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ABSTRACT

BRIDGELAND STABILITY OF LINE BUNDLES ON SMOOTH PROJECTIVE

SURFACES

Bridgeland Stability Conditions can be thought of as tools for creating and varying

moduli spaces parameterizing objects in the derived category of a variety X. Line bundles

on the variety are fundamental objects in its derived category, and we characterize the

Bridgeland stability of line bundles on certain surfaces. Evidence is provided for an analogous

characterization in the general case. We find stability conditions for P1 × P1 which can be

seen as giving the stability of representations of quivers, and we deduce projective structure

on the Bridgeland moduli spaces in this situation. Finally, we prove a number of results on

objects and a construction related to the quivers mentioned above.
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CHAPTER 1

Introduction

This thesis concerns Bridgeland stability conditions defined on smooth projective sur-

faces, and more specifically, the Bridgeland stability of line bundles on a given surface.

Bridgeland stability conditions (BSCs) are defined on the bounded derived category of a

smooth projective variety X, denoted Db(X). This category contains objects such as line

bundles on X, vector bundles on X, and more generally, complexes of vector bundles and

their algebraic generalizations called sheaves. A BSC, σ, labels each object as either σ-

semistable or σ-unstable, and for a choice of invariants v (e.g. rank) one can consider the

algebraic space Mσ(v) parameterizing σ-semistable objects.

BSCs were introduced in [12] and gave a mathematical foundation to Douglas’ work on

Π-stability of Dirichlet branes in string theory [17]. This physical inception has played a

significant role in directing the study of BSCs. For instance, complex varieties called Calabi-

Yau 3-folds are of particular interest in string theory, and it is an ongoing effort to construct

a (single) BSC on one such space [4, 8, 24, 27]. Furthermore, the set of all BSCs on X carries

an action by the autoequivalences of the derived category of X - it is not surprising, then,

that BSCs have a meaningful connection to Homological Mirror Symmetry (e.g. [11]).

Moduli spaces parameterizing vector bundles (and coherent sheaves) have classical con-

structions using, for example, Mumford or Gieseker stability. These stabilities indicate which

sheaves to include and exclude in order to form a moduli space with desirable structure.

Bridgeland stability has both similarities and meaningful differences from these classical

notions of stability.
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Like Mumford or Gieseker stability, one can continuously vary a BSC σ to a new σ′.

(The space of all BSCs on X, denoted Stab(X), is in fact a complex manifold.) However,

even in this similarity there is a striking difference - for varieties X of Picard rank 1 (where

there is no variation in Mumford or Gieseker stability), one can vary Bridgeland stability

non-trivially (see e.g. [2]).

The ability to deform Bridgeland Stability conditions allows objects E ∈ Db(X) to

change stability, i.e. E may be σ-semistable, but σ′-unstable. For a chosen set of invariants,

v, the space Stab(X) has a wall-and-chamber decomposition, where within a chamber the

moduli space Mσ(v) is constant, but the space may change at and across a wall (which

are real-codimension 1 subspaces of Stab(X)). As a wall for a chosen set of invariants is

crossed, the Bridgeland moduli spaces on either side of the wall typically are birational. This

behavior grants a close connection between BSCs and the Minimal Model Program (MMP)

and birational geometry.

The connection between Bridgeland stability and the MMP has been completely estab-

lished for smooth projective surfaces (see [5, 28]) - the sequence of birational transformations

connecting a surfaceX to its minimal model can be understood as a sequence of wall-crossings

undergone while following a path in Stab(X). For smooth projective 3-folds, the situation is

more delicate as there are only a select few 3-folds known to support BSCs, i.e. there is not

a general construction known to give BSCs on any smooth projective 3-fold. Nevertheless,

Toda shows in [29] that the first step of the MMP of X, an extremal contraction, can be

realized as a wall-crossing of Bridgeland Moduli spaces, assuming that the construction of

[4] yields a BSC on X.
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More generally, the connection between BSCs and birational geometry has been given

significant attention, e.g. [2, 3, 9, 6, 10, 31, 15]. Speaking broadly, these works look to use

the structure inherent in BSCs to study the birational geometry of moduli spaces - often

of classical interest - by interpreting them as spaces Mσ(v). The work which primarily in-

spired this thesis is that of Arcara-Bertram-Coskun-Huizenga [3] which studies the birational

geometry of the Hilbert Scheme of points on P2, denoted P2[n]. By choosing invariants corre-

sponding to ideal sheaves of points on P2 and selecting a Bridgeland chamber where stability

corresponds to Gieseker stability, they interpret P2[n] as a Bridgeland moduli space. The

Bridgeland chambers for the ideal sheaves are studied and a correspondence is found (for

“low n”) between the Bridgeland chambers and the Mori chambers in the psuedo-effective

cone of P2[n].

1.0.1. Structure of Spaces Mσ(v). Unlike the Mumford and Gieseker notions of

stability, Bridgeland stability is not a priori connected to a Geometric Invariant Theory

(GIT) problem, so very little is known about the structure of the spaces of Bridgeland

semistable objectsMσ(v) in general . For example, are these spaces connected? projective?

(These are also good questions for the spaces Stab(X)!) However, in [6] Bayer and Marc̀ı

associate to a BSC σ a nef divisor onMσ(v), providing a general approach to understanding

the geometry of these spaces. On K3 surfaces, the nef divisors mentioned above are shown

to be ample, and it is shown that the spaces Mσ(v) are, in particular, projective.

A different approach is taken in [3]. There, certain BSCs are seen to have a notion of

stability which is equivalent to King’s notion of stability for representations of a quiver [21].

Geometric Invariant Theory then gives projectivity of the spaces Mσ(v) and projectivity
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of the moduli spaces for other BSCs follows after relating them to these “quiver stability

conditions.”

The quivers involved in the considerations of [3] are associated to certain “exceptional

collections” of objects in Db(P2). These exceptional collections exist on other surfaces as

well. Del Pezzo surfaces, i.e. P2,P1 × P1, and Blp1,...,pk(P2) for 1 ≤ k ≤ 8, are particularly

well-suited for this theory (e.g. exceptional collections exist on each), and we have pursued

the following conjecture.

Conjecture 1: The program of [3] can be carried out on any Del Pezzo surface S, yielding

the projectivity of the spaces Mσ(v).

In Chapter 6, we utilize the results of Theorem 1.2 and carry out the program for S =

P1×P1. We pause to note that the stability conditions considered here are those constructed

on surfaces S in [2], which we denote Stabdiv(S).

Theorem 1.1. Suitable quiver regions exist in Stabdiv(P1 × P1) to conclude that for

any invariants v (satisfying the Bogomolov Inequality) and BSC σ, the space Mσ(v) is a

projective variety.

The next step in furthering the program of [3] is to find suitable “quiver regions” in

Stabdiv(Blp P2). As described in Section 1.0.2, line bundles play a key role in describing these

quiver regions. Since Blp P2 has Picard rank 2 and just one irreducible curve of negative self-

intersection, the results stated in Section 1.0.2 apply. Thus we understand in what regions

line bundles are stable, and can use this information to search for quiver regions.

Preliminary computations show that knowledge of the stability of line bundles will not

be enough in this case - to obtain a suitably sized quiver region, the stability of certain

torsion sheaves (specifically, line bundles supported on the exceptional curve) will need to be
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understood. The author and D. Arcara expect to complete these considerations soon. For

higher blow-ups, the Picard rank is > 2 and we do not yet understand the stability of line

bundles for these surfaces.

1.0.2. Stability of Line Bundles. Contained in the information of a BSC is a family

of subcategories of Db(X), each of which generate Db(X) through shifts and extensions.

Any one of these subcategories (called hearts) can be used to define the BSC, and structural

properties of these hearts can be used to deduce structure on the Bridgeland moduli spaces

Mσ(v).

For instance, certain stability conditions in Stabdiv(P2) have finite-length hearts which

are equivalent to the representations of a quiver. As described in Section 1.0.1, results on

the stability of representations of quivers can then be used to deduce projectivity of the

Bridgeland moduli spaces (as is done in [3]).

The generators of these “quiver hearts” are often shifts of line bundles, and understanding

the Bridgeland stability of these line bundles is crucial to describing the associated quiver

regions. As Pic P2 = Z · H (generated by the class of a line), the stability of line bun-

dles follows relatively quickly from the Bogomolov inequality and Hodge Index Theorem [1,

Proposition 3.6].

For surfaces of Picard rank > 1, the algebraic proof of [1] fails. The author and D. Arcara

look to settle the following problem:

Problem 1: Characterize the stability of line bundles in Stabdiv(S), for S a smooth pro-

jective surface.

5



This problem can be interpreted outside of the motivation given above - namely, as a

continuation of the body of work describing a chamber of stability for objects of a cer-

tain invariant type (e.g. [13, 7] where chambers corresponding to skyscraper sheaves are

described).

Earlier considerations of D. Arcara and A. Bertram suggested that the stability of line

bundles is strongly tied to the curves of negative self-intersection (if any) on the surface S.

The author’s work with D. Arcara has served to explore this connection. Specifically, we

look to prove the following conjecture.

Conjecture 2: A line bundle L on S is σ-stable iff it is not destabilized by some L(−C),

where C is a curve of negative self-intersection in S.

To study the validity of the conjecture, we adopt the strategy of understanding the walls

for destabilizing objects of L. A wall for L is a set of stability conditions such that L

is semistable on one side of the wall, but unstable on the other. There are certain (half)

3-spaces SG,H ⊂ Stabdiv(S) in which the walls for L are quadric surfaces, and for “high

enough” stability conditions, L is semistable. If C is a curve of negative self-intersection in

S then there is always a wall for L corresponding to the destabilizing object L(−C). We

must show that these are the highest walls for L.

Maciocia shows [22] that in the 3-spaces SG,H there are planes in which the walls for L

are nested semi-circles. Given a wall for L, this nestedness allows us to apply a result of

[3] and in certain cases find a wall higher than our given wall. This higher wall for L will

correspond to a destabilizing object of lower rank than the object giving our original wall.

With this setup, proof by induction on the rank of (weakly) destabilizing subobjects of L is

a strong method, and we employ it regularly.
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In what follows, we prove Conjecture 2 in a number of cases, as well as give some partial

results.

Theorem 1.2. Let S be a smooth projective surface, L be a line bundle on S, and

Stabdiv(S) be the Bridgeland stability conditions described in Section 4.1.2.

• If S has no curves of negative self-intersection, then L is σ-stable for all σ ∈ Stabdiv(S).

• If S has Picark rank 2 and one irreducible negative curve C, then L is σ-stable iff it is

not destabilized by L(−C) ↪→ L.

In addition to these results, in Chapter 4 we characterize the structure of destabilizing

walls and certain invariants of destabilizing objects. In Section 4.4.4 and Chapter 5 we

provide evidence supporting Conjecture 2. Each of these results has a dual version which

characterizes the stability of the object L[1], where [1] is the “shift-by-1” functor on the

derived category.

The author and D. Arcara expect that the partial result of Chapter 5 should be adaptable

to give a characterization of the stability of line bundles on any Picard rank 2 surface (the

surfaces of note here are those with two irreducible curves of negative self-intersection). For

surfaces of Picard rank > 2 the situation is not quite so controlled (e.g. the action of line

bundles on Stabdiv(S) does not preserve certain 3-spaces of BSCs), but our methods may

still be fruitful, as the bounds on actually destabilizing objects [3] and the nestedness of

walls in certain slices of the stability manifold [22] still apply.

1.0.3. Organization. The organization of this thesis is as follows. Chapter 2 intro-

duces derived categories and related constructions. Chapter 3 defines Bridgeland Stability

Conditions and general constructions and results relating to BSCs. Chapter 4 studies the

7



Bridgeland stability of line bundles on surfaces. Chapter 5 proves a partial result on the

stability of line bundles for surfaces with two irreducible curves of negative self-intersection.

Chapter 6 identifies quiver regions in Stabdiv(P1 × P1), carrying out the program of [3] in

this situation. Chapter 7 includes various results on the exceptional collections, quivers, and

the “tilting operation” which inform the quiver BSCs used in Chapter 6.
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CHAPTER 2

Derived Categories

Derived categories are very large categories (for example, the derived category of an

abelian category contains infinitely many copies of the abelian category as subcategories!),

and provide a meaningful setting in which to study geometry. For example, they allow one

to precisely identify an object with a resolution and hence are the right setting in which

to consider derived functors. They also appear in the key statement of homological mirror

symmetry, which claims an equivalence between two categories associated to a Calabi-Yau

3-fold and it’s mirror pair: Db(CohS) ∼= Fuk(X̂). Bridgeland stability conditions give

information on the first category and even attach to it a geometric space (the space of

stability conditions).

In this chapter, we discuss the appropriate theory leading to derived categories. This

builds for us a necessary foundation for working with Bridgeland stability conditions.

2.1. Additive and Abelian Categories

These categories are well-structured and arise in many contexts (e.g. derived categories

are additive and Bridgeland stability conditions depend on a choice of abelian subcategory).

Note that the defining properties are in fact self-dual.

Definition 2.1. A category A is called additive if the following conditions are satisfied:

(1) A has a zero object

(2) for any two objects of A, their direct product exists in A

(3) for any A,B ∈ A, HomA(A,B) is an additive (i.e. abelian) group with an addition

that is bilinear with respect to composition

9



One can show that in an additive category, finite direct products are isomorphic to finite

direct sums, so that self-duality does not fail in axiom 2. We will denote the direct product

of A and B by A⊕B.

Definition 2.2. An additive category A is called abelian if the following conditions are

satisfied:

(1) for any A
f→ B, ker f and coker f exist

(2) for any A
f→ B, the natural map (coim f :=) coker i→ ker π ( =: im f) is an isomor-

phism:

coker i - ker π

A
f -

-

B

-

ker f

i
-

coker f

π

-

Example 2.3. Vector bundles over a given topological space X form an additive category,

but not an abelian one. Over P1, this follows from the short exact sequence 0 → O1
P →

O1
P(1) → Ox → 0 for any x ∈ P1. Here O1

P and O1
P(1) are line bundles, but the skyscraper

sheaf Ox is not.

Note that in the category of abelian groups (Z-Mod), axiom 2 of Definition 2.2 asks that

the First Isomorphism Theorem hold.

2.2. Triangulated Categories

In order to study multiple objects connected by maps as a single object, we work with

complexes. Given an abelian category A, the category of complexes of A, KomA is the

10



category with

Ob KomA = {cochain complexes C•of A}

HomKomA(C•, D•) = {chain maps f • : C• → D•}

We will often identify chain maps in the same homotopy class. The category we obtain

is the homotopy category of complexes, K(A), where

ObK(A) = Ob KomA

HomK(A)(C
•, D•) =

HomKomA(C•, D•)

f ≡ g ⇔ f ∼ g

In this transition, we have lost something. Specifically, KomA is abelian (in the natural

way), but K(A) is not. For example, consider the complexes below:

0 - Z ===== Z - 0

0 - Z

f

?
- 0 - 0

We obtain chain maps f0 and fid by choosing f = 0 or f = id, respectively. Note that

f0 ∼ fid. However, the kernel (in KomA) of f0 is 0 −→ Z id−→ Z −→ 0, whereas the kernel of

fid is 0 −→ 0 −→ Z −→ 0, and these two complexes are not homotopy equivalent since they

have different cohomologies. Thus, choosing different representatives of homotopy classes of

maps yields different kernels, which implies that K(A) does not have kernels.

However, K(A) is still additive, and we retain a structure similar in some ways to abelian

categories by using distinguished triangles. Here are the crucial definitions.
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Definition 2.4. Given a chain map f : X → Y , we define the cone of f, denoted C(f), to

be the complex with C(f)i = X i+1⊕Y i and diC(f)(x
i+1, yi) = (−di+1

X (xi+1), diY (yi)+f(xi+1)).

Note that in KomA, the sequence 0
f−→ Y

i−→ C(f)
π−→ X[1] −→ 0 is short exact for

any map f : X → Y .

Definition 2.5. In K(A), a sequence X → Y → Z → X[1] is called a (distinguished)

triangle if it is isomorphic to a sequence of the form X ′
f→ Y ′

i→ C(f)
π→ X ′[1], where [1] is

the translation functor, C(f) is the cone of f , and i and π are the natural maps.

Note that in the definition, the objects X, Y, Z and C(f) represent complexes of objects

of A.

We think of a triangle, X → Y → Z → X[1], often written X → Y → Z
+1→ or just

X → Y → Z as a generalization of a short exact sequence and say that Y is an extension of

Z by X.

We now extract certain properties of K(A) to obtain the axioms of a triangulated cat-

egory. These axioms give us a calculus that is much easier to work with than compared to

working directly with cochain complexes and chain maps.

Definition 2.6. A triangulated category is an additive category C together with an

automorphism [1] : C → C and a family of (distinguished) triangles, such that the following

axioms are satisfied:

(TR 0) The set of triangles is closed under isomorphism.

(TR 1) For any X ∈ C, we have that X
id→ X → 0→ X[1] is a triangle

(TR 2) Any f : X → Y can be embedded in a triangle X
f→ Y → Z → X[1].

12



(TR 3) X
f→ Y

g→ Z
h→ X[1] is a triangle if and only if Y

g→ Z
h→ X[1]

−f [1]→ Y [1] is a

triangle.

(TR 4) We can always fill in the following diagram to make all squares commute, given

that the rows are triangles and the left square commutes:

X
f - Y - Z - X[1]

X ′

u

?
f ′- Y ′

v

?
- Z ′
?

- X ′[1]

u[1]

?

(TR 5) (octahedral axiom) Given triangles

X
f−→ Y −→ A −→ X[1],

Y
g−→ Z −→ C −→ Y [1],

X
g◦f−→ Z −→ B −→ X[1],

then there is a triangle

A −→ B −→ C −→ A[1]

such that the following diagram commutes:

A

Y

-

X
g◦f -

f
-

Z -

g

-

B

-

C
?-

13



Note that (TR 3) says that triangles can be “rotated” to the left or right. Rotating

infinitely, one obtains a “helix” where each set of three consecutive vertices forms a triangle.

The octahedral axiom is useful for combining and separating filtrations of objects.

The next propositions show that triangles do retain a number of properties similar to

those of short exact sequences.

Proposition 2.7. The following are true in any triangulated category, C, and for any

triangle, X
f→ Y

g→ Z
h→ X[1].

(1) We have g ◦ f = 0.

(2) (“kernels”) If s : A → Y is such that gs = 0, then there exists a (not necessarily

unique) map, τ : A→ X such that s = fτ .

(3) (“cokernels”) If t : Y → B is such that tf = 0, then there exists a (not necessarily

unique) map, σ : Z → B such that t = σg.

(4) If 0→ A→ B → 0 is a triangle, then A ∼= B.

(5) If A
f→ B is an isomorphism, then A

f→ B → 0→ A[1] is a triangle.

(6) If A
f→ B is an isomorphism and A

f→ B → C → A[1] is a triangle, then C ∼= 0.

(7) If X ′
f ′→ Y ′

g′→ Z ′
h′→ X ′[1] is also a triangle, then so is X ⊕ X ′

f⊕f ′→ Y ⊕ Y ′
g⊕g′→

Z ⊕ Z ′ h⊕h
′

→ X[1]⊕X ′[1] = (X ⊕X ′)[1].

(8) If h = 0, then Y ∼= X ⊕ Z.

Proof. See [16, pp. 47-68]. �

Definition 2.8. For a functor F : C → D, of two additive categories, we say that F is

an additive functor if, for all A,B ∈ C we have that F : HomC(A,B) → HomD(FA, FB) is

a group homomorphism.
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Definition 2.9. Let A be an abelian category. An additive functor F : C → A is

called a cohomological functor if for any triangle, X
f→ Y

g→ Z
h→ X[1], the sequence

FX
Ff→ FY

Fg→ FZ is exact in A.

Note that if F is a cohomological functor, then for any triangle, X → Y → Z → X[1],

we obtain the long exact sequence:

· · · → F k−1Z → F kX → F kY → F kZ → F k+1X → · · ·

where F k = F ◦ [1]k = F ◦ [k].

Proposition 2.10. HAHA

(1) For any X ∈ C, the functors HomC(X, ) and HomC( , X) are cohomological.

(2) Let A be an abelian category. The cohomology functor H0 : K(A)→ A is cohomolog-

ical.

Proof. See [20, pp. 39-40]. �

The following is a corollary of 2.10 (1).

Corollary 2.11. Let

X - Y - Z - X[1]

X ′

u

?
- Y ′

v

?
- Z ′

w

?
- X ′[1]

u[1]

?

be a morphism of triangles. If u and w are isomorphisms, then so is v.

Proof. See [18, p. 242]. �
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We will see more clearly why 2.10 (1) demonstrates a relationship to short exact sequences

when we look at Ext in the derived category.

We now consider an important proposition that will be much used later on. It deals with

when a morphism between vertices of triangles can be completed to a morhpism of the two

triangles.

Proposition 2.12. Consider the situation

X
f - Y - Z - X[1]

X ′ - Y ′

v

?
h′- Z ′ - X ′[1]

where the rows are triangles. If h′vf = 0, then v can be completed to a morphism of

triangles:

X
f - Y - Z - X[1]

X ′

u

?
- Y ′

v

?
h′- Z ′

w

?
- X ′[1]

u[1]

?

If, moreover, HomC(X,Z[−1]) = 0, then the maps u,w in the above diagram are unique.

Proof. See [18, p. 243]. �

2.3. Derived Categories

One of the main motivations for constructing the derived category is to be able to identify

any object of an abelian cateogory A with a resolution of itself. While the exact structure

of a derived category can be difficult to deduce, its construction has a simple presentation.

This presentation comes from the construction of a localization of a category. Before we

continue, however, a definition.
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Definition 2.13. A chain map f : X → Y is a quasi-isomorphism if Hn(f) : Hn(X)→

Hn(Y ) is an isomorphism for all n.

One can show that f is a quasi-isomorphism iff C(f), the cone of f , is an exact complex.

We now describe the construction of localization using the specific example of localizing

at all quasi-isomorphisms in Kom A. The reader may consult [18, pp. 144-145] for the

general construction.

Definition 2.14. The derived category D(A) of an abelian category A is the category

where

ObD(A) = Ob KomA

and

{morphisms ofD(A)} = {morphisms of KomA}
⋃
{f−1|f : X → Y a quasi-isomorphism}.

This construction should understood as follows: The category KomA is a directed graph,

where the vertices represent objects. For each morhpism g : Y → Z in Kom A there is an

arrow pointing from (the vertex) Y to Z in the graph. Now, to obtain D(A), simply add a

formal “inverse arrow” f−1 : Y → X for each quasi-isomorphism f : X → Y . The morphisms

in D(A) are paths using the original arrows and formal inverse arrows where f ◦ f−1 := id

and f ◦ f−1 := id.

The derived category enjoys the following universal property with respect to its natural

inclusion functor.

Proposition 2.15. Let Q : Kom A → D(A) be the functor where Q(X) = X and

Q(f) = f . Then
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• Q(f) is an isomorphism for any quasi-isomorphism f

• Any functor F : Kom A → D sending quasi-isomorphisms to isomorphisms can be

uniquely factored through D(A), i.e. the following diagram commutes:

D(A)

KomA F -

Q
-

D

!G

-

Proof. See [18, pp. 144-145]. �

The functor G in the above diagram is defined by G(X) = F (X) for all X ∈ Ob KomA =

Ob D(A), G(f) = F (f) for all f ∈ Mor Kom A, and G(g−1) = G(g)−1 for all quasi-

isomorphisms g ∈ Mor KomA.

Note that for any functor H : D(A) → D, precomposing with Q gives a functor from

Kom A to D sending quasi-isomorphisms to isomorphisms, so that defining functors as in

Proposition 2.15 is “the only way” to define functors from D(A).

As a corollary of Proposition 2.15, we have that the cohomology functors Hk( ) are well

defined on the derived category.

2.3.1. Morphisms. Morphisms in the derived category are somewhat mysterious. How-

ever, the technique of localizing at a localizing class of morphisms allow us to view each

morphism as the a double-composition - one map consisting solely of formal inverses, and

the other a standard morphism of complexes.

Definition 2.16. A class of morphisms S ⊂ MorC is said to be localizing if the following

conditions are satisfied:

(1) S is closed under composition: idX ∈ S for any X ∈ C and s ◦ t ∈ S for any s, t ∈ S

whenever the composition is defined.
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(2) Extension conditions: for any f ∈ MorC, s ∈ S as in one of the following two diagrams,

there exist g ∈ Mor C, t ∈ S such that the corresponding diagram commutes:

W
g - Z W � g

Z

X

t

?
f - Y

s

?
X

t

6

� f
Y

s

6

(3) Let f, g be morphisms from X to Y ; the existence of s ∈ S with sf = sg is equivalent

to the existence of t ∈ S with ft = gt.

Now, in KomA, the class is quasi-isomorphisms is not localizing; however, in the category

K(A), they are. Note that homotopic maps yeild the same map on homology, so that the

notion of quasi-isomorphism is well-defined in K(A). It turns out, by localizing K(A) at the

class of quasi-isomorphisms, we obtain a category that is, in fact, isomorphic to the category

D(A) above. We will thus use D(A) for either.

We can now represent morphisms in the derived category as “roofs.” Moving all inverses

to the right (respectively left) in the strings of morphisms mentioned above, we see that a

morphism from X to Y can be represented as

Z W

or

X

s

qis
�

Y

f

-

X

g
-

Y

t

qis

�

where “qis” denotes a quasi-isomorphism.

Using this formulation and the axioms of a localizing class of morphisms, one can show

(by finding a “common denominator”) that D(A) is an additive category. In fact, D(A) is a

triangulated category, with distinguished triangles those which are isomorphic to the images

of the triangles of K(A) under the functor Q.
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Furthermore, we have the following characterization of when a morphism is zero in the

derived category.

Proposition 2.17. In D(A), a morhpism f = 0 : X → Y iff there exists a quasi-

isomorphism s : Y → Z such that sf is homotopic to zero (iff there exists a quasi-isomorphism

t : W → X such that ft is homotopic to zero)

Proof. The proof is relatively straightforward using roofs to represent morphisms. �

The parenthesized iff comes from the axioms of a localizing class of morphisms.

We pause here to give a few helpful implications.

Proposition 2.18. The implications labeled
s

=⇒ are strict:

(1) f = 0 in KomA s
=⇒ f = 0 in K(A)

s
=⇒ f = 0 in D(A)

s
=⇒ Hn(f) = 0 for all n

(2) A and B are homotopy equivalent
s

=⇒ A and B are quasi-isomorphic =⇒ A ∼= B in

D(A) =⇒ Hn(A) ∼= Hn(B) in A for all n

(3) f and g are homotopic
s

=⇒ Hn(f) = Hn(g) for all n

(4) A is exact (i.e. Hn(A) = 0 for all n) ⇐⇒ Hn(idA) = Hn(0) for all n. In particular,

the following implication is stict: idA is homotopic to 0 =⇒ A is exact.

The author conjectures that the last two implications in (2) are strict.

Proof. Here we give examples showing the implications are strict:

(4) For A = 0 −→ Z 2−→ Z π−→ Z/2Z −→ 0, we have A is exact, but idA 6∼ 0.

(1) For the first implication, consider the example of Section 2.2 showing that K(A) is

not abelian. For the second, use A from above and note that A exact implies A = 0 in
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D(A) implies idA = 0 in D(A). For the third, consider this example from [18, p. 163]:

Z 2 - Z

Z

wwwww
π- Z/3Z

π◦2
?

(2) Consider the example:

Z 2 - Z

0

0

?
- Z

π

?

(3) Follows from (1).

�

2.3.2. Extensions. The Ext groups have a strong connection to the derived category.

To see the nature of this connection, we begin with a lemma.

Lemma 2.19. Let I be a bounded below complex of injectives, i.e. Ij = 0 for all j ≤ N .

Then every quasi-isomorphism t : I → Z is a split injection in K(A), i.e. there exists an

s : Z → I with ts homotopic to idI .

Proof. Here we use from [30, p. 18] a slightly modified definition of the cone of a

morphism with differential diC(f)(x
i+1, zi) = (−di+1

I (xi+1), diZ(zi)− f(xi+1)). This retains the

fact that t is a quasi-isomorphism iff C(t) is an exact complex. Now, there is a natural

map π : C(t) → I[1], and using a result from homological algebra, we have that π ∼ 0.

The second coordinate of these homotopy maps gives maps si : Zi → Ii. Now, writing out

explicitly the equation that π ∼ 0 gives and then resticting π to each coordinate, we see that
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the maps si form a chain map s and that st ∼ idI , i.e. st = idI in K(A). For the details of

the proof, see [30, p. 387]. �

The next result shows two situations where maps in the derived category are the same

as those in the homotopy category.

Proposition 2.20. Let I be a bounded below complex of injectives, then HomD(A)(X, I) ∼=

HomK(A)(X, I) for every X. Dually, if P is a bounded above complex of projectives, then

HomD(A)(P,X) ∼= HomK(A)(P,X). For the details of the proof, see [30, p. 388].

Proof. We have the map Q : HomK(A)(X, I) −→ HomD(A)(X, I). To show this map

is surjective, represent morphisms in D(A) as right fractions and use Proposition 2.20. To

show injectivity, use Propositions 2.17 and 2.20. �

We now can now prove the relationship between Ext groups and certain Hom groups

in the derived category. We do this for A = R-Mod but an analogous result holds for

A = CohX.

Proposition 2.21. Let X, Y be objects in the category R-Mod and denote also by X

and Y the complexes with X and Y in position 0 and the zero object elsewhere. We have

Ext nR(X, Y ) ∼= HomD(R-Mod)(X, Y [n]).

Proof. We let A = R-Mod. Let · · · −→ P2
d2−→ P1

d1−→ P0
ε−→ A be a projective

resolution of X. Then, by definition,

Ext iR(X, Y ) =
ker d?i+1

im d?i
=

{f : Pi → Y | f ◦ di+1 = 0}
f ≡ g ⇐⇒ f − g = h ◦ di for some h : Pi−1 → Y
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Now, sinceX ∼= P• inD(A), we have HomD(A)(X, Y [i]) ∼= HomD(A)(P•, Y [i]), and then by

Proposition 2.20 we have HomD(A)(P•, Y [i]) = HomK(A)(P•, Y [i]). Considering the definition

of morphisms in K(A) and the diagram below

· · · - Pi+1
di+1- Pi

di- Pi−1 - · · · - P1
d1- P0 : P•

· · · - 0 - Y

f

?
h

�
: Y [i]

we see that

HomK(A)(P•, Y [i]) =
{f : Pi → Y | f ◦ di+1 = 0}

f ≡ g ⇐⇒ f − g = h ◦ di for some h : Pi−1 → Y
(= Ext iR(X, Y )).

�

Because of this result, we give the general notation Extn(X, Y ) := HomD(A)(X, Y [n]) for

complexes X and Y .
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CHAPTER 3

Introduction to Stability Conditions

If we restrict to bounded objects in the derived category, then for every object we can

obtain a unique filtration by breaking off its homology, one position at a time. The way we

will do this is by truncation functors, and generalizing the crucial properties of these functors

will yield the axioms of a t-structure.

In this sense, objects in the bounded derived category are built from of objects of A.

We will see that A is the heart of the bounded derived category. However, some crucial

information is lost in the deconstruction of a complex to its homology objects. For example,

there are other hearts B that one can decompose complexes into, whose associated derived

categories are not equivalent to the original derived category.

One function of Bridgeland stability conditions will be to interpolate between these

hearts, giving a finer collection of hearts of the derived category at hand.

3.1. t-structures

First, we motivate further the idea of an object in the derived category being built from

objects in the abelian category.

Definition 3.1. A 0-complex of KomA is one with the zero object in all nonzero

positions.

Note that we have a category of 0-complexes in KomA and that, using the natural

inclusion functor, the category of 0-complexes in KomA is isomorphic to the category of

0-complexes in K(A) (since the only homotopy of 0-complex maps is the zero homotopy).

We also have the following result.
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Proposition 3.2. The inclusion functor Q gives an equivalence between the category of

0-complexes in K(A) and the H0-complexes in D(A), where an H0-complex is one with zero

homology in all nonzero positions.

Proof. See [18, p. 164]. �

We now define the functors that we will later use to filter the objects of the bounded

derived category.

Definition 3.3. We have the following functors, called truncation functors, on the cat-

egory of complexes. If

X = · · · - Xn−2 dn−2
- Xn−1 dn−1

- Xn dn- Xn+1 dn+1
- Xn+2 - · · ·

then we have

τ≤nX = · · · - Xn−2 dn−2
- Xn−1 dn−1

- ker dn - 0 - 0 - · · ·

τ≥nX = · · · - 0 - 0 - Coker dn−1
dn- Xn+1 dn+1

- Xn+2 - · · ·

Note that there are natural maps τ≤nX → X and X → τ≥nX, and that since keeping the

kernel (respectively Cokernel) in position n keeps the necessary homology information there,

we have that the map τ≤nX → X is a quasi-isomorphism if H i(X) = 0 for i ≥ n + 1 and

similarly the map τ≥nX → X is a quasi-isomorphism if H i(X) = 0 for i ≤ n − 1. Finally,

we have τ≥nτ≤n = τ≤nτ≥n = Hn( ) as functors.

The following properties of the derived category are strongly tied to the truncation func-

tors.
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Proposition 3.4. Let D = D(A) and set D≤0 = {X ∈ D(A)|H i(X) = 0, for all i > 0}

and D≥0 = {X ∈ D(A)|H i(X) = 0, for all i < 0}. Denote D≤n = D≤0[−n] and D≥n =

D≥0[−n]. Note that, for example, D≤n = {X ∈ D(A)|H i(X) = 0, for all i > n}. We have

the following properties:

(1) D≤0 and D≥0 are both strictly full subcategories (i.e. isomorphism-closed full subcate-

gories) of D

(2) D≤0 ⊂ D≤1 and D≥0 ⊃ D≥1

(3) Hom(X, Y ) = 0 for any X ∈ D≤0, Y ∈ D≥1

(4) For any X ∈ D there exists a triangle τ≤0X → X → τ≥1X → (τ≤0X)[1]

• Note: τ≤0X is in D≤0 and τ≥1X is in D≥1.

(5) The category D≤0 ∩ D≥0 is equivalent to A

Proof. Here, (1) follows from Proposition 2.18, (2) is straightforward, (4) requires a

straightforward calculation and (5) follows from Proposition 3.2. We prove (3):

Let X ∈ D≤0, Y ∈ D≥1 and let a morphism X → Y be represented by the roof X
s←−

Z
f−→ Y . Since s is a quasi-isomorphism and X ∈ D≤0, we have Z ∈ D≤0 and thus the

natural map r : τ≤0Z → Z is a quasi-isomorphorphism. Hence τ≤0Z ∼= Z in D(A) and

X
sr←− τ≤0Z

fr−→ Y also represents our morphism. Now, since Y ∈ D≥1, we have that

k : Y → τ≥1Y is a quasi-isomoriphism and thus Y ∼= τ≥1Y in D(A). Finally, we have

(τ≤0Z)i = 0 for i ≥ 1 and (τ≥1Y )i = 0 for i ≤ 0. Thus, rfk = 0 : τ≤0Z −→ τ≥1Y in KomA

and hence in D(A). But k an isomorphism in D(A) implies that rf = 0 in D(A), and so

our original morphism is zero. �

In fact, one can show that for any X ∈ D(A) and any n, we have the triangle τ≤nX →

X → τ>nX.
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We can now obtain the aforementioned filtration of an object of the derived category

by slicing off one homology at a time, starting from the right. In order to obtain a finite

filtration, we need to restrict our attention.

Definition 3.5. The bounded derived category of A, denoted Db(A), is the full subcat-

egory of D(A) consisting of the objects X for which H i(X) = 0 for all |i| >> 0.

Proposition 3.6. Let X ∈ Db(A). If H i(X) = 0 for |i| > N , we have the filtration

0 =E−N−1 - E−N - E−N+1
- · · · - EN−1 - EN = X

A−N
�

�

A−N+1

�

�

AN
�

�

where Ei = τ≤iX and Ai = τ≥iEi = H i(X)[−i].

Proof. This is straightforward, using Definition 3.3 and the note following 3.4. �

Note that in the filtration above that each Ei−1 → Ei → Ai is a traingle and each Ai

in is in A[−i], where A is identified with the H0-complexes as in 3.2. Also, we cut out any

triangles with Ai = 0, since then Ei = Ei−1.

We now abstract these properties so that we can apply them in other situations.

Definition 3.7. A t-structure on a triangulated category D is a pair of strictly full sub-

categories (i.e. isomorphism-closed full subcategories) (D≤0,D≥0) satisfying the conditions

below. Denote D≤n = D≤0[−n] and D≥n = D≥0[−n].

(1) D≤0 ⊂ D≤1 and D≥0 ⊃ D≥1

(2) Hom(X, Y ) = 0 for any X ∈ D≤0, Y ∈ D≥1

(3) For any X ∈ D there exists a triangle A→ X → B → A[1] with A ∈ D≤0, B ∈ D≥1.
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The heart of the t-structure is the full subcategory A := D≤0 ∩ D≥0.

Note that D≤0 ⊂ D≤1 implies that D≤N ⊂ D≤N+1 for all N and similarly D≥0 ⊃ D≥1

implies that D≥N ⊃ D≥N+1 for all N

Example 3.8. Proposition 3.4 above shows that if D = D(A), then setting D≤0 = {X ∈

D(A)|H i(X) = 0, for all i > 0} and D≥0 = {X ∈ D(A)|H i(X) = 0, for all i < 0} gives a

t-structure (D≤0,D≥0) with heart A.

The following proposition shows that general t-structures behave similarly to the natu-

ral t-structure of Example 3.8: they admit truncations of complexes and even a notion of

cohomology.

Proposition 3.9. HAHA

(1) For a given X, any two triangles as in Definition 3.7 (3) are canonically isomorphic.

(2) The triangles in Definition 3.7 (3) give functors, τ≤0 and τ≥1 where τ≤0X = A and

τ≥1X = B. We obtain τ≤n : D → D≤n and τ≥n : D → D≥n by setting τ≤n = [−n]τ≤0[n]

and τ≥n = [−n]τ≥0[n].

(3) The functors in (2) are left (resp. right) adjoint to the corresponding embedding func-

tors.

(4) For all n, τ≤nτ≥n ' τ≥nτ≤n =: τ[n,n]

(5) Let H0 := τ[0,0] : D → A and H i(X) = H0(X[i]). Then H0 is a cohomological functor.

Proof. See [18, pp. 279-280,283]. �

As in the case of the derived category, we need a definition to obtain finite filtrations.
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Definition 3.10. A t-structure (D≤0,D≥0) on a triangulated categoryD is called bounded

if

D =
⋃

n,m∈Z

D≤n ∩ D≥m

or equivalently, if ∩nObD≥n = {0} and for any X ∈ D, only a finite number of objects

H i(X) ∈ A is nonzero.

The following proposition gives a characterization of hearts of bounded t-structures.

Proposition 3.11. Let A ⊂ D be a full additive subcategory of a triangulated category

D. Then A is the heart of a bounded t-structure (D≤0,D≥0) on D if and only if the following

two conditions hold:

(1) if k1 > k2 are integers and A,B ∈ A then HomD(A[k1], B[k2]) = 0

(2) for every nonzero object E ∈ D there is a finite sequence of integers

k1 > k2 > · · · > kn

and a filtration through triangles

0 = E0
- E1

- E2
- · · · - En−1 - En = E

A1

�

�

A2

�

�

An
�

�

with 0 6= Ai ∈ A[ki] for all i.

Proof. The statement is found here: [12, p. 326], but no proof is given. We give some

of the main points below. �

In the filtration above, we may assume that Ei 6= 0 for all i > 0. Also, one can show

by induction that the horizontal map E1 → E is nonzero, and thus all the horizontal maps
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are nonzero. Finally, all vertical maps are nonzero as well. Note that since E0 = 0, we have

E1 = A1.

An important fact about these filtrations (whose proof uses the following lemma) is that

they are unique up to canonical isomorphism. In other words, we have the following strict

implication: if F and F ′ are two filtrations of E as in Proposition 3.11, then F ∼= F ′, where

the isomorphism of filtrations means an isomorphism at each level such that all squares

commute.

Lemma 3.12. If X → E → Y is a triangle and E
6=0−→ B then there exists either X

6=0−→ B

or Y
6=0−→ B.

Proof. The proof is straightforward using Proposition 2.7 (2) and (3). �

Similarly, If S → B → T is a triangle and E
6=0−→ B then there exists either E

6=0−→ S or

E
6=0−→ T .

It follows by induction on the lemma, that if E is “built up” from extensions of A1, . . . , An

and B is “built up” from extensions of F1, . . . , Fm, then any nonzero map E
6=0−→ B gives a

nonzero map Ai
6=0−→ Fj for some i, j. By “built up,” we mean that E is in 〈A1, . . . , An〉 as

defined below.

Definition 3.13. Let D be a triangulated category and S be a set of objects of D. The

extension closed subcategory of D generated by S, denoted 〈S〉, is the full subcategory of D

defined as follows:

Let S0 = S. For all i ≥ 1, set

Si = {X ∈ D | Ai−1 → X → Bi−1 is a triangle for some Ai−1, Bi−1 ∈ Si−1}.
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Then 〈S〉 :=
⋃
i≥0 Si.

In proving Proposition 3.11, one uses the bounded derived category as an example and

guide for both directions. Abstracting the proof from this category yields the proof in general.

For instance, the property that a complex X has H i(X) = 0 for i > N becomes the property

X[N ] ∈ D≤0 but X[N − 1] /∈ D≤0. Similarly, X has H i(X) = 0 for i < M becomes the

property X[M + 1] ∈ D≥1 but X[M ] /∈ D≥1. To obtain the filitration in the proposition, one

uses this analogy and Proposition3.14 (3) below to pull off each homology object (complex)

in turn. Going backwards, one shows that the t-structure (D≤0,D≥0), is given by D≤0 =

〈A[i] | i ≤ 0〉, D≥0 = 〈A[i] | i ≥ 0〉 and also that Dm≤n := D≤n ∩D≥m = 〈A[i] | m ≤ i ≤ n〉.

The octahedral axiom, Definition 2.6 (TR 5), becomes quite useful in the backwards

direction. It was mentioned in the previous chapter that the octahedral axiom can be used

for gluing together or breaking apart filtrations. Here, given a filtration of X, one uses

the octahedral axiom to obtain the extension of Definition3.7 (3) by setting A = Ei where

i = max {i | ki ≥ 0}. Furthermore, the octahedral axiom shows that we have triangles

Ai−1 → Z → Ai for all i. This follows from the diagram below (whose form mimics that of

the diagram in Definition 2.6 (TR 5)):

Ai−1

Ei−1

-

Ei−2 -

-

Ei -

-

Z

-

Ai
?-
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We summarize here a few important facts concerning truncation functors and their asso-

ciated subcategories.

Proposition 3.14. HAHA

(1) If X ∈ D≤n (resp. D≥n), then the morphism τ≤nX → X (resp. X → τ≥nX) is an

isomorphism.

(2) Let X ∈ D. Then X ∈ D≤n (resp. D≥n) if and only if τ≥n+1X = 0 (resp. τ≤n−1X =

0).

(3) If A → X → B is a triangle and A and B belong to D≤n (resp. D≥n), then so does

X.

(4) If A→ X → B is a triangle and A and B belong to A = D≤0 ∩D≥0, then so does X,

i.e. the heart of a t-structure is closed under extensions.

(5) The heart A of a t-structure is an abelian category, with short exact sequences given

by triangles in D with all vertices lying in A.

(6) In fact, if 0→ X → Y → Z → 0 is an exact sequence in A, then there exists a unique

h : Z → X[1] such that X → Y → Z
h→ X[1] is a triangle in D.

Proof. See [20, pp. 413-415]. �

3.2. Stability Conditions

Bridgeland stability conditions were introduced in [12] and set in a precise mathematical

framework many concepts considered in Douglas’ work on the Π-stability of D-branes [17].

Bridgeland stability conditions yield a geometric object (the space of stability conditions)

associated to a triangulated category , and provide a finer collection of hearts indexed not

just by the integers (e.g. as in Proposition 3.11), but by the reals.
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Here we introduce Bridgeland stability conditions in general, and discuss deforming sta-

bility conditions. In the next chapter we consider the Bridgeland stability of line bundles

for a certain class of stability conditions defined for surfaces.

Definition 3.15. A slicing P of a triangulated category D consists of full additive

subcategories P(φ) ⊂ D for each φ ∈ R satisfying the following axioms:

(1) for all φ ∈ R, P(φ+ 1) = P(φ)[1],

(2) if φ1 > φ2 and Aj ∈ P(φj), then HomD(A1, A2) = 0,

(3) for each nonzero object E ∈ D, there is a finite sequence of real numbers

φ1 > φ2 > · · · > φn

and a filtration through triangles

0 = E0
- E1

- E2
- · · · - En−1 - En = E

A1

�

�

A2

�

�

An
�

�

with 0 6= Ai ∈ P(φi) for all i.

As in Proposition 3.11, these filtrations are uniquely defined up to isomorphism and all

maps and objects are nonzero. For any 0 6= E ∈ D we may thus define φ+
P(E) = φ1 and

φ−P(E) = φn. We then have φ−P(E) ≤ φ+
P(E) with equality if and only if E ∈ P for some

φ ∈ R. Note that a slicing with information concentrated only on the integers is the same

information as a heart.
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For any interval I ⊂ R, we define P(I) := 〈P(φ) | φ ∈ I〉. A useful fact is that

P([a, b)) =: P [a, b) = {0 6= E ∈ D | a ≤ φ−(E) ≤ φ+(E) < b}. To show this, one uses the

filtrations above, as well as Lemma 3.12 and the definition of an extension closed subcategory.

Now, for any φ ∈ R, the pair (P(> φ),P(≤ φ + 1)) is a t-structure of D by the axioms

in Definition 3.15 (note that if D≥0 = P(≤ φ + 1), then D≥1 = P(≤ φ)). Also, the pair

(P(≥ φ),P(< φ + 1)) is a t-structure. These t-structes give the hearts P(φ, φ + 1] (resp.

P [φ, φ + 1)), where φ is any real number. For convention’s sake, we define the heart of the

slicing P as P(0, 1].

The following proposition from [23, p. 658] shows that the categories P [φ, φ + 1) are

minimal in some sense.

Proposition 3.16. Let P be a slicing of the triangulated category D. Assume that A is

a full abelian subcategory of P [φ, φ + 1) and the heart of a bounded t-structure on D. Then

A = P [φ, φ+ 1).

In Definition 3.18, we define a stability condition as a slicing together with the information

of a related additive map. We will see in Proposition 3.20 that the additive map will allow

us to create an appropriate slicing given just a heart of the triangulated category. We first

give a preliminary definition.

Definition 3.17. The Grothendieck group K(D) of a triangulated category D, is the

free abelian group generated by the objects of D with the relations B = A + C whenever

A→ B → C is a triangle in D.

34



Definition 3.18. A stability condition σ = (Z,P) on a triangulated category D consists

of a group homomorphism Z : K(D) → C and a slicing P of D such that if 0 6= E ∈ P(φ)

then Z(E) = m(E)exp(iπφ) for some m(E) ∈ R>0.

The map Z is called the central charge of the stability condition. The nonzero objects of

P(φ) are said to be semistable in σ of phase φ, and are called stable if they are also simple

(i.e. no subobjects). One can show that each P(φ) is an abelian category (see [12, p. 331]).

The definition of a stability condition above seems undesirable because it appears that

we would have to hand pick the semistable objects in order to create one. However, the

next result shows that there is a natural process that yields a stability condition (and is

in fact equivalent to the above definition). Before we give it, however, we must give a few

definitions.

Definition 3.19. (1) A slope function Z on a heart A is a group homomorphism

Z : K(A) → C such that for 0 6= E ∈ A, Z(E) lies in H := {rexp(iπφ) | r >

0, and 0 < φ ≤ 1}.

(2) We define the slope of E 6= 0 to be φ(E) = 1
π
arg Z(E) ∈ (0, 1].

(3) We say that 0 6= A ∈ A is Z−semistable if for all subobjects 0 6= C ⊂ A we have

φ(A) ≥ φ(C).

(4) Finally, we say that Z has the Harder-Narasimhan (HN-) property if for all E 6= 0

in A we have a finite filtration of short exact sequences in A (which we still draw as

triangles)

0 = E0
- E1

- E2
- · · · - En−1 - En = E

A1

�

�

A2

�

�

An
�

�
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such that 0 6= Ai is Z−semistable for all i and φ(A1) > · · · > φ(An).

Proposition 3.20. To give a stability condition on a triangulated category D is equiva-

lent to giving a bounded t-structure on D and a centered slope-function on its heart with the

Harder-Narasimhan property.

Bridgeland gives a proof in [12] - we make a few notes here: Going left to right in

the above proof, we use the heart P(0, 1] and the induced function Z gives the the slope

fuction with HN-property. It turns out that for all φ ∈ (0, 1], we have P(φ) = {Z −

semistable objects of slope φ}. Going right to left (the “more useful” direction), we define

for all φ ∈ (0, 1] that P(φ) = {Z-semistable objects of slope φ}. Shifting these P(φ) around

with the shift functor gives the slicing. In order to obtain the filtrations needed for a stability

condition, we first use the heart to obtain a filtration, then we use the octahedral axiom to

combine this filtration with the filtrations in A of each of the Ai ∈ A[ki]. This proof is

another that would be very useful to work through. Note that, for a heart A, using the

filtrations with the heart, we see that K(A) = K(D).

A useful property that slope functions have is what is called the see-saw property. What

this says is that, if A → E → B is a short exact sequence in A, then φ(A) < φ(E) ⇔

φ(E) < φ(B) and φ(A) > φ(E) ⇔ φ(E) > φ(B). The fact that centered slope-functions

have this can be seen easily by how complex numbers are added. Also, we can replace

the the inequalities above with equalities. Using the see-saw property, we see that we may

equivalently define an object 0 6= E ∈ A to be Z−semistable if, for every quotient E � B

we have φ(B) ≥ φ(E).

Showing that a centered slope-function has HN-propterty can be challenging, but can

also come for free, for instance, if A has finite length, as the next proposition shows. It’s
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proof uses maximally destabilizing quotients (mdqs) to iteratively construct the HN-filtration

(find the mdq of E, take the kernel of the map, find the mdq of the kernel, etc.). The reader

should consult [12, p. 324] for the precise definition of an mdq.

Proposition 3.21. Suppose A is an abelian category with a centered slope-function Z :

K(A)→ C satisfying the chain conditions

(1) there are no infinite sequences of subobjects in A

· · · ⊂ Ej+1 ⊂ Ej ⊂ · · · ⊂ E2 ⊂ E1

with φ(Ej+1) > φ(Ej) for all j,

(2) there are no infinite sequences of quotients in A

E1 � E2 � · · ·� Ej � Ej+1 � · · ·

with φ(Ej+1) < φ(Ej) for all j.

Then A has the HN-property.

Proof. [12, p. 323] �

In order to throw out some undesirable stability conditions, we make the following defi-

nition.

Definition 3.22. A stability condition σ = (P , Z) is called locally finite if there is an

ε > 0 such that P(φ− ε, φ+ ε) is a category of finite length for all φ in R.

Definition 3.23. For a triangulated category D, Stab(D) is the set of all locally-finite

stability conditions on D.
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In order to obtain a well-behaved wall and chamber structure for chosen invariants in the

space of stability conditions, in practice one often imposes the extra condition of a stability

condition being “full” or satisfying the ”support property.” See Remark 4.3 for details.

3.2.1. Stab(D) as a Topological Space. Bridgeland puts a topology on Stab(D)

using the following generalized metric. Here, for E 6= 0, its mass, m(E), is defined to be∑
i |Z(Ai)|, where the Ai are the semistable quotients in the HN-filtration of E. The metric

is

d(σ, γ) = sup06=E∈D

{
|φ+
σ (E)− φ+

γ (E)|, |φ−σ (E)− φ−γ (E)|, | log
mσ(E)

mγ(E)
|
}

Bridgeland then shows that Stab(D) is in fact a manifold. To obtain finite dimensionality,

we now assume that for D, either K(D) has finite rank, or that the numerical Grothendieck

group N(D) has finite rank and Z : K(D) → C factors through N(D). See [12, p. 319] for

the definition of N(D). Set K = K(D) or N(D) appropriately, and note that HomZ(K,C)

is thus a finite dimensional vector space. We then have the following.

Theorem 3.24. For each connected component Σ ⊂ Stab(D) there is a subspace V (E) ⊂

HomZ(K,C) and a local homeomorphism Z : Σ → V (E) that sends a stability condition to

its central charge Z. In particular, Σ is a finite-dimensional complex manifold.

The point is that Stab(D) is a manifold that one that one can move around on by

deforming the central charge. The following discussion shows in more detail how this works,

i.e. how to find a matching slicing after slightly deforming the central charge.

The idea is to deform your central charge slightly, then look at sectors of the plane and

see which objects now are or are not semistable, using the objects that were semistable before

the deformation as a starting place.
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More specifically, let σ = (P , Z) be a stability condition and let Z ′ be the central charge

we get by deforming Z slightly. We wish to find the corresponding slicing, P ′. Let ε > 0

be “small” and φ ∈ R. We define Aφε := P(φ − ε, φ + ε). Let us assume that Z ′ sends Aφε

to some slightly bigger sector (i.e. that our deformation only moves the sector Aφε slightly).

We can now update our slicing near the phase φ to account for our new central charge.

To do this, for φ′ near φ we let P ′(φ′) be the objects of Aφε that are Z ′−semistable and

now have slope φ′ under Z ′. (Recall the definition of Z ′−semistability from Definition 3.19

(4)). More precisely, we consider Aφε , map it under Z ′, and consider Z ′ as a slope function

on Aφε . That is, for any object 0 6= E ∈ Aφε define its slope under Z ′, φ′(E) to be the

appropriate slope near φ. Then, for φ′ near φ, we let P ′(φ′) be the subcategory of objects of

Aφε that have slope φ′ under Z ′ and are Z ′−semistable.

We must be careful about what we mean by “subobject” in the definition of Z ′−semistable,

as Aφε is not in general an abelian category. It is, however, a quasi-abelian category (see [12,

p. 328-331]). In these categories, we have a replacement for subobject and quotient: we say

that, for 0 6= E ∈ Aφε that A is a (strict) subobject of E (and that B is a (strict) quotient

of E) if A→ E → B is a triangle in D and A,B ∈ Aφε .

3.3. Actions on Stab(D)

We now consider two actions on the stability manifold from [12, pp. 342-343]. The first

amounts to combinations of rotation, stretching and shearing without changing orientation.

The second uses the symmetry of the triangulated category D to exchange elements in a

given stability condition. Because these actions do not yield substantially different stability

conditions, it is reasonable to mod out by them and this can simplify the space of stability

conditions.
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Proposition 3.25. The generalized metric space Stab(D) carries the following two ac-

tions. These actions commute.

(1) A right action of the group G̃L
+

(2,R), the universal covering space of GL+(2,R), that

is {(T, f) | f : R → R an increasing map with f(φ + 1) = f(φ) + 1, and T : R2 → R2

is an orientation-preserving linear isomorphism, such that their induced maps on S1 =

R/2Z = R2/R>0 are the same.} Let (Z,P) ∈ Stab(D) and (T, f) ∈ G̃L
+

(2,R). Then

(T, f) • (Z,P) := (T−1 ◦ Z,P ′), where P ′(t) = P(f(t)).

(2) A left action by Aut(D) of exact autoequivalences (i.e. triangles are sent to triangles)

of D. Note that Ψ ∈ Aut(D) induces an automorphism ψ of K(D). Let Ψ ∈ Aut(D).

Then Ψ • (Z,P) := (Z ◦ ψ−1, P̃), where P̃(t) = Ψ(P(t)).

Note that the action of G̃L
+

(2,R) only relabels the phases of semistable objects, it does

not change which objects are semistable. In our study of the Bridgeland stability of line

bundles on surfaces, we use the action of autoequivalences given by tensoring by line bundles

(Lemma 4.7), and use rotation to identify certain stability conditions with descriptions in

terms of quivers (Section 6.2).
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CHAPTER 4

Bridgeland Stability of Line Bundles on Surfaces

Let S be a smooth projective surface. In this paper, we study Bridgeland stability

for line bundles on S using the geometric Bridgeland stability conditions introduced in [2]

(see Section 4.1.2 for a precise definition). Bridgeland stability conditions can be seen as an

extention of Mumford µ-stability for sheaves to complexes of sheaves in the derived category,

Db(CohS). Line bundles are always Mumford slope-stable, as their only subobjects are ideal

sheaves, but the situation is less constrained in the derived setting. For example, in the

abelian subcategories we consider, a subobject of a line bundle is a sheaf, but may a priori

have arbitrarily high rank. The quotient is a possibly two-term complex.

One might still expect line bundles to always be Bridgeland stable, and this is correct

if S has no curves C of negative self-intersection (see the first part of Theorem 4.1 below).

However, if there exists a curve C on S of negative self-intersection, then L(−C) destabilizes

L for some Bridgeland stability conditions, and L(C)|C destabilizes L[1]. We make the

following conjecture.

Conjecture. Given a surface S and a stability condition σH,D as in [2],

• the only objects that could destabilize a line bundle L are line bundles of the form L(−C)

for a curve C of negative self-intersection, and

• the only objects that could destabilize L[1] are torsion sheaves of the form L(C)|C for a

curve C of negative self-intersection.

The goal of this paper is to prove the conjecture in several cases, and provide evidence

for the conjecture for others. Specifically, we prove the following.
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Theorem 4.1. The conjecture is true in the following cases:

• If S does not have any curves of negative self-intersection.

• If the Picard rank of S is 2, and there exists only one irreducible curve of negative

self-intersection.

In particular, the conjecture is true for Hirzebruch surfaces. We cite Propositions 4.21

and 4.26 as further evidence for our conjecture in general. Proposition 4.21 estabilishes some

structure of actually destabilizing subobjects for line bundles and their walls for surfaces of

any Picard rank, while Proposition 4.26 proves a stronger version of the conjecture for a

subset of stability conditions when S has Picard rank 2 and two irreducible curves of negative

self-intersection.

In [2] the stability of line bundles is proven for stability conditions σD,H with D = sH,

and is utilized in [3] and [9] while classifying destabilizing walls for ideal sheaves of points

on surfaces. When D 6= sH the more algebraic proof of [2] using the Bogomolov inequality

and Hodge Index Theorem fails and new techniques are required. We use Theorem 3.1

(Bertram’s Nested Wall Theorem) from [22] and Lemma 6.3 (which we refer to as Bertram’s

Lemma) from [3] along with an analysis of the relative geometry of relevant walls in certain

three-dimensional slices of the space of stability conditions. This technique lends itself well

to induction, which is the primary method of proof used here.

We begin in Section 4.1 by introducing Bridgeland stability conditions, the stability

conditions σD,H of interest, as well as important slices of the space of stability conditions. In

Section 4.2 we present an action by line bundles which allows us to consider only OS in our

questions of the stability of line bundles. In Section 4.3 we consider the basic structure of

subobjects of OS as well as present two already known results which will serve as important
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tools in the remainder. In Section 4.4 we prove our main results, but first consider the rank

1 subobjects of OS. The rank 1 subobjects form the base case for our main results, all of

which use induction. The case of OS[1] is then completed primarily using duality, which

allows us to use our results for OS except when D.H = 0.

4.1. Bridgeland Stability Conditions

Bridgeland stability conditions (introduced in [12]) give a notion of stability on the de-

rived category of a variety. They generalize other classical notions of stability conditions,

e.g., Mumford-slope stability. As with slope stability, we may deform our stability conditions

(Bridgeland showed that the space of all stability conditions is a complex manifold) and the

stability of objects can change. We first introduce these stability conditions in general, and

then restrict our attention to surfaces in the next section. Our goal is to study Bridgeland

stability of line bundles.

4.1.1. General Definition of Bridgeland Stability Conditions. Let X be a

smooth projective variety, D(X) = Db(CohS) the bounded derived category of coherent

sheaves on X, K(X) its Grothendieck group, and Knum(X) its quotient by the subgroup of

classes F such that χ(E,F ) = 0 for all E ∈ D(X).

Definition 4.2. A full numerical stability condition on X is a pair σ = (Z,A) where

• A is a heart of D(X)

• Z : Knum(X)→ C a group homomorphism called the central charge

satisfying properties 1,2 and 3 below.

1 (Positivity): For all 0 6= E ∈ A, Z(E) ∈ {reiπϕ | r > 0, 0 < ϕ ≤ 1}.
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To discuss stability for a given stability condition, we define for each E ∈ D(X)

β(E) = −ReZ(E)

ImZ(E)
∈ (−∞,∞]

For example, if Z(E) = −1 then β(E) =∞, and if Z(E) =
√
−1 then β(E) = 0.

We say that E ∈ A is σ-stable (resp. σ-semistable) if for all nontrivial F ↪→ E in A we

have β(E) > β(F ) (resp. β(E) ≥ β(F )).

2 (Harder-Narasimhan Filtrations): For all E ∈ A there exist objects E1, . . . , En−1 ∈

A such that

• 0 = E0 ↪→ E1 ↪→ · · · ↪→ En−1 ↪→ En = E in A

• Ei+1/Ei is σ-semistable for each i

• β(E1/E0) > β(E2/E1) > · · · > β(En/En−1)

3 (Support Property): Choose a norm ‖.‖ on Knum(X)⊗R. There exist a C > 0 such

that for all σ-semistable E ∈ D(X) we have C‖E‖ ≤ |Z(E)|.

Remark 4.3. The support property guarantees us a nicely behaved wall and chamber

structure for classes of objects - namely, the walls are locally finite, real codimension 1

submanifolds of the stability manifold and deleting the walls gives chambers where Bridge-

land stability is constant (see [7, Proposition 3.3]). The support property is equivalent to

Bridgeland’s notion of full, see [7, Proposition B.4].

We will say stability condition to mean full numerical stability condition.

4.1.2. Bridgeland Stability Conditions on a Surface. Let S be a smooth pro-

jective surface. The stability conditions that we are going to consider were defined in [2].

They form a subset Stabdiv(S) of stability conditions that depend on a choice of ample and
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general divisor (the “div” stands for “divisor”), and are well suited to computations. Let us

recall their definition.

Let S be a smooth projective surface. Given two R-divisors D,H with H ample, we

define a stability condition σD,H = (ZD,H ,AD,H) on S as follows:

Consider the H-Mumford slope

µH(E) =
c1(E).H

rk(E)H2
.

Let AD,H be the tilt of the standard t-structure on D(S) at µH(D) =
D.H

H2
defined by

AD,H = {E ∈ D(S) | H i(E) = 0 for i 6= −1, 0, H−1(E) ∈ FD,H , H0(E) ∈ TD,H} where

• TD,H ⊂ Coh (S) is generated by torsion sheaves and µH-stable sheaves E with µH(E) >

D.H

H2
.

• FD,H ⊂ Coh (S) is generated by µH-stable sheaves F with µH(F ) ≤ D.H

H2
.

Now define ZD,H by ZD,H(E) = −
∫
e−(D+iH)ch(E). It is equal to

ZD,H(E) =

(
−ch2(E) + c1(E).D − rk(E)

2
(D2 −H2)

)
+ i (c1(E).H − rk(E)D.H)

By [2, Corollary 2.1] and [29, Sections 3.6 & 3.7], σD,H is a stability condition on S. Let

Stabdiv(S) be the set of all such stability conditions. By the support property, Stabdiv(S) ∼=

(Amp(S)⊕ Pic(S))R is a submanifold of the space of all stability conditions.

Remark 4.4. These are geometric stability conditions since for all p ∈ S, the skyscraper

sheaf Cp ∈ AD,H is σD,H-stable with ZD,H(Cp) = −1 (the proof is the same as [3, Proposition

6.2.a]).
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Note. When the D and H divisors have been fixed, we will often drop the D,H subscript

from σ, Z, A, T , and F .

4.1.3. Slices of Stabdiv(S). One of the features that makes Stabdiv(S) well suited to

computations is its decomposition into well-behaved 3-spaces, each given by a choice of

ample divisor and another divisor orthogonal to it. In these 3-spaces, walls of interest will

be quadric surfaces and most of our work will begin by first choosing a particular 3-space to

live in. Most of these concepts where introduced in [22].

Let H be an ample divisor such that H2 = 1. If S has Picard rank 1, then the stability

conditions in Stabdiv(S) are all of the form σsH,tH . It was already proved in [2] that line

bundles are always Bridgeland stable for these stability conditions.

Assume from now on that S has Picard rank greater than 1.

Definition 4.5. Choose a divisor G with G.H = 0 and G2 = −1 (note that G2 ≤ 0

by the Hodge Index Theorem with G2 = 0 iff G = 0). Then, define SH,G := {σsH+uG,tH |

s, u, t ∈ R, t > 0} ⊂ Stabdiv(S).

From now on we assume that any divisors H,G are as above. We identify SH,G with

{(s, u, t) | t > 0} by (s, u, t)↔ σsH+uG,tH .

Each of the stability conditions σD,H defined in 4.1.2 can be seen as an element of a

particular 3-dimensional slice. Indeed, we can just scale the H to ensure that H2 = 1, and

then choose G such that D = sH + uG so that σD,H ∈ SH,G. Thus these slices cover all of

Stabdiv(S).

Note. Though these spaces do not contain the plane t = 0, for convenience we will treat

them as if they do. Also, we write (s, u) to mean (s, u, 0) and identify σ = σsH+uG,tH =

(s, u, t).
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Let E ∈ D(S) and set ch(E) = (ch0(E), ch1(E), ch2(E)) = (r, c1(E), c). We may write

c1(E) = dhH + dgG + α where α.H = α.G = 0 and dh, dg ∈ R. Specifically, we have

dh = c1(E).H and dg = −c1(E).G.

Remark 4.6. Given SH,G, the equality µH(sH + uG) = µH(E) is equivalent to s =

ch1(E).H

rH2
= µH(E), and µH(sH + uG) < µH(E) iff s < µH(E).

The vertical plane s = µH(E) is very important, because, if E is a µH-semistable sheaf,

then s < µH(E) iff E ∈ AsH+uG,H , and s ≥ µH(E) iff E[1] ∈ AsH+uG,H .

For each fixed value of u, we denote by Πu the vertical plane of stability conditions (s, u, t)

of fixed u-value. It is parametrized by (s, t), and it will play a special role in our work (see

Section 4.3.1 below for more details).

The central charge of a stability condition σ = σsH+uG,tH for an object E with ch(E) =

(r, dhH + dgG+ α, c) is equal to

Z(E) =
(
−c+ sdh − udg −

r

2
(s2 − u2 − t2)

)
+ i (tdh − rst) .

4.2. Reduction to the case of OS

The action of tensoring stability conditions by line bundles will allow us to restrict our

attention from the stability of all line bundles to that of OS,OS[1]. Proving the action on

Stab(S) descends to Stabdiv(S) is straightforward but we provide it here for completeness.

Lemma 4.7. Let S be a smooth projective surface with line bundle OS(D′). For any

σD,H ∈ Stabdiv(S), we have OS(D′)⊗ σ = σD+D′,H .
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Proof. For an autoequivalence Φ and stability condition σ = (Z,A), let Φσ = (ΦZ,ΦA).

We first consider the central charge: We have (ΦZ)(E) = Z(Φ−1E). Thus, for Φ =

OS(D′)⊗−, we have

(ΦZ)(E) = ZD,H(Φ−1E)

= ZD,H(OS(−D′)⊗ E)

= −
∫
e−(D+iH)ch(OS(−D′)⊗ E)

= −
∫
e−(D+iH)ch(OS(−D′)).ch(E)

= −
∫
e−(D+iH)

(
1[S]−D′ + (−D′)2

2
[pt]

)
.ch(E)

= −
∫
e−(D+iH)e−D

′
.ch(E)

= −
∫
e−(D+D′+iH)ch(E)

= ZD+D′,H(E)

Next, the heart: we have ΦA = Φ(A), i.e. the image of A under the autoequivalence Φ.

Since

E ∈ Coh(S) is µH − stable with µH(E) > (resp. ≥) µH(D) iff

F := O(D′)⊗ E is µH − stable with µH(F ) > (resp. ≥) µH(D +D′)

we have that
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ΦA = Φ(AD,H)

= 〈E ∈ Coh(S), µH-stable with µH(E) > µH(D +D′);

F [1], where F ∈ Coh(S) is µH-stable with µH(E) ≤ µH(D +D′)〉

= AD+D′,H

We have shown OS(D′)⊗ σD,H = σD+D′,H . �

As an immediate corollary we have thatOS(D′) is (semi)stable at σD,H iffOS is (semi)stable

at σD−D′,H (and similarly for OS[1]).

4.3. Preliminaries on the Stability of OS

Walls are subsets of the stability manifold where the stability of objects can change. Our

main interest lies in in describing the chambers of stability for OS, which are bounded by

walls corresponding to certain destabilizing objects. Let us start with a few definitions, and

a description of the possible walls.

4.3.1. Subobjects of OS and their walls. First of all, here is our generic definition

of a wall.

Definition 4.8. Given two objects E,B ∈ D(S), with B Bridgeland-stable for at least

one stability condition, we define the wallW(E,B) as {σ ∈ Stabdiv(S) | (ReZ(E))(ImZ(B))−

(ReZ(B))(ImZ(E)) = 0}. If at some σ ∈ W(E,B) we have E ⊂ B in A, we say that

W(E,B) is a weakly destabilizing wall for B. If at some σ ∈ W(E,B) we have E ⊂ B
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in A, and B is Bridgeland σ-semistable, we say thatW(E,B) is an actually destabilizing

wall for B.

Note that if ImZ(E) 6= 0 6= ImZ(B) then the defining condition is just β(E) = β(B).

We are interested in the walls for OS and OS[1], and we start by studying the walls for

OS. Note that, given a Bridgeland stability condition σ, we have OS ∈ A iff s < 0, and

OS[1] ∈ A iff s ≥ 0.

At each fixed value of u, Maciocia showed in [22, Section 2] that all walls for OS in Πu

are nested semicircles centered on the s-axis. Therefore, given two objects E1 and E2, and

a fixed value of u, we have that W(E1,OS) ∩ Πu and W(E2,OS) ∩ Πu are both semicircles,

with one of them inside the other, unless they are equal.

Definition 4.9. We say that the wall W(E1,OS) is inside the wall W(E2,OS) at u if

the semicircle W(E1,OS) ∩ Πu is inside the semicircle W(E2,OS) ∩ Πu or equal to it. We

will use the notation

W(E1,OS) ∩ Πu � W(E2,OS) ∩ Πu.

Lemma 4.10. Let σ ∈ Stabdiv(S), and let 0 → E → OS → Q → 0 be a short exact

sequence in A. Then E is a torsion-free sheaf, H0(Q) is a quotient of OS of rank 0, and the

kernel of the map OS → H0(Q) is an ideal sheaf IZ(−C) for some effective curve C and

some zero-dimensional scheme Z.

Proof. The long exact sequence in cohomology associated to the short exact sequence

shows that E must be a sheaf, while Q may have cohomologies in degrees −1 and 0:

0 −→ H−1(Q) −→ E −→ OS −→ H0(Q) −→ 0.
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If H0(Q) had rank 1, then it would have to be equal to OS, and we would have that

H−1(Q) = E = 0, which is impossible. Therefore, H0(Q) is a quotient of OS of rank 0.

Since IZ(−C) and H−1(Q) are both torsion-free sheaves, E is also a torsion-free sheaf. �

Here we study which forms the wallsW(E,OS) can take. The intersection of a wall with

the t = 0-plane is a conic through the origin, and we classify the wall based on invariants

associated to E.

If ch(E) = (r, dhH + dgG+ αE, c), then we saw above that

Z(E) =
(
−c+ sdh − udg −

r

2
(s2 − u2 − t2)

)
+ i (tdh − rst) ,

and the equation of the wall W(E,OS) is

t

2
(−dh(s2 + t2 + u2) + 2dgsu+ 2cs) = 0.

Since t 6= 0, this is equivalent to

−dh(s2 + t2 + u2) + 2dgsu+ 2cs = 0.

It is a quadric, and we will start by studying its intersection with the t = 0 plane:

−dh(s2 + u2) + 2dgsu+ 2cs = 0.

We will abuse notation, and still refer to this equation as the wall W(E,OS). The determi-

nant is equal to

∆ = 4(d2g − d2h).
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If ∆ = 0, then the wall is a parabola. Since s < 0, the wall can only be a weakly

destabilizing wall if c > 0, in which case the equation of the parabola is −dh(s±u)2+2cs = 0.

If ∆ 6= 0 and c 6= 0, straightforward calculations show the following:

• 0P and 2P are on the wall, where

P = − c

d2g − d2h
(dh, dg).

• The tangent line to the wall at 0P and 2P is vertical, i.e. is s = constant.

• The tangent line to the wall is horizontal (i.e. is u = constant) at the points where the

conic intersects u = s and u = −s. These are

(
c

dh − dg
,

c

dh − dg

)
and

(
c

dh + dg
,− c

dh + dg

)
.

If ∆ < 0, then the wall is a weakly destabilizing wall only if c > 0, and it is an ellipse.

If ∆ > 0, then there are three possibilities:

• If c = 0, then the wall is a cone centered at (0, 0).

• If c > 0, then the wall is a hyperbola with center P to the right of s = 0.

• If c < 0, then the wall is a hyperbola with center P to the left of s = 0. In this case,

the asymptotes have slope

dg ±
√
d2g − d2h
dh

.

Here is a summary of all possible weakly destabilizing walls (pictures drawn for dh < 0

and dg > 0):

Parabola.: When d2g − d2h = 0 and c > 0.

Ellipse.: When d2g − d2h < 0 and c > 0.
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Cone.: When d2g − d2h > 0 and c = 0.

Right Hyperbola.: When d2g − d2h > 0 and c > 0.

Left Hyperbola.: When d2g − d2h > 0 and c < 0.

Figure 4.1. Parabola Figure 4.2. Ellipse Figure 4.3. Cone

Figure 4.4. Right hyperbola Figure 4.5. Left hyperbola

We end this section by pointing out an important geometric property of these walls that

will be useful in various proofs later in the paper.

Lemma 4.11. Given two subobjects E1 and E2 of OS in A, there exists at most one value

of u 6= 0 such that

W(E1,OS) ∩ Πu =W(E2,OS) ∩ Πu,

unless the two walls coincide everywhere.

Proof. Suppose that W(E1,OS) and W(E2,OS) do not coincide everywhere. Looking

at the intersection of the walls with the t = 0 plane, we see that they are two conics that

intersect at (0, 0) with multiplicity two. Therefore, they can only intersect at at most two
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other points there. Since the walls W(E,OS) ∩ Πu are nested semicircles centered on the

s-axis, they intersect the t = 0 plane. Therefore, if W(E1,OS) ∩Πu =W(E2,OS) ∩Πu, the

walls coincide at the two points where the semicircle intersects the t = 0 plane, and cannot

intersect anywhere else there except at (0, 0). Therefore, the walls cannot coincide at any

other value of u 6= 0. �

4.3.2. Bridgeland Stability of OS for t >> 0. In this section, we prove that OS

is Bridgeland stable in SH,G for t >> 0. This fact is already known. For example, it follows

from the result in [22] that walls in each plane of the form u = constant are disjoint circles

that are bounded above. We give however a new proof that would easily generalize to the

case of an object of the form E or E[1] with E a µ-stable sheaf.

Proposition 4.12. Let H and G be as above, and fix a divisor sH + uG with s < 0.

Then OS is Bridgeland stable for the stability condition σsH+uG,tH for t >> 0.

Proof. Let A = AsH+uG,tH (note that AsH+uG,tH is independent of t), and let E be

subobject of OS in A. As we saw above, E is torsion-free. Moreover, since 0 < ImZ(E) <

ImZ(OS) for all t, we have that µH(E) < µH(OS) = 0. This implies that β(E) < β(OS)

for t >> 0. From our analysis of the possible walls above, we know that, for a fixed (s, u),

there is at most one value of t such that β(E) = β(OS). Moreover, if β(E) < β(OS) at a

given σs,u,t0 then the same inequality holds for all t > t0.

Hence the only way OS could not be Bridgeland stable for large t is if there are infinitely

many chern characters corresponding to subobjects E of OS with β(E) ≥ β(OS).

Suppose this is so and fix a value of t (in particular, we can now assume that the subob-

jects in question are Bridgeland semistable). Now, for the fixed stability condition σsH+uG,tH ,
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OS has a HN-filtration of Bridgeland semistable objects OS = 〈Li〉l1 with L1 torsion-free and

thus ImZ(L1) > 0 and β(L1) <∞. We have that E ∈ A and E ⊂ OS imply β(L1) ≥ β(E)

and since we also have ImZ(E) < ImZ(OS) the images of these semistable subobjects are

forced into a finite triangular region of the upper half-plane, specifically the region bounded

by the ray through Z(OS), the ray through Z(L1), and the horizontal line Im z = ImZ(OS).

But this is impossible by the support property. Thus OS is Bridgeland stable for large t. �

Remark 4.13. Even when fixing H and G, there is not necessarily a t0 such that OS is

Bridgeland stable for all (s, u, t) with t > t0. As a matter of fact, due to the nature of the

rank 1 walls, which are hyperboloids, whenever OS is not Bridgeland stable somewhere in a

space SH,G, there will be stability conditions for any t for which OS is not Bridgeland stable.

However, for every fixed value of u, Maciocia proved in [22] that there exists a value t0(u)

such that OS is Bridgeland stable for σsH+uG,tH for all s < 0 and t > t0(u). What happens

is that the t0(u), if it is not equal to 0, goes to ∞ as u goes to ±∞.

4.3.3. Bertram’s Lemma. The following lemma is a key tool in the proof of the main

theorem. The lemma is essentially Lemma 6.3 in [3], adapted to our situation. It allows us

to, in some situations, find walls higher than a given wall for OS by removing a Mumford

semistable factor from the subobject or quotient. In either case, rank strictly drops and this

sets the stage for our induction proof characterizing the stability of OS.

Let E be a subobject of OS of rank ≥ 2 in A, and let Q be the quotient.

Let 0 = E0 ⊆ E1 ⊆ E2 ⊆ · · · ⊆ En−1 ⊆ En = E be the Harder-Narasihman filtration of

E, and let Ki = Ei/Ei−1 (so that K1 = E1 and Kn = E/En−1). We have that µH(K1) >

µH(K2) > · · · > µH(Kn). Also, let K = Kn.
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Similarly, let 0 = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fm−1 ⊆ Fm = H−1(Q) be the Harder-

Narasihman filtration of H−1(Q), and let Ji = Fi/Fi−1 with J = J1.

We have that E ⊆ OS ∈ A iff µH(J) ≤ s < µH(K).

At s = µH(K), we will consider the natural subsheaf En−1 ⊆ E. At s = µH(J), we

will consider the natural quotient sheaf E � E/J (note that, as sheaves, J = J1 = F1 ⊆

H−1(Q) ⊆ E).

Lemma 4.14 (Bertram’s Lemma). Fix H and G as above, and let E ⊆ OS in A for some

σ = σsH+uG,tH = (Z,A) such that σ ∈ W(E,OS).

(1) If W(E,OS) ∩ Πu intersects the line s = µH(K) for t > 0, then β(En−1) > β(E) at

σ, with En−1 ⊆ OS in A (in particular, E is not µH-semistable).

(2) If W(E,OS) ∩ Πu intersects the line s = µH(J) for t > 0, then β(E/J) > β(E) at σ,

with E/J ⊆ OS in A.

Proof. (1) Maciocia proved in [22] that, if E is µH-semistable, then W(E,OS) ∩ Πu

does not intersect the line s = µH(E). Therfore, if W(E,OS) ∩ Πu intersects s = µH(K),

E cannot be µH-semistable. Since E ∈ Aσ, we have that s(σ) < µH(K). Because K ∈ A

iff s < µH(K),it follows that for all values of s between s(σ) ≤ s < µH(K) we have that

0 → En−1 → E → K → 0 in A. At s = µH(K), we have that ImZ(K) = 0, and

β(K) = −∞. Therefore, approaching s = µH(K) from σ along W(E,OS) ∩ Πu, we have

that β(K)→ −∞, and β(En−1) > β(E) > β(K). Since the walls are nested in Πu, we must

have β(En−1) > β(E) = β(OS) at σ as well.

(2) Since E ⊆ OS ∈ Aσ, we have that µH(J) ≤ s(σ) < µH(K). Therefore, for all values

of s between µH(J) ≤ s ≤ s(σ), we have that E, J [1] ∈ A, and there exists a short exact

sequence 0→ E → E/J → J [1]→ 0 in A.
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Figure 4.6. t = 0 plane Figure 4.7. Πu plane at u = u0

At s = µH(J), we have that ImZ(J [1]) = 0, and β(J [1]) = ∞. Therefore, approaching

s = µH(J) from σ alongW(E,OS)∩Πu, we have that β(J [1])→∞, and β(E) < β(E/J) <

β(J [1]). Since the walls are nested in Πu, we must have β(E/J) > β(E) = β(OS) at σ as

well. �

Remark 4.15. Since the surface S may have Picard rank larger than 1, we are forced

to strengthen the hypotheses from those of [3], but the proof is exactly the same. We have

restricted our attention to OS, but the proof holds for any sheaf satisfying the Bogomolov

inequality (even a torsion sheaf).

Remark 4.16. Let us point out an important fact that will be needed later in the paper:

When looking at E/J ⊆ OS in A, if we call Q′ the quotient of OS by E/J in A, we have

that H−1(Q′) = H−1(Q)/J and H0(Q′) = H0(Q).

4.4. Bridgeland Stability of OS

We prove Conjecture 4 for surfaces with (any Picard rank and) no curves of negative

self-intersection as well as surfaces with Picard rank 2 and one irreducible curve of negative

self-intersection. Proposition 4.26 serves as evidence for the conjecture on surfaces with

Picard rank 2 and two irreducible curves of negative self-intersection.
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4.4.1. Subobjects of OS of rank 1. Understanding the rank 1 weakly destabilizing

subobjects of OS is crucial to our main results, all of which use induction. If a subobject

E ⊂ OS has rank 1, then Lemma 4.10 shows that E must be equal to IZ(−C) for some

effective curve C and some zero-dimensional scheme Z. We show here that for IZ(−C) to

weakly destabilize OS, we must have C2 < 0.

Proposition 4.17. If C2 ≥ 0, then IZ(−C) does not weakly destabilize OS for any σ,

i.e., there does not exist any σ such that IZ(−C) ⊆ OS in A and β(IZ(−C)) = β(OS).

Proof. We have that ch(IZ(−C)) = (1,−C,C2/2 − l(Z)), where l(Z) is the length of

Z. If C = chH + cgG + αC , with αC .H = αC .G = 0, then C2 = c2h − c2g + α2
C , and α2

C ≤ 0

by the Hodge Index Theorem. Therefore, if C2 ≥ 0, then c2h − c2g ≥ 0. The equation for the

wall W(IZ(−C),OS) simplifies to

ch(s
2 + t2 + u2)− 2cgsu+ (c2h − c2g)s+ 2α2

Cs− 2l(Z)s = 0.

If c2h − c2g > 0, then the wall is an ellipse going through 0P and 2P with

P =
C2/2− l(Z)

c2g − c2h
(ch, cg).

The s-coordinate of 2P is

c2h − c2g + 2α2
C − 2l(Z)

c2g − c2h
ch ≥ −ch +

2α2
C − 2l(Z)

c2g − c2h
ch ≥ −ch(< 0).

Therefore, the ellipse is contained in the region s ≥ −ch.

Since IZ(−C) ∈ A, we have that s < −ch, and therefore IZ(−C) cannot weakly desta-

bilize OS.
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Figure 4.8. W(IZ(−C),OS) when c2h − c2g > 0

If c2h − c2g = 0, then C2 ≥ 0 implies that C2 = 0. Therefore, ch2(IZ(−C)) = −l(Z) ≤ 0,

and, as we saw in Section 4.3.1 where we listed the possible weakly destabilizing walls for

OS, this wall cannot be a weakly destabilizing wall. �

Remark 4.18. Since OS is Bridgeland stable for t >> 0 (by Proposition 4.12), we have

from Proposition 4.17 that if C2 ≥ 0, then β(IZ(−C)) < β(OS) whenever IZ(−C) ⊆ OS in

A.

Remark 4.19. For C a curve of negative self-intersection, we a have two possibilities.

(1) If C2 < 0 and c2g − c2h ≤ 0 then IZ(−C) does not weakly destabilize OS in SH,G (note

that this is only possible for S with Picard rank ≥ 3).

(2) If C2 < 0 and c2g − c2h > 0 then W(IZ(−C),OS) is a Left Hyperbola and is a weakly

destabilizing wall for OS.

4.4.2. Surfaces with no curves of negative self-intersection. We character-

ize the stability of OS when S has no curves of negative self-intersection. This implies the

first part of Theorem 4.1.
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Theorem 4.20. If S does not contain any curves of negative self-intersection, then OS

is always Bridgeland stable (whenever in A).

Proof. Let E ⊆ OS be a proper subobject in A for some σ. We prove that β(E) <

β(OS) for all σ by induction on the rank of E.

If E has rank 1, then the result follows from Proposition 4.17 and 4.12. Assume that E

has rank r, and that the result holds for any proper subobject of rank less than r. Choose a

pair H,G as above so that σ ∈ SH,G. From our study of the walls above, we know that the

wall W(E,OS) is an Ellipse, a Cone, a Left or Right Hyperbola, or a Parabola. Using the

same notation as in Section 4.3.3, we know that E ⊆ OS ∈ A iff µH(J) ≤ s < µH(K). If we

had that β(E) ≥ β(OS) for some σ in that range, then E would weakly destabilize OS. If the

wall were an Ellipse, it would have to intersect s = µH(K), because these walls are connected

and pass through (0, 0). If it were a Left Hyperbola, it would have to intersect s = µH(J).

If it were a Right Hyperbola, a Parabola, or a Cone it would have to intersect s = µH(K)

and/or s = µH(J). Regardless of the type of wall, we would have that, by Lemma 4.14,

there would exist a proper subobject of OS of higher β and lower rank, contradicting our

induction hypothesis. �

4.4.3. Actual Walls are Left Hyperbolas. There are characteristics of actually

destabilizing walls and subobbjects which persist regardless of the Picard rank of S or the

composition of curves of negative self-intersection within S. We prove the following, and

apply it in our study of surfaces with Picard rank 2 (Section 4.4.4).

Proposition 4.21. Let E ⊆ OS in A with quotient Q. If the wall W(E,OS) is a

destabilizing wall, then it is a Left Hyperbola. Moreover, C = c1(H
0(Q)) is a curve of
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negative self-intersection such that the wall W(OS(−C),OS) is also a Left Hyperbola, and

the wall W(E,OS) is inside the wall W(OS(−C),OS) for all |u| >> 0.

The proof follows mostly from two basic lemmas in which we prove the following two

basic results:

• Every weakly destabilizing wall that is not a Left Hyperbola is inside a higher wall which

is a Left Hyperbola.

• If E ⊆ OS in A with quotient Q has a weakly destabilizing wall that is a Left Hypber-

bola, then either C = c1(H
0(Q)) is a curve of negative self-intersection or the wall is

inside a higher wall that is not a Left Hyperbola.

Let E ⊆ OS in A, and let Q be the quotient. We use the same notation as in Section

4.3.3 for the Harder-Narasihman filtrations of E and H−1(Q) with respect to the Mumford

slope µH .

Lemma 4.22. Let E ⊆ OS in A such that the wall W(E,OS) is a weakly destabilizing

wall that is not a Left Hyperbola. Then, for some Ei in the Harder-Narasihman filtration of

E, the wall W(Ei,OS) is a Left Hyperbola such that the following is true: If there exists a

stability condition σ such that E ⊆ OS in Aσ, then Ei ⊂ OS in Aσ, and the wall W(E,OS)

is inside the wall W(Ei,OS) at u(σ). In particular, E cannot actually destabilize OS.

Proof. We prove this by induction on the number of terms n in the Harder-Narasihman

filtration of E.

If n = 1 (i.e. E is µH-semistable), then the wall W(E,OS) cannot be a weakly destabi-

lizing wall without being a Left Hyperbola, because all other type of walls would intersect

the line s = µH(E), contradicting Lemma 4.14.
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Let now n > 1, and assume that the statement is true for all subobjects of OS which

have a weakly destabilizing wall that is not a Left Hyperbola, and have a Harder-Narasihman

filtration of length < n.

Since the wall W(E,OS) is not a Left Hyperbola, it will intersect the line s = µH(K).

Consider a value of u such that W(E,OS) ∩ Πu intersects s = µH(K) at t > 0. By Lemma

4.14, we have that β(En−1) > β(E) at the stability conditions σs,u on W(E,OS) ∩ Πu such

that s < µH(K). Therefore, the wall W(En−1,OS) is also a weakly destabilizing wall.

If the wallW(En−1,OS) is not a Left Hyperbola, we can conclude by induction that there

exists an Ei such that the wall W(Ei,OS) is a Left Hyperbola and the wall W(En−1,OS) is

inside the wall W(Ei,OS) for all u(σ) for which En−1 ⊆ OS in Aσ. If the wall W(En−1,OS)

is a Left Hyperbola, let i = n− 1.

Let σ be a stability condition such that E ⊆ OS in Aσ. We need to prove that the wall

W(E,OS) is inside the wall W(Ei,OS) at u(σ). First of all, notice that, if E ⊆ OS in Aσ,

then En−1 ⊆ E ⊆ OS is Aσ, because if E ∈ Aσ, then En−1 ⊆ E ∈ Aσ.

Suppose now that E weakly destabilizes OS at σ (i.e. βσ(E) ≥ βσ(OS)), and suppose

moreover that u(σ) > 0 (the proof for u(σ) < 0 is similar). Since the wallW(E,OS) is not a

Left Hyperbola, its intersection with the planes Πu is non-empty for all 0 ≤ u ≤ u(σ). Since

the wallW(Ei,OS) is a Left Hyperbola, on the other hand, its region in the s < 0 half-plane

does not reach the s-axis. Therefore, for small positive values of u,W(Ei,OS)∩Πu is empty

in the s < 0 region, and W(E,OS) ∩ Πu is non-empty.

For every value of u such that the wall W(E,OS) intersects s = µH(K) at t > 0, we

know that

W(E,OS) ∩ Πu � W(En−1,OS) ∩ Πu � W(Ei,OS) ∩ Πu
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by Lemma 4.14 and the induction hypothesis, respectively. The statement is still true at

u0 by continuity, where we denote by u0 be the smallest value of u such that W(E,OS)

intersects s = µH(K) (the intersection will be at t = 0).

Since the wall W(Ei,OS) is inside the wall W(E,OS) for small positive values of u,

while the wall W(E,OS) is inside the wall W(Ei,OS) at u0, there must exist a value u1

with 0 < u1 < u0 such that W(E,OS)∩Πu1 =W(Ei,OS)∩Πu1 (recall that, for each u, the

intersections of the walls with the plane Πu are nested semicircles). Moreover,

W(E,OS) ∩ Πu � W(Ei,OS) ∩ Πu

for all u ≥ u1 by Lemma 4.11. Since E ∈ Aσ only if s < µH(K), we have that the part of the

wall W(E,OS) where E ⊆ OS in Aσ is contained in the region u ≥ u0, which is contained

in u ≥ u1 where the wall W(E,OS) is inside the wall W(Ei,OS). �

Lemma 4.23. Let E ⊆ OS in A with quotient Q such that the wall W(E,OS) is a weakly

destabilizing Left Hyperbola. Then:

• Either C = c1(H
0(Q)) is a curve of negative self-intersection, and the wallW(OS(−C),OS)

is a Left Hyperbola, or

• For some Fj in the Harder-Narasihman filtration of H−1(Q), the wall W(E/Fj,OS) is

not a Left Hyperbola, and the following is true: If there exists a stability condition σ

such that E ⊆ OS in Aσ, then E/Fj ⊆ OS in Aσ, and the wall W(E,OS) is inside the

wall W(E/Fj,OS) at u(σ). In particular, E cannot actually destabilize OS.

Proof. We prove this by induction on the number of terms m in the Harder-Narasihman

filtration of H−1(Q) (including the case m = 0 corresponding to H−1(Q) = 0).
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If m = 0 and H−1(Q) = 0, then E = IZ(−C), and by Proposition 4.17, C = c1(H
0(Q))

must be a curve of negative self-intersection for the wall W(E,OS) to be a weakly destabi-

lizing wall.

Let now m > 0, and assume that the statement is true for all subobjects of OS which have

a weakly destabilizing wall that is a Left Hyperbola, and a Harder-Narasihman filtration for

H−1(quotient) of length < m.

Since the wall W(E,OS) is a Left Hyperbola, it will intersect the line s = µH(J) =

µH(F1). Consider a value of u such that W(E,OS) ∩ Πu intersects s = µH(F1) at t > 0.

By Lemma 4.14, we have that β(E/F1) > β(E) at those stability conditions. Therefore, the

wall W(E/F1,OS) is also a weakly destabilizing wall.

Let Q1 be the quotient for E/F1 ⊆ OS. By Remark 4.16, we have that H0(Q1) = H0(Q)

and H−1(Q1) = H−1(Q)/F1. In particular, the Harder-Narasihman filtration of H−1(Q1) is

simply Fj/F1 (1 ≤ j ≤ m), which has length m−1. Moreover, the quotients (E/F1)/(Fj/F1)

are the quotients E/Fj.

If the wall W(E/F1,OS) is a Left Hyperbola, we have by induction that at least one of

the following two options is true:

(1) C = c1(H
0(Q1)) is a curve of negative self-intersection, and the wallW(OS(−C),OS)

is a Left Hyperbola. Since H0(Q1) = H0(Q), we are done.

(2) There exists an Fj/F1 in the Harder-Narasihman filtration of H−1(Q1) such that the

wall W(E/Fj,OS) is not a Left Hyperbola, and the wall W(E/F1,OS) is inside the wall

W(E/Fj,OS) for all u(σ) for which E/F1 ⊆ OS in Aσ, with E/Fj ⊆ OS there.

If the wall W(E/F1,OS) is not a Left Hyperbola, let j = 1.
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Let σ be a stability condition such that E ⊆ OS in Aσ. We now need to prove that the

wall W(E,OS) is inside the wall W(E/Fj,OS) at u(σ).

First of all, notice that, if E ⊆ OS in Aσ, then E/F1 ⊆ OS ∈ Aσ.

As in the previous proof, assume that E weakly destabilizes OS at σ, and that u(σ) >

0. We know that W(E/Fj,OS) ∩ Πu is not empty for small positive values of u, while

W(E,OS) ∩ Πu is empty in the s < 0 region for u positive and sufficiently small.

Let u0 be the largest value of u such that the wall W(E,OS) intersects s = µH(J) (the

intersection will be at t = 0). As in the previous proof we can use Lemma 4.14, the induction

hypothesis, and continuity to show that

W(E,OS) ∩ Πu0 � W(E/F1,OS) ∩ Πu0 � W(E/Fj,OS) ∩ Πu0 .

Since W(E,OS) ∩ Πu is inside than W(E/Fj,OS) ∩ Πu for small positive values of u

and at u0, it must be inside of it for all 0 < u ≤ u0. Otherwise, there would have to exist

two values of u between 0 and u0 where W(E,OS) ∩ Πu =W(E/Fj,OS) ∩ Πu which is not

possible by Lemma 4.11.

Since E ⊆ OS ∈ Aσ only if s ≥ µH(J), we have that the part of the wall W(E,OS)

where E ⊆ OS in Aσ is contained in the region u ≤ u0, where the wall W(E,OS) is inside

the wall W(E/Fj,OS). �

We can now prove Proposition 4.21.The only part of Proposition 4.21 that does not follow

directly from the two lemmas is the part where we claim that the wall W(E,OS) is inside

the wall W(OS(−C),OS) for all |u| >> 0.

We will prove this by actually proving the following statement:
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Lemma 4.24. Let E ⊆ OS in A be an actually destabilizing object with quotient Q.

For all Fj in the Harder-Narasihman filtration of H−1(Q), the wall W(E/Fj,OS) is a Left

Hyperbola, and the wall W(E,OS) is inside the wall W(E/Fj,OS) for all |u| >> 0.

The statement of the proposition follows from this lemma because, since Fm = H−1(Q),

E/Fm = IZ(−C) for some zero-dimensional scheme Z. Then, for |u| >> 0, the wall

W(E,OS) must be inside the wallW(IZ(−C),OS), which is inside the wallW(OS(−C),OS).

Proof of Lemma 4.24. Assume that E actually destabilizes OS at a stability condi-

tion σ, and that u(σ) > 0. We know that all of the walls W(E/Fj,OS) must be Left Hyper-

bolas by the proof of the previous lemma. Indeed, if they were not Left Hyperbolas, then

there would exist a j such that the wallW(E,OS) would be inside the wallW(E/Fj,OS) at

u(σ) whenever E ⊆ OS in Aσ, making it impossible for the wallW(E,OS) to be an actually

destabilizing wall.

Let u0 be the largest value of u such thatW(E,OS) intersects s = µH(J) (the intersection

will be at t = 0). Then we know that the region where E ⊆ OS in A and β(E) > β(OS) is

contained within s ≥ µH(F1) and 0 < u ≤ u0. Moreover, as above, we have thatW(E,OS)∩

Πu0 � W(E/F1,OS) ∩ Πu0 .

For E to actually destabilizeOS at σ, we must have that 0 < u(σ) < u0, andW(E/F1,OS)∩

Πu(σ) � W(E,OS)∩Πu(σ).Using Lemma 4.11 as above, we see that since the wallW(E/F1,OS)

is inside the wall W(E,OS) at u(σ), and the wall W(E,OS) is inside the wall W(E/F1,OS)

at u0 > u(σ), we know that the wall W(E,OS) must stay inside for all u ≥ u0. Thus, if

m = 1 we are done.
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If m > 1, let u1 > u0 be the largest value of u such that W(E/F1,OS) intersects

s = µH(F2/F1). Then, W(E,OS) ∩ Πu1 � W(E/F1,OS) ∩ Πu1 � W(E/F2,OS) ∩ Πu1 as

above.

Since the wallW(E/F2,OS) is inside the wallW(E,OS) at u(σ), and the wallW(E,OS)

is inside the wall W(E/F1,OS) at u1 > u0 > u(σ), we know that the wall W(E,OS) must

stay inside for all u ≥ u1.

Continuing in a similar manner proves the statement for all 1 ≤ j ≤ m. �

4.4.4. Surfaces of Picard Rank 2. We now restrict our attention to surfaces of

Picard Rank 2, where we can describe the actually destabilizing walls for OS more precisely.

We pause to illuminate a fact which is helpful in this situation.

Remark 4.25. Let S have Picard rank 2. Then for any line bundle OS(D′) and σD,H ∈

SH,G we have OS(D′)⊗ σD,H = σD+D′,H ∈ SH,G.

Let S be a surface of Picard Rank 2, and let H and G be as above. Moreover, let C1

and C2 be the generators of the cone of effective curves on S. Since H is ample, we must

have that H = eC1 + fC2 for some e, f > 0. Then, H.G = 0 implies that fC2.G = −eC1.G.

Therefore, (C1.G) · (C2.G) < 0. Assume that C1.G > 0 and C2.G < 0.

We saw in Proposition 4.21 that every destabilizing wall is a Left Hyperbola which has

to be inside a rank 1 weakly destabilizing wall for |u| >> 0. In the case of Picard rank 2,

we can make |u| >> 0 more precise as follows:

Proposition 4.26. If u ≥ C1.G, then OS is only destabilized by OS(−C1), and if u ≤

C2.G, then OS is only destabilized by OS(−C2).
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Proof. We prove the following statement by induction on the rank of E: If E ⊆ OS for

some stability condition σ with u(σ) ≥ C1.G, and β(E) ≥ β(OS), then the wall W(E,OS)

is inside the wall W(OS(−C1),OS) at u(σ). (A similar proof would work with C2 in place

of C1 if u(σ) ≤ C2.G.)

If the rank of E is 1, and β(E) ≥ β(OS) at σ, then E = IZ(−C) for some curve

C of negative self-intersection and some zero-dimensional scheme Z. Since β(OS(−C)) ≥

β(IZ(−C)) ≥ β(OS) at σ with u(σ) ≥ C1.G > 0, we must have that C = aC1 + bC2 with

a > 0. Therefore, OS(−C) ⊆ OS(−C1).

Since the wall W(OS(−C),OS) is inside the wall W(OS(−C1),OS) for u >> 0 because

of the slope of their asymptotes (see Section 4.3.1), and it is inside of it at u = C1.G because

OS(−C1) is always Bridgeland-stable there, it must be inside of it for all u ≥ C1.G by Lemma

4.11.

Assume now that E has rank r > 1, and that the statement is true for all subobjects of

OS of rank < r.

By Lemma 4.22, we can assume that the wall W(E,OS) is a Left Hyperbola. Morever,

if we let C = c1(H
0(Q)), where Q is the quotient of OS by E in A, we have that the wall

W(OS(−C),OS) is also a Left Hyperbola, and that the wall W(E,OS) is inside the wall

W(OS(−C),OS) for u >> 0. By the rank 1 case, we know that the wall W(OS(−C),OS)

is inside the wall W(OS(−C1),OS) for all u ≥ C1.G.

If the wallW(E,OS) is inside the wallW(OS(−C1),OS) at u(σ), we are done. Supposing

not, we have by Lemma 4.11 that the wallW(OS(−C1),OS) is inside the wallW(E,OS) for

all u ≤ u(σ). Denote this statement by (?).
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If W(E,OS) ∩ Πu(σ) instersects s = µH(K) (using our usual notation for the Harder-

Narasihman filtration from Section 4.3.3), then it will be inside the wallW(En−1,OS)∩Πu(σ),

which will be inside the wallW(OS(−C1),OS)∩Πu(σ) by induction, contradicting (?). Thus

W(E,OS) ∩ Πu(σ) does not instersect s = µH(K), and since u(σ) ≥ C1.G, (?) implies that

the wall W(OS(−C1),OS) is inside the wall W(E,OS) at u = C1.G. Since OS(−C1) is

Bridgeland stable at u = C1.G, this can only happen if E is not a subobject of OS(−C1) in

A at the points on the wall W(E,OS) ∩ ΠC1.G. This means that the wall W(E,OS) ∩ Πu

had to intersect s = µH(K) for some C1.G ≤ u < u(σ).

Consider a value of u with C1.G ≤ u < u(σ) where the wall W(E,OS) intersects s =

µH(K). There, the wallW(E,OS) would have to be inside the wallW(En−1,OS) by Lemma

4.14, and the wall W(En−1,OS) would be inside W(OS(−C1),OS) by induction hypothesis,

contradicting (?). Thus the wall W(E,OS) is inside the wall W(OS(−C1),OS) at u(σ). �

We now prove the second part of our main Theorem 4.1, i.e., that Conjecture 4 is true for

surfaces of Picard Rank 2 that only have one irreducible curve of negative self-intersection.

We first give a lemma, then prove a result which is stronger than the conjecture in this

situation.

Lemma 4.27. Let S be a surface of Picard Rank 2. Assume that the cone of effective

curves is generated by C1 and C2, that C1.G > 0, and that C1 is the only irreducible curve

in S of negative self-intersection. Let C be an effective curve. If C.G < 0, then C2 ≥ 0.

Proof. We saw above that we can write H = eC1 + fC2 with e, f > 0, and obtain

fC2.G = −eC1.G. Since (eC1 + fC2)
2 = H2 > 0, we have that 2efC1.C2 > −e2C2

1 − f 2C2
2 .
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Let C be an effective curve. We have that C = aC1 + bC2 with a, b ≥ 0. Assume that

C.G < 0. Then, 0 > fC.G = afC1.G+ bfC2.G = (af − be)C1.G, and therefore, af − be < 0.

Therefore, efC2 = a2efC2
1+b2efC2

2+2abefC1.C2 > a2efC2
1+b2efC2

2−abe2C2
1−abf 2C2

2 =

ae(af − be)C2
1 + bf(be− af)C2

2 ≥ 0, and C2 ≥ 0. �

Proposition 4.28. Let S be a surface of Picard Rank 2. Assume that the cone of effective

curves is generated by C1 and C2, that C1.G > 0, and that C1 is the only irreducible curve

in S of negative self-intersection. Then OS is only destabilized by OS(−C1).

Proof. Note that, since C1 is the only irreducible curve of negative self-intersection,

then OS(−C2) does not weakly destablize OS, and the wall W(OS(−C2),OS) is empty in

the region where OS(−C2) ∈ A.

We prove the following statement by induction on the rank of E: If E ⊆ OS for

some stability condition σ, and β(E) ≥ β(OS), then the wall W(E,OS) is inside the wall

W(OS(−C1),OS) at u(σ).

If u(σ) ≥ C1.G, we already know this statement to be true by the proof of Proposition

4.26. We therefore only need to prove the statement in the case when u(σ) < C1.G.

If the rank of E is 1, and β(E) ≥ β(OS) at σ, then E = IZ(−C) for some curve C of

negative self-intersection and some zero-dimensional scheme Z. Suppose, by contradiction,

that the wall W(E,OS) were not inside the wall W(OS(−C1),OS) at u(σ). Choose a σ′ ∈

W(E,O) ∩ Πu(σ).Then at σ′ we have β(OS(−C)) ≥ β(IZ(−C)) > β(OS(−C1)). Therefore,

at OS(C1)⊗ σ′ we have β(OS(−C + C1)) > β(OS). This means that OS(−C + C1) weakly

destabilizes OS at OS(C1) ⊗ σ′. By Proposition 4.17, we must have that (C − C1)
2 < 0,

and by Lemma 4.27, (C − C1).G > 0. This implies that the wall W(OS(−C + C1),OS) is
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a Left Hyperbola that could only weakly destabilize OS in the region u > 0, but we have

u(OS(C1)⊗ σ′) = u(σ)− C1.G < 0.

Assume now that E has rank r > 1, and that the statement is true for all subobjects of

OS of rank < r.

By Lemma 4.22, we can assume that the wall W(E,OS) is a Left Hyperbola. Morever,

if we let C = c1(H
0(Q)), we have that the wall W(OS(−C),OS) is also a Left Hyperbola,

and that the wall W(E,OS) is inside the wall W(OS(−C),OS) for u >> 0. By the rank 1

case, we know that the wall W(OS(−C),OS) is inside the wall W(OS(−C1),OS) for all u.

If the wallW(E,OS) is inside the wallW(OS(−C1),OS) at u(σ), we are done. Supposing

not, we have by Lemma 4.11 that the wallW(OS(−C1),OS) is inside the wallW(E,OS) for

all u ≤ u(σ). Denote this statement by (?).

If W(E,OS) ∩ Πu(σ) instersects s = µH(K) (using our usual notation for the Harder-

Narasihman filtration from Section 4.3.3), then it will be inside the wallW(En−1,OS)∩Πu(σ),

which will be inside the wall W(OS(−C1),OS) ∩ Πu(σ) by induction, contradicting (?).

Thus W(E,OS) ∩ Πu(σ) does not instersect s = µH(K). Choose a σ′ ∈ W(E,OS)Πu(σ).

Then β(E) > β(OS(−C1)) at σ′ implies β(E(C1)) > β(OS) at OS(C1) ⊗ σ′. Therefore,

E(C1) weakly destabilizes OS at OS(C1)⊗ σ′.

Note that u(OS(C1)⊗ σ′) = u(σ)−C1.G < 0. Consider the highest semi-circular wall at

u(OS(C1)⊗ σ′), corresponding to an object E ′ ⊆ OS. Since E ′ actually destabilizes OS, we

have that the wall W(E ′,OS) must be a Left Hyperbola. However, the proof of Proposition

4.26 shows that the wall W(E ′,OS) would have to be inside the wall W(OS(−C2),OS) for

all u ≤ C2.G. But this cannot be true, because the wall W(E,OS) is a Left Hyperbola, and

the wall W(OS(−C2),OS) is empty. �
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4.5. Bridgeland Stability of OS[1]

We now move on to studying the stability of OS[1]. This can be done via duality, except

for the stability conditions σD,H with D = uG, i.e. s = 0.

Note that, given a Bridgeland stability condition σ, OS[1] ∈ A iff s ≥ 0.

4.5.1. Subobjects of OS[1]. Let σ be a Bridgeland stability condition, and let E be a

proper subobject of OS[1] in A. We have a short exact sequence 0→ E → OS[1]→ Q′ → 0

in A for some Q′ ∈ A. The long exact sequence in cohomology is

0 −→ H−1(E) −→ OS −→ H−1(Q) −→ H0(E) −→ 0,

and therefore Q′ = H−1(Q)[1] is the shift of a sheaf. We will denote H−1(Q) by Q. Also, since

H−1(Q) ∈ F is torsion-free, we have that either H−1(E) = OS or H−1(E) = 0. However, if

H−1(E) = OS, then H−1(Q) = H0(E), and this is not possible, since the first sheaf is in F ,

and the second one is in T . Therefore, H−1(E) = 0, and E = H0(E) is a sheaf.

To summarize, if E ⊆ OS[1] is a proper subobject in A, then E is a sheaf in T , and

the quotient is of the form Q[1] for some sheaf Q ∈ F . We have a short exact sequence of

sheaves

0 −→ OS −→ Q −→ E −→ 0.

4.5.2. The s = 0 case. Let us start by proving that OS[1] is Bridgeland stable when

s = 0.

Lemma 4.29. If s = 0, O[1] has no proper subobjects in A, and is therefore Bridgeland

stable.
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Proof. Let E ⊆ OS[1] be a proper subobject of OS[1] in A with quotient Q[1] as above.

Since s = 0, we have that ImZ(OS[1]) = 0. Since ImZ(OS[1]) = ImZ(E)+ImZ(Q[1]), and

they all have non-negative imaginary parts, we must have that ImZ(E) = ImZ(Q[1]) = 0.

Therefore, all three objects have maximal phase. The only objects in T of maximal phase

are torsion sheaves supported in dimension 0. We therefore have the short exact sequence

of sheaves 0 → OS → Q → E → 0, with E a torsion sheaf supported in dimension 0. But

this cannot happen unless the sequence splits, in which case Q would have torsion, which

is impossible. Therefore, if s = 0, OS[1] cannot have proper subobjects, and is Bridgeland

stable. �

We can therefore assume that s > 0.

4.5.3. Duality. The following duality result allows us to apply results on the stability

of OS to that of OS[1]. It follows as in [25, Lemma 3.2] with a slightly different choice

of functor. Specifically, we consider the functor E 7→ E∨ := RHom(E,OS)[1]. Note that

O∨S = OS[1] and vice versa.

Lemma 4.30. Let D be a divisor with D.H < 0. Then OS is σD,H-(semi)stable if and

only if OS[1] is σ−D,H-(semi)stable.

Proof. This follows from [25, Lemma 3.2(d)]. �

Note that if OS(−C) ⊆ OS destabilizes OS at σD,H , then applying ( )∨ shows that the

quotient OS[1] � OS(C)[1] destabilizes OS[1] at σ−D,H . The kernel of the map OS[1] �

OS(C)[1] in A is OS(C)|C . Thus Theorem 4.20, Proposition 4.28, and Lemma 4.29 yield the

following result.

Proposition 4.31.
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(1) Let S be a surface of any Picard rank such that there are no curves C ⊂ S with C2 < 0.

Then OS[1] is σ-stable whenever in A.

(2) Let S be a surface of Picard Rank 2. Assume that the cone of effective curves is

generated by C1 and C2, that C1.G > 0, and that C1 is the only irreducible curve in S

of negative self-intersection. Then OS[1] is only destabilized by OS(C1)|C1.
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CHAPTER 5

Partial Result when S has Two Irreducible

Negative Curves

Let S be a surface of Picard rank 2. If S has no curves of negative self-intersection, or just

one, then we completely understand the stability of line bundles in Stabdiv(S) (see Theorem

4.20 and Proposition 4.28, respectively). Recall that an understanding of the stability of OS

suffices to understand that of line bundles in general.

For surfaces S with Picard rank 2 and two curves C1, C2 of negative self-intersection,

we have only partial results. In Proposition 4.26 it is shown that in the 3-spaces SG,H ⊂

Stabdiv(S), if σD,H is far enough away from the plane given by D = sH, then OS can only

be destabilized by OS(−C1) or OS(−C2).

The main result of this chapter, Theorem 5.1, extends Proposition 4.26 in a certain

situation, but does not give a full characterization of the stability of OS. It states that if the

ample divisor H is such that in SG,H , the curves C1, C2 have a particular arrangement, then

in SG,H the only walls for OS areW(OS(−C1),OS) andW(OS(−C2),OS). In the statement

of the theorem, note that the regions T1 and T2 referenced are defined in Definition 5.7.

Theorem 5.1. Let S be a surface of Picard Rank 2, where C1 and C2 are the generators

of the cone of effective curves on S. If there is an ample divisor H such that there are no

points −C in the regions T1 or T2 in SH,G (where C is an integral effective curve), then OS

is only destabilized by OS(−C1) and OS(−C2) in SH,G. Note that the set SH,G is determined

by H since S has Picard rank 2.
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In this chapter we introduce xy-coordinates on the t = 0-plane of the 3-spaces SH,G and

also some terminology which does not appear in Chapter 4. While not strictly necessary,

these can aid in the process of research. For example, in xy-coordinates, walls for OS have

axis along the x or y axes.

5.1. Legit/Active Regions and Rotated Coordinates

Here we quickly introduce some useful definitions regarding when a triangle is a short

exact sequence and when that sequence “weakly destabilizes” O. Following that, we rotate

our standard su-coordinates and obtain new equations for walls.

Definition 5.2.

(1) For a triangle E → O → Q we set legit(E ↪→ O) := {σ | E → O → Q a short exact sequence in A}.

We also call this legit(O � Q). In the following, we will often restrict these notions to

only considering a specific SH,G.

(2) For a triangle E → O → Q we set active(E ↪→ O) := {σ ∈ legit(E ↪→ O) | β(E) ≥

β(O)}.

(3) A triangle E → O → Q weakly destabilizes O if active(E ↪→ O) 6= ∅.

Choose a SH,G and let ch(E) = (r, dhH + dgG + α, c). Note that we may choose G so

that dg ≥ 0. We saw in Section 4.3.1 that the equation for the wall W(E,OS) inside SH,G is

dhs
2 − 2cs− 2dgus+ dht

2 + dhu
2 = 0

In order to separate variables and obtain nice axes for the wall, we apply the substitution

s = x+y, u = −x+y (which rotates the plane −π/4 radians and scales by a factor of
√

2/2)

and this becomes
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w(E) := 2((dh + dg)x
2 − cx) + 2((dh − dg)y2 − cy) + dht

2 = 0

If dh + dg 6= 0 and c 6= 0 then completing the squares and simplifying yields

(5–1) W (E) :=
(x− c

2(dh+dg)
)2

1
2(dh+dg)

c2dh
d2h−d2g

+
(y − c

2(dh−dg)
)2

1
2(dh−dg)

c2dh
d2h−d2g

+
t2

c2

d2h−d2g

= 1

The region active(E ↪→ O) is given by w(E) ≥ 0. It corresponds to W(E,O) as well as

the region it encloses with the t = 0-plane. The point P of Section 4.3.1 is now

P =

(
c

2(dh + dg)
,

c

2(dh − dg)

)

and we have (0, 0) = 0P, 2P ∈ W(E,O). Further, note that if c 6= 0 then (in the t = 0-plane)

we have dW
dx

(0, 0) = −Wx

Wy
(0, 0) = −1 and so W(E,O) is tangent to the line s = 0. The same

slope is obtained at 2P .

Definition 5.3. For a sheaf E we denote by EA the line s = µH(E) inside SH,G.

Note that in xy-coordinates we have EA = {y = −x+ µH(E)}.

We now consider what form the walls take based on the values of dh + dg and c. In the

following, when we speak of W(E,O) we mean it’s intersection with the t = 0-plane.

Case 1: dh + dg = 0:

• If c = 0 then w(E) = 2(dh − dg)y2 + dht
2 < 0 and so active(E ↪→ O) = ∅.

• (Par+) If c < 0 then w(E) = 0 simplifies to

2(dh − dg)
(
y − c

2(dh − dg)

)2

+ dht
2 − c2

2(dh − dg)
= 2cx
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Then W(E,O) is a parabola with vertex in the second quadrant and opening in

the positive x direction. Since OA ≤ W(E,O) then (in SH,G) we have active(E ↪→

O) = ∅.

• (Par) If c > 0 then W(E,O) is again a parabola but with vertex in the fourth

quadrant and opening in the negative x direction.

Case 2: dh + dg < 0:

• If c = 0 then w(E) = 2(dh + dg)x
2 + 2(dh − dg)y2 + dht

2 < 0 and so active(E ↪→

O) = ∅.

• (Ell+) If c < 0 thenW(E,O) is an ellipse with center ξ in the first quadrant. Since

OA ≤ W(E,O) then (in SH,G) we have active(E ↪→ O) = ∅.

• (Ell) If c > 0 then W(E,O) is again an ellipse but with center ξ in the third

quadrant.

Case 3: dh + dg > 0:

• (Con) If c = 0 then w(E) = 0 gives 2(dh + dg)x
2 + 2(dh − dg)y2 + dht

2 = 0. Then

W(E,O) is a cone bounded by the two lines y = ±Mx where M =
√

dh+dg
−(dh−dg)

.

Note that M < 1. The region active(E ↪→ O) corresponds to the region bounded

by these lines and the x-axis.

• (HypL) If c < 0 thenW(E,O) is a hyperbola with center ξ in the second quadrant

and opening in the x directions.

• (HypR) If c > 0 then W(E,O) is again hyperbola but with center ξ in the fourth

quadrant.

Corollary 5.4. If active(E ↪→ O) 6= ∅ thenW(E,O) is of type Ell,Par,Con,HypR

or HypL.
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Remark 5.5. The walls mentioned above, those corresponding to an E with dg ≥ 0, are

called horizontal “h” walls. Walls corrsponding to an E with dg < 0 are called vertical “v”

walls. If one defines v(E) = (ch1(E)− α)/r then the cases considered above are effected by

the position of v(E): the condition dg ≥ 0 corresponds to u(v(E)) ≥ 0, and if v(E) lies on

the negative x-axis, then we are in Case 1. If v(E) lies in the 3rd quadrant, we are in Case

2, and if v(E) lies in the 2nd quadrant, we are in Case 3.

Before moving to the proof of Theorem 5.1, we state two definitions which speak to

aspects of walls.

Definition 5.6.

(1) Let W be a wall for OS in a given SG,H . We denote by in(W) the convex region

bounded by W in the t = 0-plane.

(2) Let W(E,OS) and W(F,OS) be two HyphL walls in a given SG,H . We say M(E) >

M(F ) to mean that the slope of the line through the origin and v(E) is less than the

slope of the line through the origin and v(F ) (where v(−) is as in Remark 5.5). Note

that this implies that W(F,OS) is inside the wall W(E,OS) for all u >> 0.

5.2. Characterization of Stability

In this section we prove Theorem 5.1. We first define the regions T1 and T2, then identify

three properties that an actually destabilizing object for OS must satisfy, and in Proposition

5.10 show that no object can satisfy these. We assume, without loss of generality, that

W(O(−C1),O) is HyphL and W(O(−C2),O) is HypvL.
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Definition 5.7. Suppose that W(O(−C1),O) = HyphL, then T1 is defined by the

inequalities y > 0, x(−C1) < x, and y−y(−C1) < −(x−x(−C1)). The region T2 is defined

analogously. Note that W(O(−C2),O) = HypvL.

Figure 5.1. The region T1

Recall from Proposition 4.21 that if an object E actually destabilizes OS at σ with

quotient Q, then W(E,OS) is HypL (we may assume HyphL). Moreover, C = c1(H
0(Q)) is

a curve of negative self-intersection such that the wall W(OS(−C),OS) is also HyphL, and

we have M(−C) > M(E). Note that we also must have β(E) > β(OS(−C1).

We show a stronger relationship between the walls W(E,OS) and W(OS(−C),OS), and

control the region where E weakly destabilizes OS before a O(−C1) does. But we first give

this region a name.

Definition 5.8. Suppose E ↪→ O at σ with ch1(Q0) = C for some negative curve C.

Suppose also that E weakly destabilizes O and the walls W(E,O) and W(O(−C), E) are

both HyphL in a given SG,H . Then we define bR(E,O;−C1) as the set of points (x, y) such

that there is a σx,y,t ∈ legit(E ↪→ O) with β(O) = β(E) ≥ β(O(−C1).

Note that E ↪→ O implies that E ↪→ O(−C) ↪→ O(−C1), where the last inclusion follows

since W(O(−C),O) and W(O(−C1),O) are both HyphL, which gives that C = aC1 + bC2

with a ≥ 1. Thus E weakly destabilizes O(−C1) over bR(E,O;−C1).
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Lemma 5.9. Suppose E (with rk(E) ≥ 2) actually destabilizes O with ch1(Q0) = C a

negative curve with W(O(−C),O),W(E,OS) = HyphL. Then the following are satisfied.

(1) There exists a Πui in which W(E,O) =W(O(−C),O) and we have u(−C) > ui.

(2) We have u(−C1) > u(bR(E,O;−C1)), i.e. that u(−C1) > u(p) for all points p ∈

bR(E,O;−C1).

Proof. (1): Note that the existence of ui follows from Proposition 4.21. The following

shows a picture of the situation we shall preclude for an actually destabilizing E.

Figure 5.2. The situation of ui > u(−C)

We prove that if E weakly destabilizes OS as in Figure 5.2, then there is an E ′ such that

active(E ′ ↪→ OS) ⊃ active(E ↪→ OS). To that end, suppose that E weakly destabilizes O

with ch1(Q0) = C a negative curve with W(O(−C),O),W(E,OS) = HyphL. Also, suppose

that ui > u(−C) where ui is such that W(E,OS) ∩ Πui =W(O(−C),O) ∩ Πui .

Since µH(Ki) < µH(OS(−C)) for each Mumford H-semistable factor of E, we have

that KA cuts through W(E,OS). By approaching KA from lower s values we see that

W(E,OS) lies inside W(En−1,OS) for all Π which intersect the portion of KA lying inside
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in(W(E,OS)). Denote by p the point on KA ∩ W(E,OS) with higher u value, and q the

point with lower u value.

Suppose that W(En−1,OS) = HyphL (note that it must be a horizontal wall). If there is

a u0 with 0 < u0 < u(q) with W(En−1,OS) ∩ Πu � W(E,OS) ∩ Πu, then active(En−1 ↪→

OS) ⊃ active(E ↪→ OS) and E does not actually destabilize OS.

If instead W(E,OS)∩Πu � W(En−1,OS)∩Πu for all 0 < u < u(p) (we know this holds

at least for u(q) ≤ u ≤ u(p)), then we have that Kn−1,A cuts through W(En−1,OS).

This is also the case if W(En−1,OS) = HypR,Ell,Par, or Con. And furthermore,

by Lemma 4.22, by continuing this process of “cutting down” E we obtain an Ei with

W(Ei,OS) = HypL and active(Ei ↪→ OS) ⊃ active(En−1 ↪→ OS). Thus we may as well

assume that W(En−1,OS) = HypL as above.

Thus, with each “cut” we obtain a HypL wall which either coversW(E,OS) for low u or

has an active region which contains active(E ↪→ OS). If this process continues until E = E2,

then active(E2 ↪→ OS) ⊃ active(E ↪→ OS) is forced, because K1 = E1 is Bogomolov and

thus E1,A cannot cut through W(E1,OS).

We conclude that an actually destabilizing E behaves as in the following figure. Note

that the above proof holds for any surface S.
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Figure 5.3. The situation if E actually destabilizes O

(2): Suppose that E satisfies AD. For E to actually destabilizeO we must have bR(E,O;−C1) 6=

∅. Note that W(O(−C1),O) = HyphL and M(−C1) ≥ M(−C) > M(E) and finally

x(−C) ≤ x(−C1). We claim that u(−C1) > u(bR(E,O;−C1)), i.e. that u(−C1) > u(p) for

all points p ∈ bR(E,O;−C1). For E to violate this, W(E,O) would have to intersect the

wall for O(−C1) at a u higher than u(−C1). Note that this would imply that there is part

of in(W(E,O)) with y value larger than y(−C1). But by our assumptions on S we know

that −C1 must live somewhere in this shaded region:

Now, if there is part of in(W(E,O)) with y value larger than y(−C1), then this would

imply that in(W(E,O)) contains −C (since if p ∈ in(W(E,O)) then R0
p ⊂ in(W(E,O)),

where R0
p is the infinite ray pointing out from the origin and starting at p). This contradicts

Lemma 5.9(1) and thus we have u(−C1) > u(bR(E,O;−C1)).

�

We now single out three properties which an actually destabilizing object E (with rk(E) ≥

2) must satisfy. Our strategy is to only consider objects which satisfy these properties, and

in fact obtain a contradiction and show that no such objects exist (see Proposition 5.10). It
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follows that no E with rk(E) ≥ 2 actually destabilizes O and we obtain our characterization

of O’s stability.

We say that E satisfies properties B1 if properties (a1),(b1), and (c1) are satisfied:

(a1) E ↪→ O with ch1(Q0) = C for some negative curve C

(b1) E weakly destabilizes O and the walls W(E,O) and W(O(−C), E) are both HyphL

(c1) u(−C1) > u(bR(E,O;−C1)

Note that we have abused notation in (c1) and have used −C1 to mean the point v−C1 -

we will often make this substitution. There is an analogous set of properties B2 concerning

−C2 and HypvL walls. Note that if an E satisfies B1 or B2 then there is such an E with

minimal rank. Also, because of our hypothesis on S, all rank 1 walls are contained in either

W(O(−C1),O) or W(O(−C2),O) and thus the minimal rank of such E’s is 2 or more.

Note that if bR(E,O;−C1) 6= ∅ then either u(−C1) > u(bR(E,O;−C1)) or u(−C1) <

u(bR(E,O;−C1)). This is because the wallW(E,O(−C1)) is either a horizontal or vertical

wall. If it is horizontal, then u(active(E ↪→ O(−C1))) > u(−C1), and if it is vertical the

inequality is flipped. Then note that active(E ↪→ O(−C1)) ⊃ bR(E,O;−C1).

Finally, if u(−C1) > u(bR(E,O;−C1)) then we also have u(bR(E,O;−C1)) > 0

and s(bR(E,O;−C1)) < s(−C1). The first inequality follows from bR(E,O;−C1) ⊂

active(E ↪→ O) and the second follows from bR(E,O;−C1) ⊂ active(E ↪→ O(−C1)).

Proposition 5.10. Let S be a smooth projective surface of Picard rank 2 with its effective

cone generated by two negative curves Eff = 〈C1, C2〉. Suppose also that there is no curve

−C in T1 or T2. Then there is no E which satisfies B1 or B2.

Proof. Let E be a sheaf of minimal rank among those which satisfy B1 or B2. Then

rk(E) ≥ 2 and Q−1 is non-zero. Our first goal is to show that there exists a σ with E ↪→
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O(−C1) ↪→ O and β(O) = β(O(−C1) = β(E). We begin by showing that the arrangement

of W(E,O) and W(O(−C1),O) is as in Figure 5.4.

Note that since bR(E,O;−C1) 6= ∅ there must be u values withW(O(−C1),O)∩Πu �

W(E,O)∩Πu. Let 2P denote the (x, y) point on W(E,O) with tangent slope -1 and u > 0

(c.f. Section 5.1).

If x(2P ) ≥ x(−C1) then we must have M(E) > M(−C1). But this together with

u(−C1) > u(bR(E,O;−C1)) implies the existence of σ with u(σ) = u(−C1) and E weakly

destabilizing O(−C1) at σ. This cannot be, as O(−C1) is stable in u = u(−C1). Thus

x(−C1) < x(2P ).

If M(E) ≥ M(−C1) then again we obtain a σ with u(σ) = u(−C1) and E weakly

destabilizing O(−C1) at σ. Thus M(−C1) > M(E) and the two HyphL walls intersect at

some u = ui. If ui ≥ u(−C1) we also obtain a σ with u(σ) = u(−C1) and E weakly

destabilizing O(−C1) at σ. Thus we have u(−C1) > ui and our situation is as shown in

Figure 5.4 below.

Figure 5.4. Illustration of the situation where a minimal E satisfies B1

If we denote by q the point of JA ∩ W(E,O) with lower u value, then we must have

u(q) ≥ ui. This is because there can be no u? where W(O(−C1),O) ∩ Πu � W(E,O) ∩
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Πu and JA cuts through W(E,O) ∩ Πu. To see this, suppose such a u? existed. Then

W(E,O)∩Πu? � W(E2,m,O)∩Πu? and there would exist stability conditions onW(E2,m,O)

inside active(E2,m ↪→ E ↪→ O). Thus σ ∈ bR(E2,m,O;−C1), and since u(−C1) > u? by

hypothesis, E2,m satisfies B1. But then rk(E2,m) < rk(E) contradicts the minimality of E.

Since JA < KA there exists a σ with u(−C1) > u(σ) = ui and E ↪→ O(−C1) ↪→ O and

β(O) = β(O(−C1) = β(E), as we desired.

Figure 5.5. The Bad Region for E and −C1 goes right up to ui

For any such σ, at O(C1) ⊗ σ we have E(C1) weakly destabilizes O. Note that 0 >

u(σ ⊗O(C1)). We may now “cut down” the quotient of E(C1) ↪→ O until we obtain a wall

that is not a HypL, then “cut down” the associated subobject until we obtain a HypL wall,

and continue this process until forced to stop with one of the two cases listed below occurring

at a stability condition directly above O(C1)⊗ σ (i.e. after increasing t):

Case (1): O(−C̃) ↪→ O with β(O(−C̃)) = β(O) and β(O(C1)) > β(O) > β(E(C1))

Case (2): Ẽ(C1) ↪→ O(−C̃) ↪→ O with β(Ẽ(C1)) = β(O) > β(O(−C̃)) and β(O(C1)) >

β(O) > β(E(C1))

Here C̃ is a negative curve with W(O(−C̃),O) = HypvL and Ẽ(C1) =: F is a subobject

of O with rk(F ) > rk(E) and such that if F ′ = coker (F ↪→ O) then ch1(F
′
0) = C̃. Note that
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W(O(−C̃),O) = HypvL implies that C̃ = aC1+bC2 with b ≥ 1 and thus O(−C̃) ↪→ O(−C2).

We consider each situation in turn: in Case (1), we find that we violate our assumption on

curves in S, and in Case (2) we violate the minimality of E.

Case (1): Lowering t we have at O(C1) ⊗ σ that β(O(−C̃)) > β(O) = β(O(C1)).

Tensoring by O(−C1) yields that at σ we have β(O(−C1− C̃)) > β(O). Thus −C1− C̃ is a

negative curve with W(O(−C1 − C̃),O) = HyphL. But then W(O(C̃),O) = HypvL implies

that −C1 − C̃ is in T1 contradicting our assumption on S. Thus Case (1) cannot happen.

Case (2): Let σ′ be the stability condition above O(C1)⊗ σ from the statement of Case

(2) above. If at σ′ we have β(O(−C2)) ≥ β(O) then we are done as in Case (1), but now with

C2 instead of C̃. So assume that at σ′ we have β(O) = β(F ) > β(O(−C2). We show that F

satisfies (a2),(b2), and (c2), which contradicts the minimality of E since rk(F ) < rk(E).

The fact that F satisfies (a2) and (b2) comes from the stopping criteria for the process of

successively “cutting down” quotients and subobjects described above, when we obtained the

statements of Case (1) and (2). To finish, we must show (c2), i.e. that u(bR(E,O;−C2)) >

u(−C2). We have bR(E,O;−C2) 6= ∅ and thus either u(bR(E,O;−C2)) > u(−C2) or

u(bR(E,O;−C2)) < u(−C2). Let us suppose the latter and show we contradict our as-

sumption on S.

Then σ′ ∈ bR(E,O;−C2) and thus u(−C2) > u(σ′). But u(σ′ ⊗ O(−C1)) = ui which

intersects the line x = x(−C1) above y = 0. This implies that −C1−C2 is in T1, contradicting

our assumption on S. Thus Case (2) cannot happen either.
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Figure 5.6. Case (2) causes −C1 − C2 to be in T1

Since we obtain a contraction in either case, our assumption that there exists an E

satisfying B1 or B2 yields a contradiction. Thus no such E exists, as we desired to show. �

Combining Lemma 5.9 and Proposition 5.10 yield a proof of Theorem 5.1 - we need only

recall that our assumption on S implies that each rank 1 wall is contained completely inside

W(O(−C1),O) or W(O(−C2),O).
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CHAPTER 6

Projectivity of Bridgeland Moduli Spaces on P1 × P1

Bridgeland stability conditions are not a priori tied to Geometric Invariant Theory (GIT),

and consequently the structure of Bridgeland moduli spaces Mσ(v) is not fully understood

in general. However, in some cases, the structure is known. In [6] nef divisors associated

to stability conditions are constructed on Bridgeland moduli spaces - for K3 surfaces, these

divisors are ample and Bayer and Macr̀ı show that (generic) Bridgeland moduli spaces are

irreducible and projective.

Another method to deduce structure for these moduli spaces is to find particular stability

conditions that do have ties to GIT, and relate other stability conditions to these special

ones. This was done in [3] for S = P2. There, certain stability conditions are found which

have a heart whose objects can be seen as finite-dimensional representations of a quiver.

There, Bridgeland stability is shown to agree with the stability of King [21]. Finally it is

shown that after choosing invariants v of interest, any stability condition can be moved into

a “quiver region” without crossing a wall for v. Then projectivity of the Brigeland moduli

spaces follows from the result of King for representations of a quiver.

We now carry out the program from [3] for S = P1 × P1. In each SH,G we find regions

governed by quivers by considering the position via the central charge of certain line bundles.

Tensoring with line bundles then tiles the entire t = 0-plane with these regions. Then

Bertram’s Nested Wall Theorem [22, Theorem 3.1] allows us to “slide down the wall” and

obtain projectivity of moduli spaces for any σ ∈ Stabdiv(P1 × P1).
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6.1. Quiver Hearts

In [14] it is shown that, on Del Pezzo surfaces, to certain collections of exceptional objects

one can associate a heart that is equivalent to representations of a quiver (with relations)

determined by the irreducible maps between the exceptional objects.

We will be interested in the collection E = (O(0, 0), E ,O(1, 0),O(0, 1)), where E is the

exceptional object with (r, d1, d2) = (3, 1, 1) andO(a, b) is the line bundle p∗1OP1(a)⊗p∗2OP1(b)

with p1, p2 the natural projections from P1 × P1. This exceptional collection generates a

geometric helix and the heart AF associated to it is the extension closed category generated

by

F = (F4, F3, F2, F1) = (O(−2,−1)[2],O(−1,−2)[2],O(−1,−1)[1],O(0, 0))

Note that F is an “Ext” exceptional collection in the sense of [23, Definition 3.10]. The heart

AF is naturally equivalent to finite-dimensional contravariant representations of the quiver

(with relations)

•1

•2 •4

•3

<4>

<2>

<2>

Where the labels on the arrows represent the number of arrows, and the labels on the

vertices are chosen so that Fi ↔ Si under the equivalence, where Si is the simple representa-

tion at the i th vertex. This picture also holds for any tensor of F by line bundles - we denote

these by O(p, q)⊗ F.
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6.2. Locating the Quiver Regions

Here we introduce a convenient reparameterizing of the spaces SG,H in Stabdiv(P1 × P1),

and then find certain regions within these slices whose stability conditions have heart AF.

6.2.1. New Coordinates for SG,H. The Picard rank of P1×P1 is 2, and any divisor in

P1×P1 is in some linear system |O(x, y)|. An R-divisor H is ample if and only if it is in some

|O(a, b)| with a, b > 0. For such an H, we write SG,H = Sa,b = {σx,y,ta,tb | x, y ∈ R, t > 0}.

Here σx,y,a,b = σD,H where D ∈ |O(x, y)| and H ∈ |O(a, b)|. We will associate σx,y,ta,tb with

the tuple (x, y, t).

If ch(E) = (r, (d1, d2), c), then then in Sa,b the equation µa,b(E) = µa,b(O(x, y)) simplifies

to y = − b
a
(x− d1

r
) + d2

r
. Therefore, the line EA is these coordinates is the line of slope −b/a

through the point vE = (d1
r
, d2
r

).

Since the lines EA have negative slope, we may speak of a point (x, y) lying “to the left”

or “to the right” of EA. Specifically, if P is a set of points in the t = 0 plane, we say P lies

to the left of EA and write P < EA if y < − b
a
(x− d1

r
) + d2

r
for each (x, y) ∈ P . We define

lying to the right (EA < P ) similarly. If P ≤ EA we say P lies weakly to the left of EA,

and similarly for EA ≤ P .

6.2.2. Quiver Regions. Note that the objects in the heart of any σx,y,a,b = σ can be

non-zero only in positions 0 and -1. Thus, the objects of F cannot all be in the heart of σ.

However, by aligning the phases of different shifts of these objects, we can then act on σ by

a rotation to get a stability condition σ′ ∈ Stab(P1 × P1)\Stabdiv(P1 × P1), such that σ′ has

heart AF. “Rotation” is a restriction of the action of ˜GL+(2,R) given in [12, Lemma 8.2]. It

is essentially adjusting the slicing of σ by a constant (see [12, Definition 1.1 and 3.3]). Note
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that stability of an object is unchanged by a rotation of σ, and thus the moduli spaces of

stable objects are also unchanged.

Figure 6.1. A clockwise rotation

We define a quiver region to be a subset of Stabdiv(P1 × P1), where after rotation its

heart is given by AF (or a tensor of F by a line bundle). We call a stability condition a

quiver stability condition if it is in a quiver region. Since all line bundles (and their shifts)

are stable for any σ ∈ Stabdiv(P1 × P1), [23, Lemma 3.16] implies that whenever the objects

of F have phases in (0, 1], the heart of the stability condition is AF.

We will show that, near the t = 0 plane in Sab, all stability conditions are quiver stability

conditions. Then, starting from any stability condition σx,y,a,b Bertram’s Nested Wall Theo-

rem [22, Theorem 3.1] allows us to “slide down the wall” and enter a quiver region without

crossing any walls.

Proposition 6.1. For any Sa,b =: S ⊂ Stabdiv(P1 × P1), there is a t0 > 0 such

that any (x, y, t) with t < t0 is in a quiver region. Specifically, we show that there is

an open set U over (i.e. “whose projection onto the xy-plane contains”) {(x, y) | x, y ∈

[−1, 0]}\{(−1, 0), (0,−1), (0, 0)} cut by a finite number of inequalities such that each σ ∈ U

is a quiver stability condition (with heart AF after a rotation).

Proof. Choose H ∈ |O(a, b)|. We will always be rotating clockwise (i.e. decreasing

the phase of our objects), which implies that each object stays in the heart or gets re-

placed by a positive shift of itself. Thus, to have the heart AF after rotating, we must
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have O(0, 0),O(−2,−1)[1] and O(−1,−2)[1] in our original heart. This gives the following

inequalities:

• for O(0, 0) ∈ A, we need (x, y) < OA

• for O(−2,−1)[1] ∈ A, we need O(−2,−1)A ≤ (x, y)

• for O(−1,−2)[1] ∈ A, we need O(−1,−2)A ≤ (x, y)

Let U := {(x, y) | x, y ∈ [−1, 0]} which we think of as a subset of S. Note that the

region R♥ ⊂ S given by the above inequalities sits over U\{(0, 0)}. We now must control

the arrangement of these objects via the central charge for σ ∈ R♥. Specifically, we need

both β(O(0, 0)) > β(O(−2,−1)[1]) and β(O(0, 0)) > β(O(−1,−2)[1]) so that rotating will

shift O(−2,−1)[1] and O(−1,−2)[1], but not O(0, 0).

In the xy-plane of Sa,b, the wall W(O(0, 0),O(−2,−1)[1]) is an ellipse passing through

(0, 0) and (−2,−1) with slope −b/a. The region enclosed by the ellipsoidal wall in Sa,b

corresponds to the inequality β(O(0, 0)) > β(O(−2,−1)[1]). We call this region R−2−1.

Note that it sits over U\{(0, 0), (0,−1)}.

Similarly, the region enclosed by the ellipsoidal wall W(O(0, 0),O(−1,−2)[1]) in Sa,b

corresponds to the inequality β(O(0, 0)) > β(O(−1,−2)[1]) and we call this region R−2,−1.

This region sits over U\{(0, 0), (0,−1)}.

The line O(−1 − 1)A lies to the left of O(0, 0)A and to the right of O(−2,−1)A and

O(−1,−2)A. Thus, O(−1,−1) or its shift can be in A and we must consider the arrangement

of objects in each case.

If (x, y) < O(−1,−1)A so that O(−1,−1) ∈ A then O is σ-stable and O(−1,−1) ↪→

O(0, 0) in A implies we have β(O(0, 0)) > β(O(−1,−1)). Thus rotating will shift O(−1,−1)

but not O(0, 0), as desired.
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If O(−1,−1)A ≤ (x, y) so that O(−1,−1)[1] ∈ A then we must have β(O(−1,−1)[1]) >

β(O(−2,−1)[1]) and β(O(−1,−1)[1]) > β(O(−1,−2)[1]) so that we may shift O(−2,−1)[1]

and O(−1,−2)[1] but not O(−1,−1)[1]. But inequalities hold since O(−2,−1)[1] and

O(−1,−2)[1] are σ-stable and have O(−1,−1) as a quotient in A. Thus O(−1,−1) or

O(−1,−1)[1] is positioned correctly for each σ ∈ R♥.

Collecting these results, we see the open set we sought is U = R♥ ∩ R−2−1 ∩ R−1−2 =

R−2−1 ∩R−1−2. Each σ ∈ U can be rotated to a stability condition with heart AF.

We may tensor with line bundles to obtain other quiver regions. Namely, σ is a quiver

stability condition with heart (up to rotation) AF iff O(p, q)⊗σ is a quiver stability condition

with heart (up to rotation) AO(p,q)⊗F. Thus we obtain quiver regions UO(p,q)⊗F = U + (p, q, 0),

and the union of these quivery regions lies over the entire t = 0 plane.

To find the t0 from the statement of the proposition, let MF(x, y) = t, where (x, y, t)

is the unique point in S on the boudary of U (if such a point exists), and similarly define

MF⊗O(p,q)(x, y). Note that each M is continuous where it is defined.

Now, for (x, y) ∈ U definem(x, y) as the maximum ofMF(x, y), MO(1,0)⊗F(x, y), MO(0,1)⊗F(x, y),

and MO(1,1)⊗F(x, y)}. Note that m is continuous and positive, and since it is defined on the

compact set U it has a minimum value t0 there. Finally, the action of line bundles on

Stabdiv(P1×P1) restricts to an action on quiver regions, and hence this t0 serves as the value

desired in the statement of the proposition. �

Corollary 6.2. For any σx,y,a,b ∈ Stabdiv(P1 × P1) and choice of Bogomolov chern

class, the moduli space of stable (semi-stable) objects with those invariants is quasi-projective

(projective).
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Proof. By [22, Corollary 3.2] and Proposition 6.1 above, our moduli space is isomorphic

to a moduli space for a quiver σ′, which by [14] is isomorphic to a moduli space of quiver

representations for a given dimension vector. Following the proof of [3, Proposition 8.1] we

see that our stability condition is equivalent to the definition of [21] and thus the moduli

space is quasi-projective if only stable objects are considered, and projective when semi-stable

objects are considered. �
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CHAPTER 7

Helices and Tilting

As seen in Chapter 6, quiver stability conditions (or “algebraic stability conditions” as

they are also known) can be useful in determining structure for Bridgeland moduli spaces.

They have also been used in [7, Sections 6 and 7] to deduce the topology of (a connected

component of) the space of stability conditions for local P2.

Besides these applications, considerations regarding the exceptional collections which

give rise to algebraic stability conditions are interesting in their own right. In particular, in

[14] Bridgeland and Stern (BS) exhibit a tight connection between tilting on quiver algebras

and mutations via a height function on associated helices (which are infinite collections of

exceptional objects).

After stating some preliminaries, we collect a number of results surrounding the operation

of tilting. More specifically, in Section 7.2 we show that the information necessary to perform

a height function mutation is contained in the associated quiver. In Section 7.3 we realize

d-block mutations as repeated height function mutations, and in Section 7.4 we characterize

the geometric helices on P1× P1. While not all results contained in this Chapter are new to

the mathematical community, they have all been obtained independently by the author.

7.1. Tilting Preliminaries

Let D = Db(CohX) for X smooth, projective variety over C. An exceptional object

E ∈ D is one such that Homk(E,E) = 0 for k 6= 0 and Hom0(E,E) = C. An ordered

sequence of exceptional objects E = (E1, . . . , En) is called an exceptional collection if

1 ≤ j < i ≤ n implies Hom•(Ei, Ej) = 0.
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Given an exceptional collection E we define the right orthogonal category as the full

subcategory E⊥ = {F ∈ D | Hom•(E,F ) = 0 for E ∈ E}. The left orthogonal category

⊥E is defined similarly.

An infinite collection of exceptional objects H = (Ei)i∈Z is called a helix of type (n, d)

if each thread (Ei+1, . . . , Ei+n) is a full exceptional collection, and if we have Ei−n =

SD(Ei)[1 − d] for each i. Here SD is the Serre functor of D. For us, this is SD(E) =

(E ⊗ ωX)[dimX].

To a geometric helix H (meaning Hom•(Ei, Ej) = Hom0(Ei, Ej) for all i < j) one

obtains an equivalence between the bounded derived category of local X and the bounded

derived category of modules over the “rolled-up helix algebra” of H (see [14, Section 3.2 and

3.3]).

A crucial operation to this theory is that of mutation. For E an exceptional object and

F ∈ ⊥E, the left mutation of F through E, LE(F ), is defined by the canonical evaluation

triangle Hom•(E,F )⊗ E → F → LE(F ). Note that LE(F ) ∈ E⊥. Dually, we may define a

right mutation.

To an exceptional collection E = (E1, . . . , En) we associate the dual exceptional col-

lection F = (Fn, . . . , F1) defined by Fj = LE1 · · ·LEj−1
(Ej). These objects (resp. their

pushforwards) generate the quiver heart associated to a full, strong exceptional collection

(resp. a geometric helix).

The quiver associated to a geometric helix has a vertex for each object in a thread of the

helix, and we associate a vertex to its respective object. One can then place arrows either

by considering irreducible maps between objects in the helix, or extensions between dual

objects.
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We say a map Ei → Ej is irreducible if it is not in the image of

ci,j :
⊕
i<k<j

Hom(Ei, Ek)⊗ Hom(Ek, Ej) −→ Hom(Ei, Ej)

For j − i < n, the number of arrows from vertex i to vertex j, ni,j, is dim coker ci,j. Alter-

natively, ni,j = dim Hom1(Fj, Fi).

The description of ni,j in terms of Ext’s between dual objects suggests the following

definition, which is central to performing a height function mutation. If i < j we say that

Ei and Ej are p-related if Homk(Fj, Fi) = 0 for k 6= p. We say that Ei and Ej are strictly

p-related if they are p-related and Homp(Fj, Fi) 6= 0. If Homk(Fj, Fi) = 0 for all k we say

that Ei and Ej are all-related.

We now build towards the description of a height function mutation. A levelling on a helix

H = (Ei)i∈Z of type (n, d) is a function φ : H → Z such that i ≤ j implies φ(Ei) ≤ φ(Ej),

and such that φ(Ei+n) = φ(Ei) + d for each i.

Let E = (E1, . . . , En) be a full, strong exceptional collection. A height function for an

object E ∈ E is a levelling φ : E → Z such that φ−1(0) = {E}, and φ(Ej) = p 6= 0 implies

that E and Ej are p-related (if p > 0), or if p < 0 then Ej and E are −p-related. One defines

height functions for helices be asking the above to hold for any thread in the helix.

Given a helix H = (Ei)i∈Z with a height function for E. A height function mu-

tation at E, henceforth called a tilt at E, constructs a related helix and levelling. To

perform a tilt at E, choose a thread of H which contains both E and φ−1(−1) =: E−1 :

(. . . ,E−1, E, . . .). Now left mutate (and shift) E through E−1 and keep this new positioning:
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(. . . , LE−1E[−1],E−1, . . .). Now, using this updated thread, generate a helix H′ and a level-

ling φ′ such that φ′−1(−1) = LE−1E[−1] and φ′−1(0) = E−1. This new helix and levelling is

the result of the tilt at E.

7.2. Tilting via Quivers

To perform a tilt at an object E of a helix H, one must know φ−1(−1) =: E−1. Here we

add to a result of [14] (BS) to clarify how knowledge of the quiver associated to H is enough

to deduce E−1. We first state the result of BS.

Proposition 7.1 (BS Proposition 7.6). Let Z be a smooth Fano variety of dimension

d−1 and suppose H is a geometric helix in D(Z) of type (n, d). Suppose there exists a height

function φ : H → Z for an object E0 ∈ H and write σ0(H, φ) = (H′, φ′). Then the algebra

B′ = B(H′) is the left tilt of the algebra B = B(H) at the vertex corresponding to E0.

In the following, we identify two helices if they differ by a rearrangement of mutually

orthogonal, adjacent objects. Since A mutually orthogonal to B implies that LAB = B,

it follows that the objects of the dual collection F do not change under shuffling mutually

orthogonal objects of E.

Proposition 7.2. Moreover, taking the thread E such that E0 is the last object in it, let

E′−1 := {objects in E whose vertex has arrows to E0’s vertex}. Then H′ is obtained by taking

E0, moving it behind the last object of E′−1 and then replacing E0 with LE′−1
(E0)[−1] (and

generating the helix).

Proof. To tilt H at E0, one takes E0, moves it past E−1 and then replaces E0 with

LE−1(E0)[−1]. We show that our process produces the same result.
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First we show the new positions of our objects match BS: Let F = {Fn, . . . , F1} be

the dual collection corresponding to E. Since a height function exists by assumption, if

Homp(F0, Fi) 6= 0 for some p, then p is the only such degree. Now, suppose Ei ∈ E−1.

Then either (ni,0 =) Hom1(F0, Fi) 6= 0 (and thus Ei’s vertex has an arrow to E0’s vertex)

or Homp(F0, Fi) = 0 for all p (in which case there are no arrows from Ei’s vertex to E0’s

vertex).

By definition, E′−1 is the subset of E with (ni,0 =)Hom1(F0, Fi) 6= 0 and thus E′−1 ⊂ E−1.

It follows that any object E? of E−1 that is to the left of E′−1 (in the ordering of E) has

Homp(F0, F?) = 0 for all p and so can be moved into E−2. Doing this gives an slightly

different levelling φ̃. Thus moving E0 just past E′−1 gives the same position as BS using φ̃.

Next, we must show that (using φ̃), we have LE−1(E0) ∼= LE′−1
(E0), so that E0 is replaced

by the object specified in BS. Proposition 7.1 of [14] shows that ΦE(P
(1)
0 ) = LE−1(E0), where

P
(1)
0 = [0 −→

⊕
j∈Q0

P
⊕d1j0
j −→ P0 −→ 0]

and we use d1j0 = dim Hom1(S0, Sj).

The same proof (using m = 0, k = 1, i = 0) shows that ΦE(P
(1)
0 ) = LE′−1

(E0) and

gives our result: Let R := ΦE(P
(1)
0 ) = [

⊕
j E
⊕d1j0
j −→ E0]. We have the triangle E0

0,id−→

R −→ A, where A = [
⊕

j E
⊕d1j0
j −→ 0] ∈ 〈E′−1〉 since no arrows to vertex 0 imply d1j0 =

dim Hom1(F0, F?) = nj0 = 0. As in BS, by breaking the projective resolution of S0 into

three pieces and applying ΦE, we have a triangle B′ −→ R −→ F0 with B′ ∈ 〈Ej ∈

E | ϕ(Ej) < −1〉. Then, since i < j implies Hom•(Ej, Ei) = 0 (in an exceptional collection)

and Homk(Ei, Fj) 6= 0 iff i = j and k = 0, we have that R ∈ E⊥−1 and hence R ∈ (E′−1)⊥

since E′−1 ⊂ E−1.
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Now, consider the triangle A[−1] −→ E0 −→ R. Since A[−1] ∈ 〈E′−1〉, and E0 ∈ ⊥(E′−1),

and R ∈ (E′−1)⊥, we have by [14, Proposition 2.2.b] that R = LE′−1
(E0).

Lastly, the fact that our updated height function, φ̃ gives a helix that differs from the

original H′ by shuffling mutually orthogonal objects follows from our proof above: Specifi-

cally, we have shown that LE−1(E0) ∼= LE′−1
(E0) for any choice of height function for E0. We

also showed that, we can choose to have any object Ẽ of E−1 which is to the left of E′−1 be

the start of E−2 (denote by Ẽ−1 the set of all such Ẽ). Thus, placing LE′−1
(E0)[−1] to the

left or right of any object of Ẽ−1 gives a geometric helix. But X being to the left Y in an

exceptional collection implies that Hom•(Y,X) = 0. So the fact that we still obtain a helix

with LE′−1
(E0)[−1] to the left or to the right of any object of Ē−1 gives that LE′−1

(E0)[−1] is

mutually orthogonal to all objects in Ẽ−1. �

7.3. Tilting and d-Block Mutations

d-block mutations are helix mutations which preserve collections of orthogonal elements.

Proposition 7.4 shows that d-block mutations for Del Pezzo surfaces are a coarser notion

than tilting. We first prove a lemma which restricts E−1 when using an appropriate thread.

Lemma 7.3. Let Z be a (connected) Fano variety and E = (E1, . . . , En) a thread of H,

a geometric helix for Z of type (n, d) with d ≥ 3. There are no height functions for En that

allow E1 to be in E−1.

Proof. We show that mutating En down through E1 (which is the required operation

of tilting) will never result in a geometric helix. Suppose φ a height function for En and

E−1 = {E1, . . . , En−1}. Then, following the tilting operation, we replace En with L :=

LE−1(En)[−1] = LE1,...,En−1(En)[−1]. But by [14, Remark 3.2.b] and our assumption that
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d ≥ 3 we have that L = E0[k] for k = −1 − (1 − d) ≥ 1. So our new generating thread

of H′ is E′ = (E0[k], E1, . . . , En−1). Now, H is a geometric helix and so Hom•(E0, Ei) =

Hom0(E0, Ei). But any nonzero element of Hom0(E0, Ei) for i ∈ {1, . . . , n − 1} gives a

nonzero element of Homk(E0[k], Ei), which cannot be, since k ≥ 1 and, by the construction of

BS, our mutated helix H′ is geometric. Thus, for i ∈ {1, . . . , n−1} we have Hom0(E0, Ei) (=

Hom•(E0, Ei)) = 0. But then 〈E0〉 ⊥ 〈E1, . . . , En−1〉 and so D(Z) = 〈〈E0〉, 〈E1, . . . , En−1〉〉

implies that Z is disconnected, a contradiction. �

Here we introduce our notation for d-block mutations. For a height function φ, let the

ith level be denoted Ei. Let the d-block structure of an exceptional collection be denoted

by E = (E1, . . . ,Ed), where the objects in each Ei are mutually orthogonal. A left d-block

mutation at Ed takes E and gives τdE = (E1, . . . , LEd−1
Ed[−1],Ed−1).

For example, the exceptional collection E = (O(0, 0),O(1, 0),O(0, 1),O(1, 1)) on P1×P1

has a 3-block decomposition as E1 = O(0, 0),E2 = {O(1, 0),O(0, 1)}, and E3 = O(1, 1).

Proposition 7.4. Let Z be a Del Pezzo Surface and H a geometric helix of type (n, d),

d ≥ 3 on Z with a d-block decomposition. Any d-block mutation can be realized as a sequence

of tilts.

Proof. Without loss of generality, we may consider just the mutation τd. Since the

objects within each Ei are mutually orthogonal, we can bring E0 to the far left of Ed without

obtaining an inequivalent helix. From the proof of Theorem 5.3 in [14], we have the triangle

(7–1) LEd−1
E0[−1] −→

⊕
E∈Ed−1

Hom(E,E0)⊗ E −→ E0

102



We show first that E−1 is “effectively contained” in Ed−1, i.e. that any object of E−1 to

the left of Ed−1 is all-related to E0. Let Ei ∈ E−1 lie to the left of Ed−1 and suppose it has an

irreducible map to E0, i.e. that Ei and E0 are strictly 1-related. We now apply Hom(Ei, )

to Equation 7–1 and use the fact that H is geometric and for A,B sheaves and V a vector

space we have Hom(A, V ⊗ B) ∼= Hom(A,B) ⊗ V (∼= Hom(A ⊗ V,B)). The result is the

following long exact sequence.

0 −→ Hom(Ei, LEd−1
E0[−1]) −→

⊕
E∈Ed−1

Hom(Ei, E)⊗ Hom(E,E0)
comp−→

comp−→ Hom(Ei, E0)
g−→ Hom(Ei, LEd−1

E0) −→ 0.

where “comp” is the natural composition map.

Since Ei → E0 is irreducible, the map “comp” is not surjective. Thus ker(g) = im(comp) 6=

Hom(Ei, E0). Hence g 6= 0 and so Hom(Ei, LEd−1
E0) 6= 0. But Hom(Ei, LEd−1

E0) =

Hom1(Ei, LEd−1
E0[−1]) and thus the helix generated by τdE is not geometric, contradict-

ing [14, Theorem 5.3]. Thus, any object of E−1 that is to the left of Ed−1 is all-related to E0

and so can be moved into E−2, making E−1 ⊂ Ed−1.

We now show that any element of Ed−1 that is not in E−1 is all-related to E0 and thus

can be put into E−1 by adjusting φ. Let E? be in Ed−1 but not in E−1. Since d ≥ 3, Lemma

7.3 shows that Ed−1 will never contain the first object in the thread. By [14, Lemma 6.3.a],

we may consider the thread of H that starts with E?, as the maps between the corresponding

dual objects are the same as those from our original thread. In other words, we may consider

the thread E = (E?, Ê, E0, Ẽ), where Ê = {Ê1, . . . , Êk} (the objects of Ed−1 beween E? and

E0).
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We wish to describe Hom•(LE?ÊE0, E?). But, since shuffling mutually orthogonal ele-

ments does not change the dual objects, to obtain our result we may bring E? right next to

E0 and then (as before) rotate our thread so that it becomes E = (E?, E0, Ẽ′), i.e. we have

Hom•(LE?ÊE0, E?) = Hom•(LE?E0, E?).

Note that Hom(E?, E0) = 0, or else (since they are adjacent in the thread) these maps

would be irreducible, which would imply that E? and E0 are strictly 1-related and hence that

E? ∈ E−1. But we have assumed that this is not the case. This, together with H geometric

imply that Hom•(E?, E0) = 0. Thus, by considering the standard mutation triangle

LE?E0[−1] −→ Hom•(E?, E0)⊗ E? −→ E0

we see that LE?E0 = E0 and thus Hom•(LE?E0, E?) = Hom•(E0, E?) = 0, i.e. E? and E0 are

all-related. Since this is true for any object of Ed−1 to the left of E−1, we may adjust ϕ and

choose these objects to be in E−1.

Let Ed = {E0, E1, . . . , Ek}. We have shown that we can tilt at E0 so that E−1 =

Ed−1. This takes our original thread E = (. . . ,Ed−1, E0, . . . , Ek) and replaces it with

E′ = (. . . , LEd−1
E0[−1],Ed−1, E1, . . . , Ek). Since Z is a Del Pezzo Surface, we know a height

function (again, call it φ) exists for E1 in this helix. We now show that we can also choose

E−1 = Ed−1 here:

Now, in the first part of the proof the choice of E0 ∈ Ed was arbitrary since we can

shuffle mutually orthogonal elements. Thus, for any Ei ∈ Ed, the objects in Ed−1 either have

irreducible maps to Ei or are all-related to Ei. Thus, to show that for E1 we may now choose

E−1 = Ed−1, we need only show that LEd−1
E0[−1] and E1 are all-related.
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Since Ed−1 does not contain the first object of E, LEd−1
E0[−1] is not the first object of

E′, and so (again, since we only care about maps between dual objects) we may move to the

thread starting at A := LEd−1
E0[−1]. Now A is its own dual object and, letting B := LEd−1

E1,

the dual object to E1 is LAB. Since LEd−1
: ⊥Ed−1 → E⊥d−1 is an equivalence, E0 and E1

mutually orthogonal imply that A and B are also. Thus LAB = B. But LAB is the dual

object corresponding to E1. Thus A and B mutually orthogonal gives that LEd−1
E0[−1] and

E1 are all-related, as desired.

Tilting at E1, the helix we have now is generated by

E′′ = (. . . , LEd−1
E0[−1], LEd−1

E1[−1],Ed−1, E2, . . . , Ek)

Continuing in a similar manner to above, and using the fact that LEd−1
: ⊥Ed−1 → E⊥d−1

is an equivalence, we see that we can continue to tilt at the remaining objects of Ed (with

E−1 = Ed−1 at each iteration) until the helix we end up with is

E′···′ = (. . . , LEd−1
E0[−1], LEd−1

E1[−1], . . . , LEd−1
Ek[−1],Ed−1) = (. . . , LEd−1

Ed[−1],Ed−1)

which is τdE. �

7.4. Geometric Helices on P1 × P1

Varieties Z satisfying rankK(Z) = dim(Z) + 1 have a well-behaved theory of mutations

and geometric helices. Bondal and Polishchuk [? ] show that, on such a Z, a mutation of a

geometric helix produces a geometric helix, and Bridgeland [? ] describes these mutations

as an action of a certain braid group. In fact, on P2, every helix is geometric.
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On surfaces which do not satisfy rankK(Z) = dim(Z) + 1, the theory is not quite so

rigid. For instance, mutations of geometric helices on P1 × P1 can result in non-geometric

helices. (In fact, the content of [14] is to construct an operation (tilting) which extends

mutation, and preserves the class of geometric helices.) An example is the geometric

helix H = (. . . ,O(0, 0),O(1, 0),O(0, 1),O(1, 1), . . .). Left mutating at O(1, 1) produces

the helix H′ = (. . . ,O(0, 0),O(1, 0),O(−1, 1),O(0, 1), . . .) which is not geometric, since

Hom1(O(1, 0),O(−1, 1)) 6= 0.

Note that in H, the slopes of the objects (with respect to the Mumford (1, 1)-slope, µ) are

increasing, whereas in H′ they are not. We show that this property characterizes geometric

helices on P1 × P1. We begin with a lemma which precludes the possibility of forward maps

of degree 2 in a helix on P1 × P1.

Recall that by [19], exceptional sheaves on a quadric are locally free and µ-stable. Also,

a helix of type (4, 3) satisfies Ei−n = Ei ⊗ ω for all i.

Lemma 7.5. For H = (Ei)i∈Z a helix of type (4, 3) on P1×P1, there are no forward maps

of degree 2, i.e. Hom2(Ei, Ei+k) = 0 for all i and all k > 0.

Proof. Suppose that Hom2(E0, Ek) 6= 0. Then Serre duality gives Hom2(Ek, E−n) 6= 0

and thus µ(Ek) < µ(E−n) since each Ei is µ-stable. Define the positive integer q by the

property −n < k − qn < 0. Note that −n 6= k − qn for any q otherwise E−n = Ek−qn which

is nonsense since µ(Ek−qn) < µ(Ek) < µ(E−n). Thus (E−n, Ek−qn) is an exceptional pair.

Since Ek−qn = Ek⊗ωq ↪→ Ek and Hom2(Ek, E−n) 6= 0 we must have Hom(Ek−qn, E−n) 6=

0, for otherwise we would have a nonzero map from a torsion sheaf to E−n. But this

contradicts the fact that (E−n, Ek−qn) is an exceptional pair. �

Using Serre Duality, we quickly obtain the following.
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Corollary 7.6. For H = (Ei)i∈Z a helix of type (4, 3) on P1×P1, there are no backwards

maps of degree 0.

Note that, by Serre duality, there is a nonzero forward map of degree 1 iff there is a

nonzero backwards map of degree 1.

Theorem 7.7. For H = (Ei)i∈Z a helix on P1 × P1, we have H is geometric iff µ(Ei) ≤

µ(Ei+1) for all i. Here µ is the Mumford (1, 1)-slope.

Proof. We first prove the forward direction via the contrapositive. Suppose we have

µ(E0) > µ(E1) (after renumbering, if necessary). Then by [19, Prop. 5.3.3] the mutation of

E1 past E0 will be an L-ext mutation (notation from [26]), i.e. Ext1(E0, E1) 6= 0. Thus H is

non-geometric.

We now prove the backwards direction via contradiction. Suppose µH(Ei) ≤ µ(Ei+1) for

all i. Suppose further that Ext1(E0, Ek) 6= 0 for some k > 0 (Lemma 7.5 precludes degree

2 maps). If 1 ≤ k ≤ n − 1 then (E0, Ek) is an exceptional pair and µ(Ek) < µ(E0) by [19].

This contradicts our assumption on slopes and so we may assume that k ≥ n and hence

µ(Ek) > µ(E0).

We may choose k so that Ext1(E0, Ek−qn) = 0 for all 0 ≤ k − qn < k. Choose an

irreducible smooth (elliptic) curve C ∈ |(2, 2)|. It is known that if E is an exceptional bundle

on P1 × P1, then E|C is µ-stable where here µ = deg/rk. We also have µ(E) = µ(E|C).

From the short exact sequence 0 → E∗0 ⊗ Ek ⊗ ω → E∗0 ⊗ Ek → (E∗0 ⊗ Ek)|C → 0 we

obtain the long exact sequence described in part below.

· · · → Ext1(E0, Ek ⊗ ω)→ Ext1(E0, Ek)→ Ext1(E0|C , Ek|C)→ · · ·
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If Ext1(E0|C , Ek|C) 6= 0 then by Serre duality on C (where ωC = OC) we have Ext1C(E0|C , Ek|C) =

HomC(Ek|C , E0|C) 6= 0. But this is a contradiction, since E0|C and Ek|C are µ-stable with

µ(Ek|C) = µ(Ek) > µ(E0) = µ(E0|C). Thus Ext1(E0|C , Ek|C) = 0 and hence Ext1(E0, Ek ⊗

ω) � Ext1(E0, Ek) 6= 0. It follows that Ext1(E0, Ek ⊗ ω) = Ext1(E0, Ek−n) 6= 0, contradict-

ing our choice of k. Thus H is geometric. �
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