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ABSTRACT 

THE RELATIONSIIlP OF THE NORTH AMERICAN MONSOON 
TO TROPICAL AND NORTH PACIFIC SEA SURF ACE TEMPERATURES 

AS REVEALED BY OBSERVATIONAL ANALYSES 

The North American Monsoon is a seasonal shift of upper and low level 

pressure and wind patterns which brings summertime moisture into the Southwest 

United States and ends the late spring wet period in the Great Plains. The climatology 

and interannual variability of the North American Monsoon are examined using the 

NCEP/NCAR Reanalysis (1948-98). The diurnal and seasonal evolution of 500-mb 

geopotential height , integrated moisture flux, and integrated moisture flux convergence 

are constructed using a five-day running mean for the months May through September. 

All of the years are used to calculate an average daily Z-score which removes the 

diurnal, seasonal, and intraseasonal variability. The average Z-score centered about the 

date is correlated with three Pacific SST indices associated with the El Niiio Southern 

Oscillation (ENSO) and the North Pacific Oscillation (NPO). These indices are: Ntiio 

3, a North Pacific index, and a North American Monsoon index (M) which combines 

the previous two. Regional time evolving precipitation indices for the Southwest and 

Great Plains, which consider the total number of wet or dry stations in a region, are 

also correlated with the SST indices. The new reanalysis climatology reveals: the time 

of maximum northward extent of the monsoon is late July, a diurnal cycle in 

atmospheric moisture which reflects the evolution of summer thunderstorms, the 

presence of the Baja and Great Plains low level jets, and the seasonal dependence of 
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atmospheric moisture on monsoon ridge position. These results are in agreement with 

previous, more comprehensive reanalysis climatologies using shorter lengths of record. 

Pacific SS Ts are related to a sequence of teleconnection patterns over North 

America through the summer. The relationship to the atmospheric circulation is 

strongest at monsoon onset, when the Pacific Transition pattern controls the large-scale 

distribution of moisture across the western U.S. A high (low) NPO phase and El Niiio 

(La Nina) conditions favor a trough (ridge) over the northern Rocky Mountains, 

northern Great Plains. In the Great Plains the spring wet season is lengthened 

(shortened) and early summer rainfall and integrated moisture flux convergence are 

above (below) average. In the Southwest monsoon onset is late (early) and early 

summer rainfall and integrated moisture flux convergence are below (above) average. 

Relationships with the Pacific SST indices decay in the later part of the monsoon. 

These idealized climatological responses associated with high and low values of the M 

index were observed in the Midwest Flood of 1993 and the Drought of 1988, 

respectively. Tropical and North Pacific SSTs are related to atmospheric moisture and 

precipitation in the western U.S. to varying degrees depending on location. In the 

Great Plains, North Pacific SSTs are dominant factor, while in the Southwest tropical 

and North Pacific SSTs are equally important. Though the M index is the better 

diagnostic for North American Monsoon, only the time-coincident relationships with 

atmospheric circulation and moisture are statistically significant. A statistically 

significant relationship exists between spring Niiio 3 and the atmospheric circulation 

pattern over North America at monsoon onset. 
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I. INTRODUCTION 

The western U.S. is particularly sensitive to interannual variability of summer 

climate. In the most arid regions of the Southwest U.S., this variability can be larger than 

mean summer rainfall itself (Higgins et al. 1998). Climate and weather extremes produce 

unique dangers and their effects vary in scope. Severe weather hazards include high 

winds, hail, lightning, and tornadoes, especially from supercell thunderstorms in the 

Great Plains. Flash flooding arises from individual localized summer thunderstorms with 

high rainfall rates. These events are common the Southwest U.S. because of its steep 

terrain and poor soil moisture holding capacity. Sustained summer flood or drought 

conditions over broad areas, such as the Flood of 1993 or the Drought of 1988, result 

from shifts in the large-scale circulation pattern in summer (e.g. Trenberth and Branstator 

1992; Bell and Janowiakl995; Trenberth and Guillemot 1996). Short or long-term 

departures from average conditions may adversely affect infrastructure, agricultural 

production, water supply, and hydroelectric power generation. The sensitivity to these 

extreme conditions is likely to increase in the next century if the current trends of 

population growth and rapid development in urban areas continue. There is a critical 

need to understand the causes of interannual variability so seasonal forecasts can be 

improved. 

The North American Monsoon (NAM) controls the large-scale distribution of 

summer moisture in the western U.S. The NAM is a true monsoon in that elevated heat 

sources drive a reversal of the circulation in the summer, causing a transport of moisture 

into western North America. The heating sources are the Colorado Plateau, extending 



from the Mogollon Rim of Arizona to the Rocky Mountains of Colorado, and the 

Mexican Altiplano, between the Sierra Madre Mountains in Mexico (Adams and Comerie 

1997; Barlow et al. 1998). Dry mid latitude westerly flow persists until the middle of 

June. Monsoon onset is associated with a shift in circulation in late June or early July, on 

average. An extension of the Bermuda high retreats west, initiating light easterly flow at 

middle and upper levels (above 850-mb) over the Southwest U.S. (Bryson and Lowry 

1955; Adams and Comerie 1997; Higgins et al 1997b). A diurnal surface heat low forms 

over the southwest Arizona and southern California. Two low level jets (LLJ), the Great 

Plains LLJ and the Baja LLJ, are active at night and early morning to midday, 

respectively (Douglas 1995; Higgins et al. 1997a). 

There is a rapid increase in precipitation which begins in southern Mexico in June, 

advances northward along the Sierra Madre Mountains~ and arrives into the Southwest 

U.S. by early July (Douglas et al. 1993; Adams and Comerie 1997; Higgins et al. 1997a). 

Higgins et al. (1998) defined average monsoon onset dates for regions in Mexico and the 

United States using a regridded hourly precipitation index. They found average onset 

dates of 7 June, 17 June, and 7 July for Southwest Mexico (SWMEX), Northwest 

Mexico (NWMEX), and Arizona-New Mexico (AZNM), respectively. NAM 

precipitation is principally from daily thunderstorms that form over mountain ranges in 

the morning and intensify in lowlands later in the day. The amount and timing ofNAM 

precipitation change with latitude. Southern Mexico has two peaks of heavy NAM 

precipitation, as the intertropical convergence zone advances north in June and retreats in 

September. Southwest U.S. NAM precipitation is much lighter, because of the influence 

of the midlatitude storm track, and has only one peak in July (Douglas et al. 1993; 
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Higgins et al. 1997b). The NAM regime in the U.S. persists until approximately mid-

September. 

NAM moisture comes from the Gulf of Mexico, the Gulf of California, and the 

Eastern Pacific. At middle and upper levels, easterly winds carry the Gulf of Mexico 

moisture on the southern side of the monsoon ridge (e.g. Bryson and Lowry 1955). Low 

level moisture (below 850-mb) from the Gulf of Mexico reaches the Great Plains by the 

nocturnal Great Plains LLJ, but this moisture cannot penetrate the continental divide 

(Retian 1957; Rasmussen 1967). West of the continental divide, the Baja LLJ draws low 

level moisture up the northern Gulf of California by a Gulf surge mechanism (Hales 

1972, Brenner, 1974, Adams and Comerie, 1997). The mean summertime circulation 

accounts for most water vapor transport and virtually all the moisture into the Southwest 

U.S. comes from the two gulf sources (Schmitz and Mullen 1996; Higgins et. al. 1997b). 

Moisture from the Eastern Pacific and Gulf of California is important for convection 

along the Sierra Madre Occidental in Mexico (Douglas et al. 1993). Though not part of 

the NAM per se, Eastern Pacific tropical systems are an important secondary source of 

moisture in late summer. Tropical systems which form off the west coast of Mexico may 

recurve into northwest Mexico or the Southwest U.S. from late July through September 

(Kimber lain and Landsea, in press). 

In the U.S., the NAM is traditionally defined in the Southwest, namely Arizona 

and New Mexico. The northern parts of Chihuahua and Sonora in Mexico also may be 

included climatologically as part of the Southwest. Most NAM studies in the U.S. focus 

exclusively on this :region because of its clear monsoon signature. Hot and dry conditions 

switch to cooler and wet near the same date annually. However, the shift in circulation 
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also affects the precipitation in the Great Plains in an opposite way. Formation of the 

monsoon ridge over the Colorado Plateau causes the Great Plains LLJ to subside and 

precipitation to decrease in the Great Plains after the middle of June (e.g. Higgins et al. 

1997b; Barlow et al. 1998). In this study, we broaden the traditional region ofNAM 

influence in the U.S. to consider climate variability in the both the Great Plains and the 

Southwest. 

Interannual variability of winter precipitation in the western United States has a 

well-established connection to the El Nifio Southern Oscillation (ENSO). Numerous 

model and observational studies confirm that variations in the location and strength of 

tropical convection produce coherent teleconnection patterns in the large-scale circulation 

over North America, specifically the Pacific North America, West Pacific, and Tropical 

Northern Hemisphere, and North Pacific patterns (e.g. Horel and Wallace 1981; Livezey 

and Mo 1987). The recognition of these ENSO-associated teleconnections and their 

associated climate patterns has substantially improved the accuracy of long-range 

seasonal forecasts for the winter season. El Nifio winters are typically dry and warm in 

the Pacific Northwest and wet in the Southwest. By constrast, La Nifia winters are wet in 

the Pacific Northwest and dry in the Southwest (e.g. Ropelewski and Halpert 1986). 

The North Pacific Oscillation (NPO) or, alternatively, the Pacific Decadal 

Oscillation (PDQ), modulates the ENSO teleconnections in winter. The NPO is a quasi-

decadal variation in the strength of the Aleutian low and associated pattern of sea surface 

temperature anomalies (SSTAs) across the North Pacific (Mantua et al. 1997; Minobe et 

al. 1997; Gurshunov and Barnett 1998). A high (low) NPO phase is characterized by a 

strong (weak) Aleutian low, a cold (warm) central North Pacific and warm (cold) eastern 
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North Pacific. There is a correlation between ENSO and NPO, with high (low) NPO 

favored in El Nifio (La Nifia) years (Mantua et al. 1997). Modeling studies suggest that 

the NPO may be forced through ENSO-associated variations in tropical convection (e.g. 

Lau and Nath, 1994). However, the exact physical mechanism of the NPO is not yet 

understood and not the subject of this paper. Using long-term sea level pressure and daily 

precipitation data, Gurshunov and Barnett (1998) showed that the NPO modulates the 

winter ENSO response. ENSO-associated teleconnection patterns and climate anomalies 

are most likely when El Nifio (La Nifia) corresponds with its favored NPO phase. 

Destructive combinations of ENSO and NPO tend to weaken the effects of either mode of 

influence, resulting in a weak and incoherent climate response. The NPO was in a high 

phase, on average, since the late 1970s through most of the 1990s coincident with an 

increase in frequency of El Nifio events. 

Most studies of NAM interannual variability, again considering the NAM as 

affecting the Great Plains and Southwest, follow a standard methodology (e.g. Carleton et 

al. 1990; Harrington 1992; Hereford and Webb 1992; Bunkers et al., 1996; Gutzler and 

Preston 1997; Mo et al., 1997; Glenn and Comerie 1998; Higgins et al., 1998; Ting and 

Wang 1998; Higgins et al. 1999; Higgins and Shi 2000). Summer precipitation is 

characterized for a given region. Regions are defined by latitude and longitude or similar 

physiogeographic characteristics. A typical measure of precipitation employed is the 

normalized departure (or Z-score) from either a seasonal or monthly average over a given 

area. Interannual variability of precipitation is related to large-scale atmospheric 

circulation patterns, Pacific sea surface temperature (SST) distributions, or antecedent 
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land surface conditions, like snow cover. Patterns of correlation or statistically 

significant differences between wet and dry summers are determined. 

Several conclusions can be drawn from the precipitation studies. The monsoon 

ridge position and strength guide the middle and upper level moisture transport. A 

relationship between ridge position and interannual variability of NAM rainfall in 

Arizona was first noted by Carleton et al. (1990). Two configurations of the monsoon 

ridge exist which can vary in :frequency of occurrence either intraseasonally or 

interannually. In the ridge north configuration, a strong ridge is located over the Great 

Plains. Upper level easterlies carry moisture from the Gulf of Mexico south of the ridge. 

The monsoon arrives early and is wet in the Southwest. The Great Plains are dry on the 

subsiding branch of the ridge. In the ridge south configuration, a trough occurs in the 

western U.S. and the monsoon ridge is weakened and located over northwest Mexico. 

Westerly upper level winds over the western U.S. direct moisture into the Great Plains. 

The Southwest is dry and monsoon onset is delayed. Later studies considering the 

interannual variability of NAM precipitation in Arizona and New Mexico support this 

idea (Higgins et al. 1998; Comerie and Glenn 1998; Higgins et al. 1999). The 

relationship of the monsoon ridge configurations to summer moisture transport, 

precipitation, and wet and dry summers in the central U.S. is also well established (Mo et 

al. 1997). 

Summer precipitation in the western U.S. is related to the distribution of Pacific 

SSTs. The relationship is particularly strong in the Great Plains. Bunkers et al. (1996) 

found statistically significant above (below) average precipitation anomalies over North 

and South Dakota during El Nifio (La Nifia) summers. Ting and Wang (1997) correlated 
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sea surface temperature anomalies (SSTA) in the Pacific with a precipitation index of 

Great Plains stations. Areas of statistically significant correlation with SSTs in the 

central and east North Pacific and the equatorial Pacific reflect ENSO and NPO. Using a 

singular value decomposition technique, they also showed that there are two modes of 

covariation between Pacific SSTs and Great Plains precipitation, an ENSO mode in the 

northern Great Plains (and Midwest) and an NPO mode in the southern Great Plains. As 

a whole, the Great Plains precipitation studies suggest that wet (dry) summers in that 

region are associated with El Nifio (La Nifia) and high (low) NPO. 

An opposite relationship between Pacific SSTs and NAM precipitation may exist 

in the Southwest. Carleton et al. (1990) noted in wet monsoons that East Pacific SSTs off 

the California coast are cooler than average in summer. The enhanced longitudinal 

temperature gradient between the Eastern Pacific and the Gulf of California increases the 

strength of the Baja LLJ into the Southwest. In a study using 65 years of monthly 

precipitation from stations across Arizona and New Mexico, Harrington et al. (1992) 

found different patterns in summer precipitation for extremes of the Southern Oscillation, 

with El Nifio (La Niiia) favoring above average July precipitation in northeast New 

Mexico (west-central Arizona). Higgins et al. (1999) correlated June-September 

precipitation totals for three monsoon regions in the U.S. and Mexico with the Southern 

Oscillation Index (SOI). They found a statistically significant positive (negative) 

correlation between La Nifia (El Nifio) and total summer precipitation in southwest 

Mexico. Higgins et al. (1998) showed that negative SST anomalies in the eastern tropical 

Pacific during winter and spring are associated with wet monsoons in Arizona and New 

Mexico. Higgins and Shi (2000) have related the NAM onset and precipitation in the 
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Southwest U.S. to decade-scale fluctuations in North Pacific SSTs associated with the 

NPO. 

Land surface conditions may affect the summer atmospheric circulation and 

provide a "memory" of antecedent, ENSO-related winter climate patterns. Modeling 

studies confirm that antecedent land surface conditions may affect summer temperature, 

cloudiness, and precipitation on the regional and local scale, especially monsoons (e.g. 

Anthes and Kuo 1986; Dinneyer 1994; Meehl, 1994; Sud, 1995). Soil moisture, 

vegetation, and snow cover affect partitioning of energy at the surface between sensible 

and latent heat fluxes. Namias (1960) first suggested that dry, warm spring conditions in 

the Great Plains leads to a greater sensible heat flux and enhancement of the monsoon 

ridge over that region. In an observational study of summer precipitation in New Mexico 

and antecedent snow cover, Gutzler and Preston (1997) proposed that spring snow extent 

across the west-central U.S. acts to enhance or suppress the NAM circulation. Excessive 

snow leads to deficient summer rain, and deficient snow leads to abundant rain. In 

agreement with this hypothesis, Higgins et al. (1998) noted wet (dry) monsoons in 

Arizona-New Mexico tend to follow winters with wet (dry) conditions in the Pacific 

Northwest and dry (wet) conditions in the Southwest. 

In this study, the original hypothesis of Gurshunov and Barnett (1998) is extended 

to· the summer season. We propose that the combination of ENSO and NPO govern 

interannual variability of the NAM, as determined by monsoon ridge position. The NAM 

should show a strong relationship to Pacific SSTs, since it is the dominant summer 

circulation feature in the western U.S. The most coherent relationships between the 

NAM and Pacific SSTAs should occur when El Nifio (La Nifia) corresponds with high 
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(low) NPO phase. The datasets and methodology are discussed in sections 2 and 3. The 

results of an updated reanalysis NAM climatology of 500-mb geopotential height and 

atmospheric moisture for the summer season are shown in section 4. Interannual 

variability of the reanalysis variables and a precipitation index are related to Pacific SSTs 

in sections 5 and 6. Lagged relationships with Pacific SSTs are evaluated in section 7. A 

discussion and summary are presented in sections 8 and 9. 
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II. DESCRIPTION OF DATA 

The updated NCEP/NCAR Daily Reanalysis is used to evaluate atmospheric 

circulation and moisture in the western U.S. The reanalysis assimilation system is a 

modified version of the Medium Range Forecast (MRF) spectral model with T62 

resolution and 28 sigma levels. The NCEP/NCAR Reanalysis incorporates the widest 

possible array of data sources with advanced quality control and monitoring systems 

(Kalnay et al. 1995). The study of interannual climate variability is an intended use of 

long term reanalyses and the NCEP/NCAR Reanalysis has already been used for this 

purpose in previous work on the NAM (e.g. Higgins et al. 1998; Higgins et al. 1999; 

Higgins and Shi 2000). In this study we utilize the reanalysis specific humidity ( q), 

surface pressure (p5), and winds (v) for sigma levels 28-14 (below approximately 400-

mb) and the 500-mb geopotential height (<1>500). These reanalysis variables are more 

reliable, as compared to model parameterized variables like evaporation or precipitation, 

because they are directly influenced by the original radiosonde observations (Kalnay et al. 

1995). Four times daily data (OZ, 6Z, 12Z, and 18Z) were obtained from the NCAR 

archives for the months May through September from 1948-98. 

The Cooperative Summary of the Day (Coop) data, from the National Climate 

Data Center, has surface observations for all past and present cooperative sites throughout 

the United States. Daily precipitation is recorded as the precipitation reading 24 hours 

ending at the time of observation, read to hundredths of an inch. Trace amounts of 

precipitation are recorded. Missing precipitation is also recorded or, at some stations, 

10 



entire months are absent from the record. Daily Coop precipitation data from 1950-95 

were obtained for 340 Great Plains stations (97-105° W, 37-45° N) and 231 Southwest 

stations (106-116° W, 31-39° N). The precipitation regions are shown in Fig. 1. 

The Comprehensive Ocean Atmosphere Dataset (COADS) contains monthly 

average SST on a 2° latitude by 2° longitude grid from 1854-1997. SST observations are 

from ship reports and other in situ platforms. A quality control procedure eliminates 

outlying observations if they fall outside a prescribed number of standard deviations 

about the smoothed median at a specific location (Slutz et al. 1985). The normalized 

monthly SSTA from 1950-97 were computed for two regions of the North Pacific, the 

Central North Pacific or CNP (177° E-164° W, 26-36°N) and the Eastern North Pacific or 

ENP (125-150° W, 35-50° N). These Pacific regions correspond roughly to a SST dipole 

associated with the NPO and are correlated (r2 > 0.25) with summer precipitation in the 

Great Plains (Ting and Wang 1997). The traditional Nino 3 normalized SSTA index to is 

used define ENSO. The Nifio indices are readily accessible from the Climate Prediction 

Center. The Pacific SST regions are shown in Fig. 2. 
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III. ANALYSIS METHODS 

Though precipitation is the principal variable of concern, the standard 

precipitation-based approaches may not be best suited to investigate NAM interannual 

variability. Summer precipitation is statistically ill-behaved. Its spatial distribution is 

more variable than winter precipitation because thunderstorms are forced by the large-

scale dynamic and the local thermodynamic conditions. At point measuring locations, 

precipitation is not a normally distributed quantity and large rainfall events account for 

most precipitation variability in summer (e.g. Cowie and McKee 1986). Gridded 

precipitation products may smooth out maxima or be influep.ced by a reanalysis model 

parameterization, though the quality and length of these data have dramatically improved 

in recent years. The specific regions and analysis techniques used differ in every study, 

so there is no universally agreed set of dry and wet summers in a given region. Most 

important, the relationship of NAM precipitation to circulation and SSTs may change in 

time and space through the summer season. Monthly or seasonal averages are of 

insufficient ti1:ne resolution to resolve the evolution. Daily data are necessary. 

The daily integrated moisture flux (MF) and integrated moisture flux convergence 

(MFC) are better suited to investigate interannual variability of atmospheric moisture 

over a large region. At locations throughout the western U.S., the statistical distribution 

of MFC for each day is near normal in the summer season (not shown). The contribution 

of the large scale moisture transport to precipitation is isolated apart from local 

evaporation and transpiration. MF and MFC for each analysis time are computed from 

reanalysis winds (v) and specific humidity (q) on sigma surfaces. These variables are 
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directly related to evaporation (E) and precipitation (P) through the water balance 

equation (Trenberth and Guillemot 1995; Schmitz and Mullen 1996; Higgins et al. 1997a) 

MF= Ps r2s(qv)dcr 
g 14 

(1) 

MFC= P-E= - Ps r28
V•(qv)dcr 

g 14 

(2) 

The version of the water balance equation used here for MFC omits local storage 

of water vapor, surface runoff, and ground storage. MFC for sigma levels 28-14 is 

computed by a step-wise integration procedure. Since the amount of water vapor at 400-

mb is two orders of magnitude less than at the surface, transport of water vapor at upper 

levels (less than sigma level 14) is assumed negligible (e.g. Higgins et al. 19971;>). 

Five day running averages(µ) and standard deviations (cr) of the reanalysis MF, 

MFC, and <l>soo are constructed for each from May through September. Each of the four 

daily reanalysis times is considered separately. These fields yield an updated fifty-year 

reanalysis climatology of the height and moisture fields of the NAM that can be compared 

with similar, more comprehensive NAM climatologies using shorter lengths of record. 

In the same manner as the precipitation studies, the reanalysis variables (x,) of:rv.tF, 

MFC, and <l>soo are converted to Z-scores (.lx) daily for the four reanalysis times. A 

spatially varying Z-score is defined for each time as: 
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z = Xct> - µx<t> 
x<t> er 

x;(t) 

(3) 

A time-varying correlation approach is used to relate Pacific SSTs, atmospheric 

circulation, and atmospheric moisture transport through the course of the summer season. 

For each reanalysis time, the thirty day average Z-score of the reanalysis variable 

centered on the date ( Zx<t> ) is correlated with time coincident values of three Pacific 

SSTA indices: the standard Nifio 3, a North Pacific index, and a North American 

Monsoon index which combines the previous two. Zx<t> isolates interannual to 

interdecadal climate variability by eliminating the diurnal, seasonal, and intraseasonal 

variability from the data. The NP index (NP) is: 

NP=ENP-CNP (4) 

The North American Monsoon Index (M) is: 

M :::; Nifio 3 + ENP - CNP (5) 

This new simple M index is proposed as a way to relate the combination of temporal 

variability of ENSO and NPO. High (low) M corresponds with El Nifio (La Nifia) and 

high (low) NPO. The M index weights the influence of the North Pacific more than 
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tropical Pacific SSTs, reflecting the magnitude of correlation between Pacific SSTs and 

Great Plains summer precipitation found by Ting and Wang (1997). The relative 

contribution of tropical and North Pacific SSTs to the explained variance ofM is 

evaluated by comparison of the correlation analyses from the first two Pacific SST 

indices. The same analyses were also done with one to four months lag in Pacific SSTs 

to evaluate the potential for seasonal predictability and the dependence of late spring 

Pacific conditions on the NAM. With the same time-evolving approach, the fifteen 

highest and lowest index years are composited and statistically significant differences are 

assessed in reanalysis variable Z-scores through the summer using a two-tailed student's 

t-test. 

To evaluate the relationship of Coop precipitation data to Pacific SS Ts, we 

introduce regional time evolving precipitation indices (PR) for the Great Plains and 

Southwest. At an individual station, for each day a thirty-day precipitation total is 

computed centered about the date. A missing thirty day total for the station is recorded if 

there are more than five missing days in the record. For each date the years are ordered 

highest to lowest according to the precipitation totals. The station precipitation total is 

considered above (below) average on that date if a given year ranks in the top (bottom) 

twenty years. The number of stations in the region (S) recording an above average (SweJ 

or below average (Sdry) precipitation total are tallied for each date. The regional 

precipitation index is then 

(5) 
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As with the Z-scores, the regional precipitation indices for the Great Plains and 

Southwest are correlated with the Pacific SST indices throughout the entire summer. 

Considering summer precipitation in such a way has several ·advantages. As with 

the average Z-score correlation analyses for reanalysis variables, we consider a time-

evolving relationship between Pacific SSTs and precipitation. The actual station 

precipitation totals, the accumulation of small-scale thunderstorm events, are less 

important than whether it was generally wet or dry over the area in the thirty-day period. 

The precipitation indices contain a large sampling of stations within each area, so any 

trends are likely to mirror those in MFC and reflect real large-scale climate variability. 
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IV. UPDATES TO EXISTING NAM REANALYSIS CLIMATOLOGIES 

More comprehensive NAM climatologies using both the ECMWF and NCEP-

NCAR reanalyses have been done by Schmitz and Mullen (1996) and Higgins et al. 

(1997b ), respectively. The time series of daily average Cl>500, MF, and MFC we obtain 

here using the complete fifty-year record are consistent with this previous work. Here we 

show the integrated quantities of MF and MFC only, which are strongly influenced by 

conditions at the surface and low levels. To simplify our discussion, the evolution of the 

NAM is broken down into four averaged periods: pre-monsoon (15 May- 15 June), 

monsoon onset (16 June - 15 July), monsoon peak (16 ~uly- 15 August), and monsoon 

end (16 August - 15 September). 

The upper level monsoon ridge (Fig. 3) is principal control on interseasonal 

variability of MF and MFC. The ridge appears to be a westward extension of the 

Bermuda high, though continental heating is its physical mechanism of generation 

(Bryson and Lowry, 1955). The maximum northward extent of the monsoon ridge, or 

monsoon_ maximum, occurs in late July. At this time monsoon ridge is centered over the 

Four Comers region of the U.S. (Fig. 3c). The zonal component of MF (Fig. 4) shows 

that easterly moisture flux begins over the Gulf of Mexico in May, then advances north 

and westward into Mexico and the Southwest U.S. The deep easterly MF through 

Mexico at monsoon maximum suggests that the Gulf of Mexico, and not the Eastern 

Pacific, is the dominant contributor to the time-averaged moisture transport. The 
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monsoon ridge and easterly moisture flux gradually retreat in August and September as 

the mid-latitude westerly flow resumes. 

The meridional component of MF (Fig. 5) shows the influence of the two low 

level jets, separated by a MF minimum over the Sierra Madre Occidental, eastern 

Arizona, and western New Mexico. The Great Plains LLJ extends from southern Texas 

northward to the Dakotas. This jet has its maximum spatial coverage and intensity in the 

Great Plains from May through early July corresponding with the time of most frequent 

and severe thunderstorms there (e.g. Higgins et al. 1997a). At monsoon onset the daily 

average MF exceeds 175 kg m s-1 in southern Texas near the Gulf of Mexico. The jet 

becomes less intense in the Great Plains from monsoon onset and is weakest at monsoon 

maximum, though it is still a dominant factor in summer rainfall. The meridional MF in 

the Southwest U.S. reflects the Baja LLJ. Though approximately four times weaker than 

the Great Plains LLJ, its time evolution is opposite. The time of maximum intensity and 

spatial coverage for the Baj a LLJ is from monsoon onset through monsoon peak. The 

Baja LLJ appears to be strongest in the Colorado River Valley and originate in the 

northern Gulf of California. However, the NCEP/NCAR Reanalysis cannot resolve the 

structure of the jet within the Gulf of California itself, where the jet is observed to be a 

maximum (Douglas 1995). This analysis supports the assertion that the Gulf of Mexico 

and the Gulf of California are separate and distinct moisture sources for the NAM. 

There is significant diurnal and seasonal variability in MFC. The seasonal and 

diurnal cycle of the Great Plains low level jet, MFC, and precipitation are discussed at 

length by Higgins et al. (1997a). The diurnal cycle ofMFC (Fig. 6) reflects the evolution 

of summer thunderstorms, which initiate over mountains during the day, then intensify 
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and move towards lowland regions in the evening and nighttime. The OZ component of 

the average daily MFC, which dominates the daily average over the western U.S. and 

Mexico, is the largest in magnitude. High values over the Rocky Mountains (9 mm day-1
) 

the Sierra Madre Occidental in Mexico (15 mm day-1
) reflect the strong convection there. 

The MFC maxima becomes weaker and moves to the Great Plains at night ( 6Z) when the 

Great Plains LLJ and thunderstorms are most active. From observational studies, a 

similar diurnal cycle exists in the Southwest U.S., in particular southwest Arizona 

(Adams and Comerie 1997). However, it is not well shown in Fig. 6 because the 

reanalysis resolution is too coarse to capture the sharp contrasts in topography from the 

Mogollon Rim to the Colorado River Valley. 

The domain-averaged summertime evolution of the MFC for the Great Plains and 

the Southwest is computed using the dominant daily component (Fig. 7). The behavior of 

MFC is consistent with the evolution of the monsoon ridge and MF. The evolution of 

atmospheric moisture in Southwest is opposite of the Great Plains. In the Southwest 

(Great Plains) there is a late spring pre-monsoon dry (wet) period from May through mid-

June. Monsoon onset is characterized by a rapid increase (decrease) in MFC, from 

approximately-I (3.5) in mid-June to 0.5 (2) mm day-1 in mid-July. MFC increases to 

near 1 mm day-1 at monsoon maximum in late July. Values gradually decline (increase) 

into August and September as the monsoon ridge dissipates. The evolution of MFC 

through the summer in both regions is approximately the same as the seasonal 

precipitation (e.g. Higgins et al. 1997b, Barlow et al. 1998). This suggests MFC 

dominated by the large-scale circulation, in addition to local evaporation and 

transpiration, is probably an important factor in regional precipitation. 
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It should be noted that even at the time of minimum MFC in the Plains, values are 

still positive and thunderstorms typically occur. By contrast, usually little, if any, rainfall 

is received in the Southwest in the pre-monsoon period, where MFC is negative, on 

average. The onset date of the monsoon could be defined as the time when the dominant 

daily component of the MFC becomes positive in the Southwest. Using this definition, 

the monsoon onset date for the Southwest region is between 7 July and 14 July. This 

onset date is close to that obtained by Higgins et al. (1997a) using a high-resolution 

precipitation dataset over a smaller area within our Southwest region. However, the same 

reasoning does not apply when determining the monsoon end date. Average MFC 

becomes negative again after about 13 August, but monsoon rainfall typically persists for 

several weeks later into September. In the later part of the monsoon, local evaporation 

and transpiration may become a more important source of atmospheric moisture. 

The standard deviation ofMFC and <l>500 are fairly constant through the summer 

(Fig. 8) over the U.S. Geopotential heights and MFC are less variable in the western U.S. 

because of the influence of the monsoon ridge. The highest variability in MFC occurs 

near the Great Lakes region. Synoptic scale eddies associated with the polar front are the 

likely the dominant forcing mechanism for summer rainfall in that part of the U.S. MFC 

is least variable in the Southwest, where there is little atmospheric moisture, though the 

variability increases after monsoon onset. MFC variability increases sharply from west to 

east across the Great Plains, corresponding with a sharp increase in atmospheric moisture 

from the base of the Rocky Mountains to the Mississippi River Valley. 
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V. CORRELATION ANALYSES WITH THEM INDEX 

A. Time series of Pacific SST Indices 

The average summer Pacific SST indices for 1950-97 are shown in Fig. 9. The 

fifteen highest and lowest M index summers used for the two tailed student's t-test are 

indicated. We note, as in Mantua et al. (1997), that the NP and Nifio 3 indices which 

compose the M index are not independent of each other. Nifio 3 is. most related to the NP 

index in spring and early summer, with an average correlation of 0.36 in the period 

March through July. Near zero values of the M index arise when Pacific SSTs are near 

average, such as 1959, or when strong tropical and North Pacific SSTs occur in 

destructive ENSO-NPO combinations, such 1976 and 1983. In the Great Plains, long-

term variation in the M index seems to correspond with sustained dry (low M) or wet 

periods (high M). Using the standardized precipitation index (SPI) in Colorado, McKee 

et al. (1999) note the wet periods since 1950 as 1957-59, 1965-75, and 1979-96, and the 

dry periods as 1951-57, 1963-65, and 1975-78. An opposite relationship may exist in 

Arizona, which experienced wet summers in the mid-1950s coincident with frequent 

monsoon-related flash flood events (Carleton et al. 1990; Hirshboeck 1999). The 

following time-coincident correlation analysis with the M index is presented as 15 day 

snapshorts starting at Julian day 140 (20 May) through Julian day 245 (2 September). 

These dates capture all four periods of NAM evolution. 
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B. Upper level Circulation 

There is a time evolution of correlation patterns between the M index and 

ZcI>soo<t> (Fig. 10). Pacific SST As are related to a coherent sequence of three atmospheric 

teleconnection patterns across the Pacific Ocean and North America during the course of 

the summer season. The North Pacific, Pacific Transition, and Pacific North America 

patterns are associated with the M index during the periods of pre-monsoon, monsoon 

onset, and late monsoon, respectively. 

In the late spring pre-monsoon period (days 140 and 155), the M index is 

correlated with a positive phase of the North Pacific pattern, with height deviations in the 

western and central North Pacific (r = -0.4) and over southern Alaska (r = 0.5). The 

positive (negative) phase of the North Pacific pattern, a preferred El Nifio (La Nifia) 

response during the spring, is associated with a southward (northward) shift of the jet 

stream across the North Pacific (Bell and Janowiak: 1995). The spring storm track is 

directed toward southern California and the Southwest (Pacific Northwest). Though the 

positive (negative) phase of the North Pacific pattern in winter and spring brings above 

(below) average precipitation in the Southwest, it precedes dry (wet) monsoons (Higgins 

and Shi 2000). 

The most statistically significant relationship between the M index and the upper 

level circulation is at monsoon onset in late June and early July, not monsoon peak in late 

July. At onset the M index is correlated with the negative phase of the Pacific Transition 

pattern (PT), which occurred in association with the Flood of 1993 in the Midwest U.S. 

(Bell and Janowiak 1995). PT appears exclusively in summer and is distinct from the 
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ENSO-associated winter teleconnection patterns. The negative and positive phases of PT 

pattern match the monsoon ridge configurations described by Carleton et al. (1990) that 

govern upper level moisture transport and the onset date. A stronger than average upper 

level trough (M high) or ridge (M low) is centered in the northern Rocky Mountains and 

western Great Plains. The strongest negative correlation with Z<l>soo<t> in North America 

(r = -0.6, day 185) during the entire summer, significant at the 99% level, is centered over 

the northern Great Plains in late June to early July. Like the winter Pacific North 

America pattern, PT is part of a coherent series of height deviations from average that 

extend across the Pacific, with centers of action in the tropical Pacific near 160° E, 25° N 

(r = -0.4), central North Pacific in the CNP region (r = -0.3 to -0.4) and the Gulf of 

Alaska near the BNP region (r = 0.4). In late July and August (day 200 onward), the 

correlation between the M index and Z<l>soo<t> becomes statistically insignificant. The 

monsoon peak and end periods appear to be a time of transition to an early fall 

relationship with the Pacific North America pattern which develops in late August and 

September. 

C. Atmospheric moisture 

The correlation of ZMFC(t) with the M index is controlled by the PT response (Fig. 

11 ). The inverse relationship between atmospheric moisture in the Southwest and Great 

Plains exists interannually as well as seasonally. In the May through mid-June pre-

monsoon period, there is a positive correlation (r = 0.4, days 140 and 155) in the southern 

Great Plains states of Texas and Oklahoma. There is no statistically significant 
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relationship in the Southwest at this time. When the position of the monsoon ridge is 

most related to the M index at monsoon onset, MFC is favored either in the Great Plains 

or Southwest. An area of negative correlation with ZMFC(t) appears southern Arizona and 

western New Mexico (r = -0.4, days 170-185), significant at the 95% level. The area of 

positive correlation shifts northward into central Great Plains and the Midwest, increasing 

in spatial coverage and magnitude (r = 0.4 to 0.6, days 170-185), significant at the 99% 

level in Colorado, Kansas, Nebraska, Iowa, and Missouri. The maximum correlation of 

the M index with ZMFC(t) through the onset period follows the climatological northward 

progression of the monsoon, reaching South Dakota and Utah by mid-July. Proceeding 

into late July and August, the correlation decays with time. · By the time of monsoon 

maximum, as with Z<I>soo<t>, the statistical relationship between the M index and ZMFC(t) is 

virtually insignificant across the western U.S. and remains so for the rest of the summer. 

The correlation of ZMF(t) with the M index, presented as a vector, parallels the 

evolution of cyclonic (high M) or anticyclonic (low M) contributions to the circulation 

centered in the northern Great Plains at monsoon onset (Fig. 12). Decomposing the MF 

into low (sigma levels 22-28) and mid levels (sigma levels 14-22), the correlation with 

ZMF(t) at mid-levels is nearly identical to the integrated quantity (not shown). The M 

index has the strongest correlation with ZMF<t> across the Southwest and the southern 

Great Plains, particularly in New Mexico {r= 0.65, day 185). Though Mo et al.(1997) 

showed that wet summer periods in the central U.S. are associated with a stronger 

meridional moisture flux, it is the zonal component of the flux which varies most with the 

M index. This result is consistent with the relationship of the M index to the large-scale 
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circulation pattern. Upper level moisture flux is controlled by the circulation anomaly in 

the northern Great Plains, favoring deviations from the average which are westerly (high 

M) or easterly (low M) to the south and west. 

Correlation with low-level ZMF(t) is weaker and generally of the same sign, 

though not statistically significant in the locations of the two low level jets (not shown). 

In spite of the weak statistical relationship with the M index, there are convincing 

physical arguments that relate the low level jets to Pacific SS Ts. The presence of a 

surface ridge or trough in the Great Plains associated with the PT pattern modulates the 

strength of the Great Plains LLJ, directing low level moisture into eastern Mexico or the 

central U.S. (Mo et al. 1997). The SST gradient between the Gulf of California and East 

Pacific would be enhanced (diminished) in La Nifia (El Nifio) conditions, strengthening 

(weakening) the Gulf surges associated with the Baja LLJ (Carleton et al. 1990). The 

Baja LLJ would be stronger (weaker) in low (high) M years and oriented more from the 

southeast. Such an orientation would place the jet over the axis of the Gulf of California, 

favorable to carry the most amount of low level moisture into the Southwest (Douglas 

1995). A more detailed reanalysis over North America, long-term observational studies 

of both low level jets, and associated regional atmospheric modeling are necessary to 

validate these hypotheses. 

The high and low M index composite summertime evolution of MFC was 

constructed (Fig. 13) using the fifteen highest and lowest summer average M index years 

shown in Fig. 9. These fifteen-year averages are comparable to the fifty year MFC 

climatology in Fig. 7. The greatest differences in MFC between high and low M index 
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years and climatology in the Great Plains and Southwest are at monsoon onset. 

Differences in MFC evolution in the Southwest begin in mid-June. Using the definition 

described earlier, there is a difference of about ten days in onset dates between high (16 

July) and low M (5-6 July) years in the Southwest. These onset dates are slightly outside 

the bounds of the fifty-year climatology. Differences in Great Plains MFC become 

apparent by the beginning of June. MFC increases (decreases) in the Great Plains after 

this time in high (low) M index years. The climatological decrease in MFC which occurs 

near the beginning of July is delayed until early to mid July in high M index years. The 

absolute percentage difference in MFC from climatology for high and low M index years 

is much higher in the Great Plains ( 50':' 100%) than the Southwest ( 5-10% ), where 

moisture is less variable, on average. The evolution of MFC abruptly reverts to 

climatology after late July, when the statistical relationships between MFC and the M 

index become insignificant. 

Central and southern Mexico are not focus of this study, but this area deserves 

mention because NAM precipitation is most pronounced there. Statistically significant 

relationships have been found to exist between summer precipitation and tropical Pacific 

SSTs in this region (Higgins et al. 1999). There is a slight negative relationship of ZMFC(t) 

to the M index, and Nifio 3, in late June and July, but it is not as statistically significant 

nor persistent as the relationship in the Southwest U.S. (not shown in Fig. 11). Long term 

reanalysis atmospheric moisture may be worse over Mexico because of the paucity of 

continuous rawinsonde records. Also, the interannual variability of the NAM in Mexico 

is probably less sensitive to the mid-latitude atmospheric teleconnection patterns 
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associated with remote Pacific SSTs. Summer precipitation in Mexico is more likely tied 

to SSTs in the adjacent East Pacific, which in tum vary with ENSO. Colder (warmer) 

SSTs along the western Mexican coast would enhance (diminish) the ocean-land 

temperature gradient, hence the strength of the monsoon (Higgins et al. 1999). However, 

east Pacific tropical systems are more frequent and intense in El Nino years, which would 

tend to disrupt this relationship (Reyes and Mejia-Trejo, 1991; Kimberlain and Landsea, 

2000). Mexican rainfall may also be influenced by factors independent of Pacific SS Ts 

not considered here, such as the quasi-biennial oscillation (A. Douglas, personal 

communication). Because of the difference in climatological evolution and possible 

difference of controls on interannual variability, the NAM in Mexico should be treated 

separately from the NAM in the U.S. 

D. Precipitation Indices 

The behavior of the correlation of Great Plains and Southwest precipitation 

indices with the M index shows some difference from the correlation with ZMFC(t), but 

results are broadly consistent (Fig. 14 ). The greatest discrepancy is during the 

premonsoon period in the Southwest, when the precipitation index shows a strong 

positive correlation with the M index (r > 0.5). The positive relationship in the spring 

reflects the influence of the North Pacific pattern on the winter and spring storm track 

into the Southwest U.S. However, as the PT relationship emerges and the monsoon ridge 

becomes the dominant control on precipitation in mid June the correlation between the 

Great Plains and Southwest begins to diverge. The maximum correlation with the M 
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index occurs near monsoon onset, 29 June (Julian day 180) in the Great Plains (r = 0.64) 

and 9 July (Julian day 190) in the Southwest (r = -0.37). Precipitation between the Great 

Plains and Southwest is inversely related until the end of July. Beyond late July the 

correlation with M in the Southwest is weakly positive, but not statistically significant. A 

secondary maxima in correlation appears in the Great Plains in August which does not 

appear in MFC, possibly due to moisture recycling by local evaporation and transpiration. 

The precipitation indices, however, are able to capture the same time evolution of the 

NAM relationship to the M index revealed in MFC, particularly at monsoon onset. They 

confirm that a conclusive link exists between reanalysis MFC and point source station 

precipitation data considered over broad regions, at least in the U.S. 
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VI. COMPARISON OF M INDEX TO NINO 3 AND NP INDICES 

Now that a statistically significant relationship between the M index and 

atmospheric circulation, atmospheric moisture, and precipitation has been established, we 

compare the time-coincident correlation results with those using the Nifio 3 and NP 

indices. The sign of the correlation associated with Nifio 3 and NP in locations ofhigh 

explained variance is nearly identical to that of the M index. Only the average of the 

explained variance of Zx<t> in the monsoon onset period is considered since the 

relationship of the summertime circulation and moisture to Pacific SSTs is strongest at 

this time. 

The explained variance (r) of Z<I>soo<t> show tropical and North Pacific SSTs are 

associated with two distinct circulation responses over the eastern Pacific and North 

America in early summer (Fig. 15). The tropical Pacific response (Fig. 15a) has centers 

of action in the central North Pacific near 180°, 40° N and northern Rocky Mountains of 

the U.S. The North Pacific response (Fig. 15 b) has centers of action in the central North 

Pacific just northeast of the Hawaiian islands, southeast Gulf of Alaska, and the upper 

Midwest and northern Great Plains. Over North America, the· North Pacific response is 

approximately twice as large as the tropical Pacific response at monsoon onset. Nifio 3, 

not surprisingly, explains a greater amount of variance toward the equatorial Pacific. The 

M index (Fig. 15c) explains the variability of Z<I>soo<t> in the same locations as the NP and 

Nifio 3 indices. Maxima in explained variance over the Pacific are reduced at the centers 
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of action, but are still present and statistically significant. The highest magnitude of 

explained variance, over the northern U.S., is preserved and shifts into the northern Great 

Plains (r = 0.25). These tropical and North Pacific associated circulation responses 

together contribute toward the relationship of the M index to the PT response. A low 

(high) NP index is related to a northeast (southwest) displacement of the monsoon ridge 

from its climatological position. A low (high) Nifio 3 is related to a north (south) 

displacement of the ridge. 

The largest improvement in explained variance by the M index over Nifio 3 and 

NP indices is for ZMF(t) (Fig. 16). In Fig. 16, the orientation of the vectors reflect the 

circulation in the northern Rocky Mountains associated with Nino 3 (Fig. 16a) and the 

circulation anomaly in the upper Midwest associated with the NP index (Fig. 16b ). The 

vectors in Fig. 16b also indicate the tendency for a trough or ridge off the west coast of 

North America. As with the M index, most of the explained variability is in the zonal 

component of ZMF<t> and the mid-level component is the dominant factor. The tropical 

and North Pacific-related circulation anomalies in the northern U.S. together explain the 

most variability in mid-level MF over the Southwest U.S. and northwest Mexico. The 

NP index explains the most variance in over the Southwest U.S., particularly east of the 

continental divide in New Mexico. Nifio 3 explains more variance in northwest Mexico 

and near the Gulf of California. The M index explains the most variance of ZMF<t> over 

the Southwest (Fig. 16c ), with increases in New Mexico by approximately 20% over the 

Nifio 3 index (Fig 17a) and in northwest Mexico by approximately 5-10% over the NP 

index (Fig. 17b ). 

30 



The spatial relationship of tropical and North Pacific SSTs to Great Plains and 

Midwest ZMFC(t) (Fig. 18) and precipitation indices is agreement with the precipitation 

modes in central U.S. precipitation found by Ting and Wang (1997). The NP index is 

most related to ZMF(t) in regions where precipitation is dependent on the position of the 

monsoon ridge: the central Great Plains, eastern Arizona, western New Mexico and the 

Midwest, namely eastern Nebraska and Iowa (Fig.18b). The relationship ofNifio 3 to 

MFC is substantially weaker (Fig. 18a), but maxima in explained variance occur in the 

northern Great Plains and Midwest and the area of southwest Arizona and northwest 

Mexico, especially near the Gulf of California. As with Z<I>soo<t> , the M index captures all 

the maxima in explained variance of both indices. Where NP and Nino 3 indices both 

explain variance in MFC, such as in the Midwest and near the Gulf of California, there 

are slight improvements with the M index. Using the precipitation indices, we found that 

the maximum correlation in the Great Plains using the NP index is virtually the same as 

with the M index. In the Southwest the M index improves the correlation by 

approximately 0.07 over either the Nino 3 or NP index. 

The M index accounts for a dual relationship of tropical and North Pacific SSTs 

to NAM circulation and moisture sources. In the Midwest, both the tropical and North 

Pacific SSTs are related to variability in early summer rainfall. In the Great Plains, 

however, only North Pacific SSTs are important. An upper level trough or ridge over the 

upper Midwest associated with the North Pacific circulation response is the determining 

factor of Great Plains LLJ strength and thunderstorm activity downwind of the jet. The 

mid-level moisture flux has a spatially varying relationship with NP and Nifio 3 across 
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the Southwest and northwest Mexico. The Baja LLJ moisture, related to east Pacific 

SS Ts, is most important for thunderstorms in the Colorado River Valley and 

southwestern Arizona. The mid-level Gulf of Mexico moisture, associated more with the 

NP circulation response, becomes increasingly important for monsoon thunderstorms 

farther north and east from the Gulf of California, in areas such as eastern Arizona and 

western New Mexico. 
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VII. TIME LAGGED RELATIONSHIPS WITH PACIFIC SST INDICES 

The simultaneous correlation analyses presented in sections 4 and 5 were repeated 

with the Pacific SST indices lagged from one to four months. Only the variables of 

Z<I>soo<t> and ZMFC(t) are considered for the period of monsoon onset. The relationship of 

Nino 3 with Z<I>soo<t> shows the tropical Pacific circulation response is strongest at 

simultaneous correlation and statistically significant at the 90% level up to a two month 

lag (Fig. 19). Using early spring Niiio 3 conditions at three and four month lag the spatial 

structure of the response is preserved, but not statistically significant. Though the M and 

NP indices improve over Niiio 3 for simultaneous correlation, the North Pacific response 

becomes statistically insignificant at just a two month lag (Figs. 20 and 21). Spring 

North Pacific SSTs, at least in the regions used for the M and NP indices, have little 

relationship to summer atmospheric circulation anomalies. A similar result was obtained 

by Ting and Wang (1997) in a lag correlation of summer average 500-mb height with a 

North Pacific mode of SST related to precipitation variability in the central U.S. In 

regions where variability~ MFC is explained by Nifio 3, such as the upper Midwest and 

southwest Arizona, correlation is still statistically significant at the 90% level up to a two 

months lag using the Nifio 3 index (not shown). Areas where MFC is related to the NP 

index, such as the central Great Plains, eastern Arizona, and western New Mexico, have 

no significant relationship to any of the Pacific SST indices beyond two month lag. 

Higgins et al. (1999) showed that an association with tropical Pacific SSTs is 

important for the NAM. Prior to wet monsoons, cold SST anomalies appear in the 
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equatorial Pacific cold tongue near the dateline in winter and increase in amplitude during 

the spring. These changes in tropical Pacific SST are associated with a weakened, 

northward displaced ITCZ and suppressed local Hadley circulation. The opposite is true 

for dry monsoons. The coherence of summer circulation anomalies with antecedent 

spring Nifio 3 suggests tropical Pacific SSTs may be a good NAM predictor, though the 

physical mechanisms relating the two need to be investigated. 

The weak lag correlation using the M and NP indices may be an artifact of the 

regions used to define them. Other areas in the North Pacific, besides those used for the 

NP and M indices, may be more related to the NAM in the spring season. Since NAM 

interannual variability is related to the occurrence of the North Pacific pattern, the regions 

of SST associated with this winter and spring teleconnection should have a relationship to 

subsequent summer conditions. Higgins and Shi (2000) demonstrated that early onset 

monsoons in the Southwest are associated with wann SSTs in the subtropical North 

Pacific (near 170° W, 20° N) and cold SSTs in mid-latitude central North Pacific (180°, 

40° N) during winter. This distribution of SSTs is consistent with a negative phase of the 

North Pacific pattern, with cold SS Ts in the vicinity of large sensible and latent heat 

fluxes near the northward-displaced jet stream. Higgins and Shi also developed a winter 

North Pacific SST index, similar in principle to the NP index in this study, and 

demonstrated its usefulness in predicting the monsoon onset date. 

The North Pacific summer teleconnection may be indirectly related to ENSO. 

Coupled ocean-atmosphere general circulation model simulations suggest the North 

Pacific SST dipole develops as result of near time-coincident atmospheric forcing by 
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ENSO-related tropical convection (Lau and Nath 1994). The variations in North Pacific 

SSTs may then feedback to the summer atmospheric circulation over North America with 

a timescale of several weeks {Ting and Wang, 1997). The strength of the North Pacific 

SST dipole, by controlling the latitudinal temperature gradient, determines the strength 

and position of summer jet stream. If such a mechanism is at work, summer North 

Pacific SSTs captured by M and NP indices would probably not persist from the previous 

seasons. 
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VIII. DISCUSSION 

The contrasting summers of 1993 and 1988 are examples of large departures from 

average summer climatology associated with high and low M index, respectively. The 

influences of remote Pacific SST and land surface forcing have been rigorously 

investigated in both years. In the Midwest Flood of 1993, a strong trough situated over 

the northern Rocky Mountains and northern Great Plains maintained westerly flow across 

all of the western U.S. in the summer. The jet stream and associated synoptic eddies 

were stronger than average and south of their mean climatological position. The Great 

Plains and Midwest, to the east of the trough and north of the jet stream, were favored for 

the development of thunderstorms in the form ofmesoscale convective complexes (Bell 

and Jonowiak 1995; Mo et al. 1997; Trenberth and Guillemot 1996). Monsoon rainfall in 

the Southwest was below average because onset was delayed until early August, the latest 

onset on record since 1948 (Okabe 1995; Higgins and Shi 2000). By contrast, in the 

Drought of 1988, a monsoon ridge located over the Great Plains steered the jet stream 

north into Canada from late spring into early summer (Bell and Jonowiak 1995; 

Trenberth 1992). The Great Plains and Midwest, on the subsiding branch of the ridge, 

received little precipitation and temperatures were much above average. There was 

enhanced easterly flow on the southern side of the ridge. The monsoon began early in 

late June and summer rainfall was above average in the Southwest (Higgins and Shi 

2000). Though this circulation pattern broke down in mid-July and rainfall returned to 

normal in the central U.S., the late summer rains were insufficient to break the hydrologic 

drought (Trenberth and Guillemot 1996). 
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Modeling studies of 1988 and 1993 suggest the distribution of tropical and mid-

latitude Pacific SSTs, and associated diabatic heating patterns, produced a time-

coincident PT teleconnection response. Trenberth and Branstator (1992) argued 

latitudinal variation in the ITCZ changed the distribution of tropical Pacific heating, in 

agreement with observations of the dry and wet monsoon years (e.g. Higgins et al. 1998). 

Using a linearized baroclinic model, they showed these heating patterns provide the 

sources and sinks for quasi-stationary Rossby waves that propagate into the extratropics. 

Liu et al. (1996) took a similar modeling approach with a stationary wave model 

linearized about the mean summer climate. However, they found the summertime 

circulation pattern over North America was relatively insensitive to diabatic heating in 

the tropical Pacific. The greater effect on the circulation over North America was from 

diabatic heating associated with an upper level trough or ridge off the west coast of the 

continent and vorticity forcing by transient eddies. Both tropical and North Pacific SST 

forcing are probably important in early summer, because each is associated with a distinct 

circulation response. 

The other possibility is that the NAM evolution is determined by the amount of 

snow cover over the Southern Rocky Mountains (Gutzler and Preston, 1997). The snow 

cover would affect the surface energy budget of the Rocky Mountains and Colorado 

Plateau in late spring, and, hence, the evolution of the monsoon ridge. Such a mechanism 

has been demonstrated for the Asian monsoon (e.g. Meehl, 1994), but no corresponding 

model studies have been done for the NAM. We suspect, however, that tropical Pacific 

SST forcing is the dominant factor in the winter and summer climate of the Southwest 

U.S. The relationship between snowfall and NAM precipitation is likely observed as a 
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coincidence of the changes in large-scale teleconnection patterns associated with ENSO-

NPO and precipitation in the Southwest between winter and summer. A year with 

sustained El.Nifio, high NPO conditions, for example, would be associated with a 

positive phase of the North Pacific pattern in spring and a negative phase of the PT 

pattern in summer. The late winter and spring period would have more frequent and 

intense synoptic-scale systems directed toward the Southwest that would build a high 

snow pack in the Southern Rocky Mountains. However, NAM precipitation would be 

below average in summer, especially at monsoon onset. The reverse would be true with 

La Nifia, low NPO. 

If the evolution of the NAM in the U.S. is primarily driven by remote Pacific SST 

forcing in the early part of the monsoon, what happens during pre-monsoon and late 

monsoon "transition" periods in ENSO-NPO teleconnection relationships? We speculate 

at these times soil moisture, vegetation, and snow cover, may become more important for 

the large-scale circulation. In 1988 and 1993, antecedent soil moisture influenced surface 

sensible and latent heat fluxes. These surface energy fluxes may have provided positive 

or negative feedback to the drought or flood conditions (Giorgi et al. 1996; Trenberth 

and Guillemot 1996). Land surface feedback processes may be an equally important 

control on summer climate in the western U.S. Future investigation of the NAM should 

explore the physical linkages between remote Pacific SST forcing, land surface processes, 

and NAM evolution. Regional atmospheric models are well suited to such a task. 

The fact that ENSO-NPO relationships with precipitation in the Southwest 

dramatically change through the season is a complicating factor in forecasting long-term 

drought or wet conditions in that region. The Great Plains is the region most sensitive to 
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interannual variability of the NAM. From the record of historically wet and dry periods 

found by McKee et. al. (1999), long-term climate variability there mirrors long-term 

variability in ENSO-NPO. Weather conditions in early summer must be a critical factor 

in determining the annual soil moisture surplus or deficit. Though there have been very 

dry summers like 1988 or 1983, the Great Plains have not experienced a long-term 

multiyear drought in the past two decades, corresponding with a period of sustained El 

Nifio-high NPO conditions. The Great Plains could expect a greater frequency of long-

term drought should these conditions change in the future. 
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IX.SUMMARY 

In this study, a NAM reanalysis climatology of 500-mb geopotential height, 

integrated moisture flux, and integrated moisture flux convergence was computed using 

the fifty year NCEP-NCAR daily reanalysis. A time-varying correlation approach was 

used to relate daily deviations from the climatology to three Pacific SST indices which 

capture the variability of ENSO, NPO, and the combination of the two. New time-

evolving precipitation indices, of Southwest and Great Plains stations, were also related 

to these Pacific SST indices. 

The results of the updated reanalysis NAM climatology are consistent with 

previous, more extensive climatologies. The monsoon ridge and associated easterly 

moisture flux attain their maximum northward position by late July. The Great Plains 

and Baja LLJs, which supply low-level moisture from the Gulf of Mexico and Gulf of 

California sources, are maximum in late spring and mid-summer, respectively. There are 

diurnal and seasonal cycles in integrated moisture convergence. The diurnal cycle 

reflects the daily evolution of convective activity from the mountains in the morning to 

the lowlands at night. As the monsoon ridge develops during the monsoon onset period, 

there is a rapid increase (decrease) in atmospheric moisture and precipitation in the 

Southwest (Great Plains). This regime persists until the end of the monsoon in 

September. 

Using the combined M index, Pacific SSTs are related to a sequence of 

teleconnection patterns over North America through the summer. The strongest 

relationship is at monsoon onset, when the PT pattern controls the large scale distribution 
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of moisture across the western U.S. (Fig. 22). High (low) M index years are 

characterized by a negative (positive) phase of this teleconnection pattern. A trough 

(ridge) is located over the northern Rocky Mountains and central Great Plains. Because 

the spring wet season is lengthened (shortened), early summer MFC and rainfall are 

above (below) average. In the Southwest, monsoon onset is late (early), and early 

summer MFC and rainfall are below (above) average. These relationships decay in the 

later part of the monsoon. It is the variability of mid-level moisture flux from the Gulf of 

Mexico which is most related to Pacific SSTs, but the Great Plains and Baja LLJs are 

likely related to Pacific SSTs in the same way. 

Tropical and North Pacific SST variability are related to the deviation of the 

monsoon ridge from its climatological average position at monsoon onset. Tropical 

Pacific SSTs are related to the variation in ridge position to the north and south and North 

Pacific SSTs to variation in ridge position to the northeast and southwest. Using the 

combined M index, the largest departures in <l> 500 are in the northern Rocky Mountains 

and northern Great Plains, consistent with the monsoon ridge configurations of Carleton 

et al. (1990) associated with interannual variability of the NAM precipitation in the 

Southwest. Both tropical and North Pacific circulation responses are related to MF, 

MFC, and precipitation in the western U.S. to varying degrees depending on location. In 

the Great Plains, North Pacific SSTs are the dominant factor, while in the Southwest 

tropical and North Pacific SSTs are equally important. The most coherent summer 

climate patterns over the entire western U.S. occur when Pacific SSTs are in a 
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substantially high or low M configuration, indicating that there is a constructive 

interference of ENSO and NPO in the summer as well as winter. 

Though the M index is the better diagnostic for summer climate in the western 

U.S., it is not a good predictor. At one month lag, the relationships between the NP index 

and atmospheric circulation and moisture are statistically insignificant. The lack of 

coherence in correlation in the spring season may be due to the particular regions used to 

define the NP index. North Pacific SSTs may also be forced by time-coincident 

variations in tropical convection. However, statistically significant relationships with 

Nifio 3 and 500-mb height exist up to three month lag. The Nifio 3 index from mid-

spring onward may be a good predictor of the atmospheric circulation pattern over North 

America at monsoon onset. 
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XI. LIST OF FIGURES 

Figure 1. Regions used to define the Great Plains and Southwest precipitation indices. 

Figure 2. Regions used to define Pacific SST indices. 

Figure 3. Evolution of the average <1>500 (units: m) in the periods of a) pre-monsoon, (b) 

monsoon onset, ( c) monsoon peak, and ( d) monsoon end. Contour interval is 25 m. 

Figure 4. Same as Figure 3 for the zonal component of MF (units: kg ms-I). Contour 

interval is 25 kg m s-I. 

Figure 5. Same as Figure 4 for the meridional component of MF. 

Figure 6. June-August daily average integrated moisture flux (units: kg ms-I) and 

integrated moisture flux convergence (units: mm day-I) for a) OZ, (b) 6Z, (c) 12Z, and (d) 

18Z. Contour interval is 3 mm day-1
• Values greater (less) than 3 mm day-I are shaded 

dark (light). Unit vector length is 200 kg m s-1
• 

Figure 7. Evolution of the dominant daily component of integrated moisture flux 

convergence (units: mm day·1
) for (a) Southwest (OZ) and (b) Great Plains (6Z) from 

May-September. 
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Figure 8. June-August average standard deviation of (a) 500-mb geopotential height 

(units: m) and (b) integrated moisture flux convergence (units: mm day-I). Contour 

interval is 10 min (a) and 1 mm day-I in (b). 

Figure 9: Average June-August values of (a) M index, (b) NP index, and (c) Nifio 3 index 

from 1950-97. The fifteen highest and lowest years used in the student's t-test for time-

coincident correlation are indicated. 

Figure 10. Correlation (r) of time-coincident M index wit~ Z<I>soo<t> from Julian Day 140 

(20 May) through Julian Day 245 (2 Sep). Contour interval is 0.1 and absolute values 

less than 0.2 are not shown. Dark and light shaded regions indicate statistical 

significance at the 95% level by the two-tailed student's t-test. 

Figure 11. Same as Fig. 10 for ZMFC(t). 

Figure 12. Same as Fig. 10 for ZMF(t) except two-tailed student's t-test not shown. 

Vector length is 1. 

Figure 13. Same as Fig. 7 for the fifteen composite high M index (solid) versus low M 

index (dashed) years. 
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Figure 14. Correlation (r) of time-coincident M index with regional precipitation indices 

for the Great Plains (solid) and Southwest (dashed), Julian Day 120 (1 May) through 

Julian Day 260 (30 September). Dates of highest correlation in the monsoon onset period 

are indicated. 

Figure 15. Average percent explained variance (r2) of Z«I>soo<t> in the monsoon onset 

period by time-coincident (a) Nifio 3, (b) NP index, and (c) M index. Contour interval is 

5%. Light shaded regions are greater than 10% and dark shaded regions are greater than 

20%. 

Figure 16. Same as Fig. 15 for ZMF<t>. Shading intervals at 10%, 20%, 30%, and 35%. 

Figure 17. Difference in percent average explained variance of ZMF(t) by the M index 

from (a) Nifio 3 and (b) NP index in the monsoon onset period. Contour interval is 5%. 

Values greater than 5% are shaded light and values greater than 10% are shaded dark. 

Figure 18. Same as Fig. 15 for ZMFc<t> . Values greater than 5% are shaded light and 

values greater than 10% are shaded dark. 

Figure 19. Average correlation (r) ofNi:fio 3 with Zll>soo<t> in the monsoon onset period 

with (a) no lag in Ni:fio 3 (time coincident), (b) two month lag, (c) three month lag, and 

( d) four month lag. Contour interval is 0.1 and absolute values less than 0.2 are not 
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shown. Dark and light shaded regions indicate statistical significance at the 90% level by 

the two-tailed student's t-test. 

Figure 20. Same as Fig. 19 for NP index with (a) no lag and (b) two month lag. 

Figure 21. Same as Fig. 19 for M index with (a) no lag and (b) two month lag. 

Figure 22. Idealized relationship of monsoon ridge position and mid .. }evel moisture 

transport to Pacific SSTs at monsoon onset. 
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XII. LIST OFT ABLES 

Table 1. Frequently used acronyms and symbols 
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Table 1. Frequently used acronyms and symbols. 

Acronym or symbol 

CNP 

ENSO 

BNP 

LLJ 

M 

MF 

MFC 

NAM 
NP 

NPO 

PR 

PT 

r 

r2 
SPI 

SST 

SSTA 

<l>soo 

Meaning 

Central North Pacific region (177° E-164 ° W, 26-36° N) 

El Nifio Southern Oscillation 

Eastern North Pacific region (125-150° W, 35-50° N) 

Low level jet 

North American Monsoon sea surface temperature index 

Integrated moisture flux (sigma levels 14-28) 

Integrated moisture flux convergence (sigma levels 14-28) 

North American Monsoon 

North Pacific sea surface temperature index 

North Pacific Oscillation 

Regional Precipitation index 

Pacific Transition Pattern 

Correlation coefficient 

Explained variance 

Standardized precipitation index 

Sea surface temperature 

Normalized sea surface temperature anomaly 

Thirty-day average Z-score of reanalysis variable x 
centered on the date 

500-mb geopotential height 
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Figure 2. 
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c) Monsoon Peak 
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Figure 3. c) and d) 
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Figure 4. a) and b) 
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c) Monsoon Peak 
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Figure 5. c) and d) 
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Figure 6. a) and b) 
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c) 12Z 
48N 

45N 

42N 

39N 

36N 

33N 

30N 

27N "'· -"'· -•-: ...... "'. -~ _"'. 

24N 

21N 

18N 

130W 125W 120W 11 SW 11 OW 105W 1 OOW 95W 90W 85W BOW 

-200 

d) 18Z 
48N 

45N 

42N 

39N 

36N 

33N 

30N 

27N 

24N 

21N 

18N 

120W 115W 110W 105W 100W 95W 90W 85W 80W -200 

Figure 6. c) and d) 
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a) OZ Southwest 
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a) 500-mb Height 
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a) Monsoon Index (M) 
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c) Nino31ndex 
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Day 170 ( 19 Jun) 
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Day 200 ( 19 Jul) 
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Figure 10. continued 

72 



Day 230 ( 18 Aug) 
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Day 140 (20 May) 
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Figure 11. 
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Day 170 (19 Jun) 
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Day 200 ( 19 Jul) 
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Day 230 ( 18 Aug) 
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a) OZ Southwest 
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a) Nino 3 
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c) M Index 
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c) M Index 
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c) 3 Month Lag 
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