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CHAPTER I 

INTRODUCTION 

l 

Throughout physics a great variety of scatter~ 

1ng problems is encountered. In olass1oal physics. laws 

have been formulated. for scattering by both microscop1o 

and maorosoopic objects. For example, Rutherford formu-

lated a scattering law to describe the scattering of 

charged particles by nuclei. In the field of quantum 

mechanios, the scattering of electrons from atoms is 

still of considerable interest. In the last half 

century the scattering of electromagnetic energy has been 

extensively studied, and in the last twenty years has 

become increasingly important due to advances in radar 

technology. Beginning with the investigations of Lord 

Rayleigh 1n the 19th century, the field of e.ooust1oal 

scattering has also become 1ncree.e1ngly important. The 

amount of research being reported in recent issues of 

acoustical journals indicates the extent of interest in 

scattering theory. 

Upon investigation one 1s struck by the 

s1m11ar1ty 1n the methods of approach to scattering 

problems in quantum mechanics , nuclear physics, sound and 

electromagnetic theory. Thus, a. contribution 1n one 

field generally extends the knowledge in all of them. 

This thesis is concerned with a problem in aooustic 



scattering theory and will be confined to that field. 

Spec1f1cally, 1t is an attempt to find an approach which 

may be generalized to the problem of the aoattering from 

sphere s . 

The scattering of sound from spheres was first 

investigated mathematically by Lord Rayleigh (l). 

Because of the complexity of the solution, he considered 

only the limiting case where the wavelength of sound was 

large compared to the radius of the sphere. Morse (2) 

calculated the solution for rigid immovable spheres, not 

necessarily small compared with the wavelength. Faran 

(3) calculated solutions for elastic spheres, considering 

them neither rigid nor immovable, and, henoe, solutions 

for the inside of the sphere were aleo obtained. A few 

years prior to the publishing of Fa.ran's result, 

Anders on (4) published results for scattering by a fluid 

sphere, which represents a slight simplification or the 

problem since the fluid sphere does not support a shear 

wave. The solutions he obtained both for the inside and 

outside of the sphere are complicated in that products 

and quotients of spherical Bessel and Neumann functions 

with different arguments occ).lr. Because of this, 

numerical evaluations were made 1n computing the 

scattered acoustic ~1eld since little could be done 

analytically. 

Since the exact solutions ot Fa.ran and Anderson 



are difficult to deal with both analytioally and numeri-
cally , it 1s useful to attempt to find methods for 

obtaining approximate results of a more convenient form. 

In a search for suoh methods, a problem even simpler than 

Anderson's may be considered. The purpose of this thesis 

is to oons1der the scattering of acoustic pulses and 

waves from a sphere which has acoustic properties nearly 

the same as those of the surrounding medium. Thia allows 

the expansion of the acoustic para.meters inside the 

sphere by a Taylor series in terms of the acoustic 

parameters outside the sphere. This approach does permit 

more to be done analytically to low orders in the 

expansion tha.n the above mentioned cases. 

In Chapter II, the general problem of spherical 

scattering is considered and the results of Faran and 

Anderson are obtained for the steady state condition. In 

Ohapter III, an approximation using the similarity of 

acoustical properties inside and outside the sphere 1s 

made, and the solution is obtained first for arbitrary 

angles and then for back and forward scattering. The 

results are compared with those obtained by the Born 

approximation. Chapter IV contains the back-scattered 

solutions for two types of acoustic pulses. In Chapter 

V, a discussion of the re sults is given as well as a 

description of how one would extend the theory. 



CHAPTER II 
GENERAL SOLUTION FOR SPfIER!CAL SCATTERING 

I t 1s well known from elastic theory (5) that 

the displacement u can be represented in terms of a 
+ 

scalar potential <P and a vector potential i> by the 

equation 

4 

(2.1) 

_,. 
where <P and 1J satisfy the following relat ion s 

u t_ 4> 
-:_ \7 ~ <P c' {)t :l. 

L 

~ 

(Y· 1J -..,>. 

- \lx'Jx~ ct () tt. -
r 

The velocities cl.. and c.T are the velocities of propa-

gation of the longitudinal and transverse waves, 

respectively , and are defined by the relations 

(2.3) 

Cons1der the solution for a plane wave of 

angular frequency uJ incident on an ·elastic sphere . The 

sphere has a radius a. , La.me constants )..:J... and ~' , and 



has a density ;°~ • Consider the sphere to be immersed 

in an 1nf1nite ideal fluid 1dth a Lame' constant A, 

(...u.:. o for an ideal fluid) and a densit y _JJ, • The 

Iame' constant )i ls the shear modulus and the constant A 

may be written in terms of the bulk modulus ~ and the 

shear modulus µ as 

A= fJ -

Let the center of the sphere c-01nc1de Y~th the origin of 

a reetangular coordinate system a.nd let the plane wave 

approach the sphere along the ne gative J ax1s . The 

spherical coordinates used are defined in the usual 

manner . Due to the cylindrical symmetry about the ~ 

a.xis , there will be no cp dependence in the acoustic 

f i eld . Also , since no displacements occur in the (f) 

direction , the vector potential ~ has only a component 

~~ in spherical coordinates . 

5 

The solutions of Eqn~ . (2 . 2) a.nd (2 . 3) are well 

known in terms of spher1ca.l Bessel functions and ~gendre 

polynomials . The incoming plane wave is expanded in 

spherical wave funot1ons by 

(2 .4) 



6 

Up on multiplying by P~ (co s e ) and then integrating 

w1 th re spect to co s e from -1 to + 1 , 

~· 

JP.. (c- a) e.-u., ... - " d (c- el = 
.... 

A..,<r> f\ P.., <~er d<c..<is) 
(2 . 5) 

-I 
_, 

where 

(2. 6) +-I 

f{ p"' (c- e) rd(Co<I s) :. 

-· 

Theref ore , 

(2.7} 
+I 

A .. < 1'") : ~';.t 1 J Pn, tc..o a) e-.:J.r eo-. • d (c- e) 
-1 

Carrying out the integration (6), 

(2.8) 
A .... l ""') = ~ rn t I ( . )"" 1 fr T (, ) ... ' ~ -<. V~ V~-t-Y~ .n.,.. 

~Wt + I /. . )""' • I 1 ) :: ~ \_, o"" vn.r 

The s calar potential for the 1ncom1ng plane wav-e 1s then 

f.wt ~ m <P. = e L (-c:) (~mtt) 1"' (A..r) p~ {c.oo e) 
t ""• 0 CJ 

where 
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Hereafter , for oonve.m.enca , the time d·epend.ence factor 

eiwt ·All b 4 d i i 1 w.,1. e tUl\l.eTs t oo , but not 1'.T t ten , n a 1 

expressions repr. senting wav-es . 

The scattered outgoing wave i s of the form 

(2 . 10 ) 

where the Bh'\ are constants and h (2.\ ) 
"" (.It.. r is the 

spherical Hankel function Gf second order . The Han1tel 

:runct1on of second order appears here to assure that the 

scattared wave at great distances acts as an outgoing 

spherical wa~e , sinee 
1 -44r 

h':)(lr)~ er 

The total sealer potent~al field outside the sphere is 

(2. ll ) 

S1noe A, == o from the def1n1 tion of an 1dea.l 

fluid there 1s no vector potential outside the sphere . 

Inside the eph re, the veotor and scalar 

J!otentials are 
(2. 12) 



where 

1&! !, : c.,.2. 

8 

Spherical Hankel .functions do not appear he.re since they 

become s ingular at the ar1g1n . 

Using the boundary cond.~tion.s at the surface of 

the sphere ' the ooeffic1ents B\"r\ , c~ and DWI may be 

determined . These conditions are 

1. The normal components of displacement must 

be oontinuouc. 

2 . The norm.al components of stress must be 

oont1nuous . 

3. The tangential aomponent of stress must 

vaniah . 

In spherical coordinates , in terms of <P and ~ cp , these 

three conditions beoome (3) 
(2 . 1:;) 

where 

I U a;,. = o;,. . Q.t 



vmere 

U.:~ = (.1µ ;;. -f+~~) 4> l- ~;i u:r -~)Fe l- =~(fr-~ )1 i'ip 

where 

reepecti vely . 

Upon computing the expressions for the 

stresses and displacements and substituting them into 

the boundary requirement s , the following equations are 

obtained which must be satisfied for all h1 • 

9 

(2. 14) 
lB"'~~ (A,4.)-.4. c~ ~ t.&t .Q.)t- ~(~~·)~ j~(4,ci) = -..It., (-d"' (a~+1)~~ (.l.a) 

: 'A I .l, a_ ( - ' ) "" ( ~ m ... ') ~"' ( t I .... ) 

The prime on h~ (ii. o.) and ~"", (.£..,J refers to a derivative 

w1 th respect to the argument and evaluated at (J.,14) , 



• The expression for B,,, is of 

primary importance no ~r and upon solving the above 

equations and may be ·wr1 tten as 

10 

Bk. :: -(- t')~(~ t1Hf). (2.15) 

i . j ~ (i.. a.) Ji. ~·.:. (l t. Q.) ~ (~i-f) iM a ... ol 
,\,!,L , .. (l, .. ) -1! {>., i• lf.~a.)-w,j:_ (LA)\ - £a-Ua,.. l~+I) f 1 ... j.,:.(li,aJ .. ~"' li.,a)} 

0 .i{ !·a~ u .... J-i.a .. (J..a>\ :,_a ... (t..J-:l: ~' (1,&) • i-~~+i) i•C,,a) 

A, h..: (.l~) "'~ ~~ (l .. A-) "" Q:. (~+I) ii.. (./e. 14-) 

A,!,' h""(l.a) -J.a"f Ai.~"' ({.-.)-cW~J,.:' <'a.V} - t!-j/£ rt\<-··> t~4 jW:. (11") - j ... (!.~)} 

0 .l { ia ~.:_ (!a~)-tl-1. i• ({,.Q.)J ~ a-<~cJ-J..~ J-= (l~.J-iit.t<'"•')~~ ci.~ 

which is easily shown to be identical w~th Fa.ran ' s 

result (3) . The results of Anderson oan be obtained 

from Eqn . (2 . 15) by ta.king the l1m1 t as .Lf .4 __,.,. o , or 

more easily by substituting .,)J= O into the boundary 

conditions . Upon doing the latter , the bounda:r-y 

oond1t1ons become 

(2 . 16) 
r:. a... 

o.t ("! Q.. 
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where 
() 4> {2 . 17) 

U~ ~ ()r 

U,.r -:: -_f uJi p 

The third boundary condition 1n Eqn. (2 . 13) no longer 

applie s st.nee .fa/ 4 = O. The t wo equations to be satisfied 

no H f or all m . are 

Sol vine; for Bho\ , 

..&. a~ ( "' ,._) .la ~.;. (la.a. ca.) 

A ..\ a . (I.. o..) 
I •d"' f A.a la. .. '"~"' (4.Aa.) 

""B~: - (- tf"' ( ~H)I\ 1-1)~-----------~ 
.Ji, h.: (J.., Q.) 

>., Jt,a h"' (J.., G) 

-4 .. i.:. <-'-.i a-) 

,.\~ l.. 1. ~"' (4,.a.) 

{2 . 18) 

(2. 19) 

This expression may easily be shown to be 1dent1cal ~th 
that obtained by Anderson (4) . 
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CHAPTER III 
AN APPROXIMATION METHOD FOR SCATTERING BY A SPHERE 

WITH ACOUSTIC PROPERTIES SIMILAR TO THE SURROUNDING FLUll 

As calculated in Chapter II, the scattered 

scalar potential field for a fluid sphere immersed in a 

fluid medium is 

where 

{, i,'"' (k, o.) 

~,A_,1 t,,~(Jt,ct;) 

..&.. i ~ (.le. l «. ) 

>.1 Jit' ~~ (i& <4.) 

(3.1) 

(3.2) 

For arbi trery ,,/,,, and ii" , this expression is difficult 

to handle a.nalyt1ce.lly, but numerical calculations may 

be made i'or apecif'io values of k. , A,. and a._, • If the 

sphere is acoustically similar to the surrounding medium, 

.it,, ~ --kt. and the functions w1 th the argument -4 .. ~ 

may be expanded 1n a Taylor eer1es in terms of 4.Q., 
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by letting 

3.3) 

where 
A << 1 

and 

(3.4) 

where d (( 1 

The function a~ (4~4.) may t hen be expanded to fir st 

order in 6 a s 

(3.5) 

Similarly, i~ (k;.<4-) may be expanded. For oonven1enoe, 

al so introduce 

)..,_ =- ~. (1+ €). (3.6) 

It i s easily sho wn that 

(3.7) 

Using the above expansions, Equation (2o2) may 

be written a s 

(3. 8 ) 



Noting that the numerator oonta1ns no terms 

of zero order in e and J , the denominator needs only 

to be taken to zero order 1n these two . quantitieso 

Rewriting Eqn. (~.8) and neglecting all terms 
w1 th second or higher order in £ and J g1 ves 

B~: -(-i)""' (~l-MH). 

Ueing the identity 

l4 

(3ttl0) 

Eqn. (3.9) beoomes 

~~ ~ -i (-tr" (2m'f"l)(~a..)2. • 
(:$).11) 

( l< H.r>a .. (l .... )a.:. (t • ..)-..&..44 a..:. c.1. • ..) a..: <t . ...i +A, .... ~· <t ... >a·.:· ((., ... )} 

and <Ps may be written as 

:Z. I ~ . ~ • I , (t) 
+i(.i;t.) ~(E-J) ,t;.0(-t) (2~+1)~~ (~,ll.) d~ (l,4-) ~~ (~r-) P~ (~ 9) 

0. 

-i(A,<Ja.~(E-S) f" hf'(~~ ti) j* (J..,-.) ~·.: (J&,q) k~) (~, r) f! (~ e) 
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Using the recursion relation 

Eqn. ( 3 . 12 ) becomes 

.. 
cp$ .. - i' (4e..)4 ±(Et-cf) b (.l)~ m jr)\ (.A.0-) ci~ - · (It.a.) h~) (J..t-) R1 (CAM> e) 

-+ l (Jeaf-k (E 1-d) ,..I;
0 
(-it' (nt+1) j~ (Ja.,a) J'm+• (le.1..)~~) (4..-) Pr\I\ (eooe) 

00 

+dlw.l k(E-J) .&o (-i)~;;: .. ~, iM~I (J...a..) h~) (J..~) P.., (Cc>-o a) 

.. 
+i{Jul ~ (c- -J) 2:: (-if' .?rti~: ~: (.fi.4.) h~) (4..-) P\'\'\ (c... a) 

It\~· 

• ( '5 I ( ) ~ (- ·)""' (»t-t-f· ' ~ ) I {:t.) ( ) u ) 
H ( .... ) ~ E -J L (, ~n, .... 3 d"' (J..o. ~... '-.... r .... (eo-o e 

ntso 



This represents the scattered scalar potential 

field for arbitrary angles. 

Perhaps the most useful and interesting result 

is for 8 =- II , ioe. , back- scattering which will now be 

considered . 

For convenience the far field will be examined 

which allows the Hankel function 

replaced by its asymptotic f~rm for large r 

For back- scattering , 

- ~.l..r e. 
.-hr 

Pm < C6-o e > : ( - 1) ,_, 

. "'~· t. 

Therefore , Equation (3ol4) beoomes 

to be 

16 

-il..r 00 
(3 . 15) 

([>, = ~ r (-1...s ± < E-+ .o I 1'11 ~ ... a,.c..) .:( .. -· u .. .... ) (- 1 ) '" 



It is seen immediately that whe.n th~ fifth and 

S$l'enth, third a!lfll .1ghth and., the fourth, sixth a.n4 
ninth terms respectively are added together their sums 

are zerot leav1ng 

17 

(3.16) 

Th• evaluation of this int1n1te sum 1s found 1n 

Appendix (A) and gins 

-i'~ (3.17) 
~s = - ~r (l..11.)'" ~(E-t-d) ~· (~~o..) 

Using the a.aym:ptetio expression for d.k0- « 1 

Eqn. (3.17) reduces to 

(3.18) 
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which agrees wtth the Rayleigh 11m!t for small spheres 

(l). 

For forward scatter g , it may be shown that 

c~ . 19) 

This expression also agrees with the Rayleigh 

limit for forward scattering . 

Since only two terms of the Taylor expansion 

of J~ (4.2Q.) are used t some amount of error is involved 

in the calculations , but since the spherical Bessel 

functions are irell behaved , 1 t is expected that the 

errors are small if the term. n n " ..fl.,....., u 1s small. To 

determine the magnitude of these errors it is convenient 

to calculate a few numerical values . The expansion 

requires the term ..&,~6 to be very much less than one , 

so a value of O . 1 was used for o.onvenience and typical 

values of ..ft.a... were chosen. Errors of the order of 

one percent of the quantity ~, dA "'-rere found to exist 

but this quantity has already been assumed to be very 

small . Therefore , to a suitable degree of approx1mat1on, 

the errors may be assumed negligible by choosing ~, o.A 

appropriately small . 

rlllen the scattering can be considered weak the 

Born approximation (7) is another approach which may be 

used to compute the scattering of an acoustical wave . 
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The results of this approach , as calculated in Appendix 

(C ) gives the scattered field 

- i..Ar 
<P,: ;J..r (J- e) {.s.:... .iJ..... - .;i-1& ... C.., .{ J..o..} I 

The result of the approx1mat1on method used 1n this 

chapter gives 

-.4.l ...-

4>, " - ~r--1 (.&.S (E+J) i• (.<.l..c.) 

which may be written as 

-He,r 

<P~ = - ! ..C..r (H ,r) { .S.:... ;i..&t,,._ - ~ .£..o.. c- ;i it.o.. ~ 

(3 . 20) 

(3 . 21) 

(3. 22 ) 

Comparing the two solut1ons, it 1s seen that 

they are identical w1 th the exception of the sign of J • 
In the Rayleigh limit, Bqn . (3 . 22) agrees with Rayleigh ' s 

result. Ho wever , taking the Rayleigh limit of the Born 

approximation still leaves the sign of J different 

from Hayleich ' s result . One possible explanation of the 

d1f.ference in the sign of c:f is that the Born ap:proxi-

mation tacitly assumes that the scattering region does 

not move during the time interval the wave is being 

scattered. Ho1-1ever , an incoming oscillating wave ·w11.l 

cause the sphere to vibrate about its rest pooition in a 

complicated vibrational pa1)tern. This motion gives rise 



to a sound field llhioh 1s included 1n th exact 

ealculation but not in the Born approximation. S1noe 

the d.1ffeJ-enee in sign is a:ssooiated w1 th the inertial 

~ther than the compressibility term, this explanation 

seems at least plausible . A detailed S·tudy of this 

dif.ferenoe of results is now being carried out and. will 

be reported in a later publication. 

20 



CHAPTER IV 

THE BACK-SCATTERING OF PUWES FROM FLUID SPHERES 

The expansion of the acoustical properties 

inside the sphere 1n terms of the acoustical properties 

outside the sphere allows the steady state solution of 

the wave equation to be written 1n a very simple form. 

Having the baek-soattered steady state solution 1n this 

form permits the back-scattered fields for acoustic 

pulses to be calculated quite easily . The t ypes of 

pulses considered here are an exponential pulse and 

a sinusoidally varying pulse of short duration. The 

interest in these tivo types of pulses arises from the 

faot that they are the most frequently used in acoustic 

work. 

The back-s cattered field for an arbitrary 

incoming pulse s(t) 1s 
t-!lb 

21 

,_ J .i.w t ( , ) ifl:. - °'----==-' (e- +-I) e w c;(w) ~. J.-no. dw (4.l) 
"'¥ J;/:J,, C.r CJ CJ 

-to 

where ~(w) is the Fourier transform defined in 

Appendix Bo 

E~ponential Pulse 
The Fourier transform for this type of pulse 

1s calculated in Appendix B and is 

(4.2) 
- (. 

@(w) = v;n (w-i tr) 
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Using the identity 

(4.;) 

and then expanding the trigonometric function s in terms 

of exponential s , cp becomes the Sl).JU of fo:ir integrals 

{4.4) 

where 

(4.5) 

too iw (t '- ~) 
C (E+J/ e dw 

3J il r ~ .w(w- t er) 
-00 

I = 3 

ro. .iw(t '.,. ~) · 
et< (t:+J)je . clw 
l~f:r W-<<r' 

-Ot 

a., <. 1+0r; iw (t '- ¥) I = ( c ~ i) e dllJ 
L1 J<.tir ·-, W- .(.V 

- Oo 

and where 

t I~ t - ~ 

Evaluating these integrals by contour 

integration, the f ollowing results are obtained for the 



time intervals indicated : 

I :: - C (E+-J){-cr(t'1-t) I} 
I /(, r (T . e - :2. 

I :: - c (f +JJ 
' 3J r er 

I C { - rr(t' - ¥°) _ ~' ~ :: ' (crcf) e 
.2. l<orcr 

c. 
-3 ~-r-a-- ( E- + J ) 

r a, -<r (t'+ ~) 
1:. - g;:(f+J)e c 

l ~ ~ 0 

23 

t'+ ~< 0 e 

t'- -i..9:-) 0 c 

t '- .1 4 <. 0 
(!. 

t'+ ~ > 0 c 

t ,_ ;1Q,. 
C >O 

t I :i:~ - ~ < D 

To olearly see the total scattered f1eld for 

the different time intervals, it is oonven1ent to 

construct the following table . 



cp ~ 

c. 
3~ro-

(ttc(} 

0 

~ (E-t-J) 

0 

cp =- b 

- _c._ I { l I 2'"-) 
fbt'(#" \.f+~) e..-<r t ~ (f - ~} - I~ t'"<I ( E + J) { e -r (t I'" ~) - i} 

- a. v r (E--tJ) e -<r (t'1- ~) - 0. fir (E+J) e -cr(t '+ ~) 

c. 
J~ ra- (c +J) c. { -o-(t' ~c..) } -Ct-+$) e -r c- - t 

0 
G'.. - ~r(e+J)e- c- (t'.,. a-c..) 

t_'~ ~G... -~ ~ c I 

I C -o-(t'+ ~~)}I frt' 
: ¢: (ei-J)l,~,-u- - fr(;;. +a)e 1

1

th: (€+J) e- { ~ ~ ~~er-~~ :t~ er] 
'V I'=> r '-

f\) ... 



When the values of the integrals are summed 

in the respective ti.me intervals tha folloldng re~mlts 

are obtainedt 

(a } t I<- The total back- scattered 

field for this time interval 

is zero as would be expected . 

(b) The total back~ scattered 
la.. t' ~a... - - < <. c c, 

field for this time interval 

is2 

~ / J) { C __ I (_c__ ) -cr(t'+- ~"-)} 
'+" = ~ft '"' r 0- r r ~tr t- a.. e 

( c) 

This field has a time independent term and 

a term whose time dependence makes it 

appear as though the puls e 1s scattered 

from the front surf ace of the sphere . 

t'> The total back- seattered · 

field in this time interval 

ts s 

No time independent term occurs here and 

the time dependent term appears to have 

been scattered from the baek surface of 

the sphere . 



For the sinusoidal pulse , the acoustical 

disturbance is 

and 
S(t):: o T t< - -~ . 

The Fourier transform for thi s pulse as 

calculated in Appendix B is 
o < ' T 

-~tw"~wi 

fJ.. t (W-W,,)(W TU) o) 
~(w) = 

Expanding s i n w I in exponentials and ;(.., 

substituting ·Eqn . (1-t . 8 ) into Eqn. (4 . 1 ) the back-

26 

(4. 7) 

(4. 8 ) 

s cattered field (/> becomes the sum of eight integrals 

rh:. i- +It-··· t-I '+' t ~ 8 
(4 . 9 ) 

where 

(4. 10 ) 

I ~ 
I 

-oo 



I = 
4 

r~ , ( , :l<e. T) 

I ~((. t J -<.W t - C: + -
- - -1..( e, d~ - c, <1 

1 _ 
00 

(W-Wo)(u.>+W c) 

where 

Evaluating the integral s by the contour 

integration g1ven in Appendix B, the integrals have the 

follo~~ng value s f or the time intervals 1nd1cated s 

27 
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(E+ ~) c. I, = 3:l. w.r 

I = (E + J) c. { (t' 4- ~ 1: ) - I l 
I 3.2 Wo r ~ Wo c t- ~ J 

I = (E+~ )c { c.&<> w
0 

It'.,_ ~ - T) - I} 
~ "~ w • ,.. \ c.. ~ 

r = (EH)c f Cb-<> w. (t·-t~D-11 
3 3~"-Jor 1 J 

1 (e-t-J)c. { (t' ~a_ !)} : 1-C&-<l Wo - - +~ 
3 .3~Wor" c 

I : ( E + J) C... { ( 1 _ ~a. - r) ! 
I-~ Wo t c ~ ~ 3Jwo r t I ~ct. T 

- - - - )O <:.. ~ 

1 = (E + J) c. { ~ w. ( t I - ~ - ~) - I} 
~ 3~Wr 



- (e +~)a.. 
l<D r $..:_, WD (t '+ ~ - f) I ~ 

" 

L= - (6 +J)<4. 
l~r ~ Wo(t'-t +-t) 

L= 

29 

~· .lG.. T c. .,..c -~>o 

t. , ~4. r 
T ---(.O c. .:L. 

t I - ~4.. T 
~t-3_(0 

~ ' ~cc. T ... - - .... c 'i ,o 

t '- ~ - r < o c ~ 

The results of this type of pulse are tabulated in the 

following table. 



¢= 

(Et~)c.{~ (I .1.C..) 1} 1(~+-J)c. ( ~4,} I (E ... J)c.l 1 
3.lw.r- Wot~~ - 3iw.r ll-~w.(t'+ c;) ,3.:<Wor 1-~wo(t'+~cc..)J (€- +.Sk { .l ,{f: + J k { .'.J 

1-~wo(t'+~<A.)J 3~U)0 r 1- ~ W o (t'~~~Jf 

(E ~~)<: l- (t'~ ~'')} 3~LDo r I C.eo Wo c, 
{E+J)c, { ' ~<>-) w+•k { ' ~"-we+J)c ~ ' :l« } I (Et~\c l ' -'"- -} 

:3:2Wor I-Ceo Wo (t + c; 3 :tWor 1-CooWo (t + c:-) .3~W. r- c.e.owJt.,. ~ )-1 -3.HVo r ~u.J. (t.,. C:) I 

(et-~) c. { 1 
-- 1 - ~U) (t'-~) 
3~W o r 0 c. 

(~.nc l , J«;~ l(E+~)c. { , ~a. } I (~+s)c. { , 2 a. } l(E+S)c. { , .7a.) _ J 
3~Wot- 1-c.&owo(t- c;) 3JWor ~Wo(t- c=-)-J 3.<Wor ~Wo(t- c;)-1 32uJ.r ~Wo(t-~ I 

(t +.) c. { • ~.. } 
g~w0 ,.- ~Wo (t - e )-1 (f;t-~)~ { I ~C..) 1 

3~illor CeJw. (t - e - I (E+J)c, { , ~ -1 l(H~)e \ _ ,_.ic..} 
3:lwor Ceowo{t-C!.) I 3~wor I ~Wo(t c:) 

(~+-')<-.. ~ ( ' ~ _(H~)c... L { I ~) - Ct:,!-:~u.. ~ We (t't- ~) _ (c +J)ev ~ w (t1 Ole<.) _ (E-·h0G-~ u.Jo (t'-1- ~~) i;;::- Wo t .- c,) 
11o t- w. t + c. /(p ,_ 0 ~ ~ l<D r e 

_(HJ)~ ~ u>o (t'~ 1£:) I -(EHk ~ ( '+ ~5) 
11.or /<or Wo l c. 

- ~t-S)~ ~ W (t' ~) /CJ, r o +- c. 
( €+· ,nc._. s.:...., ( I :24.) 

/for w(J t .,,. a; 
(e+~)a. ~ (t'1- ~-2-) 

f & Y' Wo c 

(H.1k ~ uJo(t'- W-) (~+S)~ $.:....., W4> (t' - ~) 
(~ r e _ (H.!)11. ~ w. (t'- ~) - (E-t-~)~ C' • (t' - ~Cl.) 1-(~+S)c;.., ~ W, (-t'- ~'"-) 

/~r ~Wo c /t..r o c:. 

_(E:t~)£C.. ~ 't'-~4-),_{f:"Hk <. (t'-~)l _(6+-•n"'- I' · UJ (t'-~4.)l_(~+J)<Lt'· 't'-~)1 fo+-.))4- <' uJ (t'-~a..) 
tc,r LV.o\. ~ t~r ~ Wo <:. l&r ~ o ~ ) /"1t' ~Wo\.: c. l~r- ~ " c 

- :tc;... T I ~~4. I I - ~ct T 
1 c--i 1 c--~ 1 ct-a. :lt4.. r 

-~-

' ~ l-
t'• 

cp ~ 0 111'-=(e,.J)c.{-"-- (' ~q.)}l1t-.-:~+~)c ~w.t .S.:-.w ~ 'A\~(f:+S)el~wo(t'-=i..'-)-11 
j '1-' lbW• r l '-'90Wo t +- C: '+' l<..Wor 0 c. I 'I' lbWor ~ J 
I I . I I 
I - (u~)~ c . W (t'+- ~) I - (~+~)"&-,wt ~W ~ I - {H-')G.. < . W I ' -<:) I 1r ~ o c. l/r o cc, gr ~ o \t - e 

1 ¢ =- o 

......, 
0 



rlhen the values of the integrals are summed for 

each time interval , the follow~n.g results are obtained1 

(a) As expected , the total 

back- scattftred field for 

this time interval is zero . 

t , < _ ~"'- r 
~-~ ) 

(b) The total back~soattered 

( c) 

-~ - I < t ' < ~a.. T c ~ c - r ) field in this time 1nterva 

i s : 

This field appears to be the first of the 

wave train being scattered by the front 

surface of the sphere , an~ as in the 

exponential pulse case , a time independent 

term appears . 

The total back- scattered 
~ - 1:<t ' <! - ~ e .:a. l.. c.> field in this time 1nter 

is : 

This field appears to be the first of the 

pulse being scattered from the back sur-

face of the sphere . 



(d) The total back-scattered 
-~ .. ! < t c: "I + ~4 

c ~ ~ ~ ' field in this time interva 

1st 

<P ~ (~"'+~:: { <'-&o w.(t'- ~}-•}- (f;~k .L, w. (t'- ~) 

( e) 

This field appears to be the last of the 

pulse being scattered from the front of 

the sphere and again a time independent 

term appears. 

The total back-scattered 

field in this time interva 

1s again zero as would be expected. 

Some oa.re must be taken in choosing a pulse 

since the method of analysis used 1n this thesis has some 

limitations. F1rst, since the asymptotic limit of the 

spherical Hankel function becomes singular at w = o • 
the pulse must be chosen such that 1ts Fourier transform 

has a small oontr1bution or frequencies near w~ o • 
It may also be shown that the integrand vanishes at w~ b 

even when h ~~.It, r) 1 s not used in 1 ts asymptotic form; 

thus the error due to representing 'n(~) u •. ,.) <U e-t1'.... is 
...l.r 

not large. Secondly, since the Taylor expansion requixee 

-l.o.A <(.1.. , the Fourier transform of the pulse must not 

oontaln frequencies such that the inequality cannot be 

satisfied w1 th an adjustment of a> 6 or c • Also, 
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since ..l, Cl 6 <<1 and since frequencies near w ~ o are 

not allo ued , pulses must be chosen such that with an 

adjustment of q b and c ·, the inequality is satisfied 
' 

without much oontr1but1on from frequencies near w-:.o 



CHAPTER V 

SUMMARY AND DISCUSSION 

In this thesis it has been shown that the 

scattering of sound by fluid spheres immersed in an 

infinite fluid may be calculated easily by assuming that 

the acoustical properties of the sphere are very similar 

to the acoustical properties of the surrounding fluid. 

This allows the expansion of f'U.nct1ons involving the 

acoustical parameters inside the sphere in terms of a 

Taylor series in which the acoustical parameters outside 

the sphere appear. This, in 'trurn, allows the back-

scattered field for arbitrary pulses to be easily calcu-

lated at least to first order in the expansion. The 

first order back-scattered field for the two types of 

pulses considered appears, from time of arrival 

considerations, to consist of a pulse being scattered 

from the front surface and one from th~ back surface of 

the sphere. For higher accuracy more terms would need to 

be used in the expansion. In order to see the result of 

including higher order terms the contribution due to 

second order terms may easily be determined. The second 

order terms in E and J that appear in the scattering 

coefficient B"1\ are 
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All the se terms contain products of either two or four 
spherical Be ssel funotions. Whan the time dependences 

are 1nvest1gated by means of contour integration similar 

to that appearing in .Appendix 13, it appears that some of 

the terms represent the pulse being scattered by the 

front and back surfaces of the sphere just as 1n the 

first order case. HoweTer, the other terms possess time 

dependences which seem to have no simple geometric 

interpretation. The origin of all these reflected 



pulses is not adequately known and it is very doubtful 

that any of them have such simple geometr1o origins ~en 

one considers the re.t1o of wavelength to aphere size. 

Further investigation of the dynamic behavior of the 

sphere itself would be of interest. Due to the com-

plexity of this problem , time has not allowed for its 

inclusion in this thesis. 
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The existence of time independent terms for the 

back-scattered field produoed by the t wo pulses is not 

oompletely understood at this time and subsequent 

investigation related to that mentioned above may provide 

information on the origin of the terms . Since the time 

between the arrivals of the t wo scattered pulses 

di scussed 1n Chapter IV is relatively short, one possible 

explanation for the terms 'mich appear to be time 

independent is that they may represent the first term in 

the expansion of a slowly varying time dep·endent function~ 

The assumption that the acoustical properties 

of the sphere are v-ery similar to the aooustioa.J. 

properties of the surrounding fluid also allows the Born 

approximation to be used to compute the scattering of a 

plane wave . However, when the results of the exaot 

calculation and the Born approximation are compared, it 

is seen that there exists a disagreement in the sign 

of ~ for back-scattering and an even more oompl1oated 

discrepancy for other angles of scattering. In Chapter 



III, 1t was suggested that this disagreement may be 

attributed to the fact that the Born approximation 

tacitly assumes that the soa.tter1ng region dat!s not move 

during the ti.me interval the wave is being scattered. 

The exact solution, however, does take into a.ooount the 

movement of th& sphere. Further investigation of this 

problem is unde·r way. 

The problem considered here has led to an 

easier way to obtain the approximate field due to 

scattering by sphares at least in the limit of small 

d1fferenc~s 1n the elast1o constants as described above. 

It is hoped that the extension of this method to higher 

order terms will be of general use in scattering 

problems throughout phys ics. 



APPENDIX A 

EVALUATION OF INFINITE SUM 

'llhe infinite sum to be evaluated is 

Qll 

T = L (-1)~ m ~M (.hw) ~~·I (~'4.) 
M~O 

IA-1) 

Expressing the spherical Bessel functions as cylindrical 

Bessel functions by 

and ucing the identity (8) 
(A-3) 

~,2-

J.: ti... ... ) J11(k)=- f. f J,;;.,,(:iPewc..oe) Cb<> (<.1-11)edB 
0 

Equation (A-1) becomes 

(A-4} 

Since J«n-. (2.A_a., c.eo&) is a wall behaved function, the 

interchange of the summation and integration operations 

presents no difficulty. Also, the first term of the 

summation vanishes so the summation may be started .from 

one instead of zero. 
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Rewriting Equation (A-4) 

~It ~ 

T ~ ~4. 1 teo e .. ~ 0f:- 1l~ t"rt J~ ... <~ t" <'.8-<> 9) d & 

(A-5) 

A recursion relationship of use at this point is 

(8) 

(A-6) 

and when used in Equation (A-5) gives 

Examining the terms in the bracket it is seen that the 

sum of the infinite series is equal to 

.0 Ce 

2: ~~-\ (~~ Ce4&) + .l (-1)""' l'M+I (~l.a.. Ccoe) ~ - J 1 (~!A.. ~ 9) 
M~I '-s I 

Therefore, 

~ 

T =- - ~ J J, (.:il11- Coo e ) c.~,.,/·& de 
0 

(A.-8) 

Another identity of use here is (8) 

(A-9) 
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(A-lO) 
ry._ r(-i) J.t .. (2.l.J J J. ( ~.&.o- C«> 4>) c... (j) d ~ -:. -vii::. ~ 

0 

and so 
~I~ 

J J, (~$.. ... c- ~) Ceo~ (.Q d cj) = J· (.;i L..) 
0 

(A-11) 

Therefore, 

{A-12) 



APPEli.DIX B 

FOURIER TRANSFORMS AND OON1.r<DURS OF INTEGBATIOM 

Using the Fourier Integral theorem (9), a 

finite wave train or pulse may be represented mathe-

matically as 

~... +cw 

( 1 J {.u;t J -iwt' d , :r(t.) =~ti e dw S(t') e t 
_.. -e.. 

The quantity 
't .. 

( ) l J -lwt d w -;;1/iii' S(t) e dt 
-Do 

1s called the Fourier trans.form 0£ 5-(t) • 
lo Exponential Pulse& 
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(:S-1) 

(B-2) 

For the exponential pulse, the acoustioal 

disturbance is given by 

( ) 
-crf: st. = e 

f>(t) :: D t<o 

The Fourier transform of this pulse is 

(13-4) 
- (... S (w) = 

i.i.1( (w-i<1) 
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2. Sinusoidal Pulse: 

The aooustioal disturbance for this type 

of pulse is 

S(t) :: L w ~ = ~ wt) t 
(.. 

(B-5) 

t')' T t<- T 
.2.. ' t. 

where 

w 
) 

The F~urier transform becomes 

(B-6) 

3. Note on Contour Integrat1ont 

The first integral in Equation (4.5) will 
be calculated as an example to demonstrate 

the eontours used for integration 1n 

Cha.pt er IV. 

(B-7) 

I
.-o. C.w(t'+ ¥) I : e dw 

1 w(w- t'<r) 
-o-



The f ollew1ng contour in the complex w 

plane has been chosent 

By observing the term e i.w<.t '• ¥-) it is evident that 

tor t' • ~-t > o , the upper contour must be uaed and tor 
the bottom oontour must be used, s1nce the 

!unction is singular at w=- t.ao .fol' t.'+ ~ < 0 and a.t 

for t'+ ;J..;- > o • This ensures that the value 

of the integral along the semicircle will vanish in the 

limit as the rad1ua of the ~m1o1rcle becomes infinite. 

The poles on the real axis may be included in e1thar 

oontour but 1n this thesis they a.re always included in 
the upper contour. 

From the theory of oomplex integration (10) 

(B-8) 



For r1 , Equation (B-8) yields for t'+ ~Q>O 

T'llO • f.t '+ ~) 

J •HU~ e. d e w 
w (w--< q--) 

- Cle 

.i cp where w =- ro e around the pole at the origin. 

Thus, 
-t-oo w(t' + ~) 

T : I e '- dw - A; . {_!_ + e-rr(t'1- ~)] 
-, ( • ) - ~It(. -(·--- ~·""* 

-be> w w - ~ er v .... v 

and 1t clearly has the value 

t I -f ~a. c < 0 

(B-9) 

(B-10) 

(:S-.ll) 
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APPENDIX 0 

THE BORN APPROX!MltTION FOR SPHERICAL SCATTERING 

Sinoe the acoustioal properties of the sphere 

are very similar to those of the surrounding medium, the 

sphere ma~r be considered a. perturbation in an otherwise 

unbounded medium and the Born approximation may be used 

to calculate an ap:proxima.te solution to the wave 

equation. 

For the infinite medium, the scalar potential 

sat1nfiee the three dimensional wave equation 

where ~ is the wave number in that medium. When the 

sphere is introduced into the medium, the potential 1n 

the vicini t y of the sphere changes slightly and the wave 

equat ion may be written 

(C·l) 

where 

(0-2) 
and 

E 
ii<< 1 

Thi s problem i s one which may well be approximated by the 

method due to Born f or which an excellent presentation 
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1s given by Schiff (7). Letting 

4), = cp(. + cP.s :: e -il. r c.. e t- cP.s 

an-d neglecting the term €.lV~ , Equation (0-1) be omes 

The solution to this inhomogeneous equation is (7) 

The diagram defines all distances and angles. 

? 

The di stance f? ::. Ir - ro' :: r- f""o C.0.0 e 
..... 

and for large r - -Ir - ro I .v r • For back . oattering e. ~ 7t and 

e = e. -t , and 

0 0 



Upon evaluating the integral, the Born approximation 

for the soattered field ia 
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This expression for (f.)$ is essentially the same as found 

by Peker1s (ll)o The integration may be extended easily 

to gan,~ral angles of $catter1ngo 
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.ABSTRACT OF THESIS 

ACOUSTIC SCATTERING BY FLUID SPHERES 

The problem of scattering of acoustic waves and 

pulses by an elastic sphere embedded in an 1nf1n1te 

elastic medium is investigated for the case where the two 

media. are very similar acoustically. This physical 

situation allows funot1ons with arguments involving the 

acoustic parameters inside the sphere to be expanded 1n a 

Taylor series involving the acoustic parameters outside 

the sphere. Using only the first order terms in this 

expansion, the solution for plane wave conditions in the 

back-scattered direction is much simpler than the exa.ot 

solution. This allows the solutions for the scattering 

of acoustic pulses to be calculated. 

The steady state solutions are compared with 

those obtained using the Born approximation, and are 

found to differ only in the algebraic sign of the 

d1ff erence in densit y of the two media.; al thoue.Ji they 

agree with the results obtained by Rayleigh in the 

proper 11~. 1 t. It is aloo found that the :Eorn approxi-

mation differs from the results obtained b"';- Ra.vlei""'"" ,, °""'"' 
again only 111 the algebraic cign of the difference in 



density of the two media. 
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Col@rado State University 

Matreh, 1962 
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