-axis.

The metric definition can be extended easily for all φi ∈
Φ. It is simply the minimum of all robustness radii. Math-
ematically, let ρµ(Φ, πj) be the robustness of mapping µ
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with respect to the performance feature set Φ against the
perturbation parameter πj . Then,

ρµ(Φ, πj) = min
φi∈ Φ

(rµ(φi, πj)) (2)

3. Example Derivations

3.1. Independent Application Allocation

The first example derivation of the robustness metric is
for a system that maps a set of independent applications on
a set of machines [7]. In this system, it is required that
the makespan (defined as the completion time for the entire
set of applications) be robust against errors in application
execution time estimates.

A brief description of the system model is now given.
The applications are assumed to be independent, i.e., no
communications between the applications are needed. The
set A of applications is to be mapped on a set M of ma-
chines so as to minimize the makespan. Each machine ex-
ecutes a single application at a time (i.e., no multi-tasking),
in the order in which the applications are assigned. Let Cij

be the estimated time to compute (ETC) for application ai

on machine mj . It is assumed that Cij values are known
for all i, j, and a mapping µ is determined using the ETC
values. In addition, let Fj be the time at which mj finishes
executing all of the applications mapped on it.

Assume that unknown inaccuracies in the ETC values
are expected, requiring that the mapping µ be robust against
them. More specifically, it is required that, for a given map-
ping, its actual makespan value M (calculated considering
the effects of ETC errors) may be no more than τ times its
predicted value,M orig. The predicted value of the makespan
is the value calculated assuming the ETC values are accu-
rate. Following step 1 of the FePIA procedure in Section 2,
the system performance features that should be limited in
variation to ensure the makespan robustness are the finish-
ing times of the machines. That is,

Φ = {Fj|| 1 ≤ j ≤ |M|} . (3)

According to step 2 of the FePIA procedure, the pertur-
bation parameter needs to be defined. Let Corig

i be the ETC
value for application ai on the machine where it is mapped.
Let Ci be equal to the actual computation time value (Corig

i

plus the estimation error). In addition, let C be the vector
of the Ci values, such that C = [C1 C2 · · · C|A|]. Simi-

larly, Corig = [Corig
1 Corig

2 · · · Corig
|A| ]. The vector C is the

perturbation parameter for this analysis.
In accordance with step 3 of the FePIA procedure, Fj

has to be expressed as a function of C. To that end,

Fj(C) =
∑

i: ai is mapped to mj

Ci. (4)

Note that the finishing time of a given machine de-
pends only on the actual execution times of the ap-
plications mapped to that machine, and is independent
of the finishing times of the other machines. Follow-
ing step 4 of the FePIA procedure, the set of bound-
ary relationships corresponding to Equation 3 is given by{
Fj(C) = τM orig|| 1 ≤ j ≤ |M|} .

For a two-application system, C corresponds to πj in
Figure 1. Similarly, C1 and C2 correspond to πj1 and
πj2, respectively. The terms Corig, Fj(C), and τM orig

correspond to πorig
j , fij(πj), and βmax

i , respectively. The
boundary relationship ‘Fj(C) = τM orig’ corresponds to
the boundary relationship ‘fij(πj) = βmax

i .’
From Equation 1, the robustness radius of Fj against C

is given by

rµ(Fj , C) = min
C: Fj(C)=τM orig

‖C − Corig‖2 (5)

That is, if the Euclidean distance between any vector of the
actual execution times and the vector of the estimated exe-
cution times is no larger than rµ(Fj , C), then the finishing
time of machine mj will be at most τ times the predicted
makespan value.

Note that the right hand side in Equation 5 can be inter-
preted as the perpendicular distance from the point Corig to
the hyperplane described by the equation τM orig−Fj(C) =
0. Using the point-to-plane distance formula [23], Equation
5 reduces to

rµ(Fj , C) =
τM orig − Fj(Corig)√

number of applications mapped to mj

(6)
The robustness metric, from Equation 2, is

ρµ(Φ, C) = min
Fj ∈Φ

rµ(Fj , C) (7)

That is, if the Euclidean distance between any vector of the
actual execution times and the vector of the estimated ex-
ecution times is no larger than ρµ(Φ, C), then the actual
makespan will be at most τ times the predicted makespan
value.

Two observations can be made with respect to Equation
7. (These observations are specific to this system only, and
do not necessarily apply to the other example system dis-
cussed later.) Let C� be the value of C that minimizes
‖C − Corig‖2.
(1) At the point C�, the actual execution times for all ap-
plications are the same as the estimated times, except for
the applications mapped on the machine that finishes last at
C�. This is because the finishing times are independent of
each other, and the minimization is constrained only by the
finishing time of one machine – the machine that finishes
last.
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(2) At the point C�, the ETC errors for all applications
mapped on the machine that finishes last are the same. This
is because the weight of each such application towards de-
termining the finishing time is the same (Equation 4).

Note that the calculation of the robustness metric above
did not make any assumptions about the distribution of the
estimation errors. In addition, note that ρµ(Φ, C) has the
units of C, namely time.

3.2. The HiPer-D System

The second example derivation of the robustness metric
is for a HiPer-D [11, 14] like system that maps a set of con-
tinuously executing, communicating applications to a set of
machines. It is required that the system be robust with re-
spect to certain QoS attributes against unforeseen increases
in the “system load.”

The HiPer-D system model used here was developed
in [2], and is summarized here for reference. The system
consists of heterogeneous sets of sensors, applications, ma-
chines, and actuators. Each machine is capable of multi-
tasking, executing the applications mapped to it in a round
robin fashion. Similarly, a given network link is multi-
tasked among all data transfers using that link. Each sensor
produces data periodically at a certain rate, and the result-
ing data streams are input into applications. The applica-
tions process the data and send the output to other applica-
tions or to actuators. The applications and the data transfers
between them are modelled with a directed acyclic graph,
shown in Figure 2. The figure also shows a number of paths

 

 

 

  

 
 

 

 

path 1

path 2

path 3

path 4

Figure 2. The DAG model for the applications
(circles) and data transfers (arrows). The di-
amonds and rectangles denote sensors and
actuators, respectively. The dashed lines en-
close each path formed by the applications.

(enclosed by dashed lines) formed by the applications. A

path is a chain of producer-consumer pairs that starts at a
sensor (the driving sensor) and ends at an actuator (if it is
a “trigger path”) or at a multiple-input application (if it is
an “update path”). Let P be the set of all paths, and Pk

be the list of applications that comprise the k-th path. Note
that an application may be present in multiple paths. As in
Subsection 3.1, A is the set of applications.

The sensors constitute the interface of the system to the
external world. Let the maximum periodic data output rate
from a given sensor be called its output data rate. The
minimum throughput constraint states that the computation
or communication time of any application in Pk is required
to be no larger than the reciprocal of the output data rate
of the driving sensor for Pk. For application ai ∈ Pk, let
R(ai) be set to the output data rate of the driving sensor for
Pk. In addition, let T c

ij be the computation time for appli-
cation ai mapped to machine mj . Also, let T n

ip be the time
to send data from application ai to application ap. Because
this analysis is being carried out for a specific mapping, the
machine where a given application is mapped is known. It
is assumed that ai is mapped to mj , and the machine sub-
script for T c

ij is omitted in the ensuing analysis for clarity
unless the intent is to show the relationship between execu-
tion times of ai at various possible machines.

The maximum end-to-end latency constraint states that,
for a given path Pk, the time taken between the instant the
driving sensor outputs a data set until the instant the actuator
or the multiple-input application fed by the path receives
the result of the computation on that data set must be no
greater than a given value, Lmax

k . Let Lk be the actual (as
opposed to the maximum allowed) value of the end-to-end
latency for Pk. The quantity Lk can be found by adding the
computation and communication times for all applications
in Pk (including any sensor or actuator communications).
Let D(ai) be the set of successor applications of ai. Then,

Lk =
∑

i: ai∈Pk

p: (ap∈Pk)∧(ap∈D(ai))

[
T c

i + T n
ip

]
. (8)

It is desired that a given mapping µ of the system be ro-
bust with respect to the satisfaction of two QoS attributes:
the latency and throughput constraints. Following step 1 of
the FePIA procedure in Section 2, the system performance
features that should be limited in variation are the latency
values for the paths and the computation and communica-
tion time values for the applications. The set Φ is given by

Φ = {T c
i || 1 ≤ i ≤ |A|}

⋃
{
T n

ip|| (1 ≤ i ≤ |A|) ∧ (p, ap ∈ D(ai))
} ⋃

{
Lk|| 1 ≤ k ≤ |P|} (9)

This system is expected to operate under uncertain out-
puts from the sensors, requiring that the mapping µ be ro-
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bust against unpredictable increases in the sensor outputs.
Let λz be the output from the z-th sensor in the set of sen-
sors, and be defined as the number of objects present in the
most recent data set from that sensor. The system workload,
λ, is the vector composed of the load values from all sen-

sors. Let λorig be the initial value of λ, and λorig
i be the

initial value of the i-th member of λorig. Following step 2,
the perturbation parameter πj is identified to be λ.

Step 3 of the FePIA procedure requires that the impact of
λ on each of the system performance features be identified.
The computation times of different applications (and the
communication times of different data transfers) are likely
to be of different complexities with respect to λ. Assume
that the dependence of T c

i and T n
ip on λ is known (or can

be estimated) for all i, p. Given that, T c
i and T n

ip can be re-
expressed as functions of λ as T c

i (λ) and T n
ip(λ), respec-

tively. Then Equation 8 can be used to express Lk as a
function of λ.

Following step 4 of the FePIA procedure, the set of
boundary relationships corresponding to Equation 9 is given
by

{T c
i (λ) = 1/R(ai)|| 1 ≤ i ≤ |A|}

⋃
{
T n

ip(λ) = 1/R(ai)|| (1 ≤ i ≤ |A|) ∧ (p, ap ∈ D(ai))
} ⋃

{
Lk(λ) = Lmax

k || 1 ≤ k ≤ |P|}.
Then, using Equation 1, one can find, for each φi ∈ Φ, the
robustness radius, rµ(φi, λ). Specifically,

rµ(φi, λ) =




min
λ: T c

x(λ)=1/R(ax)
‖λ − λorig‖2 if φi = T c

x (10a)

min
λ: T n

xy(λ)=1/R(ax)
‖λ − λorig‖2 if φi = T n

xy (10b)

min
λ: Lk(λ)=Lmax

k

‖λ − λorig‖2 if φi = Lk (10c)

The robustness radius in Equation 10a is the largest increase
(Euclidean distance) in load in any direction (i.e., for any
combination of sensor load values) from the assumed value
that does not cause a throughput violation for the compu-
tation of application ax. The robustness radii in Equations
10b and 10c are the similar values for the communications
of application ax and the latency of path Pk, respectively.
The robustness metric, from Equation 2, is given by

ρµ(Φ, λ) = min
φi∈ Φ

(rµ(φi, λ)) . (11)

For this system, ρµ(Φ, λ) is the largest increase in load in
any direction from the assumed value that does not cause a
latency or throughput violation for any application or path.
Note that ρµ(Φ, λ) has the units of λ, namely objects per

data set. In addition, note that although λ is a discrete vari-
able, it has been treated as a continuous variable in this sec-
tion because the number of possible discrete values λ can
take is infinite. However, because ρµ(Φ, λ) should not
have fractional values, one can take the floor of the right
hand side in Equation 11. A different method for handling
a discrete perturbation parameter is discussed in [1].

This research assumes that the optimization problems
given in Equations 10a, 10b, and 10c can be solved to find
the respective global minima. Note that an optimization
problem of the form

min
x

f(x), subject to the constraint g(x) = 0,

where f(x) and g(x) are both convex functions, can be
easily solved to find the global minimum [6]. Because
all norms are convex functions, the optimization problem
posed in Equation 11 reduces to a convex optimization
problem if T c

x(λ) and T n
xy(λ) are convex functions. Many

commonly encountered complexity functions are convex.
(A notable exception is log x.) For example, all of the fol-
lowing functions are convex over the domain of positive real
numbers (x > 0): epx for p ∈ R; xp for p ≥ 1; and x log x.
In addition, positive multiples of convex functions and sums
of convex functions are also convex functions. Note that if
the T c

x(λ) and T n
xy(λ) functions are not convex, then it is

assumed that heuristic techniques can be used to find near-
optimal solutions.

4. Experiments

4.1. Overview

The experiments in this section seek to establish the util-
ity of the robustness metric in distinguishing between map-
pings that perform similarly in terms of a commonly used
metric, such as makespan. Two different systems were con-
sidered: the independent task allocation system discussed in
Subsection 3.1 and the HiPer-D system outlined in Subsec-
tion 3.2. Experiments were performed for a system with five
machines and 20 applications. A total of 1000 mappings
were generated by assigning a randomly chosen machine
to each application, and then each mapping was evaluated
with the robustness metric and the commonly used metric.

4.2. Independent Application Allocation

For the system in Subsection 3.1, the ETC values were
generated by sampling a Gamma distribution. The mean
was arbitrarily set to 10, the task heterogeneity was set to
0.7, and the machine heterogeneity was also set to 0.7 (the
heterogeneity of a set of numbers is the standard deviation
divided by the mean). See [3] for a description of a method
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for generating random numbers with given mean and het-
erogeneity values.

The mappings were evaluated for robustness, makespan,
and load balance index (defined as the ratio of the finish-
ing time of the machine that finishes first to the makespan).
The larger the value of the load balance index, the more
balanced the load (the largest value being 1). The tolerance,
τ , was set to 20% (i.e., the actual makespan could be no
more than 1.2 times the predicted value). In this context, a
robustness value of x for a given mapping means that the
mapping can endure any combination of ETC errors with-
out the makespan increasing beyond 1.2 times its predicted
value as long as the Euclidean norm of the errors is no larger
than x seconds.

Figure 3 shows the robustness of a mapping against its
makespan. It can be seen that sharp differences exist in the
robustness of some mappings that have very similar values
of makespan. A similar conclusion could be drawn from
the robustness against load balance index plot (not shown
here). Both of the above conclusions highlight the fact that
the robustness metric can be used to differentiate between
mappings that perform similarly with respect to two popular
performance metrics.

It can be seen in Figure 3 that some mappings are clus-
tered into groups, such that for all mappings within a group,
the robustness increases linearly with the makespan. This
can be explained using Equation 6. Let m(C) be the ma-
chine that determines the makespan at C. Let n(mj) be
the number of applications mapped to machine mj . If
m(Corig) has the largest number of applications mapped to
it, then it is also the machine that determines the robustness
of the mapping (because it has the smallest robustness ra-
dius, Equation 6). Now consider the set S1(x) of mappings
such that x = n(m(Corig)) = max

j:mj∈M
n(mj) for each

mapping in the set. For mappings in S1(x), the robustness
is directly proportional to M orig (Equation 6). Each dis-
tinct straight line in Figure 3 corresponds to S1(x) for some
x ∈ {1 · · · |A|}. The explanation for the outlying points is
as follows. Let S2(x) be the union of S1(x) and the set of
mappings for which x = n(m(Corig)) �= max

j:mj∈M
n(mj).

The outlying points belong to the latter set, S2(x) − S1(x).
Note that all such outlying points lie “below” the line spec-
ified by S1(x). For a mapping that corresponds to an outly-
ing point, the machine that determines the robustness is not
m(Corig); it is some other machine for which the robustness
radius is smaller than the robustness radius for m(Corig).

4.3. The HiPer-D System

For the model in Subsection 3.2, the experiments were
performed for a system that consisted of 19 paths, where the
end-to-end latency constraints of the paths were uniformly
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Figure 3. The plot of robustness against
makespan for 1000 randomly generated map-
pings. While robustness and makespan are
generally correlated, for any given value of
makespan there are a number of mappings
that differ significantly in terms of their ac-
tual robustness.

sampled from the range [750, 1250]. The system had three
sensors (with rates 4 × 10−5, 3 × 10−5, and 8 × 10−6),
and three actuators. The experiments made the following
simplifying assumptions. The computation time function,
T c

ij(λ), was assumed to be of the form
∑

1≤z≤3 bijzλz ,
where bijz = 0 if there is no route from the z-th sensor to
application ai. Otherwise, bijz was sampled from a Gamma
distribution with a mean of 10 and task and machine hetero-
geneity values of 0.7 each. For simplicity in the presenta-
tion of the results, the communication times were all set to
zero. These assumptions were made only to simplify the
experiments, and are not a part of the formulation of the
robustness metric. The salient point in this example is that
the utility of the robustness metric can be seen even when
simple complexity functions are used.

The mappings were evaluated for robustness and “slack.”
In this context, a robustness value of x for a given map-
ping means that the mapping can endure any combination
of sensor loads without a latency or throughput violation
as long as the Euclidean norm of the increases in sensor
loads (from the assumed values) is no larger than x. Slack
has been used in many studies as a performance measure
(e.g., [9, 18]) for mapping in parallel and distributed sys-
tems, where a mapping with a larger slack is considered bet-
ter. In this study, slack is defined mathematically as follows.
Let the fractional value of a given QoS attribute be the value
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of the attribute as a percentage of the maximum allowed
value. Then the percentage slack for a given QoS attribute
is the fractional value subtracted from 1. The system-wide
percentage slack is the minimum value of percentage slack
taken over all QoS constraints, and can be expressed math-
ematically as

min


 min

k:Pk∈P

(
1 − Lk(λ)

Lmax
k

)
,

min
i: ai∈A


1 −

max
(
T c

i (λ), max
ap∈D(ai)

T n
ip(λ)

)
1/R(ai)





 .

Figure 4 shows the robustness of a mapping against its
slack. It can be seen that while mappings with a larger
slack are more robust in general, sharp differences exist
in the robustness of some mappings that have very simi-
lar values of slack. In particular, examine the two mappings
shown in Table 2. Although the slack values are approxi-
mately the same, the robustness of B is about 3.3 times that
of A. While both A and B perform similarly when com-
pared using slack, B is a much better mapping consider-
ing its robustness against increases in sensor loads. That is,
using slack as a measure of how much increase in sensor
load a system can tolerate may cause system designers to
grossly misjudge the systems capability. The results show
that slack, as defined here, is not a good indicator of the
robustness of the system as to how many objects per data
set could be processed by the system before a QoS viola-
tion occurred. As can be seen in Figure 4, there is a set
of mappings with slack values ranging from approximately
0.2 to approximately 0.5, but all these mappings have the
same robustness value of approximately 250. These map-
pings are virtually indistinguishable from each other with
respect to how many objects per data set could be processed
by the system before a QoS violation occurred. The exper-
iments in this section illustrate that, even for very simple
computing environments, a commonly used measure of the
availability of computing resources is not a reliable mea-
sure of the system’s ability to maintain a desired QoS in
the presence of uncertainty, and that an explicit measure of
robustness should be used in the manner specified by the
FePIA procedure presented here.

Table 2 also shows the actual sensor load values at which
a throughput or latency constraint is reached for a given
mapping. For reference, the computation time functions
T c

ij(λ) for this experiment are given in Table 2.
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Figure 4. The plot of robustness against
slack for 1000 randomly generated mappings.
While robustness and slack are generally cor-
related, for any given value of slack there are
a number of mappings that differ significantly
in terms of their actual robustness, a problem
that is exacerbated for large values of slack.

5. Conclusions

This paper has presented a mathematical description of
a new metric for the robustness of a resource allocation
with respect to desired system performance features against
perturbations in system and environmental conditions. In
addition, the research describes a four-step procedure, the
FePIA procedure, to methodically derive the robustness
metric for a variety of parallel and distributed resource al-
location systems. For illustration, the FePIA procedure is
employed to derive robustness metrics for two example dis-
tributed systems. The experiments conducted in this re-
search for two example parallel and distributed systems il-
lustrate the utility of the robustness metric in distinguishing
between the mappings that perform similarly otherwise.
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[5] L. Bölöni and D. C. Marinescu. Robust scheduling of
metaprograms. Journal of Scheduling, 5(5):395–412, Sep.
2002.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE



[6] S. Boyd and L. Vandenberghe. Convex Optimization, to
appear in 2003, available at http://www.stanford.
edu/class/ee364/index.html#book.

[7] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Mah-
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