
 

THESIS 

 

 

 

A SPATIAL STOCHASTIC PROGRAMMING MODEL  

FOR TIMBER AND CORE AREA MANAGEMENT  

UNDER RISK OF STAND-REPLACING FIRE 

 

 

 

 

Submitted by 

 

Dung Tuan Nguyen 

 

Department of Forest and Rangeland Stewardship 

 

 

 

 

 

In partial fulfillment of the requirements 

 

For the Degree of Master of Science 

 

Colorado State University 

 

Fort Collins, Colorado 

 

Fall 2012 

 

 

Master’s Committee: 

 

 Advisor:  Yu Wei 

  

 Michael Bevers 

 Robert W Kling 

  



ii 

 

ABSTRACT 

A SPATIAL STOCHASTIC PROGRAMMING MODEL  

FOR TIMBER AND HARBITAT CORE AREA MANAGEMENT  

UNDER RISK OF STAND-REPLACING FIRE 

 

Forest harvest scheduling has been modeled using deterministic and stochastic programming 

models. Past models seldom address explicit spatial forest management concerns under the 

influence of natural disturbances. In this research study, we employ multistage full recourse 

stochastic programming models to explore the challenges and advantages of building spatial 

optimization models that account for the influences of random stand-replacing fires. Our 

exploratory test models simultaneously consider timber harvest and mature forest core area 

objectives. Each model run reports first-period harvesting decisions for each stand based on a 

sample set of random fire. We integrate multiple model runs to evaluate the persistence of 

period-one solutions under the influence of stochastic fires. Follow-up simulations were used to 

support multiple comparisons of different candidate forest management alternatives for the first 

time period. Test case results indicate that integrating the occurrence of stand-replacing fire into 

forest harvest scheduling models could improve the quality of long-term spatially explicit forest 

plans. 
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1 Introduction 

Natural disturbances such as fire, wind, insects and diseases interact with forest 

management activities across and beyond forest planning horizons. Disturbances can influence 

timber flow, economic return, forest age-class distribution, and forest spatial structure.  A 

number of research studies have highlighted the importance of accounting for the influence of 

such stochastic disturbances in forest planning models. 

In many forests, wildland fire is one of the major disturbance factors influencing long-

term timber supplies.  Interest in developing forest-wide harvest schedules that account for the 

risk of wildland fire blossomed in the 1980s beginning with a study by Reed and Errico (1986) 

and has continued into the present.  Reed and Errico formulated a deterministic non-spatial 

harvest scheduling model with flow constraints to maximize the return from harvests under the 

influence of mean value fire disturbance rates.  They later enhanced this model (Reed and Errico 

1989) by accommodating the possibility of partial salvage, multiple timber types, accessibility 

constraints and variable recovery costs.  Pasalodos-Tato et al. (2010) developed a deterministic 

non-spatial model to evaluate the interaction between fire and timber management in stands of 

Maritime Pine (Pinus pinaster). 

Gassmann (1989) developed a non-spatial stochastic programming model with seven 

recourse stages to evaluate optimal forest-wide harvesting in the presence of fire. Because 

solving a stochastic problem with many recourse stages is computationally challenging, the last 

three stages in this model were deterministic with only one realization of fire occurrence. 

Gassmann found that by modeling four stages of recourse, the period one solution tended to 

stabilize.  He also suggested using penalty terms in the objective function instead of enforcing 

timber flow through constraints.  Similarly, Boychuck and Martell (1996) developed a non-
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spatial multistage stochastic programming model with ten discrete planning periods, the first four 

modeled with recourse.  They examined the impacts of timber flow limitations and fire severity. 

Armstrong (2004) developed a non-spatial stochastic simulation model to test 

deterministic annual allowable cut (AAC) solutions in Alberta, Canada.  After determining an 

AAC using a linear programming model, Armstrong evaluated the results using Monte Carlo 

simulations by assuming the proportion of area burned in each period is random.  The study 

compared the effects of fire under different harvest schedules in different types of forest.  

Konoshima et al (2008) tested a spatially explicit model in a regularly shaped landscape with 

seven hexagonal stands assuming that harvesting a stand produces higher fire spread rates across 

the stand.  

Spring and Kennedy (2005) used a stochastic dynamic programming (SDP) model to 

study the trade-offs between producing timber and protecting endangered species under the 

threat of random fires. Ferreira et al. (2011) developed another SDP model which assumed 

harvesting happens before fire in each stand.  Markov chain models describing stand transitions 

of mixed loblolly pine-hardwood forests under the influence of natural disturbances have been 

used to study the trade-offs between landscape diversity and timber objectives (Zhou and 

Buongiorno 2006). This type of model also has been used to search for the optimal harvest 

schedule for a forest subject to random wildfires (Campbell and Dewhurst 2007). 

As Boychuck and Martell (1996) summarized, the effects of fire disturbance on timber 

supplies over time appear to vary considerably depending on a number of factors.  In multi-stand 

or multi-strata harvest scheduling models with forest-level constraints such as non-declining 

flow, a frequent outcome is that  “attempting implementation of mean value problem solutions in 

a stochastic system leads to infeasibility with high probability” (e.g., see Pickens and Dress 1988 
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and Hof et al. 1988).  Boychuck and Martell observed, however, that mean value problem 

solutions generally provided fair approximations to stochastic programming problem first-period 

solutions.  In systems where periodic re-planning occurs, they suggest that mean value solutions 

may even be good approximations where allowances are made for fire risk by harvesting less 

than the solution indicates (i.e., by retaining a timber supply buffer stock).  Boychuck and 

Martell indicate that more complex stochastic programming methods “would be justified in areas 

with a tight timber supply, lacking sufficient overmature areas, having high and highly variable 

fire losses, and where harvest quantity declines are particularly unwanted.” 

Many forest planning problems, however, include objectives besides allowable cut or 

financial returns from timber harvests.  These non-timber objectives are often spatially explicit 

and many require spatial optimization methods to account for landscape patterns and 

arrangement effects (e.g., see Hof and Bevers 1998, 2002; Murray 2007).  Forest planning 

problems with harvest area (“adjacency”) constraints (e.g. Goycoolea et al. 2005) or habitat 

requirements for species that dwell in the interior (“core area”) of mature forests (e.g., Öhman 

and Eriksson 1998) are common examples.  We note that, so far, few studies on the subject of 

forest planning under fire risk have been conducted with spatially explicit models.  We also note 

that mean value approaches to modeling fire disturbance may be untenable in the stand-based or 

cut block approaches to forest-wide harvest scheduling typical in mathematical programming 

formulations of these problems. 

In this paper, we explore the use of a spatial multi-stage stochastic programming model 

to select optimal harvest schedules for timber and core area joint production under the influence 

of wildfires.  This model is similar in many respects to the model III harvest scheduling 

formulation (Gunn 1991), which models forest growth and harvesting by balancing the area of 
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forest entering and leaving each state (age class) in each stage (period) (Boychuck and Martell 

1996).  Our formulation is revised to maintain stand boundaries and to produce mature forest 

core area. We tested this model through an artificial forest to examine model performance under 

different disturbance assumptions. We also studied the resulting trade-offs between timber and 

core area production. 
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2 Methods 

We first introduce a deterministic even-aged harvest scheduling model. This model 

depicts the development and management of stands in a simulated forest without the appearance 

of any random disturbance. Management decisions are simplified to just harvest each stand 

entirely or do nothing in each scheduling period. We then incorporate random samples of fire 

disturbance into the model and reformulate it using sample average approximation (SAA) 

method (Kleywegt et al 2001; Bevers 2007). Management actions and fires in this revised model 

are assumed to have a fixed sequence of occurrence. An enhanced formulation is then presented 

by modeling that sequence as a random event. In the next step, we introduce the concept of 

influence zone (Hoganson et al 2005) as well as describe the construction of mature forest core 

area (Wei and Hoganson 2007). We then incorporate core area into forest planning, forming a 

multistage full recourse stochastic model, to address both timber harvest and mature forest core 

area conservation in the presence of random wildfire. 

 

2.1 Formulating a deterministic timber harvesting model 

We consider the stand as the smallest management unit. We assume a stand could be in 

age class 1, 2 or 3 at the start of each period before the implementation of any management 

activity. Harvest and “do nothing” are the only two available management options for each stand. 

Without being harvested, a stand will stay in the same age class within the same period and will 

grow into an older age class at the beginning of the next planning period; the age of harvested 

stands will be reset to zero in the same period and will be advanced to age class one when 

entering the next planning period. Stands older than the defined maximum age are assumed to 

stay within the maximum age class without harvesting (See figure 1 below).  
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Fig 1: Illustration of a network representing the transition of stand age between two consecutive 

periods (deterministic model) 

 

This model coordinates stand level decisions across time and space to maximize forest 

level timber-based economic returns. The formulation, as presented below, is constructed to 

maintain the integrity of stand boundaries by not merging stands with identical age classes and 

stand types as model III formulations do. Area balance constraints are used to track how timber 

harvests and fire in each stand impact stand age class over time.  

 

Maximize: 

 ∑ ∑ ∑ ∑                 ∑                   (1.1) 

Subject to: 

Stand age at the 
beginning of 

period t 

Management 
action in period t 

Stand age right 
after 

management 

Stand age at the 
beginning of 
period t+1 

1 

harvest 0 1 

do nothing 1 2 

2 

harvest 0 1 

do nothing 2 3 

3 

harvest 0 1 

do nothing 3 3 
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 ∑                                       (1.2) 

 ∑ ∑                     ∑                                                           (1.3) 

    ∑ ∑ ∑                  ∑ ∑ ∑                               (1.4)  

Where: 

i indexes forest stands. 

j, j’ index stand ages. In equation (1.2), j1 denotes the current age class of stand i (age class at 

the start of period 1)  

k indexes management actions: either harvest or do nothing. 

t  indexes time period. 

       is a binary decision variable indicating, when set to 1, the selection of management 

option k for stand i at age class j during period t.  

    is a set of bookkeeping variables to track declines in timber production between two 

consecutive periods. 

T  denotes the total number of planning periods across the entire planning horizon.  

Jit  denotes the set of possible age classes for stand i at period t.  

Kij’j  denotes the set of management options that can advance stand i from state j  in period t-1 

to state j in period t.  

ai is area (Acres) of stand i 

     denotes timber yield from managing stand i following prescription k when this stand is at 

age class j.      is zero if the “do nothing” prescription is assigned to stand i.   
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   is the predefined price per cord of timber for stand i which varies by stand-type and stand 

age class as in table 1 below 

Table 1: Prices of timber that vary by stand type and stand age class 

 

Price per cord of timber ($/cord) 

Stand type 1 Stand type 2 Stand type 3 

Age class 1 0 0 0 

Age class 2 27 28 25 

Age class 3 27 28 25 

 

q is a positive coefficient which is used as the penalty for each unit of timber decline 

between each pair of consecutive periods. 

r is the predefined discount rate for timber value (r=0.04) 

      denotes the discounted net revenue of managing stand i at age class j following 

prescription k in period t.       is zero if the “do nothing” prescription is assigned to stand 

i.   

      
 

           
         

The objective function (1.1) maximizes the total return of managing a forest for T 

periods. It includes two components: the discounted profits from harvesting timber, and a penalty 

on any decline in timber production between the (T-1) pairs of consecutive periods. Constraint 

(1.2) requires that exactly one stand management activity, including “do nothing”, is selected for 

each stand at period one. Constraint (1.3) links the harvesting options between two consecutive 

periods for each stand. This is similar to the area balance constraint used in model III 

formulations. However, because this constraint is built for each stand, it maintains the stand 

boundaries when tracking the age of a stand. Constraint (1.4) requires that there is no decline in 
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timber production from between two consecutive periods. This formulation is used as a base for 

further enhancement. In the next step, we add new decision variables and constraints to model 

the influence of stand-replacing fires. 

 

2.2 Adding random samples of fire disturbance  

We incorporate random stand-replacing fire events into our harvest scheduling model 

with the assumption that fires always occur after management activities within each planning 

period. Simulated fires destroy randomly selected stands based on fire probabilities that vary by 

age classes and reset stand age to zero within the period of occurrence. The simulation of fire 

disturbance is illustrated with an example as in figure 2 below 

1

2

3

Sample A

0

1

2

3

No fire

No fire

Fire

Fire

Sample B

Sample C
Age cls before 

management

Age cls after 

management, 

but before 

disturbance
 

Fig 2: Illustration of how to simulate fire disturbance in a stand in each planning period 
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In this example, we draw three random samples A, B and C to reflect the fire occurrences 

in a stand depending on the age class after management. The number in each circle represents 

stand age class; arrows represent the possible stand age class changes in the same planning 

period. “Harvest” resets stand age to zero; “do nothing” does not change stand age class in the 

same period. We assume the probability of fire in each stand depends on its age class. Two 

samples A and B were built based on random draws to reflect the fire occurrences in this stand 

depending on its possible age classes. We assume sample A represents a case based on random 

draws that 1) there is no fire if this stand is in age class zero or one; 2) fire happens if this stand 

is in age class two or three. Different samples B and C could reflect different fire occurrences 

depending on the age class of a stand after management. The transition of stand age class with 

random fire occurrence is illustrated in figure 3. 
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Fig 3: Illustration of a network representing the transition of stand age between two consecutive 

periods (when adding random samples of fire disturbance with fixed sequence of occurrence 

between management and fire). In each period, the occurrence of either harvesting or stand-

replacing fire will reset stand age class to zero within that period. Stand will then has age class 

one at the beginning of the next period. Within each period, there are no changes on stand age 

class if both “do nothing” and “no fire” happen. 

With the above assumption, we built an enhanced formulation using SAA method as 

presented below 

 

Max     ∑ ∑
 

    
∑ ∑ ∑                                ∑

 

                  (2.1) 

Stand age at the 
beginning of 

period t 

Management 
action 

Stand age right 
after 

management 

Random draw of 
Stand-replacing 

Fire 

Stand age right 
after fire 

occurence 

Stand age at the 
beginning of 
period t+1 

1 

harvest 0 No Fire 0 1 

do nothing 1 No Fire 1 2 

2 

harvest 0 No Fire 0 1 

do nothing 2 

Fire 0 1 

No Fire 2 3 

3 

harvest 0 No Fire 0 1 

do nothing 3 

Fire 0 1 

No Fire 3 3 
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St. 

∑                        (2.2) 

         
                      ̃     

             (2.3) 

∑ ∑               
    

  ∑                          ̃     
           (2.4) 

∑ ∑              
    

   ∑                                 ̃ ,           (2.5) 

   ∑ ∑ ∑                 ∑ ∑ ∑                      

        ̃               (2.6) 

Where: 

h indexes the type of fire disturbance which is either “no fire” (h=0) or “stand-replacing 

fire” (h=1) 

(n)t indexes each random instance in the set   ̃  in period t. (n)0 represents the current forest 

state (at the very beginning of the first period) 

         is a binary decision variable indicating, when set to 1, the selection of 

management option k for the random instance (n)t of stand i at age class j at the 

start of period t+1. Management decisions are made before knowing the 

occurrence of any fire disturbance within the same period. Period one decisions 

are denoted by           

          
 is a binary variable indicating, when set to 1, the fire disturbance of type h if stand 
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i is at age class j in random instance (n)t during period t after implementation of 

the management activity selected for that time period. 

H’ij’j is the set of random fire disturbances that cause a transition in stand i from state j in a 

given time period to state j at the start of the following time period. 

K’ijj’ is the set of management activities for stand i that cause a transition from state j to state j

upon implementation in a given time period. 

N is the number of new samples generated for each existing stand sample state in each time 

period. We make a three period example to illustrate the sampling notation used in our 

sample-based stochastic programming model as describe in table 2 below.  

Table 2: Illustration of sampling notation 

 

 

 

 

 

 

 

 

 

 

 

 

 

Samples set, index of each sample and the simplified denotations 

Period 1 sample set  

 ̃          

Period 2 sample set 

 ̃  Period 3 sample set  ̃  

(1)1 

(1,1)2  

denoted as (1)2 

(1,1,1)3,  denoted as (1)3 

(1,1,2)3,  denoted as (2)3 

(1,2)2 

denoted as (2)2 

(1,2,3)3, denoted as (3)3 

(1,2,4)3, denoted as (4)3 

(2)1 

(2,3)2 

denoted as (3)2 

(2,3,5)3, denoted as (5)3 

(2,3,6)3, denoted as (6)3 

(2,4)2  

denoted as (4)2 

(2,4,7)3, denoted as (7)3 

(2,4,8)3, denoted as (8)3 
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We assume random fires can occur in each of the three periods. Suppose two random 

sample states are drawn for a stand in period 1 and two more samples are drawn for each 

resulting state in subsequent periods. In this example, we would have two sample forest 

states at the end of period one, four at the end of period two and eight at the end of period 

three for this one forest stand. We index sample states from 1 to n at the end of period t 

using the abbreviation (1)t, (2)t,……(n)t for simplicity. Each stand state at the end of the 

three-period planning horizon reflects a sampled succession pathway up to the end of 

period three. For example, the state indexed by (5)3 represents a sampled potential forest 

succession pathway of (2)1(3)2(5)3 for the stand. 

 ̃   denotes the set of randomly generated forest stand sample states at the end of period t. 

Using the example in table 2, if N is set to two,   ̃  would include two sampled states in 

period one for each stand. Branching from each period-one state creates two new states 

for each stand. Therefore,  ̃  will include four sample states.  ̃  includes eight sampled 

ending states and each of them indicates a sampled forest stand succession pathway 

across three periods. 

 ̃
     
   denotes the period t sample set in which fire type h does not occur in stand i when the 

stand is in age class   . For each sample      in set  ̃
     
  , the value of  

        
 is set to 

zero exogenously; the values of other          
 variables are determined by management 

activities selected by the model. 

Objective function (2.1) is the revision of (1.1) using sample average approximation 

method. Constraint (2.2) requires one and only one stand management activity, of either 

“harvest” or “do nothing” option, can be selected for each stand at period one. The age class 

balance constraints (1.3) for each stand are split into two types of constraints (2.3) and (2.4). 
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Example of how those constraints are designed to reflect the fire occurrences in sample A (in 

figure 2) is presented as below (for simplicity we omit the subscripts of the stand and the sample 

index from each decision variable). 

 

Dage_0, fire = 0 

Dage_1, fire = 0 

Dage_2, no_fire = 0 

Dage_3, no_fire = 0 

Xage_1, cut + Xage_2, cut + Xage_3, cut = Dage_0, no_fire, + Dage_0, fire 

Xage_1, no_cut = Dage_1, no_fire + Dage_1, fire 

Xage_2, no_cut = Dage_2, no_fire, + Dage_2, fire 

Xage_3, no_cut = Dage_3, no_fire + Dage_3, fire 

 

Constraint (2.5) advances each stand into an older age class as it moves into the next 

planning period. Constraint (2.6) tracks the average declining timber flow across all samples 

between every pair of consecutive periods. 

 

2.3 Modeling random sequences between management and fire 

It is hard to guarantee that we can always make scheduling decisions ahead of time 

before the occurrence of any disturbance event at the beginning of each period like, for example, 

harvesting to liquidate the timber value before it can be destroyed by a stand-replacing fire. 

Wildfires in reality may occur before any implementation of management activities which will 
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make the planned harvesting become impractical. Thus, the assumption that harvesting always 

precludes fire may overestimate the allowable cut.  

In this step, we develop a more general formulation which assumes the sequence between 

harvesting and fire within a time period is also random. We use two random draws to create 

samples of fire occurrences for each stand at each existing forest state. The first draw indicates 

the occurrence of fire. If there were a fire, the second random draw determines the sequence 

between this fire and any planned harvesting. The key thing of this enhanced formulation is the 

use of the two sets of variables indicating the planned (or scheduled) management activities 

(denoted by X) and the implemented management activities (denoted by W). Management 

decisions and fire occurrences can interact within a stand during each planning period. The idea 

here is that scheduled stand management activities are selected at the start of an initial planning 

period, prior to observing subsequent random stand-replacing fires. As a result of random 

wildfires, some of the stands scheduled for treatment in each time period are burned first and 

cannot be treated as planned in those sample paths. In other cases, treatments are accomplished 

prior to fire disturbance. And in other cases, no disturbance occurs regardless of treatment or 

non-treatment. Each sample path leads to an opportunity for the selection of recourse 

management schedules in the following planning period that potentially could compensate for 

losses incurred from the preceding sequence of fire disturbances. 

In each sample, implemented management variables (W) are used to track whether 

“harvest” could be implemented as a consequence of the within-period timing of fire occurrence. 

Table 3 lists six possible scenarios of fire occurrence and forest stand management (mgmt) in a 

given time period. The resulting fire occurrences and implemented management activities are 
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shown for each scenario. Even there is a fire as the result of the first random draw, it will 

actually not happen if being precluded by an implemented harvesting. 

Table 3: Possible interactions between the planned management decisions and the fire 

occurrence in each stand 

Scenario 

No 

Sampled fire 

occurrence 

Planned 

mgmt 

          
 

Sequence 

between 

mgmt and 

fire 

Resulting 

mgmt 

            

Resulting 

fire 

occurrence 

1 No do nothing N/A do nothing No 

2 No harvest N/A harvest No 

3 Yes do nothing mgmt, fire do nothing Yes 

4 Yes harvest mgmt, fire harvest No 

5 Yes do nothing fire, mgmt do nothing Yes 

6 Yes harvest fire, mgmt do nothing Yes 

 

There’s only one scenario (No 1) where stand age class will be preserved within a time period 

because of “do nothing” activity and “no fire” occurrence. Every other scenario will lead to the 

same transition of stand age class to the value zero right after the occurrence of management 

activity and fire no matter what happens first. That zero stand age class will then become one 

when entering the next time period (see figure 4) 
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Figure 4: Illustration of a network representing the transition of stand age between two 

consecutive periods (with random sequences between management and random stand-replacing 

fire) 

Following those assumptions above, we built an enhanced SAA formulation as follow 

 

Max     ∑ ∑
 

  
∑ ∑ ∑                              ∑

 

                  (3.1) 

St. 

∑                        (3.2) 

                              ̃    
 ,          (3.3) 

         
                    ̃     

            (3.4) 

Stand age at the 
beginning of 

period t 

Random 
sequence of 

management/fire 

Stand age right 
after the 
sequence 

Stand age at the 
beginning of 
period t+1 

1 

no fire - do 
nothing 

1 2 

any other 
sequence 

0 1 

2 

no fire - do 
nothing 

2 3 

any other 
sequence 

0 1 

3 

no fire - do 
nothing 

3 3 

any other 
sequence 

0 1 
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                                           ̃    

           (3.5) 

 ∑ ∑             
    

  ∑                
    

             ̃     
             (3.6) 

 ∑ ∑              
    

   ∑                                ̃             (3.7) 

   ∑ ∑ ∑                 ∑ ∑ ∑                     

               ̃ ,             (3.8) 

Where: 

          
 is a binary variable indicating, when set to 1, the planned harvesting for stand i at 

age class j at the start of period t. This decision applies for all subsequent 

branches of the sample path.  

         is a binary variable indicating implementation, when set to 1, of a scheduled 

harvest (k=1) for stand i in period t in sample     .  

Hij’ is the set of random fire disturbances that can occur in stand i, state j , including  

“no fire” and “stand-replacing fire” 

 ̃    
   denotes the subset of samples for which harvesting (k =1) is precluded by a fire in 

stand i at age class j during period t. 

Objective function (3.1) summarizes and maximizes the total discounted revenue only 

from the implemented harvesting decisions. Equation (3.2) works as described in the previous 

formulation. Equation (3.3) exogenously forces the implemented management action 
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             to take the value of zero in cases if harvesting is precluded by fire; otherwise, the 

value of          
 is determined endogenously by the model-selected management actions 

          
 through equation (3.5). Equation (3.4) is used to eliminate disturbances that will not 

happen according to the random drawn in the sample. Equation (3.6) maintains the age balances 

for each stand within a planning period.  It transfers stands within each time period and sample 

path from management implementation to disturbance variables. Equation (3.7) transfer stands 

from disturbance variables in one time period and sample path to planned management variables 

at the start of the next time period. When moving into the next planning period, equation (3.7) 

increases the age class of every stand by one.  

 

2.4 Modeling forest core area 

Core area, the area of forest that is free of edge effects from surrounding habitats, 

(Zipperer 1993; Baskent and Jordan 1995) is an important spatial measure describing forest 

ecological conditions. Preserving mature forest core area has been increasingly concerned in 

landscape forest planning (Zipperer 1993; Baskent and Jordan 1995; Fischer and Church 2003) 

because of its important role to protect forest interior habitats. Core area was integrated into 

forest planning through dynamic programming (Hoganson et al. 2005), mixed integer 

programming (Wei and Hoganson 2007), and heuristic models (Ohman and Eriksson 1998, 

2002; Ohman 2000). Core area can be modeled by tracking the states of many pre-defined 

influence zones across time (Hoganson et al. 2005).  While core area has been modeled in this 

fashion before, it has not been modeled in the presence of wildfire. 
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2.4.1 Identifying Influence zone 

We first introduce the concept of influence zones which are the areas capable of 

producing core area. The concept of influence zones can be used to account for how forest 

management could preserve mature forest core area across a planning horizon. Influence zones 

are delineated through a separate GIS process (Hoganson et al. 2005). Each influence zone can 

be considered as a portion of the forest where a unique set of stands influence whether the area in 

the zone will produce core area of mature forest in a given time period. An example forest of 

four stands (A, B, C and D) (Fig 5a) (Wei and Hoganson 2006) illustrates this concept and the 

associated modeling method.  

 

5a 
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5b 

 

Fig 5: A forest is composed of four stands A, B, C and D. Buffering the boundary of each stand 

creates eight influence zones. Whether each influence zone will become core area at the end of 

each planning period depends on the age class of every stand in the zone. 

By buffering outward from the boundaries of each stand for a predefined distance, a set 

of influence zones {A, B, C, AB, BC, BD, CD, and BCD} can be identified (Fig 5b). Using 

influence zone AB as an example, the ages of both stand A and B must satisfy the age 

requirement of mature forest for this influence zone to be classified as mature forest core area. 
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2.4.2 Identifying core area in the deterministic model 

The influence zone concept has been modeled in a deterministic context, in which 

harvesting decisions determine whether each influence zone would become core area at the end 

of each period. We build one constraint for every stand in each influence zone    during each 

planning period t. In this model, core area is tallied at the end of each planning period t.   

    ∑ ∑                                                                                                    (4.1) 

Where: 

    is a binary variable indicating, when set to 1, influence zone z becomes core area at the 

end of period t. 

z indexes influence zones within a forest. 

Iz is the set of stands that create influence zone z. 

    denotes the set of stand age classes that satisfy the requirement of core area. 

    denotes the set of management activity options that are satisfy the requirement for core 

area production. 

Equation (4) is used to track whether influence zone AB will be core area at the end of 

period t. Two conditions are required for any influence zone z to be core area at the end of each 

period: 1) all stands i associated with the influence zone z need to satisfy the age class 

requirement for mature forest core area; 2) management option       maintain the ages of all 

stands within influence zone z. When both conditions are satisfied,     will be set to one to 

indicate that influence zone z contributes to forest core area at the end of period t. The total core 

area maintained at the end of each period could be tracked in the objective function or through 

bookkeeping constraints.   
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To illustrate, we use influence zone AB in figure 5b above for example with the 

assumption that only stands in age class two or three can contribute to mature forest core area; 

and both stands A and B can be harvested (k=1) or not (k=0) during period t.  

Equation (4.1) can then be presented as  

YAB,t –XA,2,0,t – XA,3,0,t ≤ 0 

YAB,t –XB,2,0,t – XB,3,0,t ≤ 0 

According to these two constraints, influence zone AB will become mature forest core area only 

if one of the variables XA,2,0,t and XA,3,0,t, and one of the variables XB,2,0,t and XB,3,0,t are set to one 

(no harvesting for both stands).  

 

2.4.3 Identifying core area in the stochastic model 

Random fire disturbances could also influence core area production. For example, a 

stand-replacing fire might destroy the overstory trees within a stand and reset the stand age to 

zero. This would destroy core area within this stand and also stands for which this stand provides 

buffer. To account for these effects, we model the impact of fire on core area for each influence 

zone z at the end of each period t. Management decisions interact with fires to determine stand 

age at the end of each planning period. We substitute a new set of constraints (4.2) for (4.1).  

 

        ∑ ∑                                        ̃   (4.2) 

 

Variable        tracks whether influence zone z at the end of period t would contribute core area 

according to the sample indexed by     .  
  denotes the subset of disturbances in stand i that 

could maintain the stand age and satisfy core area requirements. For example, when there are 
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only two types of disturbances, “stand-replacing fire” or “no fire”,     would only include the 

“no fire” option. Because management          will influence          through equations (3.5) 

and (3.6), equation (4.2) can be used to replace equation (4.1) in the stochastic model. For 

example if                   then equation (3.6) will force                    . It means 

that both equation (4.1) and equation (4.2) can be simplified by            and also means 

that influence zone z will become core area because the objective function (will be presented 

later in equation (5.1) is designed to maximize the total production of core area for more benefit. 

 

2.4.4 Integrating core area into the stochastic model 

In this study, SAA formulation is used to track the amount of core area produced in each 

sample at the end of each planning period. Average minimum core area is our performance 

measure. To address this, a Max(Min()) approach (e.g., Bevers 2007) is used. This is 

accomplished as follows:  

 

1) For each sampled forest succession pathway, calculate the minimum core area 

produced from period one to T; 

2) Build a bookkeeping constraint to average the core area minima calculated in step 

(1) across all sampled succession pathways; 

3) Value the average minimum core area calculated from step (2) in the objective 

function.  

 

Based on the above discussion, we built an integrated model to incorporate the impact of 

fire into a spatially explicit harvest-scheduling model with core area concerns. This new model 
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combines constraints (3.2) to (3.7) to model fire occurrence and stand age class succession. It 

uses constraint (4.2) to track whether each influence zone produces forest core area at the end of 

each period given fire disturbances and management actions. It uses objective function (5.1) 

below to maximize the total weighted return from timber, the average minimum core area along 

all sampled forest succession pathways, and a penalty for average timber production declines 

between any two consecutive periods across all samples. It also uses bookkeeping constraints 

(5.9), (5.10) and (5.11) below to support the Max(Min) model format.  By using spatially explicit 

constraints to track core area preservation, this model maximizes the total benefits from timber 

harvesting and core area conservation in a forest over a given planning horizon. 

 

Max    ∑ ∑
 

  
∑ ∑ ∑                              ∑

 

                     (5.1) 

      ∑                         ̃           (5.9) 

  
                                               (5.10) 

   
 

    
∑   

        
         (5.11) 

 

The area of influence zone z is denoted as   . Constraint (5.9) calculates      which is the total 

core area produced in each randomly drawn sample at the end of planning period t. Equation 

(5.10) identifies    
     which is the minimum total core area preserved in the forest along each 

sampled forest succession pathway. The term       denotes the set of samples along the 

succession pathway ending with      . Using the example in table 2,       represent a sample set 

{(2)1, (3)2, (5)3}. Equation (5.11) calculates    that denotes the average   
     across all sampled 

pathways. 
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2.5 Selecting the first period solution 

A primary purpose for using a multistage stochastic harvest scheduling model is to 

identify first-period harvests that perform well over a range of plausible future conditions 

(Hoganson and Rose 1987). Harvesting decisions for the first period need to be implemented 

immediately and period-one decisions may also have longer-term impacts on future timber 

production and spatial forest structure. The quality of the first-period decisions can be used to 

evaluate overall model performance. 

In our SAA model, randomly generated fires are used to estimate the expected 

consequences of stand-replacing fires and recourse management actions. Models built on 

different independent random fire samples with identical probability distributions could suggest 

different period-one harvest schedules. Larger sample sizes can be used to better inform the 

model about future fires up to a point. More samples also increase model complexity, however, 

and make the model more difficult to solve. An alternative approach is to build multiple SAA 

models using different sets of independent, identically distributed fire samples. Solutions from 

the R different models can be used to calculate the “persistence” (Bertsimas et al. 2007) of first-

period harvest decisions. For example, if more than half of the R models choose to harvest stand 

α in the first period, we might select this stand for harvesting. Note this persistence calculation 

reflects a heuristic design and may lead to suboptimal solutions (Bevers 2007).  

To better understand the quality of the first-period solutions, we created and ran multiple 

models with each model built on a different independent and identically distributed set of 

randomly drawn fires, as described above. We then evaluated the quality of all resulting period-

one solutions by simulating the solutions with new samples and comparing results using Tukey’s 
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multiple comparison method (see Goldsman and Nelson 1998).  We used the results of these 

statistical tests to select first-period harvests. 
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3 Test Cases and Results 

We built a computer-simulated forest with eleven stands as the test site (fig 6).  

 

Fig 6. A forest composed of eleven stands used as the test site for our SAA model. 

We divided a 120-year planning horizon into three 40-year planning periods. At the 

beginning of each period, a stand is in either age-class one (1 to 40 years), two (41 to 80 years), 

or three (81+). At the beginning of the planning horizon, stands 1, 4, 7 and 10 are assumed in age 

class one; stands 2, 5, 8 and 11 are in age class two; and stands 3, 6, and 9 are in age class three. 

Stands older than 40 years (in either age class two or three) are considered mature forest for core 

area calculations. Areas of mature forest 50m away from the boundary of a young forest (≤ 40 

years old) or the boundary of the forest are counted as interior forest habitat, or core area. 
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Two management alternatives are assumed available for each stand in each planning 

period: “do nothing” or clearcut. Clearcuts reset the stand age back to zero (age class zero) in the 

period of harvest. We assume clearcutting a stand in age class one generates no financial returns. 

Stand-replacing fire is assumed to occur randomly in each stand in each period following known 

probability distributions (defined below).  Stand-replacing fire sets the stand age back to zero in 

the period the fire occurs. The sequence between fire and clearcut is also random.  

Two levels of hypothetical fire probability are modeled. Under the low fire probability 

assumption, the chance of fire is 0.1 for age class one stands, 0.2 for age class two stands and 0.3 

for age class three stands in each 40-year planning period. Under the high fire probability 

assumption, fire probabilities for stands in age class one, two and three are 0.2, 0.4 and 0.6, 

respectively, in each 40-year planning period. The chances of fire occurring before or after 

harvesting are assumed to be 0.5 each. We assume stand-replacing fire and clearcutting are 

mutually exclusive in each stand in the same period. Random fire occurrences are reflected in the 

SAA model by setting the value of disturbance variables (D) and decision variables (W) as 

described in equations (3.3) and (3.4).  

 

3.1 Solution persistence under high fire risk assumptions 

Tests under the assumption of high fire probability show that persistence of first-period 

harvests improves with increasing sample size N. Under an assumed core area price of $500/acre, 

increasing sample size N from one to 15 caused decisions for stands 8 and 9 to switch from “do 

nothing” to “clearcut” (table 4). When N is set to 15, all SAA model runs consistently support a 

period-one decision for every stand in the forest: harvesting stands 2, 3, 5, 6, 8, 9 and 11, and 

doing nothing to the other stands 1, 4, 7, and 10. 
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Table 4: The persistence of clearcut decisions for each stand in period one by using sample size 

N from 1 to 15. This test case assumes high fire risk for each stand of the forest. No penalty is 

imposed for declines in timber production.  Shaded cells represent the decision to clearcut the 

corresponding stand based on solution persistence. 

StandID 1 2 3 4 5 6 7 8 9 10 11 

Core area price = $500/acre   

N=15 0% 100% 100% 0% 100% 100% 0% 100% 100% 0% 100% 

N=10 0% 100% 100% 0% 97% 100% 0% 100% 100% 0% 100% 

N=6 0% 100% 100% 0% 93% 100% 0% 77% 100% 0% 100% 

N=5 0% 93% 97% 3% 87% 100% 0% 67% 97% 0% 100% 

N=4 0% 97% 97% 10% 63% 100% 3% 63% 100% 0% 100% 

N=3 0% 83% 83% 10% 77% 93% 0% 53% 90% 0% 90% 

N=2 3% 80% 80% 20% 43% 93% 7% 63% 73% 20% 77% 

N=1 23% 73% 57% 37% 60% 77% 13% 43% 47% 13% 63% 

Core area price = $1000/acre   

N=15* 0% 43% 63% 0% 20% 100% 0% 0% 73% 0% 87% 

N=10 3% 83% 63% 0% 47% 100% 0% 3% 43% 0% 63% 

N=6 0% 60% 73% 0% 30% 100% 0% 0% 73% 0% 77% 

 

*The relative gap between the best solution found and the best possible solution is set to 5% to prevent the model 

from running out of memory. All other runs used a relative gap of 1%. 

Under the high fire probability assumption, the trade-offs between producing timber and 

maintaining forest core area also become clearer as sample size N increases (See table 5). 



32 

 

Table 5: A statistical summary of 30 runs based on different random draws. Each run is based on 

either a core area price of $500/acre or $1000/acre. No penalty is imposed for declines in timber 

production. High fire risk is assumed for each stand in the forest. 

 Average value across samples STD across samples   

Sample 

size 

Average Timber yield 

Obj. 

($) 

Average Timber yield 

Obj. 

($) 

min core P1 P2 P3 min core P1 P2 P3 

(acres) (cords) (acres) (cords) 

Core area price = $500/acre 

N=15 0 4621 1846 3886 63758 0 165 97 135 2131 

N=10 0 4628 1807 3889 63992 1 288 149 199 3216 

N=6 2 4449 1657 3622 64705 4 491 326 537 3104 

N=5 6 4328 1497 3398 67189 6 631 411 654 6008 

N=4 7 3992 1556 3305 65623 6 638 465 680 5524 

N=3 11 3849 1234 3251 68006 8 921 523 953 8194 

N=2 14 3419 1218 3100 67059 8 928 607 871 8860 

N=1 17 3690 1590 3028 75732 14 1415 810 1678 #### 

Core area price = $1000/acre 

N=15* 15 2428 517 1822 78224 2 463 187 337 4071 

N=10 16 2309 423 1745 79578 3 504 169 388 5868 

N=6 17 2474 519 1862 82680 3 593 257 484 5901 

 

*The relative gap between the best solution found and the best possible solution is set to 5% to prevent the model 

from running out of memory. All other runs used a relative gap of 1%. 
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We first tested the assumption of $500/acre core area price with no penalty for timber 

production declines. When N is set to six, 30 model runs suggest maintaining an average of two 

acres of core area across the planning horizon (table 5). By increasing N to ten, most model runs 

found no benefit in maintaining any core area (table 5) and suggest all stands at age class two 

and three should be harvested during the first period to maximize expected returns (table 4). The 

benefits of using larger sample sizes are also reflected by the decreased standard deviations of 

the average minimum core area, the timber productivity of each period, and the objective 

function value across the 30 tested SAA model runs (table 5).   

We assumed stands in age classes two or three are mature forest and can contribute to 

forest core area when they occur away from edges. However, older forest could be more 

susceptible to fires. Under this assumption, higher fire probability increases the cost of 

maintaining core area. Test results show, when core area price is set at $500/acre under the high 

fire probability assumption, no core area should be maintained across the planning horizon (table 

5). With the core area price doubled to $1000/acre, SAA model runs suggest maintaining about 

15 acres of core area (table 5) by delaying harvests of stands above age class two (table 4) during 

the first 40-year planning period. 

 

3.2 Comparing the quality of first period solutions 

Forest management occurs across space and time. Management decisions for period one 

need to be carried out without knowing future fire conditions with certainty. Decisions for later 

periods, on the other hand, can be adjusted based on the actual management activities and fire 

occurrences in earlier periods. A good period one solution should help facilitate adjustment of 

future forest management activities. Different sample sets used by the SAA model may suggest 
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different period-one solutions. Changing sample size N also causes the model to select different 

period-one solutions as described in table 4. While we expect better solutions to be derived from 

models built on larger sample sizes, the problem of selecting a single period-one solution from a 

set of differing solutions remains.  

We first revised the SAA model to find the optimal period-one solution under the 

assumption of no fire risk, $500/acre core area price, and no penalty for timber production 

declines. This leads to a deterministic period-one decision. Results indicated that only stand 6 

should be harvested in period one to maximize the total return from timber and core area. 

Delaying harvests is preferred in this case without the risk of fires. We compared this solution 

with the three other period-one solutions listed in table 4 at the same core area price with sample 

size N=1, 2 or 3. 

For this comparison, we reran the SAA model 300 times with independent, identically 

distributed fire occurrence samples. In each of the 300 runs, we hardcoded the selected period-

one solution, simulated one random forest succession pathway across the three 40-year planning 

periods, and allowed the model to make recourse decisions for periods two and three to adapt to 

the simulated fires.  The objective function value, timber production and amount of core area 

were reported and saved for each sample.  

We used Tukey’s multiple comparison method to compare performance of the four 

solutions. Results in table 6 show all period-one solutions selected by our SAA models are 

significantly better than the deterministic solution, producing higher average objective function 

values. Increasing sample size N in the SAA model also led to higher average objective function 

values across our 300 independent samples. However, the differences are not statistically 

significant at the 95% confident level.  
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Table 6: Multiple comparison of the performance of different period one solutions from the 

deterministic approach and from stochastic programming with sample sizes N=1, 2 or 3. In the 

stochastic model, we assume $500/acre core area price, no penalty for declining timber 

production, and high fire probability. The confidence interval around the average difference in 

objective function value is calculated based on 95% confidence. 

 

Comparison 

  Differences of Objective function values ($) 

  Average Lower bound Higher bound 

N1 To 

Deterministic  23803 20526 27080 

N2 to Deterministic  24995 21718 28272 

N3 to Deterministic  25845 22568 29122 

N2 to N1  1192 -2085 4469 

N3 to N1  2042 -1235 5319 

N3 to N2   850 -2427 4127 

 

 

3.3 Influence of the declining timber flow penalty and fire probability 

We tested two variations of forest management assumptions regarding the penalty on 

timber declines and core area prices: 1) $500/acre core area price with a penalty of $90/cord for 

timber production declines between two consecutive periods; 2) $500/acre core area price, and 

no penalty for timber declines. In these tests, we also assumed the chance of stand-replacing fire 
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is low (as previously defined). We used two sample sizes to build the SAA model: N=6 and 

N=10. Increasing N from six to ten created a much larger MIP model. To prevent our computer 

from running out of memory while using the CPLEX solver, we set the maximum computing 

time for solving each SAA model to one hour and we allowed the solver to stop when a feasible 

integer solution within five percent of the best possible solution was found.   

Results show that a $90/cord penalty effectively prevents timber production from 

declining between two consecutive planning periods in this test case (table 7). Applying this 

penalty lowers the overall harvest level substantially across the planning horizon, especially 

during the earlier periods. Lower harvesting levels also allow the model to increase the average 

minimum core area by more than 20 percent across the 120 years.  
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Table 7: Model performance with and without a penalty for declines in timber 

production assuming a core area price of $500/acre. This test case also assumes low fire 

risk in each stand of the forest. 

 Average across samples STD across samples 

Sample 

size 

 

Average Timber yield Obj. Average Timber yield Obj. 

min core P1 P2 P3 ($) min core P1 P2 P3 ($) 

(acres) (cords)  (acres) (cords)  

$90/cord penalty for timber decline       

*N10 57 20 224 1002 85473 5 75 145 231 6958 

N6 55 90 318 1115 85215 7 186 316 345 10886 

No penalty for timber decline               

N10 45 1750 648 1413 91627 9 617 281 527 7754 

N6 46 1672 675 1544 91400 10 720 347 602 7643 

 

*Computing time is set to one hour to prevent “out of memory” error. The average relative gap is 4.12% 

between the best solution found and the best possible solution for all 30 runs. 

Fire probability played an important role in timber and core area production (compare 

results in table 5 and table 7).  Under the assumption of $90/acre core area price without the 

declining timber penalty, doubling the expected fire probability in each age class causes the 

model to increase timber harvest levels by 2.6 to 3.9 times during each of the three planning 

periods. Higher fire probability also makes the conservation of forest core area too risky to be 

justified and decreases the overall objective function value by more than 30 percent in this test 

case.  
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4 Conclusion 

Stochastic disturbances such as fire, insect, disease or wind can have a significant impact 

on long-term forest management. Ignoring the effects of these disturbances in forest plans could 

lead to decisions and conclusions that are distanced from reality. Spatial concerns such as core 

area, edge effects, adjacency and patch connectivity pose additional challenges to building 

disturbance impacts in forest management models. Without spatial considerations, stochastic 

disturbances might be modeled adequately using mean probabilities of different scenarios, or 

essentially as average fractions of land being disturbed. Under a spatial context, using average 

disturbance rates seems less likely to be adequate for approximating system behavior and 

optimal management. Even in stochastic programming models it can be difficult to select 

adequate representative scenarios from the enormous number of possible spatial disturbances 

patterns and forest spatial structures; sample-based methods might be required, like those used in 

this study. Forest spatial models often use binary variables to track and form desired spatial 

structures such as core area, or to prevent undesired spatial conditions such as violations of 

adjacency constraints or harvest block size restrictions. Both scenario- and sample-based 

stochastic programming approaches can support these binary model formulations. 

Harvest decisions for later time periods can often be adjusted through recourse actions, 

whereas implementation of many first-period decisions needs to begin immediately. A primary 

purpose in multistage stochastic programming is to improve the quality of the first-stage, or first-

period, decisions while taking recourse opportunities into account. This research demonstrates 

that integrating fire risk explicitly in a harvest scheduling model can lead to better first period 

decisions compared with using a deterministic model.  
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We examined the benefit of using larger sample sizes with a number of test cases. In our 

models, larger sample size improves the persistence of the period one solution. It also reduces 

the variations between solutions, as indicated by lowering the standard deviation of objective 

function values across many SAA model runs. However, increasing the sample size also 

increased model complexity and model size. With a relatively small 11-stand and three-period 

harvest scheduling problem, we experienced the “out of memory” error occasionally when 

solving the model on a workstation with 6GB of memory. Installing more memory in the 

computer could be a simple but expensive fix when solving larger problems. During our tests, we 

found that using computers with more memory, i.e. 32GB, allowed us to solve slightly larger 

problems, but computing time sometimes became too long (a week) to be suitable for testing 

purposes. More efficient modeling or solution approaches might also be formulated. For 

example, fires occurring during later periods might have less impact on the quality of first-period 

decisions than fires in earlier periods. In this case, we could allocate more samples to earlier 

periods and fewer samples to later periods. Decomposition methods could also help with the 

solution time.   
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