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CHAPTER I
INTRODUCTION

Throughout physics a greet variety of scatter=
ing problems is encountered. In classical physics, laws
have been formulated for scattering by both microscopic
and macroscopic objects. For example, Rutherford formu-
lated a scattering law to describe the scattering of
charged particles by nuclei. In the field of quantum
mechanics, the scattering of electrons from atoms 1s
sti11l of considerable interest. In the last half
century the scattering of electromagnetic energy has been
extensively studied, and in the last twenty years has
become increasingly important due to advances in radar
technology. Beginning with the investigations of Lord
Rayleigh in the 19th century, the field of acoustical
scattering has also become increasingly important. The
amount of research being reported in recent issues of
acoustical Journals indicates the extent of interest in
scattering theory.

Upon investigation one is struck by the
similarity in the methods of apprcach to scattering
problems in quantum mechanies, nuclear physics, sound and
electromagnetic theory. Thus, a contribution in one
field generally extends the knowledge in all of them.

This thesis 1s concerned with a problem in acoustic




scattering theory and will be confined to that fleld.
Specifically, it 1s an attempt to find an approach which
may be generalized to the problem of the scattering from
spheres.

The scattering of sound from spheres was first
investigated mathematically by Lord Rayleigh (1).
Because of the complexity of the solution, he considered
only the limiting case where the wavelength of sound was
large compared to the radius of the sphere. Morse (2)
calculated the solutlion for rigld immovable spheres, not
necessarily small compared with the wavelength. Faran
(3) calculated solutions for elastlc spheres, considering
them neither rigid nor immovable, and, hence, solutions
for the inside of the sphere were also obtained. A few
years prior to the publishing of Faran's result,
Anderson (4) published results for scattering by a fluid
sphere, which represents a slight simplification of the
problem since the fluld sphere does not suprort a shear
wave. The solutions he obtained both fof the inside and
outside of the sphere are complicated in that products
and quotients of spherical Bessel and Neumann functions
with different arguments occur. Because of thils,
numerical evaluations were mede 1n computing the
scattered acoustic field since little could be done
analytically.

Since the exact solutions of Faran and Anderson




are difficult to deal with both analytically and numeri-
cally, 1t 1s useful to attempt to find methods for
obtaining approximate results of a more convenient form.
In a search for such methods, & problem even simpler than
Anderson's may be considered. The purpose of this thesis
is to consider the scattering of acoustic pulses end
waves from a sphere which has acoustic properties nearly
the seme as those of the surrounding medium. This allows
the expansion of the acoustic parameters inside the
sphere by a Taylor series in terms of the acoustic
perameters outside the sphere. This approach does permit
more to be done analytically to low orders in the
expansion than the above mentioned cases.

In Chapter II, the general problem of spherical
scattering 1s consldered and the results of Faran and
Anderson are obtained for the steady state condition. In
Chapter III, an approximation using the similarity of
acoustical properties inside and outside the sphere is
made, and the solutlion is obtained first for arbitrary
angles and then for back and forward scattering. The
results are compared with those obtained by the Born
approximation. Chapter IV contains the back-scattered
solutlons for two types of acoustic pulses. In Chapter
V, a discussion of the results 1s given as well as a

description of how one would extend the theory.




CHAPTER II

GENERAL SOLUTION FOR SPHERICAL SCATTERING

It is well known from elastic theory (5) that

the displacement U can be represented in terms of a

->
scalar potential @ and a vector potential ¥ by the
equation

J:W@+Vx¢

(2.1)
where @ and ¥ satisfy the following relations
(2.2)
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The veloeities C_ and (; are the velocities of propa=-

gation of the longitudinal and transverse waves,

fespectively, and are defined by the relatlons
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(2.3)
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Consider the solution for a plane wave of

engular frequency « incident on an elastlic sphere. The

sphere has a radius a , Lame constants A, and «, , and




has 2 density @, . Conslder the sphere to be lmmersed
in an infinite ideal fluid with a Lame constant A,
(uhz0  for en ideal fluid)and a density f, . The
Ieme” constant u 1s the shear modulus and the comstant A
may be written in terms of the bulk modulus B and the
shear modulus « as

A G- 3L
Let the center of the sphere colncide wlth the origin of
a rectangular coordinate system and let the plane wave
approach the sphere along the negative 9 axis. The
spherlical coordinates used are deflned in the usual
manner. Due to the cylindrical symmetry about the @
axis, there will be no @ dependence in the acoustic
field. Also, since no displacements occur in the ¢
direction, the vector potential ‘_P, has only a component
‘-P(y in spherical coordinates.

The solutions of Eqns. (2.2) and (2.3) are well
known in terms of spherical Bessel functions and Iegendre
polynomials. The incoming plane wave is expanded in
spherical wave functions by

(2.4)
{(wt-Arcoso) wt &

d, - e -6 2 A Rieo)

4 mz=o




Upon multiplylng by Rﬁ(cos © ) and then integrating

with respect to cos® from -1 to +1 ,

+i +1 (2'5)
~{hrcme 'P .

P (cec®) € d(cooe) = Am(r) | {Pnlcon ©)F d(cove)

-l =t

vhere
+1 <
. i Y (2.6)
m (Coo 9)} dicen &) * 2m + |
-1
Therefore,
(2.7)
=ik coe
A(r) = Q'Z" JR‘(COO 8)e " ? diew o)
=
Carrying out the integration (6),
(2.8)

2 | oy [
A = TG e Vi Jmer (Ar)

am+l

= 2 (_‘-)"‘ 3‘m (‘h")

The scalar potential for the incoming plane wave is then

wt & m (2.9)
G.-e Y &) (ame) jm ir) P. (cou ©)

mz0

where
W

4, C,,




Hereafter, for convenlence, the time dependence factor
éfwt will be understood, but not written, in all
expressions representing waves,

The secattered outgoing wave 1s of the form

. (2.10)
o, - ..Z:’o B h2 (4. ) . (oo ©)

where the Bm are constants and "\.(..M (k.r) 1s the
spherical Hankel function of second order, The Hankel
function of second order appears here to assure that the
scattered wave at great distances acts as an outgoing
spherical vawe, since

v ->
N (hr) —

=
The total scalar potential field outside the sphere is
(2.11)

q;‘= z.: {(-i)m(lm-rl)a'.. (A.r) + B,, "‘:)(h.f)}Pm(coo 8)

mz0

Since U, = O from the definition of an ideal
fluld there is no vector potential outside the sphere.
Inside the sphere, the vector and scalar

potentlals are

. (2.12)
@ =Z Cm a.n("_a'“) Pm (cov ©)

mso




*}’: - ). D, jm (&,7) f;Pm(co« o)

Mz 0

where w
&, = 5?;

L ow
Ry o,

Spherical Hankel functions do not appear here since they
become singular at the origin,

Using the boundary conditions at the surface of
the sphere, the coefficlents B, , Cm and D. may bde
determined., These conditlons are

1. The normal components of displacement must

be continuouc,

2. The normal components of stress must be

continuous.

3« The tangentlal component of stress must

venish,
In spherical coordinates, In terms of'(ﬁ and ‘¥¢ » these

three conditions become (3)

U, = Uus . (2.13)

where

I I
O—rr - o_:‘r -a.t r=o




where

X
e 2B E) 55 L B B e B s o))
respectively.

Upon computing the expressions for the
stresses and displacements and substituting them into
the boundary requirements, the followilng equations are

obtained which must be satisfied for all m .

(2.14)
LB hm (Ra)-k, Cu g (hia) + T men) D, jm (k@) = =k, G (@am+1) o (i)

Ao B (b, )2 Cabhe i Rae) - 240§ (o - 42D Ly g lihaa)- 4, (k)
A k2O (ame) 3'.. (R,a)
L

QCu{ e 1;(Lx“\-é-*é"(‘:“)}+')m\¢%l im(‘s")"':; j:(&_,a)- ism(m +I) j"’ (&ga»)} =0

The prime on h; (£.a) and jm'(&‘g) refers to a derivativel

with respect to the argument and evaluated at (R.a)

:
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(£.a) or (ksa) . The expression for Bm is of
primaery importance now and upon solving the above

equations and may be written as

B = = (-¢)" (@m+i) -

L jw- (k.a)

M@ 30 e R 20, 2 )}

4&; 3--:. (&tﬂ.)

(o) ;dét gm (hya) -5 im (-‘.A)S

(2.15)

% (WI-N) j'm ("l“)
= 3. Uym (m+1) {&,n. 4‘,.-2(&.4) ~gm (’u‘)}

2 o B2 (L) - Bim 1) g

le,,k.; (h.a) &, 3'..: (kea)

WAt hath B g st .}

2\0‘, (mﬁ) j”' (l,“_)

" (o) {).,‘ gulhia) - jm (hsa)}

b, ., y
(o} l{ o ™~ (‘l“) _d-" jﬂ‘&n&)} é‘ a.n(‘qﬂ)‘&; 3.‘: (‘o‘)_i‘h(m’l)ju (‘lb

which i1s easily showm to be identical with Faran's

result (3). The results of Anderson can be obtained

from Eqn. (2.15) by taking the limit as u,— o0 , oOr

more easily by substituting _w-0 1into the boundary

conditions., Upon doing the latter, the boundery

conditions become

. . (2.16)
ur = ur Qt r=a
G, = G:rI at P




il

where
29 (2.17)
U. = Hpr
0. = P2 ¢

The third boundary comndition in Eqn. (2.13) no longer

applies since «, = 0. The two equations to be satisfied

nov for all m are

; (2.18)
BB he ia) ke Cov i (hea) = - e, ()™ ame1) o (R)
M) Bon b (eia)-Aa S Com 4mGeqa)= -2, &.'(-a)*um.)j'.. (k.a)
Solving for Bm 5
(2.19)
A, jom (hya) 4o g (hao)
A g i) A2 bl o (Ra2)
B.: -0 (ame1)
A, W (ko) by G Cha)
Nthy (k) Ak e (hae)

This expression may easily be shown to be identiecal with
that obtained by Anderson (4).




CHAPTER III
AN APPROXIMATION METHOD FOR SCATTERING BY A SPHERE
WITH ACOUSTIC PROPERTIES SIMILAR TO THE SURROUNDING FLUID

As calculated in Chapter II, the seattered
scalar potential field for a fluid sphere immersed in a
flvid mediuvm is

) ol
@s - 2—;0 Bm hf‘ uz,r) ?m (d_ao e) (3 )

Wwhere
(3.2)
A fu(h,e) Ho g (e

A&z i (h,a) Arder 4n (&,a)

4. b, (k.a) 4, 3'.; (fe o)

BM = -(—é)m (am +1)

An 2‘2 L‘m(’l«ﬁ) Al ,‘gz a.m (“la‘)

For arbitrary .4, and 4, , this expression is difficult
to handle analytically, but numericel calculations may
be made for specific velues of kL , £, and a . If the
sphere 1s acoustically similar to the surrounding medium,
4, % h, and the functions with the argument -h.a

may be expanded in a Taylor series in terms of ko
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by letting

C.= ¢, (1ra) 3.3)
where
A «1
and
Puz R (¢ 4) (3.4)
where S« 1

The function ém(&ua) may then be expanded to first

order in A& as

o (Ba@) = fo (o)~ Ryl i (Ra) (3.5)

Similarly, 4; (h,o) may be expanded. For convenlence,

also introduce

A= N\ (1+6€), (3.6)

It is easily shown that
A: —;-(e- J) (307)

Using the above expansions, Equation (2.2) may

be written as

Bu® - @amei): e

{Qfm.;.u.,.a{5...(9..&—1.04.’.&.&}-Q~§)4._.' hlgm (hd-Riaa dor (hoalk )
0+ hath, ) jula)-Ras it} (- §) b R.) dm (hia) - Roa8 42 hea)} )
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Noting that the numerator contains no terms
of zero order in € and dJ , the denominator needs only
to be taken to zero order in these two quantities.

Rewriting Eqn. (3.8) and neglecting all terms

with second or higher order in € and d gives

BM= ~CO)™ (am+i) - (3.9)

{{ Z(€ +8) juu ()4 (ho0) - B, a8 g (ki) (k) +hias jmChiadim (I.,.a.)}}
W (10 3'...(&.«) = hm k@) jom (feia) )
Using the identity
h (&.0) 4 (hia) = hu (hi2) g (hia) = ‘(:i‘:'a)‘b e
Eqn. (3.9) becomes

(3.11)
B, =t ¢-¢)" (am+i)(ha)? -

L3¢ #)jma)jo (i) -had o (k) 40 (,0) +R,08 o (l-a)g'-i’(&.«>}

and @s may be written as

2 7, am , .12
D, = - c(ha)' $er8) Y. (<) am+1) gm (R.a) o (kb (&) R (cous) ety

m30o

i lhe) 3(6-3) :Z G am+1)jm () g Ghia) b (hyr) P (epa 6)

i Z'(Ap)aé(e —S) ga(-{)"(am H) a,h (lt,a.)a.: (L,q) h(,:) (&,r F:. (Coc 9)
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Using the recursion relation

m+1

an'\ (QLG—) = 5_':\‘\_;—[ 3»\-! ("“') am+! émﬂ (‘k ﬂ.)

Egn. (3.12) becomes
(3.13)

(Ds = - (ka)lil.' (e +J)2;(—C)m m gm (ha) gm-1 (ka) l‘lf:)(h'”) pm (cov 0)

#E R g (erd) T 0™ (m41) i (0@ s (i) () P 0w 0)

+i(ka) £ (e-9) '2;, (-c‘)"‘,?::, a'm:f. (ea) h (fr) Pa (cos 6)

(el L] €O I ) e k) P el

ms=o0

rilhel be-) 1 6 220 50 ) b () P (e )

mlm-1)

~i (k) 7(€-9) Z“‘) am-r gn ke ju-g (ha) b (hr) Paeons)

+C(ha)® § (€-6) Z CF i g (ha) bt (&) Py (o0 6)

am-~|

i@ -9 2 o EL AU b (00 P Con o)

m (med(m+2)

kel 5 e LT G ET i Ra) jura ) hE R P (con )
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This represents the scattered scalar potential
field for arbitrary angles.

Perhaps the most useful and interesting result
is for ©6=1 , loe., backescattering which will now be
considered.

For convenience the far field will be examined
which 2llows the Hankel function  h® (4.,)  to be
replaced by its asymptotic form for large r

=i dhir

L(a\ r->0 € . M
re—— 4

" hr

For backescattering,
P, (ee®) = (D7

Therefore, Equation (3.14) becomes

N (3.15)
) AR

i -—— (Aa.) 2 (efJ) Z (m'"l) 30\4 (La a.mﬂ(llﬁ-) ("")M

m=0

-dhr w

(Aa)*£(€-8) 2 zosi s (he) (07

-che @ am(m+1) . .
€ w
T k (ka)s :-'{(6'[) L am+i ]m-n (bea) 3»,., (&a) (-1

-41; -

(m+l)

ULC«.) a(é J) Z amel a.mq-c (ha) D™

\




Lf

- ihr h\(m 1)

e E“: (920,\3 5_(6-‘) . am - 3»\ (ﬂla 3... a (b)) (-)7

e":’l"

- o Uzd—)sc‘!i(e-‘;) mu,;:_, a'ma (&,a.) (‘I)nn

-ihr e ()

- ir (&a.)a 1,1'(5”‘) .‘Zso am+ 3 3': (o) (-1)™

-L'E.r (M‘HX + ) )
& S:: (-k&) (6 J) Z Rm*”‘a 2 Jm(lv.a.) a."\f-‘l (‘_“’) (-1)™

It 1s seen immediately that when the fifth and
seventh, third amd eighth and, the fourth, sixth and
ninth terms respectively are added together their sums

are zero, leaving

‘(k"'
(Ds = (ha) (e+d) Z”‘ gm (o) oy (Ra) (-0

ms=0

(3416)

The evaluation of this infinite sum is found in

Appendix (A) and gives
-Chr (3017)

@s =" % (kﬂ-)l é(efgf) 3-‘ (24 o)

Using the asymptotic expression for Jhka «1

Eqn. (3.17) reduces to

,&’ (3.18)
- - (e +d)
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vhich agrees with the Rayleigh 1limit for small spheres

(1).
Por forward scattergng, it may be shown that

"'&r ©0 " (3'19)
§,: - & (ha'(e-9) L, Gmed i T (ha)

=0

This expression elso agrees with the Rayleigh
1limit for forward scattering.

Since only two terms of the Taylor expansion
of é’m (h,a) are used, some amount of error i1s involved
in the calculations, but since the spherical Bessel
functions are well behaved, it is expected that the
errors are small if the term £, a4 is small. To
determine the magnitude of these errors it is convenient
to calculate a few numericel values., The expansion
requires the term A£,aa to be very much less than one,
so a value of 0.1 wes used for convenience and typical
values of Aa were chosen, Errors of the order of
one percent of the quantity K.aa were found to exist
but this quantlty has already been assumed to be very
small, Therefore, to a sultable degree of approximation,
the errors may be assumed negligible by choosing A as
appropriately small,

When the scattering can be considered weak the
Born approximation (7) is another approach which may be

used to compute the scattering of an acoustical wave.
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The results of this approach, as calculated in Appendix
(C) gives the scattered fleld
"("&-" (3020)
. e ,
@s' a‘; (J’e){suw-?ha.—a-‘;m Coo-'.?jv.o,}
The result of the approximation method used in this

chapter gives

(3.21)
@ e-ilr
T I (ko) (€+4) Ji (2ka)
which may be written as
v (3.22)
@:"e (G+J){&;~ak~-af.o,c“ hoal
H O her ? o

Comparing the two solutions, it is seen that
they are identical with the exception of the sign of J .
In the Rayleigh 1limit, Bqn. (3.22) agrees with Rayleigh's
result, However, taking the Rayleigh 1limit of the Born
approximatlion still leaves the slign of d different
from Rayleizh's result., One possible explanation of the
difference in the sign of d 1is that the Born approxie-
mation tacitly assumes that the scattering region does
not move during the time interval the wave 1s belng
scattered., However, an incoming oscillating wave will
cause the sphere to vibrate about its rest position in a

complicated vibrational pattern., This motion glves rise
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to a sound field which 1s included in the exact
calculation but not in the Born approximation. Since
the difference in sign 1s associated with the inertial
rather than the compressibility term, thils explanation
seems a2t least plausible., A detailed study of this
difference of results is now belng carried out and will

be reported in e later publication.
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CHAPTER IV
THE BACK-SCATTERING OF PULSES FROM FLUID SPHERES

The expansion of the acoustical properties
inside the sphere in terms of the acoustical properties
outside the sphere allows the steady state solution of
the wave equatlion to be written in a very simple form.
Having the back-scattered steady state solution in this
form permits the back-scattered flelds for acoustic
pulses to be calculated quite easily. The types of
pulses considered here are an exponential pulse and
& sinusoldally varying pulse of short duration. The
interest in these two types of pulses arises from the
fact that they are the most frequently used in acoustic
worke.

The back-scattered fleld for an arblirary

incoming pulse s{t) 1s

N fb‘: t
(p; ———==—-_?‘;2~ or (€+4) fe ¢ W @(“’)3" (Qka) dw (4.1)

where g(w) is the Fourier transform defined in
Appendix B.
Exponential ge
The Fourler transform for this type of pulse
is calculated in Appendix B and is

(4.2)

-¢

\Eﬁr(w-éoﬁ

g(w)z
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Q.

of exponentlials,

O L +L+I 1 (4.4)
vhere
4u(t'+ 20.} (4‘5)
.L: -53:r QE+J)‘/- (w-i7)
c faecw (t" %_‘a)d
. w
IJ: 3afir (e+J_)[LU(w-{0')
~ iw(t ,%‘3’)
[ - (€ J)f du?
3 leiir w-<o
w63
_[ _ : (¢ %—)Jw
4 {0
and vhere

nd then expanding the trigonometric

integretion, the following results are obtained for the

Using the 1ldentity

(4.3)
S«mﬁﬂbu Co-o.?‘w.
J (ake) - (R4)* 2k,

functions in terms

(ﬁ becomes the sum of four integrals

t'st-§
Evaluating these integrals by contour
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time intervals indicated:

[=- /Sr (GH;){-U“* ® 9{} '+ 5.0

L: ) 3.1r0' (€+d) ¢ Teo
~e(t- )

L’ {e 'i} t'-3%,0
Il‘ 3;!,»0-( +d) t-L<co
[, ~ 57 (e+8) R e,
Ias O t'r¥co
L‘ B %(efs)e—a_(tl- ® t'- P50
Il‘: 0 t'-%f’< 0

To clearly see the total scattered fleld for
the different time intervals, it 1s convenlent to

construct the following table.




C
" Sare (e+d)

el B Ly

= “fro. (6+J){e—r(t'+ ¥) - ';"{}

© “gv (e49) e ¥ - er) TEE)
Tare (€04 Jare (€+4) e —o (¢
ero (6+S){€ = = 3':}
? © - E e TETE)
< & ¢ -

B c  _ e o (e 28
Q)—(efi){,—,;,—a_ g,l;;;ma)ew s)

|

(%)) g

| S e

lor

L 226~
{JG" SA;V\L %‘ -—a QQJQ,:%O—}

e
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When the values of the integrals are summed
in the respective time intervals the following results
are obtained:
(2) t'<- %fP , The total back-scattered
field for this time interval

is zero as would be expected.

(b) ;a4 ¢ 24 The total back~scattered
-4 < T
¢ field for thils time interval
iss

C -0 'f"gég'
<D:<e+'[){lbra' ) ;:r(fa-*“)e (* )}

This field has a time independent term and
a term whose time dependence makes it
appear as though the-pulse is scattered
from the front surface of the sphere.

(c) The total backe-scattered:

t'

p 8
cle

field in this time interval
is:

“Idtre

-ot(dre)f e . 2a0 2a0
e (L sb 2270 ek 10

<

No time independent term occurs here and
the time dependent term éppears to have
been scattered from the back surface of

the sphere.
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For the sinusoidal pulse, the acoustical
disturbance 1s

S Suwwl: swwt  -jetey (A7)
and
T T
S(th=o0 t»z , te-z .

The Fourler transform for thls pulse as

calculated in Appendix B 1s

94 ' I (4.8)
w) - Al Wo Sow W <
Ry - Y

Expanding sin u)%: in exponentials and

substituting Eqn. (4.8) into Eqn. (4.1) the backe

scattered fileld 4) becomes the sum of eight integrals
« T +7 T (4.9)
¢" l, +J—1f. t *-1.8

where

(4.10)
t 0o "_w(t'f %‘3'4- :'i:)

I.-'“?fe dw

(U(W-u), )( w + LUo)

- 00

+0e

. 3 _ T
:[ ) fe“u(t ¢ 2) i
2

w(w-U)o)(U)*wa)




27

P - Qc_g"i—)
dw

L = ji;/we('w_u),xuﬂw.)

£0 (- %~ ;)

b

CU((.U wo) (W +W°)

*+ 0o

N iwl(te?, T
R

e (w-wﬁ)((l) "'U-)p)

Gy

+00

w(t'+F-I)

I _a_cc«_éyff, dw

(W-we)(w +uws)

L‘- f iw(t- & *de

o, Ww-wo(wrw,)

“"(f 1)
Gt
I‘ C T yf(\u w.)(wfw,)

where

Yo LW (o)

aier

Evaluating the integrals by the contour
integration giveéen in Appendix B, the integrals have the

following values for the time intervals indicated:
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The results of this type of pulse are tabulated 1n the

following table.
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'hen the values of the integrals are summed for
each time interval, the following results are obtained:

(a) 36 As expected, the total

€<-%-T
back-scattered field for

this time interval is zero.

(b) The total backe-scattered
BT
f_(a-‘i-

°'P
PH

, fleld in this time interval

Q=(e 4){,,,0, (1 coo o (64 29) - &= Sy w, (£ 29))

This field appears to be the first of the
wave traln belng scattered by the front
surface of the sphere, and;as in the
exponential pulse case, a time independent
term appears.

(e) The total backe~scattered

? field in thic time intervel

Swow.t | ¢
B = fers) et = {4‘6.54»«%%“@‘3“%%}

o

This {fleld appears to be the first of the
pulse belng scattered from the back sur=

face of the sphere,
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(d) The totel backe-scattered
-{&-'_I<t<z+:££~
c"a 1°¢ 3 field in this time interval
is?
¢ - (eed)e { (e+d)
"—-““‘Covw. '-%—}————-——C"—' "
W, v (t'- %)~ e wa (t-32)

This field appears to be the last of the
pulse belng scattered from the front of
the sphere and again a2 time independent
term appears,

(e) The total back-scattered

. T 6

t' o3+ ¢ field in this time interval

1s again zero as would be expected,

Some care must be taken in choosling a pulse
since the method of analysis used in this thesis has some
limitations. Pirst, since the asymptotic 1limit of the
spherical Hankel function becomes singular at w=0 ,
the pulse must be chosen such that its Fourler transform
has a small contribution of frequencles near w-= o .

It may also be shown that the integrand vanishes at w-p
even when h. X&) 1s not used in its asymptotic form;
thus the error due to representing W’ (&r) as é‘_"" is
not large. Secondly, since the Taylor expansio;m}equiras
K. abs «41 s the Fourler transform of the pulse must not

contain frequencies such that the inequality cannot be

satisfied with an adjustment of @, 4 or ¢, Also,




since 4,a p«l and since frequencles near w= 0 are
not allowed, pulses must be chosen such that with an
ad justment of ¢ Ao and c » the inequality is satisfied

without much contribution from frequencles near w-=o0 .
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CHAPTER V
SUMMARY AND DISCUSSION

In thls thesis it has been shown thet the
scattering of sound by fluld spheres immersed in an
infinite fluid may be calculated easily by assuming that
the acoustical properties of the sphere are very similer
to the acoustical properties of the surrounding fluid.
This allows the expansion of functlions involving the
acoustical parameters inside the sphere in terms of a
Taylor serles in which the acoustical parameters outside
the sphere appear. This, in turn, allows the back=
scattered field for arbitrary pulses to be easily celcu-
lated at least to first order in the expansion., The
first order back-scattered field for the two types of
pulses considered appears, from time of arrival
considerations, to consist of a pulse being scattered
from the front surface and one from the back surface of

the sphere. For higher accuracy more terms would need to
be used in the expansion. In order to see the result of

Including higher order terms the contribdbution due to

second order terms may easlly be determined. The second

order terms in € and J§ that appear in the scattering

coefficient B. are
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- ile+s)’ <
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Al) these terms contain products of either two or four
spherical Becsel funetions. VWhen the time dependences
are investigated by means of contour integration similar
to that appearing in Appendix B, 1t appears that some of
the terms represent the pulse being scattered by the
front and back surfaces of the sphere Just as in the
first order case. However, the other terms possess tine
dependences which seem to have no simple geometric

interpretation. The origin of all these reflected
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pulses is not adequately knowvn and it is very doubtful
that any of them have such simple geometric origins when
one considers the ratio of wavelength to sphere sige.
Further investigetion of the dynamic behavior of the
sphere itself would be of interest. Due to the com-
plexity of this problem, time has not allowed for its
inclusion in thils thesis.

The existence of time independent terms for the
back-scattered fleld produced by the two pulses 1s not
completely understood at this time and subsequent
investigation related to that mentioned above may rrovide
informatlion on the origin of the terms, Since the time
between the arrivals of the two scattered pulses
discussed in Chapter IV 1s relatively short, one possible
explanation for the terms which appear to be time
independent is that they may represent the first term in
the expansion of a slowly varying time dependent function|

The assumption that the acoustlcal properties
of the sphere are very similer to the acoustical
properties of the surrounding fluid also allows the Born
approximation to be used to compute the scattering of a
plane wave. However, when the results of the exact
calculation and the Born approximation are compared, it
is seen that there exists a disagreement in the sign
of § for backescattering and an even more complicated

discrepancy for other angles of scattering. In Chapter
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ITI, it was suggested that this disagreement may dbe
attributed to the faet that the Born approximation
tacitly assumes that the scattering region does not move
during the time interval the wave is being scattered.
The exaet solution, however, does take into account the
movement of the sphere, Further investigation of this
problem is under way,

The problem considered here has led to an
easier way to obtaln the approximate field due to
scattering by spheres at least in the limit of small
differences in the elastlc constants as described above.
It is hoped that the extension of this method to higher
order terms will be of general use in scattering

problems throughout physics.




APPENDIX A
EVALUATION OF INFINITE SUM

The infinite sum to be evaluated is

s fA=1)
T = Z (_‘)m - ém(h“)a'*“ (o)

ms=0

Expressing the spherical Bessel functions as cylindriecal
Bessel functions by

(4=-2)
ém (’bﬁv) = J.?_;‘__o., \Tm«y;, (A’a")
and uring the identity (8)
(A=3)
?T/L
J; (ko) J, (Ra) = %.; :};W (ake cooo) Coo (U-v)odE
Equation (A-l) becomes
(A-4)

T;;_'—‘_ Z(-i)"‘m J Jam (2ka C06)sae do

Since ;L",(zka,ane) is a well behaved function, the
interchange of the summation and integration operations
presents no difficulty. Also, the first term of the
summation vanishes so the summation may be started from

one insteazad of zero.
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Rewriting Equetion (4-4)

%, . (A=5)
T- }Lw iuoe ZD(—I)”m Jan Ghe coed) d &

A recursion relationship of use at this point is
(8)

Jm (Z) = J.% jh-l (2) + a%« J—Mﬂl (2) (A-6)

and when used in Equation (A=5) gives
(L=T)

A

iE %j%‘e{émm J;m_,(akac&ehi‘(-')m J,,", (Rhwe)}de

Examining the terms in the bracket it is seen that the
sum of the infinite series is equal to

©0

nZ J;M-‘(ngd— t‘«e) +Z (-n™ I\Mﬂ (‘?""‘- QOOB) = = \T. (2‘.& 6009)

L SN

Therefore,
% (A=8)
T=‘éf J, Gha o 6 ) tos?e d 6
Another 1dentity of use here is (8)
(4~9)

“ Qz)vﬂ

‘ai/L
4 (2 2) mf ju (2?5«3«’9) S;,W‘“émaiwe deo

Vrur|
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By letting e:Q+ %, 4 wu=/ ond v=-3

%
r'4) Js,
;f g (k. o @) co* P d@ = %ZG*{S&‘)

and so

‘K/l

I \Ta(Q&a Qoo@) %104(9‘23',(3&«)

Therefore,

T: ‘% a"a(a\pﬁ.a)

(A-10)

(A-11)

(A=12)
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APPENDIX B
FOURIER TRANSFORMS AND CONTOURS OF INTEGRATION

Uslng the Fouriler Integral theorem (9), a

finite wave train or pulse may be represented mathe-

matically as
o o (B~1)
I (wl ~wl
Q) =sgfe‘“’ dw /S(t’) e dt
The quantity

1s called the Fourier transform of $().
le Exponential Pulset
For the exponential pulse, the acoustical

disturbance 1s given by

s) = e >0 (3~3)
S¢) = 0O <O

The Fourier transform of this pulse is
(B=4)

-c

T (w-co)

g(w) =
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2. Sinusoldal Pulse:

The acoustical disturbance for this type

of pulse is
B
S(t):iww% =5&'¢$\ont _£¢t<—7i- ( 5)
- T
S¢)=o0 >y t<-{
where
T w
-D:-_ an Y X E = W,
The Fourier transform becomes
(B=6)

"a(:wo &MJWE

Yair (w-w)(w+wn)

g(w) 2

3« Note on Contour Integrationt
The first integral in Equation (4.5) will
be calculated as an example to demonstrate
the contours used for integration in

Chapt er IV.
(B=7)

+0 | ‘ A4
iw(t+ T

I ) f e )dw
Vo | w(w-¢ o)
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The follewing contour in the complex w

plane has been chosent

; a
w(t's 3
.

By observing the term € it 1s evident that
for t+%>o0 , the upper contour must be used and for
t'+ 2o the bottom contour must be used, since the
function 1is singular at w:¢we for ¢« 3 <o and at
Ws=-¢0e fOor ¢4 -’*Z"-) o + This ensures that the wvalue
of the integral along the semicircle will vanlish in the
limit as the radius of the semicircle becomes infinite,

The proles on the real axis may be included in elther
contour but in this thesls they are always included in
the upper contour.,

From the theory of complex integration (10)

(3-8)
fg(i) dz = an¢ Z Residues
Ge




For I,, Equetlion (B-8) ylelds for &'+ & >0

(B=9)
]m eiw (t'+ %:Q) d }

= Qﬁ( { msidue (weo) + ees‘ld“b (w=¢'o->}
I wlw-4i9)

0 ine (t*“‘__‘t

i .
f £ cne'%de
< Q(T‘e“’-ur)

where w:p, ¢‘¢ around the pole at the origin,

Thus, (
w{* (¢’
T f :.‘2"'{—" F & - a)} (B-10)
S Ww-<(e) Sl A L
i
fd‘P
¥ K
- '2_":," - (f'+%5
L, = v{er )—'5} t T »o

and it clearly has the value

:
Vv
=

Lo

—

L= g

1=
o~
<+
1)
Bls
A
o]
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APPENDIX C
THE BORN APPROXIMATION FOR SPHERICAL SCATTERING

Since the acoustical properties of the sphere
are very similar to those of the surrounding medium, the
sphere may be considered a perturbation in an otherwise
unbounded medium and the Born approximatlion may be used
to calculate an approximate solution to the wave
equation.

For the infinite medium, the scalar potential

satisfles the three dimensional wave equation

V'QrhiP=o0
vhere % 1s the wave number in that medium. When the
sphere is introduced into the medium, the potentisl in

the vicinity of the sphere changes slightly and the wave

equation may be wrltten

a (C~1)
V (D'f(k.’,_eo)@ = 0
where
€o=/e?1 '/&, (0.2)
and
§§<$1

This problem is one which may well be approximated by the

method due to Born for which an excellent presentation




1s given by Schiff (7). ILetting

Q=P+l

and neglecting the term €,(0; , Equation (C-1l) beeomes
-ibr cos 0

Vz(ps rh> @, - ot W -

The solution to this inhomogeneous equation is (7)

o ¥ 2 e-u.,{l?-ﬁl»«ncmb}
CQ-. & f/fd@r;’dro Swe 8, d6,

Ay
i v d - = -0

The diegram defines all distances and angles,

R Tt
/N a
8 6,
The distance R:=|F-Tl=zr-r, tes © and for large P
IF-fe] ~ r . Por backwscattering o,:1 and

e: 9.-’,‘7 ’ and




Upon evaluating the integral, the Born approximation
for the scattered fleld is

This expression for () 1s essentially the same as found
by Pekeris (1l). The integration may be extended easily

to gemeral angles of scattering.
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ABSTRACT OF THESIS
ACOUSTIC SCATTERING BY FLUID SPHERES

The problem of scattering of acoustic waves and
pulses by an elestie sphere embedded in an infinite
elastic medium is investigated for the case where the twoj
media are very similar acoustically. This physical
slituation allows functions with arguments involving the
acoustle parameters inside the sphere to be expanded in g
Taylor serles involving the acoustlc parameters outside
the sphere. Using only the first order terms in this
expansion, the solution for plane wave conditions in the
back-scattered direction is much simpler than the exact
solution. This allows the solutions for the scattering

of acoustlic pulses to be calculated.

The steady state solutlions are compared with
those obtained using the Born approximetion, and are
found to differ only in the algebralc sign of the
difference in density of the two medlia; althouch they
agree with the results obteined by Rayleigh in the
proper lirit. It 1s also found that the Porn eprroxie-
mation differs from the resulits obtalned by Raylelgh,

again only in the elgebralc cign of the diffcrence in




density of the two media.

Herlan G. Frey

Physlcs Department
Colorado State University
March, 1962
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